1 /* *********************************************************************
   2  *
   3  * Sun elects to have this file available under and governed by the
   4  * Mozilla Public License Version 1.1 ("MPL") (see
   5  * http://www.mozilla.org/MPL/ for full license text). For the avoidance
   6  * of doubt and subject to the following, Sun also elects to allow
   7  * licensees to use this file under the MPL, the GNU General Public
   8  * License version 2 only or the Lesser General Public License version
   9  * 2.1 only. Any references to the "GNU General Public License version 2
  10  * or later" or "GPL" in the following shall be construed to mean the
  11  * GNU General Public License version 2 only. Any references to the "GNU
  12  * Lesser General Public License version 2.1 or later" or "LGPL" in the
  13  * following shall be construed to mean the GNU Lesser General Public
  14  * License version 2.1 only. However, the following notice accompanied
  15  * the original version of this file:
  16  *
  17  *  Arbitrary precision integer arithmetic library
  18  *
  19  *  NOTE WELL: the content of this header file is NOT part of the "public"
  20  *  API for the MPI library, and may change at any time.
  21  *  Application programs that use libmpi should NOT include this header file.
  22  *
  23  * Version: MPL 1.1/GPL 2.0/LGPL 2.1
  24  *
  25  * The contents of this file are subject to the Mozilla Public License Version
  26  * 1.1 (the "License"); you may not use this file except in compliance with
  27  * the License. You may obtain a copy of the License at
  28  * http://www.mozilla.org/MPL/
  29  *
  30  * Software distributed under the License is distributed on an "AS IS" basis,
  31  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
  32  * for the specific language governing rights and limitations under the
  33  * License.
  34  *
  35  * The Original Code is the MPI Arbitrary Precision Integer Arithmetic library.
  36  *
  37  * The Initial Developer of the Original Code is
  38  * Michael J. Fromberger.
  39  * Portions created by the Initial Developer are Copyright (C) 1998
  40  * the Initial Developer. All Rights Reserved.
  41  *
  42  * Contributor(s):
  43  *   Netscape Communications Corporation
  44  *
  45  * Alternatively, the contents of this file may be used under the terms of
  46  * either the GNU General Public License Version 2 or later (the "GPL"), or
  47  * the GNU Lesser General Public License Version 2.1 or later (the "LGPL"),
  48  * in which case the provisions of the GPL or the LGPL are applicable instead
  49  * of those above. If you wish to allow use of your version of this file only
  50  * under the terms of either the GPL or the LGPL, and not to allow others to
  51  * use your version of this file under the terms of the MPL, indicate your
  52  * decision by deleting the provisions above and replace them with the notice
  53  * and other provisions required by the GPL or the LGPL. If you do not delete
  54  * the provisions above, a recipient may use your version of this file under
  55  * the terms of any one of the MPL, the GPL or the LGPL.
  56  *
  57  *********************************************************************** */
  58 /*
  59  * Copyright (c) 2007, Oracle and/or its affiliates. All rights reserved.
  60  * Use is subject to license terms.
  61  */
  62 
  63 #ifndef _MPI_PRIV_H
  64 #define _MPI_PRIV_H
  65 
  66 /* $Id: mpi-priv.h,v 1.20 2005/11/22 07:16:43 relyea%netscape.com Exp $ */
  67 
  68 #include "mpi.h"
  69 #ifndef _KERNEL
  70 #include <stdlib.h>
  71 #include <string.h>
  72 #include <ctype.h>
  73 #endif /* _KERNEL */
  74 
  75 #if MP_DEBUG
  76 #include <stdio.h>
  77 
  78 #define DIAG(T,V) {fprintf(stderr,T);mp_print(V,stderr);fputc('\n',stderr);}
  79 #else
  80 #define DIAG(T,V)
  81 #endif
  82 
  83 /* If we aren't using a wired-in logarithm table, we need to include
  84    the math library to get the log() function
  85  */
  86 
  87 /* {{{ s_logv_2[] - log table for 2 in various bases */
  88 
  89 #if MP_LOGTAB
  90 /*
  91   A table of the logs of 2 for various bases (the 0 and 1 entries of
  92   this table are meaningless and should not be referenced).
  93 
  94   This table is used to compute output lengths for the mp_toradix()
  95   function.  Since a number n in radix r takes up about log_r(n)
  96   digits, we estimate the output size by taking the least integer
  97   greater than log_r(n), where:
  98 
  99   log_r(n) = log_2(n) * log_r(2)
 100 
 101   This table, therefore, is a table of log_r(2) for 2 <= r <= 36,
 102   which are the output bases supported.
 103  */
 104 
 105 extern const float s_logv_2[];
 106 #define LOG_V_2(R)  s_logv_2[(R)]
 107 
 108 #else
 109 
 110 /*
 111    If MP_LOGTAB is not defined, use the math library to compute the
 112    logarithms on the fly.  Otherwise, use the table.
 113    Pick which works best for your system.
 114  */
 115 
 116 #include <math.h>
 117 #define LOG_V_2(R)  (log(2.0)/log(R))
 118 
 119 #endif /* if MP_LOGTAB */
 120 
 121 /* }}} */
 122 
 123 /* {{{ Digit arithmetic macros */
 124 
 125 /*
 126   When adding and multiplying digits, the results can be larger than
 127   can be contained in an mp_digit.  Thus, an mp_word is used.  These
 128   macros mask off the upper and lower digits of the mp_word (the
 129   mp_word may be more than 2 mp_digits wide, but we only concern
 130   ourselves with the low-order 2 mp_digits)
 131  */
 132 
 133 #define  CARRYOUT(W)  (mp_digit)((W)>>DIGIT_BIT)
 134 #define  ACCUM(W)     (mp_digit)(W)
 135 
 136 #define MP_MIN(a,b)   (((a) < (b)) ? (a) : (b))
 137 #define MP_MAX(a,b)   (((a) > (b)) ? (a) : (b))
 138 #define MP_HOWMANY(a,b) (((a) + (b) - 1)/(b))
 139 #define MP_ROUNDUP(a,b) (MP_HOWMANY(a,b) * (b))
 140 
 141 /* }}} */
 142 
 143 /* {{{ Comparison constants */
 144 
 145 #define  MP_LT       -1
 146 #define  MP_EQ        0
 147 #define  MP_GT        1
 148 
 149 /* }}} */
 150 
 151 /* {{{ private function declarations */
 152 
 153 /*
 154    If MP_MACRO is false, these will be defined as actual functions;
 155    otherwise, suitable macro definitions will be used.  This works
 156    around the fact that ANSI C89 doesn't support an 'inline' keyword
 157    (although I hear C9x will ... about bloody time).  At present, the
 158    macro definitions are identical to the function bodies, but they'll
 159    expand in place, instead of generating a function call.
 160 
 161    I chose these particular functions to be made into macros because
 162    some profiling showed they are called a lot on a typical workload,
 163    and yet they are primarily housekeeping.
 164  */
 165 #if MP_MACRO == 0
 166  void     s_mp_setz(mp_digit *dp, mp_size count); /* zero digits           */
 167  void     s_mp_copy(const mp_digit *sp, mp_digit *dp, mp_size count); /* copy */
 168  void    *s_mp_alloc(size_t nb, size_t ni, int flag); /* general allocator    */
 169  void     s_mp_free(void *ptr, mp_size);          /* general free function */
 170 extern unsigned long mp_allocs;
 171 extern unsigned long mp_frees;
 172 extern unsigned long mp_copies;
 173 #else
 174 
 175  /* Even if these are defined as macros, we need to respect the settings
 176     of the MP_MEMSET and MP_MEMCPY configuration options...
 177   */
 178  #if MP_MEMSET == 0
 179   #define  s_mp_setz(dp, count) \
 180        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=0;}
 181  #else
 182   #define  s_mp_setz(dp, count) memset(dp, 0, (count) * sizeof(mp_digit))
 183  #endif /* MP_MEMSET */
 184 
 185  #if MP_MEMCPY == 0
 186   #define  s_mp_copy(sp, dp, count) \
 187        {int ix;for(ix=0;ix<(count);ix++)(dp)[ix]=(sp)[ix];}
 188  #else
 189   #define  s_mp_copy(sp, dp, count) memcpy(dp, sp, (count) * sizeof(mp_digit))
 190  #endif /* MP_MEMCPY */
 191 
 192  #define  s_mp_alloc(nb, ni)  calloc(nb, ni)
 193  #define  s_mp_free(ptr) {if(ptr) free(ptr);}
 194 #endif /* MP_MACRO */
 195 
 196 mp_err   s_mp_grow(mp_int *mp, mp_size min);   /* increase allocated size */
 197 mp_err   s_mp_pad(mp_int *mp, mp_size min);    /* left pad with zeroes    */
 198 
 199 #if MP_MACRO == 0
 200  void     s_mp_clamp(mp_int *mp);               /* clip leading zeroes     */
 201 #else
 202  #define  s_mp_clamp(mp)\
 203   { mp_size used = MP_USED(mp); \
 204     while (used > 1 && DIGIT(mp, used - 1) == 0) --used; \
 205     MP_USED(mp) = used; \
 206   }
 207 #endif /* MP_MACRO */
 208 
 209 void     s_mp_exch(mp_int *a, mp_int *b);      /* swap a and b in place   */
 210 
 211 mp_err   s_mp_lshd(mp_int *mp, mp_size p);     /* left-shift by p digits  */
 212 void     s_mp_rshd(mp_int *mp, mp_size p);     /* right-shift by p digits */
 213 mp_err   s_mp_mul_2d(mp_int *mp, mp_digit d);  /* multiply by 2^d in place */
 214 void     s_mp_div_2d(mp_int *mp, mp_digit d);  /* divide by 2^d in place  */
 215 void     s_mp_mod_2d(mp_int *mp, mp_digit d);  /* modulo 2^d in place     */
 216 void     s_mp_div_2(mp_int *mp);               /* divide by 2 in place    */
 217 mp_err   s_mp_mul_2(mp_int *mp);               /* multiply by 2 in place  */
 218 mp_err   s_mp_norm(mp_int *a, mp_int *b, mp_digit *pd);
 219                                                /* normalize for division  */
 220 mp_err   s_mp_add_d(mp_int *mp, mp_digit d);   /* unsigned digit addition */
 221 mp_err   s_mp_sub_d(mp_int *mp, mp_digit d);   /* unsigned digit subtract */
 222 mp_err   s_mp_mul_d(mp_int *mp, mp_digit d);   /* unsigned digit multiply */
 223 mp_err   s_mp_div_d(mp_int *mp, mp_digit d, mp_digit *r);
 224                                                /* unsigned digit divide   */
 225 mp_err   s_mp_reduce(mp_int *x, const mp_int *m, const mp_int *mu);
 226                                                /* Barrett reduction       */
 227 mp_err   s_mp_add(mp_int *a, const mp_int *b); /* magnitude addition      */
 228 mp_err   s_mp_add_3arg(const mp_int *a, const mp_int *b, mp_int *c);
 229 mp_err   s_mp_sub(mp_int *a, const mp_int *b); /* magnitude subtract      */
 230 mp_err   s_mp_sub_3arg(const mp_int *a, const mp_int *b, mp_int *c);
 231 mp_err   s_mp_add_offset(mp_int *a, mp_int *b, mp_size offset);
 232                                                /* a += b * RADIX^offset   */
 233 mp_err   s_mp_mul(mp_int *a, const mp_int *b); /* magnitude multiply      */
 234 #if MP_SQUARE
 235 mp_err   s_mp_sqr(mp_int *a);                  /* magnitude square        */
 236 #else
 237 #define  s_mp_sqr(a) s_mp_mul(a, a)
 238 #endif
 239 mp_err   s_mp_div(mp_int *rem, mp_int *div, mp_int *quot); /* magnitude div */
 240 mp_err   s_mp_exptmod(const mp_int *a, const mp_int *b, const mp_int *m, mp_int *c);
 241 mp_err   s_mp_2expt(mp_int *a, mp_digit k);    /* a = 2^k                 */
 242 int      s_mp_cmp(const mp_int *a, const mp_int *b); /* magnitude comparison */
 243 int      s_mp_cmp_d(const mp_int *a, mp_digit d); /* magnitude digit compare */
 244 int      s_mp_ispow2(const mp_int *v);         /* is v a power of 2?      */
 245 int      s_mp_ispow2d(mp_digit d);             /* is d a power of 2?      */
 246 
 247 int      s_mp_tovalue(char ch, int r);          /* convert ch to value    */
 248 char     s_mp_todigit(mp_digit val, int r, int low); /* convert val to digit */
 249 int      s_mp_outlen(int bits, int r);          /* output length in bytes */
 250 mp_digit s_mp_invmod_radix(mp_digit P);   /* returns (P ** -1) mod RADIX */
 251 mp_err   s_mp_invmod_odd_m( const mp_int *a, const mp_int *m, mp_int *c);
 252 mp_err   s_mp_invmod_2d(    const mp_int *a, mp_size k,       mp_int *c);
 253 mp_err   s_mp_invmod_even_m(const mp_int *a, const mp_int *m, mp_int *c);
 254 
 255 #ifdef NSS_USE_COMBA
 256 
 257 #define IS_POWER_OF_2(a) ((a) && !((a) & ((a)-1)))
 258 
 259 void s_mp_mul_comba_4(const mp_int *A, const mp_int *B, mp_int *C);
 260 void s_mp_mul_comba_8(const mp_int *A, const mp_int *B, mp_int *C);
 261 void s_mp_mul_comba_16(const mp_int *A, const mp_int *B, mp_int *C);
 262 void s_mp_mul_comba_32(const mp_int *A, const mp_int *B, mp_int *C);
 263 
 264 void s_mp_sqr_comba_4(const mp_int *A, mp_int *B);
 265 void s_mp_sqr_comba_8(const mp_int *A, mp_int *B);
 266 void s_mp_sqr_comba_16(const mp_int *A, mp_int *B);
 267 void s_mp_sqr_comba_32(const mp_int *A, mp_int *B);
 268 
 269 #endif /* end NSS_USE_COMBA */
 270 
 271 /* ------ mpv functions, operate on arrays of digits, not on mp_int's ------ */
 272 #if defined (__OS2__) && defined (__IBMC__)
 273 #define MPI_ASM_DECL __cdecl
 274 #else
 275 #define MPI_ASM_DECL
 276 #endif
 277 
 278 #ifdef MPI_AMD64
 279 
 280 mp_digit MPI_ASM_DECL s_mpv_mul_set_vec64(mp_digit*, mp_digit *, mp_size, mp_digit);
 281 mp_digit MPI_ASM_DECL s_mpv_mul_add_vec64(mp_digit*, const mp_digit*, mp_size, mp_digit);
 282 
 283 /* c = a * b */
 284 #define s_mpv_mul_d(a, a_len, b, c) \
 285         ((unsigned long*)c)[a_len] = s_mpv_mul_set_vec64(c, a, a_len, b)
 286 
 287 /* c += a * b */
 288 #define s_mpv_mul_d_add(a, a_len, b, c) \
 289         ((unsigned long*)c)[a_len] = s_mpv_mul_add_vec64(c, a, a_len, b)
 290 
 291 #else
 292 
 293 void     MPI_ASM_DECL s_mpv_mul_d(const mp_digit *a, mp_size a_len,
 294                                         mp_digit b, mp_digit *c);
 295 void     MPI_ASM_DECL s_mpv_mul_d_add(const mp_digit *a, mp_size a_len,
 296                                             mp_digit b, mp_digit *c);
 297 
 298 #endif
 299 
 300 void     MPI_ASM_DECL s_mpv_mul_d_add_prop(const mp_digit *a,
 301                                                 mp_size a_len, mp_digit b,
 302                                                 mp_digit *c);
 303 void     MPI_ASM_DECL s_mpv_sqr_add_prop(const mp_digit *a,
 304                                                 mp_size a_len,
 305                                                 mp_digit *sqrs);
 306 
 307 mp_err   MPI_ASM_DECL s_mpv_div_2dx1d(mp_digit Nhi, mp_digit Nlo,
 308                             mp_digit divisor, mp_digit *quot, mp_digit *rem);
 309 
 310 /* c += a * b * (MP_RADIX ** offset);  */
 311 #define s_mp_mul_d_add_offset(a, b, c, off) \
 312 (s_mpv_mul_d_add_prop(MP_DIGITS(a), MP_USED(a), b, MP_DIGITS(c) + off), MP_OKAY)
 313 
 314 typedef struct {
 315   mp_int       N;       /* modulus N */
 316   mp_digit     n0prime; /* n0' = - (n0 ** -1) mod MP_RADIX */
 317   mp_size      b;       /* R == 2 ** b,  also b = # significant bits in N */
 318 } mp_mont_modulus;
 319 
 320 mp_err s_mp_mul_mont(const mp_int *a, const mp_int *b, mp_int *c,
 321                        mp_mont_modulus *mmm);
 322 mp_err s_mp_redc(mp_int *T, mp_mont_modulus *mmm);
 323 
 324 /*
 325  * s_mpi_getProcessorLineSize() returns the size in bytes of the cache line
 326  * if a cache exists, or zero if there is no cache. If more than one
 327  * cache line exists, it should return the smallest line size (which is
 328  * usually the L1 cache).
 329  *
 330  * mp_modexp uses this information to make sure that private key information
 331  * isn't being leaked through the cache.
 332  *
 333  * see mpcpucache.c for the implementation.
 334  */
 335 unsigned long s_mpi_getProcessorLineSize();
 336 
 337 /* }}} */
 338 #endif /* _MPI_PRIV_H */