1 /*
   2  * Copyright (c) 1997, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.awt;
  27 
  28 import java.awt.image.ColorModel;
  29 import sun.java2d.SunCompositeContext;
  30 
  31 /**
  32  * The <code>AlphaComposite</code> class implements basic alpha
  33  * compositing rules for combining source and destination colors
  34  * to achieve blending and transparency effects with graphics and
  35  * images.
  36  * The specific rules implemented by this class are the basic set
  37  * of 12 rules described in
  38  * T. Porter and T. Duff, "Compositing Digital Images", SIGGRAPH 84,
  39  * 253-259.
  40  * The rest of this documentation assumes some familiarity with the
  41  * definitions and concepts outlined in that paper.
  42  *
  43  * <p>
  44  * This class extends the standard equations defined by Porter and
  45  * Duff to include one additional factor.
  46  * An instance of the <code>AlphaComposite</code> class can contain
  47  * an alpha value that is used to modify the opacity or coverage of
  48  * every source pixel before it is used in the blending equations.
  49  *
  50  * <p>
  51  * It is important to note that the equations defined by the Porter
  52  * and Duff paper are all defined to operate on color components
  53  * that are premultiplied by their corresponding alpha components.
  54  * Since the <code>ColorModel</code> and <code>Raster</code> classes
  55  * allow the storage of pixel data in either premultiplied or
  56  * non-premultiplied form, all input data must be normalized into
  57  * premultiplied form before applying the equations and all results
  58  * might need to be adjusted back to the form required by the destination
  59  * before the pixel values are stored.
  60  *
  61  * <p>
  62  * Also note that this class defines only the equations
  63  * for combining color and alpha values in a purely mathematical
  64  * sense. The accurate application of its equations depends
  65  * on the way the data is retrieved from its sources and stored
  66  * in its destinations.
  67  * See <a href="#caveats">Implementation Caveats</a>
  68  * for further information.
  69  *
  70  * <p>
  71  * The following factors are used in the description of the blending
  72  * equation in the Porter and Duff paper:
  73  *
  74  * <blockquote>
  75  * <table summary="layout">
  76  * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
  77  * <tr><td><em>A<sub>s</sub></em><td>the alpha component of the source pixel
  78  * <tr><td><em>C<sub>s</sub></em><td>a color component of the source pixel in premultiplied form
  79  * <tr><td><em>A<sub>d</sub></em><td>the alpha component of the destination pixel
  80  * <tr><td><em>C<sub>d</sub></em><td>a color component of the destination pixel in premultiplied form
  81  * <tr><td><em>F<sub>s</sub></em><td>the fraction of the source pixel that contributes to the output
  82  * <tr><td><em>F<sub>d</sub></em><td>the fraction of the destination pixel that contributes
  83  * to the output
  84  * <tr><td><em>A<sub>r</sub></em><td>the alpha component of the result
  85  * <tr><td><em>C<sub>r</sub></em><td>a color component of the result in premultiplied form
  86  * </table>
  87  * </blockquote>
  88  *
  89  * <p>
  90  * Using these factors, Porter and Duff define 12 ways of choosing
  91  * the blending factors <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> to
  92  * produce each of 12 desirable visual effects.
  93  * The equations for determining <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em>
  94  * are given in the descriptions of the 12 static fields
  95  * that specify visual effects.
  96  * For example,
  97  * the description for
  98  * <a href="#SRC_OVER"><code>SRC_OVER</code></a>
  99  * specifies that <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>).
 100  * Once a set of equations for determining the blending factors is
 101  * known they can then be applied to each pixel to produce a result
 102  * using the following set of equations:
 103  *
 104  * <pre>
 105  *      <em>F<sub>s</sub></em> = <em>f</em>(<em>A<sub>d</sub></em>)
 106  *      <em>F<sub>d</sub></em> = <em>f</em>(<em>A<sub>s</sub></em>)
 107  *      <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>A<sub>d</sub></em>*<em>F<sub>d</sub></em>
 108  *      <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>F<sub>s</sub></em> + <em>C<sub>d</sub></em>*<em>F<sub>d</sub></em></pre>
 109  *
 110  * <p>
 111  * The following factors will be used to discuss our extensions to
 112  * the blending equation in the Porter and Duff paper:
 113  *
 114  * <blockquote>
 115  * <table summary="layout">
 116  * <tr><th align=left>Factor&nbsp;&nbsp;<th align=left>Definition
 117  * <tr><td><em>C<sub>sr</sub></em> <td>one of the raw color components of the source pixel
 118  * <tr><td><em>C<sub>dr</sub></em> <td>one of the raw color components of the destination pixel
 119  * <tr><td><em>A<sub>ac</sub></em>  <td>the "extra" alpha component from the AlphaComposite instance
 120  * <tr><td><em>A<sub>sr</sub></em> <td>the raw alpha component of the source pixel
 121  * <tr><td><em>A<sub>dr</sub></em><td>the raw alpha component of the destination pixel
 122  * <tr><td><em>A<sub>df</sub></em> <td>the final alpha component stored in the destination
 123  * <tr><td><em>C<sub>df</sub></em> <td>the final raw color component stored in the destination
 124  * </table>
 125  *</blockquote>
 126  *
 127  * <h3>Preparing Inputs</h3>
 128  *
 129  * <p>
 130  * The <code>AlphaComposite</code> class defines an additional alpha
 131  * value that is applied to the source alpha.
 132  * This value is applied as if an implicit SRC_IN rule were first
 133  * applied to the source pixel against a pixel with the indicated
 134  * alpha by multiplying both the raw source alpha and the raw
 135  * source colors by the alpha in the <code>AlphaComposite</code>.
 136  * This leads to the following equation for producing the alpha
 137  * used in the Porter and Duff blending equation:
 138  *
 139  * <pre>
 140  *      <em>A<sub>s</sub></em> = <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em> </pre>
 141  *
 142  * All of the raw source color components need to be multiplied
 143  * by the alpha in the <code>AlphaComposite</code> instance.
 144  * Additionally, if the source was not in premultiplied form
 145  * then the color components also need to be multiplied by the
 146  * source alpha.
 147  * Thus, the equation for producing the source color components
 148  * for the Porter and Duff equation depends on whether the source
 149  * pixels are premultiplied or not:
 150  *
 151  * <pre>
 152  *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>sr</sub></em> * <em>A<sub>ac</sub></em>     (if source is not premultiplied)
 153  *      <em>C<sub>s</sub></em> = <em>C<sub>sr</sub></em> * <em>A<sub>ac</sub></em>           (if source is premultiplied) </pre>
 154  *
 155  * No adjustment needs to be made to the destination alpha:
 156  *
 157  * <pre>
 158  *      <em>A<sub>d</sub></em> = <em>A<sub>dr</sub></em> </pre>
 159  *
 160  * <p>
 161  * The destination color components need to be adjusted only if
 162  * they are not in premultiplied form:
 163  *
 164  * <pre>
 165  *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em> * <em>A<sub>d</sub></em>    (if destination is not premultiplied)
 166  *      <em>C<sub>d</sub></em> = <em>C<sub>dr</sub></em>         (if destination is premultiplied) </pre>
 167  *
 168  * <h3>Applying the Blending Equation</h3>
 169  *
 170  * <p>
 171  * The adjusted <em>A<sub>s</sub></em>, <em>A<sub>d</sub></em>,
 172  * <em>C<sub>s</sub></em>, and <em>C<sub>d</sub></em> are used in the standard
 173  * Porter and Duff equations to calculate the blending factors
 174  * <em>F<sub>s</sub></em> and <em>F<sub>d</sub></em> and then the resulting
 175  * premultiplied components <em>A<sub>r</sub></em> and <em>C<sub>r</sub></em>.
 176  *
 177  * <p>
 178  * <h3>Preparing Results</h3>
 179  *
 180  * <p>
 181  * The results only need to be adjusted if they are to be stored
 182  * back into a destination buffer that holds data that is not
 183  * premultiplied, using the following equations:
 184  *
 185  * <pre>
 186  *      <em>A<sub>df</sub></em> = <em>A<sub>r</sub></em>
 187  *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em>                 (if dest is premultiplied)
 188  *      <em>C<sub>df</sub></em> = <em>C<sub>r</sub></em> / <em>A<sub>r</sub></em>            (if dest is not premultiplied) </pre>
 189  *
 190  * Note that since the division is undefined if the resulting alpha
 191  * is zero, the division in that case is omitted to avoid the "divide
 192  * by zero" and the color components are left as
 193  * all zeros.
 194  *
 195  * <p>
 196  * <h3>Performance Considerations</h3>
 197  *
 198  * <p>
 199  * For performance reasons, it is preferrable that
 200  * <code>Raster</code> objects passed to the <code>compose</code>
 201  * method of a {@link CompositeContext} object created by the
 202  * <code>AlphaComposite</code> class have premultiplied data.
 203  * If either the source <code>Raster</code>
 204  * or the destination <code>Raster</code>
 205  * is not premultiplied, however,
 206  * appropriate conversions are performed before and after the compositing
 207  * operation.
 208  *
 209  * <h3><a name="caveats">Implementation Caveats</a></h3>
 210  *
 211  * <ul>
 212  * <li>
 213  * Many sources, such as some of the opaque image types listed
 214  * in the <code>BufferedImage</code> class, do not store alpha values
 215  * for their pixels.  Such sources supply an alpha of 1.0 for
 216  * all of their pixels.
 217  *
 218  * <p>
 219  * <li>
 220  * Many destinations also have no place to store the alpha values
 221  * that result from the blending calculations performed by this class.
 222  * Such destinations thus implicitly discard the resulting
 223  * alpha values that this class produces.
 224  * It is recommended that such destinations should treat their stored
 225  * color values as non-premultiplied and divide the resulting color
 226  * values by the resulting alpha value before storing the color
 227  * values and discarding the alpha value.
 228  *
 229  * <p>
 230  * <li>
 231  * The accuracy of the results depends on the manner in which pixels
 232  * are stored in the destination.
 233  * An image format that provides at least 8 bits of storage per color
 234  * and alpha component is at least adequate for use as a destination
 235  * for a sequence of a few to a dozen compositing operations.
 236  * An image format with fewer than 8 bits of storage per component
 237  * is of limited use for just one or two compositing operations
 238  * before the rounding errors dominate the results.
 239  * An image format
 240  * that does not separately store
 241  * color components is not a
 242  * good candidate for any type of translucent blending.
 243  * For example, <code>BufferedImage.TYPE_BYTE_INDEXED</code>
 244  * should not be used as a destination for a blending operation
 245  * because every operation
 246  * can introduce large errors, due to
 247  * the need to choose a pixel from a limited palette to match the
 248  * results of the blending equations.
 249  *
 250  * <p>
 251  * <li>
 252  * Nearly all formats store pixels as discrete integers rather than
 253  * the floating point values used in the reference equations above.
 254  * The implementation can either scale the integer pixel
 255  * values into floating point values in the range 0.0 to 1.0 or
 256  * use slightly modified versions of the equations
 257  * that operate entirely in the integer domain and yet produce
 258  * analogous results to the reference equations.
 259  *
 260  * <p>
 261  * Typically the integer values are related to the floating point
 262  * values in such a way that the integer 0 is equated
 263  * to the floating point value 0.0 and the integer
 264  * 2^<em>n</em>-1 (where <em>n</em> is the number of bits
 265  * in the representation) is equated to 1.0.
 266  * For 8-bit representations, this means that 0x00
 267  * represents 0.0 and 0xff represents
 268  * 1.0.
 269  *
 270  * <p>
 271  * <li>
 272  * The internal implementation can approximate some of the equations
 273  * and it can also eliminate some steps to avoid unnecessary operations.
 274  * For example, consider a discrete integer image with non-premultiplied
 275  * alpha values that uses 8 bits per component for storage.
 276  * The stored values for a
 277  * nearly transparent darkened red might be:
 278  *
 279  * <pre>
 280  *    (A, R, G, B) = (0x01, 0xb0, 0x00, 0x00)</pre>
 281  *
 282  * <p>
 283  * If integer math were being used and this value were being
 284  * composited in
 285  * <a href="#SRC"><code>SRC</code></a>
 286  * mode with no extra alpha, then the math would
 287  * indicate that the results were (in integer format):
 288  *
 289  * <pre>
 290  *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 291  *
 292  * <p>
 293  * Note that the intermediate values, which are always in premultiplied
 294  * form, would only allow the integer red component to be either 0x00
 295  * or 0x01.  When we try to store this result back into a destination
 296  * that is not premultiplied, dividing out the alpha will give us
 297  * very few choices for the non-premultiplied red value.
 298  * In this case an implementation that performs the math in integer
 299  * space without shortcuts is likely to end up with the final pixel
 300  * values of:
 301  *
 302  * <pre>
 303  *    (A, R, G, B) = (0x01, 0xff, 0x00, 0x00)</pre>
 304  *
 305  * <p>
 306  * (Note that 0x01 divided by 0x01 gives you 1.0, which is equivalent
 307  * to the value 0xff in an 8-bit storage format.)
 308  *
 309  * <p>
 310  * Alternately, an implementation that uses floating point math
 311  * might produce more accurate results and end up returning to the
 312  * original pixel value with little, if any, roundoff error.
 313  * Or, an implementation using integer math might decide that since
 314  * the equations boil down to a virtual NOP on the color values
 315  * if performed in a floating point space, it can transfer the
 316  * pixel untouched to the destination and avoid all the math entirely.
 317  *
 318  * <p>
 319  * These implementations all attempt to honor the
 320  * same equations, but use different tradeoffs of integer and
 321  * floating point math and reduced or full equations.
 322  * To account for such differences, it is probably best to
 323  * expect only that the premultiplied form of the results to
 324  * match between implementations and image formats.  In this
 325  * case both answers, expressed in premultiplied form would
 326  * equate to:
 327  *
 328  * <pre>
 329  *    (A, R, G, B) = (0x01, 0x01, 0x00, 0x00)</pre>
 330  *
 331  * <p>
 332  * and thus they would all match.
 333  *
 334  * <p>
 335  * <li>
 336  * Because of the technique of simplifying the equations for
 337  * calculation efficiency, some implementations might perform
 338  * differently when encountering result alpha values of 0.0
 339  * on a non-premultiplied destination.
 340  * Note that the simplification of removing the divide by alpha
 341  * in the case of the SRC rule is technically not valid if the
 342  * denominator (alpha) is 0.
 343  * But, since the results should only be expected to be accurate
 344  * when viewed in premultiplied form, a resulting alpha of 0
 345  * essentially renders the resulting color components irrelevant
 346  * and so exact behavior in this case should not be expected.
 347  * </ul>
 348  * @see Composite
 349  * @see CompositeContext
 350  */
 351 
 352 public final class AlphaComposite implements Composite {
 353     /**
 354      * Both the color and the alpha of the destination are cleared
 355      * (Porter-Duff Clear rule).
 356      * Neither the source nor the destination is used as input.
 357      *<p>
 358      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 0, thus:
 359      *<pre>
 360      *  <em>A<sub>r</sub></em> = 0
 361      *  <em>C<sub>r</sub></em> = 0
 362      *</pre>
 363      */
 364     public static final int     CLEAR           = 1;
 365 
 366     /**
 367      * The source is copied to the destination
 368      * (Porter-Duff Source rule).
 369      * The destination is not used as input.
 370      *<p>
 371      * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = 0, thus:
 372      *<pre>
 373      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>
 374      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>
 375      *</pre>
 376      */
 377     public static final int     SRC             = 2;
 378 
 379     /**
 380      * The destination is left untouched
 381      * (Porter-Duff Destination rule).
 382      *<p>
 383      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = 1, thus:
 384      *<pre>
 385      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>
 386      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>
 387      *</pre>
 388      * @since 1.4
 389      */
 390     public static final int     DST             = 9;
 391     // Note that DST was added in 1.4 so it is numbered out of order...
 392 
 393     /**
 394      * The source is composited over the destination
 395      * (Porter-Duff Source Over Destination rule).
 396      *<p>
 397      * <em>F<sub>s</sub></em> = 1 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 398      *<pre>
 399      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 400      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 401      *</pre>
 402      */
 403     public static final int     SRC_OVER        = 3;
 404 
 405     /**
 406      * The destination is composited over the source and
 407      * the result replaces the destination
 408      * (Porter-Duff Destination Over Source rule).
 409      *<p>
 410      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 1, thus:
 411      *<pre>
 412      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>
 413      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>
 414      *</pre>
 415      */
 416     public static final int     DST_OVER        = 4;
 417 
 418     /**
 419      * The part of the source lying inside of the destination replaces
 420      * the destination
 421      * (Porter-Duff Source In Destination rule).
 422      *<p>
 423      * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = 0, thus:
 424      *<pre>
 425      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em>
 426      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em>
 427      *</pre>
 428      */
 429     public static final int     SRC_IN          = 5;
 430 
 431     /**
 432      * The part of the destination lying inside of the source
 433      * replaces the destination
 434      * (Porter-Duff Destination In Source rule).
 435      *<p>
 436      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
 437      *<pre>
 438      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em>
 439      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
 440      *</pre>
 441      */
 442     public static final int     DST_IN          = 6;
 443 
 444     /**
 445      * The part of the source lying outside of the destination
 446      * replaces the destination
 447      * (Porter-Duff Source Held Out By Destination rule).
 448      *<p>
 449      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = 0, thus:
 450      *<pre>
 451      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
 452      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>)
 453      *</pre>
 454      */
 455     public static final int     SRC_OUT         = 7;
 456 
 457     /**
 458      * The part of the destination lying outside of the source
 459      * replaces the destination
 460      * (Porter-Duff Destination Held Out By Source rule).
 461      *<p>
 462      * <em>F<sub>s</sub></em> = 0 and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 463      *<pre>
 464      *  <em>A<sub>r</sub></em> = <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 465      *  <em>C<sub>r</sub></em> = <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 466      *</pre>
 467      */
 468     public static final int     DST_OUT         = 8;
 469 
 470     // Rule 9 is DST which is defined above where it fits into the
 471     // list logically, rather than numerically
 472     //
 473     // public static final int  DST             = 9;
 474 
 475     /**
 476      * The part of the source lying inside of the destination
 477      * is composited onto the destination
 478      * (Porter-Duff Source Atop Destination rule).
 479      *<p>
 480      * <em>F<sub>s</sub></em> = <em>A<sub>d</sub></em> and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 481      *<pre>
 482      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>) = <em>A<sub>d</sub></em>
 483      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*<em>A<sub>d</sub></em> + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 484      *</pre>
 485      * @since 1.4
 486      */
 487     public static final int     SRC_ATOP        = 10;
 488 
 489     /**
 490      * The part of the destination lying inside of the source
 491      * is composited over the source and replaces the destination
 492      * (Porter-Duff Destination Atop Source rule).
 493      *<p>
 494      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = <em>A<sub>s</sub></em>, thus:
 495      *<pre>
 496      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*<em>A<sub>s</sub></em> = <em>A<sub>s</sub></em>
 497      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*<em>A<sub>s</sub></em>
 498      *</pre>
 499      * @since 1.4
 500      */
 501     public static final int     DST_ATOP        = 11;
 502 
 503     /**
 504      * The part of the source that lies outside of the destination
 505      * is combined with the part of the destination that lies outside
 506      * of the source
 507      * (Porter-Duff Source Xor Destination rule).
 508      *<p>
 509      * <em>F<sub>s</sub></em> = (1-<em>A<sub>d</sub></em>) and <em>F<sub>d</sub></em> = (1-<em>A<sub>s</sub></em>), thus:
 510      *<pre>
 511      *  <em>A<sub>r</sub></em> = <em>A<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>A<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 512      *  <em>C<sub>r</sub></em> = <em>C<sub>s</sub></em>*(1-<em>A<sub>d</sub></em>) + <em>C<sub>d</sub></em>*(1-<em>A<sub>s</sub></em>)
 513      *</pre>
 514      * @since 1.4
 515      */
 516     public static final int     XOR             = 12;
 517 
 518     /**
 519      * <code>AlphaComposite</code> object that implements the opaque CLEAR rule
 520      * with an alpha of 1.0f.
 521      * @see #CLEAR
 522      */
 523     public static final AlphaComposite Clear    = new AlphaComposite(CLEAR);
 524 
 525     /**
 526      * <code>AlphaComposite</code> object that implements the opaque SRC rule
 527      * with an alpha of 1.0f.
 528      * @see #SRC
 529      */
 530     public static final AlphaComposite Src      = new AlphaComposite(SRC);
 531 
 532     /**
 533      * <code>AlphaComposite</code> object that implements the opaque DST rule
 534      * with an alpha of 1.0f.
 535      * @see #DST
 536      * @since 1.4
 537      */
 538     public static final AlphaComposite Dst      = new AlphaComposite(DST);
 539 
 540     /**
 541      * <code>AlphaComposite</code> object that implements the opaque SRC_OVER rule
 542      * with an alpha of 1.0f.
 543      * @see #SRC_OVER
 544      */
 545     public static final AlphaComposite SrcOver  = new AlphaComposite(SRC_OVER);
 546 
 547     /**
 548      * <code>AlphaComposite</code> object that implements the opaque DST_OVER rule
 549      * with an alpha of 1.0f.
 550      * @see #DST_OVER
 551      */
 552     public static final AlphaComposite DstOver  = new AlphaComposite(DST_OVER);
 553 
 554     /**
 555      * <code>AlphaComposite</code> object that implements the opaque SRC_IN rule
 556      * with an alpha of 1.0f.
 557      * @see #SRC_IN
 558      */
 559     public static final AlphaComposite SrcIn    = new AlphaComposite(SRC_IN);
 560 
 561     /**
 562      * <code>AlphaComposite</code> object that implements the opaque DST_IN rule
 563      * with an alpha of 1.0f.
 564      * @see #DST_IN
 565      */
 566     public static final AlphaComposite DstIn    = new AlphaComposite(DST_IN);
 567 
 568     /**
 569      * <code>AlphaComposite</code> object that implements the opaque SRC_OUT rule
 570      * with an alpha of 1.0f.
 571      * @see #SRC_OUT
 572      */
 573     public static final AlphaComposite SrcOut   = new AlphaComposite(SRC_OUT);
 574 
 575     /**
 576      * <code>AlphaComposite</code> object that implements the opaque DST_OUT rule
 577      * with an alpha of 1.0f.
 578      * @see #DST_OUT
 579      */
 580     public static final AlphaComposite DstOut   = new AlphaComposite(DST_OUT);
 581 
 582     /**
 583      * <code>AlphaComposite</code> object that implements the opaque SRC_ATOP rule
 584      * with an alpha of 1.0f.
 585      * @see #SRC_ATOP
 586      * @since 1.4
 587      */
 588     public static final AlphaComposite SrcAtop  = new AlphaComposite(SRC_ATOP);
 589 
 590     /**
 591      * <code>AlphaComposite</code> object that implements the opaque DST_ATOP rule
 592      * with an alpha of 1.0f.
 593      * @see #DST_ATOP
 594      * @since 1.4
 595      */
 596     public static final AlphaComposite DstAtop  = new AlphaComposite(DST_ATOP);
 597 
 598     /**
 599      * <code>AlphaComposite</code> object that implements the opaque XOR rule
 600      * with an alpha of 1.0f.
 601      * @see #XOR
 602      * @since 1.4
 603      */
 604     public static final AlphaComposite Xor      = new AlphaComposite(XOR);
 605 
 606     private static final int MIN_RULE = CLEAR;
 607     private static final int MAX_RULE = XOR;
 608 
 609     float extraAlpha;
 610     int rule;
 611 
 612     private AlphaComposite(int rule) {
 613         this(rule, 1.0f);
 614     }
 615 
 616     private AlphaComposite(int rule, float alpha) {
 617         if (rule < MIN_RULE || rule > MAX_RULE) {
 618             throw new IllegalArgumentException("unknown composite rule");
 619         }
 620         if (alpha >= 0.0f && alpha <= 1.0f) {
 621             this.rule = rule;
 622             this.extraAlpha = alpha;
 623         } else {
 624             throw new IllegalArgumentException("alpha value out of range");
 625         }
 626     }
 627 
 628     /**
 629      * Creates an <code>AlphaComposite</code> object with the specified rule.
 630      * @param rule the compositing rule
 631      * @throws IllegalArgumentException if <code>rule</code> is not one of
 632      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 633      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 634      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 635      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 636      */
 637     public static AlphaComposite getInstance(int rule) {
 638         switch (rule) {
 639         case CLEAR:
 640             return Clear;
 641         case SRC:
 642             return Src;
 643         case DST:
 644             return Dst;
 645         case SRC_OVER:
 646             return SrcOver;
 647         case DST_OVER:
 648             return DstOver;
 649         case SRC_IN:
 650             return SrcIn;
 651         case DST_IN:
 652             return DstIn;
 653         case SRC_OUT:
 654             return SrcOut;
 655         case DST_OUT:
 656             return DstOut;
 657         case SRC_ATOP:
 658             return SrcAtop;
 659         case DST_ATOP:
 660             return DstAtop;
 661         case XOR:
 662             return Xor;
 663         default:
 664             throw new IllegalArgumentException("unknown composite rule");
 665         }
 666     }
 667 
 668     /**
 669      * Creates an <code>AlphaComposite</code> object with the specified rule and
 670      * the constant alpha to multiply with the alpha of the source.
 671      * The source is multiplied with the specified alpha before being composited
 672      * with the destination.
 673      * @param rule the compositing rule
 674      * @param alpha the constant alpha to be multiplied with the alpha of
 675      * the source. <code>alpha</code> must be a floating point number in the
 676      * inclusive range [0.0,&nbsp;1.0].
 677      * @throws IllegalArgumentException if
 678      *         <code>alpha</code> is less than 0.0 or greater than 1.0, or if
 679      *         <code>rule</code> is not one of
 680      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 681      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 682      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 683      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 684      */
 685     public static AlphaComposite getInstance(int rule, float alpha) {
 686         if (alpha == 1.0f) {
 687             return getInstance(rule);
 688         }
 689         return new AlphaComposite(rule, alpha);
 690     }
 691 
 692     /**
 693      * Creates a context for the compositing operation.
 694      * The context contains state that is used in performing
 695      * the compositing operation.
 696      * @param srcColorModel  the {@link ColorModel} of the source
 697      * @param dstColorModel  the <code>ColorModel</code> of the destination
 698      * @return the <code>CompositeContext</code> object to be used to perform
 699      * compositing operations.
 700      */
 701     public CompositeContext createContext(ColorModel srcColorModel,
 702                                           ColorModel dstColorModel,
 703                                           RenderingHints hints) {
 704         return new SunCompositeContext(this, srcColorModel, dstColorModel);
 705     }
 706 
 707     /**
 708      * Returns the alpha value of this <code>AlphaComposite</code>.  If this
 709      * <code>AlphaComposite</code> does not have an alpha value, 1.0 is returned.
 710      * @return the alpha value of this <code>AlphaComposite</code>.
 711      */
 712     public float getAlpha() {
 713         return extraAlpha;
 714     }
 715 
 716     /**
 717      * Returns the compositing rule of this <code>AlphaComposite</code>.
 718      * @return the compositing rule of this <code>AlphaComposite</code>.
 719      */
 720     public int getRule() {
 721         return rule;
 722     }
 723 
 724     /**
 725      * Returns a similar <code>AlphaComposite</code> object that uses
 726      * the specified compositing rule.
 727      * If this object already uses the specified compositing rule,
 728      * this object is returned.
 729      * @return an <code>AlphaComposite</code> object derived from
 730      * this object that uses the specified compositing rule.
 731      * @param rule the compositing rule
 732      * @throws IllegalArgumentException if
 733      *         <code>rule</code> is not one of
 734      *         the following:  {@link #CLEAR}, {@link #SRC}, {@link #DST},
 735      *         {@link #SRC_OVER}, {@link #DST_OVER}, {@link #SRC_IN},
 736      *         {@link #DST_IN}, {@link #SRC_OUT}, {@link #DST_OUT},
 737      *         {@link #SRC_ATOP}, {@link #DST_ATOP}, or {@link #XOR}
 738      * @since 1.6
 739      */
 740     public AlphaComposite derive(int rule) {
 741         return (this.rule == rule)
 742             ? this
 743             : getInstance(rule, this.extraAlpha);
 744     }
 745 
 746     /**
 747      * Returns a similar <code>AlphaComposite</code> object that uses
 748      * the specified alpha value.
 749      * If this object already has the specified alpha value,
 750      * this object is returned.
 751      * @return an <code>AlphaComposite</code> object derived from
 752      * this object that uses the specified alpha value.
 753      * @param alpha the constant alpha to be multiplied with the alpha of
 754      * the source. <code>alpha</code> must be a floating point number in the
 755      * inclusive range [0.0,&nbsp;1.0].
 756      * @throws IllegalArgumentException if
 757      *         <code>alpha</code> is less than 0.0 or greater than 1.0
 758      * @since 1.6
 759      */
 760     public AlphaComposite derive(float alpha) {
 761         return (this.extraAlpha == alpha)
 762             ? this
 763             : getInstance(this.rule, alpha);
 764     }
 765 
 766     /**
 767      * Returns the hashcode for this composite.
 768      * @return      a hash code for this composite.
 769      */
 770     public int hashCode() {
 771         return (Float.floatToIntBits(extraAlpha) * 31 + rule);
 772     }
 773 
 774     /**
 775      * Determines whether the specified object is equal to this
 776      * <code>AlphaComposite</code>.
 777      * <p>
 778      * The result is <code>true</code> if and only if
 779      * the argument is not <code>null</code> and is an
 780      * <code>AlphaComposite</code> object that has the same
 781      * compositing rule and alpha value as this object.
 782      *
 783      * @param obj the <code>Object</code> to test for equality
 784      * @return <code>true</code> if <code>obj</code> equals this
 785      * <code>AlphaComposite</code>; <code>false</code> otherwise.
 786      */
 787     public boolean equals(Object obj) {
 788         if (!(obj instanceof AlphaComposite)) {
 789             return false;
 790         }
 791 
 792         AlphaComposite ac = (AlphaComposite) obj;
 793 
 794         if (rule != ac.rule) {
 795             return false;
 796         }
 797 
 798         if (extraAlpha != ac.extraAlpha) {
 799             return false;
 800         }
 801 
 802         return true;
 803     }
 804 
 805 }