1 /*
   2  * Copyright (c) 1994, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamClass;
  29 import java.io.ObjectStreamField;
  30 import java.io.UnsupportedEncodingException;
  31 import java.nio.charset.Charset;
  32 import java.util.ArrayList;
  33 import java.util.Arrays;
  34 import java.util.Comparator;
  35 import java.util.Formatter;
  36 import java.util.Locale;
  37 import java.util.regex.Matcher;
  38 import java.util.regex.Pattern;
  39 import java.util.regex.PatternSyntaxException;
  40 
  41 /**
  42  * The <code>String</code> class represents character strings. All
  43  * string literals in Java programs, such as <code>"abc"</code>, are
  44  * implemented as instances of this class.
  45  * <p>
  46  * Strings are constant; their values cannot be changed after they
  47  * are created. String buffers support mutable strings.
  48  * Because String objects are immutable they can be shared. For example:
  49  * <p><blockquote><pre>
  50  *     String str = "abc";
  51  * </pre></blockquote><p>
  52  * is equivalent to:
  53  * <p><blockquote><pre>
  54  *     char data[] = {'a', 'b', 'c'};
  55  *     String str = new String(data);
  56  * </pre></blockquote><p>
  57  * Here are some more examples of how strings can be used:
  58  * <p><blockquote><pre>
  59  *     System.out.println("abc");
  60  *     String cde = "cde";
  61  *     System.out.println("abc" + cde);
  62  *     String c = "abc".substring(2,3);
  63  *     String d = cde.substring(1, 2);
  64  * </pre></blockquote>
  65  * <p>
  66  * The class <code>String</code> includes methods for examining
  67  * individual characters of the sequence, for comparing strings, for
  68  * searching strings, for extracting substrings, and for creating a
  69  * copy of a string with all characters translated to uppercase or to
  70  * lowercase. Case mapping is based on the Unicode Standard version
  71  * specified by the {@link java.lang.Character Character} class.
  72  * <p>
  73  * The Java language provides special support for the string
  74  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  75  * other objects to strings. String concatenation is implemented
  76  * through the <code>StringBuilder</code>(or <code>StringBuffer</code>)
  77  * class and its <code>append</code> method.
  78  * String conversions are implemented through the method
  79  * <code>toString</code>, defined by <code>Object</code> and
  80  * inherited by all classes in Java. For additional information on
  81  * string concatenation and conversion, see Gosling, Joy, and Steele,
  82  * <i>The Java Language Specification</i>.
  83  *
  84  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  85  * or method in this class will cause a {@link NullPointerException} to be
  86  * thrown.
  87  *
  88  * <p>A <code>String</code> represents a string in the UTF-16 format
  89  * in which <em>supplementary characters</em> are represented by <em>surrogate
  90  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  91  * Character Representations</a> in the <code>Character</code> class for
  92  * more information).
  93  * Index values refer to <code>char</code> code units, so a supplementary
  94  * character uses two positions in a <code>String</code>.
  95  * <p>The <code>String</code> class provides methods for dealing with
  96  * Unicode code points (i.e., characters), in addition to those for
  97  * dealing with Unicode code units (i.e., <code>char</code> values).
  98  *
  99  * @author  Lee Boynton
 100  * @author  Arthur van Hoff
 101  * @author  Martin Buchholz
 102  * @author  Ulf Zibis
 103  * @see     java.lang.Object#toString()
 104  * @see     java.lang.StringBuffer
 105  * @see     java.lang.StringBuilder
 106  * @see     java.nio.charset.Charset
 107  * @since   JDK1.0
 108  */
 109 
 110 public final class String
 111     implements java.io.Serializable, Comparable<String>, CharSequence
 112 {
 113     /** The value is used for character storage. */
 114     private final char value[];
 115 
 116     /** The offset is the first index of the storage that is used. */
 117     private final int offset;
 118 
 119     /** The count is the number of characters in the String. */
 120     private final int count;
 121 
 122     /** Cache the hash code for the string */
 123     private int hash; // Default to 0
 124 
 125     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 126     private static final long serialVersionUID = -6849794470754667710L;
 127 
 128     /**
 129      * Class String is special cased within the Serialization Stream Protocol.
 130      *
 131      * A String instance is written initially into an ObjectOutputStream in the
 132      * following format:
 133      * <pre>
 134      *      <code>TC_STRING</code> (utf String)
 135      * </pre>
 136      * The String is written by method <code>DataOutput.writeUTF</code>.
 137      * A new handle is generated to  refer to all future references to the
 138      * string instance within the stream.
 139      */
 140     private static final ObjectStreamField[] serialPersistentFields =
 141         new ObjectStreamField[0];
 142 
 143     /**
 144      * Initializes a newly created {@code String} object so that it represents
 145      * an empty character sequence.  Note that use of this constructor is
 146      * unnecessary since Strings are immutable.
 147      */
 148     public String() {
 149         this.offset = 0;
 150         this.count = 0;
 151         this.value = new char[0];
 152     }
 153 
 154     /**
 155      * Initializes a newly created {@code String} object so that it represents
 156      * the same sequence of characters as the argument; in other words, the
 157      * newly created string is a copy of the argument string. Unless an
 158      * explicit copy of {@code original} is needed, use of this constructor is
 159      * unnecessary since Strings are immutable.
 160      *
 161      * @param  original
 162      *         A {@code String}
 163      */
 164     public String(String original) {
 165         int size = original.count;
 166         char[] originalValue = original.value;
 167         char[] v;
 168         if (originalValue.length > size) {
 169             // The array representing the String is bigger than the new
 170             // String itself.  Perhaps this constructor is being called
 171             // in order to trim the baggage, so make a copy of the array.
 172             int off = original.offset;
 173             v = Arrays.copyOfRange(originalValue, off, off+size);
 174         } else {
 175             // The array representing the String is the same
 176             // size as the String, so no point in making a copy.
 177             v = originalValue;
 178         }
 179         this.offset = 0;
 180         this.count = size;
 181         this.value = v;
 182     }
 183 
 184     /**
 185      * Allocates a new {@code String} so that it represents the sequence of
 186      * characters currently contained in the character array argument. The
 187      * contents of the character array are copied; subsequent modification of
 188      * the character array does not affect the newly created string.
 189      *
 190      * @param  value
 191      *         The initial value of the string
 192      */
 193     public String(char value[]) {
 194         int size = value.length;
 195         this.offset = 0;
 196         this.count = size;
 197         this.value = Arrays.copyOf(value, size);
 198     }
 199 
 200     /**
 201      * Allocates a new {@code String} that contains characters from a subarray
 202      * of the character array argument. The {@code offset} argument is the
 203      * index of the first character of the subarray and the {@code count}
 204      * argument specifies the length of the subarray. The contents of the
 205      * subarray are copied; subsequent modification of the character array does
 206      * not affect the newly created string.
 207      *
 208      * @param  value
 209      *         Array that is the source of characters
 210      *
 211      * @param  offset
 212      *         The initial offset
 213      *
 214      * @param  count
 215      *         The length
 216      *
 217      * @throws  IndexOutOfBoundsException
 218      *          If the {@code offset} and {@code count} arguments index
 219      *          characters outside the bounds of the {@code value} array
 220      */
 221     public String(char value[], int offset, int count) {
 222         if (offset < 0) {
 223             throw new StringIndexOutOfBoundsException(offset);
 224         }
 225         if (count < 0) {
 226             throw new StringIndexOutOfBoundsException(count);
 227         }
 228         // Note: offset or count might be near -1>>>1.
 229         if (offset > value.length - count) {
 230             throw new StringIndexOutOfBoundsException(offset + count);
 231         }
 232         this.offset = 0;
 233         this.count = count;
 234         this.value = Arrays.copyOfRange(value, offset, offset+count);
 235     }
 236 
 237     /**
 238      * Allocates a new {@code String} that contains characters from a subarray
 239      * of the <a href="Character.html#unicode">Unicode code point</a> array
 240      * argument.  The {@code offset} argument is the index of the first code
 241      * point of the subarray and the {@code count} argument specifies the
 242      * length of the subarray.  The contents of the subarray are converted to
 243      * {@code char}s; subsequent modification of the {@code int} array does not
 244      * affect the newly created string.
 245      *
 246      * @param  codePoints
 247      *         Array that is the source of Unicode code points
 248      *
 249      * @param  offset
 250      *         The initial offset
 251      *
 252      * @param  count
 253      *         The length
 254      *
 255      * @throws  IllegalArgumentException
 256      *          If any invalid Unicode code point is found in {@code
 257      *          codePoints}
 258      *
 259      * @throws  IndexOutOfBoundsException
 260      *          If the {@code offset} and {@code count} arguments index
 261      *          characters outside the bounds of the {@code codePoints} array
 262      *
 263      * @since  1.5
 264      */
 265     public String(int[] codePoints, int offset, int count) {
 266         if (offset < 0) {
 267             throw new StringIndexOutOfBoundsException(offset);
 268         }
 269         if (count < 0) {
 270             throw new StringIndexOutOfBoundsException(count);
 271         }
 272         // Note: offset or count might be near -1>>>1.
 273         if (offset > codePoints.length - count) {
 274             throw new StringIndexOutOfBoundsException(offset + count);
 275         }
 276 
 277         final int end = offset + count;
 278 
 279         // Pass 1: Compute precise size of char[]
 280         int n = count;
 281         for (int i = offset; i < end; i++) {
 282             int c = codePoints[i];
 283             if (Character.isBmpCodePoint(c))
 284                 continue;
 285             else if (Character.isValidCodePoint(c))
 286                 n++;
 287             else throw new IllegalArgumentException(Integer.toString(c));
 288         }
 289 
 290         // Pass 2: Allocate and fill in char[]
 291         final char[] v = new char[n];
 292 
 293         for (int i = offset, j = 0; i < end; i++, j++) {
 294             int c = codePoints[i];
 295             if (Character.isBmpCodePoint(c))
 296                 v[j] = (char) c;
 297             else
 298                 Character.toSurrogates(c, v, j++);
 299         }
 300 
 301         this.value  = v;
 302         this.count  = n;
 303         this.offset = 0;
 304     }
 305 
 306     /**
 307      * Allocates a new {@code String} constructed from a subarray of an array
 308      * of 8-bit integer values.
 309      *
 310      * <p> The {@code offset} argument is the index of the first byte of the
 311      * subarray, and the {@code count} argument specifies the length of the
 312      * subarray.
 313      *
 314      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 315      * specified in the method above.
 316      *
 317      * @deprecated This method does not properly convert bytes into characters.
 318      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 319      * {@code String} constructors that take a {@link
 320      * java.nio.charset.Charset}, charset name, or that use the platform's
 321      * default charset.
 322      *
 323      * @param  ascii
 324      *         The bytes to be converted to characters
 325      *
 326      * @param  hibyte
 327      *         The top 8 bits of each 16-bit Unicode code unit
 328      *
 329      * @param  offset
 330      *         The initial offset
 331      * @param  count
 332      *         The length
 333      *
 334      * @throws  IndexOutOfBoundsException
 335      *          If the {@code offset} or {@code count} argument is invalid
 336      *
 337      * @see  #String(byte[], int)
 338      * @see  #String(byte[], int, int, java.lang.String)
 339      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 340      * @see  #String(byte[], int, int)
 341      * @see  #String(byte[], java.lang.String)
 342      * @see  #String(byte[], java.nio.charset.Charset)
 343      * @see  #String(byte[])
 344      */
 345     @Deprecated
 346     public String(byte ascii[], int hibyte, int offset, int count) {
 347         checkBounds(ascii, offset, count);
 348         char value[] = new char[count];
 349 
 350         if (hibyte == 0) {
 351             for (int i = count ; i-- > 0 ;) {
 352                 value[i] = (char) (ascii[i + offset] & 0xff);
 353             }
 354         } else {
 355             hibyte <<= 8;
 356             for (int i = count ; i-- > 0 ;) {
 357                 value[i] = (char) (hibyte | (ascii[i + offset] & 0xff));
 358             }
 359         }
 360         this.offset = 0;
 361         this.count = count;
 362         this.value = value;
 363     }
 364 
 365     /**
 366      * Allocates a new {@code String} containing characters constructed from
 367      * an array of 8-bit integer values. Each character <i>c</i>in the
 368      * resulting string is constructed from the corresponding component
 369      * <i>b</i> in the byte array such that:
 370      *
 371      * <blockquote><pre>
 372      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 373      *                         | (<b><i>b</i></b> &amp; 0xff))
 374      * </pre></blockquote>
 375      *
 376      * @deprecated  This method does not properly convert bytes into
 377      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 378      * {@code String} constructors that take a {@link
 379      * java.nio.charset.Charset}, charset name, or that use the platform's
 380      * default charset.
 381      *
 382      * @param  ascii
 383      *         The bytes to be converted to characters
 384      *
 385      * @param  hibyte
 386      *         The top 8 bits of each 16-bit Unicode code unit
 387      *
 388      * @see  #String(byte[], int, int, java.lang.String)
 389      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 390      * @see  #String(byte[], int, int)
 391      * @see  #String(byte[], java.lang.String)
 392      * @see  #String(byte[], java.nio.charset.Charset)
 393      * @see  #String(byte[])
 394      */
 395     @Deprecated
 396     public String(byte ascii[], int hibyte) {
 397         this(ascii, hibyte, 0, ascii.length);
 398     }
 399 
 400     /* Common private utility method used to bounds check the byte array
 401      * and requested offset & length values used by the String(byte[],..)
 402      * constructors.
 403      */
 404     private static void checkBounds(byte[] bytes, int offset, int length) {
 405         if (length < 0)
 406             throw new StringIndexOutOfBoundsException(length);
 407         if (offset < 0)
 408             throw new StringIndexOutOfBoundsException(offset);
 409         if (offset > bytes.length - length)
 410             throw new StringIndexOutOfBoundsException(offset + length);
 411     }
 412 
 413     /**
 414      * Constructs a new {@code String} by decoding the specified subarray of
 415      * bytes using the specified charset.  The length of the new {@code String}
 416      * is a function of the charset, and hence may not be equal to the length
 417      * of the subarray.
 418      *
 419      * <p> The behavior of this constructor when the given bytes are not valid
 420      * in the given charset is unspecified.  The {@link
 421      * java.nio.charset.CharsetDecoder} class should be used when more control
 422      * over the decoding process is required.
 423      *
 424      * @param  bytes
 425      *         The bytes to be decoded into characters
 426      *
 427      * @param  offset
 428      *         The index of the first byte to decode
 429      *
 430      * @param  length
 431      *         The number of bytes to decode
 432 
 433      * @param  charsetName
 434      *         The name of a supported {@linkplain java.nio.charset.Charset
 435      *         charset}
 436      *
 437      * @throws  UnsupportedEncodingException
 438      *          If the named charset is not supported
 439      *
 440      * @throws  IndexOutOfBoundsException
 441      *          If the {@code offset} and {@code length} arguments index
 442      *          characters outside the bounds of the {@code bytes} array
 443      *
 444      * @since  JDK1.1
 445      */
 446     public String(byte bytes[], int offset, int length, String charsetName)
 447         throws UnsupportedEncodingException
 448     {
 449         if (charsetName == null)
 450             throw new NullPointerException("charsetName");
 451         checkBounds(bytes, offset, length);
 452         char[] v = StringCoding.decode(charsetName, bytes, offset, length);
 453         this.offset = 0;
 454         this.count = v.length;
 455         this.value = v;
 456     }
 457 
 458     /**
 459      * Constructs a new {@code String} by decoding the specified subarray of
 460      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 461      * The length of the new {@code String} is a function of the charset, and
 462      * hence may not be equal to the length of the subarray.
 463      *
 464      * <p> This method always replaces malformed-input and unmappable-character
 465      * sequences with this charset's default replacement string.  The {@link
 466      * java.nio.charset.CharsetDecoder} class should be used when more control
 467      * over the decoding process is required.
 468      *
 469      * @param  bytes
 470      *         The bytes to be decoded into characters
 471      *
 472      * @param  offset
 473      *         The index of the first byte to decode
 474      *
 475      * @param  length
 476      *         The number of bytes to decode
 477      *
 478      * @param  charset
 479      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 480      *         decode the {@code bytes}
 481      *
 482      * @throws  IndexOutOfBoundsException
 483      *          If the {@code offset} and {@code length} arguments index
 484      *          characters outside the bounds of the {@code bytes} array
 485      *
 486      * @since  1.6
 487      */
 488     public String(byte bytes[], int offset, int length, Charset charset) {
 489         if (charset == null)
 490             throw new NullPointerException("charset");
 491         checkBounds(bytes, offset, length);
 492         char[] v = StringCoding.decode(charset, bytes, offset, length);
 493         this.offset = 0;
 494         this.count = v.length;
 495         this.value = v;
 496     }
 497 
 498     /**
 499      * Constructs a new {@code String} by decoding the specified array of bytes
 500      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 501      * length of the new {@code String} is a function of the charset, and hence
 502      * may not be equal to the length of the byte array.
 503      *
 504      * <p> The behavior of this constructor when the given bytes are not valid
 505      * in the given charset is unspecified.  The {@link
 506      * java.nio.charset.CharsetDecoder} class should be used when more control
 507      * over the decoding process is required.
 508      *
 509      * @param  bytes
 510      *         The bytes to be decoded into characters
 511      *
 512      * @param  charsetName
 513      *         The name of a supported {@linkplain java.nio.charset.Charset
 514      *         charset}
 515      *
 516      * @throws  UnsupportedEncodingException
 517      *          If the named charset is not supported
 518      *
 519      * @since  JDK1.1
 520      */
 521     public String(byte bytes[], String charsetName)
 522         throws UnsupportedEncodingException
 523     {
 524         this(bytes, 0, bytes.length, charsetName);
 525     }
 526 
 527     /**
 528      * Constructs a new {@code String} by decoding the specified array of
 529      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 530      * The length of the new {@code String} is a function of the charset, and
 531      * hence may not be equal to the length of the byte array.
 532      *
 533      * <p> This method always replaces malformed-input and unmappable-character
 534      * sequences with this charset's default replacement string.  The {@link
 535      * java.nio.charset.CharsetDecoder} class should be used when more control
 536      * over the decoding process is required.
 537      *
 538      * @param  bytes
 539      *         The bytes to be decoded into characters
 540      *
 541      * @param  charset
 542      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 543      *         decode the {@code bytes}
 544      *
 545      * @since  1.6
 546      */
 547     public String(byte bytes[], Charset charset) {
 548         this(bytes, 0, bytes.length, charset);
 549     }
 550 
 551     /**
 552      * Constructs a new {@code String} by decoding the specified subarray of
 553      * bytes using the platform's default charset.  The length of the new
 554      * {@code String} is a function of the charset, and hence may not be equal
 555      * to the length of the subarray.
 556      *
 557      * <p> The behavior of this constructor when the given bytes are not valid
 558      * in the default charset is unspecified.  The {@link
 559      * java.nio.charset.CharsetDecoder} class should be used when more control
 560      * over the decoding process is required.
 561      *
 562      * @param  bytes
 563      *         The bytes to be decoded into characters
 564      *
 565      * @param  offset
 566      *         The index of the first byte to decode
 567      *
 568      * @param  length
 569      *         The number of bytes to decode
 570      *
 571      * @throws  IndexOutOfBoundsException
 572      *          If the {@code offset} and the {@code length} arguments index
 573      *          characters outside the bounds of the {@code bytes} array
 574      *
 575      * @since  JDK1.1
 576      */
 577     public String(byte bytes[], int offset, int length) {
 578         checkBounds(bytes, offset, length);
 579         char[] v  = StringCoding.decode(bytes, offset, length);
 580         this.offset = 0;
 581         this.count = v.length;
 582         this.value = v;
 583     }
 584 
 585     /**
 586      * Constructs a new {@code String} by decoding the specified array of bytes
 587      * using the platform's default charset.  The length of the new {@code
 588      * String} is a function of the charset, and hence may not be equal to the
 589      * length of the byte array.
 590      *
 591      * <p> The behavior of this constructor when the given bytes are not valid
 592      * in the default charset is unspecified.  The {@link
 593      * java.nio.charset.CharsetDecoder} class should be used when more control
 594      * over the decoding process is required.
 595      *
 596      * @param  bytes
 597      *         The bytes to be decoded into characters
 598      *
 599      * @since  JDK1.1
 600      */
 601     public String(byte bytes[]) {
 602         this(bytes, 0, bytes.length);
 603     }
 604 
 605     /**
 606      * Allocates a new string that contains the sequence of characters
 607      * currently contained in the string buffer argument. The contents of the
 608      * string buffer are copied; subsequent modification of the string buffer
 609      * does not affect the newly created string.
 610      *
 611      * @param  buffer
 612      *         A {@code StringBuffer}
 613      */
 614     public String(StringBuffer buffer) {
 615         String result = buffer.toString();
 616         this.value = result.value;
 617         this.count = result.count;
 618         this.offset = result.offset;
 619     }
 620 
 621     /**
 622      * Allocates a new string that contains the sequence of characters
 623      * currently contained in the string builder argument. The contents of the
 624      * string builder are copied; subsequent modification of the string builder
 625      * does not affect the newly created string.
 626      *
 627      * <p> This constructor is provided to ease migration to {@code
 628      * StringBuilder}. Obtaining a string from a string builder via the {@code
 629      * toString} method is likely to run faster and is generally preferred.
 630      *
 631      * @param   builder
 632      *          A {@code StringBuilder}
 633      *
 634      * @since  1.5
 635      */
 636     public String(StringBuilder builder) {
 637         String result = builder.toString();
 638         this.value = result.value;
 639         this.count = result.count;
 640         this.offset = result.offset;
 641     }
 642 
 643 
 644     // Package private constructor which shares value array for speed.
 645     String(int offset, int count, char value[]) {
 646         this.value = value;
 647         this.offset = offset;
 648         this.count = count;
 649     }
 650 
 651     /**
 652      * Returns the length of this string.
 653      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 654      * code units</a> in the string.
 655      *
 656      * @return  the length of the sequence of characters represented by this
 657      *          object.
 658      */
 659     public int length() {
 660         return count;
 661     }
 662 
 663     /**
 664      * Returns <tt>true</tt> if, and only if, {@link #length()} is <tt>0</tt>.
 665      *
 666      * @return <tt>true</tt> if {@link #length()} is <tt>0</tt>, otherwise
 667      * <tt>false</tt>
 668      *
 669      * @since 1.6
 670      */
 671     public boolean isEmpty() {
 672         return count == 0;
 673     }
 674 
 675     /**
 676      * Returns the <code>char</code> value at the
 677      * specified index. An index ranges from <code>0</code> to
 678      * <code>length() - 1</code>. The first <code>char</code> value of the sequence
 679      * is at index <code>0</code>, the next at index <code>1</code>,
 680      * and so on, as for array indexing.
 681      *
 682      * <p>If the <code>char</code> value specified by the index is a
 683      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 684      * value is returned.
 685      *
 686      * @param      index   the index of the <code>char</code> value.
 687      * @return     the <code>char</code> value at the specified index of this string.
 688      *             The first <code>char</code> value is at index <code>0</code>.
 689      * @exception  IndexOutOfBoundsException  if the <code>index</code>
 690      *             argument is negative or not less than the length of this
 691      *             string.
 692      */
 693     public char charAt(int index) {
 694         if ((index < 0) || (index >= count)) {
 695             throw new StringIndexOutOfBoundsException(index);
 696         }
 697         return value[index + offset];
 698     }
 699 
 700     /**
 701      * Returns the character (Unicode code point) at the specified
 702      * index. The index refers to <code>char</code> values
 703      * (Unicode code units) and ranges from <code>0</code> to
 704      * {@link #length()}<code> - 1</code>.
 705      *
 706      * <p> If the <code>char</code> value specified at the given index
 707      * is in the high-surrogate range, the following index is less
 708      * than the length of this <code>String</code>, and the
 709      * <code>char</code> value at the following index is in the
 710      * low-surrogate range, then the supplementary code point
 711      * corresponding to this surrogate pair is returned. Otherwise,
 712      * the <code>char</code> value at the given index is returned.
 713      *
 714      * @param      index the index to the <code>char</code> values
 715      * @return     the code point value of the character at the
 716      *             <code>index</code>
 717      * @exception  IndexOutOfBoundsException  if the <code>index</code>
 718      *             argument is negative or not less than the length of this
 719      *             string.
 720      * @since      1.5
 721      */
 722     public int codePointAt(int index) {
 723         if ((index < 0) || (index >= count)) {
 724             throw new StringIndexOutOfBoundsException(index);
 725         }
 726         return Character.codePointAtImpl(value, offset + index, offset + count);
 727     }
 728 
 729     /**
 730      * Returns the character (Unicode code point) before the specified
 731      * index. The index refers to <code>char</code> values
 732      * (Unicode code units) and ranges from <code>1</code> to {@link
 733      * CharSequence#length() length}.
 734      *
 735      * <p> If the <code>char</code> value at <code>(index - 1)</code>
 736      * is in the low-surrogate range, <code>(index - 2)</code> is not
 737      * negative, and the <code>char</code> value at <code>(index -
 738      * 2)</code> is in the high-surrogate range, then the
 739      * supplementary code point value of the surrogate pair is
 740      * returned. If the <code>char</code> value at <code>index -
 741      * 1</code> is an unpaired low-surrogate or a high-surrogate, the
 742      * surrogate value is returned.
 743      *
 744      * @param     index the index following the code point that should be returned
 745      * @return    the Unicode code point value before the given index.
 746      * @exception IndexOutOfBoundsException if the <code>index</code>
 747      *            argument is less than 1 or greater than the length
 748      *            of this string.
 749      * @since     1.5
 750      */
 751     public int codePointBefore(int index) {
 752         int i = index - 1;
 753         if ((i < 0) || (i >= count)) {
 754             throw new StringIndexOutOfBoundsException(index);
 755         }
 756         return Character.codePointBeforeImpl(value, offset + index, offset);
 757     }
 758 
 759     /**
 760      * Returns the number of Unicode code points in the specified text
 761      * range of this <code>String</code>. The text range begins at the
 762      * specified <code>beginIndex</code> and extends to the
 763      * <code>char</code> at index <code>endIndex - 1</code>. Thus the
 764      * length (in <code>char</code>s) of the text range is
 765      * <code>endIndex-beginIndex</code>. Unpaired surrogates within
 766      * the text range count as one code point each.
 767      *
 768      * @param beginIndex the index to the first <code>char</code> of
 769      * the text range.
 770      * @param endIndex the index after the last <code>char</code> of
 771      * the text range.
 772      * @return the number of Unicode code points in the specified text
 773      * range
 774      * @exception IndexOutOfBoundsException if the
 775      * <code>beginIndex</code> is negative, or <code>endIndex</code>
 776      * is larger than the length of this <code>String</code>, or
 777      * <code>beginIndex</code> is larger than <code>endIndex</code>.
 778      * @since  1.5
 779      */
 780     public int codePointCount(int beginIndex, int endIndex) {
 781         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 782             throw new IndexOutOfBoundsException();
 783         }
 784         return Character.codePointCountImpl(value, offset+beginIndex, endIndex-beginIndex);
 785     }
 786 
 787     /**
 788      * Returns the index within this <code>String</code> that is
 789      * offset from the given <code>index</code> by
 790      * <code>codePointOffset</code> code points. Unpaired surrogates
 791      * within the text range given by <code>index</code> and
 792      * <code>codePointOffset</code> count as one code point each.
 793      *
 794      * @param index the index to be offset
 795      * @param codePointOffset the offset in code points
 796      * @return the index within this <code>String</code>
 797      * @exception IndexOutOfBoundsException if <code>index</code>
 798      *   is negative or larger then the length of this
 799      *   <code>String</code>, or if <code>codePointOffset</code> is positive
 800      *   and the substring starting with <code>index</code> has fewer
 801      *   than <code>codePointOffset</code> code points,
 802      *   or if <code>codePointOffset</code> is negative and the substring
 803      *   before <code>index</code> has fewer than the absolute value
 804      *   of <code>codePointOffset</code> code points.
 805      * @since 1.5
 806      */
 807     public int offsetByCodePoints(int index, int codePointOffset) {
 808         if (index < 0 || index > count) {
 809             throw new IndexOutOfBoundsException();
 810         }
 811         return Character.offsetByCodePointsImpl(value, offset, count,
 812                                                 offset+index, codePointOffset) - offset;
 813     }
 814 
 815     /**
 816      * Copy characters from this string into dst starting at dstBegin.
 817      * This method doesn't perform any range checking.
 818      */
 819     void getChars(char dst[], int dstBegin) {
 820         System.arraycopy(value, offset, dst, dstBegin, count);
 821     }
 822 
 823     /**
 824      * Copies characters from this string into the destination character
 825      * array.
 826      * <p>
 827      * The first character to be copied is at index <code>srcBegin</code>;
 828      * the last character to be copied is at index <code>srcEnd-1</code>
 829      * (thus the total number of characters to be copied is
 830      * <code>srcEnd-srcBegin</code>). The characters are copied into the
 831      * subarray of <code>dst</code> starting at index <code>dstBegin</code>
 832      * and ending at index:
 833      * <p><blockquote><pre>
 834      *     dstbegin + (srcEnd-srcBegin) - 1
 835      * </pre></blockquote>
 836      *
 837      * @param      srcBegin   index of the first character in the string
 838      *                        to copy.
 839      * @param      srcEnd     index after the last character in the string
 840      *                        to copy.
 841      * @param      dst        the destination array.
 842      * @param      dstBegin   the start offset in the destination array.
 843      * @exception IndexOutOfBoundsException If any of the following
 844      *            is true:
 845      *            <ul><li><code>srcBegin</code> is negative.
 846      *            <li><code>srcBegin</code> is greater than <code>srcEnd</code>
 847      *            <li><code>srcEnd</code> is greater than the length of this
 848      *                string
 849      *            <li><code>dstBegin</code> is negative
 850      *            <li><code>dstBegin+(srcEnd-srcBegin)</code> is larger than
 851      *                <code>dst.length</code></ul>
 852      */
 853     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 854         if (srcBegin < 0) {
 855             throw new StringIndexOutOfBoundsException(srcBegin);
 856         }
 857         if (srcEnd > count) {
 858             throw new StringIndexOutOfBoundsException(srcEnd);
 859         }
 860         if (srcBegin > srcEnd) {
 861             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 862         }
 863         System.arraycopy(value, offset + srcBegin, dst, dstBegin,
 864              srcEnd - srcBegin);
 865     }
 866 
 867     /**
 868      * Copies characters from this string into the destination byte array. Each
 869      * byte receives the 8 low-order bits of the corresponding character. The
 870      * eight high-order bits of each character are not copied and do not
 871      * participate in the transfer in any way.
 872      *
 873      * <p> The first character to be copied is at index {@code srcBegin}; the
 874      * last character to be copied is at index {@code srcEnd-1}.  The total
 875      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 876      * characters, converted to bytes, are copied into the subarray of {@code
 877      * dst} starting at index {@code dstBegin} and ending at index:
 878      *
 879      * <blockquote><pre>
 880      *     dstbegin + (srcEnd-srcBegin) - 1
 881      * </pre></blockquote>
 882      *
 883      * @deprecated  This method does not properly convert characters into
 884      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 885      * {@link #getBytes()} method, which uses the platform's default charset.
 886      *
 887      * @param  srcBegin
 888      *         Index of the first character in the string to copy
 889      *
 890      * @param  srcEnd
 891      *         Index after the last character in the string to copy
 892      *
 893      * @param  dst
 894      *         The destination array
 895      *
 896      * @param  dstBegin
 897      *         The start offset in the destination array
 898      *
 899      * @throws  IndexOutOfBoundsException
 900      *          If any of the following is true:
 901      *          <ul>
 902      *            <li> {@code srcBegin} is negative
 903      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 904      *            <li> {@code srcEnd} is greater than the length of this String
 905      *            <li> {@code dstBegin} is negative
 906      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 907      *                 dst.length}
 908      *          </ul>
 909      */
 910     @Deprecated
 911     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 912         if (srcBegin < 0) {
 913             throw new StringIndexOutOfBoundsException(srcBegin);
 914         }
 915         if (srcEnd > count) {
 916             throw new StringIndexOutOfBoundsException(srcEnd);
 917         }
 918         if (srcBegin > srcEnd) {
 919             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 920         }
 921         int j = dstBegin;
 922         int n = offset + srcEnd;
 923         int i = offset + srcBegin;
 924         char[] val = value;   /* avoid getfield opcode */
 925 
 926         while (i < n) {
 927             dst[j++] = (byte)val[i++];
 928         }
 929     }
 930 
 931     /**
 932      * Encodes this {@code String} into a sequence of bytes using the named
 933      * charset, storing the result into a new byte array.
 934      *
 935      * <p> The behavior of this method when this string cannot be encoded in
 936      * the given charset is unspecified.  The {@link
 937      * java.nio.charset.CharsetEncoder} class should be used when more control
 938      * over the encoding process is required.
 939      *
 940      * @param  charsetName
 941      *         The name of a supported {@linkplain java.nio.charset.Charset
 942      *         charset}
 943      *
 944      * @return  The resultant byte array
 945      *
 946      * @throws  UnsupportedEncodingException
 947      *          If the named charset is not supported
 948      *
 949      * @since  JDK1.1
 950      */
 951     public byte[] getBytes(String charsetName)
 952         throws UnsupportedEncodingException
 953     {
 954         if (charsetName == null) throw new NullPointerException();
 955         return StringCoding.encode(charsetName, value, offset, count);
 956     }
 957 
 958     /**
 959      * Encodes this {@code String} into a sequence of bytes using the given
 960      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 961      * new byte array.
 962      *
 963      * <p> This method always replaces malformed-input and unmappable-character
 964      * sequences with this charset's default replacement byte array.  The
 965      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 966      * control over the encoding process is required.
 967      *
 968      * @param  charset
 969      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 970      *         the {@code String}
 971      *
 972      * @return  The resultant byte array
 973      *
 974      * @since  1.6
 975      */
 976     public byte[] getBytes(Charset charset) {
 977         if (charset == null) throw new NullPointerException();
 978         return StringCoding.encode(charset, value, offset, count);
 979     }
 980 
 981     /**
 982      * Encodes this {@code String} into a sequence of bytes using the
 983      * platform's default charset, storing the result into a new byte array.
 984      *
 985      * <p> The behavior of this method when this string cannot be encoded in
 986      * the default charset is unspecified.  The {@link
 987      * java.nio.charset.CharsetEncoder} class should be used when more control
 988      * over the encoding process is required.
 989      *
 990      * @return  The resultant byte array
 991      *
 992      * @since      JDK1.1
 993      */
 994     public byte[] getBytes() {
 995         return StringCoding.encode(value, offset, count);
 996     }
 997 
 998     /**
 999      * Compares this string to the specified object.  The result is {@code
1000      * true} if and only if the argument is not {@code null} and is a {@code
1001      * String} object that represents the same sequence of characters as this
1002      * object.
1003      *
1004      * @param  anObject
1005      *         The object to compare this {@code String} against
1006      *
1007      * @return  {@code true} if the given object represents a {@code String}
1008      *          equivalent to this string, {@code false} otherwise
1009      *
1010      * @see  #compareTo(String)
1011      * @see  #equalsIgnoreCase(String)
1012      */
1013     public boolean equals(Object anObject) {
1014         if (this == anObject) {
1015             return true;
1016         }
1017         if (anObject instanceof String) {
1018             String anotherString = (String)anObject;
1019             int n = count;
1020             if (n == anotherString.count) {
1021                 char v1[] = value;
1022                 char v2[] = anotherString.value;
1023                 int i = offset;
1024                 int j = anotherString.offset;
1025                 while (n-- != 0) {
1026                     if (v1[i++] != v2[j++])
1027                         return false;
1028                 }
1029                 return true;
1030             }
1031         }
1032         return false;
1033     }
1034 
1035     /**
1036      * Compares this string to the specified {@code StringBuffer}.  The result
1037      * is {@code true} if and only if this {@code String} represents the same
1038      * sequence of characters as the specified {@code StringBuffer}.
1039      *
1040      * @param  sb
1041      *         The {@code StringBuffer} to compare this {@code String} against
1042      *
1043      * @return  {@code true} if this {@code String} represents the same
1044      *          sequence of characters as the specified {@code StringBuffer},
1045      *          {@code false} otherwise
1046      *
1047      * @since  1.4
1048      */
1049     public boolean contentEquals(StringBuffer sb) {
1050         synchronized(sb) {
1051             return contentEquals((CharSequence)sb);
1052         }
1053     }
1054 
1055     /**
1056      * Compares this string to the specified {@code CharSequence}.  The result
1057      * is {@code true} if and only if this {@code String} represents the same
1058      * sequence of char values as the specified sequence.
1059      *
1060      * @param  cs
1061      *         The sequence to compare this {@code String} against
1062      *
1063      * @return  {@code true} if this {@code String} represents the same
1064      *          sequence of char values as the specified sequence, {@code
1065      *          false} otherwise
1066      *
1067      * @since  1.5
1068      */
1069     public boolean contentEquals(CharSequence cs) {
1070         if (count != cs.length())
1071             return false;
1072         // Argument is a StringBuffer, StringBuilder
1073         if (cs instanceof AbstractStringBuilder) {
1074             char v1[] = value;
1075             char v2[] = ((AbstractStringBuilder)cs).getValue();
1076             int i = offset;
1077             int j = 0;
1078             int n = count;
1079             while (n-- != 0) {
1080                 if (v1[i++] != v2[j++])
1081                     return false;
1082             }
1083             return true;
1084         }
1085         // Argument is a String
1086         if (cs.equals(this))
1087             return true;
1088         // Argument is a generic CharSequence
1089         char v1[] = value;
1090         int i = offset;
1091         int j = 0;
1092         int n = count;
1093         while (n-- != 0) {
1094             if (v1[i++] != cs.charAt(j++))
1095                 return false;
1096         }
1097         return true;
1098     }
1099 
1100     /**
1101      * Compares this {@code String} to another {@code String}, ignoring case
1102      * considerations.  Two strings are considered equal ignoring case if they
1103      * are of the same length and corresponding characters in the two strings
1104      * are equal ignoring case.
1105      *
1106      * <p> Two characters {@code c1} and {@code c2} are considered the same
1107      * ignoring case if at least one of the following is true:
1108      * <ul>
1109      *   <li> The two characters are the same (as compared by the
1110      *        {@code ==} operator)
1111      *   <li> Applying the method {@link
1112      *        java.lang.Character#toUpperCase(char)} to each character
1113      *        produces the same result
1114      *   <li> Applying the method {@link
1115      *        java.lang.Character#toLowerCase(char)} to each character
1116      *        produces the same result
1117      * </ul>
1118      *
1119      * @param  anotherString
1120      *         The {@code String} to compare this {@code String} against
1121      *
1122      * @return  {@code true} if the argument is not {@code null} and it
1123      *          represents an equivalent {@code String} ignoring case; {@code
1124      *          false} otherwise
1125      *
1126      * @see  #equals(Object)
1127      */
1128     public boolean equalsIgnoreCase(String anotherString) {
1129         return (this == anotherString) ? true :
1130                (anotherString != null) && (anotherString.count == count) &&
1131                regionMatches(true, 0, anotherString, 0, count);
1132     }
1133 
1134     /**
1135      * Compares two strings lexicographically.
1136      * The comparison is based on the Unicode value of each character in
1137      * the strings. The character sequence represented by this
1138      * <code>String</code> object is compared lexicographically to the
1139      * character sequence represented by the argument string. The result is
1140      * a negative integer if this <code>String</code> object
1141      * lexicographically precedes the argument string. The result is a
1142      * positive integer if this <code>String</code> object lexicographically
1143      * follows the argument string. The result is zero if the strings
1144      * are equal; <code>compareTo</code> returns <code>0</code> exactly when
1145      * the {@link #equals(Object)} method would return <code>true</code>.
1146      * <p>
1147      * This is the definition of lexicographic ordering. If two strings are
1148      * different, then either they have different characters at some index
1149      * that is a valid index for both strings, or their lengths are different,
1150      * or both. If they have different characters at one or more index
1151      * positions, let <i>k</i> be the smallest such index; then the string
1152      * whose character at position <i>k</i> has the smaller value, as
1153      * determined by using the &lt; operator, lexicographically precedes the
1154      * other string. In this case, <code>compareTo</code> returns the
1155      * difference of the two character values at position <code>k</code> in
1156      * the two string -- that is, the value:
1157      * <blockquote><pre>
1158      * this.charAt(k)-anotherString.charAt(k)
1159      * </pre></blockquote>
1160      * If there is no index position at which they differ, then the shorter
1161      * string lexicographically precedes the longer string. In this case,
1162      * <code>compareTo</code> returns the difference of the lengths of the
1163      * strings -- that is, the value:
1164      * <blockquote><pre>
1165      * this.length()-anotherString.length()
1166      * </pre></blockquote>
1167      *
1168      * @param   anotherString   the <code>String</code> to be compared.
1169      * @return  the value <code>0</code> if the argument string is equal to
1170      *          this string; a value less than <code>0</code> if this string
1171      *          is lexicographically less than the string argument; and a
1172      *          value greater than <code>0</code> if this string is
1173      *          lexicographically greater than the string argument.
1174      */
1175     public int compareTo(String anotherString) {
1176         int len1 = count;
1177         int len2 = anotherString.count;
1178         int n = Math.min(len1, len2);
1179         char v1[] = value;
1180         char v2[] = anotherString.value;
1181         int i = offset;
1182         int j = anotherString.offset;
1183 
1184         if (i == j) {
1185             int k = i;
1186             int lim = n + i;
1187             while (k < lim) {
1188                 char c1 = v1[k];
1189                 char c2 = v2[k];
1190                 if (c1 != c2) {
1191                     return c1 - c2;
1192                 }
1193                 k++;
1194             }
1195         } else {
1196             while (n-- != 0) {
1197                 char c1 = v1[i++];
1198                 char c2 = v2[j++];
1199                 if (c1 != c2) {
1200                     return c1 - c2;
1201                 }
1202             }
1203         }
1204         return len1 - len2;
1205     }
1206 
1207     /**
1208      * A Comparator that orders <code>String</code> objects as by
1209      * <code>compareToIgnoreCase</code>. This comparator is serializable.
1210      * <p>
1211      * Note that this Comparator does <em>not</em> take locale into account,
1212      * and will result in an unsatisfactory ordering for certain locales.
1213      * The java.text package provides <em>Collators</em> to allow
1214      * locale-sensitive ordering.
1215      *
1216      * @see     java.text.Collator#compare(String, String)
1217      * @since   1.2
1218      */
1219     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1220                                          = new CaseInsensitiveComparator();
1221     private static class CaseInsensitiveComparator
1222                          implements Comparator<String>, java.io.Serializable {
1223         // use serialVersionUID from JDK 1.2.2 for interoperability
1224         private static final long serialVersionUID = 8575799808933029326L;
1225 
1226         public int compare(String s1, String s2) {
1227             int n1 = s1.length();
1228             int n2 = s2.length();
1229             int min = Math.min(n1, n2);
1230             for (int i = 0; i < min; i++) {
1231                 char c1 = s1.charAt(i);
1232                 char c2 = s2.charAt(i);
1233                 if (c1 != c2) {
1234                     c1 = Character.toUpperCase(c1);
1235                     c2 = Character.toUpperCase(c2);
1236                     if (c1 != c2) {
1237                         c1 = Character.toLowerCase(c1);
1238                         c2 = Character.toLowerCase(c2);
1239                         if (c1 != c2) {
1240                             // No overflow because of numeric promotion
1241                             return c1 - c2;
1242                         }
1243                     }
1244                 }
1245             }
1246             return n1 - n2;
1247         }
1248     }
1249 
1250     /**
1251      * Compares two strings lexicographically, ignoring case
1252      * differences. This method returns an integer whose sign is that of
1253      * calling <code>compareTo</code> with normalized versions of the strings
1254      * where case differences have been eliminated by calling
1255      * <code>Character.toLowerCase(Character.toUpperCase(character))</code> on
1256      * each character.
1257      * <p>
1258      * Note that this method does <em>not</em> take locale into account,
1259      * and will result in an unsatisfactory ordering for certain locales.
1260      * The java.text package provides <em>collators</em> to allow
1261      * locale-sensitive ordering.
1262      *
1263      * @param   str   the <code>String</code> to be compared.
1264      * @return  a negative integer, zero, or a positive integer as the
1265      *          specified String is greater than, equal to, or less
1266      *          than this String, ignoring case considerations.
1267      * @see     java.text.Collator#compare(String, String)
1268      * @since   1.2
1269      */
1270     public int compareToIgnoreCase(String str) {
1271         return CASE_INSENSITIVE_ORDER.compare(this, str);
1272     }
1273 
1274     /**
1275      * Tests if two string regions are equal.
1276      * <p>
1277      * A substring of this <tt>String</tt> object is compared to a substring
1278      * of the argument other. The result is true if these substrings
1279      * represent identical character sequences. The substring of this
1280      * <tt>String</tt> object to be compared begins at index <tt>toffset</tt>
1281      * and has length <tt>len</tt>. The substring of other to be compared
1282      * begins at index <tt>ooffset</tt> and has length <tt>len</tt>. The
1283      * result is <tt>false</tt> if and only if at least one of the following
1284      * is true:
1285      * <ul><li><tt>toffset</tt> is negative.
1286      * <li><tt>ooffset</tt> is negative.
1287      * <li><tt>toffset+len</tt> is greater than the length of this
1288      * <tt>String</tt> object.
1289      * <li><tt>ooffset+len</tt> is greater than the length of the other
1290      * argument.
1291      * <li>There is some nonnegative integer <i>k</i> less than <tt>len</tt>
1292      * such that:
1293      * <tt>this.charAt(toffset+<i>k</i>)&nbsp;!=&nbsp;other.charAt(ooffset+<i>k</i>)</tt>
1294      * </ul>
1295      *
1296      * @param   toffset   the starting offset of the subregion in this string.
1297      * @param   other     the string argument.
1298      * @param   ooffset   the starting offset of the subregion in the string
1299      *                    argument.
1300      * @param   len       the number of characters to compare.
1301      * @return  <code>true</code> if the specified subregion of this string
1302      *          exactly matches the specified subregion of the string argument;
1303      *          <code>false</code> otherwise.
1304      */
1305     public boolean regionMatches(int toffset, String other, int ooffset,
1306                                  int len) {
1307         char ta[] = value;
1308         int to = offset + toffset;
1309         char pa[] = other.value;
1310         int po = other.offset + ooffset;
1311         // Note: toffset, ooffset, or len might be near -1>>>1.
1312         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len)
1313             || (ooffset > (long)other.count - len)) {
1314             return false;
1315         }
1316         while (len-- > 0) {
1317             if (ta[to++] != pa[po++]) {
1318                 return false;
1319             }
1320         }
1321         return true;
1322     }
1323 
1324     /**
1325      * Tests if two string regions are equal.
1326      * <p>
1327      * A substring of this <tt>String</tt> object is compared to a substring
1328      * of the argument <tt>other</tt>. The result is <tt>true</tt> if these
1329      * substrings represent character sequences that are the same, ignoring
1330      * case if and only if <tt>ignoreCase</tt> is true. The substring of
1331      * this <tt>String</tt> object to be compared begins at index
1332      * <tt>toffset</tt> and has length <tt>len</tt>. The substring of
1333      * <tt>other</tt> to be compared begins at index <tt>ooffset</tt> and
1334      * has length <tt>len</tt>. The result is <tt>false</tt> if and only if
1335      * at least one of the following is true:
1336      * <ul><li><tt>toffset</tt> is negative.
1337      * <li><tt>ooffset</tt> is negative.
1338      * <li><tt>toffset+len</tt> is greater than the length of this
1339      * <tt>String</tt> object.
1340      * <li><tt>ooffset+len</tt> is greater than the length of the other
1341      * argument.
1342      * <li><tt>ignoreCase</tt> is <tt>false</tt> and there is some nonnegative
1343      * integer <i>k</i> less than <tt>len</tt> such that:
1344      * <blockquote><pre>
1345      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1346      * </pre></blockquote>
1347      * <li><tt>ignoreCase</tt> is <tt>true</tt> and there is some nonnegative
1348      * integer <i>k</i> less than <tt>len</tt> such that:
1349      * <blockquote><pre>
1350      * Character.toLowerCase(this.charAt(toffset+k)) !=
1351                Character.toLowerCase(other.charAt(ooffset+k))
1352      * </pre></blockquote>
1353      * and:
1354      * <blockquote><pre>
1355      * Character.toUpperCase(this.charAt(toffset+k)) !=
1356      *         Character.toUpperCase(other.charAt(ooffset+k))
1357      * </pre></blockquote>
1358      * </ul>
1359      *
1360      * @param   ignoreCase   if <code>true</code>, ignore case when comparing
1361      *                       characters.
1362      * @param   toffset      the starting offset of the subregion in this
1363      *                       string.
1364      * @param   other        the string argument.
1365      * @param   ooffset      the starting offset of the subregion in the string
1366      *                       argument.
1367      * @param   len          the number of characters to compare.
1368      * @return  <code>true</code> if the specified subregion of this string
1369      *          matches the specified subregion of the string argument;
1370      *          <code>false</code> otherwise. Whether the matching is exact
1371      *          or case insensitive depends on the <code>ignoreCase</code>
1372      *          argument.
1373      */
1374     public boolean regionMatches(boolean ignoreCase, int toffset,
1375                            String other, int ooffset, int len) {
1376         char ta[] = value;
1377         int to = offset + toffset;
1378         char pa[] = other.value;
1379         int po = other.offset + ooffset;
1380         // Note: toffset, ooffset, or len might be near -1>>>1.
1381         if ((ooffset < 0) || (toffset < 0) || (toffset > (long)count - len) ||
1382                 (ooffset > (long)other.count - len)) {
1383             return false;
1384         }
1385         while (len-- > 0) {
1386             char c1 = ta[to++];
1387             char c2 = pa[po++];
1388             if (c1 == c2) {
1389                 continue;
1390             }
1391             if (ignoreCase) {
1392                 // If characters don't match but case may be ignored,
1393                 // try converting both characters to uppercase.
1394                 // If the results match, then the comparison scan should
1395                 // continue.
1396                 char u1 = Character.toUpperCase(c1);
1397                 char u2 = Character.toUpperCase(c2);
1398                 if (u1 == u2) {
1399                     continue;
1400                 }
1401                 // Unfortunately, conversion to uppercase does not work properly
1402                 // for the Georgian alphabet, which has strange rules about case
1403                 // conversion.  So we need to make one last check before
1404                 // exiting.
1405                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1406                     continue;
1407                 }
1408             }
1409             return false;
1410         }
1411         return true;
1412     }
1413 
1414     /**
1415      * Tests if the substring of this string beginning at the
1416      * specified index starts with the specified prefix.
1417      *
1418      * @param   prefix    the prefix.
1419      * @param   toffset   where to begin looking in this string.
1420      * @return  <code>true</code> if the character sequence represented by the
1421      *          argument is a prefix of the substring of this object starting
1422      *          at index <code>toffset</code>; <code>false</code> otherwise.
1423      *          The result is <code>false</code> if <code>toffset</code> is
1424      *          negative or greater than the length of this
1425      *          <code>String</code> object; otherwise the result is the same
1426      *          as the result of the expression
1427      *          <pre>
1428      *          this.substring(toffset).startsWith(prefix)
1429      *          </pre>
1430      */
1431     public boolean startsWith(String prefix, int toffset) {
1432         char ta[] = value;
1433         int to = offset + toffset;
1434         char pa[] = prefix.value;
1435         int po = prefix.offset;
1436         int pc = prefix.count;
1437         // Note: toffset might be near -1>>>1.
1438         if ((toffset < 0) || (toffset > count - pc)) {
1439             return false;
1440         }
1441         while (--pc >= 0) {
1442             if (ta[to++] != pa[po++]) {
1443                 return false;
1444             }
1445         }
1446         return true;
1447     }
1448 
1449     /**
1450      * Tests if this string starts with the specified prefix.
1451      *
1452      * @param   prefix   the prefix.
1453      * @return  <code>true</code> if the character sequence represented by the
1454      *          argument is a prefix of the character sequence represented by
1455      *          this string; <code>false</code> otherwise.
1456      *          Note also that <code>true</code> will be returned if the
1457      *          argument is an empty string or is equal to this
1458      *          <code>String</code> object as determined by the
1459      *          {@link #equals(Object)} method.
1460      * @since   1. 0
1461      */
1462     public boolean startsWith(String prefix) {
1463         return startsWith(prefix, 0);
1464     }
1465 
1466     /**
1467      * Tests if this string ends with the specified suffix.
1468      *
1469      * @param   suffix   the suffix.
1470      * @return  <code>true</code> if the character sequence represented by the
1471      *          argument is a suffix of the character sequence represented by
1472      *          this object; <code>false</code> otherwise. Note that the
1473      *          result will be <code>true</code> if the argument is the
1474      *          empty string or is equal to this <code>String</code> object
1475      *          as determined by the {@link #equals(Object)} method.
1476      */
1477     public boolean endsWith(String suffix) {
1478         return startsWith(suffix, count - suffix.count);
1479     }
1480 
1481     /**
1482      * Returns a hash code for this string. The hash code for a
1483      * <code>String</code> object is computed as
1484      * <blockquote><pre>
1485      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1486      * </pre></blockquote>
1487      * using <code>int</code> arithmetic, where <code>s[i]</code> is the
1488      * <i>i</i>th character of the string, <code>n</code> is the length of
1489      * the string, and <code>^</code> indicates exponentiation.
1490      * (The hash value of the empty string is zero.)
1491      *
1492      * @return  a hash code value for this object.
1493      */
1494     public int hashCode() {
1495         int h = hash;
1496         if (h == 0 && count > 0) {
1497             int off = offset;
1498             char val[] = value;
1499             int len = count;
1500 
1501             for (int i = 0; i < len; i++) {
1502                 h = 31*h + val[off++];
1503             }
1504             hash = h;
1505         }
1506         return h;
1507     }
1508 
1509     /**
1510      * Returns the index within this string of the first occurrence of
1511      * the specified character. If a character with value
1512      * <code>ch</code> occurs in the character sequence represented by
1513      * this <code>String</code> object, then the index (in Unicode
1514      * code units) of the first such occurrence is returned. For
1515      * values of <code>ch</code> in the range from 0 to 0xFFFF
1516      * (inclusive), this is the smallest value <i>k</i> such that:
1517      * <blockquote><pre>
1518      * this.charAt(<i>k</i>) == ch
1519      * </pre></blockquote>
1520      * is true. For other values of <code>ch</code>, it is the
1521      * smallest value <i>k</i> such that:
1522      * <blockquote><pre>
1523      * this.codePointAt(<i>k</i>) == ch
1524      * </pre></blockquote>
1525      * is true. In either case, if no such character occurs in this
1526      * string, then <code>-1</code> is returned.
1527      *
1528      * @param   ch   a character (Unicode code point).
1529      * @return  the index of the first occurrence of the character in the
1530      *          character sequence represented by this object, or
1531      *          <code>-1</code> if the character does not occur.
1532      */
1533     public int indexOf(int ch) {
1534         return indexOf(ch, 0);
1535     }
1536 
1537     /**
1538      * Returns the index within this string of the first occurrence of the
1539      * specified character, starting the search at the specified index.
1540      * <p>
1541      * If a character with value <code>ch</code> occurs in the
1542      * character sequence represented by this <code>String</code>
1543      * object at an index no smaller than <code>fromIndex</code>, then
1544      * the index of the first such occurrence is returned. For values
1545      * of <code>ch</code> in the range from 0 to 0xFFFF (inclusive),
1546      * this is the smallest value <i>k</i> such that:
1547      * <blockquote><pre>
1548      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1549      * </pre></blockquote>
1550      * is true. For other values of <code>ch</code>, it is the
1551      * smallest value <i>k</i> such that:
1552      * <blockquote><pre>
1553      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &gt;= fromIndex)
1554      * </pre></blockquote>
1555      * is true. In either case, if no such character occurs in this
1556      * string at or after position <code>fromIndex</code>, then
1557      * <code>-1</code> is returned.
1558      *
1559      * <p>
1560      * There is no restriction on the value of <code>fromIndex</code>. If it
1561      * is negative, it has the same effect as if it were zero: this entire
1562      * string may be searched. If it is greater than the length of this
1563      * string, it has the same effect as if it were equal to the length of
1564      * this string: <code>-1</code> is returned.
1565      *
1566      * <p>All indices are specified in <code>char</code> values
1567      * (Unicode code units).
1568      *
1569      * @param   ch          a character (Unicode code point).
1570      * @param   fromIndex   the index to start the search from.
1571      * @return  the index of the first occurrence of the character in the
1572      *          character sequence represented by this object that is greater
1573      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
1574      *          if the character does not occur.
1575      */
1576     public int indexOf(int ch, int fromIndex) {
1577         if (fromIndex < 0) {
1578             fromIndex = 0;
1579         } else if (fromIndex >= count) {
1580             // Note: fromIndex might be near -1>>>1.
1581             return -1;
1582         }
1583 
1584         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1585             // handle most cases here (ch is a BMP code point or a
1586             // negative value (invalid code point))
1587             final char[] value = this.value;
1588             final int offset = this.offset;
1589             final int max = offset + count;
1590             for (int i = offset + fromIndex; i < max ; i++) {
1591                 if (value[i] == ch) {
1592                     return i - offset;
1593                 }
1594             }
1595             return -1;
1596         } else {
1597             return indexOfSupplementary(ch, fromIndex);
1598         }
1599     }
1600 
1601     /**
1602      * Handles (rare) calls of indexOf with a supplementary character.
1603      */
1604     private int indexOfSupplementary(int ch, int fromIndex) {
1605         if (Character.isValidCodePoint(ch)) {
1606             final char[] value = this.value;
1607             final int offset = this.offset;
1608             final char hi = Character.highSurrogate(ch);
1609             final char lo = Character.lowSurrogate(ch);
1610             final int max = offset + count - 1;
1611             for (int i = offset + fromIndex; i < max; i++) {
1612                 if (value[i] == hi && value[i+1] == lo) {
1613                     return i - offset;
1614                 }
1615             }
1616         }
1617         return -1;
1618     }
1619 
1620     /**
1621      * Returns the index within this string of the last occurrence of
1622      * the specified character. For values of <code>ch</code> in the
1623      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1624      * units) returned is the largest value <i>k</i> such that:
1625      * <blockquote><pre>
1626      * this.charAt(<i>k</i>) == ch
1627      * </pre></blockquote>
1628      * is true. For other values of <code>ch</code>, it is the
1629      * largest value <i>k</i> such that:
1630      * <blockquote><pre>
1631      * this.codePointAt(<i>k</i>) == ch
1632      * </pre></blockquote>
1633      * is true.  In either case, if no such character occurs in this
1634      * string, then <code>-1</code> is returned.  The
1635      * <code>String</code> is searched backwards starting at the last
1636      * character.
1637      *
1638      * @param   ch   a character (Unicode code point).
1639      * @return  the index of the last occurrence of the character in the
1640      *          character sequence represented by this object, or
1641      *          <code>-1</code> if the character does not occur.
1642      */
1643     public int lastIndexOf(int ch) {
1644         return lastIndexOf(ch, count - 1);
1645     }
1646 
1647     /**
1648      * Returns the index within this string of the last occurrence of
1649      * the specified character, searching backward starting at the
1650      * specified index. For values of <code>ch</code> in the range
1651      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1652      * value <i>k</i> such that:
1653      * <blockquote><pre>
1654      * (this.charAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1655      * </pre></blockquote>
1656      * is true. For other values of <code>ch</code>, it is the
1657      * largest value <i>k</i> such that:
1658      * <blockquote><pre>
1659      * (this.codePointAt(<i>k</i>) == ch) && (<i>k</i> &lt;= fromIndex)
1660      * </pre></blockquote>
1661      * is true. In either case, if no such character occurs in this
1662      * string at or before position <code>fromIndex</code>, then
1663      * <code>-1</code> is returned.
1664      *
1665      * <p>All indices are specified in <code>char</code> values
1666      * (Unicode code units).
1667      *
1668      * @param   ch          a character (Unicode code point).
1669      * @param   fromIndex   the index to start the search from. There is no
1670      *          restriction on the value of <code>fromIndex</code>. If it is
1671      *          greater than or equal to the length of this string, it has
1672      *          the same effect as if it were equal to one less than the
1673      *          length of this string: this entire string may be searched.
1674      *          If it is negative, it has the same effect as if it were -1:
1675      *          -1 is returned.
1676      * @return  the index of the last occurrence of the character in the
1677      *          character sequence represented by this object that is less
1678      *          than or equal to <code>fromIndex</code>, or <code>-1</code>
1679      *          if the character does not occur before that point.
1680      */
1681     public int lastIndexOf(int ch, int fromIndex) {
1682         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1683             // handle most cases here (ch is a BMP code point or a
1684             // negative value (invalid code point))
1685             final char[] value = this.value;
1686             final int offset = this.offset;
1687             int i = offset + Math.min(fromIndex, count - 1);
1688             for (; i >= offset ; i--) {
1689                 if (value[i] == ch) {
1690                     return i - offset;
1691                 }
1692             }
1693             return -1;
1694         } else {
1695             return lastIndexOfSupplementary(ch, fromIndex);
1696         }
1697     }
1698 
1699     /**
1700      * Handles (rare) calls of lastIndexOf with a supplementary character.
1701      */
1702     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1703         if (Character.isValidCodePoint(ch)) {
1704             final char[] value = this.value;
1705             final int offset = this.offset;
1706             char hi = Character.highSurrogate(ch);
1707             char lo = Character.lowSurrogate(ch);
1708             int i = offset + Math.min(fromIndex, count - 2);
1709             for (; i >= offset; i--) {
1710                 if (value[i] == hi && value[i+1] == lo) {
1711                     return i - offset;
1712                 }
1713             }
1714         }
1715         return -1;
1716     }
1717 
1718     /**
1719      * Returns the index within this string of the first occurrence of the
1720      * specified substring.
1721      *
1722      * <p>The returned index is the smallest value <i>k</i> for which:
1723      * <blockquote><pre>
1724      * this.startsWith(str, <i>k</i>)
1725      * </pre></blockquote>
1726      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1727      *
1728      * @param   str   the substring to search for.
1729      * @return  the index of the first occurrence of the specified substring,
1730      *          or {@code -1} if there is no such occurrence.
1731      */
1732     public int indexOf(String str) {
1733         return indexOf(str, 0);
1734     }
1735 
1736     /**
1737      * Returns the index within this string of the first occurrence of the
1738      * specified substring, starting at the specified index.
1739      *
1740      * <p>The returned index is the smallest value <i>k</i> for which:
1741      * <blockquote><pre>
1742      * <i>k</i> &gt;= fromIndex && this.startsWith(str, <i>k</i>)
1743      * </pre></blockquote>
1744      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1745      *
1746      * @param   str         the substring to search for.
1747      * @param   fromIndex   the index from which to start the search.
1748      * @return  the index of the first occurrence of the specified substring,
1749      *          starting at the specified index,
1750      *          or {@code -1} if there is no such occurrence.
1751      */
1752     public int indexOf(String str, int fromIndex) {
1753         return indexOf(value, offset, count,
1754                        str.value, str.offset, str.count, fromIndex);
1755     }
1756 
1757     /**
1758      * Code shared by String and StringBuffer to do searches. The
1759      * source is the character array being searched, and the target
1760      * is the string being searched for.
1761      *
1762      * @param   source       the characters being searched.
1763      * @param   sourceOffset offset of the source string.
1764      * @param   sourceCount  count of the source string.
1765      * @param   target       the characters being searched for.
1766      * @param   targetOffset offset of the target string.
1767      * @param   targetCount  count of the target string.
1768      * @param   fromIndex    the index to begin searching from.
1769      */
1770     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1771                        char[] target, int targetOffset, int targetCount,
1772                        int fromIndex) {
1773         if (fromIndex >= sourceCount) {
1774             return (targetCount == 0 ? sourceCount : -1);
1775         }
1776         if (fromIndex < 0) {
1777             fromIndex = 0;
1778         }
1779         if (targetCount == 0) {
1780             return fromIndex;
1781         }
1782 
1783         char first  = target[targetOffset];
1784         int max = sourceOffset + (sourceCount - targetCount);
1785 
1786         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1787             /* Look for first character. */
1788             if (source[i] != first) {
1789                 while (++i <= max && source[i] != first);
1790             }
1791 
1792             /* Found first character, now look at the rest of v2 */
1793             if (i <= max) {
1794                 int j = i + 1;
1795                 int end = j + targetCount - 1;
1796                 for (int k = targetOffset + 1; j < end && source[j] ==
1797                          target[k]; j++, k++);
1798 
1799                 if (j == end) {
1800                     /* Found whole string. */
1801                     return i - sourceOffset;
1802                 }
1803             }
1804         }
1805         return -1;
1806     }
1807 
1808     /**
1809      * Returns the index within this string of the last occurrence of the
1810      * specified substring.  The last occurrence of the empty string ""
1811      * is considered to occur at the index value {@code this.length()}.
1812      *
1813      * <p>The returned index is the largest value <i>k</i> for which:
1814      * <blockquote><pre>
1815      * this.startsWith(str, <i>k</i>)
1816      * </pre></blockquote>
1817      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1818      *
1819      * @param   str   the substring to search for.
1820      * @return  the index of the last occurrence of the specified substring,
1821      *          or {@code -1} if there is no such occurrence.
1822      */
1823     public int lastIndexOf(String str) {
1824         return lastIndexOf(str, count);
1825     }
1826 
1827     /**
1828      * Returns the index within this string of the last occurrence of the
1829      * specified substring, searching backward starting at the specified index.
1830      *
1831      * <p>The returned index is the largest value <i>k</i> for which:
1832      * <blockquote><pre>
1833      * <i>k</i> &lt;= fromIndex && this.startsWith(str, <i>k</i>)
1834      * </pre></blockquote>
1835      * If no such value of <i>k</i> exists, then {@code -1} is returned.
1836      *
1837      * @param   str         the substring to search for.
1838      * @param   fromIndex   the index to start the search from.
1839      * @return  the index of the last occurrence of the specified substring,
1840      *          searching backward from the specified index,
1841      *          or {@code -1} if there is no such occurrence.
1842      */
1843     public int lastIndexOf(String str, int fromIndex) {
1844         return lastIndexOf(value, offset, count,
1845                            str.value, str.offset, str.count, fromIndex);
1846     }
1847 
1848     /**
1849      * Code shared by String and StringBuffer to do searches. The
1850      * source is the character array being searched, and the target
1851      * is the string being searched for.
1852      *
1853      * @param   source       the characters being searched.
1854      * @param   sourceOffset offset of the source string.
1855      * @param   sourceCount  count of the source string.
1856      * @param   target       the characters being searched for.
1857      * @param   targetOffset offset of the target string.
1858      * @param   targetCount  count of the target string.
1859      * @param   fromIndex    the index to begin searching from.
1860      */
1861     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1862                            char[] target, int targetOffset, int targetCount,
1863                            int fromIndex) {
1864         /*
1865          * Check arguments; return immediately where possible. For
1866          * consistency, don't check for null str.
1867          */
1868         int rightIndex = sourceCount - targetCount;
1869         if (fromIndex < 0) {
1870             return -1;
1871         }
1872         if (fromIndex > rightIndex) {
1873             fromIndex = rightIndex;
1874         }
1875         /* Empty string always matches. */
1876         if (targetCount == 0) {
1877             return fromIndex;
1878         }
1879 
1880         int strLastIndex = targetOffset + targetCount - 1;
1881         char strLastChar = target[strLastIndex];
1882         int min = sourceOffset + targetCount - 1;
1883         int i = min + fromIndex;
1884 
1885     startSearchForLastChar:
1886         while (true) {
1887             while (i >= min && source[i] != strLastChar) {
1888                 i--;
1889             }
1890             if (i < min) {
1891                 return -1;
1892             }
1893             int j = i - 1;
1894             int start = j - (targetCount - 1);
1895             int k = strLastIndex - 1;
1896 
1897             while (j > start) {
1898                 if (source[j--] != target[k--]) {
1899                     i--;
1900                     continue startSearchForLastChar;
1901                 }
1902             }
1903             return start - sourceOffset + 1;
1904         }
1905     }
1906 
1907     /**
1908      * Returns a new string that is a substring of this string. The
1909      * substring begins with the character at the specified index and
1910      * extends to the end of this string. <p>
1911      * Examples:
1912      * <blockquote><pre>
1913      * "unhappy".substring(2) returns "happy"
1914      * "Harbison".substring(3) returns "bison"
1915      * "emptiness".substring(9) returns "" (an empty string)
1916      * </pre></blockquote>
1917      *
1918      * @param      beginIndex   the beginning index, inclusive.
1919      * @return     the specified substring.
1920      * @exception  IndexOutOfBoundsException  if
1921      *             <code>beginIndex</code> is negative or larger than the
1922      *             length of this <code>String</code> object.
1923      */
1924     public String substring(int beginIndex) {
1925         return substring(beginIndex, count);
1926     }
1927 
1928     /**
1929      * Returns a new string that is a substring of this string. The
1930      * substring begins at the specified <code>beginIndex</code> and
1931      * extends to the character at index <code>endIndex - 1</code>.
1932      * Thus the length of the substring is <code>endIndex-beginIndex</code>.
1933      * <p>
1934      * Examples:
1935      * <blockquote><pre>
1936      * "hamburger".substring(4, 8) returns "urge"
1937      * "smiles".substring(1, 5) returns "mile"
1938      * </pre></blockquote>
1939      *
1940      * @param      beginIndex   the beginning index, inclusive.
1941      * @param      endIndex     the ending index, exclusive.
1942      * @return     the specified substring.
1943      * @exception  IndexOutOfBoundsException  if the
1944      *             <code>beginIndex</code> is negative, or
1945      *             <code>endIndex</code> is larger than the length of
1946      *             this <code>String</code> object, or
1947      *             <code>beginIndex</code> is larger than
1948      *             <code>endIndex</code>.
1949      */
1950     public String substring(int beginIndex, int endIndex) {
1951         if (beginIndex < 0) {
1952             throw new StringIndexOutOfBoundsException(beginIndex);
1953         }
1954         if (endIndex > count) {
1955             throw new StringIndexOutOfBoundsException(endIndex);
1956         }
1957         if (beginIndex > endIndex) {
1958             throw new StringIndexOutOfBoundsException(endIndex - beginIndex);
1959         }
1960         return ((beginIndex == 0) && (endIndex == count)) ? this :
1961             new String(offset + beginIndex, endIndex - beginIndex, value);
1962     }
1963 
1964     /**
1965      * Returns a new character sequence that is a subsequence of this sequence.
1966      *
1967      * <p> An invocation of this method of the form
1968      *
1969      * <blockquote><pre>
1970      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1971      *
1972      * behaves in exactly the same way as the invocation
1973      *
1974      * <blockquote><pre>
1975      * str.substring(begin,&nbsp;end)</pre></blockquote>
1976      *
1977      * This method is defined so that the <tt>String</tt> class can implement
1978      * the {@link CharSequence} interface. </p>
1979      *
1980      * @param      beginIndex   the begin index, inclusive.
1981      * @param      endIndex     the end index, exclusive.
1982      * @return     the specified subsequence.
1983      *
1984      * @throws  IndexOutOfBoundsException
1985      *          if <tt>beginIndex</tt> or <tt>endIndex</tt> are negative,
1986      *          if <tt>endIndex</tt> is greater than <tt>length()</tt>,
1987      *          or if <tt>beginIndex</tt> is greater than <tt>startIndex</tt>
1988      *
1989      * @since 1.4
1990      * @spec JSR-51
1991      */
1992     public CharSequence subSequence(int beginIndex, int endIndex) {
1993         return this.substring(beginIndex, endIndex);
1994     }
1995 
1996     /**
1997      * Concatenates the specified string to the end of this string.
1998      * <p>
1999      * If the length of the argument string is <code>0</code>, then this
2000      * <code>String</code> object is returned. Otherwise, a new
2001      * <code>String</code> object is created, representing a character
2002      * sequence that is the concatenation of the character sequence
2003      * represented by this <code>String</code> object and the character
2004      * sequence represented by the argument string.<p>
2005      * Examples:
2006      * <blockquote><pre>
2007      * "cares".concat("s") returns "caress"
2008      * "to".concat("get").concat("her") returns "together"
2009      * </pre></blockquote>
2010      *
2011      * @param   str   the <code>String</code> that is concatenated to the end
2012      *                of this <code>String</code>.
2013      * @return  a string that represents the concatenation of this object's
2014      *          characters followed by the string argument's characters.
2015      */
2016     public String concat(String str) {
2017         int otherLen = str.length();
2018         if (otherLen == 0) {
2019             return this;
2020         }
2021         char buf[] = new char[count + otherLen];
2022         getChars(0, count, buf, 0);
2023         str.getChars(0, otherLen, buf, count);
2024         return new String(0, count + otherLen, buf);
2025     }
2026 
2027     /**
2028      * Returns a new string resulting from replacing all occurrences of
2029      * <code>oldChar</code> in this string with <code>newChar</code>.
2030      * <p>
2031      * If the character <code>oldChar</code> does not occur in the
2032      * character sequence represented by this <code>String</code> object,
2033      * then a reference to this <code>String</code> object is returned.
2034      * Otherwise, a new <code>String</code> object is created that
2035      * represents a character sequence identical to the character sequence
2036      * represented by this <code>String</code> object, except that every
2037      * occurrence of <code>oldChar</code> is replaced by an occurrence
2038      * of <code>newChar</code>.
2039      * <p>
2040      * Examples:
2041      * <blockquote><pre>
2042      * "mesquite in your cellar".replace('e', 'o')
2043      *         returns "mosquito in your collar"
2044      * "the war of baronets".replace('r', 'y')
2045      *         returns "the way of bayonets"
2046      * "sparring with a purple porpoise".replace('p', 't')
2047      *         returns "starring with a turtle tortoise"
2048      * "JonL".replace('q', 'x') returns "JonL" (no change)
2049      * </pre></blockquote>
2050      *
2051      * @param   oldChar   the old character.
2052      * @param   newChar   the new character.
2053      * @return  a string derived from this string by replacing every
2054      *          occurrence of <code>oldChar</code> with <code>newChar</code>.
2055      */
2056     public String replace(char oldChar, char newChar) {
2057         if (oldChar != newChar) {
2058             int len = count;
2059             int i = -1;
2060             char[] val = value; /* avoid getfield opcode */
2061             int off = offset;   /* avoid getfield opcode */
2062 
2063             while (++i < len) {
2064                 if (val[off + i] == oldChar) {
2065                     break;
2066                 }
2067             }
2068             if (i < len) {
2069                 char buf[] = new char[len];
2070                 for (int j = 0 ; j < i ; j++) {
2071                     buf[j] = val[off+j];
2072                 }
2073                 while (i < len) {
2074                     char c = val[off + i];
2075                     buf[i] = (c == oldChar) ? newChar : c;
2076                     i++;
2077                 }
2078                 return new String(0, len, buf);
2079             }
2080         }
2081         return this;
2082     }
2083 
2084     /**
2085      * Tells whether or not this string matches the given <a
2086      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2087      *
2088      * <p> An invocation of this method of the form
2089      * <i>str</i><tt>.matches(</tt><i>regex</i><tt>)</tt> yields exactly the
2090      * same result as the expression
2091      *
2092      * <blockquote><tt> {@link java.util.regex.Pattern}.{@link
2093      * java.util.regex.Pattern#matches(String,CharSequence)
2094      * matches}(</tt><i>regex</i><tt>,</tt> <i>str</i><tt>)</tt></blockquote>
2095      *
2096      * @param   regex
2097      *          the regular expression to which this string is to be matched
2098      *
2099      * @return  <tt>true</tt> if, and only if, this string matches the
2100      *          given regular expression
2101      *
2102      * @throws  PatternSyntaxException
2103      *          if the regular expression's syntax is invalid
2104      *
2105      * @see java.util.regex.Pattern
2106      *
2107      * @since 1.4
2108      * @spec JSR-51
2109      */
2110     public boolean matches(String regex) {
2111         return Pattern.matches(regex, this);
2112     }
2113 
2114     /**
2115      * Returns true if and only if this string contains the specified
2116      * sequence of char values.
2117      *
2118      * @param s the sequence to search for
2119      * @return true if this string contains <code>s</code>, false otherwise
2120      * @throws NullPointerException if <code>s</code> is <code>null</code>
2121      * @since 1.5
2122      */
2123     public boolean contains(CharSequence s) {
2124         return indexOf(s.toString()) > -1;
2125     }
2126 
2127     /**
2128      * Replaces the first substring of this string that matches the given <a
2129      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2130      * given replacement.
2131      *
2132      * <p> An invocation of this method of the form
2133      * <i>str</i><tt>.replaceFirst(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2134      * yields exactly the same result as the expression
2135      *
2136      * <blockquote><tt>
2137      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2138      * compile}(</tt><i>regex</i><tt>).{@link
2139      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2140      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceFirst
2141      * replaceFirst}(</tt><i>repl</i><tt>)</tt></blockquote>
2142      *
2143      *<p>
2144      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2145      * replacement string may cause the results to be different than if it were
2146      * being treated as a literal replacement string; see
2147      * {@link java.util.regex.Matcher#replaceFirst}.
2148      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2149      * meaning of these characters, if desired.
2150      *
2151      * @param   regex
2152      *          the regular expression to which this string is to be matched
2153      * @param   replacement
2154      *          the string to be substituted for the first match
2155      *
2156      * @return  The resulting <tt>String</tt>
2157      *
2158      * @throws  PatternSyntaxException
2159      *          if the regular expression's syntax is invalid
2160      *
2161      * @see java.util.regex.Pattern
2162      *
2163      * @since 1.4
2164      * @spec JSR-51
2165      */
2166     public String replaceFirst(String regex, String replacement) {
2167         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2168     }
2169 
2170     /**
2171      * Replaces each substring of this string that matches the given <a
2172      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2173      * given replacement.
2174      *
2175      * <p> An invocation of this method of the form
2176      * <i>str</i><tt>.replaceAll(</tt><i>regex</i><tt>,</tt> <i>repl</i><tt>)</tt>
2177      * yields exactly the same result as the expression
2178      *
2179      * <blockquote><tt>
2180      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2181      * compile}(</tt><i>regex</i><tt>).{@link
2182      * java.util.regex.Pattern#matcher(java.lang.CharSequence)
2183      * matcher}(</tt><i>str</i><tt>).{@link java.util.regex.Matcher#replaceAll
2184      * replaceAll}(</tt><i>repl</i><tt>)</tt></blockquote>
2185      *
2186      *<p>
2187      * Note that backslashes (<tt>\</tt>) and dollar signs (<tt>$</tt>) in the
2188      * replacement string may cause the results to be different than if it were
2189      * being treated as a literal replacement string; see
2190      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2191      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2192      * meaning of these characters, if desired.
2193      *
2194      * @param   regex
2195      *          the regular expression to which this string is to be matched
2196      * @param   replacement
2197      *          the string to be substituted for each match
2198      *
2199      * @return  The resulting <tt>String</tt>
2200      *
2201      * @throws  PatternSyntaxException
2202      *          if the regular expression's syntax is invalid
2203      *
2204      * @see java.util.regex.Pattern
2205      *
2206      * @since 1.4
2207      * @spec JSR-51
2208      */
2209     public String replaceAll(String regex, String replacement) {
2210         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2211     }
2212 
2213     /**
2214      * Replaces each substring of this string that matches the literal target
2215      * sequence with the specified literal replacement sequence. The
2216      * replacement proceeds from the beginning of the string to the end, for
2217      * example, replacing "aa" with "b" in the string "aaa" will result in
2218      * "ba" rather than "ab".
2219      *
2220      * @param  target The sequence of char values to be replaced
2221      * @param  replacement The replacement sequence of char values
2222      * @return  The resulting string
2223      * @throws NullPointerException if <code>target</code> or
2224      *         <code>replacement</code> is <code>null</code>.
2225      * @since 1.5
2226      */
2227     public String replace(CharSequence target, CharSequence replacement) {
2228         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2229             this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2230     }
2231 
2232     /**
2233      * Splits this string around matches of the given
2234      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2235      *
2236      * <p> The array returned by this method contains each substring of this
2237      * string that is terminated by another substring that matches the given
2238      * expression or is terminated by the end of the string.  The substrings in
2239      * the array are in the order in which they occur in this string.  If the
2240      * expression does not match any part of the input then the resulting array
2241      * has just one element, namely this string.
2242      *
2243      * <p> The <tt>limit</tt> parameter controls the number of times the
2244      * pattern is applied and therefore affects the length of the resulting
2245      * array.  If the limit <i>n</i> is greater than zero then the pattern
2246      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2247      * length will be no greater than <i>n</i>, and the array's last entry
2248      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2249      * is non-positive then the pattern will be applied as many times as
2250      * possible and the array can have any length.  If <i>n</i> is zero then
2251      * the pattern will be applied as many times as possible, the array can
2252      * have any length, and trailing empty strings will be discarded.
2253      *
2254      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the
2255      * following results with these parameters:
2256      *
2257      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2258      * <tr>
2259      *     <th>Regex</th>
2260      *     <th>Limit</th>
2261      *     <th>Result</th>
2262      * </tr>
2263      * <tr><td align=center>:</td>
2264      *     <td align=center>2</td>
2265      *     <td><tt>{ "boo", "and:foo" }</tt></td></tr>
2266      * <tr><td align=center>:</td>
2267      *     <td align=center>5</td>
2268      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2269      * <tr><td align=center>:</td>
2270      *     <td align=center>-2</td>
2271      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2272      * <tr><td align=center>o</td>
2273      *     <td align=center>5</td>
2274      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2275      * <tr><td align=center>o</td>
2276      *     <td align=center>-2</td>
2277      *     <td><tt>{ "b", "", ":and:f", "", "" }</tt></td></tr>
2278      * <tr><td align=center>o</td>
2279      *     <td align=center>0</td>
2280      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2281      * </table></blockquote>
2282      *
2283      * <p> An invocation of this method of the form
2284      * <i>str.</i><tt>split(</tt><i>regex</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2285      * yields the same result as the expression
2286      *
2287      * <blockquote>
2288      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#compile
2289      * compile}<tt>(</tt><i>regex</i><tt>)</tt>.{@link
2290      * java.util.regex.Pattern#split(java.lang.CharSequence,int)
2291      * split}<tt>(</tt><i>str</i><tt>,</tt>&nbsp;<i>n</i><tt>)</tt>
2292      * </blockquote>
2293      *
2294      *
2295      * @param  regex
2296      *         the delimiting regular expression
2297      *
2298      * @param  limit
2299      *         the result threshold, as described above
2300      *
2301      * @return  the array of strings computed by splitting this string
2302      *          around matches of the given regular expression
2303      *
2304      * @throws  PatternSyntaxException
2305      *          if the regular expression's syntax is invalid
2306      *
2307      * @see java.util.regex.Pattern
2308      *
2309      * @since 1.4
2310      * @spec JSR-51
2311      */
2312     public String[] split(String regex, int limit) {
2313         /* fastpath if the regex is a
2314            (1)one-char String and this character is not one of the
2315               RegEx's meta characters ".$|()[{^?*+\\", or
2316            (2)two-char String and the first char is the backslash and
2317               the second is not the ascii digit or ascii letter.
2318         */
2319         char ch = 0;
2320         if (((regex.count == 1 &&
2321              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2322              (regex.length() == 2 &&
2323               regex.charAt(0) == '\\' &&
2324               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2325               ((ch-'a')|('z'-ch)) < 0 &&
2326               ((ch-'A')|('Z'-ch)) < 0)) &&
2327             (ch < Character.MIN_HIGH_SURROGATE ||
2328              ch > Character.MAX_LOW_SURROGATE))
2329         {
2330             int off = 0;
2331             int next = 0;
2332             boolean limited = limit > 0;
2333             ArrayList<String> list = new ArrayList<String>();
2334             while ((next = indexOf(ch, off)) != -1) {
2335                 if (!limited || list.size() < limit - 1) {
2336                     list.add(substring(off, next));
2337                     off = next + 1;
2338                 } else {    // last one
2339                     //assert (list.size() == limit - 1);
2340                     list.add(substring(off, count));
2341                     off = count;
2342                     break;
2343                 }
2344             }
2345             // If no match was found, return this
2346             if (off == 0)
2347                 return new String[] { this };
2348 
2349             // Add remaining segment
2350             if (!limited || list.size() < limit)
2351                 list.add(substring(off, count));
2352 
2353             // Construct result
2354             int resultSize = list.size();
2355             if (limit == 0)
2356                 while (resultSize > 0 && list.get(resultSize-1).length() == 0)
2357                     resultSize--;
2358             String[] result = new String[resultSize];
2359             return list.subList(0, resultSize).toArray(result);
2360         }
2361         return Pattern.compile(regex).split(this, limit);
2362     }
2363 
2364     /**
2365      * Splits this string around matches of the given <a
2366      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2367      *
2368      * <p> This method works as if by invoking the two-argument {@link
2369      * #split(String, int) split} method with the given expression and a limit
2370      * argument of zero.  Trailing empty strings are therefore not included in
2371      * the resulting array.
2372      *
2373      * <p> The string <tt>"boo:and:foo"</tt>, for example, yields the following
2374      * results with these expressions:
2375      *
2376      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2377      * <tr>
2378      *  <th>Regex</th>
2379      *  <th>Result</th>
2380      * </tr>
2381      * <tr><td align=center>:</td>
2382      *     <td><tt>{ "boo", "and", "foo" }</tt></td></tr>
2383      * <tr><td align=center>o</td>
2384      *     <td><tt>{ "b", "", ":and:f" }</tt></td></tr>
2385      * </table></blockquote>
2386      *
2387      *
2388      * @param  regex
2389      *         the delimiting regular expression
2390      *
2391      * @return  the array of strings computed by splitting this string
2392      *          around matches of the given regular expression
2393      *
2394      * @throws  PatternSyntaxException
2395      *          if the regular expression's syntax is invalid
2396      *
2397      * @see java.util.regex.Pattern
2398      *
2399      * @since 1.4
2400      * @spec JSR-51
2401      */
2402     public String[] split(String regex) {
2403         return split(regex, 0);
2404     }
2405 
2406     /**
2407      * Converts all of the characters in this <code>String</code> to lower
2408      * case using the rules of the given <code>Locale</code>.  Case mapping is based
2409      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2410      * class. Since case mappings are not always 1:1 char mappings, the resulting
2411      * <code>String</code> may be a different length than the original <code>String</code>.
2412      * <p>
2413      * Examples of lowercase  mappings are in the following table:
2414      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2415      * <tr>
2416      *   <th>Language Code of Locale</th>
2417      *   <th>Upper Case</th>
2418      *   <th>Lower Case</th>
2419      *   <th>Description</th>
2420      * </tr>
2421      * <tr>
2422      *   <td>tr (Turkish)</td>
2423      *   <td>&#92;u0130</td>
2424      *   <td>&#92;u0069</td>
2425      *   <td>capital letter I with dot above -&gt; small letter i</td>
2426      * </tr>
2427      * <tr>
2428      *   <td>tr (Turkish)</td>
2429      *   <td>&#92;u0049</td>
2430      *   <td>&#92;u0131</td>
2431      *   <td>capital letter I -&gt; small letter dotless i </td>
2432      * </tr>
2433      * <tr>
2434      *   <td>(all)</td>
2435      *   <td>French Fries</td>
2436      *   <td>french fries</td>
2437      *   <td>lowercased all chars in String</td>
2438      * </tr>
2439      * <tr>
2440      *   <td>(all)</td>
2441      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2442      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2443      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2444      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2445      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2446      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2447      *   <td>lowercased all chars in String</td>
2448      * </tr>
2449      * </table>
2450      *
2451      * @param locale use the case transformation rules for this locale
2452      * @return the <code>String</code>, converted to lowercase.
2453      * @see     java.lang.String#toLowerCase()
2454      * @see     java.lang.String#toUpperCase()
2455      * @see     java.lang.String#toUpperCase(Locale)
2456      * @since   1.1
2457      */
2458     public String toLowerCase(Locale locale) {
2459         if (locale == null) {
2460             throw new NullPointerException();
2461         }
2462 
2463         int     firstUpper;
2464 
2465         /* Now check if there are any characters that need to be changed. */
2466         scan: {
2467             for (firstUpper = 0 ; firstUpper < count; ) {
2468                 char c = value[offset+firstUpper];
2469                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
2470                     (c <= Character.MAX_HIGH_SURROGATE)) {
2471                     int supplChar = codePointAt(firstUpper);
2472                     if (supplChar != Character.toLowerCase(supplChar)) {
2473                         break scan;
2474                     }
2475                     firstUpper += Character.charCount(supplChar);
2476                 } else {
2477                     if (c != Character.toLowerCase(c)) {
2478                         break scan;
2479                     }
2480                     firstUpper++;
2481                 }
2482             }
2483             return this;
2484         }
2485 
2486         char[]  result = new char[count];
2487         int     resultOffset = 0;  /* result may grow, so i+resultOffset
2488                                     * is the write location in result */
2489 
2490         /* Just copy the first few lowerCase characters. */
2491         System.arraycopy(value, offset, result, 0, firstUpper);
2492 
2493         String lang = locale.getLanguage();
2494         boolean localeDependent =
2495             (lang == "tr" || lang == "az" || lang == "lt");
2496         char[] lowerCharArray;
2497         int lowerChar;
2498         int srcChar;
2499         int srcCount;
2500         for (int i = firstUpper; i < count; i += srcCount) {
2501             srcChar = (int)value[offset+i];
2502             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
2503                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2504                 srcChar = codePointAt(i);
2505                 srcCount = Character.charCount(srcChar);
2506             } else {
2507                 srcCount = 1;
2508             }
2509             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2510                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2511             } else if (srcChar == '\u0130') { // LATIN CAPITAL LETTER I DOT
2512                 lowerChar = Character.ERROR;
2513             } else {
2514                 lowerChar = Character.toLowerCase(srcChar);
2515             }
2516             if ((lowerChar == Character.ERROR) ||
2517                 (lowerChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2518                 if (lowerChar == Character.ERROR) {
2519                      if (!localeDependent && srcChar == '\u0130') {
2520                          lowerCharArray =
2521                              ConditionalSpecialCasing.toLowerCaseCharArray(this, i, Locale.ENGLISH);
2522                      } else {
2523                         lowerCharArray =
2524                             ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2525                      }
2526                 } else if (srcCount == 2) {
2527                     resultOffset += Character.toChars(lowerChar, result, i + resultOffset) - srcCount;
2528                     continue;
2529                 } else {
2530                     lowerCharArray = Character.toChars(lowerChar);
2531                 }
2532 
2533                 /* Grow result if needed */
2534                 int mapLen = lowerCharArray.length;
2535                 if (mapLen > srcCount) {
2536                     char[] result2 = new char[result.length + mapLen - srcCount];
2537                     System.arraycopy(result, 0, result2, 0,
2538                         i + resultOffset);
2539                     result = result2;
2540                 }
2541                 for (int x=0; x<mapLen; ++x) {
2542                     result[i+resultOffset+x] = lowerCharArray[x];
2543                 }
2544                 resultOffset += (mapLen - srcCount);
2545             } else {
2546                 result[i+resultOffset] = (char)lowerChar;
2547             }
2548         }
2549         return new String(0, count+resultOffset, result);
2550     }
2551 
2552     /**
2553      * Converts all of the characters in this <code>String</code> to lower
2554      * case using the rules of the default locale. This is equivalent to calling
2555      * <code>toLowerCase(Locale.getDefault())</code>.
2556      * <p>
2557      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2558      * results if used for strings that are intended to be interpreted locale
2559      * independently.
2560      * Examples are programming language identifiers, protocol keys, and HTML
2561      * tags.
2562      * For instance, <code>"TITLE".toLowerCase()</code> in a Turkish locale
2563      * returns <code>"t\u005Cu0131tle"</code>, where '\u005Cu0131' is the
2564      * LATIN SMALL LETTER DOTLESS I character.
2565      * To obtain correct results for locale insensitive strings, use
2566      * <code>toLowerCase(Locale.ENGLISH)</code>.
2567      * <p>
2568      * @return  the <code>String</code>, converted to lowercase.
2569      * @see     java.lang.String#toLowerCase(Locale)
2570      */
2571     public String toLowerCase() {
2572         return toLowerCase(Locale.getDefault());
2573     }
2574 
2575     /**
2576      * Converts all of the characters in this <code>String</code> to upper
2577      * case using the rules of the given <code>Locale</code>. Case mapping is based
2578      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2579      * class. Since case mappings are not always 1:1 char mappings, the resulting
2580      * <code>String</code> may be a different length than the original <code>String</code>.
2581      * <p>
2582      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2583      * <p>
2584      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2585      * <tr>
2586      *   <th>Language Code of Locale</th>
2587      *   <th>Lower Case</th>
2588      *   <th>Upper Case</th>
2589      *   <th>Description</th>
2590      * </tr>
2591      * <tr>
2592      *   <td>tr (Turkish)</td>
2593      *   <td>&#92;u0069</td>
2594      *   <td>&#92;u0130</td>
2595      *   <td>small letter i -&gt; capital letter I with dot above</td>
2596      * </tr>
2597      * <tr>
2598      *   <td>tr (Turkish)</td>
2599      *   <td>&#92;u0131</td>
2600      *   <td>&#92;u0049</td>
2601      *   <td>small letter dotless i -&gt; capital letter I</td>
2602      * </tr>
2603      * <tr>
2604      *   <td>(all)</td>
2605      *   <td>&#92;u00df</td>
2606      *   <td>&#92;u0053 &#92;u0053</td>
2607      *   <td>small letter sharp s -&gt; two letters: SS</td>
2608      * </tr>
2609      * <tr>
2610      *   <td>(all)</td>
2611      *   <td>Fahrvergn&uuml;gen</td>
2612      *   <td>FAHRVERGN&Uuml;GEN</td>
2613      *   <td></td>
2614      * </tr>
2615      * </table>
2616      * @param locale use the case transformation rules for this locale
2617      * @return the <code>String</code>, converted to uppercase.
2618      * @see     java.lang.String#toUpperCase()
2619      * @see     java.lang.String#toLowerCase()
2620      * @see     java.lang.String#toLowerCase(Locale)
2621      * @since   1.1
2622      */
2623     public String toUpperCase(Locale locale) {
2624         if (locale == null) {
2625             throw new NullPointerException();
2626         }
2627 
2628         int     firstLower;
2629 
2630         /* Now check if there are any characters that need to be changed. */
2631         scan: {
2632             for (firstLower = 0 ; firstLower < count; ) {
2633                 int c = (int)value[offset+firstLower];
2634                 int srcCount;
2635                 if ((c >= Character.MIN_HIGH_SURROGATE) &&
2636                     (c <= Character.MAX_HIGH_SURROGATE)) {
2637                     c = codePointAt(firstLower);
2638                     srcCount = Character.charCount(c);
2639                 } else {
2640                     srcCount = 1;
2641                 }
2642                 int upperCaseChar = Character.toUpperCaseEx(c);
2643                 if ((upperCaseChar == Character.ERROR) ||
2644                     (c != upperCaseChar)) {
2645                     break scan;
2646                 }
2647                 firstLower += srcCount;
2648             }
2649             return this;
2650         }
2651 
2652         char[]  result       = new char[count]; /* may grow */
2653         int     resultOffset = 0;  /* result may grow, so i+resultOffset
2654                                     * is the write location in result */
2655 
2656         /* Just copy the first few upperCase characters. */
2657         System.arraycopy(value, offset, result, 0, firstLower);
2658 
2659         String lang = locale.getLanguage();
2660         boolean localeDependent =
2661             (lang == "tr" || lang == "az" || lang == "lt");
2662         char[] upperCharArray;
2663         int upperChar;
2664         int srcChar;
2665         int srcCount;
2666         for (int i = firstLower; i < count; i += srcCount) {
2667             srcChar = (int)value[offset+i];
2668             if ((char)srcChar >= Character.MIN_HIGH_SURROGATE &&
2669                 (char)srcChar <= Character.MAX_HIGH_SURROGATE) {
2670                 srcChar = codePointAt(i);
2671                 srcCount = Character.charCount(srcChar);
2672             } else {
2673                 srcCount = 1;
2674             }
2675             if (localeDependent) {
2676                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2677             } else {
2678                 upperChar = Character.toUpperCaseEx(srcChar);
2679             }
2680             if ((upperChar == Character.ERROR) ||
2681                 (upperChar >= Character.MIN_SUPPLEMENTARY_CODE_POINT)) {
2682                 if (upperChar == Character.ERROR) {
2683                     if (localeDependent) {
2684                         upperCharArray =
2685                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2686                     } else {
2687                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2688                     }
2689                 } else if (srcCount == 2) {
2690                     resultOffset += Character.toChars(upperChar, result, i + resultOffset) - srcCount;
2691                     continue;
2692                 } else {
2693                     upperCharArray = Character.toChars(upperChar);
2694                 }
2695 
2696                 /* Grow result if needed */
2697                 int mapLen = upperCharArray.length;
2698                 if (mapLen > srcCount) {
2699                     char[] result2 = new char[result.length + mapLen - srcCount];
2700                     System.arraycopy(result, 0, result2, 0,
2701                         i + resultOffset);
2702                     result = result2;
2703                 }
2704                 for (int x=0; x<mapLen; ++x) {
2705                     result[i+resultOffset+x] = upperCharArray[x];
2706                 }
2707                 resultOffset += (mapLen - srcCount);
2708             } else {
2709                 result[i+resultOffset] = (char)upperChar;
2710             }
2711         }
2712         return new String(0, count+resultOffset, result);
2713     }
2714 
2715     /**
2716      * Converts all of the characters in this <code>String</code> to upper
2717      * case using the rules of the default locale. This method is equivalent to
2718      * <code>toUpperCase(Locale.getDefault())</code>.
2719      * <p>
2720      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2721      * results if used for strings that are intended to be interpreted locale
2722      * independently.
2723      * Examples are programming language identifiers, protocol keys, and HTML
2724      * tags.
2725      * For instance, <code>"title".toUpperCase()</code> in a Turkish locale
2726      * returns <code>"T\u005Cu0130TLE"</code>, where '\u005Cu0130' is the
2727      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2728      * To obtain correct results for locale insensitive strings, use
2729      * <code>toUpperCase(Locale.ENGLISH)</code>.
2730      * <p>
2731      * @return  the <code>String</code>, converted to uppercase.
2732      * @see     java.lang.String#toUpperCase(Locale)
2733      */
2734     public String toUpperCase() {
2735         return toUpperCase(Locale.getDefault());
2736     }
2737 
2738     /**
2739      * Returns a copy of the string, with leading and trailing whitespace
2740      * omitted.
2741      * <p>
2742      * If this <code>String</code> object represents an empty character
2743      * sequence, or the first and last characters of character sequence
2744      * represented by this <code>String</code> object both have codes
2745      * greater than <code>'&#92;u0020'</code> (the space character), then a
2746      * reference to this <code>String</code> object is returned.
2747      * <p>
2748      * Otherwise, if there is no character with a code greater than
2749      * <code>'&#92;u0020'</code> in the string, then a new
2750      * <code>String</code> object representing an empty string is created
2751      * and returned.
2752      * <p>
2753      * Otherwise, let <i>k</i> be the index of the first character in the
2754      * string whose code is greater than <code>'&#92;u0020'</code>, and let
2755      * <i>m</i> be the index of the last character in the string whose code
2756      * is greater than <code>'&#92;u0020'</code>. A new <code>String</code>
2757      * object is created, representing the substring of this string that
2758      * begins with the character at index <i>k</i> and ends with the
2759      * character at index <i>m</i>-that is, the result of
2760      * <code>this.substring(<i>k</i>,&nbsp;<i>m</i>+1)</code>.
2761      * <p>
2762      * This method may be used to trim whitespace (as defined above) from
2763      * the beginning and end of a string.
2764      *
2765      * @return  A copy of this string with leading and trailing white
2766      *          space removed, or this string if it has no leading or
2767      *          trailing white space.
2768      */
2769     public String trim() {
2770         int len = count;
2771         int st = 0;
2772         int off = offset;      /* avoid getfield opcode */
2773         char[] val = value;    /* avoid getfield opcode */
2774 
2775         while ((st < len) && (val[off + st] <= ' ')) {
2776             st++;
2777         }
2778         while ((st < len) && (val[off + len - 1] <= ' ')) {
2779             len--;
2780         }
2781         return ((st > 0) || (len < count)) ? substring(st, len) : this;
2782     }
2783 
2784     /**
2785      * This object (which is already a string!) is itself returned.
2786      *
2787      * @return  the string itself.
2788      */
2789     public String toString() {
2790         return this;
2791     }
2792 
2793     /**
2794      * Converts this string to a new character array.
2795      *
2796      * @return  a newly allocated character array whose length is the length
2797      *          of this string and whose contents are initialized to contain
2798      *          the character sequence represented by this string.
2799      */
2800     public char[] toCharArray() {
2801         char result[] = new char[count];
2802         getChars(0, count, result, 0);
2803         return result;
2804     }
2805 
2806     /**
2807      * Returns a formatted string using the specified format string and
2808      * arguments.
2809      *
2810      * <p> The locale always used is the one returned by {@link
2811      * java.util.Locale#getDefault() Locale.getDefault()}.
2812      *
2813      * @param  format
2814      *         A <a href="../util/Formatter.html#syntax">format string</a>
2815      *
2816      * @param  args
2817      *         Arguments referenced by the format specifiers in the format
2818      *         string.  If there are more arguments than format specifiers, the
2819      *         extra arguments are ignored.  The number of arguments is
2820      *         variable and may be zero.  The maximum number of arguments is
2821      *         limited by the maximum dimension of a Java array as defined by
2822      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
2823      *         Virtual Machine Specification</a>.  The behaviour on a
2824      *         <tt>null</tt> argument depends on the <a
2825      *         href="../util/Formatter.html#syntax">conversion</a>.
2826      *
2827      * @throws  IllegalFormatException
2828      *          If a format string contains an illegal syntax, a format
2829      *          specifier that is incompatible with the given arguments,
2830      *          insufficient arguments given the format string, or other
2831      *          illegal conditions.  For specification of all possible
2832      *          formatting errors, see the <a
2833      *          href="../util/Formatter.html#detail">Details</a> section of the
2834      *          formatter class specification.
2835      *
2836      * @throws  NullPointerException
2837      *          If the <tt>format</tt> is <tt>null</tt>
2838      *
2839      * @return  A formatted string
2840      *
2841      * @see  java.util.Formatter
2842      * @since  1.5
2843      */
2844     public static String format(String format, Object ... args) {
2845         return new Formatter().format(format, args).toString();
2846     }
2847 
2848     /**
2849      * Returns a formatted string using the specified locale, format string,
2850      * and arguments.
2851      *
2852      * @param  l
2853      *         The {@linkplain java.util.Locale locale} to apply during
2854      *         formatting.  If <tt>l</tt> is <tt>null</tt> then no localization
2855      *         is applied.
2856      *
2857      * @param  format
2858      *         A <a href="../util/Formatter.html#syntax">format string</a>
2859      *
2860      * @param  args
2861      *         Arguments referenced by the format specifiers in the format
2862      *         string.  If there are more arguments than format specifiers, the
2863      *         extra arguments are ignored.  The number of arguments is
2864      *         variable and may be zero.  The maximum number of arguments is
2865      *         limited by the maximum dimension of a Java array as defined by
2866      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
2867      *         Virtual Machine Specification</a>.  The behaviour on a
2868      *         <tt>null</tt> argument depends on the <a
2869      *         href="../util/Formatter.html#syntax">conversion</a>.
2870      *
2871      * @throws  IllegalFormatException
2872      *          If a format string contains an illegal syntax, a format
2873      *          specifier that is incompatible with the given arguments,
2874      *          insufficient arguments given the format string, or other
2875      *          illegal conditions.  For specification of all possible
2876      *          formatting errors, see the <a
2877      *          href="../util/Formatter.html#detail">Details</a> section of the
2878      *          formatter class specification
2879      *
2880      * @throws  NullPointerException
2881      *          If the <tt>format</tt> is <tt>null</tt>
2882      *
2883      * @return  A formatted string
2884      *
2885      * @see  java.util.Formatter
2886      * @since  1.5
2887      */
2888     public static String format(Locale l, String format, Object ... args) {
2889         return new Formatter(l).format(format, args).toString();
2890     }
2891 
2892     /**
2893      * Returns the string representation of the <code>Object</code> argument.
2894      *
2895      * @param   obj   an <code>Object</code>.
2896      * @return  if the argument is <code>null</code>, then a string equal to
2897      *          <code>"null"</code>; otherwise, the value of
2898      *          <code>obj.toString()</code> is returned.
2899      * @see     java.lang.Object#toString()
2900      */
2901     public static String valueOf(Object obj) {
2902         return (obj == null) ? "null" : obj.toString();
2903     }
2904 
2905     /**
2906      * Returns the string representation of the <code>char</code> array
2907      * argument. The contents of the character array are copied; subsequent
2908      * modification of the character array does not affect the newly
2909      * created string.
2910      *
2911      * @param   data   a <code>char</code> array.
2912      * @return  a newly allocated string representing the same sequence of
2913      *          characters contained in the character array argument.
2914      */
2915     public static String valueOf(char data[]) {
2916         return new String(data);
2917     }
2918 
2919     /**
2920      * Returns the string representation of a specific subarray of the
2921      * <code>char</code> array argument.
2922      * <p>
2923      * The <code>offset</code> argument is the index of the first
2924      * character of the subarray. The <code>count</code> argument
2925      * specifies the length of the subarray. The contents of the subarray
2926      * are copied; subsequent modification of the character array does not
2927      * affect the newly created string.
2928      *
2929      * @param   data     the character array.
2930      * @param   offset   the initial offset into the value of the
2931      *                  <code>String</code>.
2932      * @param   count    the length of the value of the <code>String</code>.
2933      * @return  a string representing the sequence of characters contained
2934      *          in the subarray of the character array argument.
2935      * @exception IndexOutOfBoundsException if <code>offset</code> is
2936      *          negative, or <code>count</code> is negative, or
2937      *          <code>offset+count</code> is larger than
2938      *          <code>data.length</code>.
2939      */
2940     public static String valueOf(char data[], int offset, int count) {
2941         return new String(data, offset, count);
2942     }
2943 
2944     /**
2945      * Returns a String that represents the character sequence in the
2946      * array specified.
2947      *
2948      * @param   data     the character array.
2949      * @param   offset   initial offset of the subarray.
2950      * @param   count    length of the subarray.
2951      * @return  a <code>String</code> that contains the characters of the
2952      *          specified subarray of the character array.
2953      */
2954     public static String copyValueOf(char data[], int offset, int count) {
2955         // All public String constructors now copy the data.
2956         return new String(data, offset, count);
2957     }
2958 
2959     /**
2960      * Returns a String that represents the character sequence in the
2961      * array specified.
2962      *
2963      * @param   data   the character array.
2964      * @return  a <code>String</code> that contains the characters of the
2965      *          character array.
2966      */
2967     public static String copyValueOf(char data[]) {
2968         return copyValueOf(data, 0, data.length);
2969     }
2970 
2971     /**
2972      * Returns the string representation of the <code>boolean</code> argument.
2973      *
2974      * @param   b   a <code>boolean</code>.
2975      * @return  if the argument is <code>true</code>, a string equal to
2976      *          <code>"true"</code> is returned; otherwise, a string equal to
2977      *          <code>"false"</code> is returned.
2978      */
2979     public static String valueOf(boolean b) {
2980         return b ? "true" : "false";
2981     }
2982 
2983     /**
2984      * Returns the string representation of the <code>char</code>
2985      * argument.
2986      *
2987      * @param   c   a <code>char</code>.
2988      * @return  a string of length <code>1</code> containing
2989      *          as its single character the argument <code>c</code>.
2990      */
2991     public static String valueOf(char c) {
2992         char data[] = {c};
2993         return new String(0, 1, data);
2994     }
2995 
2996     /**
2997      * Returns the string representation of the <code>int</code> argument.
2998      * <p>
2999      * The representation is exactly the one returned by the
3000      * <code>Integer.toString</code> method of one argument.
3001      *
3002      * @param   i   an <code>int</code>.
3003      * @return  a string representation of the <code>int</code> argument.
3004      * @see     java.lang.Integer#toString(int, int)
3005      */
3006     public static String valueOf(int i) {
3007         return Integer.toString(i);
3008     }
3009 
3010     /**
3011      * Returns the string representation of the <code>long</code> argument.
3012      * <p>
3013      * The representation is exactly the one returned by the
3014      * <code>Long.toString</code> method of one argument.
3015      *
3016      * @param   l   a <code>long</code>.
3017      * @return  a string representation of the <code>long</code> argument.
3018      * @see     java.lang.Long#toString(long)
3019      */
3020     public static String valueOf(long l) {
3021         return Long.toString(l);
3022     }
3023 
3024     /**
3025      * Returns the string representation of the <code>float</code> argument.
3026      * <p>
3027      * The representation is exactly the one returned by the
3028      * <code>Float.toString</code> method of one argument.
3029      *
3030      * @param   f   a <code>float</code>.
3031      * @return  a string representation of the <code>float</code> argument.
3032      * @see     java.lang.Float#toString(float)
3033      */
3034     public static String valueOf(float f) {
3035         return Float.toString(f);
3036     }
3037 
3038     /**
3039      * Returns the string representation of the <code>double</code> argument.
3040      * <p>
3041      * The representation is exactly the one returned by the
3042      * <code>Double.toString</code> method of one argument.
3043      *
3044      * @param   d   a <code>double</code>.
3045      * @return  a  string representation of the <code>double</code> argument.
3046      * @see     java.lang.Double#toString(double)
3047      */
3048     public static String valueOf(double d) {
3049         return Double.toString(d);
3050     }
3051 
3052     /**
3053      * Returns a canonical representation for the string object.
3054      * <p>
3055      * A pool of strings, initially empty, is maintained privately by the
3056      * class <code>String</code>.
3057      * <p>
3058      * When the intern method is invoked, if the pool already contains a
3059      * string equal to this <code>String</code> object as determined by
3060      * the {@link #equals(Object)} method, then the string from the pool is
3061      * returned. Otherwise, this <code>String</code> object is added to the
3062      * pool and a reference to this <code>String</code> object is returned.
3063      * <p>
3064      * It follows that for any two strings <code>s</code> and <code>t</code>,
3065      * <code>s.intern()&nbsp;==&nbsp;t.intern()</code> is <code>true</code>
3066      * if and only if <code>s.equals(t)</code> is <code>true</code>.
3067      * <p>
3068      * All literal strings and string-valued constant expressions are
3069      * interned. String literals are defined in &sect;3.10.5 of the
3070      * <a href="http://java.sun.com/docs/books/jls/html/">Java Language
3071      * Specification</a>
3072      *
3073      * @return  a string that has the same contents as this string, but is
3074      *          guaranteed to be from a pool of unique strings.
3075      */
3076     public native String intern();
3077 
3078 }