1 /*
   2  * Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.BufferedWriter;
  29 import java.io.Closeable;
  30 import java.io.IOException;
  31 import java.io.File;
  32 import java.io.FileOutputStream;
  33 import java.io.FileNotFoundException;
  34 import java.io.Flushable;
  35 import java.io.OutputStream;
  36 import java.io.OutputStreamWriter;
  37 import java.io.PrintStream;
  38 import java.io.UnsupportedEncodingException;
  39 import java.math.BigDecimal;
  40 import java.math.BigInteger;
  41 import java.math.MathContext;
  42 import java.math.RoundingMode;
  43 import java.nio.charset.Charset;
  44 import java.text.DateFormatSymbols;
  45 import java.text.DecimalFormat;
  46 import java.text.DecimalFormatSymbols;
  47 import java.text.NumberFormat;
  48 import java.util.Calendar;
  49 import java.util.Date;
  50 import java.util.Locale;
  51 import java.util.regex.Matcher;
  52 import java.util.regex.Pattern;
  53 
  54 import sun.misc.FpUtils;
  55 import sun.misc.DoubleConsts;
  56 import sun.misc.FormattedFloatingDecimal;
  57 
  58 /**
  59  * An interpreter for printf-style format strings.  This class provides support
  60  * for layout justification and alignment, common formats for numeric, string,
  61  * and date/time data, and locale-specific output.  Common Java types such as
  62  * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
  63  * are supported.  Limited formatting customization for arbitrary user types is
  64  * provided through the {@link Formattable} interface.
  65  *
  66  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
  67  * safety is optional and is the responsibility of users of methods in this
  68  * class.
  69  *
  70  * <p> Formatted printing for the Java language is heavily inspired by C's
  71  * {@code printf}.  Although the format strings are similar to C, some
  72  * customizations have been made to accommodate the Java language and exploit
  73  * some of its features.  Also, Java formatting is more strict than C's; for
  74  * example, if a conversion is incompatible with a flag, an exception will be
  75  * thrown.  In C inapplicable flags are silently ignored.  The format strings
  76  * are thus intended to be recognizable to C programmers but not necessarily
  77  * completely compatible with those in C.
  78  *
  79  * <p> Examples of expected usage:
  80  *
  81  * <blockquote><pre>
  82  *   StringBuilder sb = new StringBuilder();
  83  *   // Send all output to the Appendable object sb
  84  *   Formatter formatter = new Formatter(sb, Locale.US);
  85  *
  86  *   // Explicit argument indices may be used to re-order output.
  87  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  88  *   // -&gt; " d  c  b  a"
  89  *
  90  *   // Optional locale as the first argument can be used to get
  91  *   // locale-specific formatting of numbers.  The precision and width can be
  92  *   // given to round and align the value.
  93  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
  94  *   // -&gt; "e =    +2,7183"
  95  *
  96  *   // The '(' numeric flag may be used to format negative numbers with
  97  *   // parentheses rather than a minus sign.  Group separators are
  98  *   // automatically inserted.
  99  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 100  *                    balanceDelta);
 101  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 102  * </pre></blockquote>
 103  *
 104  * <p> Convenience methods for common formatting requests exist as illustrated
 105  * by the following invocations:
 106  *
 107  * <blockquote><pre>
 108  *   // Writes a formatted string to System.out.
 109  *   System.out.format("Local time: %tT", Calendar.getInstance());
 110  *   // -&gt; "Local time: 13:34:18"
 111  *
 112  *   // Writes formatted output to System.err.
 113  *   System.err.printf("Unable to open file '%1$s': %2$s",
 114  *                     fileName, exception.getMessage());
 115  *   // -&gt; "Unable to open file 'food': No such file or directory"
 116  * </pre></blockquote>
 117  *
 118  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
 119  * method {@link String#format(String,Object...) String.format}:
 120  *
 121  * <blockquote><pre>
 122  *   // Format a string containing a date.
 123  *   import java.util.Calendar;
 124  *   import java.util.GregorianCalendar;
 125  *   import static java.util.Calendar.*;
 126  *
 127  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 128  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 129  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 130  * </pre></blockquote>
 131  *
 132  * <h3><a name="org">Organization</a></h3>
 133  *
 134  * <p> This specification is divided into two sections.  The first section, <a
 135  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 136  * section is intended for users who want to get started quickly and are
 137  * familiar with formatted printing in other programming languages.  The second
 138  * section, <a href="#detail">Details</a>, covers the specific implementation
 139  * details.  It is intended for users who want more precise specification of
 140  * formatting behavior.
 141  *
 142  * <h3><a name="summary">Summary</a></h3>
 143  *
 144  * <p> This section is intended to provide a brief overview of formatting
 145  * concepts.  For precise behavioral details, refer to the <a
 146  * href="#detail">Details</a> section.
 147  *
 148  * <h4><a name="syntax">Format String Syntax</a></h4>
 149  *
 150  * <p> Every method which produces formatted output requires a <i>format
 151  * string</i> and an <i>argument list</i>.  The format string is a {@link
 152  * String} which may contain fixed text and one or more embedded <i>format
 153  * specifiers</i>.  Consider the following example:
 154  *
 155  * <blockquote><pre>
 156  *   Calendar c = ...;
 157  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 158  * </pre></blockquote>
 159  *
 160  * This format string is the first argument to the {@code format} method.  It
 161  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
 162  * "{@code %1$tY}" which indicate how the arguments should be processed and
 163  * where they should be inserted in the text.  The remaining portions of the
 164  * format string are fixed text including {@code "Dukes Birthday: "} and any
 165  * other spaces or punctuation.
 166  *
 167  * The argument list consists of all arguments passed to the method after the
 168  * format string.  In the above example, the argument list is of size one and
 169  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
 170  *
 171  * <ul>
 172  *
 173  * <li> The format specifiers for general, character, and numeric types have
 174  * the following syntax:
 175  *
 176  * <blockquote><pre>
 177  *   %[argument_index$][flags][width][.precision]conversion
 178  * </pre></blockquote>
 179  *
 180  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 181  * position of the argument in the argument list.  The first argument is
 182  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
 183  *
 184  * <p> The optional <i>flags</i> is a set of characters that modify the output
 185  * format.  The set of valid flags depends on the conversion.
 186  *
 187  * <p> The optional <i>width</i> is a non-negative decimal integer indicating
 188  * the minimum number of characters to be written to the output.
 189  *
 190  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 191  * used to restrict the number of characters.  The specific behavior depends on
 192  * the conversion.
 193  *
 194  * <p> The required <i>conversion</i> is a character indicating how the
 195  * argument should be formatted.  The set of valid conversions for a given
 196  * argument depends on the argument's data type.
 197  *
 198  * <li> The format specifiers for types which are used to represents dates and
 199  * times have the following syntax:
 200  *
 201  * <blockquote><pre>
 202  *   %[argument_index$][flags][width]conversion
 203  * </pre></blockquote>
 204  *
 205  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 206  * defined as above.
 207  *
 208  * <p> The required <i>conversion</i> is a two character sequence.  The first
 209  * character is {@code 't'} or {@code 'T'}.  The second character indicates
 210  * the format to be used.  These characters are similar to but not completely
 211  * identical to those defined by GNU {@code date} and POSIX
 212  * {@code strftime(3c)}.
 213  *
 214  * <li> The format specifiers which do not correspond to arguments have the
 215  * following syntax:
 216  *
 217  * <blockquote><pre>
 218  *   %[flags][width]conversion
 219  * </pre></blockquote>
 220  *
 221  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 222  *
 223  * <p> The required <i>conversion</i> is a character indicating content to be
 224  * inserted in the output.
 225  *
 226  * </ul>
 227  *
 228  * <h4> Conversions </h4>
 229  *
 230  * <p> Conversions are divided into the following categories:
 231  *
 232  * <ol>
 233  *
 234  * <li> <b>General</b> - may be applied to any argument
 235  * type
 236  *
 237  * <li> <b>Character</b> - may be applied to basic types which represent
 238  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
 239  * Byte}, {@code short}, and {@link Short}. This conversion may also be
 240  * applied to the types {@code int} and {@link Integer} when {@link
 241  * Character#isValidCodePoint} returns {@code true}
 242  *
 243  * <li> <b>Numeric</b>
 244  *
 245  * <ol>
 246  *
 247  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
 248  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
 249  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
 250  * BigInteger}
 251  *
 252  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 253  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
 254  * java.math.BigDecimal BigDecimal}
 255  *
 256  * </ol>
 257  *
 258  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 259  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar}, and
 260  * {@link Date}.
 261  *
 262  * <li> <b>Percent</b> - produces a literal {@code '%'}
 263  * (<tt>'&#92;u0025'</tt>)
 264  *
 265  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 266  *
 267  * </ol>
 268  *
 269  * <p> The following table summarizes the supported conversions.  Conversions
 270  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
 271  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
 272  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
 273  * lower-case conversion characters except that the result is converted to
 274  * upper case according to the rules of the prevailing {@link java.util.Locale
 275  * Locale}.  The result is equivalent to the following invocation of {@link
 276  * String#toUpperCase()}
 277  *
 278  * <pre>
 279  *    out.toUpperCase() </pre>
 280  *
 281  * <table cellpadding=5 summary="genConv">
 282  *
 283  * <tr><th valign="bottom"> Conversion
 284  *     <th valign="bottom"> Argument Category
 285  *     <th valign="bottom"> Description
 286  *
 287  * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
 288  *     <td valign="top"> general
 289  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 290  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
 291  *     Boolean}, then the result is the string returned by {@link
 292  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 293  *     "true".
 294  *
 295  * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
 296  *     <td valign="top"> general
 297  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 298  *     "{@code null}".  Otherwise, the result is obtained by invoking
 299  *     {@code Integer.toHexString(arg.hashCode())}.
 300  *
 301  * <tr><td valign="top"> {@code 's'}, {@code 'S'}
 302  *     <td valign="top"> general
 303  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 304  *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
 305  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 306  *     result is obtained by invoking {@code arg.toString()}.
 307  *
 308  * <tr><td valign="top">{@code 'c'}, {@code 'C'}
 309  *     <td valign="top"> character
 310  *     <td> The result is a Unicode character
 311  *
 312  * <tr><td valign="top">{@code 'd'}
 313  *     <td valign="top"> integral
 314  *     <td> The result is formatted as a decimal integer
 315  *
 316  * <tr><td valign="top">{@code 'o'}
 317  *     <td valign="top"> integral
 318  *     <td> The result is formatted as an octal integer
 319  *
 320  * <tr><td valign="top">{@code 'x'}, {@code 'X'}
 321  *     <td valign="top"> integral
 322  *     <td> The result is formatted as a hexadecimal integer
 323  *
 324  * <tr><td valign="top">{@code 'e'}, {@code 'E'}
 325  *     <td valign="top"> floating point
 326  *     <td> The result is formatted as a decimal number in computerized
 327  *     scientific notation
 328  *
 329  * <tr><td valign="top">{@code 'f'}
 330  *     <td valign="top"> floating point
 331  *     <td> The result is formatted as a decimal number
 332  *
 333  * <tr><td valign="top">{@code 'g'}, {@code 'G'}
 334  *     <td valign="top"> floating point
 335  *     <td> The result is formatted using computerized scientific notation or
 336  *     decimal format, depending on the precision and the value after rounding.
 337  *
 338  * <tr><td valign="top">{@code 'a'}, {@code 'A'}
 339  *     <td valign="top"> floating point
 340  *     <td> The result is formatted as a hexadecimal floating-point number with
 341  *     a significand and an exponent
 342  *
 343  * <tr><td valign="top">{@code 't'}, {@code 'T'}
 344  *     <td valign="top"> date/time
 345  *     <td> Prefix for date and time conversion characters.  See <a
 346  *     href="#dt">Date/Time Conversions</a>.
 347  *
 348  * <tr><td valign="top">{@code '%'}
 349  *     <td valign="top"> percent
 350  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
 351  *
 352  * <tr><td valign="top">{@code 'n'}
 353  *     <td valign="top"> line separator
 354  *     <td> The result is the platform-specific line separator
 355  *
 356  * </table>
 357  *
 358  * <p> Any characters not explicitly defined as conversions are illegal and are
 359  * reserved for future extensions.
 360  *
 361  * <h4><a name="dt">Date/Time Conversions</a></h4>
 362  *
 363  * <p> The following date and time conversion suffix characters are defined for
 364  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
 365  * not completely identical to those defined by GNU {@code date} and POSIX
 366  * {@code strftime(3c)}.  Additional conversion types are provided to access
 367  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
 368  * second).
 369  *
 370  * <p> The following conversion characters are used for formatting times:
 371  *
 372  * <table cellpadding=5 summary="time">
 373  *
 374  * <tr><td valign="top"> {@code 'H'}
 375  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 376  *     a leading zero as necessary i.e. {@code 00 - 23}.
 377  *
 378  * <tr><td valign="top">{@code 'I'}
 379  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 380  *     zero as necessary, i.e.  {@code 01 - 12}.
 381  *
 382  * <tr><td valign="top">{@code 'k'}
 383  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
 384  *
 385  * <tr><td valign="top">{@code 'l'}
 386  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
 387  *
 388  * <tr><td valign="top">{@code 'M'}
 389  *     <td> Minute within the hour formatted as two digits with a leading zero
 390  *     as necessary, i.e.  {@code 00 - 59}.
 391  *
 392  * <tr><td valign="top">{@code 'S'}
 393  *     <td> Seconds within the minute, formatted as two digits with a leading
 394  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
 395  *     value required to support leap seconds).
 396  *
 397  * <tr><td valign="top">{@code 'L'}
 398  *     <td> Millisecond within the second formatted as three digits with
 399  *     leading zeros as necessary, i.e. {@code 000 - 999}.
 400  *
 401  * <tr><td valign="top">{@code 'N'}
 402  *     <td> Nanosecond within the second, formatted as nine digits with leading
 403  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
 404  *
 405  * <tr><td valign="top">{@code 'p'}
 406  *     <td> Locale-specific {@linkplain
 407  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 408  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
 409  *     prefix {@code 'T'} forces this output to upper case.
 410  *
 411  * <tr><td valign="top">{@code 'z'}
 412  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 413  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
 414  *     value will be adjusted as necessary for Daylight Saving Time.  For
 415  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
 416  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 417  *     instance of the Java virtual machine.
 418  *
 419  * <tr><td valign="top">{@code 'Z'}
 420  *     <td> A string representing the abbreviation for the time zone.  This
 421  *     value will be adjusted as necessary for Daylight Saving Time.  For
 422  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
 423  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 424  *     instance of the Java virtual machine.  The Formatter's locale will
 425  *     supersede the locale of the argument (if any).
 426  *
 427  * <tr><td valign="top">{@code 's'}
 428  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 429  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
 430  *     {@code Long.MAX_VALUE/1000}.
 431  *
 432  * <tr><td valign="top">{@code 'Q'}
 433  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 434  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
 435  *     {@code Long.MAX_VALUE}.
 436  *
 437  * </table>
 438  *
 439  * <p> The following conversion characters are used for formatting dates:
 440  *
 441  * <table cellpadding=5 summary="date">
 442  *
 443  * <tr><td valign="top">{@code 'B'}
 444  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 445  *     full month name}, e.g. {@code "January"}, {@code "February"}.
 446  *
 447  * <tr><td valign="top">{@code 'b'}
 448  *     <td> Locale-specific {@linkplain
 449  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 450  *     e.g. {@code "Jan"}, {@code "Feb"}.
 451  *
 452  * <tr><td valign="top">{@code 'h'}
 453  *     <td> Same as {@code 'b'}.
 454  *
 455  * <tr><td valign="top">{@code 'A'}
 456  *     <td> Locale-specific full name of the {@linkplain
 457  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 458  *     e.g. {@code "Sunday"}, {@code "Monday"}
 459  *
 460  * <tr><td valign="top">{@code 'a'}
 461  *     <td> Locale-specific short name of the {@linkplain
 462  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 463  *     e.g. {@code "Sun"}, {@code "Mon"}
 464  *
 465  * <tr><td valign="top">{@code 'C'}
 466  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
 467  *     with leading zero as necessary, i.e. {@code 00 - 99}
 468  *
 469  * <tr><td valign="top">{@code 'Y'}
 470  *     <td> Year, formatted as at least four digits with leading zeros as
 471  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
 472  *     calendar.
 473  *
 474  * <tr><td valign="top">{@code 'y'}
 475  *     <td> Last two digits of the year, formatted with leading zeros as
 476  *     necessary, i.e. {@code 00 - 99}.
 477  *
 478  * <tr><td valign="top">{@code 'j'}
 479  *     <td> Day of year, formatted as three digits with leading zeros as
 480  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
 481  *
 482  * <tr><td valign="top">{@code 'm'}
 483  *     <td> Month, formatted as two digits with leading zeros as necessary,
 484  *     i.e. {@code 01 - 13}.
 485  *
 486  * <tr><td valign="top">{@code 'd'}
 487  *     <td> Day of month, formatted as two digits with leading zeros as
 488  *     necessary, i.e. {@code 01 - 31}
 489  *
 490  * <tr><td valign="top">{@code 'e'}
 491  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
 492  *
 493  * </table>
 494  *
 495  * <p> The following conversion characters are used for formatting common
 496  * date/time compositions.
 497  *
 498  * <table cellpadding=5 summary="composites">
 499  *
 500  * <tr><td valign="top">{@code 'R'}
 501  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
 502  *
 503  * <tr><td valign="top">{@code 'T'}
 504  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
 505  *
 506  * <tr><td valign="top">{@code 'r'}
 507  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
 508  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
 509  *     locale-dependent.
 510  *
 511  * <tr><td valign="top">{@code 'D'}
 512  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
 513  *
 514  * <tr><td valign="top">{@code 'F'}
 515  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 516  *     complete date formatted as {@code "%tY-%tm-%td"}.
 517  *
 518  * <tr><td valign="top">{@code 'c'}
 519  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
 520  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
 521  *
 522  * </table>
 523  *
 524  * <p> Any characters not explicitly defined as date/time conversion suffixes
 525  * are illegal and are reserved for future extensions.
 526  *
 527  * <h4> Flags </h4>
 528  *
 529  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 530  * flag is supported for the indicated argument types.
 531  *
 532  * <table cellpadding=5 summary="genConv">
 533  *
 534  * <tr><th valign="bottom"> Flag <th valign="bottom"> General
 535  *     <th valign="bottom"> Character <th valign="bottom"> Integral
 536  *     <th valign="bottom"> Floating Point
 537  *     <th valign="bottom"> Date/Time
 538  *     <th valign="bottom"> Description
 539  *
 540  * <tr><td> '-' <td align="center" valign="top"> y
 541  *     <td align="center" valign="top"> y
 542  *     <td align="center" valign="top"> y
 543  *     <td align="center" valign="top"> y
 544  *     <td align="center" valign="top"> y
 545  *     <td> The result will be left-justified.
 546  *
 547  * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
 548  *     <td align="center" valign="top"> -
 549  *     <td align="center" valign="top"> y<sup>3</sup>
 550  *     <td align="center" valign="top"> y
 551  *     <td align="center" valign="top"> -
 552  *     <td> The result should use a conversion-dependent alternate form
 553  *
 554  * <tr><td> '+' <td align="center" valign="top"> -
 555  *     <td align="center" valign="top"> -
 556  *     <td align="center" valign="top"> y<sup>4</sup>
 557  *     <td align="center" valign="top"> y
 558  *     <td align="center" valign="top"> -
 559  *     <td> The result will always include a sign
 560  *
 561  * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
 562  *     <td align="center" valign="top"> -
 563  *     <td align="center" valign="top"> y<sup>4</sup>
 564  *     <td align="center" valign="top"> y
 565  *     <td align="center" valign="top"> -
 566  *     <td> The result will include a leading space for positive values
 567  *
 568  * <tr><td> '0' <td align="center" valign="top"> -
 569  *     <td align="center" valign="top"> -
 570  *     <td align="center" valign="top"> y
 571  *     <td align="center" valign="top"> y
 572  *     <td align="center" valign="top"> -
 573  *     <td> The result will be zero-padded
 574  *
 575  * <tr><td> ',' <td align="center" valign="top"> -
 576  *     <td align="center" valign="top"> -
 577  *     <td align="center" valign="top"> y<sup>2</sup>
 578  *     <td align="center" valign="top"> y<sup>5</sup>
 579  *     <td align="center" valign="top"> -
 580  *     <td> The result will include locale-specific {@linkplain
 581  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 582  *
 583  * <tr><td> '(' <td align="center" valign="top"> -
 584  *     <td align="center" valign="top"> -
 585  *     <td align="center" valign="top"> y<sup>4</sup>
 586  *     <td align="center" valign="top"> y<sup>5</sup>
 587  *     <td align="center"> -
 588  *     <td> The result will enclose negative numbers in parentheses
 589  *
 590  * </table>
 591  *
 592  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 593  *
 594  * <p> <sup>2</sup> For {@code 'd'} conversion only.
 595  *
 596  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
 597  * conversions only.
 598  *
 599  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
 600  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
 601  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
 602  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
 603  *
 604  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
 605  * {@code 'g'}, and {@code 'G'} conversions only.
 606  *
 607  * <p> Any characters not explicitly defined as flags are illegal and are
 608  * reserved for future extensions.
 609  *
 610  * <h4> Width </h4>
 611  *
 612  * <p> The width is the minimum number of characters to be written to the
 613  * output.  For the line separator conversion, width is not applicable; if it
 614  * is provided, an exception will be thrown.
 615  *
 616  * <h4> Precision </h4>
 617  *
 618  * <p> For general argument types, the precision is the maximum number of
 619  * characters to be written to the output.
 620  *
 621  * <p> For the floating-point conversions {@code 'e'}, {@code 'E'}, and
 622  * {@code 'f'} the precision is the number of digits after the decimal
 623  * separator.  If the conversion is {@code 'g'} or {@code 'G'}, then the
 624  * precision is the total number of digits in the resulting magnitude after
 625  * rounding.  If the conversion is {@code 'a'} or {@code 'A'}, then the
 626  * precision must not be specified.
 627  *
 628  * <p> For character, integral, and date/time argument types and the percent
 629  * and line separator conversions, the precision is not applicable; if a
 630  * precision is provided, an exception will be thrown.
 631  *
 632  * <h4> Argument Index </h4>
 633  *
 634  * <p> The argument index is a decimal integer indicating the position of the
 635  * argument in the argument list.  The first argument is referenced by
 636  * "{@code 1$}", the second by "{@code 2$}", etc.
 637  *
 638  * <p> Another way to reference arguments by position is to use the
 639  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag, which causes the argument for
 640  * the previous format specifier to be re-used.  For example, the following two
 641  * statements would produce identical strings:
 642  *
 643  * <blockquote><pre>
 644  *   Calendar c = ...;
 645  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 646  *
 647  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 648  * </pre></blockquote>
 649  *
 650  * <hr>
 651  * <h3><a name="detail">Details</a></h3>
 652  *
 653  * <p> This section is intended to provide behavioral details for formatting,
 654  * including conditions and exceptions, supported data types, localization, and
 655  * interactions between flags, conversions, and data types.  For an overview of
 656  * formatting concepts, refer to the <a href="#summary">Summary</a>
 657  *
 658  * <p> Any characters not explicitly defined as conversions, date/time
 659  * conversion suffixes, or flags are illegal and are reserved for
 660  * future extensions.  Use of such a character in a format string will
 661  * cause an {@link UnknownFormatConversionException} or {@link
 662  * UnknownFormatFlagsException} to be thrown.
 663  *
 664  * <p> If the format specifier contains a width or precision with an invalid
 665  * value or which is otherwise unsupported, then a {@link
 666  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 667  * respectively will be thrown.
 668  *
 669  * <p> If a format specifier contains a conversion character that is not
 670  * applicable to the corresponding argument, then an {@link
 671  * IllegalFormatConversionException} will be thrown.
 672  *
 673  * <p> All specified exceptions may be thrown by any of the {@code format}
 674  * methods of {@code Formatter} as well as by any {@code format} convenience
 675  * methods such as {@link String#format(String,Object...) String.format} and
 676  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 677  *
 678  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
 679  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
 680  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
 681  * corresponding lower-case conversion characters except that the result is
 682  * converted to upper case according to the rules of the prevailing {@link
 683  * java.util.Locale Locale}.  The result is equivalent to the following
 684  * invocation of {@link String#toUpperCase()}
 685  *
 686  * <pre>
 687  *    out.toUpperCase() </pre>
 688  *
 689  * <h4><a name="dgen">General</a></h4>
 690  *
 691  * <p> The following general conversions may be applied to any argument type:
 692  *
 693  * <table cellpadding=5 summary="dgConv">
 694  *
 695  * <tr><td valign="top"> {@code 'b'}
 696  *     <td valign="top"> <tt>'&#92;u0062'</tt>
 697  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
 698  *     {@link Boolean#toString(boolean)}.
 699  *
 700  *     <p> If the argument is {@code null}, then the result is
 701  *     "{@code false}".  If the argument is a {@code boolean} or {@link
 702  *     Boolean}, then the result is the string returned by {@link
 703  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 704  *     "{@code true}".
 705  *
 706  *     <p> If the {@code '#'} flag is given, then a {@link
 707  *     FormatFlagsConversionMismatchException} will be thrown.
 708  *
 709  * <tr><td valign="top"> {@code 'B'}
 710  *     <td valign="top"> <tt>'&#92;u0042'</tt>
 711  *     <td> The upper-case variant of {@code 'b'}.
 712  *
 713  * <tr><td valign="top"> {@code 'h'}
 714  *     <td valign="top"> <tt>'&#92;u0068'</tt>
 715  *     <td> Produces a string representing the hash code value of the object.
 716  *
 717  *     <p> If the argument, <i>arg</i> is {@code null}, then the
 718  *     result is "{@code null}".  Otherwise, the result is obtained
 719  *     by invoking {@code Integer.toHexString(arg.hashCode())}.
 720  *
 721  *     <p> If the {@code '#'} flag is given, then a {@link
 722  *     FormatFlagsConversionMismatchException} will be thrown.
 723  *
 724  * <tr><td valign="top"> {@code 'H'}
 725  *     <td valign="top"> <tt>'&#92;u0048'</tt>
 726  *     <td> The upper-case variant of {@code 'h'}.
 727  *
 728  * <tr><td valign="top"> {@code 's'}
 729  *     <td valign="top"> <tt>'&#92;u0073'</tt>
 730  *     <td> Produces a string.
 731  *
 732  *     <p> If the argument is {@code null}, then the result is
 733  *     "{@code null}".  If the argument implements {@link Formattable}, then
 734  *     its {@link Formattable#formatTo formatTo} method is invoked.
 735  *     Otherwise, the result is obtained by invoking the argument's
 736  *     {@code toString()} method.
 737  *
 738  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
 739  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 740  *     will be thrown.
 741  *
 742  * <tr><td valign="top"> {@code 'S'}
 743  *     <td valign="top"> <tt>'&#92;u0053'</tt>
 744  *     <td> The upper-case variant of {@code 's'}.
 745  *
 746  * </table>
 747  *
 748  * <p> The following <a name="dFlags">flags</a> apply to general conversions:
 749  *
 750  * <table cellpadding=5 summary="dFlags">
 751  *
 752  * <tr><td valign="top"> {@code '-'}
 753  *     <td valign="top"> <tt>'&#92;u002d'</tt>
 754  *     <td> Left justifies the output.  Spaces (<tt>'&#92;u0020'</tt>) will be
 755  *     added at the end of the converted value as required to fill the minimum
 756  *     width of the field.  If the width is not provided, then a {@link
 757  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 758  *     then the output will be right-justified.
 759  *
 760  * <tr><td valign="top"> {@code '#'}
 761  *     <td valign="top"> <tt>'&#92;u0023'</tt>
 762  *     <td> Requires the output use an alternate form.  The definition of the
 763  *     form is specified by the conversion.
 764  *
 765  * </table>
 766  *
 767  * <p> The <a name="genWidth">width</a> is the minimum number of characters to
 768  * be written to the
 769  * output.  If the length of the converted value is less than the width then
 770  * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'&#92;u0020'</tt>)
 771  * until the total number of characters equals the width.  The padding is on
 772  * the left by default.  If the {@code '-'} flag is given, then the padding
 773  * will be on the right.  If the width is not specified then there is no
 774  * minimum.
 775  *
 776  * <p> The precision is the maximum number of characters to be written to the
 777  * output.  The precision is applied before the width, thus the output will be
 778  * truncated to {@code precision} characters even if the width is greater than
 779  * the precision.  If the precision is not specified then there is no explicit
 780  * limit on the number of characters.
 781  *
 782  * <h4><a name="dchar">Character</a></h4>
 783  *
 784  * This conversion may be applied to {@code char} and {@link Character}.  It
 785  * may also be applied to the types {@code byte}, {@link Byte},
 786  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
 787  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
 788  * {@code false} then an {@link IllegalFormatCodePointException} will be
 789  * thrown.
 790  *
 791  * <table cellpadding=5 summary="charConv">
 792  *
 793  * <tr><td valign="top"> {@code 'c'}
 794  *     <td valign="top"> <tt>'&#92;u0063'</tt>
 795  *     <td> Formats the argument as a Unicode character as described in <a
 796  *     href="../lang/Character.html#unicode">Unicode Character
 797  *     Representation</a>.  This may be more than one 16-bit {@code char} in
 798  *     the case where the argument represents a supplementary character.
 799  *
 800  *     <p> If the {@code '#'} flag is given, then a {@link
 801  *     FormatFlagsConversionMismatchException} will be thrown.
 802  *
 803  * <tr><td valign="top"> {@code 'C'}
 804  *     <td valign="top"> <tt>'&#92;u0043'</tt>
 805  *     <td> The upper-case variant of {@code 'c'}.
 806  *
 807  * </table>
 808  *
 809  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
 810  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
 811  * FormatFlagsConversionMismatchException} will be thrown.
 812  *
 813  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 814  *
 815  * <p> The precision is not applicable.  If the precision is specified then an
 816  * {@link IllegalFormatPrecisionException} will be thrown.
 817  *
 818  * <h4><a name="dnum">Numeric</a></h4>
 819  *
 820  * <p> Numeric conversions are divided into the following categories:
 821  *
 822  * <ol>
 823  *
 824  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 825  *
 826  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 827  *
 828  * <li> <a href="#dndec"><b>Float and Double</b></a>
 829  *
 830  * <li> <a href="#dndec"><b>BigDecimal</b></a>
 831  *
 832  * </ol>
 833  *
 834  * <p> Numeric types will be formatted according to the following algorithm:
 835  *
 836  * <p><b><a name="l10n algorithm"> Number Localization Algorithm</a></b>
 837  *
 838  * <p> After digits are obtained for the integer part, fractional part, and
 839  * exponent (as appropriate for the data type), the following transformation
 840  * is applied:
 841  *
 842  * <ol>
 843  *
 844  * <li> Each digit character <i>d</i> in the string is replaced by a
 845  * locale-specific digit computed relative to the current locale's
 846  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 847  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
 848  * <i>&nbsp;+&nbsp;z</i>.
 849  *
 850  * <li> If a decimal separator is present, a locale-specific {@linkplain
 851  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 852  * substituted.
 853  *
 854  * <li> If the {@code ','} (<tt>'&#92;u002c'</tt>)
 855  * <a name="l10n group">flag</a> is given, then the locale-specific {@linkplain
 856  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 857  * inserted by scanning the integer part of the string from least significant
 858  * to most significant digits and inserting a separator at intervals defined by
 859  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 860  * size}.
 861  *
 862  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
 863  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 864  * after the sign character, if any, and before the first non-zero digit, until
 865  * the length of the string is equal to the requested field width.
 866  *
 867  * <li> If the value is negative and the {@code '('} flag is given, then a
 868  * {@code '('} (<tt>'&#92;u0028'</tt>) is prepended and a {@code ')'}
 869  * (<tt>'&#92;u0029'</tt>) is appended.
 870  *
 871  * <li> If the value is negative (or floating-point negative zero) and
 872  * {@code '('} flag is not given, then a {@code '-'} (<tt>'&#92;u002d'</tt>)
 873  * is prepended.
 874  *
 875  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
 876  * floating-point positive zero), then a {@code '+'} (<tt>'&#92;u002b'</tt>)
 877  * will be prepended.
 878  *
 879  * </ol>
 880  *
 881  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 882  * "Infinity" respectively, will be output.  If the value is negative infinity,
 883  * then the output will be "(Infinity)" if the {@code '('} flag is given
 884  * otherwise the output will be "-Infinity".  These values are not localized.
 885  *
 886  * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
 887  *
 888  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
 889  * {@code short}, {@link Short}, {@code int} and {@link Integer},
 890  * {@code long}, and {@link Long}.
 891  *
 892  * <table cellpadding=5 summary="IntConv">
 893  *
 894  * <tr><td valign="top"> {@code 'd'}
 895  *     <td valign="top"> <tt>'&#92;u0054'</tt>
 896  *     <td> Formats the argument as a decimal integer. The <a
 897  *     href="#l10n algorithm">localization algorithm</a> is applied.
 898  *
 899  *     <p> If the {@code '0'} flag is given and the value is negative, then
 900  *     the zero padding will occur after the sign.
 901  *
 902  *     <p> If the {@code '#'} flag is given then a {@link
 903  *     FormatFlagsConversionMismatchException} will be thrown.
 904  *
 905  * <tr><td valign="top"> {@code 'o'}
 906  *     <td valign="top"> <tt>'&#92;u006f'</tt>
 907  *     <td> Formats the argument as an integer in base eight.  No localization
 908  *     is applied.
 909  *
 910  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 911  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 912  *     number of bits in the type as returned by the static {@code SIZE} field
 913  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 914  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 915  *     classes as appropriate.
 916  *
 917  *     <p> If the {@code '#'} flag is given then the output will always begin
 918  *     with the radix indicator {@code '0'}.
 919  *
 920  *     <p> If the {@code '0'} flag is given then the output will be padded
 921  *     with leading zeros to the field width following any indication of sign.
 922  *
 923  *     <p> If {@code '('}, {@code '+'}, '&nbsp&nbsp;', or {@code ','} flags
 924  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 925  *     thrown.
 926  *
 927  * <tr><td valign="top"> {@code 'x'}
 928  *     <td valign="top"> <tt>'&#92;u0078'</tt>
 929  *     <td> Formats the argument as an integer in base sixteen. No
 930  *     localization is applied.
 931  *
 932  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 933  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 934  *     number of bits in the type as returned by the static {@code SIZE} field
 935  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 936  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 937  *     classes as appropriate.
 938  *
 939  *     <p> If the {@code '#'} flag is given then the output will always begin
 940  *     with the radix indicator {@code "0x"}.
 941  *
 942  *     <p> If the {@code '0'} flag is given then the output will be padded to
 943  *     the field width with leading zeros after the radix indicator or sign (if
 944  *     present).
 945  *
 946  *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
 947  *     {@code ','} flags are given then a {@link
 948  *     FormatFlagsConversionMismatchException} will be thrown.
 949  *
 950  * <tr><td valign="top"> {@code 'X'}
 951  *     <td valign="top"> <tt>'&#92;u0058'</tt>
 952  *     <td> The upper-case variant of {@code 'x'}.  The entire string
 953  *     representing the number will be converted to {@linkplain
 954  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
 955  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
 956  *     (<tt>'&#92;u0061'</tt> -  <tt>'&#92;u0066'</tt>).
 957  *
 958  * </table>
 959  *
 960  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
 961  * both the {@code '#'} and the {@code '0'} flags are given, then result will
 962  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
 963  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
 964  * and the value.
 965  *
 966  * <p> If the {@code '-'} flag is not given, then the space padding will occur
 967  * before the sign.
 968  *
 969  * <p> The following <a name="intFlags">flags</a> apply to numeric integral
 970  * conversions:
 971  *
 972  * <table cellpadding=5 summary="intFlags">
 973  *
 974  * <tr><td valign="top"> {@code '+'}
 975  *     <td valign="top"> <tt>'&#92;u002b'</tt>
 976  *     <td> Requires the output to include a positive sign for all positive
 977  *     numbers.  If this flag is not given then only negative values will
 978  *     include a sign.
 979  *
 980  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 981  *     then an {@link IllegalFormatFlagsException} will be thrown.
 982  *
 983  * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
 984  *     <td valign="top"> <tt>'&#92;u0020'</tt>
 985  *     <td> Requires the output to include a single extra space
 986  *     (<tt>'&#92;u0020'</tt>) for non-negative values.
 987  *
 988  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 989  *     then an {@link IllegalFormatFlagsException} will be thrown.
 990  *
 991  * <tr><td valign="top"> {@code '0'}
 992  *     <td valign="top"> <tt>'&#92;u0030'</tt>
 993  *     <td> Requires the output to be padded with leading {@linkplain
 994  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
 995  *     width following any sign or radix indicator except when converting NaN
 996  *     or infinity.  If the width is not provided, then a {@link
 997  *     MissingFormatWidthException} will be thrown.
 998  *
 999  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1000  *     {@link IllegalFormatFlagsException} will be thrown.
1001  *
1002  * <tr><td valign="top"> {@code ','}
1003  *     <td valign="top"> <tt>'&#92;u002c'</tt>
1004  *     <td> Requires the output to include the locale-specific {@linkplain
1005  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1006  *     described in the <a href="#l10n group">"group" section</a> of the
1007  *     localization algorithm.
1008  *
1009  * <tr><td valign="top"> {@code '('}
1010  *     <td valign="top"> <tt>'&#92;u0028'</tt>
1011  *     <td> Requires the output to prepend a {@code '('}
1012  *     (<tt>'&#92;u0028'</tt>) and append a {@code ')'}
1013  *     (<tt>'&#92;u0029'</tt>) to negative values.
1014  *
1015  * </table>
1016  *
1017  * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1018  * as follows:
1019  *
1020  * <ul>
1021  *
1022  * <li> The output is right-justified within the {@code width}
1023  *
1024  * <li> Negative numbers begin with a {@code '-'} (<tt>'&#92;u002d'</tt>)
1025  *
1026  * <li> Positive numbers and zero do not include a sign or extra leading
1027  * space
1028  *
1029  * <li> No grouping separators are included
1030  *
1031  * </ul>
1032  *
1033  * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1034  * be written to the output.  This includes any signs, digits, grouping
1035  * separators, radix indicator, and parentheses.  If the length of the
1036  * converted value is less than the width then the output will be padded by
1037  * spaces (<tt>'&#92;u0020'</tt>) until the total number of characters equals
1038  * width.  The padding is on the left by default.  If {@code '-'} flag is
1039  * given then the padding will be on the right.  If width is not specified then
1040  * there is no minimum.
1041  *
1042  * <p> The precision is not applicable.  If precision is specified then an
1043  * {@link IllegalFormatPrecisionException} will be thrown.
1044  *
1045  * <p><a name="dnbint"><b> BigInteger </b></a>
1046  *
1047  * <p> The following conversions may be applied to {@link
1048  * java.math.BigInteger}.
1049  *
1050  * <table cellpadding=5 summary="BIntConv">
1051  *
1052  * <tr><td valign="top"> {@code 'd'}
1053  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1054  *     <td> Requires the output to be formatted as a decimal integer. The <a
1055  *     href="#l10n algorithm">localization algorithm</a> is applied.
1056  *
1057  *     <p> If the {@code '#'} flag is given {@link
1058  *     FormatFlagsConversionMismatchException} will be thrown.
1059  *
1060  * <tr><td valign="top"> {@code 'o'}
1061  *     <td valign="top"> <tt>'&#92;u006f'</tt>
1062  *     <td> Requires the output to be formatted as an integer in base eight.
1063  *     No localization is applied.
1064  *
1065  *     <p> If <i>x</i> is negative then the result will be a signed value
1066  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1067  *     allowed for this type because unlike the primitive types it is not
1068  *     possible to create an unsigned equivalent without assuming an explicit
1069  *     data-type size.
1070  *
1071  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1072  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1073  *
1074  *     <p> If the {@code '#'} flag is given then the output will always begin
1075  *     with {@code '0'} prefix.
1076  *
1077  *     <p> If the {@code '0'} flag is given then the output will be padded
1078  *     with leading zeros to the field width following any indication of sign.
1079  *
1080  *     <p> If the {@code ','} flag is given then a {@link
1081  *     FormatFlagsConversionMismatchException} will be thrown.
1082  *
1083  * <tr><td valign="top"> {@code 'x'}
1084  *     <td valign="top"> <tt>'&#92;u0078'</tt>
1085  *     <td> Requires the output to be formatted as an integer in base
1086  *     sixteen.  No localization is applied.
1087  *
1088  *     <p> If <i>x</i> is negative then the result will be a signed value
1089  *     beginning with {@code '-'} (<tt>'&#92;u002d'</tt>).  Signed output is
1090  *     allowed for this type because unlike the primitive types it is not
1091  *     possible to create an unsigned equivalent without assuming an explicit
1092  *     data-type size.
1093  *
1094  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1095  *     then the result will begin with {@code '+'} (<tt>'&#92;u002b'</tt>).
1096  *
1097  *     <p> If the {@code '#'} flag is given then the output will always begin
1098  *     with the radix indicator {@code "0x"}.
1099  *
1100  *     <p> If the {@code '0'} flag is given then the output will be padded to
1101  *     the field width with leading zeros after the radix indicator or sign (if
1102  *     present).
1103  *
1104  *     <p> If the {@code ','} flag is given then a {@link
1105  *     FormatFlagsConversionMismatchException} will be thrown.
1106  *
1107  * <tr><td valign="top"> {@code 'X'}
1108  *     <td valign="top"> <tt>'&#92;u0058'</tt>
1109  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1110  *     representing the number will be converted to {@linkplain
1111  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1112  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1113  *     (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1114  *
1115  * </table>
1116  *
1117  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1118  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1119  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1120  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1121  * and the value.
1122  *
1123  * <p> If the {@code '0'} flag is given and the value is negative, then the
1124  * zero padding will occur after the sign.
1125  *
1126  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1127  * before the sign.
1128  *
1129  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1130  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1131  * given is the same as for Byte, Short, Integer, and Long.
1132  *
1133  * <p> The specification of <a href="#intWidth">width</a> is the same as
1134  * defined for Byte, Short, Integer, and Long.
1135  *
1136  * <p> The precision is not applicable.  If precision is specified then an
1137  * {@link IllegalFormatPrecisionException} will be thrown.
1138  *
1139  * <p><a name="dndec"><b> Float and Double</b></a>
1140  *
1141  * <p> The following conversions may be applied to {@code float}, {@link
1142  * Float}, {@code double} and {@link Double}.
1143  *
1144  * <table cellpadding=5 summary="floatConv">
1145  *
1146  * <tr><td valign="top"> {@code 'e'}
1147  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1148  *     <td> Requires the output to be formatted using <a
1149  *     name="scientific">computerized scientific notation</a>.  The <a
1150  *     href="#l10n algorithm">localization algorithm</a> is applied.
1151  *
1152  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1153  *
1154  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1155  *     "Infinity", respectively, will be output.  These values are not
1156  *     localized.
1157  *
1158  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1159  *     will be {@code "+00"}.
1160  *
1161  *     <p> Otherwise, the result is a string that represents the sign and
1162  *     magnitude (absolute value) of the argument.  The formatting of the sign
1163  *     is described in the <a href="#l10n algorithm">localization
1164  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1165  *     value.
1166  *
1167  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1168  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1169  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1170  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1171  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1172  *     decimal separator followed by decimal digits representing the fractional
1173  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1174  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1175  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1176  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1177  *     least two digits.
1178  *
1179  *     <p> The number of digits in the result for the fractional part of
1180  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1181  *     specified then the default value is {@code 6}. If the precision is less
1182  *     than the number of digits which would appear after the decimal point in
1183  *     the string returned by {@link Float#toString(float)} or {@link
1184  *     Double#toString(double)} respectively, then the value will be rounded
1185  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1186  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1187  *     For a canonical representation of the value, use {@link
1188  *     Float#toString(float)} or {@link Double#toString(double)} as
1189  *     appropriate.
1190  *
1191  *     <p>If the {@code ','} flag is given, then an {@link
1192  *     FormatFlagsConversionMismatchException} will be thrown.
1193  *
1194  * <tr><td valign="top"> {@code 'E'}
1195  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1196  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1197  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1198  *
1199  * <tr><td valign="top"> {@code 'g'}
1200  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1201  *     <td> Requires the output to be formatted in general scientific notation
1202  *     as described below. The <a href="#l10n algorithm">localization
1203  *     algorithm</a> is applied.
1204  *
1205  *     <p> After rounding for the precision, the formatting of the resulting
1206  *     magnitude <i>m</i> depends on its value.
1207  *
1208  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1209  *     than 10<sup>precision</sup> then it is represented in <i><a
1210  *     href="#decimal">decimal format</a></i>.
1211  *
1212  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1213  *     10<sup>precision</sup>, then it is represented in <i><a
1214  *     href="#scientific">computerized scientific notation</a></i>.
1215  *
1216  *     <p> The total number of significant digits in <i>m</i> is equal to the
1217  *     precision.  If the precision is not specified, then the default value is
1218  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1219  *     {@code 1}.
1220  *
1221  *     <p> If the {@code '#'} flag is given then an {@link
1222  *     FormatFlagsConversionMismatchException} will be thrown.
1223  *
1224  * <tr><td valign="top"> {@code 'G'}
1225  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1226  *     <td> The upper-case variant of {@code 'g'}.
1227  *
1228  * <tr><td valign="top"> {@code 'f'}
1229  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1230  *     <td> Requires the output to be formatted using <a name="decimal">decimal
1231  *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1232  *     applied.
1233  *
1234  *     <p> The result is a string that represents the sign and magnitude
1235  *     (absolute value) of the argument.  The formatting of the sign is
1236  *     described in the <a href="#l10n algorithm">localization
1237  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1238  *     value.
1239  *
1240  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1241  *     "Infinity", respectively, will be output.  These values are not
1242  *     localized.
1243  *
1244  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1245  *     leading zeroes, followed by the decimal separator followed by one or
1246  *     more decimal digits representing the fractional part of <i>m</i>.
1247  *
1248  *     <p> The number of digits in the result for the fractional part of
1249  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1250  *     specified then the default value is {@code 6}. If the precision is less
1251  *     than the number of digits which would appear after the decimal point in
1252  *     the string returned by {@link Float#toString(float)} or {@link
1253  *     Double#toString(double)} respectively, then the value will be rounded
1254  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1255  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1256  *     For a canonical representation of the value, use {@link
1257  *     Float#toString(float)} or {@link Double#toString(double)} as
1258  *     appropriate.
1259  *
1260  * <tr><td valign="top"> {@code 'a'}
1261  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1262  *     <td> Requires the output to be formatted in hexadecimal exponential
1263  *     form.  No localization is applied.
1264  *
1265  *     <p> The result is a string that represents the sign and magnitude
1266  *     (absolute value) of the argument <i>x</i>.
1267  *
1268  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1269  *     will begin with {@code '-'} (<tt>'&#92;u002d'</tt>).
1270  *
1271  *     <p> If <i>x</i> is positive or a positive-zero value and the
1272  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1273  *     (<tt>'&#92;u002b'</tt>).
1274  *
1275  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1276  *
1277  *     <ul>
1278  *
1279  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1280  *     "Infinity", respectively, will be output.
1281  *
1282  *     <li> If <i>m</i> is zero then it is represented by the string
1283  *     {@code "0x0.0p0"}.
1284  *
1285  *     <li> If <i>m</i> is a {@code double} value with a normalized
1286  *     representation then substrings are used to represent the significand and
1287  *     exponent fields.  The significand is represented by the characters
1288  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1289  *     of the significand as a fraction.  The exponent is represented by
1290  *     {@code 'p'} (<tt>'&#92;u0070'</tt>) followed by a decimal string of the
1291  *     unbiased exponent as if produced by invoking {@link
1292  *     Integer#toString(int) Integer.toString} on the exponent value.
1293  *
1294  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1295  *     representation then the significand is represented by the characters
1296  *     {@code '0x0.'} followed by the hexadecimal representation of the rest
1297  *     of the significand as a fraction.  The exponent is represented by
1298  *     {@code 'p-1022'}.  Note that there must be at least one nonzero digit
1299  *     in a subnormal significand.
1300  *
1301  *     </ul>
1302  *
1303  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1304  *     FormatFlagsConversionMismatchException} will be thrown.
1305  *
1306  * <tr><td valign="top"> {@code 'A'}
1307  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1308  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1309  *     representing the number will be converted to upper case including the
1310  *     {@code 'x'} (<tt>'&#92;u0078'</tt>) and {@code 'p'}
1311  *     (<tt>'&#92;u0070'</tt> and all hexadecimal digits {@code 'a'} -
1312  *     {@code 'f'} (<tt>'&#92;u0061'</tt> - <tt>'&#92;u0066'</tt>).
1313  *
1314  * </table>
1315  *
1316  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1317  * Long apply.
1318  *
1319  * <p> If the {@code '#'} flag is given, then the decimal separator will
1320  * always be present.
1321  *
1322  * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1323  * is as follows:
1324  *
1325  * <ul>
1326  *
1327  * <li> The output is right-justified within the {@code width}
1328  *
1329  * <li> Negative numbers begin with a {@code '-'}
1330  *
1331  * <li> Positive numbers and positive zero do not include a sign or extra
1332  * leading space
1333  *
1334  * <li> No grouping separators are included
1335  *
1336  * <li> The decimal separator will only appear if a digit follows it
1337  *
1338  * </ul>
1339  *
1340  * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1341  * to be written to the output.  This includes any signs, digits, grouping
1342  * separators, decimal separators, exponential symbol, radix indicator,
1343  * parentheses, and strings representing infinity and NaN as applicable.  If
1344  * the length of the converted value is less than the width then the output
1345  * will be padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1346  * characters equals width.  The padding is on the left by default.  If the
1347  * {@code '-'} flag is given then the padding will be on the right.  If width
1348  * is not specified then there is no minimum.
1349  *
1350  * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1351  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1352  * after the decimal separator.  If the precision is not specified, then it is
1353  * assumed to be {@code 6}.
1354  *
1355  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1356  * the total number of significant digits in the resulting magnitude after
1357  * rounding.  If the precision is not specified, then the default value is
1358  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1359  * {@code 1}.
1360  *
1361  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1362  * is the number of hexadecimal digits after the decimal separator.  If the
1363  * precision is not provided, then all of the digits as returned by {@link
1364  * Double#toHexString(double)} will be output.
1365  *
1366  * <p><a name="dndec"><b> BigDecimal </b></a>
1367  *
1368  * <p> The following conversions may be applied {@link java.math.BigDecimal
1369  * BigDecimal}.
1370  *
1371  * <table cellpadding=5 summary="floatConv">
1372  *
1373  * <tr><td valign="top"> {@code 'e'}
1374  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1375  *     <td> Requires the output to be formatted using <a
1376  *     name="scientific">computerized scientific notation</a>.  The <a
1377  *     href="#l10n algorithm">localization algorithm</a> is applied.
1378  *
1379  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1380  *
1381  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1382  *     will be {@code "+00"}.
1383  *
1384  *     <p> Otherwise, the result is a string that represents the sign and
1385  *     magnitude (absolute value) of the argument.  The formatting of the sign
1386  *     is described in the <a href="#l10n algorithm">localization
1387  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1388  *     value.
1389  *
1390  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1391  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1392  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1393  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1394  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1395  *     decimal separator followed by decimal digits representing the fractional
1396  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1397  *     (<tt>'&#92;u0065'</tt>), followed by the sign of the exponent, followed
1398  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1399  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1400  *     least two digits.
1401  *
1402  *     <p> The number of digits in the result for the fractional part of
1403  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1404  *     specified then the default value is {@code 6}.  If the precision is
1405  *     less than the number of digits which would appear after the decimal
1406  *     point in the string returned by {@link Float#toString(float)} or {@link
1407  *     Double#toString(double)} respectively, then the value will be rounded
1408  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1409  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1410  *     For a canonical representation of the value, use {@link
1411  *     BigDecimal#toString()}.
1412  *
1413  *     <p> If the {@code ','} flag is given, then an {@link
1414  *     FormatFlagsConversionMismatchException} will be thrown.
1415  *
1416  * <tr><td valign="top"> {@code 'E'}
1417  *     <td valign="top"> <tt>'&#92;u0045'</tt>
1418  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1419  *     will be {@code 'E'} (<tt>'&#92;u0045'</tt>).
1420  *
1421  * <tr><td valign="top"> {@code 'g'}
1422  *     <td valign="top"> <tt>'&#92;u0067'</tt>
1423  *     <td> Requires the output to be formatted in general scientific notation
1424  *     as described below. The <a href="#l10n algorithm">localization
1425  *     algorithm</a> is applied.
1426  *
1427  *     <p> After rounding for the precision, the formatting of the resulting
1428  *     magnitude <i>m</i> depends on its value.
1429  *
1430  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1431  *     than 10<sup>precision</sup> then it is represented in <i><a
1432  *     href="#decimal">decimal format</a></i>.
1433  *
1434  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1435  *     10<sup>precision</sup>, then it is represented in <i><a
1436  *     href="#scientific">computerized scientific notation</a></i>.
1437  *
1438  *     <p> The total number of significant digits in <i>m</i> is equal to the
1439  *     precision.  If the precision is not specified, then the default value is
1440  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1441  *     {@code 1}.
1442  *
1443  *     <p> If the {@code '#'} flag is given then an {@link
1444  *     FormatFlagsConversionMismatchException} will be thrown.
1445  *
1446  * <tr><td valign="top"> {@code 'G'}
1447  *     <td valign="top"> <tt>'&#92;u0047'</tt>
1448  *     <td> The upper-case variant of {@code 'g'}.
1449  *
1450  * <tr><td valign="top"> {@code 'f'}
1451  *     <td valign="top"> <tt>'&#92;u0066'</tt>
1452  *     <td> Requires the output to be formatted using <a name="decimal">decimal
1453  *     format</a>.  The <a href="#l10n algorithm">localization algorithm</a> is
1454  *     applied.
1455  *
1456  *     <p> The result is a string that represents the sign and magnitude
1457  *     (absolute value) of the argument.  The formatting of the sign is
1458  *     described in the <a href="#l10n algorithm">localization
1459  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1460  *     value.
1461  *
1462  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1463  *     leading zeroes, followed by the decimal separator followed by one or
1464  *     more decimal digits representing the fractional part of <i>m</i>.
1465  *
1466  *     <p> The number of digits in the result for the fractional part of
1467  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1468  *     specified then the default value is {@code 6}.  If the precision is
1469  *     less than the number of digits which would appear after the decimal
1470  *     point in the string returned by {@link Float#toString(float)} or {@link
1471  *     Double#toString(double)} respectively, then the value will be rounded
1472  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1473  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1474  *     For a canonical representation of the value, use {@link
1475  *     BigDecimal#toString()}.
1476  *
1477  * </table>
1478  *
1479  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1480  * Long apply.
1481  *
1482  * <p> If the {@code '#'} flag is given, then the decimal separator will
1483  * always be present.
1484  *
1485  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1486  * given is the same as for Float and Double.
1487  *
1488  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1489  * href="#floatDPrec">precision</a> is the same as defined for Float and
1490  * Double.
1491  *
1492  * <h4><a name="ddt">Date/Time</a></h4>
1493  *
1494  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1495  * Calendar}, and {@link Date}.
1496  *
1497  * <table cellpadding=5 summary="DTConv">
1498  *
1499  * <tr><td valign="top"> {@code 't'}
1500  *     <td valign="top"> <tt>'&#92;u0074'</tt>
1501  *     <td> Prefix for date and time conversion characters.
1502  * <tr><td valign="top"> {@code 'T'}
1503  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1504  *     <td> The upper-case variant of {@code 't'}.
1505  *
1506  * </table>
1507  *
1508  * <p> The following date and time conversion character suffixes are defined
1509  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1510  * but not completely identical to those defined by GNU {@code date} and
1511  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1512  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1513  * within the second).
1514  *
1515  * <p> The following conversion characters are used for formatting times:
1516  *
1517  * <table cellpadding=5 summary="time">
1518  *
1519  * <tr><td valign="top"> {@code 'H'}
1520  *     <td valign="top"> <tt>'&#92;u0048'</tt>
1521  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1522  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1523  *     corresponds to midnight.
1524  *
1525  * <tr><td valign="top">{@code 'I'}
1526  *     <td valign="top"> <tt>'&#92;u0049'</tt>
1527  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1528  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1529  *     one o'clock (either morning or afternoon).
1530  *
1531  * <tr><td valign="top">{@code 'k'}
1532  *     <td valign="top"> <tt>'&#92;u006b'</tt>
1533  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1534  *     {@code 0} corresponds to midnight.
1535  *
1536  * <tr><td valign="top">{@code 'l'}
1537  *     <td valign="top"> <tt>'&#92;u006c'</tt>
1538  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1539  *     corresponds to one o'clock (either morning or afternoon).
1540  *
1541  * <tr><td valign="top">{@code 'M'}
1542  *     <td valign="top"> <tt>'&#92;u004d'</tt>
1543  *     <td> Minute within the hour formatted as two digits with a leading zero
1544  *     as necessary, i.e.  {@code 00 - 59}.
1545  *
1546  * <tr><td valign="top">{@code 'S'}
1547  *     <td valign="top"> <tt>'&#92;u0053'</tt>
1548  *     <td> Seconds within the minute, formatted as two digits with a leading
1549  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1550  *     value required to support leap seconds).
1551  *
1552  * <tr><td valign="top">{@code 'L'}
1553  *     <td valign="top"> <tt>'&#92;u004c'</tt>
1554  *     <td> Millisecond within the second formatted as three digits with
1555  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1556  *
1557  * <tr><td valign="top">{@code 'N'}
1558  *     <td valign="top"> <tt>'&#92;u004e'</tt>
1559  *     <td> Nanosecond within the second, formatted as nine digits with leading
1560  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1561  *     of this value is limited by the resolution of the underlying operating
1562  *     system or hardware.
1563  *
1564  * <tr><td valign="top">{@code 'p'}
1565  *     <td valign="top"> <tt>'&#92;u0070'</tt>
1566  *     <td> Locale-specific {@linkplain
1567  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1568  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1569  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1570  *     that {@code 'p'} produces lower-case output.  This is different from
1571  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1572  *     upper-case output.)
1573  *
1574  * <tr><td valign="top">{@code 'z'}
1575  *     <td valign="top"> <tt>'&#92;u007a'</tt>
1576  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1577  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1578  *     value will be adjusted as necessary for Daylight Saving Time.  For
1579  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1580  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1581  *     instance of the Java virtual machine.
1582  *
1583  * <tr><td valign="top">{@code 'Z'}
1584  *     <td valign="top"> <tt>'&#92;u005a'</tt>
1585  *     <td> A string representing the abbreviation for the time zone.  This
1586  *     value will be adjusted as necessary for Daylight Saving Time.  For
1587  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1588  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1589  *     instance of the Java virtual machine.  The Formatter's locale will
1590  *     supersede the locale of the argument (if any).
1591  *
1592  * <tr><td valign="top">{@code 's'}
1593  *     <td valign="top"> <tt>'&#92;u0073'</tt>
1594  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1595  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1596  *     {@code Long.MAX_VALUE/1000}.
1597  *
1598  * <tr><td valign="top">{@code 'Q'}
1599  *     <td valign="top"> <tt>'&#92;u004f'</tt>
1600  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1601  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1602  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1603  *     the resolution of the underlying operating system or hardware.
1604  *
1605  * </table>
1606  *
1607  * <p> The following conversion characters are used for formatting dates:
1608  *
1609  * <table cellpadding=5 summary="date">
1610  *
1611  * <tr><td valign="top">{@code 'B'}
1612  *     <td valign="top"> <tt>'&#92;u0042'</tt>
1613  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1614  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1615  *
1616  * <tr><td valign="top">{@code 'b'}
1617  *     <td valign="top"> <tt>'&#92;u0062'</tt>
1618  *     <td> Locale-specific {@linkplain
1619  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1620  *     e.g. {@code "Jan"}, {@code "Feb"}.
1621  *
1622  * <tr><td valign="top">{@code 'h'}
1623  *     <td valign="top"> <tt>'&#92;u0068'</tt>
1624  *     <td> Same as {@code 'b'}.
1625  *
1626  * <tr><td valign="top">{@code 'A'}
1627  *     <td valign="top"> <tt>'&#92;u0041'</tt>
1628  *     <td> Locale-specific full name of the {@linkplain
1629  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1630  *     e.g. {@code "Sunday"}, {@code "Monday"}
1631  *
1632  * <tr><td valign="top">{@code 'a'}
1633  *     <td valign="top"> <tt>'&#92;u0061'</tt>
1634  *     <td> Locale-specific short name of the {@linkplain
1635  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1636  *     e.g. {@code "Sun"}, {@code "Mon"}
1637  *
1638  * <tr><td valign="top">{@code 'C'}
1639  *     <td valign="top"> <tt>'&#92;u0043'</tt>
1640  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1641  *     with leading zero as necessary, i.e. {@code 00 - 99}
1642  *
1643  * <tr><td valign="top">{@code 'Y'}
1644  *     <td valign="top"> <tt>'&#92;u0059'</tt> <td> Year, formatted to at least
1645  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1646  *     {@code 92} CE for the Gregorian calendar.
1647  *
1648  * <tr><td valign="top">{@code 'y'}
1649  *     <td valign="top"> <tt>'&#92;u0079'</tt>
1650  *     <td> Last two digits of the year, formatted with leading zeros as
1651  *     necessary, i.e. {@code 00 - 99}.
1652  *
1653  * <tr><td valign="top">{@code 'j'}
1654  *     <td valign="top"> <tt>'&#92;u006a'</tt>
1655  *     <td> Day of year, formatted as three digits with leading zeros as
1656  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1657  *     {@code 001} corresponds to the first day of the year.
1658  *
1659  * <tr><td valign="top">{@code 'm'}
1660  *     <td valign="top"> <tt>'&#92;u006d'</tt>
1661  *     <td> Month, formatted as two digits with leading zeros as necessary,
1662  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1663  *     year and ("{@code 13}" is a special value required to support lunar
1664  *     calendars).
1665  *
1666  * <tr><td valign="top">{@code 'd'}
1667  *     <td valign="top"> <tt>'&#92;u0064'</tt>
1668  *     <td> Day of month, formatted as two digits with leading zeros as
1669  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1670  *     of the month.
1671  *
1672  * <tr><td valign="top">{@code 'e'}
1673  *     <td valign="top"> <tt>'&#92;u0065'</tt>
1674  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1675  *     "{@code 1}" is the first day of the month.
1676  *
1677  * </table>
1678  *
1679  * <p> The following conversion characters are used for formatting common
1680  * date/time compositions.
1681  *
1682  * <table cellpadding=5 summary="composites">
1683  *
1684  * <tr><td valign="top">{@code 'R'}
1685  *     <td valign="top"> <tt>'&#92;u0052'</tt>
1686  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1687  *
1688  * <tr><td valign="top">{@code 'T'}
1689  *     <td valign="top"> <tt>'&#92;u0054'</tt>
1690  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1691  *
1692  * <tr><td valign="top">{@code 'r'}
1693  *     <td valign="top"> <tt>'&#92;u0072'</tt>
1694  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1695  *     %Tp"}.  The location of the morning or afternoon marker
1696  *     ({@code '%Tp'}) may be locale-dependent.
1697  *
1698  * <tr><td valign="top">{@code 'D'}
1699  *     <td valign="top"> <tt>'&#92;u0044'</tt>
1700  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1701  *
1702  * <tr><td valign="top">{@code 'F'}
1703  *     <td valign="top"> <tt>'&#92;u0046'</tt>
1704  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1705  *     complete date formatted as {@code "%tY-%tm-%td"}.
1706  *
1707  * <tr><td valign="top">{@code 'c'}
1708  *     <td valign="top"> <tt>'&#92;u0063'</tt>
1709  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1710  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1711  *
1712  * </table>
1713  *
1714  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1715  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1716  * FormatFlagsConversionMismatchException} will be thrown.
1717  *
1718  * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1719  * be written to the output.  If the length of the converted value is less than
1720  * the {@code width} then the output will be padded by spaces
1721  * (<tt>'&#92;u0020'</tt>) until the total number of characters equals width.
1722  * The padding is on the left by default.  If the {@code '-'} flag is given
1723  * then the padding will be on the right.  If width is not specified then there
1724  * is no minimum.
1725  *
1726  * <p> The precision is not applicable.  If the precision is specified then an
1727  * {@link IllegalFormatPrecisionException} will be thrown.
1728  *
1729  * <h4><a name="dper">Percent</a></h4>
1730  *
1731  * <p> The conversion does not correspond to any argument.
1732  *
1733  * <table cellpadding=5 summary="DTConv">
1734  *
1735  * <tr><td valign="top">{@code '%'}
1736  *     <td> The result is a literal {@code '%'} (<tt>'&#92;u0025'</tt>)
1737  *
1738  * <p> The <a name="dtWidth">width</a> is the minimum number of characters to
1739  * be written to the output including the {@code '%'}.  If the length of the
1740  * converted value is less than the {@code width} then the output will be
1741  * padded by spaces (<tt>'&#92;u0020'</tt>) until the total number of
1742  * characters equals width.  The padding is on the left.  If width is not
1743  * specified then just the {@code '%'} is output.
1744  *
1745  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1746  * conversions</a> applies.  If any other flags are provided, then a
1747  * {@link FormatFlagsConversionMismatchException} will be thrown.
1748  *
1749  * <p> The precision is not applicable.  If the precision is specified an
1750  * {@link IllegalFormatPrecisionException} will be thrown.
1751  *
1752  * </table>
1753  *
1754  * <h4><a name="dls">Line Separator</a></h4>
1755  *
1756  * <p> The conversion does not correspond to any argument.
1757  *
1758  * <table cellpadding=5 summary="DTConv">
1759  *
1760  * <tr><td valign="top">{@code 'n'}
1761  *     <td> the platform-specific line separator as returned by {@link
1762  *     System#getProperty System.getProperty("line.separator")}.
1763  *
1764  * </table>
1765  *
1766  * <p> Flags, width, and precision are not applicable.  If any are provided an
1767  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1768  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1769  *
1770  * <h4><a name="dpos">Argument Index</a></h4>
1771  *
1772  * <p> Format specifiers can reference arguments in three ways:
1773  *
1774  * <ul>
1775  *
1776  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1777  * argument index.  The argument index is a decimal integer indicating the
1778  * position of the argument in the argument list.  The first argument is
1779  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1780  * may be referenced more than once.
1781  *
1782  * <p> For example:
1783  *
1784  * <blockquote><pre>
1785  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1786  *                    "a", "b", "c", "d")
1787  *   // -&gt; "d c b a d c b a"
1788  * </pre></blockquote>
1789  *
1790  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1791  * {@code '<'} (<tt>'&#92;u003c'</tt>) flag which causes the argument for
1792  * the previous format specifier to be re-used.  If there is no previous
1793  * argument, then a {@link MissingFormatArgumentException} is thrown.
1794  *
1795  * <blockquote><pre>
1796  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1797  *    // -&gt; "a b b b"
1798  *    // "c" and "d" are ignored because they are not referenced
1799  * </pre></blockquote>
1800  *
1801  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1802  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1803  * which uses ordinary indexing is assigned a sequential implicit index into
1804  * argument list which is independent of the indices used by explicit or
1805  * relative indexing.
1806  *
1807  * <blockquote><pre>
1808  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1809  *   // -&gt; "a b c d"
1810  * </pre></blockquote>
1811  *
1812  * </ul>
1813  *
1814  * <p> It is possible to have a format string which uses all forms of indexing,
1815  * for example:
1816  *
1817  * <blockquote><pre>
1818  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1819  *   // -&gt; "b a a b"
1820  *   // "c" and "d" are ignored because they are not referenced
1821  * </pre></blockquote>
1822  *
1823  * <p> The maximum number of arguments is limited by the maximum dimension of a
1824  * Java array as defined by the <a
1825  * href="http://java.sun.com/docs/books/vmspec/">Java Virtual Machine
1826  * Specification</a>.  If the argument index is does not correspond to an
1827  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1828  *
1829  * <p> If there are more arguments than format specifiers, the extra arguments
1830  * are ignored.
1831  *
1832  * <p> Unless otherwise specified, passing a {@code null} argument to any
1833  * method or constructor in this class will cause a {@link
1834  * NullPointerException} to be thrown.
1835  *
1836  * @author  Iris Clark
1837  * @since 1.5
1838  */
1839 public final class Formatter implements Closeable, Flushable {
1840     private Appendable a;
1841     private Locale l;
1842 
1843     private IOException lastException;
1844 
1845     private char zero = '0';
1846     private static double scaleUp;
1847 
1848     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1849     // + 3 (max # exp digits) + 4 (error) = 30
1850     private static final int MAX_FD_CHARS = 30;
1851 
1852     // Initialize internal data.
1853     private void init(Appendable a, Locale l) {
1854         this.a = a;
1855         this.l = l;
1856         setZero();
1857     }
1858 
1859     /**
1860      * Constructs a new formatter.
1861      *
1862      * <p> The destination of the formatted output is a {@link StringBuilder}
1863      * which may be retrieved by invoking {@link #out out()} and whose
1864      * current content may be converted into a string by invoking {@link
1865      * #toString toString()}.  The locale used is the {@linkplain
1866      * Locale#getDefault() default locale} for this instance of the Java
1867      * virtual machine.
1868      */
1869     public Formatter() {
1870         init(new StringBuilder(), Locale.getDefault(Locale.Category.FORMAT));
1871     }
1872 
1873     /**
1874      * Constructs a new formatter with the specified destination.
1875      *
1876      * <p> The locale used is the {@linkplain Locale#getDefault() default
1877      * locale} for this instance of the Java virtual machine.
1878      *
1879      * @param  a
1880      *         Destination for the formatted output.  If {@code a} is
1881      *         {@code null} then a {@link StringBuilder} will be created.
1882      */
1883     public Formatter(Appendable a) {
1884         if (a == null)
1885             a = new StringBuilder();
1886         init(a, Locale.getDefault(Locale.Category.FORMAT));
1887     }
1888 
1889     /**
1890      * Constructs a new formatter with the specified locale.
1891      *
1892      * <p> The destination of the formatted output is a {@link StringBuilder}
1893      * which may be retrieved by invoking {@link #out out()} and whose current
1894      * content may be converted into a string by invoking {@link #toString
1895      * toString()}.
1896      *
1897      * @param  l
1898      *         The {@linkplain java.util.Locale locale} to apply during
1899      *         formatting.  If {@code l} is {@code null} then no localization
1900      *         is applied.
1901      */
1902     public Formatter(Locale l) {
1903         init(new StringBuilder(), l);
1904     }
1905 
1906     /**
1907      * Constructs a new formatter with the specified destination and locale.
1908      *
1909      * @param  a
1910      *         Destination for the formatted output.  If {@code a} is
1911      *         {@code null} then a {@link StringBuilder} will be created.
1912      *
1913      * @param  l
1914      *         The {@linkplain java.util.Locale locale} to apply during
1915      *         formatting.  If {@code l} is {@code null} then no localization
1916      *         is applied.
1917      */
1918     public Formatter(Appendable a, Locale l) {
1919         if (a == null)
1920             a = new StringBuilder();
1921         init(a, l);
1922     }
1923 
1924     /**
1925      * Constructs a new formatter with the specified file name.
1926      *
1927      * <p> The charset used is the {@linkplain
1928      * java.nio.charset.Charset#defaultCharset() default charset} for this
1929      * instance of the Java virtual machine.
1930      *
1931      * <p> The locale used is the {@linkplain Locale#getDefault() default
1932      * locale} for this instance of the Java virtual machine.
1933      *
1934      * @param  fileName
1935      *         The name of the file to use as the destination of this
1936      *         formatter.  If the file exists then it will be truncated to
1937      *         zero size; otherwise, a new file will be created.  The output
1938      *         will be written to the file and is buffered.
1939      *
1940      * @throws  SecurityException
1941      *          If a security manager is present and {@link
1942      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1943      *          access to the file
1944      *
1945      * @throws  FileNotFoundException
1946      *          If the given file name does not denote an existing, writable
1947      *          regular file and a new regular file of that name cannot be
1948      *          created, or if some other error occurs while opening or
1949      *          creating the file
1950      */
1951     public Formatter(String fileName) throws FileNotFoundException {
1952         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))),
1953              Locale.getDefault(Locale.Category.FORMAT));
1954     }
1955 
1956     /**
1957      * Constructs a new formatter with the specified file name and charset.
1958      *
1959      * <p> The locale used is the {@linkplain Locale#getDefault default
1960      * locale} for this instance of the Java virtual machine.
1961      *
1962      * @param  fileName
1963      *         The name of the file to use as the destination of this
1964      *         formatter.  If the file exists then it will be truncated to
1965      *         zero size; otherwise, a new file will be created.  The output
1966      *         will be written to the file and is buffered.
1967      *
1968      * @param  csn
1969      *         The name of a supported {@linkplain java.nio.charset.Charset
1970      *         charset}
1971      *
1972      * @throws  FileNotFoundException
1973      *          If the given file name does not denote an existing, writable
1974      *          regular file and a new regular file of that name cannot be
1975      *          created, or if some other error occurs while opening or
1976      *          creating the file
1977      *
1978      * @throws  SecurityException
1979      *          If a security manager is present and {@link
1980      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1981      *          access to the file
1982      *
1983      * @throws  UnsupportedEncodingException
1984      *          If the named charset is not supported
1985      */
1986     public Formatter(String fileName, String csn)
1987         throws FileNotFoundException, UnsupportedEncodingException
1988     {
1989         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
1990     }
1991 
1992     /**
1993      * Constructs a new formatter with the specified file name, charset, and
1994      * locale.
1995      *
1996      * @param  fileName
1997      *         The name of the file to use as the destination of this
1998      *         formatter.  If the file exists then it will be truncated to
1999      *         zero size; otherwise, a new file will be created.  The output
2000      *         will be written to the file and is buffered.
2001      *
2002      * @param  csn
2003      *         The name of a supported {@linkplain java.nio.charset.Charset
2004      *         charset}
2005      *
2006      * @param  l
2007      *         The {@linkplain java.util.Locale locale} to apply during
2008      *         formatting.  If {@code l} is {@code null} then no localization
2009      *         is applied.
2010      *
2011      * @throws  FileNotFoundException
2012      *          If the given file name does not denote an existing, writable
2013      *          regular file and a new regular file of that name cannot be
2014      *          created, or if some other error occurs while opening or
2015      *          creating the file
2016      *
2017      * @throws  SecurityException
2018      *          If a security manager is present and {@link
2019      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2020      *          access to the file
2021      *
2022      * @throws  UnsupportedEncodingException
2023      *          If the named charset is not supported
2024      */
2025     public Formatter(String fileName, String csn, Locale l)
2026         throws FileNotFoundException, UnsupportedEncodingException
2027     {
2028         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName), csn)),
2029              l);
2030     }
2031 
2032     /**
2033      * Constructs a new formatter with the specified file.
2034      *
2035      * <p> The charset used is the {@linkplain
2036      * java.nio.charset.Charset#defaultCharset() default charset} for this
2037      * instance of the Java virtual machine.
2038      *
2039      * <p> The locale used is the {@linkplain Locale#getDefault() default
2040      * locale} for this instance of the Java virtual machine.
2041      *
2042      * @param  file
2043      *         The file to use as the destination of this formatter.  If the
2044      *         file exists then it will be truncated to zero size; otherwise,
2045      *         a new file will be created.  The output will be written to the
2046      *         file and is buffered.
2047      *
2048      * @throws  SecurityException
2049      *          If a security manager is present and {@link
2050      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2051      *          write access to the file
2052      *
2053      * @throws  FileNotFoundException
2054      *          If the given file object does not denote an existing, writable
2055      *          regular file and a new regular file of that name cannot be
2056      *          created, or if some other error occurs while opening or
2057      *          creating the file
2058      */
2059     public Formatter(File file) throws FileNotFoundException {
2060         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))),
2061              Locale.getDefault(Locale.Category.FORMAT));
2062     }
2063 
2064     /**
2065      * Constructs a new formatter with the specified file and charset.
2066      *
2067      * <p> The locale used is the {@linkplain Locale#getDefault default
2068      * locale} for this instance of the Java virtual machine.
2069      *
2070      * @param  file
2071      *         The file to use as the destination of this formatter.  If the
2072      *         file exists then it will be truncated to zero size; otherwise,
2073      *         a new file will be created.  The output will be written to the
2074      *         file and is buffered.
2075      *
2076      * @param  csn
2077      *         The name of a supported {@linkplain java.nio.charset.Charset
2078      *         charset}
2079      *
2080      * @throws  FileNotFoundException
2081      *          If the given file object does not denote an existing, writable
2082      *          regular file and a new regular file of that name cannot be
2083      *          created, or if some other error occurs while opening or
2084      *          creating the file
2085      *
2086      * @throws  SecurityException
2087      *          If a security manager is present and {@link
2088      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2089      *          write access to the file
2090      *
2091      * @throws  UnsupportedEncodingException
2092      *          If the named charset is not supported
2093      */
2094     public Formatter(File file, String csn)
2095         throws FileNotFoundException, UnsupportedEncodingException
2096     {
2097         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2098     }
2099 
2100     /**
2101      * Constructs a new formatter with the specified file, charset, and
2102      * locale.
2103      *
2104      * @param  file
2105      *         The file to use as the destination of this formatter.  If the
2106      *         file exists then it will be truncated to zero size; otherwise,
2107      *         a new file will be created.  The output will be written to the
2108      *         file and is buffered.
2109      *
2110      * @param  csn
2111      *         The name of a supported {@linkplain java.nio.charset.Charset
2112      *         charset}
2113      *
2114      * @param  l
2115      *         The {@linkplain java.util.Locale locale} to apply during
2116      *         formatting.  If {@code l} is {@code null} then no localization
2117      *         is applied.
2118      *
2119      * @throws  FileNotFoundException
2120      *          If the given file object does not denote an existing, writable
2121      *          regular file and a new regular file of that name cannot be
2122      *          created, or if some other error occurs while opening or
2123      *          creating the file
2124      *
2125      * @throws  SecurityException
2126      *          If a security manager is present and {@link
2127      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2128      *          write access to the file
2129      *
2130      * @throws  UnsupportedEncodingException
2131      *          If the named charset is not supported
2132      */
2133     public Formatter(File file, String csn, Locale l)
2134         throws FileNotFoundException, UnsupportedEncodingException
2135     {
2136         init(new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), csn)),
2137              l);
2138     }
2139 
2140     /**
2141      * Constructs a new formatter with the specified print stream.
2142      *
2143      * <p> The locale used is the {@linkplain Locale#getDefault() default
2144      * locale} for this instance of the Java virtual machine.
2145      *
2146      * <p> Characters are written to the given {@link java.io.PrintStream
2147      * PrintStream} object and are therefore encoded using that object's
2148      * charset.
2149      *
2150      * @param  ps
2151      *         The stream to use as the destination of this formatter.
2152      */
2153     public Formatter(PrintStream ps) {
2154         if (ps == null)
2155             throw new NullPointerException();
2156         init((Appendable)ps, Locale.getDefault(Locale.Category.FORMAT));
2157     }
2158 
2159     /**
2160      * Constructs a new formatter with the specified output stream.
2161      *
2162      * <p> The charset used is the {@linkplain
2163      * java.nio.charset.Charset#defaultCharset() default charset} for this
2164      * instance of the Java virtual machine.
2165      *
2166      * <p> The locale used is the {@linkplain Locale#getDefault() default
2167      * locale} for this instance of the Java virtual machine.
2168      *
2169      * @param  os
2170      *         The output stream to use as the destination of this formatter.
2171      *         The output will be buffered.
2172      */
2173     public Formatter(OutputStream os) {
2174         init(new BufferedWriter(new OutputStreamWriter(os)),
2175              Locale.getDefault(Locale.Category.FORMAT));
2176     }
2177 
2178     /**
2179      * Constructs a new formatter with the specified output stream and
2180      * charset.
2181      *
2182      * <p> The locale used is the {@linkplain Locale#getDefault default
2183      * locale} for this instance of the Java virtual machine.
2184      *
2185      * @param  os
2186      *         The output stream to use as the destination of this formatter.
2187      *         The output will be buffered.
2188      *
2189      * @param  csn
2190      *         The name of a supported {@linkplain java.nio.charset.Charset
2191      *         charset}
2192      *
2193      * @throws  UnsupportedEncodingException
2194      *          If the named charset is not supported
2195      */
2196     public Formatter(OutputStream os, String csn)
2197         throws UnsupportedEncodingException
2198     {
2199         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2200     }
2201 
2202     /**
2203      * Constructs a new formatter with the specified output stream, charset,
2204      * and locale.
2205      *
2206      * @param  os
2207      *         The output stream to use as the destination of this formatter.
2208      *         The output will be buffered.
2209      *
2210      * @param  csn
2211      *         The name of a supported {@linkplain java.nio.charset.Charset
2212      *         charset}
2213      *
2214      * @param  l
2215      *         The {@linkplain java.util.Locale locale} to apply during
2216      *         formatting.  If {@code l} is {@code null} then no localization
2217      *         is applied.
2218      *
2219      * @throws  UnsupportedEncodingException
2220      *          If the named charset is not supported
2221      */
2222     public Formatter(OutputStream os, String csn, Locale l)
2223         throws UnsupportedEncodingException
2224     {
2225         init(new BufferedWriter(new OutputStreamWriter(os, csn)), l);
2226     }
2227 
2228     private void setZero() {
2229         if ((l != null) && !l.equals(Locale.US)) {
2230             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2231             zero = dfs.getZeroDigit();
2232         }
2233     }
2234 
2235     /**
2236      * Returns the locale set by the construction of this formatter.
2237      *
2238      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2239      * for this object which has a locale argument does not change this value.
2240      *
2241      * @return  {@code null} if no localization is applied, otherwise a
2242      *          locale
2243      *
2244      * @throws  FormatterClosedException
2245      *          If this formatter has been closed by invoking its {@link
2246      *          #close()} method
2247      */
2248     public Locale locale() {
2249         ensureOpen();
2250         return l;
2251     }
2252 
2253     /**
2254      * Returns the destination for the output.
2255      *
2256      * @return  The destination for the output
2257      *
2258      * @throws  FormatterClosedException
2259      *          If this formatter has been closed by invoking its {@link
2260      *          #close()} method
2261      */
2262     public Appendable out() {
2263         ensureOpen();
2264         return a;
2265     }
2266 
2267     /**
2268      * Returns the result of invoking {@code toString()} on the destination
2269      * for the output.  For example, the following code formats text into a
2270      * {@link StringBuilder} then retrieves the resultant string:
2271      *
2272      * <blockquote><pre>
2273      *   Formatter f = new Formatter();
2274      *   f.format("Last reboot at %tc", lastRebootDate);
2275      *   String s = f.toString();
2276      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2277      * </pre></blockquote>
2278      *
2279      * <p> An invocation of this method behaves in exactly the same way as the
2280      * invocation
2281      *
2282      * <pre>
2283      *     out().toString() </pre>
2284      *
2285      * <p> Depending on the specification of {@code toString} for the {@link
2286      * Appendable}, the returned string may or may not contain the characters
2287      * written to the destination.  For instance, buffers typically return
2288      * their contents in {@code toString()}, but streams cannot since the
2289      * data is discarded.
2290      *
2291      * @return  The result of invoking {@code toString()} on the destination
2292      *          for the output
2293      *
2294      * @throws  FormatterClosedException
2295      *          If this formatter has been closed by invoking its {@link
2296      *          #close()} method
2297      */
2298     public String toString() {
2299         ensureOpen();
2300         return a.toString();
2301     }
2302 
2303     /**
2304      * Flushes this formatter.  If the destination implements the {@link
2305      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2306      *
2307      * <p> Flushing a formatter writes any buffered output in the destination
2308      * to the underlying stream.
2309      *
2310      * @throws  FormatterClosedException
2311      *          If this formatter has been closed by invoking its {@link
2312      *          #close()} method
2313      */
2314     public void flush() {
2315         ensureOpen();
2316         if (a instanceof Flushable) {
2317             try {
2318                 ((Flushable)a).flush();
2319             } catch (IOException ioe) {
2320                 lastException = ioe;
2321             }
2322         }
2323     }
2324 
2325     /**
2326      * Closes this formatter.  If the destination implements the {@link
2327      * java.io.Closeable} interface, its {@code close} method will be invoked.
2328      *
2329      * <p> Closing a formatter allows it to release resources it may be holding
2330      * (such as open files).  If the formatter is already closed, then invoking
2331      * this method has no effect.
2332      *
2333      * <p> Attempting to invoke any methods except {@link #ioException()} in
2334      * this formatter after it has been closed will result in a {@link
2335      * FormatterClosedException}.
2336      */
2337     public void close() {
2338         if (a == null)
2339             return;
2340         try {
2341             if (a instanceof Closeable)
2342                 ((Closeable)a).close();
2343         } catch (IOException ioe) {
2344             lastException = ioe;
2345         } finally {
2346             a = null;
2347         }
2348     }
2349 
2350     private void ensureOpen() {
2351         if (a == null)
2352             throw new FormatterClosedException();
2353     }
2354 
2355     /**
2356      * Returns the {@code IOException} last thrown by this formatter's {@link
2357      * Appendable}.
2358      *
2359      * <p> If the destination's {@code append()} method never throws
2360      * {@code IOException}, then this method will always return {@code null}.
2361      *
2362      * @return  The last exception thrown by the Appendable or {@code null} if
2363      *          no such exception exists.
2364      */
2365     public IOException ioException() {
2366         return lastException;
2367     }
2368 
2369     /**
2370      * Writes a formatted string to this object's destination using the
2371      * specified format string and arguments.  The locale used is the one
2372      * defined during the construction of this formatter.
2373      *
2374      * @param  format
2375      *         A format string as described in <a href="#syntax">Format string
2376      *         syntax</a>.
2377      *
2378      * @param  args
2379      *         Arguments referenced by the format specifiers in the format
2380      *         string.  If there are more arguments than format specifiers, the
2381      *         extra arguments are ignored.  The maximum number of arguments is
2382      *         limited by the maximum dimension of a Java array as defined by
2383      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
2384      *         Virtual Machine Specification</a>.
2385      *
2386      * @throws  IllegalFormatException
2387      *          If a format string contains an illegal syntax, a format
2388      *          specifier that is incompatible with the given arguments,
2389      *          insufficient arguments given the format string, or other
2390      *          illegal conditions.  For specification of all possible
2391      *          formatting errors, see the <a href="#detail">Details</a>
2392      *          section of the formatter class specification.
2393      *
2394      * @throws  FormatterClosedException
2395      *          If this formatter has been closed by invoking its {@link
2396      *          #close()} method
2397      *
2398      * @return  This formatter
2399      */
2400     public Formatter format(String format, Object ... args) {
2401         return format(l, format, args);
2402     }
2403 
2404     /**
2405      * Writes a formatted string to this object's destination using the
2406      * specified locale, format string, and arguments.
2407      *
2408      * @param  l
2409      *         The {@linkplain java.util.Locale locale} to apply during
2410      *         formatting.  If {@code l} is {@code null} then no localization
2411      *         is applied.  This does not change this object's locale that was
2412      *         set during construction.
2413      *
2414      * @param  format
2415      *         A format string as described in <a href="#syntax">Format string
2416      *         syntax</a>
2417      *
2418      * @param  args
2419      *         Arguments referenced by the format specifiers in the format
2420      *         string.  If there are more arguments than format specifiers, the
2421      *         extra arguments are ignored.  The maximum number of arguments is
2422      *         limited by the maximum dimension of a Java array as defined by
2423      *         the <a href="http://java.sun.com/docs/books/vmspec/">Java
2424      *         Virtual Machine Specification</a>
2425      *
2426      * @throws  IllegalFormatException
2427      *          If a format string contains an illegal syntax, a format
2428      *          specifier that is incompatible with the given arguments,
2429      *          insufficient arguments given the format string, or other
2430      *          illegal conditions.  For specification of all possible
2431      *          formatting errors, see the <a href="#detail">Details</a>
2432      *          section of the formatter class specification.
2433      *
2434      * @throws  FormatterClosedException
2435      *          If this formatter has been closed by invoking its {@link
2436      *          #close()} method
2437      *
2438      * @return  This formatter
2439      */
2440     public Formatter format(Locale l, String format, Object ... args) {
2441         ensureOpen();
2442 
2443         // index of last argument referenced
2444         int last = -1;
2445         // last ordinary index
2446         int lasto = -1;
2447 
2448         FormatString[] fsa = parse(format);
2449         for (int i = 0; i < fsa.length; i++) {
2450             FormatString fs = fsa[i];
2451             int index = fs.index();
2452             try {
2453                 switch (index) {
2454                 case -2:  // fixed string, "%n", or "%%"
2455                     fs.print(null, l);
2456                     break;
2457                 case -1:  // relative index
2458                     if (last < 0 || (args != null && last > args.length - 1))
2459                         throw new MissingFormatArgumentException(fs.toString());
2460                     fs.print((args == null ? null : args[last]), l);
2461                     break;
2462                 case 0:  // ordinary index
2463                     lasto++;
2464                     last = lasto;
2465                     if (args != null && lasto > args.length - 1)
2466                         throw new MissingFormatArgumentException(fs.toString());
2467                     fs.print((args == null ? null : args[lasto]), l);
2468                     break;
2469                 default:  // explicit index
2470                     last = index - 1;
2471                     if (args != null && last > args.length - 1)
2472                         throw new MissingFormatArgumentException(fs.toString());
2473                     fs.print((args == null ? null : args[last]), l);
2474                     break;
2475                 }
2476             } catch (IOException x) {
2477                 lastException = x;
2478             }
2479         }
2480         return this;
2481     }
2482 
2483     // %[argument_index$][flags][width][.precision][t]conversion
2484     private static final String formatSpecifier
2485         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2486 
2487     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2488 
2489     /**
2490      * Finds format specifiers in the format string.
2491      */
2492     private FormatString[] parse(String s) {
2493         ArrayList<FormatString> al = new ArrayList<FormatString>();
2494         Matcher m = fsPattern.matcher(s);
2495         for (int i = 0, len = s.length(); i < len; ) {
2496             if (m.find(i)) {
2497                 // Anything between the start of the string and the beginning
2498                 // of the format specifier is either fixed text or contains
2499                 // an invalid format string.
2500                 if (m.start() != i) {
2501                     // Make sure we didn't miss any invalid format specifiers
2502                     checkText(s, i, m.start());
2503                     // Assume previous characters were fixed text
2504                     al.add(new FixedString(s.substring(i, m.start())));
2505                 }
2506 
2507                 al.add(new FormatSpecifier(m));
2508                 i = m.end();
2509             } else {
2510                 // No more valid format specifiers.  Check for possible invalid
2511                 // format specifiers.
2512                 checkText(s, i, len);
2513                 // The rest of the string is fixed text
2514                 al.add(new FixedString(s.substring(i)));
2515                 break;
2516             }
2517         }
2518         return al.toArray(new FormatString[al.size()]);
2519     }
2520 
2521     private static void checkText(String s, int start, int end) {
2522         for (int i = start; i < end; i++) {
2523             // Any '%' found in the region starts an invalid format specifier.
2524             if (s.charAt(i) == '%') {
2525                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2526                 throw new UnknownFormatConversionException(String.valueOf(c));
2527             }
2528         }
2529     }
2530 
2531     private interface FormatString {
2532         int index();
2533         void print(Object arg, Locale l) throws IOException;
2534         String toString();
2535     }
2536 
2537     private class FixedString implements FormatString {
2538         private String s;
2539         FixedString(String s) { this.s = s; }
2540         public int index() { return -2; }
2541         public void print(Object arg, Locale l)
2542             throws IOException { a.append(s); }
2543         public String toString() { return s; }
2544     }
2545 
2546     public enum BigDecimalLayoutForm { SCIENTIFIC, DECIMAL_FLOAT };
2547 
2548     private class FormatSpecifier implements FormatString {
2549         private int index = -1;
2550         private Flags f = Flags.NONE;
2551         private int width;
2552         private int precision;
2553         private boolean dt = false;
2554         private char c;
2555 
2556         private int index(String s) {
2557             if (s != null) {
2558                 try {
2559                     index = Integer.parseInt(s.substring(0, s.length() - 1));
2560                 } catch (NumberFormatException x) {
2561                     assert(false);
2562                 }
2563             } else {
2564                 index = 0;
2565             }
2566             return index;
2567         }
2568 
2569         public int index() {
2570             return index;
2571         }
2572 
2573         private Flags flags(String s) {
2574             f = Flags.parse(s);
2575             if (f.contains(Flags.PREVIOUS))
2576                 index = -1;
2577             return f;
2578         }
2579 
2580         Flags flags() {
2581             return f;
2582         }
2583 
2584         private int width(String s) {
2585             width = -1;
2586             if (s != null) {
2587                 try {
2588                     width  = Integer.parseInt(s);
2589                     if (width < 0)
2590                         throw new IllegalFormatWidthException(width);
2591                 } catch (NumberFormatException x) {
2592                     assert(false);
2593                 }
2594             }
2595             return width;
2596         }
2597 
2598         int width() {
2599             return width;
2600         }
2601 
2602         private int precision(String s) {
2603             precision = -1;
2604             if (s != null) {
2605                 try {
2606                     // remove the '.'
2607                     precision = Integer.parseInt(s.substring(1));
2608                     if (precision < 0)
2609                         throw new IllegalFormatPrecisionException(precision);
2610                 } catch (NumberFormatException x) {
2611                     assert(false);
2612                 }
2613             }
2614             return precision;
2615         }
2616 
2617         int precision() {
2618             return precision;
2619         }
2620 
2621         private char conversion(String s) {
2622             c = s.charAt(0);
2623             if (!dt) {
2624                 if (!Conversion.isValid(c))
2625                     throw new UnknownFormatConversionException(String.valueOf(c));
2626                 if (Character.isUpperCase(c))
2627                     f.add(Flags.UPPERCASE);
2628                 c = Character.toLowerCase(c);
2629                 if (Conversion.isText(c))
2630                     index = -2;
2631             }
2632             return c;
2633         }
2634 
2635         private char conversion() {
2636             return c;
2637         }
2638 
2639         FormatSpecifier(Matcher m) {
2640             int idx = 1;
2641 
2642             index(m.group(idx++));
2643             flags(m.group(idx++));
2644             width(m.group(idx++));
2645             precision(m.group(idx++));
2646 
2647             String tT = m.group(idx++);
2648             if (tT != null) {
2649                 dt = true;
2650                 if (tT.equals("T"))
2651                     f.add(Flags.UPPERCASE);
2652             }
2653 
2654             conversion(m.group(idx));
2655 
2656             if (dt)
2657                 checkDateTime();
2658             else if (Conversion.isGeneral(c))
2659                 checkGeneral();
2660             else if (Conversion.isCharacter(c))
2661                 checkCharacter();
2662             else if (Conversion.isInteger(c))
2663                 checkInteger();
2664             else if (Conversion.isFloat(c))
2665                 checkFloat();
2666             else if (Conversion.isText(c))
2667                 checkText();
2668             else
2669                 throw new UnknownFormatConversionException(String.valueOf(c));
2670         }
2671 
2672         public void print(Object arg, Locale l) throws IOException {
2673             if (dt) {
2674                 printDateTime(arg, l);
2675                 return;
2676             }
2677             switch(c) {
2678             case Conversion.DECIMAL_INTEGER:
2679             case Conversion.OCTAL_INTEGER:
2680             case Conversion.HEXADECIMAL_INTEGER:
2681                 printInteger(arg, l);
2682                 break;
2683             case Conversion.SCIENTIFIC:
2684             case Conversion.GENERAL:
2685             case Conversion.DECIMAL_FLOAT:
2686             case Conversion.HEXADECIMAL_FLOAT:
2687                 printFloat(arg, l);
2688                 break;
2689             case Conversion.CHARACTER:
2690             case Conversion.CHARACTER_UPPER:
2691                 printCharacter(arg);
2692                 break;
2693             case Conversion.BOOLEAN:
2694                 printBoolean(arg);
2695                 break;
2696             case Conversion.STRING:
2697                 printString(arg, l);
2698                 break;
2699             case Conversion.HASHCODE:
2700                 printHashCode(arg);
2701                 break;
2702             case Conversion.LINE_SEPARATOR:
2703                 a.append(System.lineSeparator());
2704                 break;
2705             case Conversion.PERCENT_SIGN:
2706                 a.append('%');
2707                 break;
2708             default:
2709                 assert false;
2710             }
2711         }
2712 
2713         private void printInteger(Object arg, Locale l) throws IOException {
2714             if (arg == null)
2715                 print("null");
2716             else if (arg instanceof Byte)
2717                 print(((Byte)arg).byteValue(), l);
2718             else if (arg instanceof Short)
2719                 print(((Short)arg).shortValue(), l);
2720             else if (arg instanceof Integer)
2721                 print(((Integer)arg).intValue(), l);
2722             else if (arg instanceof Long)
2723                 print(((Long)arg).longValue(), l);
2724             else if (arg instanceof BigInteger)
2725                 print(((BigInteger)arg), l);
2726             else
2727                 failConversion(c, arg);
2728         }
2729 
2730         private void printFloat(Object arg, Locale l) throws IOException {
2731             if (arg == null)
2732                 print("null");
2733             else if (arg instanceof Float)
2734                 print(((Float)arg).floatValue(), l);
2735             else if (arg instanceof Double)
2736                 print(((Double)arg).doubleValue(), l);
2737             else if (arg instanceof BigDecimal)
2738                 print(((BigDecimal)arg), l);
2739             else
2740                 failConversion(c, arg);
2741         }
2742 
2743         private void printDateTime(Object arg, Locale l) throws IOException {
2744             if (arg == null) {
2745                 print("null");
2746                 return;
2747             }
2748             Calendar cal = null;
2749 
2750             // Instead of Calendar.setLenient(true), perhaps we should
2751             // wrap the IllegalArgumentException that might be thrown?
2752             if (arg instanceof Long) {
2753                 // Note that the following method uses an instance of the
2754                 // default time zone (TimeZone.getDefaultRef().
2755                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2756                 cal.setTimeInMillis((Long)arg);
2757             } else if (arg instanceof Date) {
2758                 // Note that the following method uses an instance of the
2759                 // default time zone (TimeZone.getDefaultRef().
2760                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2761                 cal.setTime((Date)arg);
2762             } else if (arg instanceof Calendar) {
2763                 cal = (Calendar) ((Calendar)arg).clone();
2764                 cal.setLenient(true);
2765             } else {
2766                 failConversion(c, arg);
2767             }
2768             // Use the provided locale so that invocations of
2769             // localizedMagnitude() use optimizations for null.
2770             print(cal, c, l);
2771         }
2772 
2773         private void printCharacter(Object arg) throws IOException {
2774             if (arg == null) {
2775                 print("null");
2776                 return;
2777             }
2778             String s = null;
2779             if (arg instanceof Character) {
2780                 s = ((Character)arg).toString();
2781             } else if (arg instanceof Byte) {
2782                 byte i = ((Byte)arg).byteValue();
2783                 if (Character.isValidCodePoint(i))
2784                     s = new String(Character.toChars(i));
2785                 else
2786                     throw new IllegalFormatCodePointException(i);
2787             } else if (arg instanceof Short) {
2788                 short i = ((Short)arg).shortValue();
2789                 if (Character.isValidCodePoint(i))
2790                     s = new String(Character.toChars(i));
2791                 else
2792                     throw new IllegalFormatCodePointException(i);
2793             } else if (arg instanceof Integer) {
2794                 int i = ((Integer)arg).intValue();
2795                 if (Character.isValidCodePoint(i))
2796                     s = new String(Character.toChars(i));
2797                 else
2798                     throw new IllegalFormatCodePointException(i);
2799             } else {
2800                 failConversion(c, arg);
2801             }
2802             print(s);
2803         }
2804 
2805         private void printString(Object arg, Locale l) throws IOException {
2806             if (arg instanceof Formattable) {
2807                 Formatter fmt = Formatter.this;
2808                 if (fmt.locale() != l)
2809                     fmt = new Formatter(fmt.out(), l);
2810                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2811             } else {
2812                 if (f.contains(Flags.ALTERNATE))
2813                     failMismatch(Flags.ALTERNATE, 's');
2814                 if (arg == null)
2815                     print("null");
2816                 else
2817                     print(arg.toString());
2818             }
2819         }
2820 
2821         private void printBoolean(Object arg) throws IOException {
2822             String s;
2823             if (arg != null)
2824                 s = ((arg instanceof Boolean)
2825                      ? ((Boolean)arg).toString()
2826                      : Boolean.toString(true));
2827             else
2828                 s = Boolean.toString(false);
2829             print(s);
2830         }
2831 
2832         private void printHashCode(Object arg) throws IOException {
2833             String s = (arg == null
2834                         ? "null"
2835                         : Integer.toHexString(arg.hashCode()));
2836             print(s);
2837         }
2838 
2839         private void print(String s) throws IOException {
2840             if (precision != -1 && precision < s.length())
2841                 s = s.substring(0, precision);
2842             if (f.contains(Flags.UPPERCASE))
2843                 s = s.toUpperCase();
2844             a.append(justify(s));
2845         }
2846 
2847         private String justify(String s) {
2848             if (width == -1)
2849                 return s;
2850             StringBuilder sb = new StringBuilder();
2851             boolean pad = f.contains(Flags.LEFT_JUSTIFY);
2852             int sp = width - s.length();
2853             if (!pad)
2854                 for (int i = 0; i < sp; i++) sb.append(' ');
2855             sb.append(s);
2856             if (pad)
2857                 for (int i = 0; i < sp; i++) sb.append(' ');
2858             return sb.toString();
2859         }
2860 
2861         public String toString() {
2862             StringBuilder sb = new StringBuilder('%');
2863             // Flags.UPPERCASE is set internally for legal conversions.
2864             Flags dupf = f.dup().remove(Flags.UPPERCASE);
2865             sb.append(dupf.toString());
2866             if (index > 0)
2867                 sb.append(index).append('$');
2868             if (width != -1)
2869                 sb.append(width);
2870             if (precision != -1)
2871                 sb.append('.').append(precision);
2872             if (dt)
2873                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2874             sb.append(f.contains(Flags.UPPERCASE)
2875                       ? Character.toUpperCase(c) : c);
2876             return sb.toString();
2877         }
2878 
2879         private void checkGeneral() {
2880             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2881                 && f.contains(Flags.ALTERNATE))
2882                 failMismatch(Flags.ALTERNATE, c);
2883             // '-' requires a width
2884             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2885                 throw new MissingFormatWidthException(toString());
2886             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2887                           Flags.GROUP, Flags.PARENTHESES);
2888         }
2889 
2890         private void checkDateTime() {
2891             if (precision != -1)
2892                 throw new IllegalFormatPrecisionException(precision);
2893             if (!DateTime.isValid(c))
2894                 throw new UnknownFormatConversionException("t" + c);
2895             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2896                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2897             // '-' requires a width
2898             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2899                 throw new MissingFormatWidthException(toString());
2900         }
2901 
2902         private void checkCharacter() {
2903             if (precision != -1)
2904                 throw new IllegalFormatPrecisionException(precision);
2905             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2906                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2907             // '-' requires a width
2908             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2909                 throw new MissingFormatWidthException(toString());
2910         }
2911 
2912         private void checkInteger() {
2913             checkNumeric();
2914             if (precision != -1)
2915                 throw new IllegalFormatPrecisionException(precision);
2916 
2917             if (c == Conversion.DECIMAL_INTEGER)
2918                 checkBadFlags(Flags.ALTERNATE);
2919             else if (c == Conversion.OCTAL_INTEGER)
2920                 checkBadFlags(Flags.GROUP);
2921             else
2922                 checkBadFlags(Flags.GROUP);
2923         }
2924 
2925         private void checkBadFlags(Flags ... badFlags) {
2926             for (int i = 0; i < badFlags.length; i++)
2927                 if (f.contains(badFlags[i]))
2928                     failMismatch(badFlags[i], c);
2929         }
2930 
2931         private void checkFloat() {
2932             checkNumeric();
2933             if (c == Conversion.DECIMAL_FLOAT) {
2934             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
2935                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
2936             } else if (c == Conversion.SCIENTIFIC) {
2937                 checkBadFlags(Flags.GROUP);
2938             } else if (c == Conversion.GENERAL) {
2939                 checkBadFlags(Flags.ALTERNATE);
2940             }
2941         }
2942 
2943         private void checkNumeric() {
2944             if (width != -1 && width < 0)
2945                 throw new IllegalFormatWidthException(width);
2946 
2947             if (precision != -1 && precision < 0)
2948                 throw new IllegalFormatPrecisionException(precision);
2949 
2950             // '-' and '0' require a width
2951             if (width == -1
2952                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
2953                 throw new MissingFormatWidthException(toString());
2954 
2955             // bad combination
2956             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
2957                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
2958                 throw new IllegalFormatFlagsException(f.toString());
2959         }
2960 
2961         private void checkText() {
2962             if (precision != -1)
2963                 throw new IllegalFormatPrecisionException(precision);
2964             switch (c) {
2965             case Conversion.PERCENT_SIGN:
2966                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
2967                     && f.valueOf() != Flags.NONE.valueOf())
2968                     throw new IllegalFormatFlagsException(f.toString());
2969                 // '-' requires a width
2970                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2971                     throw new MissingFormatWidthException(toString());
2972                 break;
2973             case Conversion.LINE_SEPARATOR:
2974                 if (width != -1)
2975                     throw new IllegalFormatWidthException(width);
2976                 if (f.valueOf() != Flags.NONE.valueOf())
2977                     throw new IllegalFormatFlagsException(f.toString());
2978                 break;
2979             default:
2980                 assert false;
2981             }
2982         }
2983 
2984         private void print(byte value, Locale l) throws IOException {
2985             long v = value;
2986             if (value < 0
2987                 && (c == Conversion.OCTAL_INTEGER
2988                     || c == Conversion.HEXADECIMAL_INTEGER)) {
2989                 v += (1L << 8);
2990                 assert v >= 0 : v;
2991             }
2992             print(v, l);
2993         }
2994 
2995         private void print(short value, Locale l) throws IOException {
2996             long v = value;
2997             if (value < 0
2998                 && (c == Conversion.OCTAL_INTEGER
2999                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3000                 v += (1L << 16);
3001                 assert v >= 0 : v;
3002             }
3003             print(v, l);
3004         }
3005 
3006         private void print(int value, Locale l) throws IOException {
3007             long v = value;
3008             if (value < 0
3009                 && (c == Conversion.OCTAL_INTEGER
3010                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3011                 v += (1L << 32);
3012                 assert v >= 0 : v;
3013             }
3014             print(v, l);
3015         }
3016 
3017         private void print(long value, Locale l) throws IOException {
3018 
3019             StringBuilder sb = new StringBuilder();
3020 
3021             if (c == Conversion.DECIMAL_INTEGER) {
3022                 boolean neg = value < 0;
3023                 char[] va;
3024                 if (value < 0)
3025                     va = Long.toString(value, 10).substring(1).toCharArray();
3026                 else
3027                     va = Long.toString(value, 10).toCharArray();
3028 
3029                 // leading sign indicator
3030                 leadingSign(sb, neg);
3031 
3032                 // the value
3033                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3034 
3035                 // trailing sign indicator
3036                 trailingSign(sb, neg);
3037             } else if (c == Conversion.OCTAL_INTEGER) {
3038                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3039                               Flags.PLUS);
3040                 String s = Long.toOctalString(value);
3041                 int len = (f.contains(Flags.ALTERNATE)
3042                            ? s.length() + 1
3043                            : s.length());
3044 
3045                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3046                 if (f.contains(Flags.ALTERNATE))
3047                     sb.append('0');
3048                 if (f.contains(Flags.ZERO_PAD))
3049                     for (int i = 0; i < width - len; i++) sb.append('0');
3050                 sb.append(s);
3051             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3052                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3053                               Flags.PLUS);
3054                 String s = Long.toHexString(value);
3055                 int len = (f.contains(Flags.ALTERNATE)
3056                            ? s.length() + 2
3057                            : s.length());
3058 
3059                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3060                 if (f.contains(Flags.ALTERNATE))
3061                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3062                 if (f.contains(Flags.ZERO_PAD))
3063                     for (int i = 0; i < width - len; i++) sb.append('0');
3064                 if (f.contains(Flags.UPPERCASE))
3065                     s = s.toUpperCase();
3066                 sb.append(s);
3067             }
3068 
3069             // justify based on width
3070             a.append(justify(sb.toString()));
3071         }
3072 
3073         // neg := val < 0
3074         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3075             if (!neg) {
3076                 if (f.contains(Flags.PLUS)) {
3077                     sb.append('+');
3078                 } else if (f.contains(Flags.LEADING_SPACE)) {
3079                     sb.append(' ');
3080                 }
3081             } else {
3082                 if (f.contains(Flags.PARENTHESES))
3083                     sb.append('(');
3084                 else
3085                     sb.append('-');
3086             }
3087             return sb;
3088         }
3089 
3090         // neg := val < 0
3091         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3092             if (neg && f.contains(Flags.PARENTHESES))
3093                 sb.append(')');
3094             return sb;
3095         }
3096 
3097         private void print(BigInteger value, Locale l) throws IOException {
3098             StringBuilder sb = new StringBuilder();
3099             boolean neg = value.signum() == -1;
3100             BigInteger v = value.abs();
3101 
3102             // leading sign indicator
3103             leadingSign(sb, neg);
3104 
3105             // the value
3106             if (c == Conversion.DECIMAL_INTEGER) {
3107                 char[] va = v.toString().toCharArray();
3108                 localizedMagnitude(sb, va, f, adjustWidth(width, f, neg), l);
3109             } else if (c == Conversion.OCTAL_INTEGER) {
3110                 String s = v.toString(8);
3111 
3112                 int len = s.length() + sb.length();
3113                 if (neg && f.contains(Flags.PARENTHESES))
3114                     len++;
3115 
3116                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3117                 if (f.contains(Flags.ALTERNATE)) {
3118                     len++;
3119                     sb.append('0');
3120                 }
3121                 if (f.contains(Flags.ZERO_PAD)) {
3122                     for (int i = 0; i < width - len; i++)
3123                         sb.append('0');
3124                 }
3125                 sb.append(s);
3126             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3127                 String s = v.toString(16);
3128 
3129                 int len = s.length() + sb.length();
3130                 if (neg && f.contains(Flags.PARENTHESES))
3131                     len++;
3132 
3133                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3134                 if (f.contains(Flags.ALTERNATE)) {
3135                     len += 2;
3136                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3137                 }
3138                 if (f.contains(Flags.ZERO_PAD))
3139                     for (int i = 0; i < width - len; i++)
3140                         sb.append('0');
3141                 if (f.contains(Flags.UPPERCASE))
3142                     s = s.toUpperCase();
3143                 sb.append(s);
3144             }
3145 
3146             // trailing sign indicator
3147             trailingSign(sb, (value.signum() == -1));
3148 
3149             // justify based on width
3150             a.append(justify(sb.toString()));
3151         }
3152 
3153         private void print(float value, Locale l) throws IOException {
3154             print((double) value, l);
3155         }
3156 
3157         private void print(double value, Locale l) throws IOException {
3158             StringBuilder sb = new StringBuilder();
3159             boolean neg = Double.compare(value, 0.0) == -1;
3160 
3161             if (!Double.isNaN(value)) {
3162                 double v = Math.abs(value);
3163 
3164                 // leading sign indicator
3165                 leadingSign(sb, neg);
3166 
3167                 // the value
3168                 if (!Double.isInfinite(v))
3169                     print(sb, v, l, f, c, precision, neg);
3170                 else
3171                     sb.append(f.contains(Flags.UPPERCASE)
3172                               ? "INFINITY" : "Infinity");
3173 
3174                 // trailing sign indicator
3175                 trailingSign(sb, neg);
3176             } else {
3177                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3178             }
3179 
3180             // justify based on width
3181             a.append(justify(sb.toString()));
3182         }
3183 
3184         // !Double.isInfinite(value) && !Double.isNaN(value)
3185         private void print(StringBuilder sb, double value, Locale l,
3186                            Flags f, char c, int precision, boolean neg)
3187             throws IOException
3188         {
3189             if (c == Conversion.SCIENTIFIC) {
3190                 // Create a new FormattedFloatingDecimal with the desired
3191                 // precision.
3192                 int prec = (precision == -1 ? 6 : precision);
3193 
3194                 FormattedFloatingDecimal fd
3195                     = new FormattedFloatingDecimal(value, prec,
3196                         FormattedFloatingDecimal.Form.SCIENTIFIC);
3197 
3198                 char[] v = new char[MAX_FD_CHARS];
3199                 int len = fd.getChars(v);
3200 
3201                 char[] mant = addZeros(mantissa(v, len), prec);
3202 
3203                 // If the precision is zero and the '#' flag is set, add the
3204                 // requested decimal point.
3205                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3206                     mant = addDot(mant);
3207 
3208                 char[] exp = (value == 0.0)
3209                     ? new char[] {'+','0','0'} : exponent(v, len);
3210 
3211                 int newW = width;
3212                 if (width != -1)
3213                     newW = adjustWidth(width - exp.length - 1, f, neg);
3214                 localizedMagnitude(sb, mant, f, newW, l);
3215 
3216                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3217 
3218                 Flags flags = f.dup().remove(Flags.GROUP);
3219                 char sign = exp[0];
3220                 assert(sign == '+' || sign == '-');
3221                 sb.append(sign);
3222 
3223                 char[] tmp = new char[exp.length - 1];
3224                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3225                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3226             } else if (c == Conversion.DECIMAL_FLOAT) {
3227                 // Create a new FormattedFloatingDecimal with the desired
3228                 // precision.
3229                 int prec = (precision == -1 ? 6 : precision);
3230 
3231                 FormattedFloatingDecimal fd
3232                     = new FormattedFloatingDecimal(value, prec,
3233                         FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3234 
3235                 // MAX_FD_CHARS + 1 (round?)
3236                 char[] v = new char[MAX_FD_CHARS + 1
3237                                    + Math.abs(fd.getExponent())];
3238                 int len = fd.getChars(v);
3239 
3240                 char[] mant = addZeros(mantissa(v, len), prec);
3241 
3242                 // If the precision is zero and the '#' flag is set, add the
3243                 // requested decimal point.
3244                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3245                     mant = addDot(mant);
3246 
3247                 int newW = width;
3248                 if (width != -1)
3249                     newW = adjustWidth(width, f, neg);
3250                 localizedMagnitude(sb, mant, f, newW, l);
3251             } else if (c == Conversion.GENERAL) {
3252                 int prec = precision;
3253                 if (precision == -1)
3254                     prec = 6;
3255                 else if (precision == 0)
3256                     prec = 1;
3257 
3258                 FormattedFloatingDecimal fd
3259                     = new FormattedFloatingDecimal(value, prec,
3260                         FormattedFloatingDecimal.Form.GENERAL);
3261 
3262                 // MAX_FD_CHARS + 1 (round?)
3263                 char[] v = new char[MAX_FD_CHARS + 1
3264                                    + Math.abs(fd.getExponent())];
3265                 int len = fd.getChars(v);
3266 
3267                 char[] exp = exponent(v, len);
3268                 if (exp != null) {
3269                     prec -= 1;
3270                 } else {
3271                     prec = prec - (value == 0 ? 0 : fd.getExponentRounded()) - 1;
3272                 }
3273 
3274                 char[] mant = addZeros(mantissa(v, len), prec);
3275                 // If the precision is zero and the '#' flag is set, add the
3276                 // requested decimal point.
3277                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3278                     mant = addDot(mant);
3279 
3280                 int newW = width;
3281                 if (width != -1) {
3282                     if (exp != null)
3283                         newW = adjustWidth(width - exp.length - 1, f, neg);
3284                     else
3285                         newW = adjustWidth(width, f, neg);
3286                 }
3287                 localizedMagnitude(sb, mant, f, newW, l);
3288 
3289                 if (exp != null) {
3290                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3291 
3292                     Flags flags = f.dup().remove(Flags.GROUP);
3293                     char sign = exp[0];
3294                     assert(sign == '+' || sign == '-');
3295                     sb.append(sign);
3296 
3297                     char[] tmp = new char[exp.length - 1];
3298                     System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3299                     sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3300                 }
3301             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3302                 int prec = precision;
3303                 if (precision == -1)
3304                     // assume that we want all of the digits
3305                     prec = 0;
3306                 else if (precision == 0)
3307                     prec = 1;
3308 
3309                 String s = hexDouble(value, prec);
3310 
3311                 char[] va;
3312                 boolean upper = f.contains(Flags.UPPERCASE);
3313                 sb.append(upper ? "0X" : "0x");
3314 
3315                 if (f.contains(Flags.ZERO_PAD))
3316                     for (int i = 0; i < width - s.length() - 2; i++)
3317                         sb.append('0');
3318 
3319                 int idx = s.indexOf('p');
3320                 va = s.substring(0, idx).toCharArray();
3321                 if (upper) {
3322                     String tmp = new String(va);
3323                     // don't localize hex
3324                     tmp = tmp.toUpperCase(Locale.US);
3325                     va = tmp.toCharArray();
3326                 }
3327                 sb.append(prec != 0 ? addZeros(va, prec) : va);
3328                 sb.append(upper ? 'P' : 'p');
3329                 sb.append(s.substring(idx+1));
3330             }
3331         }
3332 
3333         private char[] mantissa(char[] v, int len) {
3334             int i;
3335             for (i = 0; i < len; i++) {
3336                 if (v[i] == 'e')
3337                     break;
3338             }
3339             char[] tmp = new char[i];
3340             System.arraycopy(v, 0, tmp, 0, i);
3341             return tmp;
3342         }
3343 
3344         private char[] exponent(char[] v, int len) {
3345             int i;
3346             for (i = len - 1; i >= 0; i--) {
3347                 if (v[i] == 'e')
3348                     break;
3349             }
3350             if (i == -1)
3351                 return null;
3352             char[] tmp = new char[len - i - 1];
3353             System.arraycopy(v, i + 1, tmp, 0, len - i - 1);
3354             return tmp;
3355         }
3356 
3357         // Add zeros to the requested precision.
3358         private char[] addZeros(char[] v, int prec) {
3359             // Look for the dot.  If we don't find one, the we'll need to add
3360             // it before we add the zeros.
3361             int i;
3362             for (i = 0; i < v.length; i++) {
3363                 if (v[i] == '.')
3364                     break;
3365             }
3366             boolean needDot = false;
3367             if (i == v.length) {
3368                 needDot = true;
3369             }
3370 
3371             // Determine existing precision.
3372             int outPrec = v.length - i - (needDot ? 0 : 1);
3373             assert (outPrec <= prec);
3374             if (outPrec == prec)
3375                 return v;
3376 
3377             // Create new array with existing contents.
3378             char[] tmp
3379                 = new char[v.length + prec - outPrec + (needDot ? 1 : 0)];
3380             System.arraycopy(v, 0, tmp, 0, v.length);
3381 
3382             // Add dot if previously determined to be necessary.
3383             int start = v.length;
3384             if (needDot) {
3385                 tmp[v.length] = '.';
3386                 start++;
3387             }
3388 
3389             // Add zeros.
3390             for (int j = start; j < tmp.length; j++)
3391                 tmp[j] = '0';
3392 
3393             return tmp;
3394         }
3395 
3396         // Method assumes that d > 0.
3397         private String hexDouble(double d, int prec) {
3398             // Let Double.toHexString handle simple cases
3399             if(!FpUtils.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13)
3400                 // remove "0x"
3401                 return Double.toHexString(d).substring(2);
3402             else {
3403                 assert(prec >= 1 && prec <= 12);
3404 
3405                 int exponent  = FpUtils.getExponent(d);
3406                 boolean subnormal
3407                     = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3408 
3409                 // If this is subnormal input so normalize (could be faster to
3410                 // do as integer operation).
3411                 if (subnormal) {
3412                     scaleUp = FpUtils.scalb(1.0, 54);
3413                     d *= scaleUp;
3414                     // Calculate the exponent.  This is not just exponent + 54
3415                     // since the former is not the normalized exponent.
3416                     exponent = FpUtils.getExponent(d);
3417                     assert exponent >= DoubleConsts.MIN_EXPONENT &&
3418                         exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3419                 }
3420 
3421                 int precision = 1 + prec*4;
3422                 int shiftDistance
3423                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3424                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3425 
3426                 long doppel = Double.doubleToLongBits(d);
3427                 // Deterime the number of bits to keep.
3428                 long newSignif
3429                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3430                                  | DoubleConsts.SIGNIF_BIT_MASK))
3431                                      >> shiftDistance;
3432                 // Bits to round away.
3433                 long roundingBits = doppel & ~(~0L << shiftDistance);
3434 
3435                 // To decide how to round, look at the low-order bit of the
3436                 // working significand, the highest order discarded bit (the
3437                 // round bit) and whether any of the lower order discarded bits
3438                 // are nonzero (the sticky bit).
3439 
3440                 boolean leastZero = (newSignif & 0x1L) == 0L;
3441                 boolean round
3442                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3443                 boolean sticky  = shiftDistance > 1 &&
3444                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3445                 if((leastZero && round && sticky) || (!leastZero && round)) {
3446                     newSignif++;
3447                 }
3448 
3449                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3450                 newSignif = signBit | (newSignif << shiftDistance);
3451                 double result = Double.longBitsToDouble(newSignif);
3452 
3453                 if (Double.isInfinite(result) ) {
3454                     // Infinite result generated by rounding
3455                     return "1.0p1024";
3456                 } else {
3457                     String res = Double.toHexString(result).substring(2);
3458                     if (!subnormal)
3459                         return res;
3460                     else {
3461                         // Create a normalized subnormal string.
3462                         int idx = res.indexOf('p');
3463                         if (idx == -1) {
3464                             // No 'p' character in hex string.
3465                             assert false;
3466                             return null;
3467                         } else {
3468                             // Get exponent and append at the end.
3469                             String exp = res.substring(idx + 1);
3470                             int iexp = Integer.parseInt(exp) -54;
3471                             return res.substring(0, idx) + "p"
3472                                 + Integer.toString(iexp);
3473                         }
3474                     }
3475                 }
3476             }
3477         }
3478 
3479         private void print(BigDecimal value, Locale l) throws IOException {
3480             if (c == Conversion.HEXADECIMAL_FLOAT)
3481                 failConversion(c, value);
3482             StringBuilder sb = new StringBuilder();
3483             boolean neg = value.signum() == -1;
3484             BigDecimal v = value.abs();
3485             // leading sign indicator
3486             leadingSign(sb, neg);
3487 
3488             // the value
3489             print(sb, v, l, f, c, precision, neg);
3490 
3491             // trailing sign indicator
3492             trailingSign(sb, neg);
3493 
3494             // justify based on width
3495             a.append(justify(sb.toString()));
3496         }
3497 
3498         // value > 0
3499         private void print(StringBuilder sb, BigDecimal value, Locale l,
3500                            Flags f, char c, int precision, boolean neg)
3501             throws IOException
3502         {
3503             if (c == Conversion.SCIENTIFIC) {
3504                 // Create a new BigDecimal with the desired precision.
3505                 int prec = (precision == -1 ? 6 : precision);
3506                 int scale = value.scale();
3507                 int origPrec = value.precision();
3508                 int nzeros = 0;
3509                 int compPrec;
3510 
3511                 if (prec > origPrec - 1) {
3512                     compPrec = origPrec;
3513                     nzeros = prec - (origPrec - 1);
3514                 } else {
3515                     compPrec = prec + 1;
3516                 }
3517 
3518                 MathContext mc = new MathContext(compPrec);
3519                 BigDecimal v
3520                     = new BigDecimal(value.unscaledValue(), scale, mc);
3521 
3522                 BigDecimalLayout bdl
3523                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3524                                            BigDecimalLayoutForm.SCIENTIFIC);
3525 
3526                 char[] mant = bdl.mantissa();
3527 
3528                 // Add a decimal point if necessary.  The mantissa may not
3529                 // contain a decimal point if the scale is zero (the internal
3530                 // representation has no fractional part) or the original
3531                 // precision is one. Append a decimal point if '#' is set or if
3532                 // we require zero padding to get to the requested precision.
3533                 if ((origPrec == 1 || !bdl.hasDot())
3534                     && (nzeros > 0 || (f.contains(Flags.ALTERNATE))))
3535                     mant = addDot(mant);
3536 
3537                 // Add trailing zeros in the case precision is greater than
3538                 // the number of available digits after the decimal separator.
3539                 mant = trailingZeros(mant, nzeros);
3540 
3541                 char[] exp = bdl.exponent();
3542                 int newW = width;
3543                 if (width != -1)
3544                     newW = adjustWidth(width - exp.length - 1, f, neg);
3545                 localizedMagnitude(sb, mant, f, newW, l);
3546 
3547                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3548 
3549                 Flags flags = f.dup().remove(Flags.GROUP);
3550                 char sign = exp[0];
3551                 assert(sign == '+' || sign == '-');
3552                 sb.append(exp[0]);
3553 
3554                 char[] tmp = new char[exp.length - 1];
3555                 System.arraycopy(exp, 1, tmp, 0, exp.length - 1);
3556                 sb.append(localizedMagnitude(null, tmp, flags, -1, l));
3557             } else if (c == Conversion.DECIMAL_FLOAT) {
3558                 // Create a new BigDecimal with the desired precision.
3559                 int prec = (precision == -1 ? 6 : precision);
3560                 int scale = value.scale();
3561 
3562                 if (scale > prec) {
3563                     // more "scale" digits than the requested "precision
3564                     int compPrec = value.precision();
3565                     if (compPrec <= scale) {
3566                         // case of 0.xxxxxx
3567                         value = value.setScale(prec, RoundingMode.HALF_UP);
3568                     } else {
3569                         compPrec -= (scale - prec);
3570                         value = new BigDecimal(value.unscaledValue(),
3571                                                scale,
3572                                                new MathContext(compPrec));
3573                     }
3574                 }
3575                 BigDecimalLayout bdl = new BigDecimalLayout(
3576                                            value.unscaledValue(),
3577                                            value.scale(),
3578                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3579 
3580                 char mant[] = bdl.mantissa();
3581                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3582 
3583                 // Add a decimal point if necessary.  The mantissa may not
3584                 // contain a decimal point if the scale is zero (the internal
3585                 // representation has no fractional part).  Append a decimal
3586                 // point if '#' is set or we require zero padding to get to the
3587                 // requested precision.
3588                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE) || nzeros > 0))
3589                     mant = addDot(bdl.mantissa());
3590 
3591                 // Add trailing zeros if the precision is greater than the
3592                 // number of available digits after the decimal separator.
3593                 mant = trailingZeros(mant, nzeros);
3594 
3595                 localizedMagnitude(sb, mant, f, adjustWidth(width, f, neg), l);
3596             } else if (c == Conversion.GENERAL) {
3597                 int prec = precision;
3598                 if (precision == -1)
3599                     prec = 6;
3600                 else if (precision == 0)
3601                     prec = 1;
3602 
3603                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3604                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3605                 if ((value.equals(BigDecimal.ZERO))
3606                     || ((value.compareTo(tenToTheNegFour) != -1)
3607                         && (value.compareTo(tenToThePrec) == -1))) {
3608 
3609                     int e = - value.scale()
3610                         + (value.unscaledValue().toString().length() - 1);
3611 
3612                     // xxx.yyy
3613                     //   g precision (# sig digits) = #x + #y
3614                     //   f precision = #y
3615                     //   exponent = #x - 1
3616                     // => f precision = g precision - exponent - 1
3617                     // 0.000zzz
3618                     //   g precision (# sig digits) = #z
3619                     //   f precision = #0 (after '.') + #z
3620                     //   exponent = - #0 (after '.') - 1
3621                     // => f precision = g precision - exponent - 1
3622                     prec = prec - e - 1;
3623 
3624                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3625                           neg);
3626                 } else {
3627                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3628                 }
3629             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3630                 // This conversion isn't supported.  The error should be
3631                 // reported earlier.
3632                 assert false;
3633             }
3634         }
3635 
3636         private class BigDecimalLayout {
3637             private StringBuilder mant;
3638             private StringBuilder exp;
3639             private boolean dot = false;
3640             private int scale;
3641 
3642             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3643                 layout(intVal, scale, form);
3644             }
3645 
3646             public boolean hasDot() {
3647                 return dot;
3648             }
3649 
3650             public int scale() {
3651                 return scale;
3652             }
3653 
3654             // char[] with canonical string representation
3655             public char[] layoutChars() {
3656                 StringBuilder sb = new StringBuilder(mant);
3657                 if (exp != null) {
3658                     sb.append('E');
3659                     sb.append(exp);
3660                 }
3661                 return toCharArray(sb);
3662             }
3663 
3664             public char[] mantissa() {
3665                 return toCharArray(mant);
3666             }
3667 
3668             // The exponent will be formatted as a sign ('+' or '-') followed
3669             // by the exponent zero-padded to include at least two digits.
3670             public char[] exponent() {
3671                 return toCharArray(exp);
3672             }
3673 
3674             private char[] toCharArray(StringBuilder sb) {
3675                 if (sb == null)
3676                     return null;
3677                 char[] result = new char[sb.length()];
3678                 sb.getChars(0, result.length, result, 0);
3679                 return result;
3680             }
3681 
3682             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3683                 char coeff[] = intVal.toString().toCharArray();
3684                 this.scale = scale;
3685 
3686                 // Construct a buffer, with sufficient capacity for all cases.
3687                 // If E-notation is needed, length will be: +1 if negative, +1
3688                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3689                 // exponent.  Otherwise it could have +1 if negative, plus
3690                 // leading "0.00000"
3691                 mant = new StringBuilder(coeff.length + 14);
3692 
3693                 if (scale == 0) {
3694                     int len = coeff.length;
3695                     if (len > 1) {
3696                         mant.append(coeff[0]);
3697                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3698                             mant.append('.');
3699                             dot = true;
3700                             mant.append(coeff, 1, len - 1);
3701                             exp = new StringBuilder("+");
3702                             if (len < 10)
3703                                 exp.append("0").append(len - 1);
3704                             else
3705                                 exp.append(len - 1);
3706                         } else {
3707                             mant.append(coeff, 1, len - 1);
3708                         }
3709                     } else {
3710                         mant.append(coeff);
3711                         if (form == BigDecimalLayoutForm.SCIENTIFIC)
3712                             exp = new StringBuilder("+00");
3713                     }
3714                     return;
3715                 }
3716                 long adjusted = -(long) scale + (coeff.length - 1);
3717                 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3718                     // count of padding zeros
3719                     int pad = scale - coeff.length;
3720                     if (pad >= 0) {
3721                         // 0.xxx form
3722                         mant.append("0.");
3723                         dot = true;
3724                         for (; pad > 0 ; pad--) mant.append('0');
3725                         mant.append(coeff);
3726                     } else {
3727                         if (-pad < coeff.length) {
3728                             // xx.xx form
3729                             mant.append(coeff, 0, -pad);
3730                             mant.append('.');
3731                             dot = true;
3732                             mant.append(coeff, -pad, scale);
3733                         } else {
3734                             // xx form
3735                             mant.append(coeff, 0, coeff.length);
3736                             for (int i = 0; i < -scale; i++)
3737                                 mant.append('0');
3738                             this.scale = 0;
3739                         }
3740                     }
3741                 } else {
3742                     // x.xxx form
3743                     mant.append(coeff[0]);
3744                     if (coeff.length > 1) {
3745                         mant.append('.');
3746                         dot = true;
3747                         mant.append(coeff, 1, coeff.length-1);
3748                     }
3749                     exp = new StringBuilder();
3750                     if (adjusted != 0) {
3751                         long abs = Math.abs(adjusted);
3752                         // require sign
3753                         exp.append(adjusted < 0 ? '-' : '+');
3754                         if (abs < 10)
3755                             exp.append('0');
3756                         exp.append(abs);
3757                     } else {
3758                         exp.append("+00");
3759                     }
3760                 }
3761             }
3762         }
3763 
3764         private int adjustWidth(int width, Flags f, boolean neg) {
3765             int newW = width;
3766             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3767                 newW--;
3768             return newW;
3769         }
3770 
3771         // Add a '.' to th mantissa if required
3772         private char[] addDot(char[] mant) {
3773             char[] tmp = mant;
3774             tmp = new char[mant.length + 1];
3775             System.arraycopy(mant, 0, tmp, 0, mant.length);
3776             tmp[tmp.length - 1] = '.';
3777             return tmp;
3778         }
3779 
3780         // Add trailing zeros in the case precision is greater than the number
3781         // of available digits after the decimal separator.
3782         private char[] trailingZeros(char[] mant, int nzeros) {
3783             char[] tmp = mant;
3784             if (nzeros > 0) {
3785                 tmp = new char[mant.length + nzeros];
3786                 System.arraycopy(mant, 0, tmp, 0, mant.length);
3787                 for (int i = mant.length; i < tmp.length; i++)
3788                     tmp[i] = '0';
3789             }
3790             return tmp;
3791         }
3792 
3793         private void print(Calendar t, char c, Locale l)  throws IOException
3794         {
3795             StringBuilder sb = new StringBuilder();
3796             print(sb, t, c, l);
3797 
3798             // justify based on width
3799             String s = justify(sb.toString());
3800             if (f.contains(Flags.UPPERCASE))
3801                 s = s.toUpperCase();
3802 
3803             a.append(s);
3804         }
3805 
3806         private Appendable print(StringBuilder sb, Calendar t, char c,
3807                                  Locale l)
3808             throws IOException
3809         {
3810             assert(width == -1);
3811             if (sb == null)
3812                 sb = new StringBuilder();
3813             switch (c) {
3814             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3815             case DateTime.HOUR_0:        // 'I' (01 - 12)
3816             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3817             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3818                 int i = t.get(Calendar.HOUR_OF_DAY);
3819                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3820                     i = (i == 0 || i == 12 ? 12 : i % 12);
3821                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3822                                || c == DateTime.HOUR_0
3823                                ? Flags.ZERO_PAD
3824                                : Flags.NONE);
3825                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3826                 break;
3827             }
3828             case DateTime.MINUTE:      { // 'M' (00 - 59)
3829                 int i = t.get(Calendar.MINUTE);
3830                 Flags flags = Flags.ZERO_PAD;
3831                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3832                 break;
3833             }
3834             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3835                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3836                 Flags flags = Flags.ZERO_PAD;
3837                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3838                 break;
3839             }
3840             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3841                 int i = t.get(Calendar.MILLISECOND);
3842                 Flags flags = Flags.ZERO_PAD;
3843                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3844                 break;
3845             }
3846             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3847                 long i = t.getTimeInMillis();
3848                 Flags flags = Flags.NONE;
3849                 sb.append(localizedMagnitude(null, i, flags, width, l));
3850                 break;
3851             }
3852             case DateTime.AM_PM:       { // 'p' (am or pm)
3853                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3854                 String[] ampm = { "AM", "PM" };
3855                 if (l != null && l != Locale.US) {
3856                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3857                     ampm = dfs.getAmPmStrings();
3858                 }
3859                 String s = ampm[t.get(Calendar.AM_PM)];
3860                 sb.append(s.toLowerCase(l != null ? l : Locale.US));
3861                 break;
3862             }
3863             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3864                 long i = t.getTimeInMillis() / 1000;
3865                 Flags flags = Flags.NONE;
3866                 sb.append(localizedMagnitude(null, i, flags, width, l));
3867                 break;
3868             }
3869             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3870                 int i = t.get(Calendar.SECOND);
3871                 Flags flags = Flags.ZERO_PAD;
3872                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3873                 break;
3874             }
3875             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3876                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3877                 boolean neg = i < 0;
3878                 sb.append(neg ? '-' : '+');
3879                 if (neg)
3880                     i = -i;
3881                 int min = i / 60000;
3882                 // combine minute and hour into a single integer
3883                 int offset = (min / 60) * 100 + (min % 60);
3884                 Flags flags = Flags.ZERO_PAD;
3885 
3886                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3887                 break;
3888             }
3889             case DateTime.ZONE:        { // 'Z' (symbol)
3890                 TimeZone tz = t.getTimeZone();
3891                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3892                                            TimeZone.SHORT,
3893                                             (l == null) ? Locale.US : l));
3894                 break;
3895             }
3896 
3897             // Date
3898             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3899             case DateTime.NAME_OF_DAY:          { // 'A'
3900                 int i = t.get(Calendar.DAY_OF_WEEK);
3901                 Locale lt = ((l == null) ? Locale.US : l);
3902                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3903                 if (c == DateTime.NAME_OF_DAY)
3904                     sb.append(dfs.getWeekdays()[i]);
3905                 else
3906                     sb.append(dfs.getShortWeekdays()[i]);
3907                 break;
3908             }
3909             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3910             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3911             case DateTime.NAME_OF_MONTH:        { // 'B'
3912                 int i = t.get(Calendar.MONTH);
3913                 Locale lt = ((l == null) ? Locale.US : l);
3914                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3915                 if (c == DateTime.NAME_OF_MONTH)
3916                     sb.append(dfs.getMonths()[i]);
3917                 else
3918                     sb.append(dfs.getShortMonths()[i]);
3919                 break;
3920             }
3921             case DateTime.CENTURY:                // 'C' (00 - 99)
3922             case DateTime.YEAR_2:                 // 'y' (00 - 99)
3923             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3924                 int i = t.get(Calendar.YEAR);
3925                 int size = 2;
3926                 switch (c) {
3927                 case DateTime.CENTURY:
3928                     i /= 100;
3929                     break;
3930                 case DateTime.YEAR_2:
3931                     i %= 100;
3932                     break;
3933                 case DateTime.YEAR_4:
3934                     size = 4;
3935                     break;
3936                 }
3937                 Flags flags = Flags.ZERO_PAD;
3938                 sb.append(localizedMagnitude(null, i, flags, size, l));
3939                 break;
3940             }
3941             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
3942             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
3943                 int i = t.get(Calendar.DATE);
3944                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
3945                                ? Flags.ZERO_PAD
3946                                : Flags.NONE);
3947                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3948                 break;
3949             }
3950             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
3951                 int i = t.get(Calendar.DAY_OF_YEAR);
3952                 Flags flags = Flags.ZERO_PAD;
3953                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3954                 break;
3955             }
3956             case DateTime.MONTH:                { // 'm' (01 - 12)
3957                 int i = t.get(Calendar.MONTH) + 1;
3958                 Flags flags = Flags.ZERO_PAD;
3959                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3960                 break;
3961             }
3962 
3963             // Composites
3964             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
3965             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
3966                 char sep = ':';
3967                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
3968                 print(sb, t, DateTime.MINUTE, l);
3969                 if (c == DateTime.TIME) {
3970                     sb.append(sep);
3971                     print(sb, t, DateTime.SECOND, l);
3972                 }
3973                 break;
3974             }
3975             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
3976                 char sep = ':';
3977                 print(sb, t, DateTime.HOUR_0, l).append(sep);
3978                 print(sb, t, DateTime.MINUTE, l).append(sep);
3979                 print(sb, t, DateTime.SECOND, l).append(' ');
3980                 // this may be in wrong place for some locales
3981                 StringBuilder tsb = new StringBuilder();
3982                 print(tsb, t, DateTime.AM_PM, l);
3983                 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
3984                 break;
3985             }
3986             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
3987                 char sep = ' ';
3988                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
3989                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
3990                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
3991                 print(sb, t, DateTime.TIME, l).append(sep);
3992                 print(sb, t, DateTime.ZONE, l).append(sep);
3993                 print(sb, t, DateTime.YEAR_4, l);
3994                 break;
3995             }
3996             case DateTime.DATE:            { // 'D' (mm/dd/yy)
3997                 char sep = '/';
3998                 print(sb, t, DateTime.MONTH, l).append(sep);
3999                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4000                 print(sb, t, DateTime.YEAR_2, l);
4001                 break;
4002             }
4003             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4004                 char sep = '-';
4005                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4006                 print(sb, t, DateTime.MONTH, l).append(sep);
4007                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4008                 break;
4009             }
4010             default:
4011                 assert false;
4012             }
4013             return sb;
4014         }
4015 
4016         // -- Methods to support throwing exceptions --
4017 
4018         private void failMismatch(Flags f, char c) {
4019             String fs = f.toString();
4020             throw new FormatFlagsConversionMismatchException(fs, c);
4021         }
4022 
4023         private void failConversion(char c, Object arg) {
4024             throw new IllegalFormatConversionException(c, arg.getClass());
4025         }
4026 
4027         private char getZero(Locale l) {
4028             if ((l != null) &&  !l.equals(locale())) {
4029                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4030                 return dfs.getZeroDigit();
4031             }
4032             return zero;
4033         }
4034 
4035         private StringBuilder
4036             localizedMagnitude(StringBuilder sb, long value, Flags f,
4037                                int width, Locale l)
4038         {
4039             char[] va = Long.toString(value, 10).toCharArray();
4040             return localizedMagnitude(sb, va, f, width, l);
4041         }
4042 
4043         private StringBuilder
4044             localizedMagnitude(StringBuilder sb, char[] value, Flags f,
4045                                int width, Locale l)
4046         {
4047             if (sb == null)
4048                 sb = new StringBuilder();
4049             int begin = sb.length();
4050 
4051             char zero = getZero(l);
4052 
4053             // determine localized grouping separator and size
4054             char grpSep = '\0';
4055             int  grpSize = -1;
4056             char decSep = '\0';
4057 
4058             int len = value.length;
4059             int dot = len;
4060             for (int j = 0; j < len; j++) {
4061                 if (value[j] == '.') {
4062                     dot = j;
4063                     break;
4064                 }
4065             }
4066 
4067             if (dot < len) {
4068                 if (l == null || l.equals(Locale.US)) {
4069                     decSep  = '.';
4070                 } else {
4071                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4072                     decSep  = dfs.getDecimalSeparator();
4073                 }
4074             }
4075 
4076             if (f.contains(Flags.GROUP)) {
4077                 if (l == null || l.equals(Locale.US)) {
4078                     grpSep = ',';
4079                     grpSize = 3;
4080                 } else {
4081                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4082                     grpSep = dfs.getGroupingSeparator();
4083                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4084                     grpSize = df.getGroupingSize();
4085                 }
4086             }
4087 
4088             // localize the digits inserting group separators as necessary
4089             for (int j = 0; j < len; j++) {
4090                 if (j == dot) {
4091                     sb.append(decSep);
4092                     // no more group separators after the decimal separator
4093                     grpSep = '\0';
4094                     continue;
4095                 }
4096 
4097                 char c = value[j];
4098                 sb.append((char) ((c - '0') + zero));
4099                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1))
4100                     sb.append(grpSep);
4101             }
4102 
4103             // apply zero padding
4104             len = sb.length();
4105             if (width != -1 && f.contains(Flags.ZERO_PAD))
4106                 for (int k = 0; k < width - len; k++)
4107                     sb.insert(begin, zero);
4108 
4109             return sb;
4110         }
4111     }
4112 
4113     private static class Flags {
4114         private int flags;
4115 
4116         static final Flags NONE          = new Flags(0);      // ''
4117 
4118         // duplicate declarations from Formattable.java
4119         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4120         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4121         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4122 
4123         // numerics
4124         static final Flags PLUS          = new Flags(1<<3);   // '+'
4125         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4126         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4127         static final Flags GROUP         = new Flags(1<<6);   // ','
4128         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4129 
4130         // indexing
4131         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4132 
4133         private Flags(int f) {
4134             flags = f;
4135         }
4136 
4137         public int valueOf() {
4138             return flags;
4139         }
4140 
4141         public boolean contains(Flags f) {
4142             return (flags & f.valueOf()) == f.valueOf();
4143         }
4144 
4145         public Flags dup() {
4146             return new Flags(flags);
4147         }
4148 
4149         private Flags add(Flags f) {
4150             flags |= f.valueOf();
4151             return this;
4152         }
4153 
4154         public Flags remove(Flags f) {
4155             flags &= ~f.valueOf();
4156             return this;
4157         }
4158 
4159         public static Flags parse(String s) {
4160             char[] ca = s.toCharArray();
4161             Flags f = new Flags(0);
4162             for (int i = 0; i < ca.length; i++) {
4163                 Flags v = parse(ca[i]);
4164                 if (f.contains(v))
4165                     throw new DuplicateFormatFlagsException(v.toString());
4166                 f.add(v);
4167             }
4168             return f;
4169         }
4170 
4171         // parse those flags which may be provided by users
4172         private static Flags parse(char c) {
4173             switch (c) {
4174             case '-': return LEFT_JUSTIFY;
4175             case '#': return ALTERNATE;
4176             case '+': return PLUS;
4177             case ' ': return LEADING_SPACE;
4178             case '0': return ZERO_PAD;
4179             case ',': return GROUP;
4180             case '(': return PARENTHESES;
4181             case '<': return PREVIOUS;
4182             default:
4183                 throw new UnknownFormatFlagsException(String.valueOf(c));
4184             }
4185         }
4186 
4187         // Returns a string representation of the current {@code Flags}.
4188         public static String toString(Flags f) {
4189             return f.toString();
4190         }
4191 
4192         public String toString() {
4193             StringBuilder sb = new StringBuilder();
4194             if (contains(LEFT_JUSTIFY))  sb.append('-');
4195             if (contains(UPPERCASE))     sb.append('^');
4196             if (contains(ALTERNATE))     sb.append('#');
4197             if (contains(PLUS))          sb.append('+');
4198             if (contains(LEADING_SPACE)) sb.append(' ');
4199             if (contains(ZERO_PAD))      sb.append('0');
4200             if (contains(GROUP))         sb.append(',');
4201             if (contains(PARENTHESES))   sb.append('(');
4202             if (contains(PREVIOUS))      sb.append('<');
4203             return sb.toString();
4204         }
4205     }
4206 
4207     private static class Conversion {
4208         // Byte, Short, Integer, Long, BigInteger
4209         // (and associated primitives due to autoboxing)
4210         static final char DECIMAL_INTEGER     = 'd';
4211         static final char OCTAL_INTEGER       = 'o';
4212         static final char HEXADECIMAL_INTEGER = 'x';
4213         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4214 
4215         // Float, Double, BigDecimal
4216         // (and associated primitives due to autoboxing)
4217         static final char SCIENTIFIC          = 'e';
4218         static final char SCIENTIFIC_UPPER    = 'E';
4219         static final char GENERAL             = 'g';
4220         static final char GENERAL_UPPER       = 'G';
4221         static final char DECIMAL_FLOAT       = 'f';
4222         static final char HEXADECIMAL_FLOAT   = 'a';
4223         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4224 
4225         // Character, Byte, Short, Integer
4226         // (and associated primitives due to autoboxing)
4227         static final char CHARACTER           = 'c';
4228         static final char CHARACTER_UPPER     = 'C';
4229 
4230         // java.util.Date, java.util.Calendar, long
4231         static final char DATE_TIME           = 't';
4232         static final char DATE_TIME_UPPER     = 'T';
4233 
4234         // if (arg.TYPE != boolean) return boolean
4235         // if (arg != null) return true; else return false;
4236         static final char BOOLEAN             = 'b';
4237         static final char BOOLEAN_UPPER       = 'B';
4238         // if (arg instanceof Formattable) arg.formatTo()
4239         // else arg.toString();
4240         static final char STRING              = 's';
4241         static final char STRING_UPPER        = 'S';
4242         // arg.hashCode()
4243         static final char HASHCODE            = 'h';
4244         static final char HASHCODE_UPPER      = 'H';
4245 
4246         static final char LINE_SEPARATOR      = 'n';
4247         static final char PERCENT_SIGN        = '%';
4248 
4249         static boolean isValid(char c) {
4250             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4251                     || c == 't' || isCharacter(c));
4252         }
4253 
4254         // Returns true iff the Conversion is applicable to all objects.
4255         static boolean isGeneral(char c) {
4256             switch (c) {
4257             case BOOLEAN:
4258             case BOOLEAN_UPPER:
4259             case STRING:
4260             case STRING_UPPER:
4261             case HASHCODE:
4262             case HASHCODE_UPPER:
4263                 return true;
4264             default:
4265                 return false;
4266             }
4267         }
4268 
4269         // Returns true iff the Conversion is applicable to character.
4270         static boolean isCharacter(char c) {
4271             switch (c) {
4272             case CHARACTER:
4273             case CHARACTER_UPPER:
4274                 return true;
4275             default:
4276                 return false;
4277             }
4278         }
4279 
4280         // Returns true iff the Conversion is an integer type.
4281         static boolean isInteger(char c) {
4282             switch (c) {
4283             case DECIMAL_INTEGER:
4284             case OCTAL_INTEGER:
4285             case HEXADECIMAL_INTEGER:
4286             case HEXADECIMAL_INTEGER_UPPER:
4287                 return true;
4288             default:
4289                 return false;
4290             }
4291         }
4292 
4293         // Returns true iff the Conversion is a floating-point type.
4294         static boolean isFloat(char c) {
4295             switch (c) {
4296             case SCIENTIFIC:
4297             case SCIENTIFIC_UPPER:
4298             case GENERAL:
4299             case GENERAL_UPPER:
4300             case DECIMAL_FLOAT:
4301             case HEXADECIMAL_FLOAT:
4302             case HEXADECIMAL_FLOAT_UPPER:
4303                 return true;
4304             default:
4305                 return false;
4306             }
4307         }
4308 
4309         // Returns true iff the Conversion does not require an argument
4310         static boolean isText(char c) {
4311             switch (c) {
4312             case LINE_SEPARATOR:
4313             case PERCENT_SIGN:
4314                 return true;
4315             default:
4316                 return false;
4317             }
4318         }
4319     }
4320 
4321     private static class DateTime {
4322         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4323         static final char HOUR_0        = 'I'; // (01 - 12)
4324         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4325         static final char HOUR          = 'l'; // (1 - 12) -- like I
4326         static final char MINUTE        = 'M'; // (00 - 59)
4327         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4328         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4329         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4330         static final char AM_PM         = 'p'; // (am or pm)
4331         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4332         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4333         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4334         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4335         static final char ZONE          = 'Z'; // (symbol)
4336 
4337         // Date
4338         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4339         static final char NAME_OF_DAY           = 'A'; // 'A'
4340         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4341         static final char NAME_OF_MONTH         = 'B'; // 'B'
4342         static final char CENTURY               = 'C'; // (00 - 99)
4343         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4344         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4345 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4346 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4347         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4348         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4349         static final char MONTH                 = 'm'; // (01 - 12)
4350 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4351 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4352 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4353 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4354 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4355         static final char YEAR_2                = 'y'; // (00 - 99)
4356         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4357 
4358         // Composites
4359         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4360         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4361 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4362         static final char DATE_TIME             = 'c';
4363                                             // (Sat Nov 04 12:02:33 EST 1999)
4364         static final char DATE                  = 'D'; // (mm/dd/yy)
4365         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4366 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4367 
4368         static boolean isValid(char c) {
4369             switch (c) {
4370             case HOUR_OF_DAY_0:
4371             case HOUR_0:
4372             case HOUR_OF_DAY:
4373             case HOUR:
4374             case MINUTE:
4375             case NANOSECOND:
4376             case MILLISECOND:
4377             case MILLISECOND_SINCE_EPOCH:
4378             case AM_PM:
4379             case SECONDS_SINCE_EPOCH:
4380             case SECOND:
4381             case TIME:
4382             case ZONE_NUMERIC:
4383             case ZONE:
4384 
4385             // Date
4386             case NAME_OF_DAY_ABBREV:
4387             case NAME_OF_DAY:
4388             case NAME_OF_MONTH_ABBREV:
4389             case NAME_OF_MONTH:
4390             case CENTURY:
4391             case DAY_OF_MONTH_0:
4392             case DAY_OF_MONTH:
4393 // *        case ISO_WEEK_OF_YEAR_2:
4394 // *        case ISO_WEEK_OF_YEAR_4:
4395             case NAME_OF_MONTH_ABBREV_X:
4396             case DAY_OF_YEAR:
4397             case MONTH:
4398 // *        case DAY_OF_WEEK_1:
4399 // *        case WEEK_OF_YEAR_SUNDAY:
4400 // *        case WEEK_OF_YEAR_MONDAY_01:
4401 // *        case DAY_OF_WEEK_0:
4402 // *        case WEEK_OF_YEAR_MONDAY:
4403             case YEAR_2:
4404             case YEAR_4:
4405 
4406             // Composites
4407             case TIME_12_HOUR:
4408             case TIME_24_HOUR:
4409 // *        case LOCALE_TIME:
4410             case DATE_TIME:
4411             case DATE:
4412             case ISO_STANDARD_DATE:
4413 // *        case LOCALE_DATE:
4414                 return true;
4415             default:
4416                 return false;
4417             }
4418         }
4419     }
4420 }