1 /*
   2  * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 /*
  27  *
  28  * (C) Copyright Taligent, Inc. 1996, 1997 - All Rights Reserved
  29  * (C) Copyright IBM Corp. 1996 - 2002 - All Rights Reserved
  30  *
  31  * The original version of this source code and documentation
  32  * is copyrighted and owned by Taligent, Inc., a wholly-owned
  33  * subsidiary of IBM. These materials are provided under terms
  34  * of a License Agreement between Taligent and Sun. This technology
  35  * is protected by multiple US and International patents.
  36  *
  37  * This notice and attribution to Taligent may not be removed.
  38  * Taligent is a registered trademark of Taligent, Inc.
  39  */
  40 package sun.util.locale.provider;
  41 
  42 import java.io.BufferedInputStream;
  43 import java.io.InputStream;
  44 import java.io.IOException;
  45 import java.lang.reflect.Module;
  46 import java.security.AccessController;
  47 import java.security.PrivilegedActionException;
  48 import java.security.PrivilegedExceptionAction;
  49 import java.util.MissingResourceException;
  50 import sun.text.CompactByteArray;
  51 import sun.text.SupplementaryCharacterData;
  52 
  53 /**
  54  * This is the class that represents the list of known words used by
  55  * DictionaryBasedBreakIterator.  The conceptual data structure used
  56  * here is a trie: there is a node hanging off the root node for every
  57  * letter that can start a word.  Each of these nodes has a node hanging
  58  * off of it for every letter that can be the second letter of a word
  59  * if this node is the first letter, and so on.  The trie is represented
  60  * as a two-dimensional array that can be treated as a table of state
  61  * transitions.  Indexes are used to compress this array, taking
  62  * advantage of the fact that this array will always be very sparse.
  63  */
  64 class BreakDictionary {
  65 
  66     //=========================================================================
  67     // data members
  68     //=========================================================================
  69 
  70     /**
  71       * The version of the dictionary that was read in.
  72       */
  73     private static int supportedVersion = 1;
  74 
  75     /**
  76      * Maps from characters to column numbers.  The main use of this is to
  77      * avoid making room in the array for empty columns.
  78      */
  79     private CompactByteArray columnMap = null;
  80     private SupplementaryCharacterData supplementaryCharColumnMap = null;
  81 
  82     /**
  83      * The number of actual columns in the table
  84      */
  85     private int numCols;
  86 
  87     /**
  88      * Columns are organized into groups of 32.  This says how many
  89      * column groups.  (We could calculate this, but we store the
  90      * value to avoid having to repeatedly calculate it.)
  91      */
  92     private int numColGroups;
  93 
  94     /**
  95      * The actual compressed state table.  Each conceptual row represents
  96      * a state, and the cells in it contain the row numbers of the states
  97      * to transition to for each possible letter.  0 is used to indicate
  98      * an illegal combination of letters (i.e., the error state).  The
  99      * table is compressed by eliminating all the unpopulated (i.e., zero)
 100      * cells.  Multiple conceptual rows can then be doubled up in a single
 101      * physical row by sliding them up and possibly shifting them to one
 102      * side or the other so the populated cells don't collide.  Indexes
 103      * are used to identify unpopulated cells and to locate populated cells.
 104      */
 105     private short[] table = null;
 106 
 107     /**
 108      * This index maps logical row numbers to physical row numbers
 109      */
 110     private short[] rowIndex = null;
 111 
 112     /**
 113      * A bitmap is used to tell which cells in the comceptual table are
 114      * populated.  This array contains all the unique bit combinations
 115      * in that bitmap.  If the table is more than 32 columns wide,
 116      * successive entries in this array are used for a single row.
 117      */
 118     private int[] rowIndexFlags = null;
 119 
 120     /**
 121      * This index maps from a logical row number into the bitmap table above.
 122      * (This keeps us from storing duplicate bitmap combinations.)  Since there
 123      * are a lot of rows with only one populated cell, instead of wasting space
 124      * in the bitmap table, we just store a negative number in this index for
 125      * rows with one populated cell.  The absolute value of that number is
 126      * the column number of the populated cell.
 127      */
 128     private short[] rowIndexFlagsIndex = null;
 129 
 130     /**
 131      * For each logical row, this index contains a constant that is added to
 132      * the logical column number to get the physical column number
 133      */
 134     private byte[] rowIndexShifts = null;
 135 
 136     //=========================================================================
 137     // deserialization
 138     //=========================================================================
 139 
 140     BreakDictionary(Module module, String dictionaryName)
 141         throws IOException, MissingResourceException {
 142 
 143         readDictionaryFile(module, dictionaryName);
 144     }
 145 
 146     private void readDictionaryFile(final Module module, final String dictionaryName)
 147         throws IOException, MissingResourceException {
 148 
 149         BufferedInputStream in;
 150         try {
 151             PrivilegedExceptionAction<BufferedInputStream> pa = () -> {
 152                 String pathName = "jdk.localedata".equals(module.getName()) ?
 153                      "sun/text/resources/ext/" :
 154                      "sun/text/resources/";
 155                 InputStream is = module.getResourceAsStream(pathName + dictionaryName);
 156                 if (is == null) {
 157                     // Try to load the file with "java.base" module instance. Assumption
 158                     // here is that the fall back data files to be read should reside in
 159                     // java.base.
 160                     is = BreakDictionary.class.getModule().getResourceAsStream("sun/text/resources/" + dictionaryName);
 161                 }
 162 
 163                 return new BufferedInputStream(is);
 164             };
 165             in = AccessController.doPrivileged(pa);
 166         }
 167         catch (PrivilegedActionException e) {
 168             throw new InternalError(e.toString(), e);
 169         }
 170 
 171         byte[] buf = new byte[8];
 172         if (in.read(buf) != 8) {
 173             throw new MissingResourceException("Wrong data length",
 174                                                dictionaryName, "");
 175         }
 176 
 177         // check version
 178         int version = RuleBasedBreakIterator.getInt(buf, 0);
 179         if (version != supportedVersion) {
 180             throw new MissingResourceException("Dictionary version(" + version + ") is unsupported",
 181                                                            dictionaryName, "");
 182         }
 183 
 184         // get data size
 185         int len = RuleBasedBreakIterator.getInt(buf, 4);
 186         buf = new byte[len];
 187         if (in.read(buf) != len) {
 188             throw new MissingResourceException("Wrong data length",
 189                                                dictionaryName, "");
 190         }
 191 
 192         // close the stream
 193         in.close();
 194 
 195         int l;
 196         int offset = 0;
 197 
 198         // read in the column map for BMP characteres (this is serialized in
 199         // its internal form: an index array followed by a data array)
 200         l = RuleBasedBreakIterator.getInt(buf, offset);
 201         offset += 4;
 202         short[] temp = new short[l];
 203         for (int i = 0; i < l; i++, offset+=2) {
 204             temp[i] = RuleBasedBreakIterator.getShort(buf, offset);
 205         }
 206         l = RuleBasedBreakIterator.getInt(buf, offset);
 207         offset += 4;
 208         byte[] temp2 = new byte[l];
 209         for (int i = 0; i < l; i++, offset++) {
 210             temp2[i] = buf[offset];
 211         }
 212         columnMap = new CompactByteArray(temp, temp2);
 213 
 214         // read in numCols and numColGroups
 215         numCols = RuleBasedBreakIterator.getInt(buf, offset);
 216         offset += 4;
 217         numColGroups = RuleBasedBreakIterator.getInt(buf, offset);
 218         offset += 4;
 219 
 220         // read in the row-number index
 221         l = RuleBasedBreakIterator.getInt(buf, offset);
 222         offset += 4;
 223         rowIndex = new short[l];
 224         for (int i = 0; i < l; i++, offset+=2) {
 225             rowIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
 226         }
 227 
 228         // load in the populated-cells bitmap: index first, then bitmap list
 229         l = RuleBasedBreakIterator.getInt(buf, offset);
 230         offset += 4;
 231         rowIndexFlagsIndex = new short[l];
 232         for (int i = 0; i < l; i++, offset+=2) {
 233             rowIndexFlagsIndex[i] = RuleBasedBreakIterator.getShort(buf, offset);
 234         }
 235         l = RuleBasedBreakIterator.getInt(buf, offset);
 236         offset += 4;
 237         rowIndexFlags = new int[l];
 238         for (int i = 0; i < l; i++, offset+=4) {
 239             rowIndexFlags[i] = RuleBasedBreakIterator.getInt(buf, offset);
 240         }
 241 
 242         // load in the row-shift index
 243         l = RuleBasedBreakIterator.getInt(buf, offset);
 244         offset += 4;
 245         rowIndexShifts = new byte[l];
 246         for (int i = 0; i < l; i++, offset++) {
 247             rowIndexShifts[i] = buf[offset];
 248         }
 249 
 250         // load in the actual state table
 251         l = RuleBasedBreakIterator.getInt(buf, offset);
 252         offset += 4;
 253         table = new short[l];
 254         for (int i = 0; i < l; i++, offset+=2) {
 255             table[i] = RuleBasedBreakIterator.getShort(buf, offset);
 256         }
 257 
 258         // finally, prepare the column map for supplementary characters
 259         l = RuleBasedBreakIterator.getInt(buf, offset);
 260         offset += 4;
 261         int[] temp3 = new int[l];
 262         for (int i = 0; i < l; i++, offset+=4) {
 263             temp3[i] = RuleBasedBreakIterator.getInt(buf, offset);
 264         }
 265         supplementaryCharColumnMap = new SupplementaryCharacterData(temp3);
 266     }
 267 
 268     //=========================================================================
 269     // access to the words
 270     //=========================================================================
 271 
 272     /**
 273      * Uses the column map to map the character to a column number, then
 274      * passes the row and column number to getNextState()
 275      * @param row The current state
 276      * @param ch The character whose column we're interested in
 277      * @return The new state to transition to
 278      */
 279     public final short getNextStateFromCharacter(int row, int ch) {
 280         int col;
 281         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
 282             col = columnMap.elementAt((char)ch);
 283         } else {
 284             col = supplementaryCharColumnMap.getValue(ch);
 285         }
 286         return getNextState(row, col);
 287     }
 288 
 289     /**
 290      * Returns the value in the cell with the specified (logical) row and
 291      * column numbers.  In DictionaryBasedBreakIterator, the row number is
 292      * a state number, the column number is an input, and the return value
 293      * is the row number of the new state to transition to.  (0 is the
 294      * "error" state, and -1 is the "end of word" state in a dictionary)
 295      * @param row The row number of the current state
 296      * @param col The column number of the input character (0 means "not a
 297      * dictionary character")
 298      * @return The row number of the new state to transition to
 299      */
 300     public final short getNextState(int row, int col) {
 301         if (cellIsPopulated(row, col)) {
 302             // we map from logical to physical row number by looking up the
 303             // mapping in rowIndex; we map from logical column number to
 304             // physical column number by looking up a shift value for this
 305             // logical row and offsetting the logical column number by
 306             // the shift amount.  Then we can use internalAt() to actually
 307             // get the value out of the table.
 308             return internalAt(rowIndex[row], col + rowIndexShifts[row]);
 309         }
 310         else {
 311             return 0;
 312         }
 313     }
 314 
 315     /**
 316      * Given (logical) row and column numbers, returns true if the
 317      * cell in that position is populated
 318      */
 319     private boolean cellIsPopulated(int row, int col) {
 320         // look up the entry in the bitmap index for the specified row.
 321         // If it's a negative number, it's the column number of the only
 322         // populated cell in the row
 323         if (rowIndexFlagsIndex[row] < 0) {
 324             return col == -rowIndexFlagsIndex[row];
 325         }
 326 
 327         // if it's a positive number, it's the offset of an entry in the bitmap
 328         // list.  If the table is more than 32 columns wide, the bitmap is stored
 329         // successive entries in the bitmap list, so we have to divide the column
 330         // number by 32 and offset the number we got out of the index by the result.
 331         // Once we have the appropriate piece of the bitmap, test the appropriate
 332         // bit and return the result.
 333         else {
 334             int flags = rowIndexFlags[rowIndexFlagsIndex[row] + (col >> 5)];
 335             return (flags & (1 << (col & 0x1f))) != 0;
 336         }
 337     }
 338 
 339     /**
 340      * Implementation of getNextState() when we know the specified cell is
 341      * populated.
 342      * @param row The PHYSICAL row number of the cell
 343      * @param col The PHYSICAL column number of the cell
 344      * @return The value stored in the cell
 345      */
 346     private short internalAt(int row, int col) {
 347         // the table is a one-dimensional array, so this just does the math necessary
 348         // to treat it as a two-dimensional array (we don't just use a two-dimensional
 349         // array because two-dimensional arrays are inefficient in Java)
 350         return table[row * numCols + col];
 351     }
 352 }