1 /*
   2  * Copyright (c) 1997, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_VM_VERSION_X86_HPP
  26 #define CPU_X86_VM_VM_VERSION_X86_HPP
  27 
  28 #include "runtime/globals_extension.hpp"
  29 #include "runtime/vm_version.hpp"
  30 
  31 class VM_Version : public Abstract_VM_Version {
  32 public:
  33   // cpuid result register layouts.  These are all unions of a uint32_t
  34   // (in case anyone wants access to the register as a whole) and a bitfield.
  35 
  36   union StdCpuid1Eax {
  37     uint32_t value;
  38     struct {
  39       uint32_t stepping   : 4,
  40                model      : 4,
  41                family     : 4,
  42                proc_type  : 2,
  43                           : 2,
  44                ext_model  : 4,
  45                ext_family : 8,
  46                           : 4;
  47     } bits;
  48   };
  49 
  50   union StdCpuid1Ebx { // example, unused
  51     uint32_t value;
  52     struct {
  53       uint32_t brand_id         : 8,
  54                clflush_size     : 8,
  55                threads_per_cpu  : 8,
  56                apic_id          : 8;
  57     } bits;
  58   };
  59 
  60   union StdCpuid1Ecx {
  61     uint32_t value;
  62     struct {
  63       uint32_t sse3     : 1,
  64                         : 2,
  65                monitor  : 1,
  66                         : 1,
  67                vmx      : 1,
  68                         : 1,
  69                est      : 1,
  70                         : 1,
  71                ssse3    : 1,
  72                cid      : 1,
  73                         : 2,
  74                cmpxchg16: 1,
  75                         : 4,
  76                dca      : 1,
  77                sse4_1   : 1,
  78                sse4_2   : 1,
  79                         : 2,
  80                popcnt   : 1,
  81                         : 3,
  82                osxsave  : 1,
  83                avx      : 1,
  84                         : 3;
  85     } bits;
  86   };
  87 
  88   union StdCpuid1Edx {
  89     uint32_t value;
  90     struct {
  91       uint32_t          : 4,
  92                tsc      : 1,
  93                         : 3,
  94                cmpxchg8 : 1,
  95                         : 6,
  96                cmov     : 1,
  97                         : 3,
  98                clflush  : 1,
  99                         : 3,
 100                mmx      : 1,
 101                fxsr     : 1,
 102                sse      : 1,
 103                sse2     : 1,
 104                         : 1,
 105                ht       : 1,
 106                         : 3;
 107     } bits;
 108   };
 109 
 110   union DcpCpuid4Eax {
 111     uint32_t value;
 112     struct {
 113       uint32_t cache_type    : 5,
 114                              : 21,
 115                cores_per_cpu : 6;
 116     } bits;
 117   };
 118 
 119   union DcpCpuid4Ebx {
 120     uint32_t value;
 121     struct {
 122       uint32_t L1_line_size  : 12,
 123                partitions    : 10,
 124                associativity : 10;
 125     } bits;
 126   };
 127 
 128   union TplCpuidBEbx {
 129     uint32_t value;
 130     struct {
 131       uint32_t logical_cpus : 16,
 132                             : 16;
 133     } bits;
 134   };
 135 
 136   union ExtCpuid1Ecx {
 137     uint32_t value;
 138     struct {
 139       uint32_t LahfSahf     : 1,
 140                CmpLegacy    : 1,
 141                             : 4,
 142                lzcnt        : 1,
 143                sse4a        : 1,
 144                misalignsse  : 1,
 145                prefetchw    : 1,
 146                             : 22;
 147     } bits;
 148   };
 149 
 150   union ExtCpuid1Edx {
 151     uint32_t value;
 152     struct {
 153       uint32_t           : 22,
 154                mmx_amd   : 1,
 155                mmx       : 1,
 156                fxsr      : 1,
 157                          : 4,
 158                long_mode : 1,
 159                tdnow2    : 1,
 160                tdnow     : 1;
 161     } bits;
 162   };
 163 
 164   union ExtCpuid5Ex {
 165     uint32_t value;
 166     struct {
 167       uint32_t L1_line_size : 8,
 168                L1_tag_lines : 8,
 169                L1_assoc     : 8,
 170                L1_size      : 8;
 171     } bits;
 172   };
 173 
 174   union ExtCpuid7Edx {
 175     uint32_t value;
 176     struct {
 177       uint32_t               : 8,
 178               tsc_invariance : 1,
 179                              : 23;
 180     } bits;
 181   };
 182 
 183   union ExtCpuid8Ecx {
 184     uint32_t value;
 185     struct {
 186       uint32_t cores_per_cpu : 8,
 187                              : 24;
 188     } bits;
 189   };
 190 
 191   union SefCpuid7Eax {
 192     uint32_t value;
 193   };
 194 
 195   union SefCpuid7Ebx {
 196     uint32_t value;
 197     struct {
 198       uint32_t fsgsbase : 1,
 199                         : 2,
 200                    bmi1 : 1,
 201                         : 1,
 202                    avx2 : 1,
 203                         : 2,
 204                    bmi2 : 1,
 205                         : 23;
 206     } bits;
 207   };
 208 
 209   union XemXcr0Eax {
 210     uint32_t value;
 211     struct {
 212       uint32_t x87 : 1,
 213                sse : 1,
 214                ymm : 1,
 215                    : 29;
 216     } bits;
 217   };
 218 
 219 protected:
 220   static int _cpu;
 221   static int _model;
 222   static int _stepping;
 223   static int _cpuFeatures;     // features returned by the "cpuid" instruction
 224                                // 0 if this instruction is not available
 225   static const char* _features_str;
 226 
 227   enum {
 228     CPU_CX8    = (1 << 0), // next bits are from cpuid 1 (EDX)
 229     CPU_CMOV   = (1 << 1),
 230     CPU_FXSR   = (1 << 2),
 231     CPU_HT     = (1 << 3),
 232     CPU_MMX    = (1 << 4),
 233     CPU_3DNOW_PREFETCH  = (1 << 5), // Processor supports 3dnow prefetch and prefetchw instructions
 234                                     // may not necessarily support other 3dnow instructions
 235     CPU_SSE    = (1 << 6),
 236     CPU_SSE2   = (1 << 7),
 237     CPU_SSE3   = (1 << 8), // SSE3 comes from cpuid 1 (ECX)
 238     CPU_SSSE3  = (1 << 9),
 239     CPU_SSE4A  = (1 << 10),
 240     CPU_SSE4_1 = (1 << 11),
 241     CPU_SSE4_2 = (1 << 12),
 242     CPU_POPCNT = (1 << 13),
 243     CPU_LZCNT  = (1 << 14),
 244     CPU_TSC    = (1 << 15),
 245     CPU_TSCINV = (1 << 16),
 246     CPU_AVX    = (1 << 17),
 247     CPU_AVX2   = (1 << 18)
 248   } cpuFeatureFlags;
 249 
 250   enum {
 251     // AMD
 252     CPU_FAMILY_AMD_11H       = 0x11,
 253     // Intel
 254     CPU_FAMILY_INTEL_CORE    = 6,
 255     CPU_MODEL_NEHALEM_EP     = 0x1a,
 256     CPU_MODEL_NEHALEM_EX     = 0x2e,
 257     CPU_MODEL_WESTMERE_EP    = 0x2c,
 258     CPU_MODEL_WESTMERE_EX    = 0x2f,
 259     CPU_MODEL_SANDYBRIDGE_EP = 0x2a,
 260     CPU_MODEL_SANDYBRIDGE_EXT= 0x2d, // Undocumented value
 261     CPU_MODEL_IVYBRIDGE_EP   = 0x3a
 262   } cpuExtendedFamily;
 263 
 264   // cpuid information block.  All info derived from executing cpuid with
 265   // various function numbers is stored here.  Intel and AMD info is
 266   // merged in this block: accessor methods disentangle it.
 267   //
 268   // The info block is laid out in subblocks of 4 dwords corresponding to
 269   // eax, ebx, ecx and edx, whether or not they contain anything useful.
 270   struct CpuidInfo {
 271     // cpuid function 0
 272     uint32_t std_max_function;
 273     uint32_t std_vendor_name_0;
 274     uint32_t std_vendor_name_1;
 275     uint32_t std_vendor_name_2;
 276 
 277     // cpuid function 1
 278     StdCpuid1Eax std_cpuid1_eax;
 279     StdCpuid1Ebx std_cpuid1_ebx;
 280     StdCpuid1Ecx std_cpuid1_ecx;
 281     StdCpuid1Edx std_cpuid1_edx;
 282 
 283     // cpuid function 4 (deterministic cache parameters)
 284     DcpCpuid4Eax dcp_cpuid4_eax;
 285     DcpCpuid4Ebx dcp_cpuid4_ebx;
 286     uint32_t     dcp_cpuid4_ecx; // unused currently
 287     uint32_t     dcp_cpuid4_edx; // unused currently
 288 
 289     // cpuid function 7 (structured extended features)
 290     SefCpuid7Eax sef_cpuid7_eax;
 291     SefCpuid7Ebx sef_cpuid7_ebx;
 292     uint32_t     sef_cpuid7_ecx; // unused currently
 293     uint32_t     sef_cpuid7_edx; // unused currently
 294 
 295     // cpuid function 0xB (processor topology)
 296     // ecx = 0
 297     uint32_t     tpl_cpuidB0_eax;
 298     TplCpuidBEbx tpl_cpuidB0_ebx;
 299     uint32_t     tpl_cpuidB0_ecx; // unused currently
 300     uint32_t     tpl_cpuidB0_edx; // unused currently
 301 
 302     // ecx = 1
 303     uint32_t     tpl_cpuidB1_eax;
 304     TplCpuidBEbx tpl_cpuidB1_ebx;
 305     uint32_t     tpl_cpuidB1_ecx; // unused currently
 306     uint32_t     tpl_cpuidB1_edx; // unused currently
 307 
 308     // ecx = 2
 309     uint32_t     tpl_cpuidB2_eax;
 310     TplCpuidBEbx tpl_cpuidB2_ebx;
 311     uint32_t     tpl_cpuidB2_ecx; // unused currently
 312     uint32_t     tpl_cpuidB2_edx; // unused currently
 313 
 314     // cpuid function 0x80000000 // example, unused
 315     uint32_t ext_max_function;
 316     uint32_t ext_vendor_name_0;
 317     uint32_t ext_vendor_name_1;
 318     uint32_t ext_vendor_name_2;
 319 
 320     // cpuid function 0x80000001
 321     uint32_t     ext_cpuid1_eax; // reserved
 322     uint32_t     ext_cpuid1_ebx; // reserved
 323     ExtCpuid1Ecx ext_cpuid1_ecx;
 324     ExtCpuid1Edx ext_cpuid1_edx;
 325 
 326     // cpuid functions 0x80000002 thru 0x80000004: example, unused
 327     uint32_t proc_name_0, proc_name_1, proc_name_2, proc_name_3;
 328     uint32_t proc_name_4, proc_name_5, proc_name_6, proc_name_7;
 329     uint32_t proc_name_8, proc_name_9, proc_name_10,proc_name_11;
 330 
 331     // cpuid function 0x80000005 // AMD L1, Intel reserved
 332     uint32_t     ext_cpuid5_eax; // unused currently
 333     uint32_t     ext_cpuid5_ebx; // reserved
 334     ExtCpuid5Ex  ext_cpuid5_ecx; // L1 data cache info (AMD)
 335     ExtCpuid5Ex  ext_cpuid5_edx; // L1 instruction cache info (AMD)
 336 
 337     // cpuid function 0x80000007
 338     uint32_t     ext_cpuid7_eax; // reserved
 339     uint32_t     ext_cpuid7_ebx; // reserved
 340     uint32_t     ext_cpuid7_ecx; // reserved
 341     ExtCpuid7Edx ext_cpuid7_edx; // tscinv
 342 
 343     // cpuid function 0x80000008
 344     uint32_t     ext_cpuid8_eax; // unused currently
 345     uint32_t     ext_cpuid8_ebx; // reserved
 346     ExtCpuid8Ecx ext_cpuid8_ecx;
 347     uint32_t     ext_cpuid8_edx; // reserved
 348 
 349     // extended control register XCR0 (the XFEATURE_ENABLED_MASK register)
 350     XemXcr0Eax   xem_xcr0_eax;
 351     uint32_t     xem_xcr0_edx; // reserved
 352   };
 353 
 354   // The actual cpuid info block
 355   static CpuidInfo _cpuid_info;
 356 
 357   // Extractors and predicates
 358   static uint32_t extended_cpu_family() {
 359     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.family;
 360     result += _cpuid_info.std_cpuid1_eax.bits.ext_family;
 361     return result;
 362   }
 363 
 364   static uint32_t extended_cpu_model() {
 365     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.model;
 366     result |= _cpuid_info.std_cpuid1_eax.bits.ext_model << 4;
 367     return result;
 368   }
 369 
 370   static uint32_t cpu_stepping() {
 371     uint32_t result = _cpuid_info.std_cpuid1_eax.bits.stepping;
 372     return result;
 373   }
 374 
 375   static uint logical_processor_count() {
 376     uint result = threads_per_core();
 377     return result;
 378   }
 379 
 380   static uint32_t feature_flags() {
 381     uint32_t result = 0;
 382     if (_cpuid_info.std_cpuid1_edx.bits.cmpxchg8 != 0)
 383       result |= CPU_CX8;
 384     if (_cpuid_info.std_cpuid1_edx.bits.cmov != 0)
 385       result |= CPU_CMOV;
 386     if (_cpuid_info.std_cpuid1_edx.bits.fxsr != 0 || (is_amd() &&
 387         _cpuid_info.ext_cpuid1_edx.bits.fxsr != 0))
 388       result |= CPU_FXSR;
 389     // HT flag is set for multi-core processors also.
 390     if (threads_per_core() > 1)
 391       result |= CPU_HT;
 392     if (_cpuid_info.std_cpuid1_edx.bits.mmx != 0 || (is_amd() &&
 393         _cpuid_info.ext_cpuid1_edx.bits.mmx != 0))
 394       result |= CPU_MMX;
 395     if (_cpuid_info.std_cpuid1_edx.bits.sse != 0)
 396       result |= CPU_SSE;
 397     if (_cpuid_info.std_cpuid1_edx.bits.sse2 != 0)
 398       result |= CPU_SSE2;
 399     if (_cpuid_info.std_cpuid1_ecx.bits.sse3 != 0)
 400       result |= CPU_SSE3;
 401     if (_cpuid_info.std_cpuid1_ecx.bits.ssse3 != 0)
 402       result |= CPU_SSSE3;
 403     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_1 != 0)
 404       result |= CPU_SSE4_1;
 405     if (_cpuid_info.std_cpuid1_ecx.bits.sse4_2 != 0)
 406       result |= CPU_SSE4_2;
 407     if (_cpuid_info.std_cpuid1_ecx.bits.popcnt != 0)
 408       result |= CPU_POPCNT;
 409     if (_cpuid_info.std_cpuid1_ecx.bits.avx != 0 &&
 410         _cpuid_info.std_cpuid1_ecx.bits.osxsave != 0 &&
 411         _cpuid_info.xem_xcr0_eax.bits.sse != 0 &&
 412         _cpuid_info.xem_xcr0_eax.bits.ymm != 0) {
 413       result |= CPU_AVX;
 414       if (_cpuid_info.sef_cpuid7_ebx.bits.avx2 != 0)
 415         result |= CPU_AVX2;
 416     }
 417     if (_cpuid_info.std_cpuid1_edx.bits.tsc != 0)
 418       result |= CPU_TSC;
 419     if (_cpuid_info.ext_cpuid7_edx.bits.tsc_invariance != 0)
 420       result |= CPU_TSCINV;
 421 
 422     // AMD features.
 423     if (is_amd()) {
 424       if ((_cpuid_info.ext_cpuid1_edx.bits.tdnow != 0) ||
 425           (_cpuid_info.ext_cpuid1_ecx.bits.prefetchw != 0))
 426         result |= CPU_3DNOW_PREFETCH;
 427       if (_cpuid_info.ext_cpuid1_ecx.bits.lzcnt != 0)
 428         result |= CPU_LZCNT;
 429       if (_cpuid_info.ext_cpuid1_ecx.bits.sse4a != 0)
 430         result |= CPU_SSE4A;
 431     }
 432 
 433     return result;
 434   }
 435 
 436   static void get_processor_features();
 437 
 438 public:
 439   // Offsets for cpuid asm stub
 440   static ByteSize std_cpuid0_offset() { return byte_offset_of(CpuidInfo, std_max_function); }
 441   static ByteSize std_cpuid1_offset() { return byte_offset_of(CpuidInfo, std_cpuid1_eax); }
 442   static ByteSize dcp_cpuid4_offset() { return byte_offset_of(CpuidInfo, dcp_cpuid4_eax); }
 443   static ByteSize sef_cpuid7_offset() { return byte_offset_of(CpuidInfo, sef_cpuid7_eax); }
 444   static ByteSize ext_cpuid1_offset() { return byte_offset_of(CpuidInfo, ext_cpuid1_eax); }
 445   static ByteSize ext_cpuid5_offset() { return byte_offset_of(CpuidInfo, ext_cpuid5_eax); }
 446   static ByteSize ext_cpuid7_offset() { return byte_offset_of(CpuidInfo, ext_cpuid7_eax); }
 447   static ByteSize ext_cpuid8_offset() { return byte_offset_of(CpuidInfo, ext_cpuid8_eax); }
 448   static ByteSize tpl_cpuidB0_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB0_eax); }
 449   static ByteSize tpl_cpuidB1_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB1_eax); }
 450   static ByteSize tpl_cpuidB2_offset() { return byte_offset_of(CpuidInfo, tpl_cpuidB2_eax); }
 451   static ByteSize xem_xcr0_offset() { return byte_offset_of(CpuidInfo, xem_xcr0_eax); }
 452 
 453   // Initialization
 454   static void initialize();
 455 
 456   // Asserts
 457   static void assert_is_initialized() {
 458     assert(_cpuid_info.std_cpuid1_eax.bits.family != 0, "VM_Version not initialized");
 459   }
 460 
 461   //
 462   // Processor family:
 463   //       3   -  386
 464   //       4   -  486
 465   //       5   -  Pentium
 466   //       6   -  PentiumPro, Pentium II, Celeron, Xeon, Pentium III, Athlon,
 467   //              Pentium M, Core Solo, Core Duo, Core2 Duo
 468   //    family 6 model:   9,        13,       14,        15
 469   //    0x0f   -  Pentium 4, Opteron
 470   //
 471   // Note: The cpu family should be used to select between
 472   //       instruction sequences which are valid on all Intel
 473   //       processors.  Use the feature test functions below to
 474   //       determine whether a particular instruction is supported.
 475   //
 476   static int  cpu_family()        { return _cpu;}
 477   static bool is_P6()             { return cpu_family() >= 6; }
 478   static bool is_amd()            { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x68747541; } // 'htuA'
 479   static bool is_intel()          { assert_is_initialized(); return _cpuid_info.std_vendor_name_0 == 0x756e6547; } // 'uneG'
 480 
 481   static bool supports_processor_topology() {
 482     return (_cpuid_info.std_max_function >= 0xB) &&
 483            // eax[4:0] | ebx[0:15] == 0 indicates invalid topology level.
 484            // Some cpus have max cpuid >= 0xB but do not support processor topology.
 485            ((_cpuid_info.tpl_cpuidB0_eax & 0x1f | _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus) != 0);
 486   }
 487 
 488   static uint cores_per_cpu()  {
 489     uint result = 1;
 490     if (is_intel()) {
 491       if (supports_processor_topology()) {
 492         result = _cpuid_info.tpl_cpuidB1_ebx.bits.logical_cpus /
 493                  _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 494       } else {
 495         result = (_cpuid_info.dcp_cpuid4_eax.bits.cores_per_cpu + 1);
 496       }
 497     } else if (is_amd()) {
 498       result = (_cpuid_info.ext_cpuid8_ecx.bits.cores_per_cpu + 1);
 499     }
 500     return result;
 501   }
 502 
 503   static uint threads_per_core()  {
 504     uint result = 1;
 505     if (is_intel() && supports_processor_topology()) {
 506       result = _cpuid_info.tpl_cpuidB0_ebx.bits.logical_cpus;
 507     } else if (_cpuid_info.std_cpuid1_edx.bits.ht != 0) {
 508       result = _cpuid_info.std_cpuid1_ebx.bits.threads_per_cpu /
 509                cores_per_cpu();
 510     }
 511     return result;
 512   }
 513 
 514   static intx prefetch_data_size()  {
 515     intx result = 0;
 516     if (is_intel()) {
 517       result = (_cpuid_info.dcp_cpuid4_ebx.bits.L1_line_size + 1);
 518     } else if (is_amd()) {
 519       result = _cpuid_info.ext_cpuid5_ecx.bits.L1_line_size;
 520     }
 521     if (result < 32) // not defined ?
 522       result = 32;   // 32 bytes by default on x86 and other x64
 523     return result;
 524   }
 525 
 526   //
 527   // Feature identification
 528   //
 529   static bool supports_cpuid()    { return _cpuFeatures  != 0; }
 530   static bool supports_cmpxchg8() { return (_cpuFeatures & CPU_CX8) != 0; }
 531   static bool supports_cmov()     { return (_cpuFeatures & CPU_CMOV) != 0; }
 532   static bool supports_fxsr()     { return (_cpuFeatures & CPU_FXSR) != 0; }
 533   static bool supports_ht()       { return (_cpuFeatures & CPU_HT) != 0; }
 534   static bool supports_mmx()      { return (_cpuFeatures & CPU_MMX) != 0; }
 535   static bool supports_sse()      { return (_cpuFeatures & CPU_SSE) != 0; }
 536   static bool supports_sse2()     { return (_cpuFeatures & CPU_SSE2) != 0; }
 537   static bool supports_sse3()     { return (_cpuFeatures & CPU_SSE3) != 0; }
 538   static bool supports_ssse3()    { return (_cpuFeatures & CPU_SSSE3)!= 0; }
 539   static bool supports_sse4_1()   { return (_cpuFeatures & CPU_SSE4_1) != 0; }
 540   static bool supports_sse4_2()   { return (_cpuFeatures & CPU_SSE4_2) != 0; }
 541   static bool supports_popcnt()   { return (_cpuFeatures & CPU_POPCNT) != 0; }
 542   static bool supports_avx()      { return (_cpuFeatures & CPU_AVX) != 0; }
 543   static bool supports_avx2()     { return (_cpuFeatures & CPU_AVX2) != 0; }
 544   static bool supports_tsc()      { return (_cpuFeatures & CPU_TSC)    != 0; }
 545 
 546   // Intel features
 547   static bool is_intel_family_core() { return is_intel() &&
 548                                        extended_cpu_family() == CPU_FAMILY_INTEL_CORE; }
 549 
 550   static bool is_intel_tsc_synched_at_init()  {
 551     if (is_intel_family_core()) {
 552       uint32_t ext_model = extended_cpu_model();
 553       if (ext_model == CPU_MODEL_NEHALEM_EP     ||
 554           ext_model == CPU_MODEL_WESTMERE_EP    ||
 555           ext_model == CPU_MODEL_SANDYBRIDGE_EP ||
 556           ext_model == CPU_MODEL_SANDYBRIDGE_EXT||
 557           ext_model == CPU_MODEL_IVYBRIDGE_EP) {
 558         // 2-socket invariant tsc support. EX versions are usually used in
 559         // > 2-socket systems and not guaranteed to synchronize tscs at
 560         // initialization.  Hotspot doesn't currently figure out the number
 561         // of sockets, so we ignore EX versions and the possibility of
 562         // 4-socket EP systems even though the latter can't have their tscs
 563         // sync'ed at init time either.
 564         // Code that uses tsc values must be prepared for them to arbitrarily
 565         // jump forward or backward.
 566         return true;
 567       }
 568     }
 569     return false;
 570   }
 571 
 572   // AMD features
 573   static bool supports_3dnow_prefetch()    { return (_cpuFeatures & CPU_3DNOW_PREFETCH) != 0; }
 574   static bool supports_mmx_ext()  { return is_amd() && _cpuid_info.ext_cpuid1_edx.bits.mmx_amd != 0; }
 575   static bool supports_lzcnt()    { return (_cpuFeatures & CPU_LZCNT) != 0; }
 576   static bool supports_sse4a()    { return (_cpuFeatures & CPU_SSE4A) != 0; }
 577 
 578   static bool is_amd_Barcelona()  { return is_amd() &&
 579                                            extended_cpu_family() == CPU_FAMILY_AMD_11H; }
 580 
 581   // Intel and AMD newer cores support fast timestamps well
 582   static bool supports_tscinv_bit() {
 583     return (_cpuFeatures & CPU_TSCINV) != 0;
 584   }
 585   static bool supports_tscinv() {
 586     return supports_tscinv_bit() &&
 587            ( (is_amd() && !is_amd_Barcelona()) ||
 588              is_intel_tsc_synched_at_init() );
 589   }
 590 
 591   // Intel Core and newer cpus have fast IDIV instruction (excluding Atom).
 592   static bool has_fast_idiv()     { return is_intel() && cpu_family() == 6 &&
 593                                            supports_sse3() && _model != 0x1C; }
 594 
 595   static bool supports_compare_and_exchange() { return true; }
 596 
 597   static const char* cpu_features()           { return _features_str; }
 598 
 599   static intx allocate_prefetch_distance() {
 600     // This method should be called before allocate_prefetch_style().
 601     //
 602     // Hardware prefetching (distance/size in bytes):
 603     // Pentium 3 -  64 /  32
 604     // Pentium 4 - 256 / 128
 605     // Athlon    -  64 /  32 ????
 606     // Opteron   - 128 /  64 only when 2 sequential cache lines accessed
 607     // Core      - 128 /  64
 608     //
 609     // Software prefetching (distance in bytes / instruction with best score):
 610     // Pentium 3 - 128 / prefetchnta
 611     // Pentium 4 - 512 / prefetchnta
 612     // Athlon    - 128 / prefetchnta
 613     // Opteron   - 256 / prefetchnta
 614     // Core      - 256 / prefetchnta
 615     // It will be used only when AllocatePrefetchStyle > 0
 616 
 617     intx count = AllocatePrefetchDistance;
 618     if (count < 0) {   // default ?
 619       if (is_amd()) {  // AMD
 620         if (supports_sse2())
 621           count = 256; // Opteron
 622         else
 623           count = 128; // Athlon
 624       } else {         // Intel
 625         if (supports_sse2())
 626           if (cpu_family() == 6) {
 627             count = 256; // Pentium M, Core, Core2
 628           } else {
 629             count = 512; // Pentium 4
 630           }
 631         else
 632           count = 128; // Pentium 3 (and all other old CPUs)
 633       }
 634     }
 635     return count;
 636   }
 637   static intx allocate_prefetch_style() {
 638     assert(AllocatePrefetchStyle >= 0, "AllocatePrefetchStyle should be positive");
 639     // Return 0 if AllocatePrefetchDistance was not defined.
 640     return AllocatePrefetchDistance > 0 ? AllocatePrefetchStyle : 0;
 641   }
 642 
 643   // Prefetch interval for gc copy/scan == 9 dcache lines.  Derived from
 644   // 50-warehouse specjbb runs on a 2-way 1.8ghz opteron using a 4gb heap.
 645   // Tested intervals from 128 to 2048 in increments of 64 == one cache line.
 646   // 256 bytes (4 dcache lines) was the nearest runner-up to 576.
 647 
 648   // gc copy/scan is disabled if prefetchw isn't supported, because
 649   // Prefetch::write emits an inlined prefetchw on Linux.
 650   // Do not use the 3dnow prefetchw instruction.  It isn't supported on em64t.
 651   // The used prefetcht0 instruction works for both amd64 and em64t.
 652   static intx prefetch_copy_interval_in_bytes() {
 653     intx interval = PrefetchCopyIntervalInBytes;
 654     return interval >= 0 ? interval : 576;
 655   }
 656   static intx prefetch_scan_interval_in_bytes() {
 657     intx interval = PrefetchScanIntervalInBytes;
 658     return interval >= 0 ? interval : 576;
 659   }
 660   static intx prefetch_fields_ahead() {
 661     intx count = PrefetchFieldsAhead;
 662     return count >= 0 ? count : 1;
 663   }
 664 };
 665 
 666 #endif // CPU_X86_VM_VM_VERSION_X86_HPP