1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2017 SAP AG. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  27 #define CPU_PPC_VM_MACROASSEMBLER_PPC_HPP
  28 
  29 #include "asm/assembler.hpp"
  30 
  31 // MacroAssembler extends Assembler by a few frequently used macros.
  32 
  33 class ciTypeArray;
  34 
  35 class MacroAssembler: public Assembler {
  36  public:
  37   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  38 
  39   //
  40   // Optimized instruction emitters
  41   //
  42 
  43   inline static int largeoffset_si16_si16_hi(int si31) { return (si31 + (1<<15)) >> 16; }
  44   inline static int largeoffset_si16_si16_lo(int si31) { return si31 - (((si31 + (1<<15)) >> 16) << 16); }
  45 
  46   // load d = *[a+si31]
  47   // Emits several instructions if the offset is not encodable in one instruction.
  48   void ld_largeoffset_unchecked(Register d, int si31, Register a, int emit_filler_nop);
  49   void ld_largeoffset          (Register d, int si31, Register a, int emit_filler_nop);
  50   inline static bool is_ld_largeoffset(address a);
  51   inline static int get_ld_largeoffset_offset(address a);
  52 
  53   inline void round_to(Register r, int modulus);
  54 
  55   // Load/store with type given by parameter.
  56   void load_sized_value( Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes, bool is_signed);
  57   void store_sized_value(Register dst, RegisterOrConstant offs, Register base, size_t size_in_bytes);
  58 
  59   // Move register if destination register and target register are different
  60   inline void mr_if_needed(Register rd, Register rs);
  61   inline void fmr_if_needed(FloatRegister rd, FloatRegister rs);
  62   // This is dedicated for emitting scheduled mach nodes. For better
  63   // readability of the ad file I put it here.
  64   // Endgroups are not needed if
  65   //  - the scheduler is off
  66   //  - the scheduler found that there is a natural group end, in that
  67   //    case it reduced the size of the instruction used in the test
  68   //    yielding 'needed'.
  69   inline void endgroup_if_needed(bool needed);
  70 
  71   // Memory barriers.
  72   inline void membar(int bits);
  73   inline void release();
  74   inline void acquire();
  75   inline void fence();
  76 
  77   // nop padding
  78   void align(int modulus, int max = 252, int rem = 0);
  79 
  80   //
  81   // Constants, loading constants, TOC support
  82   //
  83 
  84   // Address of the global TOC.
  85   inline static address global_toc();
  86   // Offset of given address to the global TOC.
  87   inline static int offset_to_global_toc(const address addr);
  88 
  89   // Address of TOC of the current method.
  90   inline address method_toc();
  91   // Offset of given address to TOC of the current method.
  92   inline int offset_to_method_toc(const address addr);
  93 
  94   // Global TOC.
  95   void calculate_address_from_global_toc(Register dst, address addr,
  96                                          bool hi16 = true, bool lo16 = true,
  97                                          bool add_relocation = true, bool emit_dummy_addr = false);
  98   inline void calculate_address_from_global_toc_hi16only(Register dst, address addr) {
  99     calculate_address_from_global_toc(dst, addr, true, false);
 100   };
 101   inline void calculate_address_from_global_toc_lo16only(Register dst, address addr) {
 102     calculate_address_from_global_toc(dst, addr, false, true);
 103   };
 104 
 105   inline static bool is_calculate_address_from_global_toc_at(address a, address bound);
 106   static int patch_calculate_address_from_global_toc_at(address a, address addr, address bound);
 107   static address get_address_of_calculate_address_from_global_toc_at(address a, address addr);
 108 
 109 #ifdef _LP64
 110   // Patch narrow oop constant.
 111   inline static bool is_set_narrow_oop(address a, address bound);
 112   static int patch_set_narrow_oop(address a, address bound, narrowOop data);
 113   static narrowOop get_narrow_oop(address a, address bound);
 114 #endif
 115 
 116   inline static bool is_load_const_at(address a);
 117 
 118   // Emits an oop const to the constant pool, loads the constant, and
 119   // sets a relocation info with address current_pc.
 120   void load_const_from_method_toc(Register dst, AddressLiteral& a, Register toc);
 121   void load_toc_from_toc(Register dst, AddressLiteral& a, Register toc) {
 122     assert(dst == R2_TOC, "base register must be TOC");
 123     load_const_from_method_toc(dst, a, toc);
 124   }
 125 
 126   static bool is_load_const_from_method_toc_at(address a);
 127   static int get_offset_of_load_const_from_method_toc_at(address a);
 128 
 129   // Get the 64 bit constant from a `load_const' sequence.
 130   static long get_const(address load_const);
 131 
 132   // Patch the 64 bit constant of a `load_const' sequence. This is a
 133   // low level procedure. It neither flushes the instruction cache nor
 134   // is it atomic.
 135   static void patch_const(address load_const, long x);
 136 
 137   // Metadata in code that we have to keep track of.
 138   AddressLiteral allocate_metadata_address(Metadata* obj); // allocate_index
 139   AddressLiteral constant_metadata_address(Metadata* obj); // find_index
 140   // Oops used directly in compiled code are stored in the constant pool,
 141   // and loaded from there.
 142   // Allocate new entry for oop in constant pool. Generate relocation.
 143   AddressLiteral allocate_oop_address(jobject obj);
 144   // Find oop obj in constant pool. Return relocation with it's index.
 145   AddressLiteral constant_oop_address(jobject obj);
 146 
 147   // Find oop in constant pool and emit instructions to load it.
 148   // Uses constant_oop_address.
 149   inline void set_oop_constant(jobject obj, Register d);
 150   // Same as load_address.
 151   inline void set_oop         (AddressLiteral obj_addr, Register d);
 152 
 153   // Read runtime constant:  Issue load if constant not yet established,
 154   // else use real constant.
 155   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 156                                                 Register tmp,
 157                                                 int offset);
 158 
 159   //
 160   // branch, jump
 161   //
 162 
 163   inline void pd_patch_instruction(address branch, address target);
 164   NOT_PRODUCT(static void pd_print_patched_instruction(address branch);)
 165 
 166   // Conditional far branch for destinations encodable in 24+2 bits.
 167   // Same interface as bc, e.g. no inverse boint-field.
 168   enum {
 169     bc_far_optimize_not         = 0,
 170     bc_far_optimize_on_relocate = 1
 171   };
 172   // optimize: flag for telling the conditional far branch to optimize
 173   //           itself when relocated.
 174   void bc_far(int boint, int biint, Label& dest, int optimize);
 175   // Relocation of conditional far branches.
 176   static bool    is_bc_far_at(address instruction_addr);
 177   static address get_dest_of_bc_far_at(address instruction_addr);
 178   static void    set_dest_of_bc_far_at(address instruction_addr, address dest);
 179  private:
 180   static bool inline is_bc_far_variant1_at(address instruction_addr);
 181   static bool inline is_bc_far_variant2_at(address instruction_addr);
 182   static bool inline is_bc_far_variant3_at(address instruction_addr);
 183  public:
 184 
 185   // Convenience bc_far versions.
 186   inline void blt_far(ConditionRegister crx, Label& L, int optimize);
 187   inline void bgt_far(ConditionRegister crx, Label& L, int optimize);
 188   inline void beq_far(ConditionRegister crx, Label& L, int optimize);
 189   inline void bso_far(ConditionRegister crx, Label& L, int optimize);
 190   inline void bge_far(ConditionRegister crx, Label& L, int optimize);
 191   inline void ble_far(ConditionRegister crx, Label& L, int optimize);
 192   inline void bne_far(ConditionRegister crx, Label& L, int optimize);
 193   inline void bns_far(ConditionRegister crx, Label& L, int optimize);
 194 
 195   // Emit, identify and patch a NOT mt-safe patchable 64 bit absolute call/jump.
 196  private:
 197   enum {
 198     bxx64_patchable_instruction_count = (2/*load_codecache_const*/ + 3/*5load_const*/ + 1/*mtctr*/ + 1/*bctrl*/),
 199     bxx64_patchable_size              = bxx64_patchable_instruction_count * BytesPerInstWord,
 200     bxx64_patchable_ret_addr_offset   = bxx64_patchable_size
 201   };
 202   void bxx64_patchable(address target, relocInfo::relocType rt, bool link);
 203   static bool is_bxx64_patchable_at(            address instruction_addr, bool link);
 204   // Does the instruction use a pc-relative encoding of the destination?
 205   static bool is_bxx64_patchable_pcrelative_at( address instruction_addr, bool link);
 206   static bool is_bxx64_patchable_variant1_at(   address instruction_addr, bool link);
 207   // Load destination relative to global toc.
 208   static bool is_bxx64_patchable_variant1b_at(  address instruction_addr, bool link);
 209   static bool is_bxx64_patchable_variant2_at(   address instruction_addr, bool link);
 210   static void set_dest_of_bxx64_patchable_at(   address instruction_addr, address target, bool link);
 211   static address get_dest_of_bxx64_patchable_at(address instruction_addr, bool link);
 212 
 213  public:
 214   // call
 215   enum {
 216     bl64_patchable_instruction_count = bxx64_patchable_instruction_count,
 217     bl64_patchable_size              = bxx64_patchable_size,
 218     bl64_patchable_ret_addr_offset   = bxx64_patchable_ret_addr_offset
 219   };
 220   inline void bl64_patchable(address target, relocInfo::relocType rt) {
 221     bxx64_patchable(target, rt, /*link=*/true);
 222   }
 223   inline static bool is_bl64_patchable_at(address instruction_addr) {
 224     return is_bxx64_patchable_at(instruction_addr, /*link=*/true);
 225   }
 226   inline static bool is_bl64_patchable_pcrelative_at(address instruction_addr) {
 227     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/true);
 228   }
 229   inline static void set_dest_of_bl64_patchable_at(address instruction_addr, address target) {
 230     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/true);
 231   }
 232   inline static address get_dest_of_bl64_patchable_at(address instruction_addr) {
 233     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/true);
 234   }
 235   // jump
 236   enum {
 237     b64_patchable_instruction_count = bxx64_patchable_instruction_count,
 238     b64_patchable_size              = bxx64_patchable_size,
 239   };
 240   inline void b64_patchable(address target, relocInfo::relocType rt) {
 241     bxx64_patchable(target, rt, /*link=*/false);
 242   }
 243   inline static bool is_b64_patchable_at(address instruction_addr) {
 244     return is_bxx64_patchable_at(instruction_addr, /*link=*/false);
 245   }
 246   inline static bool is_b64_patchable_pcrelative_at(address instruction_addr) {
 247     return is_bxx64_patchable_pcrelative_at(instruction_addr, /*link=*/false);
 248   }
 249   inline static void set_dest_of_b64_patchable_at(address instruction_addr, address target) {
 250     set_dest_of_bxx64_patchable_at(instruction_addr, target, /*link=*/false);
 251   }
 252   inline static address get_dest_of_b64_patchable_at(address instruction_addr) {
 253     return get_dest_of_bxx64_patchable_at(instruction_addr, /*link=*/false);
 254   }
 255 
 256   //
 257   // Support for frame handling
 258   //
 259 
 260   // some ABI-related functions
 261   void save_nonvolatile_gprs(   Register dst_base, int offset);
 262   void restore_nonvolatile_gprs(Register src_base, int offset);
 263   void save_volatile_gprs(   Register dst_base, int offset);
 264   void restore_volatile_gprs(Register src_base, int offset);
 265   void save_LR_CR(   Register tmp);     // tmp contains LR on return.
 266   void restore_LR_CR(Register tmp);
 267 
 268   // Get current PC using bl-next-instruction trick.
 269   address get_PC_trash_LR(Register result);
 270 
 271   // Resize current frame either relatively wrt to current SP or absolute.
 272   void resize_frame(Register offset, Register tmp);
 273   void resize_frame(int      offset, Register tmp);
 274   void resize_frame_absolute(Register addr, Register tmp1, Register tmp2);
 275 
 276   // Push a frame of size bytes.
 277   void push_frame(Register bytes, Register tmp);
 278 
 279   // Push a frame of size `bytes'. No abi space provided.
 280   void push_frame(unsigned int bytes, Register tmp);
 281 
 282   // Push a frame of size `bytes' plus abi_reg_args on top.
 283   void push_frame_reg_args(unsigned int bytes, Register tmp);
 284 
 285   // Setup up a new C frame with a spill area for non-volatile GPRs and additional
 286   // space for local variables
 287   void push_frame_reg_args_nonvolatiles(unsigned int bytes, Register tmp);
 288 
 289   // pop current C frame
 290   void pop_frame();
 291 
 292   //
 293   // Calls
 294   //
 295 
 296  private:
 297   address _last_calls_return_pc;
 298 
 299 #if defined(ABI_ELFv2)
 300   // Generic version of a call to C function.
 301   // Updates and returns _last_calls_return_pc.
 302   address branch_to(Register function_entry, bool and_link);
 303 #else
 304   // Generic version of a call to C function via a function descriptor
 305   // with variable support for C calling conventions (TOC, ENV, etc.).
 306   // updates and returns _last_calls_return_pc.
 307   address branch_to(Register function_descriptor, bool and_link, bool save_toc_before_call,
 308                     bool restore_toc_after_call, bool load_toc_of_callee, bool load_env_of_callee);
 309 #endif
 310 
 311  public:
 312 
 313   // Get the pc where the last call will return to. returns _last_calls_return_pc.
 314   inline address last_calls_return_pc();
 315 
 316 #if defined(ABI_ELFv2)
 317   // Call a C function via a function descriptor and use full C
 318   // calling conventions. Updates and returns _last_calls_return_pc.
 319   address call_c(Register function_entry);
 320   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 321   address call_c_and_return_to_caller(Register function_entry);
 322   address call_c(address function_entry, relocInfo::relocType rt);
 323 #else
 324   // Call a C function via a function descriptor and use full C
 325   // calling conventions. Updates and returns _last_calls_return_pc.
 326   address call_c(Register function_descriptor);
 327   // For tail calls: only branch, don't link, so callee returns to caller of this function.
 328   address call_c_and_return_to_caller(Register function_descriptor);
 329   address call_c(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt);
 330   address call_c_using_toc(const FunctionDescriptor* function_descriptor, relocInfo::relocType rt,
 331                            Register toc);
 332 #endif
 333 
 334  protected:
 335 
 336   // It is imperative that all calls into the VM are handled via the
 337   // call_VM macros. They make sure that the stack linkage is setup
 338   // correctly. call_VM's correspond to ENTRY/ENTRY_X entry points
 339   // while call_VM_leaf's correspond to LEAF entry points.
 340   //
 341   // This is the base routine called by the different versions of
 342   // call_VM. The interpreter may customize this version by overriding
 343   // it for its purposes (e.g., to save/restore additional registers
 344   // when doing a VM call).
 345   //
 346   // If no last_java_sp is specified (noreg) then SP will be used instead.
 347   virtual void call_VM_base(
 348      // where an oop-result ends up if any; use noreg otherwise
 349     Register        oop_result,
 350     // to set up last_Java_frame in stubs; use noreg otherwise
 351     Register        last_java_sp,
 352     // the entry point
 353     address         entry_point,
 354     // flag which indicates if exception should be checked
 355     bool            check_exception = true
 356   );
 357 
 358   // Support for VM calls. This is the base routine called by the
 359   // different versions of call_VM_leaf. The interpreter may customize
 360   // this version by overriding it for its purposes (e.g., to
 361   // save/restore additional registers when doing a VM call).
 362   void call_VM_leaf_base(address entry_point);
 363 
 364  public:
 365   // Call into the VM.
 366   // Passes the thread pointer (in R3_ARG1) as a prepended argument.
 367   // Makes sure oop return values are visible to the GC.
 368   void call_VM(Register oop_result, address entry_point, bool check_exceptions = true);
 369   void call_VM(Register oop_result, address entry_point, Register arg_1, bool check_exceptions = true);
 370   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 371   void call_VM(Register oop_result, address entry_point, Register arg_1, Register arg_2, Register arg3, bool check_exceptions = true);
 372   void call_VM_leaf(address entry_point);
 373   void call_VM_leaf(address entry_point, Register arg_1);
 374   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 375   void call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 376 
 377   // Call a stub function via a function descriptor, but don't save
 378   // TOC before call, don't setup TOC and ENV for call, and don't
 379   // restore TOC after call. Updates and returns _last_calls_return_pc.
 380   inline address call_stub(Register function_entry);
 381   inline void call_stub_and_return_to(Register function_entry, Register return_pc);
 382 
 383   //
 384   // Java utilities
 385   //
 386 
 387   // Read from the polling page, its address is already in a register.
 388   inline void load_from_polling_page(Register polling_page_address, int offset = 0);
 389   // Check whether instruction is a read access to the polling page
 390   // which was emitted by load_from_polling_page(..).
 391   static bool is_load_from_polling_page(int instruction, void* ucontext/*may be NULL*/,
 392                                         address* polling_address_ptr = NULL);
 393 
 394   // Check whether instruction is a write access to the memory
 395   // serialization page realized by one of the instructions stw, stwu,
 396   // stwx, or stwux.
 397   static bool is_memory_serialization(int instruction, JavaThread* thread, void* ucontext);
 398 
 399   // Support for NULL-checks
 400   //
 401   // Generates code that causes a NULL OS exception if the content of reg is NULL.
 402   // If the accessed location is M[reg + offset] and the offset is known, provide the
 403   // offset. No explicit code generation is needed if the offset is within a certain
 404   // range (0 <= offset <= page_size).
 405 
 406   // Stack overflow checking
 407   void bang_stack_with_offset(int offset);
 408 
 409   // If instruction is a stack bang of the form ld, stdu, or
 410   // stdux, return the banged address. Otherwise, return 0.
 411   static address get_stack_bang_address(int instruction, void* ucontext);
 412 
 413   // Atomics
 414   // CmpxchgX sets condition register to cmpX(current, compare).
 415   // (flag == ne) => (dest_current_value != compare_value), (!swapped)
 416   // (flag == eq) => (dest_current_value == compare_value), ( swapped)
 417   static inline bool cmpxchgx_hint_acquire_lock()  { return true; }
 418   // The stxcx will probably not be succeeded by a releasing store.
 419   static inline bool cmpxchgx_hint_release_lock()  { return false; }
 420   static inline bool cmpxchgx_hint_atomic_update() { return false; }
 421 
 422   // Cmpxchg semantics
 423   enum {
 424     MemBarNone = 0,
 425     MemBarRel  = 1,
 426     MemBarAcq  = 2,
 427     MemBarFenceAfter = 4 // use powers of 2
 428   };
 429   void cmpxchgw(ConditionRegister flag,
 430                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 431                 int semantics, bool cmpxchgx_hint = false,
 432                 Register int_flag_success = noreg, bool contention_hint = false);
 433   void cmpxchgd(ConditionRegister flag,
 434                 Register dest_current_value, Register compare_value, Register exchange_value, Register addr_base,
 435                 int semantics, bool cmpxchgx_hint = false,
 436                 Register int_flag_success = noreg, Label* failed = NULL, bool contention_hint = false);
 437 
 438   // interface method calling
 439   void lookup_interface_method(Register recv_klass,
 440                                Register intf_klass,
 441                                RegisterOrConstant itable_index,
 442                                Register method_result,
 443                                Register temp_reg, Register temp2_reg,
 444                                Label& no_such_interface,
 445                                bool return_method = true);
 446 
 447   // virtual method calling
 448   void lookup_virtual_method(Register recv_klass,
 449                              RegisterOrConstant vtable_index,
 450                              Register method_result);
 451 
 452   // Test sub_klass against super_klass, with fast and slow paths.
 453 
 454   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 455   // One of the three labels can be NULL, meaning take the fall-through.
 456   // If super_check_offset is -1, the value is loaded up from super_klass.
 457   // No registers are killed, except temp_reg and temp2_reg.
 458   // If super_check_offset is not -1, temp2_reg is not used and can be noreg.
 459   void check_klass_subtype_fast_path(Register sub_klass,
 460                                      Register super_klass,
 461                                      Register temp1_reg,
 462                                      Register temp2_reg,
 463                                      Label& L_success,
 464                                      Label& L_failure);
 465 
 466   // The rest of the type check; must be wired to a corresponding fast path.
 467   // It does not repeat the fast path logic, so don't use it standalone.
 468   // The temp_reg can be noreg, if no temps are available.
 469   // It can also be sub_klass or super_klass, meaning it's OK to kill that one.
 470   // Updates the sub's secondary super cache as necessary.
 471   void check_klass_subtype_slow_path(Register sub_klass,
 472                                      Register super_klass,
 473                                      Register temp1_reg,
 474                                      Register temp2_reg,
 475                                      Label* L_success = NULL,
 476                                      Register result_reg = noreg);
 477 
 478   // Simplified, combined version, good for typical uses.
 479   // Falls through on failure.
 480   void check_klass_subtype(Register sub_klass,
 481                            Register super_klass,
 482                            Register temp1_reg,
 483                            Register temp2_reg,
 484                            Label& L_success);
 485 
 486   // Method handle support (JSR 292).
 487   void check_method_handle_type(Register mtype_reg, Register mh_reg, Register temp_reg, Label& wrong_method_type);
 488 
 489   RegisterOrConstant argument_offset(RegisterOrConstant arg_slot, Register temp_reg, int extra_slot_offset = 0);
 490 
 491   // Biased locking support
 492   // Upon entry,obj_reg must contain the target object, and mark_reg
 493   // must contain the target object's header.
 494   // Destroys mark_reg if an attempt is made to bias an anonymously
 495   // biased lock. In this case a failure will go either to the slow
 496   // case or fall through with the notEqual condition code set with
 497   // the expectation that the slow case in the runtime will be called.
 498   // In the fall-through case where the CAS-based lock is done,
 499   // mark_reg is not destroyed.
 500   void biased_locking_enter(ConditionRegister cr_reg, Register obj_reg, Register mark_reg, Register temp_reg,
 501                             Register temp2_reg, Label& done, Label* slow_case = NULL);
 502   // Upon entry, the base register of mark_addr must contain the oop.
 503   // Destroys temp_reg.
 504   // If allow_delay_slot_filling is set to true, the next instruction
 505   // emitted after this one will go in an annulled delay slot if the
 506   // biased locking exit case failed.
 507   void biased_locking_exit(ConditionRegister cr_reg, Register mark_addr, Register temp_reg, Label& done);
 508 
 509   void compiler_fast_lock_object(  ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
 510   void compiler_fast_unlock_object(ConditionRegister flag, Register oop, Register box, Register tmp1, Register tmp2, Register tmp3);
 511 
 512   // Support for serializing memory accesses between threads
 513   void serialize_memory(Register thread, Register tmp1, Register tmp2);
 514 
 515   // GC barrier support.
 516   void card_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp);
 517   void card_table_write(jbyte* byte_map_base, Register Rtmp, Register Robj);
 518 
 519   void resolve_jobject(Register value, Register tmp1, Register tmp2, bool needs_frame);
 520 
 521 #if INCLUDE_ALL_GCS
 522   // General G1 pre-barrier generator.
 523   void g1_write_barrier_pre(Register Robj, RegisterOrConstant offset, Register Rpre_val,
 524                             Register Rtmp1, Register Rtmp2, bool needs_frame = false);
 525   // General G1 post-barrier generator
 526   void g1_write_barrier_post(Register Rstore_addr, Register Rnew_val, Register Rtmp1,
 527                              Register Rtmp2, Register Rtmp3, Label *filtered_ext = NULL);
 528 #endif
 529 
 530   // Support for managing the JavaThread pointer (i.e.; the reference to
 531   // thread-local information).
 532 
 533   // Support for last Java frame (but use call_VM instead where possible):
 534   // access R16_thread->last_Java_sp.
 535   void set_last_Java_frame(Register last_java_sp, Register last_Java_pc);
 536   void reset_last_Java_frame(void);
 537   void set_top_ijava_frame_at_SP_as_last_Java_frame(Register sp, Register tmp1);
 538 
 539   // Read vm result from thread: oop_result = R16_thread->result;
 540   void get_vm_result  (Register oop_result);
 541   void get_vm_result_2(Register metadata_result);
 542 
 543   static bool needs_explicit_null_check(intptr_t offset);
 544 
 545   // Trap-instruction-based checks.
 546   // Range checks can be distinguished from zero checks as they check 32 bit,
 547   // zero checks all 64 bits (tw, td).
 548   inline void trap_null_check(Register a, trap_to_bits cmp = traptoEqual);
 549   static bool is_trap_null_check(int x) {
 550     return is_tdi(x, traptoEqual,               -1/*any reg*/, 0) ||
 551            is_tdi(x, traptoGreaterThanUnsigned, -1/*any reg*/, 0);
 552   }
 553 
 554   inline void trap_zombie_not_entrant();
 555   static bool is_trap_zombie_not_entrant(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 1); }
 556 
 557   inline void trap_should_not_reach_here();
 558   static bool is_trap_should_not_reach_here(int x) { return is_tdi(x, traptoUnconditional, 0/*reg 0*/, 2); }
 559 
 560   inline void trap_ic_miss_check(Register a, Register b);
 561   static bool is_trap_ic_miss_check(int x) {
 562     return is_td(x, traptoGreaterThanUnsigned | traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/);
 563   }
 564 
 565   // Implicit or explicit null check, jumps to static address exception_entry.
 566   inline void null_check_throw(Register a, int offset, Register temp_reg, address exception_entry);
 567 
 568   // Check accessed object for null. Use SIGTRAP-based null checks on AIX.
 569   inline void load_with_trap_null_check(Register d, int si16, Register s1);
 570 
 571   // Load heap oop and decompress. Loaded oop may not be null.
 572   inline void load_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1 = noreg);
 573   inline void store_heap_oop_not_null(Register d, RegisterOrConstant offs, Register s1,
 574                                       /*specify if d must stay uncompressed*/ Register tmp = noreg);
 575 
 576   // Null allowed.
 577   inline void load_heap_oop(Register d, RegisterOrConstant offs, Register s1 = noreg);
 578 
 579   // Encode/decode heap oop. Oop may not be null, else en/decoding goes wrong.
 580   inline Register encode_heap_oop_not_null(Register d, Register src = noreg);
 581   inline void decode_heap_oop_not_null(Register d);
 582 
 583   // Null allowed.
 584   inline void decode_heap_oop(Register d);
 585 
 586   // Load/Store klass oop from klass field. Compress.
 587   void load_klass(Register dst, Register src);
 588   void load_klass_with_trap_null_check(Register dst, Register src);
 589   void store_klass(Register dst_oop, Register klass, Register tmp = R0);
 590   void store_klass_gap(Register dst_oop, Register val = noreg); // Will store 0 if val not specified.
 591   static int instr_size_for_decode_klass_not_null();
 592   void decode_klass_not_null(Register dst, Register src = noreg);
 593   void encode_klass_not_null(Register dst, Register src = noreg);
 594 
 595   // Load common heap base into register.
 596   void reinit_heapbase(Register d, Register tmp = noreg);
 597 
 598   // SIGTRAP-based range checks for arrays.
 599   inline void trap_range_check_l(Register a, Register b);
 600   inline void trap_range_check_l(Register a, int si16);
 601   static bool is_trap_range_check_l(int x) {
 602     return (is_tw (x, traptoLessThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 603             is_twi(x, traptoLessThanUnsigned, -1/*any reg*/)                  );
 604   }
 605   inline void trap_range_check_le(Register a, int si16);
 606   static bool is_trap_range_check_le(int x) {
 607     return is_twi(x, traptoEqual | traptoLessThanUnsigned, -1/*any reg*/);
 608   }
 609   inline void trap_range_check_g(Register a, int si16);
 610   static bool is_trap_range_check_g(int x) {
 611     return is_twi(x, traptoGreaterThanUnsigned, -1/*any reg*/);
 612   }
 613   inline void trap_range_check_ge(Register a, Register b);
 614   inline void trap_range_check_ge(Register a, int si16);
 615   static bool is_trap_range_check_ge(int x) {
 616     return (is_tw (x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/, -1/*any reg*/) ||
 617             is_twi(x, traptoEqual | traptoGreaterThanUnsigned, -1/*any reg*/)                  );
 618   }
 619   static bool is_trap_range_check(int x) {
 620     return is_trap_range_check_l(x) || is_trap_range_check_le(x) ||
 621            is_trap_range_check_g(x) || is_trap_range_check_ge(x);
 622   }
 623 
 624   void clear_memory_doubleword(Register base_ptr, Register cnt_dwords, Register tmp = R0);
 625 
 626   // Needle of length 1.
 627   void string_indexof_1(Register result, Register haystack, Register haycnt,
 628                         Register needle, jchar needleChar,
 629                         Register tmp1, Register tmp2);
 630   // General indexof, eventually with constant needle length.
 631   void string_indexof(Register result, Register haystack, Register haycnt,
 632                       Register needle, ciTypeArray* needle_values, Register needlecnt, int needlecntval,
 633                       Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 634   void string_compare(Register str1_reg, Register str2_reg, Register cnt1_reg, Register cnt2_reg,
 635                       Register result_reg, Register tmp_reg);
 636   void char_arrays_equals(Register str1_reg, Register str2_reg, Register cnt_reg, Register result_reg,
 637                           Register tmp1_reg, Register tmp2_reg, Register tmp3_reg, Register tmp4_reg,
 638                           Register tmp5_reg);
 639   void char_arrays_equalsImm(Register str1_reg, Register str2_reg, int cntval, Register result_reg,
 640                              Register tmp1_reg, Register tmp2_reg);
 641 
 642   // CRC32 Intrinsics.
 643   void load_reverse_32(Register dst, Register src);
 644   int  crc32_table_columns(Register table, Register tc0, Register tc1, Register tc2, Register tc3);
 645   void fold_byte_crc32(Register crc, Register val, Register table, Register tmp);
 646   void fold_8bit_crc32(Register crc, Register table, Register tmp);
 647   void update_byte_crc32(Register crc, Register val, Register table);
 648   void update_byteLoop_crc32(Register crc, Register buf, Register len, Register table,
 649                              Register data, bool loopAlignment, bool invertCRC);
 650   void update_1word_crc32(Register crc, Register buf, Register table, int bufDisp, int bufInc,
 651                           Register t0,  Register t1,  Register t2,  Register t3,
 652                           Register tc0, Register tc1, Register tc2, Register tc3);
 653   void kernel_crc32_2word(Register crc, Register buf, Register len, Register table,
 654                           Register t0,  Register t1,  Register t2,  Register t3,
 655                           Register tc0, Register tc1, Register tc2, Register tc3);
 656   void kernel_crc32_1word(Register crc, Register buf, Register len, Register table,
 657                           Register t0,  Register t1,  Register t2,  Register t3,
 658                           Register tc0, Register tc1, Register tc2, Register tc3);
 659   void kernel_crc32_1byte(Register crc, Register buf, Register len, Register table,
 660                           Register t0,  Register t1,  Register t2,  Register t3);
 661   void kernel_crc32_1word_vpmsumd(Register crc, Register buf, Register len, Register table,
 662                           Register constants, Register barretConstants,
 663                           Register t0,  Register t1, Register t2, Register t3, Register t4);
 664   void kernel_crc32_1word_aligned(Register crc, Register buf, Register len,
 665                           Register constants, Register barretConstants,
 666                           Register t0, Register t1, Register t2);
 667 
 668   void kernel_crc32_singleByte(Register crc, Register buf, Register len, Register table, Register tmp);
 669 
 670   //
 671   // Debugging
 672   //
 673 
 674   // assert on cr0
 675   void asm_assert(bool check_equal, const char* msg, int id);
 676   void asm_assert_eq(const char* msg, int id) { asm_assert(true, msg, id); }
 677   void asm_assert_ne(const char* msg, int id) { asm_assert(false, msg, id); }
 678 
 679  private:
 680   void asm_assert_mems_zero(bool check_equal, int size, int mem_offset, Register mem_base,
 681                             const char* msg, int id);
 682 
 683  public:
 684 
 685   void asm_assert_mem8_is_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 686     asm_assert_mems_zero(true,  8, mem_offset, mem_base, msg, id);
 687   }
 688   void asm_assert_mem8_isnot_zero(int mem_offset, Register mem_base, const char* msg, int id) {
 689     asm_assert_mems_zero(false, 8, mem_offset, mem_base, msg, id);
 690   }
 691 
 692   // Verify R16_thread contents.
 693   void verify_thread();
 694 
 695   // Emit code to verify that reg contains a valid oop if +VerifyOops is set.
 696   void verify_oop(Register reg, const char* s = "broken oop");
 697 
 698   // TODO: verify method and klass metadata (compare against vptr?)
 699   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 700   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line) {}
 701 
 702   // Convenience method returning function entry. For the ELFv1 case
 703   // creates function descriptor at the current address and returs
 704   // the pointer to it. For the ELFv2 case returns the current address.
 705   inline address function_entry();
 706 
 707 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 708 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 709 
 710  private:
 711 
 712   enum {
 713     stop_stop                = 0,
 714     stop_untested            = 1,
 715     stop_unimplemented       = 2,
 716     stop_shouldnotreachhere  = 3,
 717     stop_end                 = 4
 718   };
 719   void stop(int type, const char* msg, int id);
 720 
 721  public:
 722   // Prints msg, dumps registers and stops execution.
 723   void stop         (const char* msg = "", int id = 0) { stop(stop_stop,               msg, id); }
 724   void untested     (const char* msg = "", int id = 0) { stop(stop_untested,           msg, id); }
 725   void unimplemented(const char* msg = "", int id = 0) { stop(stop_unimplemented,      msg, id); }
 726   void should_not_reach_here()                         { stop(stop_shouldnotreachhere,  "", -1); }
 727 
 728   void zap_from_to(Register low, int before, Register high, int after, Register val, Register addr) PRODUCT_RETURN;
 729 };
 730 
 731 // class SkipIfEqualZero:
 732 //
 733 // Instantiating this class will result in assembly code being output that will
 734 // jump around any code emitted between the creation of the instance and it's
 735 // automatic destruction at the end of a scope block, depending on the value of
 736 // the flag passed to the constructor, which will be checked at run-time.
 737 class SkipIfEqualZero : public StackObj {
 738  private:
 739   MacroAssembler* _masm;
 740   Label _label;
 741 
 742  public:
 743    // 'Temp' is a temp register that this object can use (and trash).
 744    explicit SkipIfEqualZero(MacroAssembler*, Register temp, const bool* flag_addr);
 745    ~SkipIfEqualZero();
 746 };
 747 
 748 #endif // CPU_PPC_VM_MACROASSEMBLER_PPC_HPP