1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/arraycopynode.hpp"
  35 #include "opto/c2compiler.hpp"
  36 #include "opto/callGenerator.hpp"
  37 #include "opto/castnode.hpp"
  38 #include "opto/cfgnode.hpp"
  39 #include "opto/convertnode.hpp"
  40 #include "opto/countbitsnode.hpp"
  41 #include "opto/intrinsicnode.hpp"
  42 #include "opto/idealKit.hpp"
  43 #include "opto/mathexactnode.hpp"
  44 #include "opto/movenode.hpp"
  45 #include "opto/mulnode.hpp"
  46 #include "opto/narrowptrnode.hpp"
  47 #include "opto/opaquenode.hpp"
  48 #include "opto/parse.hpp"
  49 #include "opto/runtime.hpp"
  50 #include "opto/rootnode.hpp"
  51 #include "opto/subnode.hpp"
  52 #include "prims/nativeLookup.hpp"
  53 #include "prims/unsafe.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #ifdef TRACE_HAVE_INTRINSICS
  56 #include "trace/traceMacros.hpp"
  57 #endif
  58 
  59 class LibraryIntrinsic : public InlineCallGenerator {
  60   // Extend the set of intrinsics known to the runtime:
  61  public:
  62  private:
  63   bool             _is_virtual;
  64   bool             _does_virtual_dispatch;
  65   int8_t           _predicates_count;  // Intrinsic is predicated by several conditions
  66   int8_t           _last_predicate; // Last generated predicate
  67   vmIntrinsics::ID _intrinsic_id;
  68 
  69  public:
  70   LibraryIntrinsic(ciMethod* m, bool is_virtual, int predicates_count, bool does_virtual_dispatch, vmIntrinsics::ID id)
  71     : InlineCallGenerator(m),
  72       _is_virtual(is_virtual),
  73       _does_virtual_dispatch(does_virtual_dispatch),
  74       _predicates_count((int8_t)predicates_count),
  75       _last_predicate((int8_t)-1),
  76       _intrinsic_id(id)
  77   {
  78   }
  79   virtual bool is_intrinsic() const { return true; }
  80   virtual bool is_virtual()   const { return _is_virtual; }
  81   virtual bool is_predicated() const { return _predicates_count > 0; }
  82   virtual int  predicates_count() const { return _predicates_count; }
  83   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  84   virtual JVMState* generate(JVMState* jvms);
  85   virtual Node* generate_predicate(JVMState* jvms, int predicate);
  86   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  87 };
  88 
  89 
  90 // Local helper class for LibraryIntrinsic:
  91 class LibraryCallKit : public GraphKit {
  92  private:
  93   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  94   Node*             _result;        // the result node, if any
  95   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  96 
  97   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type);
  98 
  99  public:
 100   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
 101     : GraphKit(jvms),
 102       _intrinsic(intrinsic),
 103       _result(NULL)
 104   {
 105     // Check if this is a root compile.  In that case we don't have a caller.
 106     if (!jvms->has_method()) {
 107       _reexecute_sp = sp();
 108     } else {
 109       // Find out how many arguments the interpreter needs when deoptimizing
 110       // and save the stack pointer value so it can used by uncommon_trap.
 111       // We find the argument count by looking at the declared signature.
 112       bool ignored_will_link;
 113       ciSignature* declared_signature = NULL;
 114       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 115       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 116       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 117     }
 118   }
 119 
 120   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 121 
 122   ciMethod*         caller()    const    { return jvms()->method(); }
 123   int               bci()       const    { return jvms()->bci(); }
 124   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 125   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 126   ciMethod*         callee()    const    { return _intrinsic->method(); }
 127 
 128   bool  try_to_inline(int predicate);
 129   Node* try_to_predicate(int predicate);
 130 
 131   void push_result() {
 132     // Push the result onto the stack.
 133     if (!stopped() && result() != NULL) {
 134       BasicType bt = result()->bottom_type()->basic_type();
 135       push_node(bt, result());
 136     }
 137   }
 138 
 139  private:
 140   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 141     fatal("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid));
 142   }
 143 
 144   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 145   void  set_result(RegionNode* region, PhiNode* value);
 146   Node*     result() { return _result; }
 147 
 148   virtual int reexecute_sp() { return _reexecute_sp; }
 149 
 150   // Helper functions to inline natives
 151   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 152   Node* generate_slow_guard(Node* test, RegionNode* region);
 153   Node* generate_fair_guard(Node* test, RegionNode* region);
 154   Node* generate_negative_guard(Node* index, RegionNode* region,
 155                                 // resulting CastII of index:
 156                                 Node* *pos_index = NULL);
 157   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 158                              Node* array_length,
 159                              RegionNode* region);
 160   void  generate_string_range_check(Node* array, Node* offset,
 161                                     Node* length, bool char_count);
 162   Node* generate_current_thread(Node* &tls_output);
 163   Node* load_mirror_from_klass(Node* klass);
 164   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 165                                       RegionNode* region, int null_path,
 166                                       int offset);
 167   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 168                                RegionNode* region, int null_path) {
 169     int offset = java_lang_Class::klass_offset_in_bytes();
 170     return load_klass_from_mirror_common(mirror, never_see_null,
 171                                          region, null_path,
 172                                          offset);
 173   }
 174   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 175                                      RegionNode* region, int null_path) {
 176     int offset = java_lang_Class::array_klass_offset_in_bytes();
 177     return load_klass_from_mirror_common(mirror, never_see_null,
 178                                          region, null_path,
 179                                          offset);
 180   }
 181   Node* generate_access_flags_guard(Node* kls,
 182                                     int modifier_mask, int modifier_bits,
 183                                     RegionNode* region);
 184   Node* generate_interface_guard(Node* kls, RegionNode* region);
 185   Node* generate_array_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, false, false);
 187   }
 188   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 189     return generate_array_guard_common(kls, region, false, true);
 190   }
 191   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 192     return generate_array_guard_common(kls, region, true, false);
 193   }
 194   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 195     return generate_array_guard_common(kls, region, true, true);
 196   }
 197   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 198                                     bool obj_array, bool not_array);
 199   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 200   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 201                                      bool is_virtual = false, bool is_static = false);
 202   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 203     return generate_method_call(method_id, false, true);
 204   }
 205   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 206     return generate_method_call(method_id, true, false);
 207   }
 208   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 209   Node * field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static, ciInstanceKlass * fromKls);
 210 
 211   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae);
 212   bool inline_string_compareTo(StrIntrinsicNode::ArgEnc ae);
 213   bool inline_string_indexOf(StrIntrinsicNode::ArgEnc ae);
 214   bool inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae);
 215   Node* make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
 216                           RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae);
 217   bool inline_string_indexOfChar();
 218   bool inline_string_equals(StrIntrinsicNode::ArgEnc ae);
 219   bool inline_string_toBytesU();
 220   bool inline_string_getCharsU();
 221   bool inline_string_copy(bool compress);
 222   bool inline_string_char_access(bool is_store);
 223   Node* round_double_node(Node* n);
 224   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 225   bool inline_math_native(vmIntrinsics::ID id);
 226   bool inline_math(vmIntrinsics::ID id);
 227   template <typename OverflowOp>
 228   bool inline_math_overflow(Node* arg1, Node* arg2);
 229   void inline_math_mathExact(Node* math, Node* test);
 230   bool inline_math_addExactI(bool is_increment);
 231   bool inline_math_addExactL(bool is_increment);
 232   bool inline_math_multiplyExactI();
 233   bool inline_math_multiplyExactL();
 234   bool inline_math_negateExactI();
 235   bool inline_math_negateExactL();
 236   bool inline_math_subtractExactI(bool is_decrement);
 237   bool inline_math_subtractExactL(bool is_decrement);
 238   bool inline_min_max(vmIntrinsics::ID id);
 239   bool inline_notify(vmIntrinsics::ID id);
 240   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 241   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 242   int classify_unsafe_addr(Node* &base, Node* &offset, BasicType type);
 243   Node* make_unsafe_address(Node*& base, Node* offset, BasicType type = T_ILLEGAL, bool can_cast = false);
 244   // Helper for inline_unsafe_access.
 245   // Generates the guards that check whether the result of
 246   // Unsafe.getObject should be recorded in an SATB log buffer.
 247   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 248 
 249   typedef enum { Relaxed, Opaque, Volatile, Acquire, Release } AccessKind;
 250   bool inline_unsafe_access(bool is_store, BasicType type, AccessKind kind, bool is_unaligned);
 251   static bool klass_needs_init_guard(Node* kls);
 252   bool inline_unsafe_allocate();
 253   bool inline_unsafe_newArray(bool uninitialized);
 254   bool inline_unsafe_copyMemory();
 255   bool inline_native_currentThread();
 256 
 257   bool inline_native_time_funcs(address method, const char* funcName);
 258 #ifdef TRACE_HAVE_INTRINSICS
 259   bool inline_native_classID();
 260   bool inline_native_getBufferWriter();
 261 #endif
 262   bool inline_native_isInterrupted();
 263   bool inline_native_Class_query(vmIntrinsics::ID id);
 264   bool inline_native_subtype_check();
 265   bool inline_native_getLength();
 266   bool inline_array_copyOf(bool is_copyOfRange);
 267   bool inline_array_equals(StrIntrinsicNode::ArgEnc ae);
 268   bool inline_preconditions_checkIndex();
 269   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 270   bool inline_native_clone(bool is_virtual);
 271   bool inline_native_Reflection_getCallerClass();
 272   // Helper function for inlining native object hash method
 273   bool inline_native_hashcode(bool is_virtual, bool is_static);
 274   bool inline_native_getClass();
 275 
 276   // Helper functions for inlining arraycopy
 277   bool inline_arraycopy();
 278   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 279                                                 RegionNode* slow_region);
 280   JVMState* arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp);
 281   void arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms, int saved_reexecute_sp,
 282                                       uint new_idx);
 283 
 284   typedef enum { LS_get_add, LS_get_set, LS_cmp_swap, LS_cmp_swap_weak, LS_cmp_exchange } LoadStoreKind;
 285   MemNode::MemOrd access_kind_to_memord_LS(AccessKind access_kind, bool is_store);
 286   MemNode::MemOrd access_kind_to_memord(AccessKind access_kind);
 287   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind, AccessKind access_kind);
 288   bool inline_unsafe_fence(vmIntrinsics::ID id);
 289   bool inline_onspinwait();
 290   bool inline_fp_conversions(vmIntrinsics::ID id);
 291   bool inline_number_methods(vmIntrinsics::ID id);
 292   bool inline_reference_get();
 293   bool inline_Class_cast();
 294   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 295   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 296   bool inline_counterMode_AESCrypt(vmIntrinsics::ID id);
 297   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 298   Node* inline_counterMode_AESCrypt_predicate();
 299   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 300   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 301   bool inline_ghash_processBlocks();
 302   bool inline_sha_implCompress(vmIntrinsics::ID id);
 303   bool inline_digestBase_implCompressMB(int predicate);
 304   bool inline_sha_implCompressMB(Node* digestBaseObj, ciInstanceKlass* instklass_SHA,
 305                                  bool long_state, address stubAddr, const char *stubName,
 306                                  Node* src_start, Node* ofs, Node* limit);
 307   Node* get_state_from_sha_object(Node *sha_object);
 308   Node* get_state_from_sha5_object(Node *sha_object);
 309   Node* inline_digestBase_implCompressMB_predicate(int predicate);
 310   bool inline_encodeISOArray();
 311   bool inline_updateCRC32();
 312   bool inline_updateBytesCRC32();
 313   bool inline_updateByteBufferCRC32();
 314   Node* get_table_from_crc32c_class(ciInstanceKlass *crc32c_class);
 315   bool inline_updateBytesCRC32C();
 316   bool inline_updateDirectByteBufferCRC32C();
 317   bool inline_updateBytesAdler32();
 318   bool inline_updateByteBufferAdler32();
 319   bool inline_multiplyToLen();
 320   bool inline_hasNegatives();
 321   bool inline_squareToLen();
 322   bool inline_mulAdd();
 323   bool inline_montgomeryMultiply();
 324   bool inline_montgomerySquare();
 325   bool inline_vectorizedMismatch();
 326   bool inline_fma(vmIntrinsics::ID id);
 327 
 328   bool inline_profileBoolean();
 329   bool inline_isCompileConstant();
 330 };
 331 
 332 //---------------------------make_vm_intrinsic----------------------------
 333 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 334   vmIntrinsics::ID id = m->intrinsic_id();
 335   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 336 
 337   if (!m->is_loaded()) {
 338     // Do not attempt to inline unloaded methods.
 339     return NULL;
 340   }
 341 
 342   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
 343   bool is_available = false;
 344 
 345   {
 346     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
 347     // the compiler must transition to '_thread_in_vm' state because both
 348     // methods access VM-internal data.
 349     VM_ENTRY_MARK;
 350     methodHandle mh(THREAD, m->get_Method());
 351     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
 352                    !C->directive()->is_intrinsic_disabled(mh) &&
 353                    !vmIntrinsics::is_disabled_by_flags(mh);
 354 
 355   }
 356 
 357   if (is_available) {
 358     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 359     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 360     return new LibraryIntrinsic(m, is_virtual,
 361                                 vmIntrinsics::predicates_needed(id),
 362                                 vmIntrinsics::does_virtual_dispatch(id),
 363                                 (vmIntrinsics::ID) id);
 364   } else {
 365     return NULL;
 366   }
 367 }
 368 
 369 //----------------------register_library_intrinsics-----------------------
 370 // Initialize this file's data structures, for each Compile instance.
 371 void Compile::register_library_intrinsics() {
 372   // Nothing to do here.
 373 }
 374 
 375 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 376   LibraryCallKit kit(jvms, this);
 377   Compile* C = kit.C;
 378   int nodes = C->unique();
 379 #ifndef PRODUCT
 380   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 381     char buf[1000];
 382     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 383     tty->print_cr("Intrinsic %s", str);
 384   }
 385 #endif
 386   ciMethod* callee = kit.callee();
 387   const int bci    = kit.bci();
 388 
 389   // Try to inline the intrinsic.
 390   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 391       kit.try_to_inline(_last_predicate)) {
 392     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 393                                           : "(intrinsic)";
 394     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 395     if (C->print_intrinsics() || C->print_inlining()) {
 396       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 397     }
 398     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 399     if (C->log()) {
 400       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 401                      vmIntrinsics::name_at(intrinsic_id()),
 402                      (is_virtual() ? " virtual='1'" : ""),
 403                      C->unique() - nodes);
 404     }
 405     // Push the result from the inlined method onto the stack.
 406     kit.push_result();
 407     C->print_inlining_update(this);
 408     return kit.transfer_exceptions_into_jvms();
 409   }
 410 
 411   // The intrinsic bailed out
 412   if (jvms->has_method()) {
 413     // Not a root compile.
 414     const char* msg;
 415     if (callee->intrinsic_candidate()) {
 416       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 417     } else {
 418       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 419                          : "failed to inline (intrinsic), method not annotated";
 420     }
 421     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 422     if (C->print_intrinsics() || C->print_inlining()) {
 423       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 424     }
 425   } else {
 426     // Root compile
 427     ResourceMark rm;
 428     stringStream msg_stream;
 429     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 430                      vmIntrinsics::name_at(intrinsic_id()),
 431                      is_virtual() ? " (virtual)" : "", bci);
 432     const char *msg = msg_stream.as_string();
 433     log_debug(jit, inlining)("%s", msg);
 434     if (C->print_intrinsics() || C->print_inlining()) {
 435       tty->print("%s", msg);
 436     }
 437   }
 438   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 439   C->print_inlining_update(this);
 440   return NULL;
 441 }
 442 
 443 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 444   LibraryCallKit kit(jvms, this);
 445   Compile* C = kit.C;
 446   int nodes = C->unique();
 447   _last_predicate = predicate;
 448 #ifndef PRODUCT
 449   assert(is_predicated() && predicate < predicates_count(), "sanity");
 450   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 451     char buf[1000];
 452     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 453     tty->print_cr("Predicate for intrinsic %s", str);
 454   }
 455 #endif
 456   ciMethod* callee = kit.callee();
 457   const int bci    = kit.bci();
 458 
 459   Node* slow_ctl = kit.try_to_predicate(predicate);
 460   if (!kit.failing()) {
 461     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 462                                           : "(intrinsic, predicate)";
 463     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 464     if (C->print_intrinsics() || C->print_inlining()) {
 465       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 466     }
 467     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 468     if (C->log()) {
 469       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 470                      vmIntrinsics::name_at(intrinsic_id()),
 471                      (is_virtual() ? " virtual='1'" : ""),
 472                      C->unique() - nodes);
 473     }
 474     return slow_ctl; // Could be NULL if the check folds.
 475   }
 476 
 477   // The intrinsic bailed out
 478   if (jvms->has_method()) {
 479     // Not a root compile.
 480     const char* msg = "failed to generate predicate for intrinsic";
 481     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 482     if (C->print_intrinsics() || C->print_inlining()) {
 483       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 484     }
 485   } else {
 486     // Root compile
 487     ResourceMark rm;
 488     stringStream msg_stream;
 489     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 490                      vmIntrinsics::name_at(intrinsic_id()),
 491                      is_virtual() ? " (virtual)" : "", bci);
 492     const char *msg = msg_stream.as_string();
 493     log_debug(jit, inlining)("%s", msg);
 494     if (C->print_intrinsics() || C->print_inlining()) {
 495       C->print_inlining_stream()->print("%s", msg);
 496     }
 497   }
 498   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 499   return NULL;
 500 }
 501 
 502 bool LibraryCallKit::try_to_inline(int predicate) {
 503   // Handle symbolic names for otherwise undistinguished boolean switches:
 504   const bool is_store       = true;
 505   const bool is_compress    = true;
 506   const bool is_static      = true;
 507   const bool is_volatile    = true;
 508 
 509   if (!jvms()->has_method()) {
 510     // Root JVMState has a null method.
 511     assert(map()->memory()->Opcode() == Op_Parm, "");
 512     // Insert the memory aliasing node
 513     set_all_memory(reset_memory());
 514   }
 515   assert(merged_memory(), "");
 516 
 517 
 518   switch (intrinsic_id()) {
 519   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 520   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 521   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 522 
 523   case vmIntrinsics::_dsin:
 524   case vmIntrinsics::_dcos:
 525   case vmIntrinsics::_dtan:
 526   case vmIntrinsics::_dabs:
 527   case vmIntrinsics::_datan2:
 528   case vmIntrinsics::_dsqrt:
 529   case vmIntrinsics::_dexp:
 530   case vmIntrinsics::_dlog:
 531   case vmIntrinsics::_dlog10:
 532   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 533 
 534   case vmIntrinsics::_min:
 535   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 536 
 537   case vmIntrinsics::_notify:
 538   case vmIntrinsics::_notifyAll:
 539     if (InlineNotify) {
 540       return inline_notify(intrinsic_id());
 541     }
 542     return false;
 543 
 544   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 545   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 546   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 547   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 548   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 549   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 550   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 551   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 552   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 553   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 554   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 555   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 556 
 557   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 558 
 559   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 560   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 561   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 562   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 563 
 564   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 565   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 566   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 567   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 568   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 569   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 570   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 571 
 572   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 573   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 574 
 575   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 576   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 577   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 578   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 579 
 580   case vmIntrinsics::_compressStringC:
 581   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 582   case vmIntrinsics::_inflateStringC:
 583   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 584 
 585   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 586   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 587   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 588   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 589   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 590   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 591   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 592   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 593   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 594 
 595   case vmIntrinsics::_putObject:                return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 596   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 597   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 598   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 599   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 600   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 601   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 602   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 603   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 604 
 605   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 606   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 607   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 608   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 609   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 610   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 611   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 612   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 613   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 614 
 615   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 616   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 617   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 618   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 619   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 620   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 621   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 622   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 623   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 624 
 625   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 626   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 627   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 628   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 629 
 630   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 631   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 632   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 633   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 634 
 635   case vmIntrinsics::_getObjectAcquire:         return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 636   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 637   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 638   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 639   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 640   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 641   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 642   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 643   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 644 
 645   case vmIntrinsics::_putObjectRelease:         return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 646   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 647   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 648   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 649   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 650   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 651   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 652   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 653   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 654 
 655   case vmIntrinsics::_getObjectOpaque:          return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 656   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 657   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 658   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 659   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 660   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 661   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 662   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 663   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 664 
 665   case vmIntrinsics::_putObjectOpaque:          return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 666   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 667   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 668   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 669   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 670   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 671   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 672   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 673   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 674 
 675   case vmIntrinsics::_compareAndSetObject:              return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 676   case vmIntrinsics::_compareAndSetByte:                return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 677   case vmIntrinsics::_compareAndSetShort:               return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 678   case vmIntrinsics::_compareAndSetInt:                 return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 679   case vmIntrinsics::_compareAndSetLong:                return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 680 
 681   case vmIntrinsics::_weakCompareAndSetObjectPlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 682   case vmIntrinsics::_weakCompareAndSetObjectAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 683   case vmIntrinsics::_weakCompareAndSetObjectRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 684   case vmIntrinsics::_weakCompareAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 685   case vmIntrinsics::_weakCompareAndSetBytePlain:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 686   case vmIntrinsics::_weakCompareAndSetByteAcquire:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 687   case vmIntrinsics::_weakCompareAndSetByteRelease:     return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 688   case vmIntrinsics::_weakCompareAndSetByte:            return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 689   case vmIntrinsics::_weakCompareAndSetShortPlain:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 690   case vmIntrinsics::_weakCompareAndSetShortAcquire:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 691   case vmIntrinsics::_weakCompareAndSetShortRelease:    return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 692   case vmIntrinsics::_weakCompareAndSetShort:           return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 693   case vmIntrinsics::_weakCompareAndSetIntPlain:        return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 694   case vmIntrinsics::_weakCompareAndSetIntAcquire:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 695   case vmIntrinsics::_weakCompareAndSetIntRelease:      return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 696   case vmIntrinsics::_weakCompareAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 697   case vmIntrinsics::_weakCompareAndSetLongPlain:       return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 698   case vmIntrinsics::_weakCompareAndSetLongAcquire:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 699   case vmIntrinsics::_weakCompareAndSetLongRelease:     return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 700   case vmIntrinsics::_weakCompareAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 701 
 702   case vmIntrinsics::_compareAndExchangeObject:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 703   case vmIntrinsics::_compareAndExchangeObjectAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 704   case vmIntrinsics::_compareAndExchangeObjectRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 705   case vmIntrinsics::_compareAndExchangeByte:           return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 706   case vmIntrinsics::_compareAndExchangeByteAcquire:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 707   case vmIntrinsics::_compareAndExchangeByteRelease:    return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 708   case vmIntrinsics::_compareAndExchangeShort:          return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 709   case vmIntrinsics::_compareAndExchangeShortAcquire:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 710   case vmIntrinsics::_compareAndExchangeShortRelease:   return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 711   case vmIntrinsics::_compareAndExchangeInt:            return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 712   case vmIntrinsics::_compareAndExchangeIntAcquire:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 713   case vmIntrinsics::_compareAndExchangeIntRelease:     return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 714   case vmIntrinsics::_compareAndExchangeLong:           return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 715   case vmIntrinsics::_compareAndExchangeLongAcquire:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 716   case vmIntrinsics::_compareAndExchangeLongRelease:    return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 717 
 718   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 719   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 720   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 721   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 722 
 723   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 724   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 725   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 726   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 727   case vmIntrinsics::_getAndSetObject:                  return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 728 
 729   case vmIntrinsics::_loadFence:
 730   case vmIntrinsics::_storeFence:
 731   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 732 
 733   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 734 
 735   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 736   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 737 
 738 #ifdef TRACE_HAVE_INTRINSICS
 739   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 740   case vmIntrinsics::_getClassId:               return inline_native_classID();
 741   case vmIntrinsics::_getBufferWriter:          return inline_native_getBufferWriter();
 742 #endif
 743   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 744   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 745   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 746   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 747   case vmIntrinsics::_getLength:                return inline_native_getLength();
 748   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 749   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 750   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 751   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 752   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 753   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 754 
 755   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 756   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 757 
 758   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 759 
 760   case vmIntrinsics::_isInstance:
 761   case vmIntrinsics::_getModifiers:
 762   case vmIntrinsics::_isInterface:
 763   case vmIntrinsics::_isArray:
 764   case vmIntrinsics::_isPrimitive:
 765   case vmIntrinsics::_getSuperclass:
 766   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 767 
 768   case vmIntrinsics::_floatToRawIntBits:
 769   case vmIntrinsics::_floatToIntBits:
 770   case vmIntrinsics::_intBitsToFloat:
 771   case vmIntrinsics::_doubleToRawLongBits:
 772   case vmIntrinsics::_doubleToLongBits:
 773   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 774 
 775   case vmIntrinsics::_numberOfLeadingZeros_i:
 776   case vmIntrinsics::_numberOfLeadingZeros_l:
 777   case vmIntrinsics::_numberOfTrailingZeros_i:
 778   case vmIntrinsics::_numberOfTrailingZeros_l:
 779   case vmIntrinsics::_bitCount_i:
 780   case vmIntrinsics::_bitCount_l:
 781   case vmIntrinsics::_reverseBytes_i:
 782   case vmIntrinsics::_reverseBytes_l:
 783   case vmIntrinsics::_reverseBytes_s:
 784   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 785 
 786   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 787 
 788   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 789 
 790   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 791 
 792   case vmIntrinsics::_aescrypt_encryptBlock:
 793   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 794 
 795   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 796   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 797     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 798 
 799   case vmIntrinsics::_counterMode_AESCrypt:
 800     return inline_counterMode_AESCrypt(intrinsic_id());
 801 
 802   case vmIntrinsics::_sha_implCompress:
 803   case vmIntrinsics::_sha2_implCompress:
 804   case vmIntrinsics::_sha5_implCompress:
 805     return inline_sha_implCompress(intrinsic_id());
 806 
 807   case vmIntrinsics::_digestBase_implCompressMB:
 808     return inline_digestBase_implCompressMB(predicate);
 809 
 810   case vmIntrinsics::_multiplyToLen:
 811     return inline_multiplyToLen();
 812 
 813   case vmIntrinsics::_squareToLen:
 814     return inline_squareToLen();
 815 
 816   case vmIntrinsics::_mulAdd:
 817     return inline_mulAdd();
 818 
 819   case vmIntrinsics::_montgomeryMultiply:
 820     return inline_montgomeryMultiply();
 821   case vmIntrinsics::_montgomerySquare:
 822     return inline_montgomerySquare();
 823 
 824   case vmIntrinsics::_vectorizedMismatch:
 825     return inline_vectorizedMismatch();
 826 
 827   case vmIntrinsics::_ghash_processBlocks:
 828     return inline_ghash_processBlocks();
 829 
 830   case vmIntrinsics::_encodeISOArray:
 831   case vmIntrinsics::_encodeByteISOArray:
 832     return inline_encodeISOArray();
 833 
 834   case vmIntrinsics::_updateCRC32:
 835     return inline_updateCRC32();
 836   case vmIntrinsics::_updateBytesCRC32:
 837     return inline_updateBytesCRC32();
 838   case vmIntrinsics::_updateByteBufferCRC32:
 839     return inline_updateByteBufferCRC32();
 840 
 841   case vmIntrinsics::_updateBytesCRC32C:
 842     return inline_updateBytesCRC32C();
 843   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 844     return inline_updateDirectByteBufferCRC32C();
 845 
 846   case vmIntrinsics::_updateBytesAdler32:
 847     return inline_updateBytesAdler32();
 848   case vmIntrinsics::_updateByteBufferAdler32:
 849     return inline_updateByteBufferAdler32();
 850 
 851   case vmIntrinsics::_profileBoolean:
 852     return inline_profileBoolean();
 853   case vmIntrinsics::_isCompileConstant:
 854     return inline_isCompileConstant();
 855 
 856   case vmIntrinsics::_hasNegatives:
 857     return inline_hasNegatives();
 858 
 859   case vmIntrinsics::_fmaD:
 860   case vmIntrinsics::_fmaF:
 861     return inline_fma(intrinsic_id());
 862 
 863   default:
 864     // If you get here, it may be that someone has added a new intrinsic
 865     // to the list in vmSymbols.hpp without implementing it here.
 866 #ifndef PRODUCT
 867     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 868       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 869                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 870     }
 871 #endif
 872     return false;
 873   }
 874 }
 875 
 876 Node* LibraryCallKit::try_to_predicate(int predicate) {
 877   if (!jvms()->has_method()) {
 878     // Root JVMState has a null method.
 879     assert(map()->memory()->Opcode() == Op_Parm, "");
 880     // Insert the memory aliasing node
 881     set_all_memory(reset_memory());
 882   }
 883   assert(merged_memory(), "");
 884 
 885   switch (intrinsic_id()) {
 886   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 887     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 888   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 889     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 890   case vmIntrinsics::_counterMode_AESCrypt:
 891     return inline_counterMode_AESCrypt_predicate();
 892   case vmIntrinsics::_digestBase_implCompressMB:
 893     return inline_digestBase_implCompressMB_predicate(predicate);
 894 
 895   default:
 896     // If you get here, it may be that someone has added a new intrinsic
 897     // to the list in vmSymbols.hpp without implementing it here.
 898 #ifndef PRODUCT
 899     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 900       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 901                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 902     }
 903 #endif
 904     Node* slow_ctl = control();
 905     set_control(top()); // No fast path instrinsic
 906     return slow_ctl;
 907   }
 908 }
 909 
 910 //------------------------------set_result-------------------------------
 911 // Helper function for finishing intrinsics.
 912 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 913   record_for_igvn(region);
 914   set_control(_gvn.transform(region));
 915   set_result( _gvn.transform(value));
 916   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 917 }
 918 
 919 //------------------------------generate_guard---------------------------
 920 // Helper function for generating guarded fast-slow graph structures.
 921 // The given 'test', if true, guards a slow path.  If the test fails
 922 // then a fast path can be taken.  (We generally hope it fails.)
 923 // In all cases, GraphKit::control() is updated to the fast path.
 924 // The returned value represents the control for the slow path.
 925 // The return value is never 'top'; it is either a valid control
 926 // or NULL if it is obvious that the slow path can never be taken.
 927 // Also, if region and the slow control are not NULL, the slow edge
 928 // is appended to the region.
 929 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 930   if (stopped()) {
 931     // Already short circuited.
 932     return NULL;
 933   }
 934 
 935   // Build an if node and its projections.
 936   // If test is true we take the slow path, which we assume is uncommon.
 937   if (_gvn.type(test) == TypeInt::ZERO) {
 938     // The slow branch is never taken.  No need to build this guard.
 939     return NULL;
 940   }
 941 
 942   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 943 
 944   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 945   if (if_slow == top()) {
 946     // The slow branch is never taken.  No need to build this guard.
 947     return NULL;
 948   }
 949 
 950   if (region != NULL)
 951     region->add_req(if_slow);
 952 
 953   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 954   set_control(if_fast);
 955 
 956   return if_slow;
 957 }
 958 
 959 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 960   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 961 }
 962 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 963   return generate_guard(test, region, PROB_FAIR);
 964 }
 965 
 966 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 967                                                      Node* *pos_index) {
 968   if (stopped())
 969     return NULL;                // already stopped
 970   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 971     return NULL;                // index is already adequately typed
 972   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 973   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 974   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 975   if (is_neg != NULL && pos_index != NULL) {
 976     // Emulate effect of Parse::adjust_map_after_if.
 977     Node* ccast = new CastIINode(index, TypeInt::POS);
 978     ccast->set_req(0, control());
 979     (*pos_index) = _gvn.transform(ccast);
 980   }
 981   return is_neg;
 982 }
 983 
 984 // Make sure that 'position' is a valid limit index, in [0..length].
 985 // There are two equivalent plans for checking this:
 986 //   A. (offset + copyLength)  unsigned<=  arrayLength
 987 //   B. offset  <=  (arrayLength - copyLength)
 988 // We require that all of the values above, except for the sum and
 989 // difference, are already known to be non-negative.
 990 // Plan A is robust in the face of overflow, if offset and copyLength
 991 // are both hugely positive.
 992 //
 993 // Plan B is less direct and intuitive, but it does not overflow at
 994 // all, since the difference of two non-negatives is always
 995 // representable.  Whenever Java methods must perform the equivalent
 996 // check they generally use Plan B instead of Plan A.
 997 // For the moment we use Plan A.
 998 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 999                                                   Node* subseq_length,
1000                                                   Node* array_length,
1001                                                   RegionNode* region) {
1002   if (stopped())
1003     return NULL;                // already stopped
1004   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1005   if (zero_offset && subseq_length->eqv_uncast(array_length))
1006     return NULL;                // common case of whole-array copy
1007   Node* last = subseq_length;
1008   if (!zero_offset)             // last += offset
1009     last = _gvn.transform(new AddINode(last, offset));
1010   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
1011   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
1012   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1013   return is_over;
1014 }
1015 
1016 // Emit range checks for the given String.value byte array
1017 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
1018   if (stopped()) {
1019     return; // already stopped
1020   }
1021   RegionNode* bailout = new RegionNode(1);
1022   record_for_igvn(bailout);
1023   if (char_count) {
1024     // Convert char count to byte count
1025     count = _gvn.transform(new LShiftINode(count, intcon(1)));
1026   }
1027 
1028   // Offset and count must not be negative
1029   generate_negative_guard(offset, bailout);
1030   generate_negative_guard(count, bailout);
1031   // Offset + count must not exceed length of array
1032   generate_limit_guard(offset, count, load_array_length(array), bailout);
1033 
1034   if (bailout->req() > 1) {
1035     PreserveJVMState pjvms(this);
1036     set_control(_gvn.transform(bailout));
1037     uncommon_trap(Deoptimization::Reason_intrinsic,
1038                   Deoptimization::Action_maybe_recompile);
1039   }
1040 }
1041 
1042 //--------------------------generate_current_thread--------------------
1043 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1044   ciKlass*    thread_klass = env()->Thread_klass();
1045   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1046   Node* thread = _gvn.transform(new ThreadLocalNode());
1047   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1048   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1049   tls_output = thread;
1050   return threadObj;
1051 }
1052 
1053 
1054 //------------------------------make_string_method_node------------------------
1055 // Helper method for String intrinsic functions. This version is called with
1056 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
1057 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
1058 // containing the lengths of str1 and str2.
1059 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
1060   Node* result = NULL;
1061   switch (opcode) {
1062   case Op_StrIndexOf:
1063     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
1064                                 str1_start, cnt1, str2_start, cnt2, ae);
1065     break;
1066   case Op_StrComp:
1067     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
1068                              str1_start, cnt1, str2_start, cnt2, ae);
1069     break;
1070   case Op_StrEquals:
1071     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
1072     // Use the constant length if there is one because optimized match rule may exist.
1073     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
1074                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
1075     break;
1076   default:
1077     ShouldNotReachHere();
1078     return NULL;
1079   }
1080 
1081   // All these intrinsics have checks.
1082   C->set_has_split_ifs(true); // Has chance for split-if optimization
1083 
1084   return _gvn.transform(result);
1085 }
1086 
1087 //------------------------------inline_string_compareTo------------------------
1088 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
1089   Node* arg1 = argument(0);
1090   Node* arg2 = argument(1);
1091 
1092   // Get start addr and length of first argument
1093   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1094   Node* arg1_cnt    = load_array_length(arg1);
1095 
1096   // Get start addr and length of second argument
1097   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1098   Node* arg2_cnt    = load_array_length(arg2);
1099 
1100   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1101   set_result(result);
1102   return true;
1103 }
1104 
1105 //------------------------------inline_string_equals------------------------
1106 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
1107   Node* arg1 = argument(0);
1108   Node* arg2 = argument(1);
1109 
1110   // paths (plus control) merge
1111   RegionNode* region = new RegionNode(3);
1112   Node* phi = new PhiNode(region, TypeInt::BOOL);
1113 
1114   if (!stopped()) {
1115     // Get start addr and length of first argument
1116     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
1117     Node* arg1_cnt    = load_array_length(arg1);
1118 
1119     // Get start addr and length of second argument
1120     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
1121     Node* arg2_cnt    = load_array_length(arg2);
1122 
1123     // Check for arg1_cnt != arg2_cnt
1124     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
1125     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
1126     Node* if_ne = generate_slow_guard(bol, NULL);
1127     if (if_ne != NULL) {
1128       phi->init_req(2, intcon(0));
1129       region->init_req(2, if_ne);
1130     }
1131 
1132     // Check for count == 0 is done by assembler code for StrEquals.
1133 
1134     if (!stopped()) {
1135       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
1136       phi->init_req(1, equals);
1137       region->init_req(1, control());
1138     }
1139   }
1140 
1141   // post merge
1142   set_control(_gvn.transform(region));
1143   record_for_igvn(region);
1144 
1145   set_result(_gvn.transform(phi));
1146   return true;
1147 }
1148 
1149 //------------------------------inline_array_equals----------------------------
1150 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
1151   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
1152   Node* arg1 = argument(0);
1153   Node* arg2 = argument(1);
1154 
1155   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
1156   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
1157   return true;
1158 }
1159 
1160 //------------------------------inline_hasNegatives------------------------------
1161 bool LibraryCallKit::inline_hasNegatives() {
1162   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1163     return false;
1164   }
1165 
1166   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
1167   // no receiver since it is static method
1168   Node* ba         = argument(0);
1169   Node* offset     = argument(1);
1170   Node* len        = argument(2);
1171 
1172   // Range checks
1173   generate_string_range_check(ba, offset, len, false);
1174   if (stopped()) {
1175     return true;
1176   }
1177   Node* ba_start = array_element_address(ba, offset, T_BYTE);
1178   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
1179   set_result(_gvn.transform(result));
1180   return true;
1181 }
1182 
1183 bool LibraryCallKit::inline_preconditions_checkIndex() {
1184   Node* index = argument(0);
1185   Node* length = argument(1);
1186   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1187     return false;
1188   }
1189 
1190   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1191   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1192 
1193   {
1194     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1195     uncommon_trap(Deoptimization::Reason_intrinsic,
1196                   Deoptimization::Action_make_not_entrant);
1197   }
1198 
1199   if (stopped()) {
1200     return false;
1201   }
1202 
1203   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1204   BoolTest::mask btest = BoolTest::lt;
1205   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1206   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1207   _gvn.set_type(rc, rc->Value(&_gvn));
1208   if (!rc_bool->is_Con()) {
1209     record_for_igvn(rc);
1210   }
1211   set_control(_gvn.transform(new IfTrueNode(rc)));
1212   {
1213     PreserveJVMState pjvms(this);
1214     set_control(_gvn.transform(new IfFalseNode(rc)));
1215     uncommon_trap(Deoptimization::Reason_range_check,
1216                   Deoptimization::Action_make_not_entrant);
1217   }
1218 
1219   if (stopped()) {
1220     return false;
1221   }
1222 
1223   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1224   result->set_req(0, control());
1225   result = _gvn.transform(result);
1226   set_result(result);
1227   replace_in_map(index, result);
1228   return true;
1229 }
1230 
1231 //------------------------------inline_string_indexOf------------------------
1232 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1233   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1234     return false;
1235   }
1236   Node* src = argument(0);
1237   Node* tgt = argument(1);
1238 
1239   // Make the merge point
1240   RegionNode* result_rgn = new RegionNode(4);
1241   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1242 
1243   // Get start addr and length of source string
1244   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1245   Node* src_count = load_array_length(src);
1246 
1247   // Get start addr and length of substring
1248   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1249   Node* tgt_count = load_array_length(tgt);
1250 
1251   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1252     // Divide src size by 2 if String is UTF16 encoded
1253     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1254   }
1255   if (ae == StrIntrinsicNode::UU) {
1256     // Divide substring size by 2 if String is UTF16 encoded
1257     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1258   }
1259 
1260   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1261   if (result != NULL) {
1262     result_phi->init_req(3, result);
1263     result_rgn->init_req(3, control());
1264   }
1265   set_control(_gvn.transform(result_rgn));
1266   record_for_igvn(result_rgn);
1267   set_result(_gvn.transform(result_phi));
1268 
1269   return true;
1270 }
1271 
1272 //-----------------------------inline_string_indexOf-----------------------
1273 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1274   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1275     return false;
1276   }
1277   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1278     return false;
1279   }
1280   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1281   Node* src         = argument(0); // byte[]
1282   Node* src_count   = argument(1); // char count
1283   Node* tgt         = argument(2); // byte[]
1284   Node* tgt_count   = argument(3); // char count
1285   Node* from_index  = argument(4); // char index
1286 
1287   // Multiply byte array index by 2 if String is UTF16 encoded
1288   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1289   src_count = _gvn.transform(new SubINode(src_count, from_index));
1290   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1291   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1292 
1293   // Range checks
1294   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1295   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1296   if (stopped()) {
1297     return true;
1298   }
1299 
1300   RegionNode* region = new RegionNode(5);
1301   Node* phi = new PhiNode(region, TypeInt::INT);
1302 
1303   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1304   if (result != NULL) {
1305     // The result is index relative to from_index if substring was found, -1 otherwise.
1306     // Generate code which will fold into cmove.
1307     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1308     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1309 
1310     Node* if_lt = generate_slow_guard(bol, NULL);
1311     if (if_lt != NULL) {
1312       // result == -1
1313       phi->init_req(3, result);
1314       region->init_req(3, if_lt);
1315     }
1316     if (!stopped()) {
1317       result = _gvn.transform(new AddINode(result, from_index));
1318       phi->init_req(4, result);
1319       region->init_req(4, control());
1320     }
1321   }
1322 
1323   set_control(_gvn.transform(region));
1324   record_for_igvn(region);
1325   set_result(_gvn.transform(phi));
1326 
1327   return true;
1328 }
1329 
1330 // Create StrIndexOfNode with fast path checks
1331 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1332                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1333   // Check for substr count > string count
1334   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1335   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1336   Node* if_gt = generate_slow_guard(bol, NULL);
1337   if (if_gt != NULL) {
1338     phi->init_req(1, intcon(-1));
1339     region->init_req(1, if_gt);
1340   }
1341   if (!stopped()) {
1342     // Check for substr count == 0
1343     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1344     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1345     Node* if_zero = generate_slow_guard(bol, NULL);
1346     if (if_zero != NULL) {
1347       phi->init_req(2, intcon(0));
1348       region->init_req(2, if_zero);
1349     }
1350   }
1351   if (!stopped()) {
1352     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1353   }
1354   return NULL;
1355 }
1356 
1357 //-----------------------------inline_string_indexOfChar-----------------------
1358 bool LibraryCallKit::inline_string_indexOfChar() {
1359   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1360     return false;
1361   }
1362   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1363     return false;
1364   }
1365   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1366   Node* src         = argument(0); // byte[]
1367   Node* tgt         = argument(1); // tgt is int ch
1368   Node* from_index  = argument(2);
1369   Node* max         = argument(3);
1370 
1371   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1372   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1373   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1374 
1375   // Range checks
1376   generate_string_range_check(src, src_offset, src_count, true);
1377   if (stopped()) {
1378     return true;
1379   }
1380 
1381   RegionNode* region = new RegionNode(3);
1382   Node* phi = new PhiNode(region, TypeInt::INT);
1383 
1384   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1385   C->set_has_split_ifs(true); // Has chance for split-if optimization
1386   _gvn.transform(result);
1387 
1388   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1389   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1390 
1391   Node* if_lt = generate_slow_guard(bol, NULL);
1392   if (if_lt != NULL) {
1393     // result == -1
1394     phi->init_req(2, result);
1395     region->init_req(2, if_lt);
1396   }
1397   if (!stopped()) {
1398     result = _gvn.transform(new AddINode(result, from_index));
1399     phi->init_req(1, result);
1400     region->init_req(1, control());
1401   }
1402   set_control(_gvn.transform(region));
1403   record_for_igvn(region);
1404   set_result(_gvn.transform(phi));
1405 
1406   return true;
1407 }
1408 //---------------------------inline_string_copy---------------------
1409 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1410 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1411 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1412 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1413 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1414 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1415 bool LibraryCallKit::inline_string_copy(bool compress) {
1416   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1417     return false;
1418   }
1419   int nargs = 5;  // 2 oops, 3 ints
1420   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1421 
1422   Node* src         = argument(0);
1423   Node* src_offset  = argument(1);
1424   Node* dst         = argument(2);
1425   Node* dst_offset  = argument(3);
1426   Node* length      = argument(4);
1427 
1428   // Check for allocation before we add nodes that would confuse
1429   // tightly_coupled_allocation()
1430   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1431 
1432   // Figure out the size and type of the elements we will be copying.
1433   const Type* src_type = src->Value(&_gvn);
1434   const Type* dst_type = dst->Value(&_gvn);
1435   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1436   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1437   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1438          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1439          "Unsupported array types for inline_string_copy");
1440 
1441   // Convert char[] offsets to byte[] offsets
1442   bool convert_src = (compress && src_elem == T_BYTE);
1443   bool convert_dst = (!compress && dst_elem == T_BYTE);
1444   if (convert_src) {
1445     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1446   } else if (convert_dst) {
1447     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1448   }
1449 
1450   // Range checks
1451   generate_string_range_check(src, src_offset, length, convert_src);
1452   generate_string_range_check(dst, dst_offset, length, convert_dst);
1453   if (stopped()) {
1454     return true;
1455   }
1456 
1457   Node* src_start = array_element_address(src, src_offset, src_elem);
1458   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1459   // 'src_start' points to src array + scaled offset
1460   // 'dst_start' points to dst array + scaled offset
1461   Node* count = NULL;
1462   if (compress) {
1463     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1464   } else {
1465     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1466   }
1467 
1468   if (alloc != NULL) {
1469     if (alloc->maybe_set_complete(&_gvn)) {
1470       // "You break it, you buy it."
1471       InitializeNode* init = alloc->initialization();
1472       assert(init->is_complete(), "we just did this");
1473       init->set_complete_with_arraycopy();
1474       assert(dst->is_CheckCastPP(), "sanity");
1475       assert(dst->in(0)->in(0) == init, "dest pinned");
1476     }
1477     // Do not let stores that initialize this object be reordered with
1478     // a subsequent store that would make this object accessible by
1479     // other threads.
1480     // Record what AllocateNode this StoreStore protects so that
1481     // escape analysis can go from the MemBarStoreStoreNode to the
1482     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1483     // based on the escape status of the AllocateNode.
1484     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1485   }
1486   if (compress) {
1487     set_result(_gvn.transform(count));
1488   }
1489   return true;
1490 }
1491 
1492 #ifdef _LP64
1493 #define XTOP ,top() /*additional argument*/
1494 #else  //_LP64
1495 #define XTOP        /*no additional argument*/
1496 #endif //_LP64
1497 
1498 //------------------------inline_string_toBytesU--------------------------
1499 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1500 bool LibraryCallKit::inline_string_toBytesU() {
1501   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1502     return false;
1503   }
1504   // Get the arguments.
1505   Node* value     = argument(0);
1506   Node* offset    = argument(1);
1507   Node* length    = argument(2);
1508 
1509   Node* newcopy = NULL;
1510 
1511   // Set the original stack and the reexecute bit for the interpreter to reexecute
1512   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1513   { PreserveReexecuteState preexecs(this);
1514     jvms()->set_should_reexecute(true);
1515 
1516     // Check if a null path was taken unconditionally.
1517     value = null_check(value);
1518 
1519     RegionNode* bailout = new RegionNode(1);
1520     record_for_igvn(bailout);
1521 
1522     // Range checks
1523     generate_negative_guard(offset, bailout);
1524     generate_negative_guard(length, bailout);
1525     generate_limit_guard(offset, length, load_array_length(value), bailout);
1526     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1527     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1528 
1529     if (bailout->req() > 1) {
1530       PreserveJVMState pjvms(this);
1531       set_control(_gvn.transform(bailout));
1532       uncommon_trap(Deoptimization::Reason_intrinsic,
1533                     Deoptimization::Action_maybe_recompile);
1534     }
1535     if (stopped()) {
1536       return true;
1537     }
1538 
1539     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1540     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1541     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1542     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1543 
1544     // Calculate starting addresses.
1545     Node* src_start = array_element_address(value, offset, T_CHAR);
1546     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1547 
1548     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1549     const TypeInt* toffset = gvn().type(offset)->is_int();
1550     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1551 
1552     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1553     const char* copyfunc_name = "arraycopy";
1554     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1555     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1556                       OptoRuntime::fast_arraycopy_Type(),
1557                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1558                       src_start, dst_start, ConvI2X(length) XTOP);
1559     // Do not let reads from the cloned object float above the arraycopy.
1560     if (alloc != NULL) {
1561       if (alloc->maybe_set_complete(&_gvn)) {
1562         // "You break it, you buy it."
1563         InitializeNode* init = alloc->initialization();
1564         assert(init->is_complete(), "we just did this");
1565         init->set_complete_with_arraycopy();
1566         assert(newcopy->is_CheckCastPP(), "sanity");
1567         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1568       }
1569       // Do not let stores that initialize this object be reordered with
1570       // a subsequent store that would make this object accessible by
1571       // other threads.
1572       // Record what AllocateNode this StoreStore protects so that
1573       // escape analysis can go from the MemBarStoreStoreNode to the
1574       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1575       // based on the escape status of the AllocateNode.
1576       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1577     } else {
1578       insert_mem_bar(Op_MemBarCPUOrder);
1579     }
1580   } // original reexecute is set back here
1581 
1582   C->set_has_split_ifs(true); // Has chance for split-if optimization
1583   if (!stopped()) {
1584     set_result(newcopy);
1585   }
1586   return true;
1587 }
1588 
1589 //------------------------inline_string_getCharsU--------------------------
1590 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1591 bool LibraryCallKit::inline_string_getCharsU() {
1592   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1593     return false;
1594   }
1595 
1596   // Get the arguments.
1597   Node* src       = argument(0);
1598   Node* src_begin = argument(1);
1599   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1600   Node* dst       = argument(3);
1601   Node* dst_begin = argument(4);
1602 
1603   // Check for allocation before we add nodes that would confuse
1604   // tightly_coupled_allocation()
1605   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1606 
1607   // Check if a null path was taken unconditionally.
1608   src = null_check(src);
1609   dst = null_check(dst);
1610   if (stopped()) {
1611     return true;
1612   }
1613 
1614   // Get length and convert char[] offset to byte[] offset
1615   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1616   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1617 
1618   // Range checks
1619   generate_string_range_check(src, src_begin, length, true);
1620   generate_string_range_check(dst, dst_begin, length, false);
1621   if (stopped()) {
1622     return true;
1623   }
1624 
1625   if (!stopped()) {
1626     // Calculate starting addresses.
1627     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1628     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1629 
1630     // Check if array addresses are aligned to HeapWordSize
1631     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1632     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1633     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1634                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1635 
1636     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1637     const char* copyfunc_name = "arraycopy";
1638     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1639     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1640                       OptoRuntime::fast_arraycopy_Type(),
1641                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1642                       src_start, dst_start, ConvI2X(length) XTOP);
1643     // Do not let reads from the cloned object float above the arraycopy.
1644     if (alloc != NULL) {
1645       if (alloc->maybe_set_complete(&_gvn)) {
1646         // "You break it, you buy it."
1647         InitializeNode* init = alloc->initialization();
1648         assert(init->is_complete(), "we just did this");
1649         init->set_complete_with_arraycopy();
1650         assert(dst->is_CheckCastPP(), "sanity");
1651         assert(dst->in(0)->in(0) == init, "dest pinned");
1652       }
1653       // Do not let stores that initialize this object be reordered with
1654       // a subsequent store that would make this object accessible by
1655       // other threads.
1656       // Record what AllocateNode this StoreStore protects so that
1657       // escape analysis can go from the MemBarStoreStoreNode to the
1658       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1659       // based on the escape status of the AllocateNode.
1660       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
1661     } else {
1662       insert_mem_bar(Op_MemBarCPUOrder);
1663     }
1664   }
1665 
1666   C->set_has_split_ifs(true); // Has chance for split-if optimization
1667   return true;
1668 }
1669 
1670 //----------------------inline_string_char_access----------------------------
1671 // Store/Load char to/from byte[] array.
1672 // static void StringUTF16.putChar(byte[] val, int index, int c)
1673 // static char StringUTF16.getChar(byte[] val, int index)
1674 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1675   Node* value  = argument(0);
1676   Node* index  = argument(1);
1677   Node* ch = is_store ? argument(2) : NULL;
1678 
1679   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1680   // correctly requires matched array shapes.
1681   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1682           "sanity: byte[] and char[] bases agree");
1683   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1684           "sanity: byte[] and char[] scales agree");
1685 
1686   // Bail when getChar over constants is requested: constant folding would
1687   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1688   // Java method would constant fold nicely instead.
1689   if (!is_store && value->is_Con() && index->is_Con()) {
1690     return false;
1691   }
1692 
1693   Node* adr = array_element_address(value, index, T_CHAR);
1694   if (adr->is_top()) {
1695     return false;
1696   }
1697   if (is_store) {
1698     (void) store_to_memory(control(), adr, ch, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1699                            false, false, true /* mismatched */);
1700   } else {
1701     ch = make_load(control(), adr, TypeInt::CHAR, T_CHAR, TypeAryPtr::BYTES, MemNode::unordered,
1702                    LoadNode::DependsOnlyOnTest, false, false, true /* mismatched */);
1703     set_result(ch);
1704   }
1705   return true;
1706 }
1707 
1708 //--------------------------round_double_node--------------------------------
1709 // Round a double node if necessary.
1710 Node* LibraryCallKit::round_double_node(Node* n) {
1711   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1712     n = _gvn.transform(new RoundDoubleNode(0, n));
1713   return n;
1714 }
1715 
1716 //------------------------------inline_math-----------------------------------
1717 // public static double Math.abs(double)
1718 // public static double Math.sqrt(double)
1719 // public static double Math.log(double)
1720 // public static double Math.log10(double)
1721 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1722   Node* arg = round_double_node(argument(0));
1723   Node* n = NULL;
1724   switch (id) {
1725   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1726   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1727   default:  fatal_unexpected_iid(id);  break;
1728   }
1729   set_result(_gvn.transform(n));
1730   return true;
1731 }
1732 
1733 //------------------------------runtime_math-----------------------------
1734 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1735   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1736          "must be (DD)D or (D)D type");
1737 
1738   // Inputs
1739   Node* a = round_double_node(argument(0));
1740   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1741 
1742   const TypePtr* no_memory_effects = NULL;
1743   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1744                                  no_memory_effects,
1745                                  a, top(), b, b ? top() : NULL);
1746   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1747 #ifdef ASSERT
1748   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1749   assert(value_top == top(), "second value must be top");
1750 #endif
1751 
1752   set_result(value);
1753   return true;
1754 }
1755 
1756 //------------------------------inline_math_native-----------------------------
1757 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1758 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1759   switch (id) {
1760     // These intrinsics are not properly supported on all hardware
1761   case vmIntrinsics::_dsin:
1762     return StubRoutines::dsin() != NULL ?
1763       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1764       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1765   case vmIntrinsics::_dcos:
1766     return StubRoutines::dcos() != NULL ?
1767       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1768       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1769   case vmIntrinsics::_dtan:
1770     return StubRoutines::dtan() != NULL ?
1771       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1772       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1773   case vmIntrinsics::_dlog:
1774     return StubRoutines::dlog() != NULL ?
1775       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1776       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1777   case vmIntrinsics::_dlog10:
1778     return StubRoutines::dlog10() != NULL ?
1779       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1780       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1781 
1782     // These intrinsics are supported on all hardware
1783   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1784   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1785 
1786   case vmIntrinsics::_dexp:
1787     return StubRoutines::dexp() != NULL ?
1788       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1789       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1790   case vmIntrinsics::_dpow:
1791     return StubRoutines::dpow() != NULL ?
1792       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(), "dpow") :
1793       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1794 #undef FN_PTR
1795 
1796    // These intrinsics are not yet correctly implemented
1797   case vmIntrinsics::_datan2:
1798     return false;
1799 
1800   default:
1801     fatal_unexpected_iid(id);
1802     return false;
1803   }
1804 }
1805 
1806 static bool is_simple_name(Node* n) {
1807   return (n->req() == 1         // constant
1808           || (n->is_Type() && n->as_Type()->type()->singleton())
1809           || n->is_Proj()       // parameter or return value
1810           || n->is_Phi()        // local of some sort
1811           );
1812 }
1813 
1814 //----------------------------inline_notify-----------------------------------*
1815 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1816   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1817   address func;
1818   if (id == vmIntrinsics::_notify) {
1819     func = OptoRuntime::monitor_notify_Java();
1820   } else {
1821     func = OptoRuntime::monitor_notifyAll_Java();
1822   }
1823   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1824   make_slow_call_ex(call, env()->Throwable_klass(), false);
1825   return true;
1826 }
1827 
1828 
1829 //----------------------------inline_min_max-----------------------------------
1830 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1831   set_result(generate_min_max(id, argument(0), argument(1)));
1832   return true;
1833 }
1834 
1835 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1836   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1837   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1838   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1839   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1840 
1841   {
1842     PreserveJVMState pjvms(this);
1843     PreserveReexecuteState preexecs(this);
1844     jvms()->set_should_reexecute(true);
1845 
1846     set_control(slow_path);
1847     set_i_o(i_o());
1848 
1849     uncommon_trap(Deoptimization::Reason_intrinsic,
1850                   Deoptimization::Action_none);
1851   }
1852 
1853   set_control(fast_path);
1854   set_result(math);
1855 }
1856 
1857 template <typename OverflowOp>
1858 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1859   typedef typename OverflowOp::MathOp MathOp;
1860 
1861   MathOp* mathOp = new MathOp(arg1, arg2);
1862   Node* operation = _gvn.transform( mathOp );
1863   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1864   inline_math_mathExact(operation, ofcheck);
1865   return true;
1866 }
1867 
1868 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1869   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1870 }
1871 
1872 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1873   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1874 }
1875 
1876 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1877   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1878 }
1879 
1880 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1881   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1882 }
1883 
1884 bool LibraryCallKit::inline_math_negateExactI() {
1885   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1886 }
1887 
1888 bool LibraryCallKit::inline_math_negateExactL() {
1889   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1890 }
1891 
1892 bool LibraryCallKit::inline_math_multiplyExactI() {
1893   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1894 }
1895 
1896 bool LibraryCallKit::inline_math_multiplyExactL() {
1897   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1898 }
1899 
1900 Node*
1901 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1902   // These are the candidate return value:
1903   Node* xvalue = x0;
1904   Node* yvalue = y0;
1905 
1906   if (xvalue == yvalue) {
1907     return xvalue;
1908   }
1909 
1910   bool want_max = (id == vmIntrinsics::_max);
1911 
1912   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1913   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1914   if (txvalue == NULL || tyvalue == NULL)  return top();
1915   // This is not really necessary, but it is consistent with a
1916   // hypothetical MaxINode::Value method:
1917   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1918 
1919   // %%% This folding logic should (ideally) be in a different place.
1920   // Some should be inside IfNode, and there to be a more reliable
1921   // transformation of ?: style patterns into cmoves.  We also want
1922   // more powerful optimizations around cmove and min/max.
1923 
1924   // Try to find a dominating comparison of these guys.
1925   // It can simplify the index computation for Arrays.copyOf
1926   // and similar uses of System.arraycopy.
1927   // First, compute the normalized version of CmpI(x, y).
1928   int   cmp_op = Op_CmpI;
1929   Node* xkey = xvalue;
1930   Node* ykey = yvalue;
1931   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1932   if (ideal_cmpxy->is_Cmp()) {
1933     // E.g., if we have CmpI(length - offset, count),
1934     // it might idealize to CmpI(length, count + offset)
1935     cmp_op = ideal_cmpxy->Opcode();
1936     xkey = ideal_cmpxy->in(1);
1937     ykey = ideal_cmpxy->in(2);
1938   }
1939 
1940   // Start by locating any relevant comparisons.
1941   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1942   Node* cmpxy = NULL;
1943   Node* cmpyx = NULL;
1944   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1945     Node* cmp = start_from->fast_out(k);
1946     if (cmp->outcnt() > 0 &&            // must have prior uses
1947         cmp->in(0) == NULL &&           // must be context-independent
1948         cmp->Opcode() == cmp_op) {      // right kind of compare
1949       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1950       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1951     }
1952   }
1953 
1954   const int NCMPS = 2;
1955   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1956   int cmpn;
1957   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1958     if (cmps[cmpn] != NULL)  break;     // find a result
1959   }
1960   if (cmpn < NCMPS) {
1961     // Look for a dominating test that tells us the min and max.
1962     int depth = 0;                // Limit search depth for speed
1963     Node* dom = control();
1964     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1965       if (++depth >= 100)  break;
1966       Node* ifproj = dom;
1967       if (!ifproj->is_Proj())  continue;
1968       Node* iff = ifproj->in(0);
1969       if (!iff->is_If())  continue;
1970       Node* bol = iff->in(1);
1971       if (!bol->is_Bool())  continue;
1972       Node* cmp = bol->in(1);
1973       if (cmp == NULL)  continue;
1974       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1975         if (cmps[cmpn] == cmp)  break;
1976       if (cmpn == NCMPS)  continue;
1977       BoolTest::mask btest = bol->as_Bool()->_test._test;
1978       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1979       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1980       // At this point, we know that 'x btest y' is true.
1981       switch (btest) {
1982       case BoolTest::eq:
1983         // They are proven equal, so we can collapse the min/max.
1984         // Either value is the answer.  Choose the simpler.
1985         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1986           return yvalue;
1987         return xvalue;
1988       case BoolTest::lt:          // x < y
1989       case BoolTest::le:          // x <= y
1990         return (want_max ? yvalue : xvalue);
1991       case BoolTest::gt:          // x > y
1992       case BoolTest::ge:          // x >= y
1993         return (want_max ? xvalue : yvalue);
1994       default:
1995         break;
1996       }
1997     }
1998   }
1999 
2000   // We failed to find a dominating test.
2001   // Let's pick a test that might GVN with prior tests.
2002   Node*          best_bol   = NULL;
2003   BoolTest::mask best_btest = BoolTest::illegal;
2004   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2005     Node* cmp = cmps[cmpn];
2006     if (cmp == NULL)  continue;
2007     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2008       Node* bol = cmp->fast_out(j);
2009       if (!bol->is_Bool())  continue;
2010       BoolTest::mask btest = bol->as_Bool()->_test._test;
2011       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2012       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2013       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2014         best_bol   = bol->as_Bool();
2015         best_btest = btest;
2016       }
2017     }
2018   }
2019 
2020   Node* answer_if_true  = NULL;
2021   Node* answer_if_false = NULL;
2022   switch (best_btest) {
2023   default:
2024     if (cmpxy == NULL)
2025       cmpxy = ideal_cmpxy;
2026     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
2027     // and fall through:
2028   case BoolTest::lt:          // x < y
2029   case BoolTest::le:          // x <= y
2030     answer_if_true  = (want_max ? yvalue : xvalue);
2031     answer_if_false = (want_max ? xvalue : yvalue);
2032     break;
2033   case BoolTest::gt:          // x > y
2034   case BoolTest::ge:          // x >= y
2035     answer_if_true  = (want_max ? xvalue : yvalue);
2036     answer_if_false = (want_max ? yvalue : xvalue);
2037     break;
2038   }
2039 
2040   jint hi, lo;
2041   if (want_max) {
2042     // We can sharpen the minimum.
2043     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2044     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2045   } else {
2046     // We can sharpen the maximum.
2047     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2048     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2049   }
2050 
2051   // Use a flow-free graph structure, to avoid creating excess control edges
2052   // which could hinder other optimizations.
2053   // Since Math.min/max is often used with arraycopy, we want
2054   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2055   Node* cmov = CMoveNode::make(NULL, best_bol,
2056                                answer_if_false, answer_if_true,
2057                                TypeInt::make(lo, hi, widen));
2058 
2059   return _gvn.transform(cmov);
2060 
2061   /*
2062   // This is not as desirable as it may seem, since Min and Max
2063   // nodes do not have a full set of optimizations.
2064   // And they would interfere, anyway, with 'if' optimizations
2065   // and with CMoveI canonical forms.
2066   switch (id) {
2067   case vmIntrinsics::_min:
2068     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2069   case vmIntrinsics::_max:
2070     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2071   default:
2072     ShouldNotReachHere();
2073   }
2074   */
2075 }
2076 
2077 inline int
2078 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
2079   const TypePtr* base_type = TypePtr::NULL_PTR;
2080   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2081   if (base_type == NULL) {
2082     // Unknown type.
2083     return Type::AnyPtr;
2084   } else if (base_type == TypePtr::NULL_PTR) {
2085     // Since this is a NULL+long form, we have to switch to a rawptr.
2086     base   = _gvn.transform(new CastX2PNode(offset));
2087     offset = MakeConX(0);
2088     return Type::RawPtr;
2089   } else if (base_type->base() == Type::RawPtr) {
2090     return Type::RawPtr;
2091   } else if (base_type->isa_oopptr()) {
2092     // Base is never null => always a heap address.
2093     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
2094       return Type::OopPtr;
2095     }
2096     // Offset is small => always a heap address.
2097     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2098     if (offset_type != NULL &&
2099         base_type->offset() == 0 &&     // (should always be?)
2100         offset_type->_lo >= 0 &&
2101         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2102       return Type::OopPtr;
2103     } else if (type == T_OBJECT) {
2104       // off heap access to an oop doesn't make any sense. Has to be on
2105       // heap.
2106       return Type::OopPtr;
2107     }
2108     // Otherwise, it might either be oop+off or NULL+addr.
2109     return Type::AnyPtr;
2110   } else {
2111     // No information:
2112     return Type::AnyPtr;
2113   }
2114 }
2115 
2116 inline Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, BasicType type, bool can_cast) {
2117   Node* uncasted_base = base;
2118   int kind = classify_unsafe_addr(uncasted_base, offset, type);
2119   if (kind == Type::RawPtr) {
2120     return basic_plus_adr(top(), uncasted_base, offset);
2121   } else if (kind == Type::AnyPtr) {
2122     assert(base == uncasted_base, "unexpected base change");
2123     if (can_cast) {
2124       if (!_gvn.type(base)->speculative_maybe_null() &&
2125           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2126         // According to profiling, this access is always on
2127         // heap. Casting the base to not null and thus avoiding membars
2128         // around the access should allow better optimizations
2129         Node* null_ctl = top();
2130         base = null_check_oop(base, &null_ctl, true, true, true);
2131         assert(null_ctl->is_top(), "no null control here");
2132         return basic_plus_adr(base, offset);
2133       } else if (_gvn.type(base)->speculative_always_null() &&
2134                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2135         // According to profiling, this access is always off
2136         // heap.
2137         base = null_assert(base);
2138         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2139         offset = MakeConX(0);
2140         return basic_plus_adr(top(), raw_base, offset);
2141       }
2142     }
2143     // We don't know if it's an on heap or off heap access. Fall back
2144     // to raw memory access.
2145     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2146     return basic_plus_adr(top(), raw, offset);
2147   } else {
2148     assert(base == uncasted_base, "unexpected base change");
2149     // We know it's an on heap access so base can't be null
2150     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2151       base = must_be_not_null(base, true);
2152     }
2153     return basic_plus_adr(base, offset);
2154   }
2155 }
2156 
2157 //--------------------------inline_number_methods-----------------------------
2158 // inline int     Integer.numberOfLeadingZeros(int)
2159 // inline int        Long.numberOfLeadingZeros(long)
2160 //
2161 // inline int     Integer.numberOfTrailingZeros(int)
2162 // inline int        Long.numberOfTrailingZeros(long)
2163 //
2164 // inline int     Integer.bitCount(int)
2165 // inline int        Long.bitCount(long)
2166 //
2167 // inline char  Character.reverseBytes(char)
2168 // inline short     Short.reverseBytes(short)
2169 // inline int     Integer.reverseBytes(int)
2170 // inline long       Long.reverseBytes(long)
2171 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2172   Node* arg = argument(0);
2173   Node* n = NULL;
2174   switch (id) {
2175   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2176   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2177   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2178   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2179   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2180   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2181   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2182   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2183   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2184   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2185   default:  fatal_unexpected_iid(id);  break;
2186   }
2187   set_result(_gvn.transform(n));
2188   return true;
2189 }
2190 
2191 //----------------------------inline_unsafe_access----------------------------
2192 
2193 // Helper that guards and inserts a pre-barrier.
2194 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2195                                         Node* pre_val, bool need_mem_bar) {
2196   // We could be accessing the referent field of a reference object. If so, when G1
2197   // is enabled, we need to log the value in the referent field in an SATB buffer.
2198   // This routine performs some compile time filters and generates suitable
2199   // runtime filters that guard the pre-barrier code.
2200   // Also add memory barrier for non volatile load from the referent field
2201   // to prevent commoning of loads across safepoint.
2202   if (!UseG1GC && !need_mem_bar)
2203     return;
2204 
2205   // Some compile time checks.
2206 
2207   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2208   const TypeX* otype = offset->find_intptr_t_type();
2209   if (otype != NULL && otype->is_con() &&
2210       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2211     // Constant offset but not the reference_offset so just return
2212     return;
2213   }
2214 
2215   // We only need to generate the runtime guards for instances.
2216   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2217   if (btype != NULL) {
2218     if (btype->isa_aryptr()) {
2219       // Array type so nothing to do
2220       return;
2221     }
2222 
2223     const TypeInstPtr* itype = btype->isa_instptr();
2224     if (itype != NULL) {
2225       // Can the klass of base_oop be statically determined to be
2226       // _not_ a sub-class of Reference and _not_ Object?
2227       ciKlass* klass = itype->klass();
2228       if ( klass->is_loaded() &&
2229           !klass->is_subtype_of(env()->Reference_klass()) &&
2230           !env()->Object_klass()->is_subtype_of(klass)) {
2231         return;
2232       }
2233     }
2234   }
2235 
2236   // The compile time filters did not reject base_oop/offset so
2237   // we need to generate the following runtime filters
2238   //
2239   // if (offset == java_lang_ref_Reference::_reference_offset) {
2240   //   if (instance_of(base, java.lang.ref.Reference)) {
2241   //     pre_barrier(_, pre_val, ...);
2242   //   }
2243   // }
2244 
2245   float likely   = PROB_LIKELY(  0.999);
2246   float unlikely = PROB_UNLIKELY(0.999);
2247 
2248   IdealKit ideal(this);
2249 #define __ ideal.
2250 
2251   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2252 
2253   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2254       // Update graphKit memory and control from IdealKit.
2255       sync_kit(ideal);
2256 
2257       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2258       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2259 
2260       // Update IdealKit memory and control from graphKit.
2261       __ sync_kit(this);
2262 
2263       Node* one = __ ConI(1);
2264       // is_instof == 0 if base_oop == NULL
2265       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2266 
2267         // Update graphKit from IdeakKit.
2268         sync_kit(ideal);
2269 
2270         // Use the pre-barrier to record the value in the referent field
2271         pre_barrier(false /* do_load */,
2272                     __ ctrl(),
2273                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2274                     pre_val /* pre_val */,
2275                     T_OBJECT);
2276         if (need_mem_bar) {
2277           // Add memory barrier to prevent commoning reads from this field
2278           // across safepoint since GC can change its value.
2279           insert_mem_bar(Op_MemBarCPUOrder);
2280         }
2281         // Update IdealKit from graphKit.
2282         __ sync_kit(this);
2283 
2284       } __ end_if(); // _ref_type != ref_none
2285   } __ end_if(); // offset == referent_offset
2286 
2287   // Final sync IdealKit and GraphKit.
2288   final_sync(ideal);
2289 #undef __
2290 }
2291 
2292 
2293 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2294   // Attempt to infer a sharper value type from the offset and base type.
2295   ciKlass* sharpened_klass = NULL;
2296 
2297   // See if it is an instance field, with an object type.
2298   if (alias_type->field() != NULL) {
2299     if (alias_type->field()->type()->is_klass()) {
2300       sharpened_klass = alias_type->field()->type()->as_klass();
2301     }
2302   }
2303 
2304   // See if it is a narrow oop array.
2305   if (adr_type->isa_aryptr()) {
2306     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2307       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2308       if (elem_type != NULL) {
2309         sharpened_klass = elem_type->klass();
2310       }
2311     }
2312   }
2313 
2314   // The sharpened class might be unloaded if there is no class loader
2315   // contraint in place.
2316   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2317     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2318 
2319 #ifndef PRODUCT
2320     if (C->print_intrinsics() || C->print_inlining()) {
2321       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2322       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2323     }
2324 #endif
2325     // Sharpen the value type.
2326     return tjp;
2327   }
2328   return NULL;
2329 }
2330 
2331 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2332   if (callee()->is_static())  return false;  // caller must have the capability!
2333   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2334   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2335   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2336 
2337 #ifndef PRODUCT
2338   {
2339     ResourceMark rm;
2340     // Check the signatures.
2341     ciSignature* sig = callee()->signature();
2342 #ifdef ASSERT
2343     if (!is_store) {
2344       // Object getObject(Object base, int/long offset), etc.
2345       BasicType rtype = sig->return_type()->basic_type();
2346       assert(rtype == type, "getter must return the expected value");
2347       assert(sig->count() == 2, "oop getter has 2 arguments");
2348       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2349       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2350     } else {
2351       // void putObject(Object base, int/long offset, Object x), etc.
2352       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2353       assert(sig->count() == 3, "oop putter has 3 arguments");
2354       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2355       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2356       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2357       assert(vtype == type, "putter must accept the expected value");
2358     }
2359 #endif // ASSERT
2360  }
2361 #endif //PRODUCT
2362 
2363   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2364 
2365   Node* receiver = argument(0);  // type: oop
2366 
2367   // Build address expression.
2368   Node* adr;
2369   Node* heap_base_oop = top();
2370   Node* offset = top();
2371   Node* val;
2372 
2373   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2374   Node* base = argument(1);  // type: oop
2375   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2376   offset = argument(2);  // type: long
2377   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2378   // to be plain byte offsets, which are also the same as those accepted
2379   // by oopDesc::field_base.
2380   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2381          "fieldOffset must be byte-scaled");
2382   // 32-bit machines ignore the high half!
2383   offset = ConvL2X(offset);
2384   adr = make_unsafe_address(base, offset, type, kind == Relaxed);
2385 
2386   if (_gvn.type(base)->isa_ptr() != TypePtr::NULL_PTR) {
2387     heap_base_oop = base;
2388   } else if (type == T_OBJECT) {
2389     return false; // off-heap oop accesses are not supported
2390   }
2391 
2392   // Can base be NULL? Otherwise, always on-heap access.
2393   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop));
2394 
2395   val = is_store ? argument(4) : NULL;
2396 
2397   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2398 
2399   // Try to categorize the address.
2400   Compile::AliasType* alias_type = C->alias_type(adr_type);
2401   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2402 
2403   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2404       alias_type->adr_type() == TypeAryPtr::RANGE) {
2405     return false; // not supported
2406   }
2407 
2408   bool mismatched = false;
2409   BasicType bt = alias_type->basic_type();
2410   if (bt != T_ILLEGAL) {
2411     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2412     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2413       // Alias type doesn't differentiate between byte[] and boolean[]).
2414       // Use address type to get the element type.
2415       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2416     }
2417     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2418       // accessing an array field with getObject is not a mismatch
2419       bt = T_OBJECT;
2420     }
2421     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2422       // Don't intrinsify mismatched object accesses
2423       return false;
2424     }
2425     mismatched = (bt != type);
2426   } else if (alias_type->adr_type()->isa_oopptr()) {
2427     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2428   }
2429 
2430   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2431 
2432   // First guess at the value type.
2433   const Type *value_type = Type::get_const_basic_type(type);
2434 
2435   // We will need memory barriers unless we can determine a unique
2436   // alias category for this reference.  (Note:  If for some reason
2437   // the barriers get omitted and the unsafe reference begins to "pollute"
2438   // the alias analysis of the rest of the graph, either Compile::can_alias
2439   // or Compile::must_alias will throw a diagnostic assert.)
2440   bool need_mem_bar = false;
2441   switch (kind) {
2442       case Relaxed:
2443           need_mem_bar = (mismatched && !adr_type->isa_aryptr()) || can_access_non_heap;
2444           break;
2445       case Opaque:
2446           // Opaque uses CPUOrder membars for protection against code movement.
2447       case Acquire:
2448       case Release:
2449       case Volatile:
2450           need_mem_bar = true;
2451           break;
2452       default:
2453           ShouldNotReachHere();
2454   }
2455 
2456   // Some accesses require access atomicity for all types, notably longs and doubles.
2457   // When AlwaysAtomicAccesses is enabled, all accesses are atomic.
2458   bool requires_atomic_access = false;
2459   switch (kind) {
2460       case Relaxed:
2461           requires_atomic_access = AlwaysAtomicAccesses;
2462           break;
2463       case Opaque:
2464           // Opaque accesses are atomic.
2465       case Acquire:
2466       case Release:
2467       case Volatile:
2468           requires_atomic_access = true;
2469           break;
2470       default:
2471           ShouldNotReachHere();
2472   }
2473 
2474   // Figure out the memory ordering.
2475   // Acquire/Release/Volatile accesses require marking the loads/stores with MemOrd
2476   MemNode::MemOrd mo = access_kind_to_memord_LS(kind, is_store);
2477 
2478   // If we are reading the value of the referent field of a Reference
2479   // object (either by using Unsafe directly or through reflection)
2480   // then, if G1 is enabled, we need to record the referent in an
2481   // SATB log buffer using the pre-barrier mechanism.
2482   // Also we need to add memory barrier to prevent commoning reads
2483   // from this field across safepoint since GC can change its value.
2484   bool need_read_barrier = !is_store &&
2485                            offset != top() && heap_base_oop != top();
2486 
2487   if (!is_store && type == T_OBJECT) {
2488     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2489     if (tjp != NULL) {
2490       value_type = tjp;
2491     }
2492   }
2493 
2494   receiver = null_check(receiver);
2495   if (stopped()) {
2496     return true;
2497   }
2498   // Heap pointers get a null-check from the interpreter,
2499   // as a courtesy.  However, this is not guaranteed by Unsafe,
2500   // and it is not possible to fully distinguish unintended nulls
2501   // from intended ones in this API.
2502 
2503   // We need to emit leading and trailing CPU membars (see below) in
2504   // addition to memory membars for special access modes. This is a little
2505   // too strong, but avoids the need to insert per-alias-type
2506   // volatile membars (for stores; compare Parse::do_put_xxx), which
2507   // we cannot do effectively here because we probably only have a
2508   // rough approximation of type.
2509 
2510   switch(kind) {
2511     case Relaxed:
2512     case Opaque:
2513     case Acquire:
2514       break;
2515     case Release:
2516     case Volatile:
2517       if (is_store) {
2518         insert_mem_bar(Op_MemBarRelease);
2519       } else {
2520         if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2521           insert_mem_bar(Op_MemBarVolatile);
2522         }
2523       }
2524       break;
2525     default:
2526       ShouldNotReachHere();
2527   }
2528 
2529   // Memory barrier to prevent normal and 'unsafe' accesses from
2530   // bypassing each other.  Happens after null checks, so the
2531   // exception paths do not take memory state from the memory barrier,
2532   // so there's no problems making a strong assert about mixing users
2533   // of safe & unsafe memory.
2534   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2535 
2536   if (!is_store) {
2537     Node* p = NULL;
2538     // Try to constant fold a load from a constant field
2539     ciField* field = alias_type->field();
2540     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2541       // final or stable field
2542       p = make_constant_from_field(field, heap_base_oop);
2543     }
2544     if (p == NULL) {
2545       // To be valid, unsafe loads may depend on other conditions than
2546       // the one that guards them: pin the Load node
2547       LoadNode::ControlDependency dep = LoadNode::Pinned;
2548       Node* ctrl = control();
2549       if (adr_type->isa_instptr()) {
2550         assert(adr_type->meet(TypePtr::NULL_PTR) != adr_type->remove_speculative(), "should be not null");
2551         intptr_t offset = Type::OffsetBot;
2552         AddPNode::Ideal_base_and_offset(adr, &_gvn, offset);
2553         if (offset >= 0) {
2554           int s = Klass::layout_helper_size_in_bytes(adr_type->isa_instptr()->klass()->layout_helper());
2555           if (offset < s) {
2556             // Guaranteed to be a valid access, no need to pin it
2557             dep = LoadNode::DependsOnlyOnTest;
2558             ctrl = NULL;
2559           }
2560         }
2561       }
2562       p = make_load(ctrl, adr, value_type, type, adr_type, mo, dep, requires_atomic_access, unaligned, mismatched);
2563       // load value
2564       switch (type) {
2565       case T_BOOLEAN:
2566       {
2567         // Normalize the value returned by getBoolean in the following cases
2568         if (mismatched ||
2569             heap_base_oop == top() ||                            // - heap_base_oop is NULL or
2570             (can_access_non_heap && alias_type->field() == NULL) // - heap_base_oop is potentially NULL
2571                                                                  //   and the unsafe access is made to large offset
2572                                                                  //   (i.e., larger than the maximum offset necessary for any
2573                                                                  //   field access)
2574             ) {
2575           IdealKit ideal = IdealKit(this);
2576 #define __ ideal.
2577           IdealVariable normalized_result(ideal);
2578           __ declarations_done();
2579           __ set(normalized_result, p);
2580           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2581           __ set(normalized_result, ideal.ConI(1));
2582           ideal.end_if();
2583           final_sync(ideal);
2584           p = __ value(normalized_result);
2585 #undef __
2586         }
2587       }
2588       case T_CHAR:
2589       case T_BYTE:
2590       case T_SHORT:
2591       case T_INT:
2592       case T_LONG:
2593       case T_FLOAT:
2594       case T_DOUBLE:
2595         break;
2596       case T_OBJECT:
2597         if (need_read_barrier) {
2598           // We do not require a mem bar inside pre_barrier if need_mem_bar
2599           // is set: the barriers would be emitted by us.
2600           insert_pre_barrier(heap_base_oop, offset, p, !need_mem_bar);
2601         }
2602         break;
2603       case T_ADDRESS:
2604         // Cast to an int type.
2605         p = _gvn.transform(new CastP2XNode(NULL, p));
2606         p = ConvX2UL(p);
2607         break;
2608       default:
2609         fatal("unexpected type %d: %s", type, type2name(type));
2610         break;
2611       }
2612     }
2613     // The load node has the control of the preceding MemBarCPUOrder.  All
2614     // following nodes will have the control of the MemBarCPUOrder inserted at
2615     // the end of this method.  So, pushing the load onto the stack at a later
2616     // point is fine.
2617     set_result(p);
2618   } else {
2619     // place effect of store into memory
2620     switch (type) {
2621     case T_DOUBLE:
2622       val = dstore_rounding(val);
2623       break;
2624     case T_ADDRESS:
2625       // Repackage the long as a pointer.
2626       val = ConvL2X(val);
2627       val = _gvn.transform(new CastX2PNode(val));
2628       break;
2629     default:
2630       break;
2631     }
2632 
2633     if (type == T_OBJECT) {
2634       store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo, mismatched);
2635     } else {
2636       store_to_memory(control(), adr, val, type, adr_type, mo, requires_atomic_access, unaligned, mismatched);
2637     }
2638   }
2639 
2640   switch(kind) {
2641     case Relaxed:
2642     case Opaque:
2643     case Release:
2644       break;
2645     case Acquire:
2646     case Volatile:
2647       if (!is_store) {
2648         insert_mem_bar(Op_MemBarAcquire);
2649       } else {
2650         if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2651           insert_mem_bar(Op_MemBarVolatile);
2652         }
2653       }
2654       break;
2655     default:
2656       ShouldNotReachHere();
2657   }
2658 
2659   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2660 
2661   return true;
2662 }
2663 
2664 //----------------------------inline_unsafe_load_store----------------------------
2665 // This method serves a couple of different customers (depending on LoadStoreKind):
2666 //
2667 // LS_cmp_swap:
2668 //
2669 //   boolean compareAndSetObject(Object o, long offset, Object expected, Object x);
2670 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2671 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2672 //
2673 // LS_cmp_swap_weak:
2674 //
2675 //   boolean weakCompareAndSetObject(       Object o, long offset, Object expected, Object x);
2676 //   boolean weakCompareAndSetObjectPlain(  Object o, long offset, Object expected, Object x);
2677 //   boolean weakCompareAndSetObjectAcquire(Object o, long offset, Object expected, Object x);
2678 //   boolean weakCompareAndSetObjectRelease(Object o, long offset, Object expected, Object x);
2679 //
2680 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2681 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2682 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2683 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2684 //
2685 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2686 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2687 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2688 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2689 //
2690 // LS_cmp_exchange:
2691 //
2692 //   Object compareAndExchangeObjectVolatile(Object o, long offset, Object expected, Object x);
2693 //   Object compareAndExchangeObjectAcquire( Object o, long offset, Object expected, Object x);
2694 //   Object compareAndExchangeObjectRelease( Object o, long offset, Object expected, Object x);
2695 //
2696 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2697 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2698 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2699 //
2700 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2701 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2702 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2703 //
2704 // LS_get_add:
2705 //
2706 //   int  getAndAddInt( Object o, long offset, int  delta)
2707 //   long getAndAddLong(Object o, long offset, long delta)
2708 //
2709 // LS_get_set:
2710 //
2711 //   int    getAndSet(Object o, long offset, int    newValue)
2712 //   long   getAndSet(Object o, long offset, long   newValue)
2713 //   Object getAndSet(Object o, long offset, Object newValue)
2714 //
2715 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2716   // This basic scheme here is the same as inline_unsafe_access, but
2717   // differs in enough details that combining them would make the code
2718   // overly confusing.  (This is a true fact! I originally combined
2719   // them, but even I was confused by it!) As much code/comments as
2720   // possible are retained from inline_unsafe_access though to make
2721   // the correspondences clearer. - dl
2722 
2723   if (callee()->is_static())  return false;  // caller must have the capability!
2724 
2725 #ifndef PRODUCT
2726   BasicType rtype;
2727   {
2728     ResourceMark rm;
2729     // Check the signatures.
2730     ciSignature* sig = callee()->signature();
2731     rtype = sig->return_type()->basic_type();
2732     switch(kind) {
2733       case LS_get_add:
2734       case LS_get_set: {
2735       // Check the signatures.
2736 #ifdef ASSERT
2737       assert(rtype == type, "get and set must return the expected type");
2738       assert(sig->count() == 3, "get and set has 3 arguments");
2739       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2740       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2741       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2742       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2743 #endif // ASSERT
2744         break;
2745       }
2746       case LS_cmp_swap:
2747       case LS_cmp_swap_weak: {
2748       // Check the signatures.
2749 #ifdef ASSERT
2750       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2751       assert(sig->count() == 4, "CAS has 4 arguments");
2752       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2753       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2754 #endif // ASSERT
2755         break;
2756       }
2757       case LS_cmp_exchange: {
2758       // Check the signatures.
2759 #ifdef ASSERT
2760       assert(rtype == type, "CAS must return the expected type");
2761       assert(sig->count() == 4, "CAS has 4 arguments");
2762       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2763       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2764 #endif // ASSERT
2765         break;
2766       }
2767       default:
2768         ShouldNotReachHere();
2769     }
2770   }
2771 #endif //PRODUCT
2772 
2773   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2774 
2775   // Get arguments:
2776   Node* receiver = NULL;
2777   Node* base     = NULL;
2778   Node* offset   = NULL;
2779   Node* oldval   = NULL;
2780   Node* newval   = NULL;
2781   switch(kind) {
2782     case LS_cmp_swap:
2783     case LS_cmp_swap_weak:
2784     case LS_cmp_exchange: {
2785       const bool two_slot_type = type2size[type] == 2;
2786       receiver = argument(0);  // type: oop
2787       base     = argument(1);  // type: oop
2788       offset   = argument(2);  // type: long
2789       oldval   = argument(4);  // type: oop, int, or long
2790       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2791       break;
2792     }
2793     case LS_get_add:
2794     case LS_get_set: {
2795       receiver = argument(0);  // type: oop
2796       base     = argument(1);  // type: oop
2797       offset   = argument(2);  // type: long
2798       oldval   = NULL;
2799       newval   = argument(4);  // type: oop, int, or long
2800       break;
2801     }
2802     default:
2803       ShouldNotReachHere();
2804   }
2805 
2806   // Build field offset expression.
2807   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2808   // to be plain byte offsets, which are also the same as those accepted
2809   // by oopDesc::field_base.
2810   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2811   // 32-bit machines ignore the high half of long offsets
2812   offset = ConvL2X(offset);
2813   Node* adr = make_unsafe_address(base, offset, type, false);
2814   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2815 
2816   Compile::AliasType* alias_type = C->alias_type(adr_type);
2817   BasicType bt = alias_type->basic_type();
2818   if (bt != T_ILLEGAL &&
2819       ((bt == T_OBJECT || bt == T_ARRAY) != (type == T_OBJECT))) {
2820     // Don't intrinsify mismatched object accesses.
2821     return false;
2822   }
2823 
2824   // For CAS, unlike inline_unsafe_access, there seems no point in
2825   // trying to refine types. Just use the coarse types here.
2826   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2827   const Type *value_type = Type::get_const_basic_type(type);
2828 
2829   switch (kind) {
2830     case LS_get_set:
2831     case LS_cmp_exchange: {
2832       if (type == T_OBJECT) {
2833         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2834         if (tjp != NULL) {
2835           value_type = tjp;
2836         }
2837       }
2838       break;
2839     }
2840     case LS_cmp_swap:
2841     case LS_cmp_swap_weak:
2842     case LS_get_add:
2843       break;
2844     default:
2845       ShouldNotReachHere();
2846   }
2847 
2848   // Null check receiver.
2849   receiver = null_check(receiver);
2850   if (stopped()) {
2851     return true;
2852   }
2853 
2854   int alias_idx = C->get_alias_index(adr_type);
2855 
2856   // Memory-model-wise, a LoadStore acts like a little synchronized
2857   // block, so needs barriers on each side.  These don't translate
2858   // into actual barriers on most machines, but we still need rest of
2859   // compiler to respect ordering.
2860 
2861   switch (access_kind) {
2862     case Relaxed:
2863     case Acquire:
2864       break;
2865     case Release:
2866       insert_mem_bar(Op_MemBarRelease);
2867       break;
2868     case Volatile:
2869       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2870         insert_mem_bar(Op_MemBarVolatile);
2871       } else {
2872         insert_mem_bar(Op_MemBarRelease);
2873       }
2874       break;
2875     default:
2876       ShouldNotReachHere();
2877   }
2878   insert_mem_bar(Op_MemBarCPUOrder);
2879 
2880   // Figure out the memory ordering.
2881   MemNode::MemOrd mo = access_kind_to_memord(access_kind);
2882 
2883   // 4984716: MemBars must be inserted before this
2884   //          memory node in order to avoid a false
2885   //          dependency which will confuse the scheduler.
2886   Node *mem = memory(alias_idx);
2887 
2888   // For now, we handle only those cases that actually exist: ints,
2889   // longs, and Object. Adding others should be straightforward.
2890   Node* load_store = NULL;
2891   switch(type) {
2892   case T_BYTE:
2893     switch(kind) {
2894       case LS_get_add:
2895         load_store = _gvn.transform(new GetAndAddBNode(control(), mem, adr, newval, adr_type));
2896         break;
2897       case LS_get_set:
2898         load_store = _gvn.transform(new GetAndSetBNode(control(), mem, adr, newval, adr_type));
2899         break;
2900       case LS_cmp_swap_weak:
2901         load_store = _gvn.transform(new WeakCompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2902         break;
2903       case LS_cmp_swap:
2904         load_store = _gvn.transform(new CompareAndSwapBNode(control(), mem, adr, newval, oldval, mo));
2905         break;
2906       case LS_cmp_exchange:
2907         load_store = _gvn.transform(new CompareAndExchangeBNode(control(), mem, adr, newval, oldval, adr_type, mo));
2908         break;
2909       default:
2910         ShouldNotReachHere();
2911     }
2912     break;
2913   case T_SHORT:
2914     switch(kind) {
2915       case LS_get_add:
2916         load_store = _gvn.transform(new GetAndAddSNode(control(), mem, adr, newval, adr_type));
2917         break;
2918       case LS_get_set:
2919         load_store = _gvn.transform(new GetAndSetSNode(control(), mem, adr, newval, adr_type));
2920         break;
2921       case LS_cmp_swap_weak:
2922         load_store = _gvn.transform(new WeakCompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2923         break;
2924       case LS_cmp_swap:
2925         load_store = _gvn.transform(new CompareAndSwapSNode(control(), mem, adr, newval, oldval, mo));
2926         break;
2927       case LS_cmp_exchange:
2928         load_store = _gvn.transform(new CompareAndExchangeSNode(control(), mem, adr, newval, oldval, adr_type, mo));
2929         break;
2930       default:
2931         ShouldNotReachHere();
2932     }
2933     break;
2934   case T_INT:
2935     switch(kind) {
2936       case LS_get_add:
2937         load_store = _gvn.transform(new GetAndAddINode(control(), mem, adr, newval, adr_type));
2938         break;
2939       case LS_get_set:
2940         load_store = _gvn.transform(new GetAndSetINode(control(), mem, adr, newval, adr_type));
2941         break;
2942       case LS_cmp_swap_weak:
2943         load_store = _gvn.transform(new WeakCompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2944         break;
2945       case LS_cmp_swap:
2946         load_store = _gvn.transform(new CompareAndSwapINode(control(), mem, adr, newval, oldval, mo));
2947         break;
2948       case LS_cmp_exchange:
2949         load_store = _gvn.transform(new CompareAndExchangeINode(control(), mem, adr, newval, oldval, adr_type, mo));
2950         break;
2951       default:
2952         ShouldNotReachHere();
2953     }
2954     break;
2955   case T_LONG:
2956     switch(kind) {
2957       case LS_get_add:
2958         load_store = _gvn.transform(new GetAndAddLNode(control(), mem, adr, newval, adr_type));
2959         break;
2960       case LS_get_set:
2961         load_store = _gvn.transform(new GetAndSetLNode(control(), mem, adr, newval, adr_type));
2962         break;
2963       case LS_cmp_swap_weak:
2964         load_store = _gvn.transform(new WeakCompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2965         break;
2966       case LS_cmp_swap:
2967         load_store = _gvn.transform(new CompareAndSwapLNode(control(), mem, adr, newval, oldval, mo));
2968         break;
2969       case LS_cmp_exchange:
2970         load_store = _gvn.transform(new CompareAndExchangeLNode(control(), mem, adr, newval, oldval, adr_type, mo));
2971         break;
2972       default:
2973         ShouldNotReachHere();
2974     }
2975     break;
2976   case T_OBJECT:
2977     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2978     // could be delayed during Parse (for example, in adjust_map_after_if()).
2979     // Execute transformation here to avoid barrier generation in such case.
2980     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2981       newval = _gvn.makecon(TypePtr::NULL_PTR);
2982 
2983     // Reference stores need a store barrier.
2984     switch(kind) {
2985       case LS_get_set: {
2986         // If pre-barrier must execute before the oop store, old value will require do_load here.
2987         if (!can_move_pre_barrier()) {
2988           pre_barrier(true /* do_load*/,
2989                       control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2990                       NULL /* pre_val*/,
2991                       T_OBJECT);
2992         } // Else move pre_barrier to use load_store value, see below.
2993         break;
2994       }
2995       case LS_cmp_swap_weak:
2996       case LS_cmp_swap:
2997       case LS_cmp_exchange: {
2998         // Same as for newval above:
2999         if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
3000           oldval = _gvn.makecon(TypePtr::NULL_PTR);
3001         }
3002         // The only known value which might get overwritten is oldval.
3003         pre_barrier(false /* do_load */,
3004                     control(), NULL, NULL, max_juint, NULL, NULL,
3005                     oldval /* pre_val */,
3006                     T_OBJECT);
3007         break;
3008       }
3009       default:
3010         ShouldNotReachHere();
3011     }
3012 
3013 #ifdef _LP64
3014     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3015       Node *newval_enc = _gvn.transform(new EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
3016 
3017       switch(kind) {
3018         case LS_get_set:
3019           load_store = _gvn.transform(new GetAndSetNNode(control(), mem, adr, newval_enc, adr_type, value_type->make_narrowoop()));
3020           break;
3021         case LS_cmp_swap_weak: {
3022           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3023           load_store = _gvn.transform(new WeakCompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3024           break;
3025         }
3026         case LS_cmp_swap: {
3027           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3028           load_store = _gvn.transform(new CompareAndSwapNNode(control(), mem, adr, newval_enc, oldval_enc, mo));
3029           break;
3030         }
3031         case LS_cmp_exchange: {
3032           Node *oldval_enc = _gvn.transform(new EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
3033           load_store = _gvn.transform(new CompareAndExchangeNNode(control(), mem, adr, newval_enc, oldval_enc, adr_type, value_type->make_narrowoop(), mo));
3034           break;
3035         }
3036         default:
3037           ShouldNotReachHere();
3038       }
3039     } else
3040 #endif
3041     switch (kind) {
3042       case LS_get_set:
3043         load_store = _gvn.transform(new GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
3044         break;
3045       case LS_cmp_swap_weak:
3046         load_store = _gvn.transform(new WeakCompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3047         break;
3048       case LS_cmp_swap:
3049         load_store = _gvn.transform(new CompareAndSwapPNode(control(), mem, adr, newval, oldval, mo));
3050         break;
3051       case LS_cmp_exchange:
3052         load_store = _gvn.transform(new CompareAndExchangePNode(control(), mem, adr, newval, oldval, adr_type, value_type->is_oopptr(), mo));
3053         break;
3054       default:
3055         ShouldNotReachHere();
3056     }
3057 
3058     // Emit the post barrier only when the actual store happened. This makes sense
3059     // to check only for LS_cmp_* that can fail to set the value.
3060     // LS_cmp_exchange does not produce any branches by default, so there is no
3061     // boolean result to piggyback on. TODO: When we merge CompareAndSwap with
3062     // CompareAndExchange and move branches here, it would make sense to conditionalize
3063     // post_barriers for LS_cmp_exchange as well.
3064     //
3065     // CAS success path is marked more likely since we anticipate this is a performance
3066     // critical path, while CAS failure path can use the penalty for going through unlikely
3067     // path as backoff. Which is still better than doing a store barrier there.
3068     switch (kind) {
3069       case LS_get_set:
3070       case LS_cmp_exchange: {
3071         post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3072         break;
3073       }
3074       case LS_cmp_swap_weak:
3075       case LS_cmp_swap: {
3076         IdealKit ideal(this);
3077         ideal.if_then(load_store, BoolTest::ne, ideal.ConI(0), PROB_STATIC_FREQUENT); {
3078           sync_kit(ideal);
3079           post_barrier(ideal.ctrl(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
3080           ideal.sync_kit(this);
3081         } ideal.end_if();
3082         final_sync(ideal);
3083         break;
3084       }
3085       default:
3086         ShouldNotReachHere();
3087     }
3088     break;
3089   default:
3090     fatal("unexpected type %d: %s", type, type2name(type));
3091     break;
3092   }
3093 
3094   // SCMemProjNodes represent the memory state of a LoadStore. Their
3095   // main role is to prevent LoadStore nodes from being optimized away
3096   // when their results aren't used.
3097   Node* proj = _gvn.transform(new SCMemProjNode(load_store));
3098   set_memory(proj, alias_idx);
3099 
3100   if (type == T_OBJECT && (kind == LS_get_set || kind == LS_cmp_exchange)) {
3101 #ifdef _LP64
3102     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3103       load_store = _gvn.transform(new DecodeNNode(load_store, load_store->get_ptr_type()));
3104     }
3105 #endif
3106     if (can_move_pre_barrier() && kind == LS_get_set) {
3107       // Don't need to load pre_val. The old value is returned by load_store.
3108       // The pre_barrier can execute after the xchg as long as no safepoint
3109       // gets inserted between them.
3110       pre_barrier(false /* do_load */,
3111                   control(), NULL, NULL, max_juint, NULL, NULL,
3112                   load_store /* pre_val */,
3113                   T_OBJECT);
3114     }
3115   }
3116 
3117   // Add the trailing membar surrounding the access
3118   insert_mem_bar(Op_MemBarCPUOrder);
3119 
3120   switch (access_kind) {
3121     case Relaxed:
3122     case Release:
3123       break; // do nothing
3124     case Acquire:
3125     case Volatile:
3126       insert_mem_bar(Op_MemBarAcquire);
3127       // !support_IRIW_for_not_multiple_copy_atomic_cpu handled in platform code
3128       break;
3129     default:
3130       ShouldNotReachHere();
3131   }
3132 
3133   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3134   set_result(load_store);
3135   return true;
3136 }
3137 
3138 MemNode::MemOrd LibraryCallKit::access_kind_to_memord_LS(AccessKind kind, bool is_store) {
3139   MemNode::MemOrd mo = MemNode::unset;
3140   switch(kind) {
3141     case Opaque:
3142     case Relaxed:  mo = MemNode::unordered; break;
3143     case Acquire:  mo = MemNode::acquire;   break;
3144     case Release:  mo = MemNode::release;   break;
3145     case Volatile: mo = is_store ? MemNode::release : MemNode::acquire; break;
3146     default:
3147       ShouldNotReachHere();
3148   }
3149   guarantee(mo != MemNode::unset, "Should select memory ordering");
3150   return mo;
3151 }
3152 
3153 MemNode::MemOrd LibraryCallKit::access_kind_to_memord(AccessKind kind) {
3154   MemNode::MemOrd mo = MemNode::unset;
3155   switch(kind) {
3156     case Opaque:
3157     case Relaxed:  mo = MemNode::unordered; break;
3158     case Acquire:  mo = MemNode::acquire;   break;
3159     case Release:  mo = MemNode::release;   break;
3160     case Volatile: mo = MemNode::seqcst;    break;
3161     default:
3162       ShouldNotReachHere();
3163   }
3164   guarantee(mo != MemNode::unset, "Should select memory ordering");
3165   return mo;
3166 }
3167 
3168 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3169   // Regardless of form, don't allow previous ld/st to move down,
3170   // then issue acquire, release, or volatile mem_bar.
3171   insert_mem_bar(Op_MemBarCPUOrder);
3172   switch(id) {
3173     case vmIntrinsics::_loadFence:
3174       insert_mem_bar(Op_LoadFence);
3175       return true;
3176     case vmIntrinsics::_storeFence:
3177       insert_mem_bar(Op_StoreFence);
3178       return true;
3179     case vmIntrinsics::_fullFence:
3180       insert_mem_bar(Op_MemBarVolatile);
3181       return true;
3182     default:
3183       fatal_unexpected_iid(id);
3184       return false;
3185   }
3186 }
3187 
3188 bool LibraryCallKit::inline_onspinwait() {
3189   insert_mem_bar(Op_OnSpinWait);
3190   return true;
3191 }
3192 
3193 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3194   if (!kls->is_Con()) {
3195     return true;
3196   }
3197   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3198   if (klsptr == NULL) {
3199     return true;
3200   }
3201   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3202   // don't need a guard for a klass that is already initialized
3203   return !ik->is_initialized();
3204 }
3205 
3206 //----------------------------inline_unsafe_allocate---------------------------
3207 // public native Object Unsafe.allocateInstance(Class<?> cls);
3208 bool LibraryCallKit::inline_unsafe_allocate() {
3209   if (callee()->is_static())  return false;  // caller must have the capability!
3210 
3211   null_check_receiver();  // null-check, then ignore
3212   Node* cls = null_check(argument(1));
3213   if (stopped())  return true;
3214 
3215   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3216   kls = null_check(kls);
3217   if (stopped())  return true;  // argument was like int.class
3218 
3219   Node* test = NULL;
3220   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3221     // Note:  The argument might still be an illegal value like
3222     // Serializable.class or Object[].class.   The runtime will handle it.
3223     // But we must make an explicit check for initialization.
3224     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3225     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3226     // can generate code to load it as unsigned byte.
3227     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3228     Node* bits = intcon(InstanceKlass::fully_initialized);
3229     test = _gvn.transform(new SubINode(inst, bits));
3230     // The 'test' is non-zero if we need to take a slow path.
3231   }
3232 
3233   Node* obj = new_instance(kls, test);
3234   set_result(obj);
3235   return true;
3236 }
3237 
3238 //------------------------inline_native_time_funcs--------------
3239 // inline code for System.currentTimeMillis() and System.nanoTime()
3240 // these have the same type and signature
3241 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3242   const TypeFunc* tf = OptoRuntime::void_long_Type();
3243   const TypePtr* no_memory_effects = NULL;
3244   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3245   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
3246 #ifdef ASSERT
3247   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
3248   assert(value_top == top(), "second value must be top");
3249 #endif
3250   set_result(value);
3251   return true;
3252 }
3253 
3254 #ifdef TRACE_HAVE_INTRINSICS
3255 
3256 /*
3257 * oop -> myklass
3258 * myklass->trace_id |= USED
3259 * return myklass->trace_id & ~0x3
3260 */
3261 bool LibraryCallKit::inline_native_classID() {
3262   Node* cls = null_check(argument(0), T_OBJECT);
3263   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3264   kls = null_check(kls, T_OBJECT);
3265 
3266   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3267   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3268   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3269 
3270   Node* clsused = longcon(0x01l); // set the class bit
3271   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
3272   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3273   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3274 
3275 #ifdef TRACE_ID_META_BITS
3276   Node* mbits = longcon(~TRACE_ID_META_BITS);
3277   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
3278 #endif
3279 #ifdef TRACE_ID_CLASS_SHIFT
3280   Node* cbits = intcon(TRACE_ID_CLASS_SHIFT);
3281   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
3282 #endif
3283 
3284   set_result(tvalue);
3285   return true;
3286 
3287 }
3288 
3289 bool LibraryCallKit::inline_native_getBufferWriter() {
3290   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
3291 
3292   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
3293                                   in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET)
3294                                   );
3295 
3296   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
3297 
3298   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
3299   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
3300 
3301   IfNode* iff_jobj_null =
3302     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
3303 
3304   enum { _normal_path = 1,
3305          _null_path = 2,
3306          PATH_LIMIT };
3307 
3308   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3309   PhiNode*    result_val = new PhiNode(result_rgn, TypePtr::BOTTOM);
3310 
3311   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
3312   result_rgn->init_req(_null_path, jobj_is_null);
3313   result_val->init_req(_null_path, null());
3314 
3315   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
3316   result_rgn->init_req(_normal_path, jobj_is_not_null);
3317 
3318   Node* res = make_load(jobj_is_not_null, jobj, TypeInstPtr::NOTNULL, T_OBJECT, MemNode::unordered);
3319   result_val->init_req(_normal_path, res);
3320 
3321   set_result(result_rgn, result_val);
3322 
3323   return true;
3324 }
3325 
3326 #endif
3327 
3328 //------------------------inline_native_currentThread------------------
3329 bool LibraryCallKit::inline_native_currentThread() {
3330   Node* junk = NULL;
3331   set_result(generate_current_thread(junk));
3332   return true;
3333 }
3334 
3335 //------------------------inline_native_isInterrupted------------------
3336 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3337 bool LibraryCallKit::inline_native_isInterrupted() {
3338   // Add a fast path to t.isInterrupted(clear_int):
3339   //   (t == Thread.current() &&
3340   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3341   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3342   // So, in the common case that the interrupt bit is false,
3343   // we avoid making a call into the VM.  Even if the interrupt bit
3344   // is true, if the clear_int argument is false, we avoid the VM call.
3345   // However, if the receiver is not currentThread, we must call the VM,
3346   // because there must be some locking done around the operation.
3347 
3348   // We only go to the fast case code if we pass two guards.
3349   // Paths which do not pass are accumulated in the slow_region.
3350 
3351   enum {
3352     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3353     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3354     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3355     PATH_LIMIT
3356   };
3357 
3358   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3359   // out of the function.
3360   insert_mem_bar(Op_MemBarCPUOrder);
3361 
3362   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
3363   PhiNode*    result_val = new PhiNode(result_rgn, TypeInt::BOOL);
3364 
3365   RegionNode* slow_region = new RegionNode(1);
3366   record_for_igvn(slow_region);
3367 
3368   // (a) Receiving thread must be the current thread.
3369   Node* rec_thr = argument(0);
3370   Node* tls_ptr = NULL;
3371   Node* cur_thr = generate_current_thread(tls_ptr);
3372   Node* cmp_thr = _gvn.transform(new CmpPNode(cur_thr, rec_thr));
3373   Node* bol_thr = _gvn.transform(new BoolNode(cmp_thr, BoolTest::ne));
3374 
3375   generate_slow_guard(bol_thr, slow_region);
3376 
3377   // (b) Interrupt bit on TLS must be false.
3378   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3379   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3380   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3381 
3382   // Set the control input on the field _interrupted read to prevent it floating up.
3383   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3384   Node* cmp_bit = _gvn.transform(new CmpINode(int_bit, intcon(0)));
3385   Node* bol_bit = _gvn.transform(new BoolNode(cmp_bit, BoolTest::ne));
3386 
3387   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3388 
3389   // First fast path:  if (!TLS._interrupted) return false;
3390   Node* false_bit = _gvn.transform(new IfFalseNode(iff_bit));
3391   result_rgn->init_req(no_int_result_path, false_bit);
3392   result_val->init_req(no_int_result_path, intcon(0));
3393 
3394   // drop through to next case
3395   set_control( _gvn.transform(new IfTrueNode(iff_bit)));
3396 
3397 #ifndef _WINDOWS
3398   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3399   Node* clr_arg = argument(1);
3400   Node* cmp_arg = _gvn.transform(new CmpINode(clr_arg, intcon(0)));
3401   Node* bol_arg = _gvn.transform(new BoolNode(cmp_arg, BoolTest::ne));
3402   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3403 
3404   // Second fast path:  ... else if (!clear_int) return true;
3405   Node* false_arg = _gvn.transform(new IfFalseNode(iff_arg));
3406   result_rgn->init_req(no_clear_result_path, false_arg);
3407   result_val->init_req(no_clear_result_path, intcon(1));
3408 
3409   // drop through to next case
3410   set_control( _gvn.transform(new IfTrueNode(iff_arg)));
3411 #else
3412   // To return true on Windows you must read the _interrupted field
3413   // and check the event state i.e. take the slow path.
3414 #endif // _WINDOWS
3415 
3416   // (d) Otherwise, go to the slow path.
3417   slow_region->add_req(control());
3418   set_control( _gvn.transform(slow_region));
3419 
3420   if (stopped()) {
3421     // There is no slow path.
3422     result_rgn->init_req(slow_result_path, top());
3423     result_val->init_req(slow_result_path, top());
3424   } else {
3425     // non-virtual because it is a private non-static
3426     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3427 
3428     Node* slow_val = set_results_for_java_call(slow_call);
3429     // this->control() comes from set_results_for_java_call
3430 
3431     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3432     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3433 
3434     // These two phis are pre-filled with copies of of the fast IO and Memory
3435     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3436     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3437 
3438     result_rgn->init_req(slow_result_path, control());
3439     result_io ->init_req(slow_result_path, i_o());
3440     result_mem->init_req(slow_result_path, reset_memory());
3441     result_val->init_req(slow_result_path, slow_val);
3442 
3443     set_all_memory(_gvn.transform(result_mem));
3444     set_i_o(       _gvn.transform(result_io));
3445   }
3446 
3447   C->set_has_split_ifs(true); // Has chance for split-if optimization
3448   set_result(result_rgn, result_val);
3449   return true;
3450 }
3451 
3452 //---------------------------load_mirror_from_klass----------------------------
3453 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3454 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3455   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3456   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3457 }
3458 
3459 //-----------------------load_klass_from_mirror_common-------------------------
3460 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3461 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3462 // and branch to the given path on the region.
3463 // If never_see_null, take an uncommon trap on null, so we can optimistically
3464 // compile for the non-null case.
3465 // If the region is NULL, force never_see_null = true.
3466 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3467                                                     bool never_see_null,
3468                                                     RegionNode* region,
3469                                                     int null_path,
3470                                                     int offset) {
3471   if (region == NULL)  never_see_null = true;
3472   Node* p = basic_plus_adr(mirror, offset);
3473   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3474   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3475   Node* null_ctl = top();
3476   kls = null_check_oop(kls, &null_ctl, never_see_null);
3477   if (region != NULL) {
3478     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3479     region->init_req(null_path, null_ctl);
3480   } else {
3481     assert(null_ctl == top(), "no loose ends");
3482   }
3483   return kls;
3484 }
3485 
3486 //--------------------(inline_native_Class_query helpers)---------------------
3487 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
3488 // Fall through if (mods & mask) == bits, take the guard otherwise.
3489 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3490   // Branch around if the given klass has the given modifier bit set.
3491   // Like generate_guard, adds a new path onto the region.
3492   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3493   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3494   Node* mask = intcon(modifier_mask);
3495   Node* bits = intcon(modifier_bits);
3496   Node* mbit = _gvn.transform(new AndINode(mods, mask));
3497   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
3498   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3499   return generate_fair_guard(bol, region);
3500 }
3501 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3502   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3503 }
3504 
3505 //-------------------------inline_native_Class_query-------------------
3506 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3507   const Type* return_type = TypeInt::BOOL;
3508   Node* prim_return_value = top();  // what happens if it's a primitive class?
3509   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3510   bool expect_prim = false;     // most of these guys expect to work on refs
3511 
3512   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3513 
3514   Node* mirror = argument(0);
3515   Node* obj    = top();
3516 
3517   switch (id) {
3518   case vmIntrinsics::_isInstance:
3519     // nothing is an instance of a primitive type
3520     prim_return_value = intcon(0);
3521     obj = argument(1);
3522     break;
3523   case vmIntrinsics::_getModifiers:
3524     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3525     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3526     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3527     break;
3528   case vmIntrinsics::_isInterface:
3529     prim_return_value = intcon(0);
3530     break;
3531   case vmIntrinsics::_isArray:
3532     prim_return_value = intcon(0);
3533     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3534     break;
3535   case vmIntrinsics::_isPrimitive:
3536     prim_return_value = intcon(1);
3537     expect_prim = true;  // obviously
3538     break;
3539   case vmIntrinsics::_getSuperclass:
3540     prim_return_value = null();
3541     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3542     break;
3543   case vmIntrinsics::_getClassAccessFlags:
3544     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3545     return_type = TypeInt::INT;  // not bool!  6297094
3546     break;
3547   default:
3548     fatal_unexpected_iid(id);
3549     break;
3550   }
3551 
3552   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3553   if (mirror_con == NULL)  return false;  // cannot happen?
3554 
3555 #ifndef PRODUCT
3556   if (C->print_intrinsics() || C->print_inlining()) {
3557     ciType* k = mirror_con->java_mirror_type();
3558     if (k) {
3559       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3560       k->print_name();
3561       tty->cr();
3562     }
3563   }
3564 #endif
3565 
3566   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3567   RegionNode* region = new RegionNode(PATH_LIMIT);
3568   record_for_igvn(region);
3569   PhiNode* phi = new PhiNode(region, return_type);
3570 
3571   // The mirror will never be null of Reflection.getClassAccessFlags, however
3572   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3573   // if it is. See bug 4774291.
3574 
3575   // For Reflection.getClassAccessFlags(), the null check occurs in
3576   // the wrong place; see inline_unsafe_access(), above, for a similar
3577   // situation.
3578   mirror = null_check(mirror);
3579   // If mirror or obj is dead, only null-path is taken.
3580   if (stopped())  return true;
3581 
3582   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3583 
3584   // Now load the mirror's klass metaobject, and null-check it.
3585   // Side-effects region with the control path if the klass is null.
3586   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3587   // If kls is null, we have a primitive mirror.
3588   phi->init_req(_prim_path, prim_return_value);
3589   if (stopped()) { set_result(region, phi); return true; }
3590   bool safe_for_replace = (region->in(_prim_path) == top());
3591 
3592   Node* p;  // handy temp
3593   Node* null_ctl;
3594 
3595   // Now that we have the non-null klass, we can perform the real query.
3596   // For constant classes, the query will constant-fold in LoadNode::Value.
3597   Node* query_value = top();
3598   switch (id) {
3599   case vmIntrinsics::_isInstance:
3600     // nothing is an instance of a primitive type
3601     query_value = gen_instanceof(obj, kls, safe_for_replace);
3602     break;
3603 
3604   case vmIntrinsics::_getModifiers:
3605     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3606     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3607     break;
3608 
3609   case vmIntrinsics::_isInterface:
3610     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3611     if (generate_interface_guard(kls, region) != NULL)
3612       // A guard was added.  If the guard is taken, it was an interface.
3613       phi->add_req(intcon(1));
3614     // If we fall through, it's a plain class.
3615     query_value = intcon(0);
3616     break;
3617 
3618   case vmIntrinsics::_isArray:
3619     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3620     if (generate_array_guard(kls, region) != NULL)
3621       // A guard was added.  If the guard is taken, it was an array.
3622       phi->add_req(intcon(1));
3623     // If we fall through, it's a plain class.
3624     query_value = intcon(0);
3625     break;
3626 
3627   case vmIntrinsics::_isPrimitive:
3628     query_value = intcon(0); // "normal" path produces false
3629     break;
3630 
3631   case vmIntrinsics::_getSuperclass:
3632     // The rules here are somewhat unfortunate, but we can still do better
3633     // with random logic than with a JNI call.
3634     // Interfaces store null or Object as _super, but must report null.
3635     // Arrays store an intermediate super as _super, but must report Object.
3636     // Other types can report the actual _super.
3637     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3638     if (generate_interface_guard(kls, region) != NULL)
3639       // A guard was added.  If the guard is taken, it was an interface.
3640       phi->add_req(null());
3641     if (generate_array_guard(kls, region) != NULL)
3642       // A guard was added.  If the guard is taken, it was an array.
3643       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3644     // If we fall through, it's a plain class.  Get its _super.
3645     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3646     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3647     null_ctl = top();
3648     kls = null_check_oop(kls, &null_ctl);
3649     if (null_ctl != top()) {
3650       // If the guard is taken, Object.superClass is null (both klass and mirror).
3651       region->add_req(null_ctl);
3652       phi   ->add_req(null());
3653     }
3654     if (!stopped()) {
3655       query_value = load_mirror_from_klass(kls);
3656     }
3657     break;
3658 
3659   case vmIntrinsics::_getClassAccessFlags:
3660     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3661     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3662     break;
3663 
3664   default:
3665     fatal_unexpected_iid(id);
3666     break;
3667   }
3668 
3669   // Fall-through is the normal case of a query to a real class.
3670   phi->init_req(1, query_value);
3671   region->init_req(1, control());
3672 
3673   C->set_has_split_ifs(true); // Has chance for split-if optimization
3674   set_result(region, phi);
3675   return true;
3676 }
3677 
3678 //-------------------------inline_Class_cast-------------------
3679 bool LibraryCallKit::inline_Class_cast() {
3680   Node* mirror = argument(0); // Class
3681   Node* obj    = argument(1);
3682   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3683   if (mirror_con == NULL) {
3684     return false;  // dead path (mirror->is_top()).
3685   }
3686   if (obj == NULL || obj->is_top()) {
3687     return false;  // dead path
3688   }
3689   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3690 
3691   // First, see if Class.cast() can be folded statically.
3692   // java_mirror_type() returns non-null for compile-time Class constants.
3693   ciType* tm = mirror_con->java_mirror_type();
3694   if (tm != NULL && tm->is_klass() &&
3695       tp != NULL && tp->klass() != NULL) {
3696     if (!tp->klass()->is_loaded()) {
3697       // Don't use intrinsic when class is not loaded.
3698       return false;
3699     } else {
3700       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3701       if (static_res == Compile::SSC_always_true) {
3702         // isInstance() is true - fold the code.
3703         set_result(obj);
3704         return true;
3705       } else if (static_res == Compile::SSC_always_false) {
3706         // Don't use intrinsic, have to throw ClassCastException.
3707         // If the reference is null, the non-intrinsic bytecode will
3708         // be optimized appropriately.
3709         return false;
3710       }
3711     }
3712   }
3713 
3714   // Bailout intrinsic and do normal inlining if exception path is frequent.
3715   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3716     return false;
3717   }
3718 
3719   // Generate dynamic checks.
3720   // Class.cast() is java implementation of _checkcast bytecode.
3721   // Do checkcast (Parse::do_checkcast()) optimizations here.
3722 
3723   mirror = null_check(mirror);
3724   // If mirror is dead, only null-path is taken.
3725   if (stopped()) {
3726     return true;
3727   }
3728 
3729   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3730   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3731   RegionNode* region = new RegionNode(PATH_LIMIT);
3732   record_for_igvn(region);
3733 
3734   // Now load the mirror's klass metaobject, and null-check it.
3735   // If kls is null, we have a primitive mirror and
3736   // nothing is an instance of a primitive type.
3737   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3738 
3739   Node* res = top();
3740   if (!stopped()) {
3741     Node* bad_type_ctrl = top();
3742     // Do checkcast optimizations.
3743     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3744     region->init_req(_bad_type_path, bad_type_ctrl);
3745   }
3746   if (region->in(_prim_path) != top() ||
3747       region->in(_bad_type_path) != top()) {
3748     // Let Interpreter throw ClassCastException.
3749     PreserveJVMState pjvms(this);
3750     set_control(_gvn.transform(region));
3751     uncommon_trap(Deoptimization::Reason_intrinsic,
3752                   Deoptimization::Action_maybe_recompile);
3753   }
3754   if (!stopped()) {
3755     set_result(res);
3756   }
3757   return true;
3758 }
3759 
3760 
3761 //--------------------------inline_native_subtype_check------------------------
3762 // This intrinsic takes the JNI calls out of the heart of
3763 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3764 bool LibraryCallKit::inline_native_subtype_check() {
3765   // Pull both arguments off the stack.
3766   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3767   args[0] = argument(0);
3768   args[1] = argument(1);
3769   Node* klasses[2];             // corresponding Klasses: superk, subk
3770   klasses[0] = klasses[1] = top();
3771 
3772   enum {
3773     // A full decision tree on {superc is prim, subc is prim}:
3774     _prim_0_path = 1,           // {P,N} => false
3775                                 // {P,P} & superc!=subc => false
3776     _prim_same_path,            // {P,P} & superc==subc => true
3777     _prim_1_path,               // {N,P} => false
3778     _ref_subtype_path,          // {N,N} & subtype check wins => true
3779     _both_ref_path,             // {N,N} & subtype check loses => false
3780     PATH_LIMIT
3781   };
3782 
3783   RegionNode* region = new RegionNode(PATH_LIMIT);
3784   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3785   record_for_igvn(region);
3786 
3787   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3788   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3789   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3790 
3791   // First null-check both mirrors and load each mirror's klass metaobject.
3792   int which_arg;
3793   for (which_arg = 0; which_arg <= 1; which_arg++) {
3794     Node* arg = args[which_arg];
3795     arg = null_check(arg);
3796     if (stopped())  break;
3797     args[which_arg] = arg;
3798 
3799     Node* p = basic_plus_adr(arg, class_klass_offset);
3800     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3801     klasses[which_arg] = _gvn.transform(kls);
3802   }
3803 
3804   // Having loaded both klasses, test each for null.
3805   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3806   for (which_arg = 0; which_arg <= 1; which_arg++) {
3807     Node* kls = klasses[which_arg];
3808     Node* null_ctl = top();
3809     kls = null_check_oop(kls, &null_ctl, never_see_null);
3810     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3811     region->init_req(prim_path, null_ctl);
3812     if (stopped())  break;
3813     klasses[which_arg] = kls;
3814   }
3815 
3816   if (!stopped()) {
3817     // now we have two reference types, in klasses[0..1]
3818     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3819     Node* superk = klasses[0];  // the receiver
3820     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3821     // now we have a successful reference subtype check
3822     region->set_req(_ref_subtype_path, control());
3823   }
3824 
3825   // If both operands are primitive (both klasses null), then
3826   // we must return true when they are identical primitives.
3827   // It is convenient to test this after the first null klass check.
3828   set_control(region->in(_prim_0_path)); // go back to first null check
3829   if (!stopped()) {
3830     // Since superc is primitive, make a guard for the superc==subc case.
3831     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3832     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3833     generate_guard(bol_eq, region, PROB_FAIR);
3834     if (region->req() == PATH_LIMIT+1) {
3835       // A guard was added.  If the added guard is taken, superc==subc.
3836       region->swap_edges(PATH_LIMIT, _prim_same_path);
3837       region->del_req(PATH_LIMIT);
3838     }
3839     region->set_req(_prim_0_path, control()); // Not equal after all.
3840   }
3841 
3842   // these are the only paths that produce 'true':
3843   phi->set_req(_prim_same_path,   intcon(1));
3844   phi->set_req(_ref_subtype_path, intcon(1));
3845 
3846   // pull together the cases:
3847   assert(region->req() == PATH_LIMIT, "sane region");
3848   for (uint i = 1; i < region->req(); i++) {
3849     Node* ctl = region->in(i);
3850     if (ctl == NULL || ctl == top()) {
3851       region->set_req(i, top());
3852       phi   ->set_req(i, top());
3853     } else if (phi->in(i) == NULL) {
3854       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3855     }
3856   }
3857 
3858   set_control(_gvn.transform(region));
3859   set_result(_gvn.transform(phi));
3860   return true;
3861 }
3862 
3863 //---------------------generate_array_guard_common------------------------
3864 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3865                                                   bool obj_array, bool not_array) {
3866 
3867   if (stopped()) {
3868     return NULL;
3869   }
3870 
3871   // If obj_array/non_array==false/false:
3872   // Branch around if the given klass is in fact an array (either obj or prim).
3873   // If obj_array/non_array==false/true:
3874   // Branch around if the given klass is not an array klass of any kind.
3875   // If obj_array/non_array==true/true:
3876   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3877   // If obj_array/non_array==true/false:
3878   // Branch around if the kls is an oop array (Object[] or subtype)
3879   //
3880   // Like generate_guard, adds a new path onto the region.
3881   jint  layout_con = 0;
3882   Node* layout_val = get_layout_helper(kls, layout_con);
3883   if (layout_val == NULL) {
3884     bool query = (obj_array
3885                   ? Klass::layout_helper_is_objArray(layout_con)
3886                   : Klass::layout_helper_is_array(layout_con));
3887     if (query == not_array) {
3888       return NULL;                       // never a branch
3889     } else {                             // always a branch
3890       Node* always_branch = control();
3891       if (region != NULL)
3892         region->add_req(always_branch);
3893       set_control(top());
3894       return always_branch;
3895     }
3896   }
3897   // Now test the correct condition.
3898   jint  nval = (obj_array
3899                 ? (jint)(Klass::_lh_array_tag_type_value
3900                    <<    Klass::_lh_array_tag_shift)
3901                 : Klass::_lh_neutral_value);
3902   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3903   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3904   // invert the test if we are looking for a non-array
3905   if (not_array)  btest = BoolTest(btest).negate();
3906   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3907   return generate_fair_guard(bol, region);
3908 }
3909 
3910 
3911 //-----------------------inline_native_newArray--------------------------
3912 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3913 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3914 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3915   Node* mirror;
3916   Node* count_val;
3917   if (uninitialized) {
3918     mirror    = argument(1);
3919     count_val = argument(2);
3920   } else {
3921     mirror    = argument(0);
3922     count_val = argument(1);
3923   }
3924 
3925   mirror = null_check(mirror);
3926   // If mirror or obj is dead, only null-path is taken.
3927   if (stopped())  return true;
3928 
3929   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3930   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3931   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3932   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3933   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3934 
3935   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3936   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3937                                                   result_reg, _slow_path);
3938   Node* normal_ctl   = control();
3939   Node* no_array_ctl = result_reg->in(_slow_path);
3940 
3941   // Generate code for the slow case.  We make a call to newArray().
3942   set_control(no_array_ctl);
3943   if (!stopped()) {
3944     // Either the input type is void.class, or else the
3945     // array klass has not yet been cached.  Either the
3946     // ensuing call will throw an exception, or else it
3947     // will cache the array klass for next time.
3948     PreserveJVMState pjvms(this);
3949     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3950     Node* slow_result = set_results_for_java_call(slow_call);
3951     // this->control() comes from set_results_for_java_call
3952     result_reg->set_req(_slow_path, control());
3953     result_val->set_req(_slow_path, slow_result);
3954     result_io ->set_req(_slow_path, i_o());
3955     result_mem->set_req(_slow_path, reset_memory());
3956   }
3957 
3958   set_control(normal_ctl);
3959   if (!stopped()) {
3960     // Normal case:  The array type has been cached in the java.lang.Class.
3961     // The following call works fine even if the array type is polymorphic.
3962     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3963     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3964     result_reg->init_req(_normal_path, control());
3965     result_val->init_req(_normal_path, obj);
3966     result_io ->init_req(_normal_path, i_o());
3967     result_mem->init_req(_normal_path, reset_memory());
3968 
3969     if (uninitialized) {
3970       // Mark the allocation so that zeroing is skipped
3971       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3972       alloc->maybe_set_complete(&_gvn);
3973     }
3974   }
3975 
3976   // Return the combined state.
3977   set_i_o(        _gvn.transform(result_io)  );
3978   set_all_memory( _gvn.transform(result_mem));
3979 
3980   C->set_has_split_ifs(true); // Has chance for split-if optimization
3981   set_result(result_reg, result_val);
3982   return true;
3983 }
3984 
3985 //----------------------inline_native_getLength--------------------------
3986 // public static native int java.lang.reflect.Array.getLength(Object array);
3987 bool LibraryCallKit::inline_native_getLength() {
3988   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3989 
3990   Node* array = null_check(argument(0));
3991   // If array is dead, only null-path is taken.
3992   if (stopped())  return true;
3993 
3994   // Deoptimize if it is a non-array.
3995   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3996 
3997   if (non_array != NULL) {
3998     PreserveJVMState pjvms(this);
3999     set_control(non_array);
4000     uncommon_trap(Deoptimization::Reason_intrinsic,
4001                   Deoptimization::Action_maybe_recompile);
4002   }
4003 
4004   // If control is dead, only non-array-path is taken.
4005   if (stopped())  return true;
4006 
4007   // The works fine even if the array type is polymorphic.
4008   // It could be a dynamic mix of int[], boolean[], Object[], etc.
4009   Node* result = load_array_length(array);
4010 
4011   C->set_has_split_ifs(true);  // Has chance for split-if optimization
4012   set_result(result);
4013   return true;
4014 }
4015 
4016 //------------------------inline_array_copyOf----------------------------
4017 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
4018 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
4019 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
4020   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
4021 
4022   // Get the arguments.
4023   Node* original          = argument(0);
4024   Node* start             = is_copyOfRange? argument(1): intcon(0);
4025   Node* end               = is_copyOfRange? argument(2): argument(1);
4026   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
4027 
4028   Node* newcopy = NULL;
4029 
4030   // Set the original stack and the reexecute bit for the interpreter to reexecute
4031   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
4032   { PreserveReexecuteState preexecs(this);
4033     jvms()->set_should_reexecute(true);
4034 
4035     array_type_mirror = null_check(array_type_mirror);
4036     original          = null_check(original);
4037 
4038     // Check if a null path was taken unconditionally.
4039     if (stopped())  return true;
4040 
4041     Node* orig_length = load_array_length(original);
4042 
4043     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
4044     klass_node = null_check(klass_node);
4045 
4046     RegionNode* bailout = new RegionNode(1);
4047     record_for_igvn(bailout);
4048 
4049     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
4050     // Bail out if that is so.
4051     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
4052     if (not_objArray != NULL) {
4053       // Improve the klass node's type from the new optimistic assumption:
4054       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
4055       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
4056       Node* cast = new CastPPNode(klass_node, akls);
4057       cast->init_req(0, control());
4058       klass_node = _gvn.transform(cast);
4059     }
4060 
4061     // Bail out if either start or end is negative.
4062     generate_negative_guard(start, bailout, &start);
4063     generate_negative_guard(end,   bailout, &end);
4064 
4065     Node* length = end;
4066     if (_gvn.type(start) != TypeInt::ZERO) {
4067       length = _gvn.transform(new SubINode(end, start));
4068     }
4069 
4070     // Bail out if length is negative.
4071     // Without this the new_array would throw
4072     // NegativeArraySizeException but IllegalArgumentException is what
4073     // should be thrown
4074     generate_negative_guard(length, bailout, &length);
4075 
4076     if (bailout->req() > 1) {
4077       PreserveJVMState pjvms(this);
4078       set_control(_gvn.transform(bailout));
4079       uncommon_trap(Deoptimization::Reason_intrinsic,
4080                     Deoptimization::Action_maybe_recompile);
4081     }
4082 
4083     if (!stopped()) {
4084       // How many elements will we copy from the original?
4085       // The answer is MinI(orig_length - start, length).
4086       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
4087       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
4088 
4089       // Generate a direct call to the right arraycopy function(s).
4090       // We know the copy is disjoint but we might not know if the
4091       // oop stores need checking.
4092       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
4093       // This will fail a store-check if x contains any non-nulls.
4094 
4095       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
4096       // loads/stores but it is legal only if we're sure the
4097       // Arrays.copyOf would succeed. So we need all input arguments
4098       // to the copyOf to be validated, including that the copy to the
4099       // new array won't trigger an ArrayStoreException. That subtype
4100       // check can be optimized if we know something on the type of
4101       // the input array from type speculation.
4102       if (_gvn.type(klass_node)->singleton()) {
4103         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
4104         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
4105 
4106         int test = C->static_subtype_check(superk, subk);
4107         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
4108           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
4109           if (t_original->speculative_type() != NULL) {
4110             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
4111           }
4112         }
4113       }
4114 
4115       bool validated = false;
4116       // Reason_class_check rather than Reason_intrinsic because we
4117       // want to intrinsify even if this traps.
4118       if (!too_many_traps(Deoptimization::Reason_class_check)) {
4119         Node* not_subtype_ctrl = gen_subtype_check(load_object_klass(original),
4120                                                    klass_node);
4121 
4122         if (not_subtype_ctrl != top()) {
4123           PreserveJVMState pjvms(this);
4124           set_control(not_subtype_ctrl);
4125           uncommon_trap(Deoptimization::Reason_class_check,
4126                         Deoptimization::Action_make_not_entrant);
4127           assert(stopped(), "Should be stopped");
4128         }
4129         validated = true;
4130       }
4131 
4132       if (!stopped()) {
4133         newcopy = new_array(klass_node, length, 0);  // no arguments to push
4134 
4135         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
4136                                                 load_object_klass(original), klass_node);
4137         if (!is_copyOfRange) {
4138           ac->set_copyof(validated);
4139         } else {
4140           ac->set_copyofrange(validated);
4141         }
4142         Node* n = _gvn.transform(ac);
4143         if (n == ac) {
4144           ac->connect_outputs(this);
4145         } else {
4146           assert(validated, "shouldn't transform if all arguments not validated");
4147           set_all_memory(n);
4148         }
4149       }
4150     }
4151   } // original reexecute is set back here
4152 
4153   C->set_has_split_ifs(true); // Has chance for split-if optimization
4154   if (!stopped()) {
4155     set_result(newcopy);
4156   }
4157   return true;
4158 }
4159 
4160 
4161 //----------------------generate_virtual_guard---------------------------
4162 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
4163 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
4164                                              RegionNode* slow_region) {
4165   ciMethod* method = callee();
4166   int vtable_index = method->vtable_index();
4167   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4168          "bad index %d", vtable_index);
4169   // Get the Method* out of the appropriate vtable entry.
4170   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
4171                      vtable_index*vtableEntry::size_in_bytes() +
4172                      vtableEntry::method_offset_in_bytes();
4173   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
4174   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4175 
4176   // Compare the target method with the expected method (e.g., Object.hashCode).
4177   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
4178 
4179   Node* native_call = makecon(native_call_addr);
4180   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
4181   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
4182 
4183   return generate_slow_guard(test_native, slow_region);
4184 }
4185 
4186 //-----------------------generate_method_call----------------------------
4187 // Use generate_method_call to make a slow-call to the real
4188 // method if the fast path fails.  An alternative would be to
4189 // use a stub like OptoRuntime::slow_arraycopy_Java.
4190 // This only works for expanding the current library call,
4191 // not another intrinsic.  (E.g., don't use this for making an
4192 // arraycopy call inside of the copyOf intrinsic.)
4193 CallJavaNode*
4194 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
4195   // When compiling the intrinsic method itself, do not use this technique.
4196   guarantee(callee() != C->method(), "cannot make slow-call to self");
4197 
4198   ciMethod* method = callee();
4199   // ensure the JVMS we have will be correct for this call
4200   guarantee(method_id == method->intrinsic_id(), "must match");
4201 
4202   const TypeFunc* tf = TypeFunc::make(method);
4203   CallJavaNode* slow_call;
4204   if (is_static) {
4205     assert(!is_virtual, "");
4206     slow_call = new CallStaticJavaNode(C, tf,
4207                            SharedRuntime::get_resolve_static_call_stub(),
4208                            method, bci());
4209   } else if (is_virtual) {
4210     null_check_receiver();
4211     int vtable_index = Method::invalid_vtable_index;
4212     if (UseInlineCaches) {
4213       // Suppress the vtable call
4214     } else {
4215       // hashCode and clone are not a miranda methods,
4216       // so the vtable index is fixed.
4217       // No need to use the linkResolver to get it.
4218        vtable_index = method->vtable_index();
4219        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
4220               "bad index %d", vtable_index);
4221     }
4222     slow_call = new CallDynamicJavaNode(tf,
4223                           SharedRuntime::get_resolve_virtual_call_stub(),
4224                           method, vtable_index, bci());
4225   } else {  // neither virtual nor static:  opt_virtual
4226     null_check_receiver();
4227     slow_call = new CallStaticJavaNode(C, tf,
4228                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
4229                                 method, bci());
4230     slow_call->set_optimized_virtual(true);
4231   }
4232   set_arguments_for_java_call(slow_call);
4233   set_edges_for_java_call(slow_call);
4234   return slow_call;
4235 }
4236 
4237 
4238 /**
4239  * Build special case code for calls to hashCode on an object. This call may
4240  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
4241  * slightly different code.
4242  */
4243 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
4244   assert(is_static == callee()->is_static(), "correct intrinsic selection");
4245   assert(!(is_virtual && is_static), "either virtual, special, or static");
4246 
4247   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
4248 
4249   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4250   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
4251   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
4252   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4253   Node* obj = NULL;
4254   if (!is_static) {
4255     // Check for hashing null object
4256     obj = null_check_receiver();
4257     if (stopped())  return true;        // unconditionally null
4258     result_reg->init_req(_null_path, top());
4259     result_val->init_req(_null_path, top());
4260   } else {
4261     // Do a null check, and return zero if null.
4262     // System.identityHashCode(null) == 0
4263     obj = argument(0);
4264     Node* null_ctl = top();
4265     obj = null_check_oop(obj, &null_ctl);
4266     result_reg->init_req(_null_path, null_ctl);
4267     result_val->init_req(_null_path, _gvn.intcon(0));
4268   }
4269 
4270   // Unconditionally null?  Then return right away.
4271   if (stopped()) {
4272     set_control( result_reg->in(_null_path));
4273     if (!stopped())
4274       set_result(result_val->in(_null_path));
4275     return true;
4276   }
4277 
4278   // We only go to the fast case code if we pass a number of guards.  The
4279   // paths which do not pass are accumulated in the slow_region.
4280   RegionNode* slow_region = new RegionNode(1);
4281   record_for_igvn(slow_region);
4282 
4283   // If this is a virtual call, we generate a funny guard.  We pull out
4284   // the vtable entry corresponding to hashCode() from the target object.
4285   // If the target method which we are calling happens to be the native
4286   // Object hashCode() method, we pass the guard.  We do not need this
4287   // guard for non-virtual calls -- the caller is known to be the native
4288   // Object hashCode().
4289   if (is_virtual) {
4290     // After null check, get the object's klass.
4291     Node* obj_klass = load_object_klass(obj);
4292     generate_virtual_guard(obj_klass, slow_region);
4293   }
4294 
4295   // Get the header out of the object, use LoadMarkNode when available
4296   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4297   // The control of the load must be NULL. Otherwise, the load can move before
4298   // the null check after castPP removal.
4299   Node* no_ctrl = NULL;
4300   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4301 
4302   // Test the header to see if it is unlocked.
4303   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4304   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
4305   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4306   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
4307   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
4308 
4309   generate_slow_guard(test_unlocked, slow_region);
4310 
4311   // Get the hash value and check to see that it has been properly assigned.
4312   // We depend on hash_mask being at most 32 bits and avoid the use of
4313   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4314   // vm: see markOop.hpp.
4315   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4316   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4317   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
4318   // This hack lets the hash bits live anywhere in the mark object now, as long
4319   // as the shift drops the relevant bits into the low 32 bits.  Note that
4320   // Java spec says that HashCode is an int so there's no point in capturing
4321   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4322   hshifted_header      = ConvX2I(hshifted_header);
4323   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
4324 
4325   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4326   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
4327   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
4328 
4329   generate_slow_guard(test_assigned, slow_region);
4330 
4331   Node* init_mem = reset_memory();
4332   // fill in the rest of the null path:
4333   result_io ->init_req(_null_path, i_o());
4334   result_mem->init_req(_null_path, init_mem);
4335 
4336   result_val->init_req(_fast_path, hash_val);
4337   result_reg->init_req(_fast_path, control());
4338   result_io ->init_req(_fast_path, i_o());
4339   result_mem->init_req(_fast_path, init_mem);
4340 
4341   // Generate code for the slow case.  We make a call to hashCode().
4342   set_control(_gvn.transform(slow_region));
4343   if (!stopped()) {
4344     // No need for PreserveJVMState, because we're using up the present state.
4345     set_all_memory(init_mem);
4346     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4347     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4348     Node* slow_result = set_results_for_java_call(slow_call);
4349     // this->control() comes from set_results_for_java_call
4350     result_reg->init_req(_slow_path, control());
4351     result_val->init_req(_slow_path, slow_result);
4352     result_io  ->set_req(_slow_path, i_o());
4353     result_mem ->set_req(_slow_path, reset_memory());
4354   }
4355 
4356   // Return the combined state.
4357   set_i_o(        _gvn.transform(result_io)  );
4358   set_all_memory( _gvn.transform(result_mem));
4359 
4360   set_result(result_reg, result_val);
4361   return true;
4362 }
4363 
4364 //---------------------------inline_native_getClass----------------------------
4365 // public final native Class<?> java.lang.Object.getClass();
4366 //
4367 // Build special case code for calls to getClass on an object.
4368 bool LibraryCallKit::inline_native_getClass() {
4369   Node* obj = null_check_receiver();
4370   if (stopped())  return true;
4371   set_result(load_mirror_from_klass(load_object_klass(obj)));
4372   return true;
4373 }
4374 
4375 //-----------------inline_native_Reflection_getCallerClass---------------------
4376 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4377 //
4378 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4379 //
4380 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4381 // in that it must skip particular security frames and checks for
4382 // caller sensitive methods.
4383 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4384 #ifndef PRODUCT
4385   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4386     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4387   }
4388 #endif
4389 
4390   if (!jvms()->has_method()) {
4391 #ifndef PRODUCT
4392     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4393       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4394     }
4395 #endif
4396     return false;
4397   }
4398 
4399   // Walk back up the JVM state to find the caller at the required
4400   // depth.
4401   JVMState* caller_jvms = jvms();
4402 
4403   // Cf. JVM_GetCallerClass
4404   // NOTE: Start the loop at depth 1 because the current JVM state does
4405   // not include the Reflection.getCallerClass() frame.
4406   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4407     ciMethod* m = caller_jvms->method();
4408     switch (n) {
4409     case 0:
4410       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4411       break;
4412     case 1:
4413       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4414       if (!m->caller_sensitive()) {
4415 #ifndef PRODUCT
4416         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4417           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4418         }
4419 #endif
4420         return false;  // bail-out; let JVM_GetCallerClass do the work
4421       }
4422       break;
4423     default:
4424       if (!m->is_ignored_by_security_stack_walk()) {
4425         // We have reached the desired frame; return the holder class.
4426         // Acquire method holder as java.lang.Class and push as constant.
4427         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4428         ciInstance* caller_mirror = caller_klass->java_mirror();
4429         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4430 
4431 #ifndef PRODUCT
4432         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4433           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4434           tty->print_cr("  JVM state at this point:");
4435           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4436             ciMethod* m = jvms()->of_depth(i)->method();
4437             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4438           }
4439         }
4440 #endif
4441         return true;
4442       }
4443       break;
4444     }
4445   }
4446 
4447 #ifndef PRODUCT
4448   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4449     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4450     tty->print_cr("  JVM state at this point:");
4451     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4452       ciMethod* m = jvms()->of_depth(i)->method();
4453       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4454     }
4455   }
4456 #endif
4457 
4458   return false;  // bail-out; let JVM_GetCallerClass do the work
4459 }
4460 
4461 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4462   Node* arg = argument(0);
4463   Node* result = NULL;
4464 
4465   switch (id) {
4466   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
4467   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
4468   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
4469   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
4470 
4471   case vmIntrinsics::_doubleToLongBits: {
4472     // two paths (plus control) merge in a wood
4473     RegionNode *r = new RegionNode(3);
4474     Node *phi = new PhiNode(r, TypeLong::LONG);
4475 
4476     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
4477     // Build the boolean node
4478     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4479 
4480     // Branch either way.
4481     // NaN case is less traveled, which makes all the difference.
4482     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4483     Node *opt_isnan = _gvn.transform(ifisnan);
4484     assert( opt_isnan->is_If(), "Expect an IfNode");
4485     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4486     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4487 
4488     set_control(iftrue);
4489 
4490     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4491     Node *slow_result = longcon(nan_bits); // return NaN
4492     phi->init_req(1, _gvn.transform( slow_result ));
4493     r->init_req(1, iftrue);
4494 
4495     // Else fall through
4496     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4497     set_control(iffalse);
4498 
4499     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
4500     r->init_req(2, iffalse);
4501 
4502     // Post merge
4503     set_control(_gvn.transform(r));
4504     record_for_igvn(r);
4505 
4506     C->set_has_split_ifs(true); // Has chance for split-if optimization
4507     result = phi;
4508     assert(result->bottom_type()->isa_long(), "must be");
4509     break;
4510   }
4511 
4512   case vmIntrinsics::_floatToIntBits: {
4513     // two paths (plus control) merge in a wood
4514     RegionNode *r = new RegionNode(3);
4515     Node *phi = new PhiNode(r, TypeInt::INT);
4516 
4517     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
4518     // Build the boolean node
4519     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
4520 
4521     // Branch either way.
4522     // NaN case is less traveled, which makes all the difference.
4523     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4524     Node *opt_isnan = _gvn.transform(ifisnan);
4525     assert( opt_isnan->is_If(), "Expect an IfNode");
4526     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4527     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
4528 
4529     set_control(iftrue);
4530 
4531     static const jint nan_bits = 0x7fc00000;
4532     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4533     phi->init_req(1, _gvn.transform( slow_result ));
4534     r->init_req(1, iftrue);
4535 
4536     // Else fall through
4537     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
4538     set_control(iffalse);
4539 
4540     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
4541     r->init_req(2, iffalse);
4542 
4543     // Post merge
4544     set_control(_gvn.transform(r));
4545     record_for_igvn(r);
4546 
4547     C->set_has_split_ifs(true); // Has chance for split-if optimization
4548     result = phi;
4549     assert(result->bottom_type()->isa_int(), "must be");
4550     break;
4551   }
4552 
4553   default:
4554     fatal_unexpected_iid(id);
4555     break;
4556   }
4557   set_result(_gvn.transform(result));
4558   return true;
4559 }
4560 
4561 //----------------------inline_unsafe_copyMemory-------------------------
4562 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4563 bool LibraryCallKit::inline_unsafe_copyMemory() {
4564   if (callee()->is_static())  return false;  // caller must have the capability!
4565   null_check_receiver();  // null-check receiver
4566   if (stopped())  return true;
4567 
4568   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4569 
4570   Node* src_ptr =         argument(1);   // type: oop
4571   Node* src_off = ConvL2X(argument(2));  // type: long
4572   Node* dst_ptr =         argument(4);   // type: oop
4573   Node* dst_off = ConvL2X(argument(5));  // type: long
4574   Node* size    = ConvL2X(argument(7));  // type: long
4575 
4576   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4577          "fieldOffset must be byte-scaled");
4578 
4579   Node* src = make_unsafe_address(src_ptr, src_off);
4580   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4581 
4582   // Conservatively insert a memory barrier on all memory slices.
4583   // Do not let writes of the copy source or destination float below the copy.
4584   insert_mem_bar(Op_MemBarCPUOrder);
4585 
4586   // Call it.  Note that the length argument is not scaled.
4587   make_runtime_call(RC_LEAF|RC_NO_FP,
4588                     OptoRuntime::fast_arraycopy_Type(),
4589                     StubRoutines::unsafe_arraycopy(),
4590                     "unsafe_arraycopy",
4591                     TypeRawPtr::BOTTOM,
4592                     src, dst, size XTOP);
4593 
4594   // Do not let reads of the copy destination float above the copy.
4595   insert_mem_bar(Op_MemBarCPUOrder);
4596 
4597   return true;
4598 }
4599 
4600 //------------------------clone_coping-----------------------------------
4601 // Helper function for inline_native_clone.
4602 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4603   assert(obj_size != NULL, "");
4604   Node* raw_obj = alloc_obj->in(1);
4605   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4606 
4607   AllocateNode* alloc = NULL;
4608   if (ReduceBulkZeroing) {
4609     // We will be completely responsible for initializing this object -
4610     // mark Initialize node as complete.
4611     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4612     // The object was just allocated - there should be no any stores!
4613     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4614     // Mark as complete_with_arraycopy so that on AllocateNode
4615     // expansion, we know this AllocateNode is initialized by an array
4616     // copy and a StoreStore barrier exists after the array copy.
4617     alloc->initialization()->set_complete_with_arraycopy();
4618   }
4619 
4620   // Copy the fastest available way.
4621   // TODO: generate fields copies for small objects instead.
4622   Node* src  = obj;
4623   Node* dest = alloc_obj;
4624   Node* size = _gvn.transform(obj_size);
4625 
4626   // Exclude the header but include array length to copy by 8 bytes words.
4627   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4628   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4629                             instanceOopDesc::base_offset_in_bytes();
4630   // base_off:
4631   // 8  - 32-bit VM
4632   // 12 - 64-bit VM, compressed klass
4633   // 16 - 64-bit VM, normal klass
4634   if (base_off % BytesPerLong != 0) {
4635     assert(UseCompressedClassPointers, "");
4636     if (is_array) {
4637       // Exclude length to copy by 8 bytes words.
4638       base_off += sizeof(int);
4639     } else {
4640       // Include klass to copy by 8 bytes words.
4641       base_off = instanceOopDesc::klass_offset_in_bytes();
4642     }
4643     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4644   }
4645   src  = basic_plus_adr(src,  base_off);
4646   dest = basic_plus_adr(dest, base_off);
4647 
4648   // Compute the length also, if needed:
4649   Node* countx = size;
4650   countx = _gvn.transform(new SubXNode(countx, MakeConX(base_off)));
4651   countx = _gvn.transform(new URShiftXNode(countx, intcon(LogBytesPerLong) ));
4652 
4653   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4654 
4655   ArrayCopyNode* ac = ArrayCopyNode::make(this, false, src, NULL, dest, NULL, countx, false, false);
4656   ac->set_clonebasic();
4657   Node* n = _gvn.transform(ac);
4658   if (n == ac) {
4659     set_predefined_output_for_runtime_call(ac, ac->in(TypeFunc::Memory), raw_adr_type);
4660   } else {
4661     set_all_memory(n);
4662   }
4663 
4664   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4665   if (card_mark) {
4666     assert(!is_array, "");
4667     // Put in store barrier for any and all oops we are sticking
4668     // into this object.  (We could avoid this if we could prove
4669     // that the object type contains no oop fields at all.)
4670     Node* no_particular_value = NULL;
4671     Node* no_particular_field = NULL;
4672     int raw_adr_idx = Compile::AliasIdxRaw;
4673     post_barrier(control(),
4674                  memory(raw_adr_type),
4675                  alloc_obj,
4676                  no_particular_field,
4677                  raw_adr_idx,
4678                  no_particular_value,
4679                  T_OBJECT,
4680                  false);
4681   }
4682 
4683   // Do not let reads from the cloned object float above the arraycopy.
4684   if (alloc != NULL) {
4685     // Do not let stores that initialize this object be reordered with
4686     // a subsequent store that would make this object accessible by
4687     // other threads.
4688     // Record what AllocateNode this StoreStore protects so that
4689     // escape analysis can go from the MemBarStoreStoreNode to the
4690     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4691     // based on the escape status of the AllocateNode.
4692     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4693   } else {
4694     insert_mem_bar(Op_MemBarCPUOrder);
4695   }
4696 }
4697 
4698 //------------------------inline_native_clone----------------------------
4699 // protected native Object java.lang.Object.clone();
4700 //
4701 // Here are the simple edge cases:
4702 //  null receiver => normal trap
4703 //  virtual and clone was overridden => slow path to out-of-line clone
4704 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4705 //
4706 // The general case has two steps, allocation and copying.
4707 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4708 //
4709 // Copying also has two cases, oop arrays and everything else.
4710 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4711 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4712 //
4713 // These steps fold up nicely if and when the cloned object's klass
4714 // can be sharply typed as an object array, a type array, or an instance.
4715 //
4716 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4717   PhiNode* result_val;
4718 
4719   // Set the reexecute bit for the interpreter to reexecute
4720   // the bytecode that invokes Object.clone if deoptimization happens.
4721   { PreserveReexecuteState preexecs(this);
4722     jvms()->set_should_reexecute(true);
4723 
4724     Node* obj = null_check_receiver();
4725     if (stopped())  return true;
4726 
4727     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4728 
4729     // If we are going to clone an instance, we need its exact type to
4730     // know the number and types of fields to convert the clone to
4731     // loads/stores. Maybe a speculative type can help us.
4732     if (!obj_type->klass_is_exact() &&
4733         obj_type->speculative_type() != NULL &&
4734         obj_type->speculative_type()->is_instance_klass()) {
4735       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4736       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4737           !spec_ik->has_injected_fields()) {
4738         ciKlass* k = obj_type->klass();
4739         if (!k->is_instance_klass() ||
4740             k->as_instance_klass()->is_interface() ||
4741             k->as_instance_klass()->has_subklass()) {
4742           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4743         }
4744       }
4745     }
4746 
4747     Node* obj_klass = load_object_klass(obj);
4748     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4749     const TypeOopPtr*   toop   = ((tklass != NULL)
4750                                 ? tklass->as_instance_type()
4751                                 : TypeInstPtr::NOTNULL);
4752 
4753     // Conservatively insert a memory barrier on all memory slices.
4754     // Do not let writes into the original float below the clone.
4755     insert_mem_bar(Op_MemBarCPUOrder);
4756 
4757     // paths into result_reg:
4758     enum {
4759       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4760       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4761       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4762       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4763       PATH_LIMIT
4764     };
4765     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4766     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4767     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4768     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4769     record_for_igvn(result_reg);
4770 
4771     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4772     int raw_adr_idx = Compile::AliasIdxRaw;
4773 
4774     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4775     if (array_ctl != NULL) {
4776       // It's an array.
4777       PreserveJVMState pjvms(this);
4778       set_control(array_ctl);
4779       Node* obj_length = load_array_length(obj);
4780       Node* obj_size  = NULL;
4781       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4782 
4783       if (!use_ReduceInitialCardMarks()) {
4784         // If it is an oop array, it requires very special treatment,
4785         // because card marking is required on each card of the array.
4786         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4787         if (is_obja != NULL) {
4788           PreserveJVMState pjvms2(this);
4789           set_control(is_obja);
4790           // Generate a direct call to the right arraycopy function(s).
4791           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4792           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4793           ac->set_cloneoop();
4794           Node* n = _gvn.transform(ac);
4795           assert(n == ac, "cannot disappear");
4796           ac->connect_outputs(this);
4797 
4798           result_reg->init_req(_objArray_path, control());
4799           result_val->init_req(_objArray_path, alloc_obj);
4800           result_i_o ->set_req(_objArray_path, i_o());
4801           result_mem ->set_req(_objArray_path, reset_memory());
4802         }
4803       }
4804       // Otherwise, there are no card marks to worry about.
4805       // (We can dispense with card marks if we know the allocation
4806       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4807       //  causes the non-eden paths to take compensating steps to
4808       //  simulate a fresh allocation, so that no further
4809       //  card marks are required in compiled code to initialize
4810       //  the object.)
4811 
4812       if (!stopped()) {
4813         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4814 
4815         // Present the results of the copy.
4816         result_reg->init_req(_array_path, control());
4817         result_val->init_req(_array_path, alloc_obj);
4818         result_i_o ->set_req(_array_path, i_o());
4819         result_mem ->set_req(_array_path, reset_memory());
4820       }
4821     }
4822 
4823     // We only go to the instance fast case code if we pass a number of guards.
4824     // The paths which do not pass are accumulated in the slow_region.
4825     RegionNode* slow_region = new RegionNode(1);
4826     record_for_igvn(slow_region);
4827     if (!stopped()) {
4828       // It's an instance (we did array above).  Make the slow-path tests.
4829       // If this is a virtual call, we generate a funny guard.  We grab
4830       // the vtable entry corresponding to clone() from the target object.
4831       // If the target method which we are calling happens to be the
4832       // Object clone() method, we pass the guard.  We do not need this
4833       // guard for non-virtual calls; the caller is known to be the native
4834       // Object clone().
4835       if (is_virtual) {
4836         generate_virtual_guard(obj_klass, slow_region);
4837       }
4838 
4839       // The object must be easily cloneable and must not have a finalizer.
4840       // Both of these conditions may be checked in a single test.
4841       // We could optimize the test further, but we don't care.
4842       generate_access_flags_guard(obj_klass,
4843                                   // Test both conditions:
4844                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4845                                   // Must be cloneable but not finalizer:
4846                                   JVM_ACC_IS_CLONEABLE_FAST,
4847                                   slow_region);
4848     }
4849 
4850     if (!stopped()) {
4851       // It's an instance, and it passed the slow-path tests.
4852       PreserveJVMState pjvms(this);
4853       Node* obj_size  = NULL;
4854       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4855       // is reexecuted if deoptimization occurs and there could be problems when merging
4856       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4857       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4858 
4859       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4860 
4861       // Present the results of the slow call.
4862       result_reg->init_req(_instance_path, control());
4863       result_val->init_req(_instance_path, alloc_obj);
4864       result_i_o ->set_req(_instance_path, i_o());
4865       result_mem ->set_req(_instance_path, reset_memory());
4866     }
4867 
4868     // Generate code for the slow case.  We make a call to clone().
4869     set_control(_gvn.transform(slow_region));
4870     if (!stopped()) {
4871       PreserveJVMState pjvms(this);
4872       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4873       Node* slow_result = set_results_for_java_call(slow_call);
4874       // this->control() comes from set_results_for_java_call
4875       result_reg->init_req(_slow_path, control());
4876       result_val->init_req(_slow_path, slow_result);
4877       result_i_o ->set_req(_slow_path, i_o());
4878       result_mem ->set_req(_slow_path, reset_memory());
4879     }
4880 
4881     // Return the combined state.
4882     set_control(    _gvn.transform(result_reg));
4883     set_i_o(        _gvn.transform(result_i_o));
4884     set_all_memory( _gvn.transform(result_mem));
4885   } // original reexecute is set back here
4886 
4887   set_result(_gvn.transform(result_val));
4888   return true;
4889 }
4890 
4891 // If we have a tighly coupled allocation, the arraycopy may take care
4892 // of the array initialization. If one of the guards we insert between
4893 // the allocation and the arraycopy causes a deoptimization, an
4894 // unitialized array will escape the compiled method. To prevent that
4895 // we set the JVM state for uncommon traps between the allocation and
4896 // the arraycopy to the state before the allocation so, in case of
4897 // deoptimization, we'll reexecute the allocation and the
4898 // initialization.
4899 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4900   if (alloc != NULL) {
4901     ciMethod* trap_method = alloc->jvms()->method();
4902     int trap_bci = alloc->jvms()->bci();
4903 
4904     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &
4905           !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4906       // Make sure there's no store between the allocation and the
4907       // arraycopy otherwise visible side effects could be rexecuted
4908       // in case of deoptimization and cause incorrect execution.
4909       bool no_interfering_store = true;
4910       Node* mem = alloc->in(TypeFunc::Memory);
4911       if (mem->is_MergeMem()) {
4912         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4913           Node* n = mms.memory();
4914           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4915             assert(n->is_Store(), "what else?");
4916             no_interfering_store = false;
4917             break;
4918           }
4919         }
4920       } else {
4921         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4922           Node* n = mms.memory();
4923           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4924             assert(n->is_Store(), "what else?");
4925             no_interfering_store = false;
4926             break;
4927           }
4928         }
4929       }
4930 
4931       if (no_interfering_store) {
4932         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4933         uint size = alloc->req();
4934         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4935         old_jvms->set_map(sfpt);
4936         for (uint i = 0; i < size; i++) {
4937           sfpt->init_req(i, alloc->in(i));
4938         }
4939         // re-push array length for deoptimization
4940         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4941         old_jvms->set_sp(old_jvms->sp()+1);
4942         old_jvms->set_monoff(old_jvms->monoff()+1);
4943         old_jvms->set_scloff(old_jvms->scloff()+1);
4944         old_jvms->set_endoff(old_jvms->endoff()+1);
4945         old_jvms->set_should_reexecute(true);
4946 
4947         sfpt->set_i_o(map()->i_o());
4948         sfpt->set_memory(map()->memory());
4949         sfpt->set_control(map()->control());
4950 
4951         JVMState* saved_jvms = jvms();
4952         saved_reexecute_sp = _reexecute_sp;
4953 
4954         set_jvms(sfpt->jvms());
4955         _reexecute_sp = jvms()->sp();
4956 
4957         return saved_jvms;
4958       }
4959     }
4960   }
4961   return NULL;
4962 }
4963 
4964 // In case of a deoptimization, we restart execution at the
4965 // allocation, allocating a new array. We would leave an uninitialized
4966 // array in the heap that GCs wouldn't expect. Move the allocation
4967 // after the traps so we don't allocate the array if we
4968 // deoptimize. This is possible because tightly_coupled_allocation()
4969 // guarantees there's no observer of the allocated array at this point
4970 // and the control flow is simple enough.
4971 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4972                                                     int saved_reexecute_sp, uint new_idx) {
4973   if (saved_jvms != NULL && !stopped()) {
4974     assert(alloc != NULL, "only with a tightly coupled allocation");
4975     // restore JVM state to the state at the arraycopy
4976     saved_jvms->map()->set_control(map()->control());
4977     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4978     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4979     // If we've improved the types of some nodes (null check) while
4980     // emitting the guards, propagate them to the current state
4981     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4982     set_jvms(saved_jvms);
4983     _reexecute_sp = saved_reexecute_sp;
4984 
4985     // Remove the allocation from above the guards
4986     CallProjections callprojs;
4987     alloc->extract_projections(&callprojs, true);
4988     InitializeNode* init = alloc->initialization();
4989     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4990     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4991     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4992     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4993 
4994     // move the allocation here (after the guards)
4995     _gvn.hash_delete(alloc);
4996     alloc->set_req(TypeFunc::Control, control());
4997     alloc->set_req(TypeFunc::I_O, i_o());
4998     Node *mem = reset_memory();
4999     set_all_memory(mem);
5000     alloc->set_req(TypeFunc::Memory, mem);
5001     set_control(init->proj_out(TypeFunc::Control));
5002     set_i_o(callprojs.fallthrough_ioproj);
5003 
5004     // Update memory as done in GraphKit::set_output_for_allocation()
5005     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
5006     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
5007     if (ary_type->isa_aryptr() && length_type != NULL) {
5008       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
5009     }
5010     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
5011     int            elemidx  = C->get_alias_index(telemref);
5012     set_memory(init->proj_out(TypeFunc::Memory), Compile::AliasIdxRaw);
5013     set_memory(init->proj_out(TypeFunc::Memory), elemidx);
5014 
5015     Node* allocx = _gvn.transform(alloc);
5016     assert(allocx == alloc, "where has the allocation gone?");
5017     assert(dest->is_CheckCastPP(), "not an allocation result?");
5018 
5019     _gvn.hash_delete(dest);
5020     dest->set_req(0, control());
5021     Node* destx = _gvn.transform(dest);
5022     assert(destx == dest, "where has the allocation result gone?");
5023   }
5024 }
5025 
5026 
5027 //------------------------------inline_arraycopy-----------------------
5028 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
5029 //                                                      Object dest, int destPos,
5030 //                                                      int length);
5031 bool LibraryCallKit::inline_arraycopy() {
5032   // Get the arguments.
5033   Node* src         = argument(0);  // type: oop
5034   Node* src_offset  = argument(1);  // type: int
5035   Node* dest        = argument(2);  // type: oop
5036   Node* dest_offset = argument(3);  // type: int
5037   Node* length      = argument(4);  // type: int
5038 
5039   uint new_idx = C->unique();
5040 
5041   // Check for allocation before we add nodes that would confuse
5042   // tightly_coupled_allocation()
5043   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
5044 
5045   int saved_reexecute_sp = -1;
5046   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
5047   // See arraycopy_restore_alloc_state() comment
5048   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
5049   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
5050   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
5051   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
5052 
5053   // The following tests must be performed
5054   // (1) src and dest are arrays.
5055   // (2) src and dest arrays must have elements of the same BasicType
5056   // (3) src and dest must not be null.
5057   // (4) src_offset must not be negative.
5058   // (5) dest_offset must not be negative.
5059   // (6) length must not be negative.
5060   // (7) src_offset + length must not exceed length of src.
5061   // (8) dest_offset + length must not exceed length of dest.
5062   // (9) each element of an oop array must be assignable
5063 
5064   // (3) src and dest must not be null.
5065   // always do this here because we need the JVM state for uncommon traps
5066   Node* null_ctl = top();
5067   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
5068   assert(null_ctl->is_top(), "no null control here");
5069   dest = null_check(dest, T_ARRAY);
5070 
5071   if (!can_emit_guards) {
5072     // if saved_jvms == NULL and alloc != NULL, we don't emit any
5073     // guards but the arraycopy node could still take advantage of a
5074     // tightly allocated allocation. tightly_coupled_allocation() is
5075     // called again to make sure it takes the null check above into
5076     // account: the null check is mandatory and if it caused an
5077     // uncommon trap to be emitted then the allocation can't be
5078     // considered tightly coupled in this context.
5079     alloc = tightly_coupled_allocation(dest, NULL);
5080   }
5081 
5082   bool validated = false;
5083 
5084   const Type* src_type  = _gvn.type(src);
5085   const Type* dest_type = _gvn.type(dest);
5086   const TypeAryPtr* top_src  = src_type->isa_aryptr();
5087   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5088 
5089   // Do we have the type of src?
5090   bool has_src = (top_src != NULL && top_src->klass() != NULL);
5091   // Do we have the type of dest?
5092   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5093   // Is the type for src from speculation?
5094   bool src_spec = false;
5095   // Is the type for dest from speculation?
5096   bool dest_spec = false;
5097 
5098   if ((!has_src || !has_dest) && can_emit_guards) {
5099     // We don't have sufficient type information, let's see if
5100     // speculative types can help. We need to have types for both src
5101     // and dest so that it pays off.
5102 
5103     // Do we already have or could we have type information for src
5104     bool could_have_src = has_src;
5105     // Do we already have or could we have type information for dest
5106     bool could_have_dest = has_dest;
5107 
5108     ciKlass* src_k = NULL;
5109     if (!has_src) {
5110       src_k = src_type->speculative_type_not_null();
5111       if (src_k != NULL && src_k->is_array_klass()) {
5112         could_have_src = true;
5113       }
5114     }
5115 
5116     ciKlass* dest_k = NULL;
5117     if (!has_dest) {
5118       dest_k = dest_type->speculative_type_not_null();
5119       if (dest_k != NULL && dest_k->is_array_klass()) {
5120         could_have_dest = true;
5121       }
5122     }
5123 
5124     if (could_have_src && could_have_dest) {
5125       // This is going to pay off so emit the required guards
5126       if (!has_src) {
5127         src = maybe_cast_profiled_obj(src, src_k, true);
5128         src_type  = _gvn.type(src);
5129         top_src  = src_type->isa_aryptr();
5130         has_src = (top_src != NULL && top_src->klass() != NULL);
5131         src_spec = true;
5132       }
5133       if (!has_dest) {
5134         dest = maybe_cast_profiled_obj(dest, dest_k, true);
5135         dest_type  = _gvn.type(dest);
5136         top_dest  = dest_type->isa_aryptr();
5137         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
5138         dest_spec = true;
5139       }
5140     }
5141   }
5142 
5143   if (has_src && has_dest && can_emit_guards) {
5144     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
5145     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
5146     if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
5147     if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
5148 
5149     if (src_elem == dest_elem && src_elem == T_OBJECT) {
5150       // If both arrays are object arrays then having the exact types
5151       // for both will remove the need for a subtype check at runtime
5152       // before the call and may make it possible to pick a faster copy
5153       // routine (without a subtype check on every element)
5154       // Do we have the exact type of src?
5155       bool could_have_src = src_spec;
5156       // Do we have the exact type of dest?
5157       bool could_have_dest = dest_spec;
5158       ciKlass* src_k = top_src->klass();
5159       ciKlass* dest_k = top_dest->klass();
5160       if (!src_spec) {
5161         src_k = src_type->speculative_type_not_null();
5162         if (src_k != NULL && src_k->is_array_klass()) {
5163           could_have_src = true;
5164         }
5165       }
5166       if (!dest_spec) {
5167         dest_k = dest_type->speculative_type_not_null();
5168         if (dest_k != NULL && dest_k->is_array_klass()) {
5169           could_have_dest = true;
5170         }
5171       }
5172       if (could_have_src && could_have_dest) {
5173         // If we can have both exact types, emit the missing guards
5174         if (could_have_src && !src_spec) {
5175           src = maybe_cast_profiled_obj(src, src_k, true);
5176         }
5177         if (could_have_dest && !dest_spec) {
5178           dest = maybe_cast_profiled_obj(dest, dest_k, true);
5179         }
5180       }
5181     }
5182   }
5183 
5184   ciMethod* trap_method = method();
5185   int trap_bci = bci();
5186   if (saved_jvms != NULL) {
5187     trap_method = alloc->jvms()->method();
5188     trap_bci = alloc->jvms()->bci();
5189   }
5190 
5191   bool negative_length_guard_generated = false;
5192 
5193   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
5194       can_emit_guards &&
5195       !src->is_top() && !dest->is_top()) {
5196     // validate arguments: enables transformation the ArrayCopyNode
5197     validated = true;
5198 
5199     RegionNode* slow_region = new RegionNode(1);
5200     record_for_igvn(slow_region);
5201 
5202     // (1) src and dest are arrays.
5203     generate_non_array_guard(load_object_klass(src), slow_region);
5204     generate_non_array_guard(load_object_klass(dest), slow_region);
5205 
5206     // (2) src and dest arrays must have elements of the same BasicType
5207     // done at macro expansion or at Ideal transformation time
5208 
5209     // (4) src_offset must not be negative.
5210     generate_negative_guard(src_offset, slow_region);
5211 
5212     // (5) dest_offset must not be negative.
5213     generate_negative_guard(dest_offset, slow_region);
5214 
5215     // (7) src_offset + length must not exceed length of src.
5216     generate_limit_guard(src_offset, length,
5217                          load_array_length(src),
5218                          slow_region);
5219 
5220     // (8) dest_offset + length must not exceed length of dest.
5221     generate_limit_guard(dest_offset, length,
5222                          load_array_length(dest),
5223                          slow_region);
5224 
5225     // (6) length must not be negative.
5226     // This is also checked in generate_arraycopy() during macro expansion, but
5227     // we also have to check it here for the case where the ArrayCopyNode will
5228     // be eliminated by Escape Analysis.
5229     if (EliminateAllocations) {
5230       generate_negative_guard(length, slow_region);
5231       negative_length_guard_generated = true;
5232     }
5233 
5234     // (9) each element of an oop array must be assignable
5235     Node* src_klass  = load_object_klass(src);
5236     Node* dest_klass = load_object_klass(dest);
5237     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5238 
5239     if (not_subtype_ctrl != top()) {
5240       PreserveJVMState pjvms(this);
5241       set_control(not_subtype_ctrl);
5242       uncommon_trap(Deoptimization::Reason_intrinsic,
5243                     Deoptimization::Action_make_not_entrant);
5244       assert(stopped(), "Should be stopped");
5245     }
5246     {
5247       PreserveJVMState pjvms(this);
5248       set_control(_gvn.transform(slow_region));
5249       uncommon_trap(Deoptimization::Reason_intrinsic,
5250                     Deoptimization::Action_make_not_entrant);
5251       assert(stopped(), "Should be stopped");
5252     }
5253   }
5254 
5255   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
5256 
5257   if (stopped()) {
5258     return true;
5259   }
5260 
5261   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
5262                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
5263                                           // so the compiler has a chance to eliminate them: during macro expansion,
5264                                           // we have to set their control (CastPP nodes are eliminated).
5265                                           load_object_klass(src), load_object_klass(dest),
5266                                           load_array_length(src), load_array_length(dest));
5267 
5268   ac->set_arraycopy(validated);
5269 
5270   Node* n = _gvn.transform(ac);
5271   if (n == ac) {
5272     ac->connect_outputs(this);
5273   } else {
5274     assert(validated, "shouldn't transform if all arguments not validated");
5275     set_all_memory(n);
5276   }
5277 
5278   return true;
5279 }
5280 
5281 
5282 // Helper function which determines if an arraycopy immediately follows
5283 // an allocation, with no intervening tests or other escapes for the object.
5284 AllocateArrayNode*
5285 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5286                                            RegionNode* slow_region) {
5287   if (stopped())             return NULL;  // no fast path
5288   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5289 
5290   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5291   if (alloc == NULL)  return NULL;
5292 
5293   Node* rawmem = memory(Compile::AliasIdxRaw);
5294   // Is the allocation's memory state untouched?
5295   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5296     // Bail out if there have been raw-memory effects since the allocation.
5297     // (Example:  There might have been a call or safepoint.)
5298     return NULL;
5299   }
5300   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5301   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5302     return NULL;
5303   }
5304 
5305   // There must be no unexpected observers of this allocation.
5306   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5307     Node* obs = ptr->fast_out(i);
5308     if (obs != this->map()) {
5309       return NULL;
5310     }
5311   }
5312 
5313   // This arraycopy must unconditionally follow the allocation of the ptr.
5314   Node* alloc_ctl = ptr->in(0);
5315   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5316 
5317   Node* ctl = control();
5318   while (ctl != alloc_ctl) {
5319     // There may be guards which feed into the slow_region.
5320     // Any other control flow means that we might not get a chance
5321     // to finish initializing the allocated object.
5322     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5323       IfNode* iff = ctl->in(0)->as_If();
5324       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5325       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5326       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5327         ctl = iff->in(0);       // This test feeds the known slow_region.
5328         continue;
5329       }
5330       // One more try:  Various low-level checks bottom out in
5331       // uncommon traps.  If the debug-info of the trap omits
5332       // any reference to the allocation, as we've already
5333       // observed, then there can be no objection to the trap.
5334       bool found_trap = false;
5335       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5336         Node* obs = not_ctl->fast_out(j);
5337         if (obs->in(0) == not_ctl && obs->is_Call() &&
5338             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5339           found_trap = true; break;
5340         }
5341       }
5342       if (found_trap) {
5343         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5344         continue;
5345       }
5346     }
5347     return NULL;
5348   }
5349 
5350   // If we get this far, we have an allocation which immediately
5351   // precedes the arraycopy, and we can take over zeroing the new object.
5352   // The arraycopy will finish the initialization, and provide
5353   // a new control state to which we will anchor the destination pointer.
5354 
5355   return alloc;
5356 }
5357 
5358 //-------------inline_encodeISOArray-----------------------------------
5359 // encode char[] to byte[] in ISO_8859_1
5360 bool LibraryCallKit::inline_encodeISOArray() {
5361   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5362   // no receiver since it is static method
5363   Node *src         = argument(0);
5364   Node *src_offset  = argument(1);
5365   Node *dst         = argument(2);
5366   Node *dst_offset  = argument(3);
5367   Node *length      = argument(4);
5368 
5369   const Type* src_type = src->Value(&_gvn);
5370   const Type* dst_type = dst->Value(&_gvn);
5371   const TypeAryPtr* top_src = src_type->isa_aryptr();
5372   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5373   if (top_src  == NULL || top_src->klass()  == NULL ||
5374       top_dest == NULL || top_dest->klass() == NULL) {
5375     // failed array check
5376     return false;
5377   }
5378 
5379   // Figure out the size and type of the elements we will be copying.
5380   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5381   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5382   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
5383     return false;
5384   }
5385 
5386   Node* src_start = array_element_address(src, src_offset, T_CHAR);
5387   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5388   // 'src_start' points to src array + scaled offset
5389   // 'dst_start' points to dst array + scaled offset
5390 
5391   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5392   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5393   enc = _gvn.transform(enc);
5394   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
5395   set_memory(res_mem, mtype);
5396   set_result(enc);
5397   return true;
5398 }
5399 
5400 //-------------inline_multiplyToLen-----------------------------------
5401 bool LibraryCallKit::inline_multiplyToLen() {
5402   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
5403 
5404   address stubAddr = StubRoutines::multiplyToLen();
5405   if (stubAddr == NULL) {
5406     return false; // Intrinsic's stub is not implemented on this platform
5407   }
5408   const char* stubName = "multiplyToLen";
5409 
5410   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
5411 
5412   // no receiver because it is a static method
5413   Node* x    = argument(0);
5414   Node* xlen = argument(1);
5415   Node* y    = argument(2);
5416   Node* ylen = argument(3);
5417   Node* z    = argument(4);
5418 
5419   const Type* x_type = x->Value(&_gvn);
5420   const Type* y_type = y->Value(&_gvn);
5421   const TypeAryPtr* top_x = x_type->isa_aryptr();
5422   const TypeAryPtr* top_y = y_type->isa_aryptr();
5423   if (top_x  == NULL || top_x->klass()  == NULL ||
5424       top_y == NULL || top_y->klass() == NULL) {
5425     // failed array check
5426     return false;
5427   }
5428 
5429   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5430   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5431   if (x_elem != T_INT || y_elem != T_INT) {
5432     return false;
5433   }
5434 
5435   // Set the original stack and the reexecute bit for the interpreter to reexecute
5436   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
5437   // on the return from z array allocation in runtime.
5438   { PreserveReexecuteState preexecs(this);
5439     jvms()->set_should_reexecute(true);
5440 
5441     Node* x_start = array_element_address(x, intcon(0), x_elem);
5442     Node* y_start = array_element_address(y, intcon(0), y_elem);
5443     // 'x_start' points to x array + scaled xlen
5444     // 'y_start' points to y array + scaled ylen
5445 
5446     // Allocate the result array
5447     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
5448     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
5449     Node* klass_node = makecon(TypeKlassPtr::make(klass));
5450 
5451     IdealKit ideal(this);
5452 
5453 #define __ ideal.
5454      Node* one = __ ConI(1);
5455      Node* zero = __ ConI(0);
5456      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
5457      __ set(need_alloc, zero);
5458      __ set(z_alloc, z);
5459      __ if_then(z, BoolTest::eq, null()); {
5460        __ increment (need_alloc, one);
5461      } __ else_(); {
5462        // Update graphKit memory and control from IdealKit.
5463        sync_kit(ideal);
5464        Node* zlen_arg = load_array_length(z);
5465        // Update IdealKit memory and control from graphKit.
5466        __ sync_kit(this);
5467        __ if_then(zlen_arg, BoolTest::lt, zlen); {
5468          __ increment (need_alloc, one);
5469        } __ end_if();
5470      } __ end_if();
5471 
5472      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
5473        // Update graphKit memory and control from IdealKit.
5474        sync_kit(ideal);
5475        Node * narr = new_array(klass_node, zlen, 1);
5476        // Update IdealKit memory and control from graphKit.
5477        __ sync_kit(this);
5478        __ set(z_alloc, narr);
5479      } __ end_if();
5480 
5481      sync_kit(ideal);
5482      z = __ value(z_alloc);
5483      // Can't use TypeAryPtr::INTS which uses Bottom offset.
5484      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
5485      // Final sync IdealKit and GraphKit.
5486      final_sync(ideal);
5487 #undef __
5488 
5489     Node* z_start = array_element_address(z, intcon(0), T_INT);
5490 
5491     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5492                                    OptoRuntime::multiplyToLen_Type(),
5493                                    stubAddr, stubName, TypePtr::BOTTOM,
5494                                    x_start, xlen, y_start, ylen, z_start, zlen);
5495   } // original reexecute is set back here
5496 
5497   C->set_has_split_ifs(true); // Has chance for split-if optimization
5498   set_result(z);
5499   return true;
5500 }
5501 
5502 //-------------inline_squareToLen------------------------------------
5503 bool LibraryCallKit::inline_squareToLen() {
5504   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
5505 
5506   address stubAddr = StubRoutines::squareToLen();
5507   if (stubAddr == NULL) {
5508     return false; // Intrinsic's stub is not implemented on this platform
5509   }
5510   const char* stubName = "squareToLen";
5511 
5512   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
5513 
5514   Node* x    = argument(0);
5515   Node* len  = argument(1);
5516   Node* z    = argument(2);
5517   Node* zlen = argument(3);
5518 
5519   const Type* x_type = x->Value(&_gvn);
5520   const Type* z_type = z->Value(&_gvn);
5521   const TypeAryPtr* top_x = x_type->isa_aryptr();
5522   const TypeAryPtr* top_z = z_type->isa_aryptr();
5523   if (top_x  == NULL || top_x->klass()  == NULL ||
5524       top_z  == NULL || top_z->klass()  == NULL) {
5525     // failed array check
5526     return false;
5527   }
5528 
5529   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5530   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5531   if (x_elem != T_INT || z_elem != T_INT) {
5532     return false;
5533   }
5534 
5535 
5536   Node* x_start = array_element_address(x, intcon(0), x_elem);
5537   Node* z_start = array_element_address(z, intcon(0), z_elem);
5538 
5539   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5540                                   OptoRuntime::squareToLen_Type(),
5541                                   stubAddr, stubName, TypePtr::BOTTOM,
5542                                   x_start, len, z_start, zlen);
5543 
5544   set_result(z);
5545   return true;
5546 }
5547 
5548 //-------------inline_mulAdd------------------------------------------
5549 bool LibraryCallKit::inline_mulAdd() {
5550   assert(UseMulAddIntrinsic, "not implemented on this platform");
5551 
5552   address stubAddr = StubRoutines::mulAdd();
5553   if (stubAddr == NULL) {
5554     return false; // Intrinsic's stub is not implemented on this platform
5555   }
5556   const char* stubName = "mulAdd";
5557 
5558   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
5559 
5560   Node* out      = argument(0);
5561   Node* in       = argument(1);
5562   Node* offset   = argument(2);
5563   Node* len      = argument(3);
5564   Node* k        = argument(4);
5565 
5566   const Type* out_type = out->Value(&_gvn);
5567   const Type* in_type = in->Value(&_gvn);
5568   const TypeAryPtr* top_out = out_type->isa_aryptr();
5569   const TypeAryPtr* top_in = in_type->isa_aryptr();
5570   if (top_out  == NULL || top_out->klass()  == NULL ||
5571       top_in == NULL || top_in->klass() == NULL) {
5572     // failed array check
5573     return false;
5574   }
5575 
5576   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5577   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5578   if (out_elem != T_INT || in_elem != T_INT) {
5579     return false;
5580   }
5581 
5582   Node* outlen = load_array_length(out);
5583   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
5584   Node* out_start = array_element_address(out, intcon(0), out_elem);
5585   Node* in_start = array_element_address(in, intcon(0), in_elem);
5586 
5587   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
5588                                   OptoRuntime::mulAdd_Type(),
5589                                   stubAddr, stubName, TypePtr::BOTTOM,
5590                                   out_start,in_start, new_offset, len, k);
5591   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5592   set_result(result);
5593   return true;
5594 }
5595 
5596 //-------------inline_montgomeryMultiply-----------------------------------
5597 bool LibraryCallKit::inline_montgomeryMultiply() {
5598   address stubAddr = StubRoutines::montgomeryMultiply();
5599   if (stubAddr == NULL) {
5600     return false; // Intrinsic's stub is not implemented on this platform
5601   }
5602 
5603   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
5604   const char* stubName = "montgomery_multiply";
5605 
5606   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
5607 
5608   Node* a    = argument(0);
5609   Node* b    = argument(1);
5610   Node* n    = argument(2);
5611   Node* len  = argument(3);
5612   Node* inv  = argument(4);
5613   Node* m    = argument(6);
5614 
5615   const Type* a_type = a->Value(&_gvn);
5616   const TypeAryPtr* top_a = a_type->isa_aryptr();
5617   const Type* b_type = b->Value(&_gvn);
5618   const TypeAryPtr* top_b = b_type->isa_aryptr();
5619   const Type* n_type = a->Value(&_gvn);
5620   const TypeAryPtr* top_n = n_type->isa_aryptr();
5621   const Type* m_type = a->Value(&_gvn);
5622   const TypeAryPtr* top_m = m_type->isa_aryptr();
5623   if (top_a  == NULL || top_a->klass()  == NULL ||
5624       top_b == NULL || top_b->klass()  == NULL ||
5625       top_n == NULL || top_n->klass()  == NULL ||
5626       top_m == NULL || top_m->klass()  == NULL) {
5627     // failed array check
5628     return false;
5629   }
5630 
5631   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5632   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5633   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5634   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5635   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5636     return false;
5637   }
5638 
5639   // Make the call
5640   {
5641     Node* a_start = array_element_address(a, intcon(0), a_elem);
5642     Node* b_start = array_element_address(b, intcon(0), b_elem);
5643     Node* n_start = array_element_address(n, intcon(0), n_elem);
5644     Node* m_start = array_element_address(m, intcon(0), m_elem);
5645 
5646     Node* call = make_runtime_call(RC_LEAF,
5647                                    OptoRuntime::montgomeryMultiply_Type(),
5648                                    stubAddr, stubName, TypePtr::BOTTOM,
5649                                    a_start, b_start, n_start, len, inv, top(),
5650                                    m_start);
5651     set_result(m);
5652   }
5653 
5654   return true;
5655 }
5656 
5657 bool LibraryCallKit::inline_montgomerySquare() {
5658   address stubAddr = StubRoutines::montgomerySquare();
5659   if (stubAddr == NULL) {
5660     return false; // Intrinsic's stub is not implemented on this platform
5661   }
5662 
5663   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
5664   const char* stubName = "montgomery_square";
5665 
5666   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
5667 
5668   Node* a    = argument(0);
5669   Node* n    = argument(1);
5670   Node* len  = argument(2);
5671   Node* inv  = argument(3);
5672   Node* m    = argument(5);
5673 
5674   const Type* a_type = a->Value(&_gvn);
5675   const TypeAryPtr* top_a = a_type->isa_aryptr();
5676   const Type* n_type = a->Value(&_gvn);
5677   const TypeAryPtr* top_n = n_type->isa_aryptr();
5678   const Type* m_type = a->Value(&_gvn);
5679   const TypeAryPtr* top_m = m_type->isa_aryptr();
5680   if (top_a  == NULL || top_a->klass()  == NULL ||
5681       top_n == NULL || top_n->klass()  == NULL ||
5682       top_m == NULL || top_m->klass()  == NULL) {
5683     // failed array check
5684     return false;
5685   }
5686 
5687   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5688   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5689   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5690   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5691     return false;
5692   }
5693 
5694   // Make the call
5695   {
5696     Node* a_start = array_element_address(a, intcon(0), a_elem);
5697     Node* n_start = array_element_address(n, intcon(0), n_elem);
5698     Node* m_start = array_element_address(m, intcon(0), m_elem);
5699 
5700     Node* call = make_runtime_call(RC_LEAF,
5701                                    OptoRuntime::montgomerySquare_Type(),
5702                                    stubAddr, stubName, TypePtr::BOTTOM,
5703                                    a_start, n_start, len, inv, top(),
5704                                    m_start);
5705     set_result(m);
5706   }
5707 
5708   return true;
5709 }
5710 
5711 //-------------inline_vectorizedMismatch------------------------------
5712 bool LibraryCallKit::inline_vectorizedMismatch() {
5713   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5714 
5715   address stubAddr = StubRoutines::vectorizedMismatch();
5716   if (stubAddr == NULL) {
5717     return false; // Intrinsic's stub is not implemented on this platform
5718   }
5719   const char* stubName = "vectorizedMismatch";
5720   int size_l = callee()->signature()->size();
5721   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5722 
5723   Node* obja = argument(0);
5724   Node* aoffset = argument(1);
5725   Node* objb = argument(3);
5726   Node* boffset = argument(4);
5727   Node* length = argument(6);
5728   Node* scale = argument(7);
5729 
5730   const Type* a_type = obja->Value(&_gvn);
5731   const Type* b_type = objb->Value(&_gvn);
5732   const TypeAryPtr* top_a = a_type->isa_aryptr();
5733   const TypeAryPtr* top_b = b_type->isa_aryptr();
5734   if (top_a == NULL || top_a->klass() == NULL ||
5735     top_b == NULL || top_b->klass() == NULL) {
5736     // failed array check
5737     return false;
5738   }
5739 
5740   Node* call;
5741   jvms()->set_should_reexecute(true);
5742 
5743   Node* obja_adr = make_unsafe_address(obja, aoffset);
5744   Node* objb_adr = make_unsafe_address(objb, boffset);
5745 
5746   call = make_runtime_call(RC_LEAF,
5747     OptoRuntime::vectorizedMismatch_Type(),
5748     stubAddr, stubName, TypePtr::BOTTOM,
5749     obja_adr, objb_adr, length, scale);
5750 
5751   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5752   set_result(result);
5753   return true;
5754 }
5755 
5756 /**
5757  * Calculate CRC32 for byte.
5758  * int java.util.zip.CRC32.update(int crc, int b)
5759  */
5760 bool LibraryCallKit::inline_updateCRC32() {
5761   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5762   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5763   // no receiver since it is static method
5764   Node* crc  = argument(0); // type: int
5765   Node* b    = argument(1); // type: int
5766 
5767   /*
5768    *    int c = ~ crc;
5769    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5770    *    b = b ^ (c >>> 8);
5771    *    crc = ~b;
5772    */
5773 
5774   Node* M1 = intcon(-1);
5775   crc = _gvn.transform(new XorINode(crc, M1));
5776   Node* result = _gvn.transform(new XorINode(crc, b));
5777   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5778 
5779   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5780   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5781   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5782   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5783 
5784   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5785   result = _gvn.transform(new XorINode(crc, result));
5786   result = _gvn.transform(new XorINode(result, M1));
5787   set_result(result);
5788   return true;
5789 }
5790 
5791 /**
5792  * Calculate CRC32 for byte[] array.
5793  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5794  */
5795 bool LibraryCallKit::inline_updateBytesCRC32() {
5796   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5797   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5798   // no receiver since it is static method
5799   Node* crc     = argument(0); // type: int
5800   Node* src     = argument(1); // type: oop
5801   Node* offset  = argument(2); // type: int
5802   Node* length  = argument(3); // type: int
5803 
5804   const Type* src_type = src->Value(&_gvn);
5805   const TypeAryPtr* top_src = src_type->isa_aryptr();
5806   if (top_src  == NULL || top_src->klass()  == NULL) {
5807     // failed array check
5808     return false;
5809   }
5810 
5811   // Figure out the size and type of the elements we will be copying.
5812   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5813   if (src_elem != T_BYTE) {
5814     return false;
5815   }
5816 
5817   // 'src_start' points to src array + scaled offset
5818   Node* src_start = array_element_address(src, offset, src_elem);
5819 
5820   // We assume that range check is done by caller.
5821   // TODO: generate range check (offset+length < src.length) in debug VM.
5822 
5823   // Call the stub.
5824   address stubAddr = StubRoutines::updateBytesCRC32();
5825   const char *stubName = "updateBytesCRC32";
5826 
5827   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5828                                  stubAddr, stubName, TypePtr::BOTTOM,
5829                                  crc, src_start, length);
5830   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5831   set_result(result);
5832   return true;
5833 }
5834 
5835 /**
5836  * Calculate CRC32 for ByteBuffer.
5837  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5838  */
5839 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5840   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5841   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5842   // no receiver since it is static method
5843   Node* crc     = argument(0); // type: int
5844   Node* src     = argument(1); // type: long
5845   Node* offset  = argument(3); // type: int
5846   Node* length  = argument(4); // type: int
5847 
5848   src = ConvL2X(src);  // adjust Java long to machine word
5849   Node* base = _gvn.transform(new CastX2PNode(src));
5850   offset = ConvI2X(offset);
5851 
5852   // 'src_start' points to src array + scaled offset
5853   Node* src_start = basic_plus_adr(top(), base, offset);
5854 
5855   // Call the stub.
5856   address stubAddr = StubRoutines::updateBytesCRC32();
5857   const char *stubName = "updateBytesCRC32";
5858 
5859   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5860                                  stubAddr, stubName, TypePtr::BOTTOM,
5861                                  crc, src_start, length);
5862   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5863   set_result(result);
5864   return true;
5865 }
5866 
5867 //------------------------------get_table_from_crc32c_class-----------------------
5868 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5869   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5870   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5871 
5872   return table;
5873 }
5874 
5875 //------------------------------inline_updateBytesCRC32C-----------------------
5876 //
5877 // Calculate CRC32C for byte[] array.
5878 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5879 //
5880 bool LibraryCallKit::inline_updateBytesCRC32C() {
5881   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5882   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5883   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5884   // no receiver since it is a static method
5885   Node* crc     = argument(0); // type: int
5886   Node* src     = argument(1); // type: oop
5887   Node* offset  = argument(2); // type: int
5888   Node* end     = argument(3); // type: int
5889 
5890   Node* length = _gvn.transform(new SubINode(end, offset));
5891 
5892   const Type* src_type = src->Value(&_gvn);
5893   const TypeAryPtr* top_src = src_type->isa_aryptr();
5894   if (top_src  == NULL || top_src->klass()  == NULL) {
5895     // failed array check
5896     return false;
5897   }
5898 
5899   // Figure out the size and type of the elements we will be copying.
5900   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5901   if (src_elem != T_BYTE) {
5902     return false;
5903   }
5904 
5905   // 'src_start' points to src array + scaled offset
5906   Node* src_start = array_element_address(src, offset, src_elem);
5907 
5908   // static final int[] byteTable in class CRC32C
5909   Node* table = get_table_from_crc32c_class(callee()->holder());
5910   Node* table_start = array_element_address(table, intcon(0), T_INT);
5911 
5912   // We assume that range check is done by caller.
5913   // TODO: generate range check (offset+length < src.length) in debug VM.
5914 
5915   // Call the stub.
5916   address stubAddr = StubRoutines::updateBytesCRC32C();
5917   const char *stubName = "updateBytesCRC32C";
5918 
5919   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5920                                  stubAddr, stubName, TypePtr::BOTTOM,
5921                                  crc, src_start, length, table_start);
5922   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5923   set_result(result);
5924   return true;
5925 }
5926 
5927 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5928 //
5929 // Calculate CRC32C for DirectByteBuffer.
5930 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5931 //
5932 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5933   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5934   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5935   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5936   // no receiver since it is a static method
5937   Node* crc     = argument(0); // type: int
5938   Node* src     = argument(1); // type: long
5939   Node* offset  = argument(3); // type: int
5940   Node* end     = argument(4); // type: int
5941 
5942   Node* length = _gvn.transform(new SubINode(end, offset));
5943 
5944   src = ConvL2X(src);  // adjust Java long to machine word
5945   Node* base = _gvn.transform(new CastX2PNode(src));
5946   offset = ConvI2X(offset);
5947 
5948   // 'src_start' points to src array + scaled offset
5949   Node* src_start = basic_plus_adr(top(), base, offset);
5950 
5951   // static final int[] byteTable in class CRC32C
5952   Node* table = get_table_from_crc32c_class(callee()->holder());
5953   Node* table_start = array_element_address(table, intcon(0), T_INT);
5954 
5955   // Call the stub.
5956   address stubAddr = StubRoutines::updateBytesCRC32C();
5957   const char *stubName = "updateBytesCRC32C";
5958 
5959   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5960                                  stubAddr, stubName, TypePtr::BOTTOM,
5961                                  crc, src_start, length, table_start);
5962   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5963   set_result(result);
5964   return true;
5965 }
5966 
5967 //------------------------------inline_updateBytesAdler32----------------------
5968 //
5969 // Calculate Adler32 checksum for byte[] array.
5970 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5971 //
5972 bool LibraryCallKit::inline_updateBytesAdler32() {
5973   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5974   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5975   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5976   // no receiver since it is static method
5977   Node* crc     = argument(0); // type: int
5978   Node* src     = argument(1); // type: oop
5979   Node* offset  = argument(2); // type: int
5980   Node* length  = argument(3); // type: int
5981 
5982   const Type* src_type = src->Value(&_gvn);
5983   const TypeAryPtr* top_src = src_type->isa_aryptr();
5984   if (top_src  == NULL || top_src->klass()  == NULL) {
5985     // failed array check
5986     return false;
5987   }
5988 
5989   // Figure out the size and type of the elements we will be copying.
5990   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5991   if (src_elem != T_BYTE) {
5992     return false;
5993   }
5994 
5995   // 'src_start' points to src array + scaled offset
5996   Node* src_start = array_element_address(src, offset, src_elem);
5997 
5998   // We assume that range check is done by caller.
5999   // TODO: generate range check (offset+length < src.length) in debug VM.
6000 
6001   // Call the stub.
6002   address stubAddr = StubRoutines::updateBytesAdler32();
6003   const char *stubName = "updateBytesAdler32";
6004 
6005   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6006                                  stubAddr, stubName, TypePtr::BOTTOM,
6007                                  crc, src_start, length);
6008   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6009   set_result(result);
6010   return true;
6011 }
6012 
6013 //------------------------------inline_updateByteBufferAdler32---------------
6014 //
6015 // Calculate Adler32 checksum for DirectByteBuffer.
6016 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
6017 //
6018 bool LibraryCallKit::inline_updateByteBufferAdler32() {
6019   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
6020   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
6021   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
6022   // no receiver since it is static method
6023   Node* crc     = argument(0); // type: int
6024   Node* src     = argument(1); // type: long
6025   Node* offset  = argument(3); // type: int
6026   Node* length  = argument(4); // type: int
6027 
6028   src = ConvL2X(src);  // adjust Java long to machine word
6029   Node* base = _gvn.transform(new CastX2PNode(src));
6030   offset = ConvI2X(offset);
6031 
6032   // 'src_start' points to src array + scaled offset
6033   Node* src_start = basic_plus_adr(top(), base, offset);
6034 
6035   // Call the stub.
6036   address stubAddr = StubRoutines::updateBytesAdler32();
6037   const char *stubName = "updateBytesAdler32";
6038 
6039   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
6040                                  stubAddr, stubName, TypePtr::BOTTOM,
6041                                  crc, src_start, length);
6042 
6043   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6044   set_result(result);
6045   return true;
6046 }
6047 
6048 //----------------------------inline_reference_get----------------------------
6049 // public T java.lang.ref.Reference.get();
6050 bool LibraryCallKit::inline_reference_get() {
6051   const int referent_offset = java_lang_ref_Reference::referent_offset;
6052   guarantee(referent_offset > 0, "should have already been set");
6053 
6054   // Get the argument:
6055   Node* reference_obj = null_check_receiver();
6056   if (stopped()) return true;
6057 
6058   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
6059 
6060   ciInstanceKlass* klass = env()->Object_klass();
6061   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
6062 
6063   Node* no_ctrl = NULL;
6064   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
6065 
6066   // Use the pre-barrier to record the value in the referent field
6067   pre_barrier(false /* do_load */,
6068               control(),
6069               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
6070               result /* pre_val */,
6071               T_OBJECT);
6072 
6073   // Add memory barrier to prevent commoning reads from this field
6074   // across safepoint since GC can change its value.
6075   insert_mem_bar(Op_MemBarCPUOrder);
6076 
6077   set_result(result);
6078   return true;
6079 }
6080 
6081 
6082 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6083                                               bool is_exact=true, bool is_static=false,
6084                                               ciInstanceKlass * fromKls=NULL) {
6085   if (fromKls == NULL) {
6086     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6087     assert(tinst != NULL, "obj is null");
6088     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6089     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6090     fromKls = tinst->klass()->as_instance_klass();
6091   } else {
6092     assert(is_static, "only for static field access");
6093   }
6094   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6095                                               ciSymbol::make(fieldTypeString),
6096                                               is_static);
6097 
6098   assert (field != NULL, "undefined field");
6099   if (field == NULL) return (Node *) NULL;
6100 
6101   if (is_static) {
6102     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6103     fromObj = makecon(tip);
6104   }
6105 
6106   // Next code  copied from Parse::do_get_xxx():
6107 
6108   // Compute address and memory type.
6109   int offset  = field->offset_in_bytes();
6110   bool is_vol = field->is_volatile();
6111   ciType* field_klass = field->type();
6112   assert(field_klass->is_loaded(), "should be loaded");
6113   const TypePtr* adr_type = C->alias_type(field)->adr_type();
6114   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6115   BasicType bt = field->layout_type();
6116 
6117   // Build the resultant type of the load
6118   const Type *type;
6119   if (bt == T_OBJECT) {
6120     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
6121   } else {
6122     type = Type::get_const_basic_type(bt);
6123   }
6124 
6125   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_vol) {
6126     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
6127   }
6128   // Build the load.
6129   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
6130   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, is_vol);
6131   // If reference is volatile, prevent following memory ops from
6132   // floating up past the volatile read.  Also prevents commoning
6133   // another volatile read.
6134   if (is_vol) {
6135     // Memory barrier includes bogus read of value to force load BEFORE membar
6136     insert_mem_bar(Op_MemBarAcquire, loadedField);
6137   }
6138   return loadedField;
6139 }
6140 
6141 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
6142                                                  bool is_exact = true, bool is_static = false,
6143                                                  ciInstanceKlass * fromKls = NULL) {
6144   if (fromKls == NULL) {
6145     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
6146     assert(tinst != NULL, "obj is null");
6147     assert(tinst->klass()->is_loaded(), "obj is not loaded");
6148     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
6149     fromKls = tinst->klass()->as_instance_klass();
6150   }
6151   else {
6152     assert(is_static, "only for static field access");
6153   }
6154   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
6155     ciSymbol::make(fieldTypeString),
6156     is_static);
6157 
6158   assert(field != NULL, "undefined field");
6159   assert(!field->is_volatile(), "not defined for volatile fields");
6160 
6161   if (is_static) {
6162     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
6163     fromObj = makecon(tip);
6164   }
6165 
6166   // Next code  copied from Parse::do_get_xxx():
6167 
6168   // Compute address and memory type.
6169   int offset = field->offset_in_bytes();
6170   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
6171 
6172   return adr;
6173 }
6174 
6175 //------------------------------inline_aescrypt_Block-----------------------
6176 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
6177   address stubAddr = NULL;
6178   const char *stubName;
6179   assert(UseAES, "need AES instruction support");
6180 
6181   switch(id) {
6182   case vmIntrinsics::_aescrypt_encryptBlock:
6183     stubAddr = StubRoutines::aescrypt_encryptBlock();
6184     stubName = "aescrypt_encryptBlock";
6185     break;
6186   case vmIntrinsics::_aescrypt_decryptBlock:
6187     stubAddr = StubRoutines::aescrypt_decryptBlock();
6188     stubName = "aescrypt_decryptBlock";
6189     break;
6190   default:
6191     break;
6192   }
6193   if (stubAddr == NULL) return false;
6194 
6195   Node* aescrypt_object = argument(0);
6196   Node* src             = argument(1);
6197   Node* src_offset      = argument(2);
6198   Node* dest            = argument(3);
6199   Node* dest_offset     = argument(4);
6200 
6201   // (1) src and dest are arrays.
6202   const Type* src_type = src->Value(&_gvn);
6203   const Type* dest_type = dest->Value(&_gvn);
6204   const TypeAryPtr* top_src = src_type->isa_aryptr();
6205   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6206   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6207 
6208   // for the quick and dirty code we will skip all the checks.
6209   // we are just trying to get the call to be generated.
6210   Node* src_start  = src;
6211   Node* dest_start = dest;
6212   if (src_offset != NULL || dest_offset != NULL) {
6213     assert(src_offset != NULL && dest_offset != NULL, "");
6214     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6215     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6216   }
6217 
6218   // now need to get the start of its expanded key array
6219   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6220   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6221   if (k_start == NULL) return false;
6222 
6223   if (Matcher::pass_original_key_for_aes()) {
6224     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6225     // compatibility issues between Java key expansion and SPARC crypto instructions
6226     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6227     if (original_k_start == NULL) return false;
6228 
6229     // Call the stub.
6230     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6231                       stubAddr, stubName, TypePtr::BOTTOM,
6232                       src_start, dest_start, k_start, original_k_start);
6233   } else {
6234     // Call the stub.
6235     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
6236                       stubAddr, stubName, TypePtr::BOTTOM,
6237                       src_start, dest_start, k_start);
6238   }
6239 
6240   return true;
6241 }
6242 
6243 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
6244 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
6245   address stubAddr = NULL;
6246   const char *stubName = NULL;
6247 
6248   assert(UseAES, "need AES instruction support");
6249 
6250   switch(id) {
6251   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
6252     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
6253     stubName = "cipherBlockChaining_encryptAESCrypt";
6254     break;
6255   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
6256     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
6257     stubName = "cipherBlockChaining_decryptAESCrypt";
6258     break;
6259   default:
6260     break;
6261   }
6262   if (stubAddr == NULL) return false;
6263 
6264   Node* cipherBlockChaining_object = argument(0);
6265   Node* src                        = argument(1);
6266   Node* src_offset                 = argument(2);
6267   Node* len                        = argument(3);
6268   Node* dest                       = argument(4);
6269   Node* dest_offset                = argument(5);
6270 
6271   // (1) src and dest are arrays.
6272   const Type* src_type = src->Value(&_gvn);
6273   const Type* dest_type = dest->Value(&_gvn);
6274   const TypeAryPtr* top_src = src_type->isa_aryptr();
6275   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6276   assert (top_src  != NULL && top_src->klass()  != NULL
6277           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6278 
6279   // checks are the responsibility of the caller
6280   Node* src_start  = src;
6281   Node* dest_start = dest;
6282   if (src_offset != NULL || dest_offset != NULL) {
6283     assert(src_offset != NULL && dest_offset != NULL, "");
6284     src_start  = array_element_address(src,  src_offset,  T_BYTE);
6285     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6286   }
6287 
6288   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6289   // (because of the predicated logic executed earlier).
6290   // so we cast it here safely.
6291   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6292 
6293   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6294   if (embeddedCipherObj == NULL) return false;
6295 
6296   // cast it to what we know it will be at runtime
6297   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6298   assert(tinst != NULL, "CBC obj is null");
6299   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6300   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6301   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6302 
6303   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6304   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6305   const TypeOopPtr* xtype = aklass->as_instance_type();
6306   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6307   aescrypt_object = _gvn.transform(aescrypt_object);
6308 
6309   // we need to get the start of the aescrypt_object's expanded key array
6310   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6311   if (k_start == NULL) return false;
6312 
6313   // similarly, get the start address of the r vector
6314   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6315   if (objRvec == NULL) return false;
6316   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6317 
6318   Node* cbcCrypt;
6319   if (Matcher::pass_original_key_for_aes()) {
6320     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6321     // compatibility issues between Java key expansion and SPARC crypto instructions
6322     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6323     if (original_k_start == NULL) return false;
6324 
6325     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6326     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6327                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6328                                  stubAddr, stubName, TypePtr::BOTTOM,
6329                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6330   } else {
6331     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6332     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6333                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6334                                  stubAddr, stubName, TypePtr::BOTTOM,
6335                                  src_start, dest_start, k_start, r_start, len);
6336   }
6337 
6338   // return cipher length (int)
6339   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
6340   set_result(retvalue);
6341   return true;
6342 }
6343 
6344 //------------------------------inline_counterMode_AESCrypt-----------------------
6345 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
6346   assert(UseAES, "need AES instruction support");
6347   if (!UseAESCTRIntrinsics) return false;
6348 
6349   address stubAddr = NULL;
6350   const char *stubName = NULL;
6351   if (id == vmIntrinsics::_counterMode_AESCrypt) {
6352     stubAddr = StubRoutines::counterMode_AESCrypt();
6353     stubName = "counterMode_AESCrypt";
6354   }
6355   if (stubAddr == NULL) return false;
6356 
6357   Node* counterMode_object = argument(0);
6358   Node* src = argument(1);
6359   Node* src_offset = argument(2);
6360   Node* len = argument(3);
6361   Node* dest = argument(4);
6362   Node* dest_offset = argument(5);
6363 
6364   // (1) src and dest are arrays.
6365   const Type* src_type = src->Value(&_gvn);
6366   const Type* dest_type = dest->Value(&_gvn);
6367   const TypeAryPtr* top_src = src_type->isa_aryptr();
6368   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
6369   assert(top_src != NULL && top_src->klass() != NULL &&
6370          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
6371 
6372   // checks are the responsibility of the caller
6373   Node* src_start = src;
6374   Node* dest_start = dest;
6375   if (src_offset != NULL || dest_offset != NULL) {
6376     assert(src_offset != NULL && dest_offset != NULL, "");
6377     src_start = array_element_address(src, src_offset, T_BYTE);
6378     dest_start = array_element_address(dest, dest_offset, T_BYTE);
6379   }
6380 
6381   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
6382   // (because of the predicated logic executed earlier).
6383   // so we cast it here safely.
6384   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
6385   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6386   if (embeddedCipherObj == NULL) return false;
6387   // cast it to what we know it will be at runtime
6388   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
6389   assert(tinst != NULL, "CTR obj is null");
6390   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
6391   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6392   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
6393   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6394   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6395   const TypeOopPtr* xtype = aklass->as_instance_type();
6396   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
6397   aescrypt_object = _gvn.transform(aescrypt_object);
6398   // we need to get the start of the aescrypt_object's expanded key array
6399   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6400   if (k_start == NULL) return false;
6401   // similarly, get the start address of the r vector
6402   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
6403   if (obj_counter == NULL) return false;
6404   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
6405 
6406   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
6407   if (saved_encCounter == NULL) return false;
6408   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
6409   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
6410 
6411   Node* ctrCrypt;
6412   if (Matcher::pass_original_key_for_aes()) {
6413     // no SPARC version for AES/CTR intrinsics now.
6414     return false;
6415   }
6416   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6417   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6418                                OptoRuntime::counterMode_aescrypt_Type(),
6419                                stubAddr, stubName, TypePtr::BOTTOM,
6420                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
6421 
6422   // return cipher length (int)
6423   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
6424   set_result(retvalue);
6425   return true;
6426 }
6427 
6428 //------------------------------get_key_start_from_aescrypt_object-----------------------
6429 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6430 #if defined(PPC64) || defined(S390)
6431   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
6432   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
6433   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
6434   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
6435   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
6436   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6437   if (objSessionK == NULL) {
6438     return (Node *) NULL;
6439   }
6440   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
6441 #else
6442   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6443 #endif // PPC64
6444   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6445   if (objAESCryptKey == NULL) return (Node *) NULL;
6446 
6447   // now have the array, need to get the start address of the K array
6448   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6449   return k_start;
6450 }
6451 
6452 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6453 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6454   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6455   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6456   if (objAESCryptKey == NULL) return (Node *) NULL;
6457 
6458   // now have the array, need to get the start address of the lastKey array
6459   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6460   return original_k_start;
6461 }
6462 
6463 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6464 // Return node representing slow path of predicate check.
6465 // the pseudo code we want to emulate with this predicate is:
6466 // for encryption:
6467 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6468 // for decryption:
6469 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6470 //    note cipher==plain is more conservative than the original java code but that's OK
6471 //
6472 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6473   // The receiver was checked for NULL already.
6474   Node* objCBC = argument(0);
6475 
6476   // Load embeddedCipher field of CipherBlockChaining object.
6477   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6478 
6479   // get AESCrypt klass for instanceOf check
6480   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6481   // will have same classloader as CipherBlockChaining object
6482   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6483   assert(tinst != NULL, "CBCobj is null");
6484   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6485 
6486   // we want to do an instanceof comparison against the AESCrypt class
6487   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6488   if (!klass_AESCrypt->is_loaded()) {
6489     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6490     Node* ctrl = control();
6491     set_control(top()); // no regular fast path
6492     return ctrl;
6493   }
6494   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6495 
6496   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6497   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
6498   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6499 
6500   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6501 
6502   // for encryption, we are done
6503   if (!decrypting)
6504     return instof_false;  // even if it is NULL
6505 
6506   // for decryption, we need to add a further check to avoid
6507   // taking the intrinsic path when cipher and plain are the same
6508   // see the original java code for why.
6509   RegionNode* region = new RegionNode(3);
6510   region->init_req(1, instof_false);
6511   Node* src = argument(1);
6512   Node* dest = argument(4);
6513   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6514   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6515   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6516   region->init_req(2, src_dest_conjoint);
6517 
6518   record_for_igvn(region);
6519   return _gvn.transform(region);
6520 }
6521 
6522 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6523 // Return node representing slow path of predicate check.
6524 // the pseudo code we want to emulate with this predicate is:
6525 // for encryption:
6526 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6527 // for decryption:
6528 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6529 //    note cipher==plain is more conservative than the original java code but that's OK
6530 //
6531 
6532 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6533   // The receiver was checked for NULL already.
6534   Node* objCTR = argument(0);
6535 
6536   // Load embeddedCipher field of CipherBlockChaining object.
6537   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6538 
6539   // get AESCrypt klass for instanceOf check
6540   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6541   // will have same classloader as CipherBlockChaining object
6542   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6543   assert(tinst != NULL, "CTRobj is null");
6544   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6545 
6546   // we want to do an instanceof comparison against the AESCrypt class
6547   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6548   if (!klass_AESCrypt->is_loaded()) {
6549     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6550     Node* ctrl = control();
6551     set_control(top()); // no regular fast path
6552     return ctrl;
6553   }
6554 
6555   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6556   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6557   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6558   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6559   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6560 
6561   return instof_false; // even if it is NULL
6562 }
6563 
6564 //------------------------------inline_ghash_processBlocks
6565 bool LibraryCallKit::inline_ghash_processBlocks() {
6566   address stubAddr;
6567   const char *stubName;
6568   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6569 
6570   stubAddr = StubRoutines::ghash_processBlocks();
6571   stubName = "ghash_processBlocks";
6572 
6573   Node* data           = argument(0);
6574   Node* offset         = argument(1);
6575   Node* len            = argument(2);
6576   Node* state          = argument(3);
6577   Node* subkeyH        = argument(4);
6578 
6579   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6580   assert(state_start, "state is NULL");
6581   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6582   assert(subkeyH_start, "subkeyH is NULL");
6583   Node* data_start  = array_element_address(data, offset, T_BYTE);
6584   assert(data_start, "data is NULL");
6585 
6586   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6587                                   OptoRuntime::ghash_processBlocks_Type(),
6588                                   stubAddr, stubName, TypePtr::BOTTOM,
6589                                   state_start, subkeyH_start, data_start, len);
6590   return true;
6591 }
6592 
6593 //------------------------------inline_sha_implCompress-----------------------
6594 //
6595 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6596 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6597 //
6598 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6599 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6600 //
6601 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6602 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6603 //
6604 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6605   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6606 
6607   Node* sha_obj = argument(0);
6608   Node* src     = argument(1); // type oop
6609   Node* ofs     = argument(2); // type int
6610 
6611   const Type* src_type = src->Value(&_gvn);
6612   const TypeAryPtr* top_src = src_type->isa_aryptr();
6613   if (top_src  == NULL || top_src->klass()  == NULL) {
6614     // failed array check
6615     return false;
6616   }
6617   // Figure out the size and type of the elements we will be copying.
6618   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6619   if (src_elem != T_BYTE) {
6620     return false;
6621   }
6622   // 'src_start' points to src array + offset
6623   Node* src_start = array_element_address(src, ofs, src_elem);
6624   Node* state = NULL;
6625   address stubAddr;
6626   const char *stubName;
6627 
6628   switch(id) {
6629   case vmIntrinsics::_sha_implCompress:
6630     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6631     state = get_state_from_sha_object(sha_obj);
6632     stubAddr = StubRoutines::sha1_implCompress();
6633     stubName = "sha1_implCompress";
6634     break;
6635   case vmIntrinsics::_sha2_implCompress:
6636     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6637     state = get_state_from_sha_object(sha_obj);
6638     stubAddr = StubRoutines::sha256_implCompress();
6639     stubName = "sha256_implCompress";
6640     break;
6641   case vmIntrinsics::_sha5_implCompress:
6642     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6643     state = get_state_from_sha5_object(sha_obj);
6644     stubAddr = StubRoutines::sha512_implCompress();
6645     stubName = "sha512_implCompress";
6646     break;
6647   default:
6648     fatal_unexpected_iid(id);
6649     return false;
6650   }
6651   if (state == NULL) return false;
6652 
6653   // Call the stub.
6654   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6655                                  stubAddr, stubName, TypePtr::BOTTOM,
6656                                  src_start, state);
6657 
6658   return true;
6659 }
6660 
6661 //------------------------------inline_digestBase_implCompressMB-----------------------
6662 //
6663 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6664 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6665 //
6666 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6667   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6668          "need SHA1/SHA256/SHA512 instruction support");
6669   assert((uint)predicate < 3, "sanity");
6670   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6671 
6672   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6673   Node* src            = argument(1); // byte[] array
6674   Node* ofs            = argument(2); // type int
6675   Node* limit          = argument(3); // type int
6676 
6677   const Type* src_type = src->Value(&_gvn);
6678   const TypeAryPtr* top_src = src_type->isa_aryptr();
6679   if (top_src  == NULL || top_src->klass()  == NULL) {
6680     // failed array check
6681     return false;
6682   }
6683   // Figure out the size and type of the elements we will be copying.
6684   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6685   if (src_elem != T_BYTE) {
6686     return false;
6687   }
6688   // 'src_start' points to src array + offset
6689   Node* src_start = array_element_address(src, ofs, src_elem);
6690 
6691   const char* klass_SHA_name = NULL;
6692   const char* stub_name = NULL;
6693   address     stub_addr = NULL;
6694   bool        long_state = false;
6695 
6696   switch (predicate) {
6697   case 0:
6698     if (UseSHA1Intrinsics) {
6699       klass_SHA_name = "sun/security/provider/SHA";
6700       stub_name = "sha1_implCompressMB";
6701       stub_addr = StubRoutines::sha1_implCompressMB();
6702     }
6703     break;
6704   case 1:
6705     if (UseSHA256Intrinsics) {
6706       klass_SHA_name = "sun/security/provider/SHA2";
6707       stub_name = "sha256_implCompressMB";
6708       stub_addr = StubRoutines::sha256_implCompressMB();
6709     }
6710     break;
6711   case 2:
6712     if (UseSHA512Intrinsics) {
6713       klass_SHA_name = "sun/security/provider/SHA5";
6714       stub_name = "sha512_implCompressMB";
6715       stub_addr = StubRoutines::sha512_implCompressMB();
6716       long_state = true;
6717     }
6718     break;
6719   default:
6720     fatal("unknown SHA intrinsic predicate: %d", predicate);
6721   }
6722   if (klass_SHA_name != NULL) {
6723     // get DigestBase klass to lookup for SHA klass
6724     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6725     assert(tinst != NULL, "digestBase_obj is not instance???");
6726     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6727 
6728     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6729     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6730     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6731     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6732   }
6733   return false;
6734 }
6735 //------------------------------inline_sha_implCompressMB-----------------------
6736 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6737                                                bool long_state, address stubAddr, const char *stubName,
6738                                                Node* src_start, Node* ofs, Node* limit) {
6739   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6740   const TypeOopPtr* xtype = aklass->as_instance_type();
6741   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6742   sha_obj = _gvn.transform(sha_obj);
6743 
6744   Node* state;
6745   if (long_state) {
6746     state = get_state_from_sha5_object(sha_obj);
6747   } else {
6748     state = get_state_from_sha_object(sha_obj);
6749   }
6750   if (state == NULL) return false;
6751 
6752   // Call the stub.
6753   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6754                                  OptoRuntime::digestBase_implCompressMB_Type(),
6755                                  stubAddr, stubName, TypePtr::BOTTOM,
6756                                  src_start, state, ofs, limit);
6757   // return ofs (int)
6758   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6759   set_result(result);
6760 
6761   return true;
6762 }
6763 
6764 //------------------------------get_state_from_sha_object-----------------------
6765 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6766   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6767   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6768   if (sha_state == NULL) return (Node *) NULL;
6769 
6770   // now have the array, need to get the start address of the state array
6771   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6772   return state;
6773 }
6774 
6775 //------------------------------get_state_from_sha5_object-----------------------
6776 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6777   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6778   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6779   if (sha_state == NULL) return (Node *) NULL;
6780 
6781   // now have the array, need to get the start address of the state array
6782   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6783   return state;
6784 }
6785 
6786 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6787 // Return node representing slow path of predicate check.
6788 // the pseudo code we want to emulate with this predicate is:
6789 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6790 //
6791 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6792   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6793          "need SHA1/SHA256/SHA512 instruction support");
6794   assert((uint)predicate < 3, "sanity");
6795 
6796   // The receiver was checked for NULL already.
6797   Node* digestBaseObj = argument(0);
6798 
6799   // get DigestBase klass for instanceOf check
6800   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6801   assert(tinst != NULL, "digestBaseObj is null");
6802   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6803 
6804   const char* klass_SHA_name = NULL;
6805   switch (predicate) {
6806   case 0:
6807     if (UseSHA1Intrinsics) {
6808       // we want to do an instanceof comparison against the SHA class
6809       klass_SHA_name = "sun/security/provider/SHA";
6810     }
6811     break;
6812   case 1:
6813     if (UseSHA256Intrinsics) {
6814       // we want to do an instanceof comparison against the SHA2 class
6815       klass_SHA_name = "sun/security/provider/SHA2";
6816     }
6817     break;
6818   case 2:
6819     if (UseSHA512Intrinsics) {
6820       // we want to do an instanceof comparison against the SHA5 class
6821       klass_SHA_name = "sun/security/provider/SHA5";
6822     }
6823     break;
6824   default:
6825     fatal("unknown SHA intrinsic predicate: %d", predicate);
6826   }
6827 
6828   ciKlass* klass_SHA = NULL;
6829   if (klass_SHA_name != NULL) {
6830     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6831   }
6832   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6833     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6834     Node* ctrl = control();
6835     set_control(top()); // no intrinsic path
6836     return ctrl;
6837   }
6838   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6839 
6840   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6841   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6842   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6843   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6844 
6845   return instof_false;  // even if it is NULL
6846 }
6847 
6848 //-------------inline_fma-----------------------------------
6849 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6850   Node *a = NULL;
6851   Node *b = NULL;
6852   Node *c = NULL;
6853   Node* result = NULL;
6854   switch (id) {
6855   case vmIntrinsics::_fmaD:
6856     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6857     // no receiver since it is static method
6858     a = round_double_node(argument(0));
6859     b = round_double_node(argument(2));
6860     c = round_double_node(argument(4));
6861     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6862     break;
6863   case vmIntrinsics::_fmaF:
6864     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6865     a = argument(0);
6866     b = argument(1);
6867     c = argument(2);
6868     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6869     break;
6870   default:
6871     fatal_unexpected_iid(id);  break;
6872   }
6873   set_result(result);
6874   return true;
6875 }
6876 
6877 bool LibraryCallKit::inline_profileBoolean() {
6878   Node* counts = argument(1);
6879   const TypeAryPtr* ary = NULL;
6880   ciArray* aobj = NULL;
6881   if (counts->is_Con()
6882       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6883       && (aobj = ary->const_oop()->as_array()) != NULL
6884       && (aobj->length() == 2)) {
6885     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6886     jint false_cnt = aobj->element_value(0).as_int();
6887     jint  true_cnt = aobj->element_value(1).as_int();
6888 
6889     if (C->log() != NULL) {
6890       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6891                      false_cnt, true_cnt);
6892     }
6893 
6894     if (false_cnt + true_cnt == 0) {
6895       // According to profile, never executed.
6896       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6897                           Deoptimization::Action_reinterpret);
6898       return true;
6899     }
6900 
6901     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6902     // is a number of each value occurrences.
6903     Node* result = argument(0);
6904     if (false_cnt == 0 || true_cnt == 0) {
6905       // According to profile, one value has been never seen.
6906       int expected_val = (false_cnt == 0) ? 1 : 0;
6907 
6908       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6909       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6910 
6911       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6912       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6913       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6914 
6915       { // Slow path: uncommon trap for never seen value and then reexecute
6916         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6917         // the value has been seen at least once.
6918         PreserveJVMState pjvms(this);
6919         PreserveReexecuteState preexecs(this);
6920         jvms()->set_should_reexecute(true);
6921 
6922         set_control(slow_path);
6923         set_i_o(i_o());
6924 
6925         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6926                             Deoptimization::Action_reinterpret);
6927       }
6928       // The guard for never seen value enables sharpening of the result and
6929       // returning a constant. It allows to eliminate branches on the same value
6930       // later on.
6931       set_control(fast_path);
6932       result = intcon(expected_val);
6933     }
6934     // Stop profiling.
6935     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6936     // By replacing method body with profile data (represented as ProfileBooleanNode
6937     // on IR level) we effectively disable profiling.
6938     // It enables full speed execution once optimized code is generated.
6939     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6940     C->record_for_igvn(profile);
6941     set_result(profile);
6942     return true;
6943   } else {
6944     // Continue profiling.
6945     // Profile data isn't available at the moment. So, execute method's bytecode version.
6946     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6947     // is compiled and counters aren't available since corresponding MethodHandle
6948     // isn't a compile-time constant.
6949     return false;
6950   }
6951 }
6952 
6953 bool LibraryCallKit::inline_isCompileConstant() {
6954   Node* n = argument(0);
6955   set_result(n->is_Con() ? intcon(1) : intcon(0));
6956   return true;
6957 }