1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/arraycopynode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/regmask.hpp"
  45 #include "utilities/copy.hpp"
  46 
  47 // Portions of code courtesy of Clifford Click
  48 
  49 // Optimization - Graph Style
  50 
  51 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  52 
  53 //=============================================================================
  54 uint MemNode::size_of() const { return sizeof(*this); }
  55 
  56 const TypePtr *MemNode::adr_type() const {
  57   Node* adr = in(Address);
  58   if (adr == NULL)  return NULL; // node is dead
  59   const TypePtr* cross_check = NULL;
  60   DEBUG_ONLY(cross_check = _adr_type);
  61   return calculate_adr_type(adr->bottom_type(), cross_check);
  62 }
  63 
  64 bool MemNode::check_if_adr_maybe_raw(Node* adr) {
  65   if (adr != NULL) {
  66     if (adr->bottom_type()->base() == Type::RawPtr || adr->bottom_type()->base() == Type::AnyPtr) {
  67       return true;
  68     }
  69   }
  70   return false;
  71 }
  72 
  73 #ifndef PRODUCT
  74 void MemNode::dump_spec(outputStream *st) const {
  75   if (in(Address) == NULL)  return; // node is dead
  76 #ifndef ASSERT
  77   // fake the missing field
  78   const TypePtr* _adr_type = NULL;
  79   if (in(Address) != NULL)
  80     _adr_type = in(Address)->bottom_type()->isa_ptr();
  81 #endif
  82   dump_adr_type(this, _adr_type, st);
  83 
  84   Compile* C = Compile::current();
  85   if (C->alias_type(_adr_type)->is_volatile()) {
  86     st->print(" Volatile!");
  87   }
  88   if (_unaligned_access) {
  89     st->print(" unaligned");
  90   }
  91   if (_mismatched_access) {
  92     st->print(" mismatched");
  93   }
  94 }
  95 
  96 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  97   st->print(" @");
  98   if (adr_type == NULL) {
  99     st->print("NULL");
 100   } else {
 101     adr_type->dump_on(st);
 102     Compile* C = Compile::current();
 103     Compile::AliasType* atp = NULL;
 104     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
 105     if (atp == NULL)
 106       st->print(", idx=?\?;");
 107     else if (atp->index() == Compile::AliasIdxBot)
 108       st->print(", idx=Bot;");
 109     else if (atp->index() == Compile::AliasIdxTop)
 110       st->print(", idx=Top;");
 111     else if (atp->index() == Compile::AliasIdxRaw)
 112       st->print(", idx=Raw;");
 113     else {
 114       ciField* field = atp->field();
 115       if (field) {
 116         st->print(", name=");
 117         field->print_name_on(st);
 118       }
 119       st->print(", idx=%d;", atp->index());
 120     }
 121   }
 122 }
 123 
 124 extern void print_alias_types();
 125 
 126 #endif
 127 
 128 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 129   assert((t_oop != NULL), "sanity");
 130   bool is_instance = t_oop->is_known_instance_field();
 131   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 132                              (load != NULL) && load->is_Load() &&
 133                              (phase->is_IterGVN() != NULL);
 134   if (!(is_instance || is_boxed_value_load))
 135     return mchain;  // don't try to optimize non-instance types
 136   uint instance_id = t_oop->instance_id();
 137   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 138   Node *prev = NULL;
 139   Node *result = mchain;
 140   while (prev != result) {
 141     prev = result;
 142     if (result == start_mem)
 143       break;  // hit one of our sentinels
 144     // skip over a call which does not affect this memory slice
 145     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 146       Node *proj_in = result->in(0);
 147       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 148         break;  // hit one of our sentinels
 149       } else if (proj_in->is_Call()) {
 150         // ArrayCopyNodes processed here as well
 151         CallNode *call = proj_in->as_Call();
 152         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 153           result = call->in(TypeFunc::Memory);
 154         }
 155       } else if (proj_in->is_Initialize()) {
 156         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 157         // Stop if this is the initialization for the object instance which
 158         // contains this memory slice, otherwise skip over it.
 159         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 160           break;
 161         }
 162         if (is_instance) {
 163           result = proj_in->in(TypeFunc::Memory);
 164         } else if (is_boxed_value_load) {
 165           Node* klass = alloc->in(AllocateNode::KlassNode);
 166           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 167           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 168             result = proj_in->in(TypeFunc::Memory); // not related allocation
 169           }
 170         }
 171       } else if (proj_in->is_MemBar()) {
 172         ArrayCopyNode* ac = NULL;
 173         if (ArrayCopyNode::may_modify(t_oop, proj_in->as_MemBar(), phase, ac)) {
 174           break;
 175         }
 176         result = proj_in->in(TypeFunc::Memory);
 177       } else {
 178         assert(false, "unexpected projection");
 179       }
 180     } else if (result->is_ClearArray()) {
 181       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 182         // Can not bypass initialization of the instance
 183         // we are looking for.
 184         break;
 185       }
 186       // Otherwise skip it (the call updated 'result' value).
 187     } else if (result->is_MergeMem()) {
 188       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 189     }
 190   }
 191   return result;
 192 }
 193 
 194 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 195   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 196   if (t_oop == NULL)
 197     return mchain;  // don't try to optimize non-oop types
 198   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 199   bool is_instance = t_oop->is_known_instance_field();
 200   PhaseIterGVN *igvn = phase->is_IterGVN();
 201   if (is_instance && igvn != NULL  && result->is_Phi()) {
 202     PhiNode *mphi = result->as_Phi();
 203     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 204     const TypePtr *t = mphi->adr_type();
 205     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 206         (t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 207          t->is_oopptr()->cast_to_exactness(true)
 208            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 209             ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop)) {
 210       // clone the Phi with our address type
 211       result = mphi->split_out_instance(t_adr, igvn);
 212     } else {
 213       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 214     }
 215   }
 216   return result;
 217 }
 218 
 219 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 220   uint alias_idx = phase->C->get_alias_index(tp);
 221   Node *mem = mmem;
 222 #ifdef ASSERT
 223   {
 224     // Check that current type is consistent with the alias index used during graph construction
 225     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 226     bool consistent =  adr_check == NULL || adr_check->empty() ||
 227                        phase->C->must_alias(adr_check, alias_idx );
 228     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 229     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 230                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 231         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 232         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 233           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 234           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 235       // don't assert if it is dead code.
 236       consistent = true;
 237     }
 238     if( !consistent ) {
 239       st->print("alias_idx==%d, adr_check==", alias_idx);
 240       if( adr_check == NULL ) {
 241         st->print("NULL");
 242       } else {
 243         adr_check->dump();
 244       }
 245       st->cr();
 246       print_alias_types();
 247       assert(consistent, "adr_check must match alias idx");
 248     }
 249   }
 250 #endif
 251   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 252   // means an array I have not precisely typed yet.  Do not do any
 253   // alias stuff with it any time soon.
 254   const TypeOopPtr *toop = tp->isa_oopptr();
 255   if( tp->base() != Type::AnyPtr &&
 256       !(toop &&
 257         toop->klass() != NULL &&
 258         toop->klass()->is_java_lang_Object() &&
 259         toop->offset() == Type::OffsetBot) ) {
 260     // compress paths and change unreachable cycles to TOP
 261     // If not, we can update the input infinitely along a MergeMem cycle
 262     // Equivalent code in PhiNode::Ideal
 263     Node* m  = phase->transform(mmem);
 264     // If transformed to a MergeMem, get the desired slice
 265     // Otherwise the returned node represents memory for every slice
 266     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 267     // Update input if it is progress over what we have now
 268   }
 269   return mem;
 270 }
 271 
 272 //--------------------------Ideal_common---------------------------------------
 273 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 274 // Unhook non-raw memories from complete (macro-expanded) initializations.
 275 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 276   // If our control input is a dead region, kill all below the region
 277   Node *ctl = in(MemNode::Control);
 278   if (ctl && remove_dead_region(phase, can_reshape))
 279     return this;
 280   ctl = in(MemNode::Control);
 281   // Don't bother trying to transform a dead node
 282   if (ctl && ctl->is_top())  return NodeSentinel;
 283 
 284   PhaseIterGVN *igvn = phase->is_IterGVN();
 285   // Wait if control on the worklist.
 286   if (ctl && can_reshape && igvn != NULL) {
 287     Node* bol = NULL;
 288     Node* cmp = NULL;
 289     if (ctl->in(0)->is_If()) {
 290       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 291       bol = ctl->in(0)->in(1);
 292       if (bol->is_Bool())
 293         cmp = ctl->in(0)->in(1)->in(1);
 294     }
 295     if (igvn->_worklist.member(ctl) ||
 296         (bol != NULL && igvn->_worklist.member(bol)) ||
 297         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 298       // This control path may be dead.
 299       // Delay this memory node transformation until the control is processed.
 300       phase->is_IterGVN()->_worklist.push(this);
 301       return NodeSentinel; // caller will return NULL
 302     }
 303   }
 304   // Ignore if memory is dead, or self-loop
 305   Node *mem = in(MemNode::Memory);
 306   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 307   assert(mem != this, "dead loop in MemNode::Ideal");
 308 
 309   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 310     // This memory slice may be dead.
 311     // Delay this mem node transformation until the memory is processed.
 312     phase->is_IterGVN()->_worklist.push(this);
 313     return NodeSentinel; // caller will return NULL
 314   }
 315 
 316   Node *address = in(MemNode::Address);
 317   const Type *t_adr = phase->type(address);
 318   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 319 
 320   if (can_reshape && igvn != NULL &&
 321       (igvn->_worklist.member(address) ||
 322        (igvn->_worklist.size() > 0 && t_adr != adr_type())) ) {
 323     // The address's base and type may change when the address is processed.
 324     // Delay this mem node transformation until the address is processed.
 325     phase->is_IterGVN()->_worklist.push(this);
 326     return NodeSentinel; // caller will return NULL
 327   }
 328 
 329   // Do NOT remove or optimize the next lines: ensure a new alias index
 330   // is allocated for an oop pointer type before Escape Analysis.
 331   // Note: C++ will not remove it since the call has side effect.
 332   if (t_adr->isa_oopptr()) {
 333     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 334   }
 335 
 336   Node* base = NULL;
 337   if (address->is_AddP()) {
 338     base = address->in(AddPNode::Base);
 339   }
 340   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 341       !t_adr->isa_rawptr()) {
 342     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 343     // Skip this node optimization if its address has TOP base.
 344     return NodeSentinel; // caller will return NULL
 345   }
 346 
 347   // Avoid independent memory operations
 348   Node* old_mem = mem;
 349 
 350   // The code which unhooks non-raw memories from complete (macro-expanded)
 351   // initializations was removed. After macro-expansion all stores catched
 352   // by Initialize node became raw stores and there is no information
 353   // which memory slices they modify. So it is unsafe to move any memory
 354   // operation above these stores. Also in most cases hooked non-raw memories
 355   // were already unhooked by using information from detect_ptr_independence()
 356   // and find_previous_store().
 357 
 358   if (mem->is_MergeMem()) {
 359     MergeMemNode* mmem = mem->as_MergeMem();
 360     const TypePtr *tp = t_adr->is_ptr();
 361 
 362     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 363   }
 364 
 365   if (mem != old_mem) {
 366     set_req(MemNode::Memory, mem);
 367     if (can_reshape && old_mem->outcnt() == 0) {
 368         igvn->_worklist.push(old_mem);
 369     }
 370     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 371     return this;
 372   }
 373 
 374   // let the subclass continue analyzing...
 375   return NULL;
 376 }
 377 
 378 // Helper function for proving some simple control dominations.
 379 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 380 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 381 // is not a constant (dominated by the method's StartNode).
 382 // Used by MemNode::find_previous_store to prove that the
 383 // control input of a memory operation predates (dominates)
 384 // an allocation it wants to look past.
 385 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 386   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 387     return false; // Conservative answer for dead code
 388 
 389   // Check 'dom'. Skip Proj and CatchProj nodes.
 390   dom = dom->find_exact_control(dom);
 391   if (dom == NULL || dom->is_top())
 392     return false; // Conservative answer for dead code
 393 
 394   if (dom == sub) {
 395     // For the case when, for example, 'sub' is Initialize and the original
 396     // 'dom' is Proj node of the 'sub'.
 397     return false;
 398   }
 399 
 400   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 401     return true;
 402 
 403   // 'dom' dominates 'sub' if its control edge and control edges
 404   // of all its inputs dominate or equal to sub's control edge.
 405 
 406   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 407   // Or Region for the check in LoadNode::Ideal();
 408   // 'sub' should have sub->in(0) != NULL.
 409   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 410          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 411 
 412   // Get control edge of 'sub'.
 413   Node* orig_sub = sub;
 414   sub = sub->find_exact_control(sub->in(0));
 415   if (sub == NULL || sub->is_top())
 416     return false; // Conservative answer for dead code
 417 
 418   assert(sub->is_CFG(), "expecting control");
 419 
 420   if (sub == dom)
 421     return true;
 422 
 423   if (sub->is_Start() || sub->is_Root())
 424     return false;
 425 
 426   {
 427     // Check all control edges of 'dom'.
 428 
 429     ResourceMark rm;
 430     Arena* arena = Thread::current()->resource_area();
 431     Node_List nlist(arena);
 432     Unique_Node_List dom_list(arena);
 433 
 434     dom_list.push(dom);
 435     bool only_dominating_controls = false;
 436 
 437     for (uint next = 0; next < dom_list.size(); next++) {
 438       Node* n = dom_list.at(next);
 439       if (n == orig_sub)
 440         return false; // One of dom's inputs dominated by sub.
 441       if (!n->is_CFG() && n->pinned()) {
 442         // Check only own control edge for pinned non-control nodes.
 443         n = n->find_exact_control(n->in(0));
 444         if (n == NULL || n->is_top())
 445           return false; // Conservative answer for dead code
 446         assert(n->is_CFG(), "expecting control");
 447         dom_list.push(n);
 448       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 449         only_dominating_controls = true;
 450       } else if (n->is_CFG()) {
 451         if (n->dominates(sub, nlist))
 452           only_dominating_controls = true;
 453         else
 454           return false;
 455       } else {
 456         // First, own control edge.
 457         Node* m = n->find_exact_control(n->in(0));
 458         if (m != NULL) {
 459           if (m->is_top())
 460             return false; // Conservative answer for dead code
 461           dom_list.push(m);
 462         }
 463         // Now, the rest of edges.
 464         uint cnt = n->req();
 465         for (uint i = 1; i < cnt; i++) {
 466           m = n->find_exact_control(n->in(i));
 467           if (m == NULL || m->is_top())
 468             continue;
 469           dom_list.push(m);
 470         }
 471       }
 472     }
 473     return only_dominating_controls;
 474   }
 475 }
 476 
 477 //---------------------detect_ptr_independence---------------------------------
 478 // Used by MemNode::find_previous_store to prove that two base
 479 // pointers are never equal.
 480 // The pointers are accompanied by their associated allocations,
 481 // if any, which have been previously discovered by the caller.
 482 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 483                                       Node* p2, AllocateNode* a2,
 484                                       PhaseTransform* phase) {
 485   // Attempt to prove that these two pointers cannot be aliased.
 486   // They may both manifestly be allocations, and they should differ.
 487   // Or, if they are not both allocations, they can be distinct constants.
 488   // Otherwise, one is an allocation and the other a pre-existing value.
 489   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 490     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 491   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 492     return (a1 != a2);
 493   } else if (a1 != NULL) {                  // one allocation a1
 494     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 495     return all_controls_dominate(p2, a1);
 496   } else { //(a2 != NULL)                   // one allocation a2
 497     return all_controls_dominate(p1, a2);
 498   }
 499   return false;
 500 }
 501 
 502 
 503 // Find an arraycopy that must have set (can_see_stored_value=true) or
 504 // could have set (can_see_stored_value=false) the value for this load
 505 Node* LoadNode::find_previous_arraycopy(PhaseTransform* phase, Node* ld_alloc, Node*& mem, bool can_see_stored_value) const {
 506   if (mem->is_Proj() && mem->in(0) != NULL && (mem->in(0)->Opcode() == Op_MemBarStoreStore ||
 507                                                mem->in(0)->Opcode() == Op_MemBarCPUOrder)) {
 508     Node* mb = mem->in(0);
 509     if (mb->in(0) != NULL && mb->in(0)->is_Proj() &&
 510         mb->in(0)->in(0) != NULL && mb->in(0)->in(0)->is_ArrayCopy()) {
 511       ArrayCopyNode* ac = mb->in(0)->in(0)->as_ArrayCopy();
 512       if (ac->is_clonebasic()) {
 513         intptr_t offset;
 514         AllocateNode* alloc = AllocateNode::Ideal_allocation(ac->in(ArrayCopyNode::Dest), phase, offset);
 515         assert(alloc != NULL && (!ReduceBulkZeroing || alloc->initialization()->is_complete_with_arraycopy()), "broken allocation");
 516         if (alloc == ld_alloc) {
 517           return ac;
 518         }
 519       }
 520     }
 521   } else if (mem->is_Proj() && mem->in(0) != NULL && mem->in(0)->is_ArrayCopy()) {
 522     ArrayCopyNode* ac = mem->in(0)->as_ArrayCopy();
 523 
 524     if (ac->is_arraycopy_validated() ||
 525         ac->is_copyof_validated() ||
 526         ac->is_copyofrange_validated()) {
 527       Node* ld_addp = in(MemNode::Address);
 528       if (ld_addp->is_AddP()) {
 529         Node* ld_base = ld_addp->in(AddPNode::Address);
 530         Node* ld_offs = ld_addp->in(AddPNode::Offset);
 531 
 532         Node* dest = ac->in(ArrayCopyNode::Dest);
 533 
 534         if (dest == ld_base) {
 535           const TypeX *ld_offs_t = phase->type(ld_offs)->isa_intptr_t();
 536           if (ac->modifies(ld_offs_t->_lo, ld_offs_t->_hi, phase, can_see_stored_value)) {
 537             return ac;
 538           }
 539           if (!can_see_stored_value) {
 540             mem = ac->in(TypeFunc::Memory);
 541           }
 542         }
 543       }
 544     }
 545   }
 546   return NULL;
 547 }
 548 
 549 // The logic for reordering loads and stores uses four steps:
 550 // (a) Walk carefully past stores and initializations which we
 551 //     can prove are independent of this load.
 552 // (b) Observe that the next memory state makes an exact match
 553 //     with self (load or store), and locate the relevant store.
 554 // (c) Ensure that, if we were to wire self directly to the store,
 555 //     the optimizer would fold it up somehow.
 556 // (d) Do the rewiring, and return, depending on some other part of
 557 //     the optimizer to fold up the load.
 558 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 559 // specific to loads and stores, so they are handled by the callers.
 560 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 561 //
 562 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 563   Node*         ctrl   = in(MemNode::Control);
 564   Node*         adr    = in(MemNode::Address);
 565   intptr_t      offset = 0;
 566   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 567   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 568 
 569   if (offset == Type::OffsetBot)
 570     return NULL;            // cannot unalias unless there are precise offsets
 571 
 572   const bool adr_maybe_raw = check_if_adr_maybe_raw(adr);
 573   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 574 
 575   intptr_t size_in_bytes = memory_size();
 576 
 577   Node* mem = in(MemNode::Memory);   // start searching here...
 578 
 579   int cnt = 50;             // Cycle limiter
 580   for (;;) {                // While we can dance past unrelated stores...
 581     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 582 
 583     Node* prev = mem;
 584     if (mem->is_Store()) {
 585       Node* st_adr = mem->in(MemNode::Address);
 586       intptr_t st_offset = 0;
 587       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 588       if (st_base == NULL)
 589         break;              // inscrutable pointer
 590 
 591       // For raw accesses it's not enough to prove that constant offsets don't intersect.
 592       // We need the bases to be the equal in order for the offset check to make sense.
 593       if ((adr_maybe_raw || check_if_adr_maybe_raw(st_adr)) && st_base != base) {
 594         break;
 595       }
 596 
 597       if (st_offset != offset && st_offset != Type::OffsetBot) {
 598         const int MAX_STORE = BytesPerLong;
 599         if (st_offset >= offset + size_in_bytes ||
 600             st_offset <= offset - MAX_STORE ||
 601             st_offset <= offset - mem->as_Store()->memory_size()) {
 602           // Success:  The offsets are provably independent.
 603           // (You may ask, why not just test st_offset != offset and be done?
 604           // The answer is that stores of different sizes can co-exist
 605           // in the same sequence of RawMem effects.  We sometimes initialize
 606           // a whole 'tile' of array elements with a single jint or jlong.)
 607           mem = mem->in(MemNode::Memory);
 608           continue;           // (a) advance through independent store memory
 609         }
 610       }
 611       if (st_base != base &&
 612           detect_ptr_independence(base, alloc,
 613                                   st_base,
 614                                   AllocateNode::Ideal_allocation(st_base, phase),
 615                                   phase)) {
 616         // Success:  The bases are provably independent.
 617         mem = mem->in(MemNode::Memory);
 618         continue;           // (a) advance through independent store memory
 619       }
 620 
 621       // (b) At this point, if the bases or offsets do not agree, we lose,
 622       // since we have not managed to prove 'this' and 'mem' independent.
 623       if (st_base == base && st_offset == offset) {
 624         return mem;         // let caller handle steps (c), (d)
 625       }
 626 
 627     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 628       InitializeNode* st_init = mem->in(0)->as_Initialize();
 629       AllocateNode*  st_alloc = st_init->allocation();
 630       if (st_alloc == NULL)
 631         break;              // something degenerated
 632       bool known_identical = false;
 633       bool known_independent = false;
 634       if (alloc == st_alloc)
 635         known_identical = true;
 636       else if (alloc != NULL)
 637         known_independent = true;
 638       else if (all_controls_dominate(this, st_alloc))
 639         known_independent = true;
 640 
 641       if (known_independent) {
 642         // The bases are provably independent: Either they are
 643         // manifestly distinct allocations, or else the control
 644         // of this load dominates the store's allocation.
 645         int alias_idx = phase->C->get_alias_index(adr_type());
 646         if (alias_idx == Compile::AliasIdxRaw) {
 647           mem = st_alloc->in(TypeFunc::Memory);
 648         } else {
 649           mem = st_init->memory(alias_idx);
 650         }
 651         continue;           // (a) advance through independent store memory
 652       }
 653 
 654       // (b) at this point, if we are not looking at a store initializing
 655       // the same allocation we are loading from, we lose.
 656       if (known_identical) {
 657         // From caller, can_see_stored_value will consult find_captured_store.
 658         return mem;         // let caller handle steps (c), (d)
 659       }
 660 
 661     } else if (find_previous_arraycopy(phase, alloc, mem, false) != NULL) {
 662       if (prev != mem) {
 663         // Found an arraycopy but it doesn't affect that load
 664         continue;
 665       }
 666       // Found an arraycopy that may affect that load
 667       return mem;
 668     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 669       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 670       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 671         // ArrayCopyNodes processed here as well.
 672         CallNode *call = mem->in(0)->as_Call();
 673         if (!call->may_modify(addr_t, phase)) {
 674           mem = call->in(TypeFunc::Memory);
 675           continue;         // (a) advance through independent call memory
 676         }
 677       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 678         ArrayCopyNode* ac = NULL;
 679         if (ArrayCopyNode::may_modify(addr_t, mem->in(0)->as_MemBar(), phase, ac)) {
 680           break;
 681         }
 682         mem = mem->in(0)->in(TypeFunc::Memory);
 683         continue;           // (a) advance through independent MemBar memory
 684       } else if (mem->is_ClearArray()) {
 685         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 686           // (the call updated 'mem' value)
 687           continue;         // (a) advance through independent allocation memory
 688         } else {
 689           // Can not bypass initialization of the instance
 690           // we are looking for.
 691           return mem;
 692         }
 693       } else if (mem->is_MergeMem()) {
 694         int alias_idx = phase->C->get_alias_index(adr_type());
 695         mem = mem->as_MergeMem()->memory_at(alias_idx);
 696         continue;           // (a) advance through independent MergeMem memory
 697       }
 698     }
 699 
 700     // Unless there is an explicit 'continue', we must bail out here,
 701     // because 'mem' is an inscrutable memory state (e.g., a call).
 702     break;
 703   }
 704 
 705   return NULL;              // bail out
 706 }
 707 
 708 //----------------------calculate_adr_type-------------------------------------
 709 // Helper function.  Notices when the given type of address hits top or bottom.
 710 // Also, asserts a cross-check of the type against the expected address type.
 711 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 712   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 713   #ifdef PRODUCT
 714   cross_check = NULL;
 715   #else
 716   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 717   #endif
 718   const TypePtr* tp = t->isa_ptr();
 719   if (tp == NULL) {
 720     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 721     return TypePtr::BOTTOM;           // touches lots of memory
 722   } else {
 723     #ifdef ASSERT
 724     // %%%% [phh] We don't check the alias index if cross_check is
 725     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 726     if (cross_check != NULL &&
 727         cross_check != TypePtr::BOTTOM &&
 728         cross_check != TypeRawPtr::BOTTOM) {
 729       // Recheck the alias index, to see if it has changed (due to a bug).
 730       Compile* C = Compile::current();
 731       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 732              "must stay in the original alias category");
 733       // The type of the address must be contained in the adr_type,
 734       // disregarding "null"-ness.
 735       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 736       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 737       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 738              "real address must not escape from expected memory type");
 739     }
 740     #endif
 741     return tp;
 742   }
 743 }
 744 
 745 //=============================================================================
 746 // Should LoadNode::Ideal() attempt to remove control edges?
 747 bool LoadNode::can_remove_control() const {
 748   return true;
 749 }
 750 uint LoadNode::size_of() const { return sizeof(*this); }
 751 uint LoadNode::cmp( const Node &n ) const
 752 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 753 const Type *LoadNode::bottom_type() const { return _type; }
 754 uint LoadNode::ideal_reg() const {
 755   return _type->ideal_reg();
 756 }
 757 
 758 #ifndef PRODUCT
 759 void LoadNode::dump_spec(outputStream *st) const {
 760   MemNode::dump_spec(st);
 761   if( !Verbose && !WizardMode ) {
 762     // standard dump does this in Verbose and WizardMode
 763     st->print(" #"); _type->dump_on(st);
 764   }
 765   if (!depends_only_on_test()) {
 766     st->print(" (does not depend only on test)");
 767   }
 768 }
 769 #endif
 770 
 771 #ifdef ASSERT
 772 //----------------------------is_immutable_value-------------------------------
 773 // Helper function to allow a raw load without control edge for some cases
 774 bool LoadNode::is_immutable_value(Node* adr) {
 775   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 776           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 777           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 778            in_bytes(JavaThread::osthread_offset())));
 779 }
 780 #endif
 781 
 782 //----------------------------LoadNode::make-----------------------------------
 783 // Polymorphic factory method:
 784 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo,
 785                      ControlDependency control_dependency, bool unaligned, bool mismatched) {
 786   Compile* C = gvn.C;
 787 
 788   // sanity check the alias category against the created node type
 789   assert(!(adr_type->isa_oopptr() &&
 790            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 791          "use LoadKlassNode instead");
 792   assert(!(adr_type->isa_aryptr() &&
 793            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 794          "use LoadRangeNode instead");
 795   // Check control edge of raw loads
 796   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 797           // oop will be recorded in oop map if load crosses safepoint
 798           rt->isa_oopptr() || is_immutable_value(adr),
 799           "raw memory operations should have control edge");
 800   LoadNode* load = NULL;
 801   switch (bt) {
 802   case T_BOOLEAN: load = new LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 803   case T_BYTE:    load = new LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 804   case T_INT:     load = new LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 805   case T_CHAR:    load = new LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 806   case T_SHORT:   load = new LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo, control_dependency); break;
 807   case T_LONG:    load = new LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency); break;
 808   case T_FLOAT:   load = new LoadFNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 809   case T_DOUBLE:  load = new LoadDNode (ctl, mem, adr, adr_type, rt,            mo, control_dependency); break;
 810   case T_ADDRESS: load = new LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo, control_dependency); break;
 811   case T_OBJECT:
 812 #ifdef _LP64
 813     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 814       load = new LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo, control_dependency);
 815     } else
 816 #endif
 817     {
 818       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 819       load = new LoadPNode(ctl, mem, adr, adr_type, rt->is_ptr(), mo, control_dependency);
 820     }
 821     break;
 822   default:
 823     // ShouldNotReachHere(); ???
 824     break;
 825   }
 826   assert(load != NULL, "LoadNode should have been created");
 827   if (unaligned) {
 828     load->set_unaligned_access();
 829   }
 830   if (mismatched) {
 831     load->set_mismatched_access();
 832   }
 833   if (load->Opcode() == Op_LoadN) {
 834     Node* ld = gvn.transform(load);
 835     return new DecodeNNode(ld, ld->bottom_type()->make_ptr());
 836   }
 837 
 838   return load;
 839 }
 840 
 841 LoadLNode* LoadLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 842                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 843   bool require_atomic = true;
 844   LoadLNode* load = new LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, control_dependency, require_atomic);
 845   if (unaligned) {
 846     load->set_unaligned_access();
 847   }
 848   if (mismatched) {
 849     load->set_mismatched_access();
 850   }
 851   return load;
 852 }
 853 
 854 LoadDNode* LoadDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo,
 855                                   ControlDependency control_dependency, bool unaligned, bool mismatched) {
 856   bool require_atomic = true;
 857   LoadDNode* load = new LoadDNode(ctl, mem, adr, adr_type, rt, mo, control_dependency, require_atomic);
 858   if (unaligned) {
 859     load->set_unaligned_access();
 860   }
 861   if (mismatched) {
 862     load->set_mismatched_access();
 863   }
 864   return load;
 865 }
 866 
 867 
 868 
 869 //------------------------------hash-------------------------------------------
 870 uint LoadNode::hash() const {
 871   // unroll addition of interesting fields
 872   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 873 }
 874 
 875 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 876   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 877     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 878     bool is_stable_ary = FoldStableValues &&
 879                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 880                          tp->isa_aryptr()->is_stable();
 881 
 882     return (eliminate_boxing && non_volatile) || is_stable_ary;
 883   }
 884 
 885   return false;
 886 }
 887 
 888 // Is the value loaded previously stored by an arraycopy? If so return
 889 // a load node that reads from the source array so we may be able to
 890 // optimize out the ArrayCopy node later.
 891 Node* LoadNode::can_see_arraycopy_value(Node* st, PhaseTransform* phase) const {
 892   Node* ld_adr = in(MemNode::Address);
 893   intptr_t ld_off = 0;
 894   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 895   Node* ac = find_previous_arraycopy(phase, ld_alloc, st, true);
 896   if (ac != NULL) {
 897     assert(ac->is_ArrayCopy(), "what kind of node can this be?");
 898 
 899     Node* ld = clone();
 900     if (ac->as_ArrayCopy()->is_clonebasic()) {
 901       assert(ld_alloc != NULL, "need an alloc");
 902       Node* addp = in(MemNode::Address)->clone();
 903       assert(addp->is_AddP(), "address must be addp");
 904       assert(addp->in(AddPNode::Base) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Base), "strange pattern");
 905       assert(addp->in(AddPNode::Address) == ac->in(ArrayCopyNode::Dest)->in(AddPNode::Address), "strange pattern");
 906       addp->set_req(AddPNode::Base, ac->in(ArrayCopyNode::Src)->in(AddPNode::Base));
 907       addp->set_req(AddPNode::Address, ac->in(ArrayCopyNode::Src)->in(AddPNode::Address));
 908       ld->set_req(MemNode::Address, phase->transform(addp));
 909       if (in(0) != NULL) {
 910         assert(ld_alloc->in(0) != NULL, "alloc must have control");
 911         ld->set_req(0, ld_alloc->in(0));
 912       }
 913     } else {
 914       Node* src = ac->in(ArrayCopyNode::Src);
 915       Node* addp = in(MemNode::Address)->clone();
 916       assert(addp->in(AddPNode::Base) == addp->in(AddPNode::Address), "should be");
 917       addp->set_req(AddPNode::Base, src);
 918       addp->set_req(AddPNode::Address, src);
 919 
 920       const TypeAryPtr* ary_t = phase->type(in(MemNode::Address))->isa_aryptr();
 921       BasicType ary_elem  = ary_t->klass()->as_array_klass()->element_type()->basic_type();
 922       uint header = arrayOopDesc::base_offset_in_bytes(ary_elem);
 923       uint shift  = exact_log2(type2aelembytes(ary_elem));
 924 
 925       Node* diff = phase->transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 926 #ifdef _LP64
 927       diff = phase->transform(new ConvI2LNode(diff));
 928 #endif
 929       diff = phase->transform(new LShiftXNode(diff, phase->intcon(shift)));
 930 
 931       Node* offset = phase->transform(new AddXNode(addp->in(AddPNode::Offset), diff));
 932       addp->set_req(AddPNode::Offset, offset);
 933       ld->set_req(MemNode::Address, phase->transform(addp));
 934 
 935       const TypeX *ld_offs_t = phase->type(offset)->isa_intptr_t();
 936 
 937       if (!ac->as_ArrayCopy()->can_replace_dest_load_with_src_load(ld_offs_t->_lo, ld_offs_t->_hi, phase)) {
 938         return NULL;
 939       }
 940 
 941       if (in(0) != NULL) {
 942         assert(ac->in(0) != NULL, "alloc must have control");
 943         ld->set_req(0, ac->in(0));
 944       }
 945     }
 946     // load depends on the tests that validate the arraycopy
 947     ld->as_Load()->_control_dependency = Pinned;
 948     return ld;
 949   }
 950   return NULL;
 951 }
 952 
 953 
 954 //---------------------------can_see_stored_value------------------------------
 955 // This routine exists to make sure this set of tests is done the same
 956 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 957 // will change the graph shape in a way which makes memory alive twice at the
 958 // same time (uses the Oracle model of aliasing), then some
 959 // LoadXNode::Identity will fold things back to the equivalence-class model
 960 // of aliasing.
 961 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 962   Node* ld_adr = in(MemNode::Address);
 963   intptr_t ld_off = 0;
 964   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 965   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 966   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 967   // This is more general than load from boxing objects.
 968   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 969     uint alias_idx = atp->index();
 970     bool final = !atp->is_rewritable();
 971     Node* result = NULL;
 972     Node* current = st;
 973     // Skip through chains of MemBarNodes checking the MergeMems for
 974     // new states for the slice of this load.  Stop once any other
 975     // kind of node is encountered.  Loads from final memory can skip
 976     // through any kind of MemBar but normal loads shouldn't skip
 977     // through MemBarAcquire since the could allow them to move out of
 978     // a synchronized region.
 979     while (current->is_Proj()) {
 980       int opc = current->in(0)->Opcode();
 981       if ((final && (opc == Op_MemBarAcquire ||
 982                      opc == Op_MemBarAcquireLock ||
 983                      opc == Op_LoadFence)) ||
 984           opc == Op_MemBarRelease ||
 985           opc == Op_StoreFence ||
 986           opc == Op_MemBarReleaseLock ||
 987           opc == Op_MemBarStoreStore ||
 988           opc == Op_MemBarCPUOrder) {
 989         Node* mem = current->in(0)->in(TypeFunc::Memory);
 990         if (mem->is_MergeMem()) {
 991           MergeMemNode* merge = mem->as_MergeMem();
 992           Node* new_st = merge->memory_at(alias_idx);
 993           if (new_st == merge->base_memory()) {
 994             // Keep searching
 995             current = new_st;
 996             continue;
 997           }
 998           // Save the new memory state for the slice and fall through
 999           // to exit.
1000           result = new_st;
1001         }
1002       }
1003       break;
1004     }
1005     if (result != NULL) {
1006       st = result;
1007     }
1008   }
1009 
1010   // Loop around twice in the case Load -> Initialize -> Store.
1011   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1012   for (int trip = 0; trip <= 1; trip++) {
1013 
1014     if (st->is_Store()) {
1015       Node* st_adr = st->in(MemNode::Address);
1016       if (!phase->eqv(st_adr, ld_adr)) {
1017         // Try harder before giving up...  Match raw and non-raw pointers.
1018         intptr_t st_off = 0;
1019         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1020         if (alloc == NULL)       return NULL;
1021         if (alloc != ld_alloc)   return NULL;
1022         if (ld_off != st_off)    return NULL;
1023         // At this point we have proven something like this setup:
1024         //  A = Allocate(...)
1025         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1026         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1027         // (Actually, we haven't yet proven the Q's are the same.)
1028         // In other words, we are loading from a casted version of
1029         // the same pointer-and-offset that we stored to.
1030         // Thus, we are able to replace L by V.
1031       }
1032       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1033       if (store_Opcode() != st->Opcode())
1034         return NULL;
1035       return st->in(MemNode::ValueIn);
1036     }
1037 
1038     // A load from a freshly-created object always returns zero.
1039     // (This can happen after LoadNode::Ideal resets the load's memory input
1040     // to find_captured_store, which returned InitializeNode::zero_memory.)
1041     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1042         (st->in(0) == ld_alloc) &&
1043         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1044       // return a zero value for the load's basic type
1045       // (This is one of the few places where a generic PhaseTransform
1046       // can create new nodes.  Think of it as lazily manifesting
1047       // virtually pre-existing constants.)
1048       return phase->zerocon(memory_type());
1049     }
1050 
1051     // A load from an initialization barrier can match a captured store.
1052     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1053       InitializeNode* init = st->in(0)->as_Initialize();
1054       AllocateNode* alloc = init->allocation();
1055       if ((alloc != NULL) && (alloc == ld_alloc)) {
1056         // examine a captured store value
1057         st = init->find_captured_store(ld_off, memory_size(), phase);
1058         if (st != NULL) {
1059           continue;             // take one more trip around
1060         }
1061       }
1062     }
1063 
1064     // Load boxed value from result of valueOf() call is input parameter.
1065     if (this->is_Load() && ld_adr->is_AddP() &&
1066         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1067       intptr_t ignore = 0;
1068       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1069       if (base != NULL && base->is_Proj() &&
1070           base->as_Proj()->_con == TypeFunc::Parms &&
1071           base->in(0)->is_CallStaticJava() &&
1072           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1073         return base->in(0)->in(TypeFunc::Parms);
1074       }
1075     }
1076 
1077     break;
1078   }
1079 
1080   return NULL;
1081 }
1082 
1083 //----------------------is_instance_field_load_with_local_phi------------------
1084 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1085   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1086       in(Address)->is_AddP() ) {
1087     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1088     // Only instances and boxed values.
1089     if( t_oop != NULL &&
1090         (t_oop->is_ptr_to_boxed_value() ||
1091          t_oop->is_known_instance_field()) &&
1092         t_oop->offset() != Type::OffsetBot &&
1093         t_oop->offset() != Type::OffsetTop) {
1094       return true;
1095     }
1096   }
1097   return false;
1098 }
1099 
1100 //------------------------------Identity---------------------------------------
1101 // Loads are identity if previous store is to same address
1102 Node* LoadNode::Identity(PhaseGVN* phase) {
1103   // If the previous store-maker is the right kind of Store, and the store is
1104   // to the same address, then we are equal to the value stored.
1105   Node* mem = in(Memory);
1106   Node* value = can_see_stored_value(mem, phase);
1107   if( value ) {
1108     // byte, short & char stores truncate naturally.
1109     // A load has to load the truncated value which requires
1110     // some sort of masking operation and that requires an
1111     // Ideal call instead of an Identity call.
1112     if (memory_size() < BytesPerInt) {
1113       // If the input to the store does not fit with the load's result type,
1114       // it must be truncated via an Ideal call.
1115       if (!phase->type(value)->higher_equal(phase->type(this)))
1116         return this;
1117     }
1118     // (This works even when value is a Con, but LoadNode::Value
1119     // usually runs first, producing the singleton type of the Con.)
1120     return value;
1121   }
1122 
1123   // Search for an existing data phi which was generated before for the same
1124   // instance's field to avoid infinite generation of phis in a loop.
1125   Node *region = mem->in(0);
1126   if (is_instance_field_load_with_local_phi(region)) {
1127     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1128     int this_index  = phase->C->get_alias_index(addr_t);
1129     int this_offset = addr_t->offset();
1130     int this_iid    = addr_t->instance_id();
1131     if (!addr_t->is_known_instance() &&
1132          addr_t->is_ptr_to_boxed_value()) {
1133       // Use _idx of address base (could be Phi node) for boxed values.
1134       intptr_t   ignore = 0;
1135       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1136       if (base == NULL) {
1137         return this;
1138       }
1139       this_iid = base->_idx;
1140     }
1141     const Type* this_type = bottom_type();
1142     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1143       Node* phi = region->fast_out(i);
1144       if (phi->is_Phi() && phi != mem &&
1145           phi->as_Phi()->is_same_inst_field(this_type, (int)mem->_idx, this_iid, this_index, this_offset)) {
1146         return phi;
1147       }
1148     }
1149   }
1150 
1151   return this;
1152 }
1153 
1154 // Construct an equivalent unsigned load.
1155 Node* LoadNode::convert_to_unsigned_load(PhaseGVN& gvn) {
1156   BasicType bt = T_ILLEGAL;
1157   const Type* rt = NULL;
1158   switch (Opcode()) {
1159     case Op_LoadUB: return this;
1160     case Op_LoadUS: return this;
1161     case Op_LoadB: bt = T_BOOLEAN; rt = TypeInt::UBYTE; break;
1162     case Op_LoadS: bt = T_CHAR;    rt = TypeInt::CHAR;  break;
1163     default:
1164       assert(false, "no unsigned variant: %s", Name());
1165       return NULL;
1166   }
1167   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1168                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1169                         is_unaligned_access(), is_mismatched_access());
1170 }
1171 
1172 // Construct an equivalent signed load.
1173 Node* LoadNode::convert_to_signed_load(PhaseGVN& gvn) {
1174   BasicType bt = T_ILLEGAL;
1175   const Type* rt = NULL;
1176   switch (Opcode()) {
1177     case Op_LoadUB: bt = T_BYTE;  rt = TypeInt::BYTE;  break;
1178     case Op_LoadUS: bt = T_SHORT; rt = TypeInt::SHORT; break;
1179     case Op_LoadB: // fall through
1180     case Op_LoadS: // fall through
1181     case Op_LoadI: // fall through
1182     case Op_LoadL: return this;
1183     default:
1184       assert(false, "no signed variant: %s", Name());
1185       return NULL;
1186   }
1187   return LoadNode::make(gvn, in(MemNode::Control), in(MemNode::Memory), in(MemNode::Address),
1188                         raw_adr_type(), rt, bt, _mo, _control_dependency,
1189                         is_unaligned_access(), is_mismatched_access());
1190 }
1191 
1192 // We're loading from an object which has autobox behaviour.
1193 // If this object is result of a valueOf call we'll have a phi
1194 // merging a newly allocated object and a load from the cache.
1195 // We want to replace this load with the original incoming
1196 // argument to the valueOf call.
1197 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1198   assert(phase->C->eliminate_boxing(), "sanity");
1199   intptr_t ignore = 0;
1200   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1201   if ((base == NULL) || base->is_Phi()) {
1202     // Push the loads from the phi that comes from valueOf up
1203     // through it to allow elimination of the loads and the recovery
1204     // of the original value. It is done in split_through_phi().
1205     return NULL;
1206   } else if (base->is_Load() ||
1207              (base->is_DecodeN() && base->in(1)->is_Load())) {
1208     // Eliminate the load of boxed value for integer types from the cache
1209     // array by deriving the value from the index into the array.
1210     // Capture the offset of the load and then reverse the computation.
1211 
1212     // Get LoadN node which loads a boxing object from 'cache' array.
1213     if (base->is_DecodeN()) {
1214       base = base->in(1);
1215     }
1216     if (!base->in(Address)->is_AddP()) {
1217       return NULL; // Complex address
1218     }
1219     AddPNode* address = base->in(Address)->as_AddP();
1220     Node* cache_base = address->in(AddPNode::Base);
1221     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1222       // Get ConP node which is static 'cache' field.
1223       cache_base = cache_base->in(1);
1224     }
1225     if ((cache_base != NULL) && cache_base->is_Con()) {
1226       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1227       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1228         Node* elements[4];
1229         int shift = exact_log2(type2aelembytes(T_OBJECT));
1230         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1231         if (count > 0 && elements[0]->is_Con() &&
1232             (count == 1 ||
1233              (count == 2 && elements[1]->Opcode() == Op_LShiftX &&
1234                             elements[1]->in(2) == phase->intcon(shift)))) {
1235           ciObjArray* array = base_type->const_oop()->as_obj_array();
1236           // Fetch the box object cache[0] at the base of the array and get its value
1237           ciInstance* box = array->obj_at(0)->as_instance();
1238           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1239           assert(ik->is_box_klass(), "sanity");
1240           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1241           if (ik->nof_nonstatic_fields() == 1) {
1242             // This should be true nonstatic_field_at requires calling
1243             // nof_nonstatic_fields so check it anyway
1244             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1245             BasicType bt = c.basic_type();
1246             // Only integer types have boxing cache.
1247             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1248                    bt == T_BYTE    || bt == T_SHORT ||
1249                    bt == T_INT     || bt == T_LONG, "wrong type = %s", type2name(bt));
1250             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1251             if (cache_low != (int)cache_low) {
1252               return NULL; // should not happen since cache is array indexed by value
1253             }
1254             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1255             if (offset != (int)offset) {
1256               return NULL; // should not happen since cache is array indexed by value
1257             }
1258            // Add up all the offsets making of the address of the load
1259             Node* result = elements[0];
1260             for (int i = 1; i < count; i++) {
1261               result = phase->transform(new AddXNode(result, elements[i]));
1262             }
1263             // Remove the constant offset from the address and then
1264             result = phase->transform(new AddXNode(result, phase->MakeConX(-(int)offset)));
1265             // remove the scaling of the offset to recover the original index.
1266             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1267               // Peel the shift off directly but wrap it in a dummy node
1268               // since Ideal can't return existing nodes
1269               result = new RShiftXNode(result->in(1), phase->intcon(0));
1270             } else if (result->is_Add() && result->in(2)->is_Con() &&
1271                        result->in(1)->Opcode() == Op_LShiftX &&
1272                        result->in(1)->in(2) == phase->intcon(shift)) {
1273               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1274               // but for boxing cache access we know that X<<Z will not overflow
1275               // (there is range check) so we do this optimizatrion by hand here.
1276               Node* add_con = new RShiftXNode(result->in(2), phase->intcon(shift));
1277               result = new AddXNode(result->in(1)->in(1), phase->transform(add_con));
1278             } else {
1279               result = new RShiftXNode(result, phase->intcon(shift));
1280             }
1281 #ifdef _LP64
1282             if (bt != T_LONG) {
1283               result = new ConvL2INode(phase->transform(result));
1284             }
1285 #else
1286             if (bt == T_LONG) {
1287               result = new ConvI2LNode(phase->transform(result));
1288             }
1289 #endif
1290             // Boxing/unboxing can be done from signed & unsigned loads (e.g. LoadUB -> ... -> LoadB pair).
1291             // Need to preserve unboxing load type if it is unsigned.
1292             switch(this->Opcode()) {
1293               case Op_LoadUB:
1294                 result = new AndINode(phase->transform(result), phase->intcon(0xFF));
1295                 break;
1296               case Op_LoadUS:
1297                 result = new AndINode(phase->transform(result), phase->intcon(0xFFFF));
1298                 break;
1299             }
1300             return result;
1301           }
1302         }
1303       }
1304     }
1305   }
1306   return NULL;
1307 }
1308 
1309 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1310   Node* region = phi->in(0);
1311   if (region == NULL) {
1312     return false; // Wait stable graph
1313   }
1314   uint cnt = phi->req();
1315   for (uint i = 1; i < cnt; i++) {
1316     Node* rc = region->in(i);
1317     if (rc == NULL || phase->type(rc) == Type::TOP)
1318       return false; // Wait stable graph
1319     Node* in = phi->in(i);
1320     if (in == NULL || phase->type(in) == Type::TOP)
1321       return false; // Wait stable graph
1322   }
1323   return true;
1324 }
1325 //------------------------------split_through_phi------------------------------
1326 // Split instance or boxed field load through Phi.
1327 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1328   Node* mem     = in(Memory);
1329   Node* address = in(Address);
1330   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1331 
1332   assert((t_oop != NULL) &&
1333          (t_oop->is_known_instance_field() ||
1334           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1335 
1336   Compile* C = phase->C;
1337   intptr_t ignore = 0;
1338   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1339   bool base_is_phi = (base != NULL) && base->is_Phi();
1340   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1341                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1342                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1343 
1344   if (!((mem->is_Phi() || base_is_phi) &&
1345         (load_boxed_values || t_oop->is_known_instance_field()))) {
1346     return NULL; // memory is not Phi
1347   }
1348 
1349   if (mem->is_Phi()) {
1350     if (!stable_phi(mem->as_Phi(), phase)) {
1351       return NULL; // Wait stable graph
1352     }
1353     uint cnt = mem->req();
1354     // Check for loop invariant memory.
1355     if (cnt == 3) {
1356       for (uint i = 1; i < cnt; i++) {
1357         Node* in = mem->in(i);
1358         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1359         if (m == mem) {
1360           set_req(Memory, mem->in(cnt - i));
1361           return this; // made change
1362         }
1363       }
1364     }
1365   }
1366   if (base_is_phi) {
1367     if (!stable_phi(base->as_Phi(), phase)) {
1368       return NULL; // Wait stable graph
1369     }
1370     uint cnt = base->req();
1371     // Check for loop invariant memory.
1372     if (cnt == 3) {
1373       for (uint i = 1; i < cnt; i++) {
1374         if (base->in(i) == base) {
1375           return NULL; // Wait stable graph
1376         }
1377       }
1378     }
1379   }
1380 
1381   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1382 
1383   // Split through Phi (see original code in loopopts.cpp).
1384   assert(C->have_alias_type(t_oop), "instance should have alias type");
1385 
1386   // Do nothing here if Identity will find a value
1387   // (to avoid infinite chain of value phis generation).
1388   if (!phase->eqv(this, this->Identity(phase)))
1389     return NULL;
1390 
1391   // Select Region to split through.
1392   Node* region;
1393   if (!base_is_phi) {
1394     assert(mem->is_Phi(), "sanity");
1395     region = mem->in(0);
1396     // Skip if the region dominates some control edge of the address.
1397     if (!MemNode::all_controls_dominate(address, region))
1398       return NULL;
1399   } else if (!mem->is_Phi()) {
1400     assert(base_is_phi, "sanity");
1401     region = base->in(0);
1402     // Skip if the region dominates some control edge of the memory.
1403     if (!MemNode::all_controls_dominate(mem, region))
1404       return NULL;
1405   } else if (base->in(0) != mem->in(0)) {
1406     assert(base_is_phi && mem->is_Phi(), "sanity");
1407     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1408       region = base->in(0);
1409     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1410       region = mem->in(0);
1411     } else {
1412       return NULL; // complex graph
1413     }
1414   } else {
1415     assert(base->in(0) == mem->in(0), "sanity");
1416     region = mem->in(0);
1417   }
1418 
1419   const Type* this_type = this->bottom_type();
1420   int this_index  = C->get_alias_index(t_oop);
1421   int this_offset = t_oop->offset();
1422   int this_iid    = t_oop->instance_id();
1423   if (!t_oop->is_known_instance() && load_boxed_values) {
1424     // Use _idx of address base for boxed values.
1425     this_iid = base->_idx;
1426   }
1427   PhaseIterGVN* igvn = phase->is_IterGVN();
1428   Node* phi = new PhiNode(region, this_type, NULL, mem->_idx, this_iid, this_index, this_offset);
1429   for (uint i = 1; i < region->req(); i++) {
1430     Node* x;
1431     Node* the_clone = NULL;
1432     if (region->in(i) == C->top()) {
1433       x = C->top();      // Dead path?  Use a dead data op
1434     } else {
1435       x = this->clone();        // Else clone up the data op
1436       the_clone = x;            // Remember for possible deletion.
1437       // Alter data node to use pre-phi inputs
1438       if (this->in(0) == region) {
1439         x->set_req(0, region->in(i));
1440       } else {
1441         x->set_req(0, NULL);
1442       }
1443       if (mem->is_Phi() && (mem->in(0) == region)) {
1444         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1445       }
1446       if (address->is_Phi() && address->in(0) == region) {
1447         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1448       }
1449       if (base_is_phi && (base->in(0) == region)) {
1450         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1451         Node* adr_x = phase->transform(new AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1452         x->set_req(Address, adr_x);
1453       }
1454     }
1455     // Check for a 'win' on some paths
1456     const Type *t = x->Value(igvn);
1457 
1458     bool singleton = t->singleton();
1459 
1460     // See comments in PhaseIdealLoop::split_thru_phi().
1461     if (singleton && t == Type::TOP) {
1462       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1463     }
1464 
1465     if (singleton) {
1466       x = igvn->makecon(t);
1467     } else {
1468       // We now call Identity to try to simplify the cloned node.
1469       // Note that some Identity methods call phase->type(this).
1470       // Make sure that the type array is big enough for
1471       // our new node, even though we may throw the node away.
1472       // (This tweaking with igvn only works because x is a new node.)
1473       igvn->set_type(x, t);
1474       // If x is a TypeNode, capture any more-precise type permanently into Node
1475       // otherwise it will be not updated during igvn->transform since
1476       // igvn->type(x) is set to x->Value() already.
1477       x->raise_bottom_type(t);
1478       Node *y = x->Identity(igvn);
1479       if (y != x) {
1480         x = y;
1481       } else {
1482         y = igvn->hash_find_insert(x);
1483         if (y) {
1484           x = y;
1485         } else {
1486           // Else x is a new node we are keeping
1487           // We do not need register_new_node_with_optimizer
1488           // because set_type has already been called.
1489           igvn->_worklist.push(x);
1490         }
1491       }
1492     }
1493     if (x != the_clone && the_clone != NULL) {
1494       igvn->remove_dead_node(the_clone);
1495     }
1496     phi->set_req(i, x);
1497   }
1498   // Record Phi
1499   igvn->register_new_node_with_optimizer(phi);
1500   return phi;
1501 }
1502 
1503 //------------------------------Ideal------------------------------------------
1504 // If the load is from Field memory and the pointer is non-null, it might be possible to
1505 // zero out the control input.
1506 // If the offset is constant and the base is an object allocation,
1507 // try to hook me up to the exact initializing store.
1508 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1509   Node* p = MemNode::Ideal_common(phase, can_reshape);
1510   if (p)  return (p == NodeSentinel) ? NULL : p;
1511 
1512   Node* ctrl    = in(MemNode::Control);
1513   Node* address = in(MemNode::Address);
1514   bool progress = false;
1515 
1516   // Skip up past a SafePoint control.  Cannot do this for Stores because
1517   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1518   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1519       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1520     ctrl = ctrl->in(0);
1521     set_req(MemNode::Control,ctrl);
1522     progress = true;
1523   }
1524 
1525   intptr_t ignore = 0;
1526   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1527   if (base != NULL
1528       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1529     // Check for useless control edge in some common special cases
1530     if (in(MemNode::Control) != NULL
1531         && can_remove_control()
1532         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1533         && all_controls_dominate(base, phase->C->start())) {
1534       // A method-invariant, non-null address (constant or 'this' argument).
1535       set_req(MemNode::Control, NULL);
1536       progress = true;
1537     }
1538   }
1539 
1540   Node* mem = in(MemNode::Memory);
1541   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1542 
1543   if (can_reshape && (addr_t != NULL)) {
1544     // try to optimize our memory input
1545     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1546     if (opt_mem != mem) {
1547       set_req(MemNode::Memory, opt_mem);
1548       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1549       return this;
1550     }
1551     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1552     if ((t_oop != NULL) &&
1553         (t_oop->is_known_instance_field() ||
1554          t_oop->is_ptr_to_boxed_value())) {
1555       PhaseIterGVN *igvn = phase->is_IterGVN();
1556       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1557         // Delay this transformation until memory Phi is processed.
1558         phase->is_IterGVN()->_worklist.push(this);
1559         return NULL;
1560       }
1561       // Split instance field load through Phi.
1562       Node* result = split_through_phi(phase);
1563       if (result != NULL) return result;
1564 
1565       if (t_oop->is_ptr_to_boxed_value()) {
1566         Node* result = eliminate_autobox(phase);
1567         if (result != NULL) return result;
1568       }
1569     }
1570   }
1571 
1572   // Is there a dominating load that loads the same value?  Leave
1573   // anything that is not a load of a field/array element (like
1574   // barriers etc.) alone
1575   if (in(0) != NULL && adr_type() != TypeRawPtr::BOTTOM && can_reshape) {
1576     for (DUIterator_Fast imax, i = mem->fast_outs(imax); i < imax; i++) {
1577       Node *use = mem->fast_out(i);
1578       if (use != this &&
1579           use->Opcode() == Opcode() &&
1580           use->in(0) != NULL &&
1581           use->in(0) != in(0) &&
1582           use->in(Address) == in(Address)) {
1583         Node* ctl = in(0);
1584         for (int i = 0; i < 10 && ctl != NULL; i++) {
1585           ctl = IfNode::up_one_dom(ctl);
1586           if (ctl == use->in(0)) {
1587             set_req(0, use->in(0));
1588             return this;
1589           }
1590         }
1591       }
1592     }
1593   }
1594 
1595   // Check for prior store with a different base or offset; make Load
1596   // independent.  Skip through any number of them.  Bail out if the stores
1597   // are in an endless dead cycle and report no progress.  This is a key
1598   // transform for Reflection.  However, if after skipping through the Stores
1599   // we can't then fold up against a prior store do NOT do the transform as
1600   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1601   // array memory alive twice: once for the hoisted Load and again after the
1602   // bypassed Store.  This situation only works if EVERYBODY who does
1603   // anti-dependence work knows how to bypass.  I.e. we need all
1604   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1605   // the alias index stuff.  So instead, peek through Stores and IFF we can
1606   // fold up, do so.
1607   Node* prev_mem = find_previous_store(phase);
1608   if (prev_mem != NULL) {
1609     Node* value = can_see_arraycopy_value(prev_mem, phase);
1610     if (value != NULL) {
1611       return value;
1612     }
1613   }
1614   // Steps (a), (b):  Walk past independent stores to find an exact match.
1615   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1616     // (c) See if we can fold up on the spot, but don't fold up here.
1617     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1618     // just return a prior value, which is done by Identity calls.
1619     if (can_see_stored_value(prev_mem, phase)) {
1620       // Make ready for step (d):
1621       set_req(MemNode::Memory, prev_mem);
1622       return this;
1623     }
1624   }
1625 
1626   return progress ? this : NULL;
1627 }
1628 
1629 // Helper to recognize certain Klass fields which are invariant across
1630 // some group of array types (e.g., int[] or all T[] where T < Object).
1631 const Type*
1632 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1633                                  ciKlass* klass) const {
1634   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1635     // The field is Klass::_modifier_flags.  Return its (constant) value.
1636     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1637     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1638     return TypeInt::make(klass->modifier_flags());
1639   }
1640   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1641     // The field is Klass::_access_flags.  Return its (constant) value.
1642     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1643     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1644     return TypeInt::make(klass->access_flags());
1645   }
1646   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1647     // The field is Klass::_layout_helper.  Return its constant value if known.
1648     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1649     return TypeInt::make(klass->layout_helper());
1650   }
1651 
1652   // No match.
1653   return NULL;
1654 }
1655 
1656 //------------------------------Value-----------------------------------------
1657 const Type* LoadNode::Value(PhaseGVN* phase) const {
1658   // Either input is TOP ==> the result is TOP
1659   Node* mem = in(MemNode::Memory);
1660   const Type *t1 = phase->type(mem);
1661   if (t1 == Type::TOP)  return Type::TOP;
1662   Node* adr = in(MemNode::Address);
1663   const TypePtr* tp = phase->type(adr)->isa_ptr();
1664   if (tp == NULL || tp->empty())  return Type::TOP;
1665   int off = tp->offset();
1666   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1667   Compile* C = phase->C;
1668 
1669   // Try to guess loaded type from pointer type
1670   if (tp->isa_aryptr()) {
1671     const TypeAryPtr* ary = tp->is_aryptr();
1672     const Type* t = ary->elem();
1673 
1674     // Determine whether the reference is beyond the header or not, by comparing
1675     // the offset against the offset of the start of the array's data.
1676     // Different array types begin at slightly different offsets (12 vs. 16).
1677     // We choose T_BYTE as an example base type that is least restrictive
1678     // as to alignment, which will therefore produce the smallest
1679     // possible base offset.
1680     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1681     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1682 
1683     // Try to constant-fold a stable array element.
1684     if (FoldStableValues && !is_mismatched_access() && ary->is_stable()) {
1685       // Make sure the reference is not into the header and the offset is constant
1686       ciObject* aobj = ary->const_oop();
1687       if (aobj != NULL && off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1688         int stable_dimension = (ary->stable_dimension() > 0 ? ary->stable_dimension() - 1 : 0);
1689         const Type* con_type = Type::make_constant_from_array_element(aobj->as_array(), off,
1690                                                                       stable_dimension,
1691                                                                       memory_type(), is_unsigned());
1692         if (con_type != NULL) {
1693           return con_type;
1694         }
1695       }
1696     }
1697 
1698     // Don't do this for integer types. There is only potential profit if
1699     // the element type t is lower than _type; that is, for int types, if _type is
1700     // more restrictive than t.  This only happens here if one is short and the other
1701     // char (both 16 bits), and in those cases we've made an intentional decision
1702     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1703     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1704     //
1705     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1706     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1707     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1708     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1709     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1710     // In fact, that could have been the original type of p1, and p1 could have
1711     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1712     // expression (LShiftL quux 3) independently optimized to the constant 8.
1713     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1714         && (_type->isa_vect() == NULL)
1715         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1716       // t might actually be lower than _type, if _type is a unique
1717       // concrete subclass of abstract class t.
1718       if (off_beyond_header) {  // is the offset beyond the header?
1719         const Type* jt = t->join_speculative(_type);
1720         // In any case, do not allow the join, per se, to empty out the type.
1721         if (jt->empty() && !t->empty()) {
1722           // This can happen if a interface-typed array narrows to a class type.
1723           jt = _type;
1724         }
1725 #ifdef ASSERT
1726         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1727           // The pointers in the autobox arrays are always non-null
1728           Node* base = adr->in(AddPNode::Base);
1729           if ((base != NULL) && base->is_DecodeN()) {
1730             // Get LoadN node which loads IntegerCache.cache field
1731             base = base->in(1);
1732           }
1733           if ((base != NULL) && base->is_Con()) {
1734             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1735             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1736               // It could be narrow oop
1737               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1738             }
1739           }
1740         }
1741 #endif
1742         return jt;
1743       }
1744     }
1745   } else if (tp->base() == Type::InstPtr) {
1746     assert( off != Type::OffsetBot ||
1747             // arrays can be cast to Objects
1748             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1749             // unsafe field access may not have a constant offset
1750             C->has_unsafe_access(),
1751             "Field accesses must be precise" );
1752     // For oop loads, we expect the _type to be precise.
1753 
1754     // Optimize loads from constant fields.
1755     const TypeInstPtr* tinst = tp->is_instptr();
1756     ciObject* const_oop = tinst->const_oop();
1757     if (!is_mismatched_access() && off != Type::OffsetBot && const_oop != NULL && const_oop->is_instance()) {
1758       const Type* con_type = Type::make_constant_from_field(const_oop->as_instance(), off, is_unsigned(), memory_type());
1759       if (con_type != NULL) {
1760         return con_type;
1761       }
1762     }
1763   } else if (tp->base() == Type::KlassPtr) {
1764     assert( off != Type::OffsetBot ||
1765             // arrays can be cast to Objects
1766             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1767             // also allow array-loading from the primary supertype
1768             // array during subtype checks
1769             Opcode() == Op_LoadKlass,
1770             "Field accesses must be precise" );
1771     // For klass/static loads, we expect the _type to be precise
1772   }
1773 
1774   const TypeKlassPtr *tkls = tp->isa_klassptr();
1775   if (tkls != NULL && !StressReflectiveCode) {
1776     ciKlass* klass = tkls->klass();
1777     if (klass->is_loaded() && tkls->klass_is_exact()) {
1778       // We are loading a field from a Klass metaobject whose identity
1779       // is known at compile time (the type is "exact" or "precise").
1780       // Check for fields we know are maintained as constants by the VM.
1781       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1782         // The field is Klass::_super_check_offset.  Return its (constant) value.
1783         // (Folds up type checking code.)
1784         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1785         return TypeInt::make(klass->super_check_offset());
1786       }
1787       // Compute index into primary_supers array
1788       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1789       // Check for overflowing; use unsigned compare to handle the negative case.
1790       if( depth < ciKlass::primary_super_limit() ) {
1791         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1792         // (Folds up type checking code.)
1793         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1794         ciKlass *ss = klass->super_of_depth(depth);
1795         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1796       }
1797       const Type* aift = load_array_final_field(tkls, klass);
1798       if (aift != NULL)  return aift;
1799       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1800         // The field is Klass::_java_mirror.  Return its (constant) value.
1801         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1802         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1803         return TypeInstPtr::make(klass->java_mirror());
1804       }
1805     }
1806 
1807     // We can still check if we are loading from the primary_supers array at a
1808     // shallow enough depth.  Even though the klass is not exact, entries less
1809     // than or equal to its super depth are correct.
1810     if (klass->is_loaded() ) {
1811       ciType *inner = klass;
1812       while( inner->is_obj_array_klass() )
1813         inner = inner->as_obj_array_klass()->base_element_type();
1814       if( inner->is_instance_klass() &&
1815           !inner->as_instance_klass()->flags().is_interface() ) {
1816         // Compute index into primary_supers array
1817         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1818         // Check for overflowing; use unsigned compare to handle the negative case.
1819         if( depth < ciKlass::primary_super_limit() &&
1820             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1821           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1822           // (Folds up type checking code.)
1823           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1824           ciKlass *ss = klass->super_of_depth(depth);
1825           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1826         }
1827       }
1828     }
1829 
1830     // If the type is enough to determine that the thing is not an array,
1831     // we can give the layout_helper a positive interval type.
1832     // This will help short-circuit some reflective code.
1833     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1834         && !klass->is_array_klass() // not directly typed as an array
1835         && !klass->is_interface()  // specifically not Serializable & Cloneable
1836         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1837         ) {
1838       // Note:  When interfaces are reliable, we can narrow the interface
1839       // test to (klass != Serializable && klass != Cloneable).
1840       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1841       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1842       // The key property of this type is that it folds up tests
1843       // for array-ness, since it proves that the layout_helper is positive.
1844       // Thus, a generic value like the basic object layout helper works fine.
1845       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1846     }
1847   }
1848 
1849   // If we are loading from a freshly-allocated object, produce a zero,
1850   // if the load is provably beyond the header of the object.
1851   // (Also allow a variable load from a fresh array to produce zero.)
1852   const TypeOopPtr *tinst = tp->isa_oopptr();
1853   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1854   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1855   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1856     Node* value = can_see_stored_value(mem,phase);
1857     if (value != NULL && value->is_Con()) {
1858       assert(value->bottom_type()->higher_equal(_type),"sanity");
1859       return value->bottom_type();
1860     }
1861   }
1862 
1863   if (is_instance) {
1864     // If we have an instance type and our memory input is the
1865     // programs's initial memory state, there is no matching store,
1866     // so just return a zero of the appropriate type
1867     Node *mem = in(MemNode::Memory);
1868     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1869       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1870       return Type::get_zero_type(_type->basic_type());
1871     }
1872   }
1873   return _type;
1874 }
1875 
1876 //------------------------------match_edge-------------------------------------
1877 // Do we Match on this edge index or not?  Match only the address.
1878 uint LoadNode::match_edge(uint idx) const {
1879   return idx == MemNode::Address;
1880 }
1881 
1882 //--------------------------LoadBNode::Ideal--------------------------------------
1883 //
1884 //  If the previous store is to the same address as this load,
1885 //  and the value stored was larger than a byte, replace this load
1886 //  with the value stored truncated to a byte.  If no truncation is
1887 //  needed, the replacement is done in LoadNode::Identity().
1888 //
1889 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1890   Node* mem = in(MemNode::Memory);
1891   Node* value = can_see_stored_value(mem,phase);
1892   if( value && !phase->type(value)->higher_equal( _type ) ) {
1893     Node *result = phase->transform( new LShiftINode(value, phase->intcon(24)) );
1894     return new RShiftINode(result, phase->intcon(24));
1895   }
1896   // Identity call will handle the case where truncation is not needed.
1897   return LoadNode::Ideal(phase, can_reshape);
1898 }
1899 
1900 const Type* LoadBNode::Value(PhaseGVN* phase) const {
1901   Node* mem = in(MemNode::Memory);
1902   Node* value = can_see_stored_value(mem,phase);
1903   if (value != NULL && value->is_Con() &&
1904       !value->bottom_type()->higher_equal(_type)) {
1905     // If the input to the store does not fit with the load's result type,
1906     // it must be truncated. We can't delay until Ideal call since
1907     // a singleton Value is needed for split_thru_phi optimization.
1908     int con = value->get_int();
1909     return TypeInt::make((con << 24) >> 24);
1910   }
1911   return LoadNode::Value(phase);
1912 }
1913 
1914 //--------------------------LoadUBNode::Ideal-------------------------------------
1915 //
1916 //  If the previous store is to the same address as this load,
1917 //  and the value stored was larger than a byte, replace this load
1918 //  with the value stored truncated to a byte.  If no truncation is
1919 //  needed, the replacement is done in LoadNode::Identity().
1920 //
1921 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1922   Node* mem = in(MemNode::Memory);
1923   Node* value = can_see_stored_value(mem, phase);
1924   if (value && !phase->type(value)->higher_equal(_type))
1925     return new AndINode(value, phase->intcon(0xFF));
1926   // Identity call will handle the case where truncation is not needed.
1927   return LoadNode::Ideal(phase, can_reshape);
1928 }
1929 
1930 const Type* LoadUBNode::Value(PhaseGVN* phase) const {
1931   Node* mem = in(MemNode::Memory);
1932   Node* value = can_see_stored_value(mem,phase);
1933   if (value != NULL && value->is_Con() &&
1934       !value->bottom_type()->higher_equal(_type)) {
1935     // If the input to the store does not fit with the load's result type,
1936     // it must be truncated. We can't delay until Ideal call since
1937     // a singleton Value is needed for split_thru_phi optimization.
1938     int con = value->get_int();
1939     return TypeInt::make(con & 0xFF);
1940   }
1941   return LoadNode::Value(phase);
1942 }
1943 
1944 //--------------------------LoadUSNode::Ideal-------------------------------------
1945 //
1946 //  If the previous store is to the same address as this load,
1947 //  and the value stored was larger than a char, replace this load
1948 //  with the value stored truncated to a char.  If no truncation is
1949 //  needed, the replacement is done in LoadNode::Identity().
1950 //
1951 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1952   Node* mem = in(MemNode::Memory);
1953   Node* value = can_see_stored_value(mem,phase);
1954   if( value && !phase->type(value)->higher_equal( _type ) )
1955     return new AndINode(value,phase->intcon(0xFFFF));
1956   // Identity call will handle the case where truncation is not needed.
1957   return LoadNode::Ideal(phase, can_reshape);
1958 }
1959 
1960 const Type* LoadUSNode::Value(PhaseGVN* phase) const {
1961   Node* mem = in(MemNode::Memory);
1962   Node* value = can_see_stored_value(mem,phase);
1963   if (value != NULL && value->is_Con() &&
1964       !value->bottom_type()->higher_equal(_type)) {
1965     // If the input to the store does not fit with the load's result type,
1966     // it must be truncated. We can't delay until Ideal call since
1967     // a singleton Value is needed for split_thru_phi optimization.
1968     int con = value->get_int();
1969     return TypeInt::make(con & 0xFFFF);
1970   }
1971   return LoadNode::Value(phase);
1972 }
1973 
1974 //--------------------------LoadSNode::Ideal--------------------------------------
1975 //
1976 //  If the previous store is to the same address as this load,
1977 //  and the value stored was larger than a short, replace this load
1978 //  with the value stored truncated to a short.  If no truncation is
1979 //  needed, the replacement is done in LoadNode::Identity().
1980 //
1981 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1982   Node* mem = in(MemNode::Memory);
1983   Node* value = can_see_stored_value(mem,phase);
1984   if( value && !phase->type(value)->higher_equal( _type ) ) {
1985     Node *result = phase->transform( new LShiftINode(value, phase->intcon(16)) );
1986     return new RShiftINode(result, phase->intcon(16));
1987   }
1988   // Identity call will handle the case where truncation is not needed.
1989   return LoadNode::Ideal(phase, can_reshape);
1990 }
1991 
1992 const Type* LoadSNode::Value(PhaseGVN* phase) const {
1993   Node* mem = in(MemNode::Memory);
1994   Node* value = can_see_stored_value(mem,phase);
1995   if (value != NULL && value->is_Con() &&
1996       !value->bottom_type()->higher_equal(_type)) {
1997     // If the input to the store does not fit with the load's result type,
1998     // it must be truncated. We can't delay until Ideal call since
1999     // a singleton Value is needed for split_thru_phi optimization.
2000     int con = value->get_int();
2001     return TypeInt::make((con << 16) >> 16);
2002   }
2003   return LoadNode::Value(phase);
2004 }
2005 
2006 //=============================================================================
2007 //----------------------------LoadKlassNode::make------------------------------
2008 // Polymorphic factory method:
2009 Node* LoadKlassNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* at, const TypeKlassPtr* tk) {
2010   // sanity check the alias category against the created node type
2011   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2012   assert(adr_type != NULL, "expecting TypeKlassPtr");
2013 #ifdef _LP64
2014   if (adr_type->is_ptr_to_narrowklass()) {
2015     assert(UseCompressedClassPointers, "no compressed klasses");
2016     Node* load_klass = gvn.transform(new LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2017     return new DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2018   }
2019 #endif
2020   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2021   return new LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2022 }
2023 
2024 //------------------------------Value------------------------------------------
2025 const Type* LoadKlassNode::Value(PhaseGVN* phase) const {
2026   return klass_value_common(phase);
2027 }
2028 
2029 // In most cases, LoadKlassNode does not have the control input set. If the control
2030 // input is set, it must not be removed (by LoadNode::Ideal()).
2031 bool LoadKlassNode::can_remove_control() const {
2032   return false;
2033 }
2034 
2035 const Type* LoadNode::klass_value_common(PhaseGVN* phase) const {
2036   // Either input is TOP ==> the result is TOP
2037   const Type *t1 = phase->type( in(MemNode::Memory) );
2038   if (t1 == Type::TOP)  return Type::TOP;
2039   Node *adr = in(MemNode::Address);
2040   const Type *t2 = phase->type( adr );
2041   if (t2 == Type::TOP)  return Type::TOP;
2042   const TypePtr *tp = t2->is_ptr();
2043   if (TypePtr::above_centerline(tp->ptr()) ||
2044       tp->ptr() == TypePtr::Null)  return Type::TOP;
2045 
2046   // Return a more precise klass, if possible
2047   const TypeInstPtr *tinst = tp->isa_instptr();
2048   if (tinst != NULL) {
2049     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2050     int offset = tinst->offset();
2051     if (ik == phase->C->env()->Class_klass()
2052         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2053             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2054       // We are loading a special hidden field from a Class mirror object,
2055       // the field which points to the VM's Klass metaobject.
2056       ciType* t = tinst->java_mirror_type();
2057       // java_mirror_type returns non-null for compile-time Class constants.
2058       if (t != NULL) {
2059         // constant oop => constant klass
2060         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2061           if (t->is_void()) {
2062             // We cannot create a void array.  Since void is a primitive type return null
2063             // klass.  Users of this result need to do a null check on the returned klass.
2064             return TypePtr::NULL_PTR;
2065           }
2066           return TypeKlassPtr::make(ciArrayKlass::make(t));
2067         }
2068         if (!t->is_klass()) {
2069           // a primitive Class (e.g., int.class) has NULL for a klass field
2070           return TypePtr::NULL_PTR;
2071         }
2072         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2073         return TypeKlassPtr::make(t->as_klass());
2074       }
2075       // non-constant mirror, so we can't tell what's going on
2076     }
2077     if( !ik->is_loaded() )
2078       return _type;             // Bail out if not loaded
2079     if (offset == oopDesc::klass_offset_in_bytes()) {
2080       if (tinst->klass_is_exact()) {
2081         return TypeKlassPtr::make(ik);
2082       }
2083       // See if we can become precise: no subklasses and no interface
2084       // (Note:  We need to support verified interfaces.)
2085       if (!ik->is_interface() && !ik->has_subklass()) {
2086         //assert(!UseExactTypes, "this code should be useless with exact types");
2087         // Add a dependence; if any subclass added we need to recompile
2088         if (!ik->is_final()) {
2089           // %%% should use stronger assert_unique_concrete_subtype instead
2090           phase->C->dependencies()->assert_leaf_type(ik);
2091         }
2092         // Return precise klass
2093         return TypeKlassPtr::make(ik);
2094       }
2095 
2096       // Return root of possible klass
2097       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2098     }
2099   }
2100 
2101   // Check for loading klass from an array
2102   const TypeAryPtr *tary = tp->isa_aryptr();
2103   if( tary != NULL ) {
2104     ciKlass *tary_klass = tary->klass();
2105     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2106         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2107       if (tary->klass_is_exact()) {
2108         return TypeKlassPtr::make(tary_klass);
2109       }
2110       ciArrayKlass *ak = tary->klass()->as_array_klass();
2111       // If the klass is an object array, we defer the question to the
2112       // array component klass.
2113       if( ak->is_obj_array_klass() ) {
2114         assert( ak->is_loaded(), "" );
2115         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2116         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2117           ciInstanceKlass* ik = base_k->as_instance_klass();
2118           // See if we can become precise: no subklasses and no interface
2119           if (!ik->is_interface() && !ik->has_subklass()) {
2120             //assert(!UseExactTypes, "this code should be useless with exact types");
2121             // Add a dependence; if any subclass added we need to recompile
2122             if (!ik->is_final()) {
2123               phase->C->dependencies()->assert_leaf_type(ik);
2124             }
2125             // Return precise array klass
2126             return TypeKlassPtr::make(ak);
2127           }
2128         }
2129         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2130       } else {                  // Found a type-array?
2131         //assert(!UseExactTypes, "this code should be useless with exact types");
2132         assert( ak->is_type_array_klass(), "" );
2133         return TypeKlassPtr::make(ak); // These are always precise
2134       }
2135     }
2136   }
2137 
2138   // Check for loading klass from an array klass
2139   const TypeKlassPtr *tkls = tp->isa_klassptr();
2140   if (tkls != NULL && !StressReflectiveCode) {
2141     ciKlass* klass = tkls->klass();
2142     if( !klass->is_loaded() )
2143       return _type;             // Bail out if not loaded
2144     if( klass->is_obj_array_klass() &&
2145         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2146       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2147       // // Always returning precise element type is incorrect,
2148       // // e.g., element type could be object and array may contain strings
2149       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2150 
2151       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2152       // according to the element type's subclassing.
2153       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2154     }
2155     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2156         tkls->offset() == in_bytes(Klass::super_offset())) {
2157       ciKlass* sup = klass->as_instance_klass()->super();
2158       // The field is Klass::_super.  Return its (constant) value.
2159       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2160       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2161     }
2162   }
2163 
2164   // Bailout case
2165   return LoadNode::Value(phase);
2166 }
2167 
2168 //------------------------------Identity---------------------------------------
2169 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2170 // Also feed through the klass in Allocate(...klass...)._klass.
2171 Node* LoadKlassNode::Identity(PhaseGVN* phase) {
2172   return klass_identity_common(phase);
2173 }
2174 
2175 Node* LoadNode::klass_identity_common(PhaseGVN* phase) {
2176   Node* x = LoadNode::Identity(phase);
2177   if (x != this)  return x;
2178 
2179   // Take apart the address into an oop and and offset.
2180   // Return 'this' if we cannot.
2181   Node*    adr    = in(MemNode::Address);
2182   intptr_t offset = 0;
2183   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2184   if (base == NULL)     return this;
2185   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2186   if (toop == NULL)     return this;
2187 
2188   // We can fetch the klass directly through an AllocateNode.
2189   // This works even if the klass is not constant (clone or newArray).
2190   if (offset == oopDesc::klass_offset_in_bytes()) {
2191     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2192     if (allocated_klass != NULL) {
2193       return allocated_klass;
2194     }
2195   }
2196 
2197   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2198   // See inline_native_Class_query for occurrences of these patterns.
2199   // Java Example:  x.getClass().isAssignableFrom(y)
2200   //
2201   // This improves reflective code, often making the Class
2202   // mirror go completely dead.  (Current exception:  Class
2203   // mirrors may appear in debug info, but we could clean them out by
2204   // introducing a new debug info operator for Klass*.java_mirror).
2205   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2206       && offset == java_lang_Class::klass_offset_in_bytes()) {
2207     // We are loading a special hidden field from a Class mirror,
2208     // the field which points to its Klass or ArrayKlass metaobject.
2209     if (base->is_Load()) {
2210       Node* adr2 = base->in(MemNode::Address);
2211       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2212       if (tkls != NULL && !tkls->empty()
2213           && (tkls->klass()->is_instance_klass() ||
2214               tkls->klass()->is_array_klass())
2215           && adr2->is_AddP()
2216           ) {
2217         int mirror_field = in_bytes(Klass::java_mirror_offset());
2218         if (tkls->offset() == mirror_field) {
2219           return adr2->in(AddPNode::Base);
2220         }
2221       }
2222     }
2223   }
2224 
2225   return this;
2226 }
2227 
2228 
2229 //------------------------------Value------------------------------------------
2230 const Type* LoadNKlassNode::Value(PhaseGVN* phase) const {
2231   const Type *t = klass_value_common(phase);
2232   if (t == Type::TOP)
2233     return t;
2234 
2235   return t->make_narrowklass();
2236 }
2237 
2238 //------------------------------Identity---------------------------------------
2239 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2240 // Also feed through the klass in Allocate(...klass...)._klass.
2241 Node* LoadNKlassNode::Identity(PhaseGVN* phase) {
2242   Node *x = klass_identity_common(phase);
2243 
2244   const Type *t = phase->type( x );
2245   if( t == Type::TOP ) return x;
2246   if( t->isa_narrowklass()) return x;
2247   assert (!t->isa_narrowoop(), "no narrow oop here");
2248 
2249   return phase->transform(new EncodePKlassNode(x, t->make_narrowklass()));
2250 }
2251 
2252 //------------------------------Value-----------------------------------------
2253 const Type* LoadRangeNode::Value(PhaseGVN* phase) const {
2254   // Either input is TOP ==> the result is TOP
2255   const Type *t1 = phase->type( in(MemNode::Memory) );
2256   if( t1 == Type::TOP ) return Type::TOP;
2257   Node *adr = in(MemNode::Address);
2258   const Type *t2 = phase->type( adr );
2259   if( t2 == Type::TOP ) return Type::TOP;
2260   const TypePtr *tp = t2->is_ptr();
2261   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2262   const TypeAryPtr *tap = tp->isa_aryptr();
2263   if( !tap ) return _type;
2264   return tap->size();
2265 }
2266 
2267 //-------------------------------Ideal---------------------------------------
2268 // Feed through the length in AllocateArray(...length...)._length.
2269 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2270   Node* p = MemNode::Ideal_common(phase, can_reshape);
2271   if (p)  return (p == NodeSentinel) ? NULL : p;
2272 
2273   // Take apart the address into an oop and and offset.
2274   // Return 'this' if we cannot.
2275   Node*    adr    = in(MemNode::Address);
2276   intptr_t offset = 0;
2277   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2278   if (base == NULL)     return NULL;
2279   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2280   if (tary == NULL)     return NULL;
2281 
2282   // We can fetch the length directly through an AllocateArrayNode.
2283   // This works even if the length is not constant (clone or newArray).
2284   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2285     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2286     if (alloc != NULL) {
2287       Node* allocated_length = alloc->Ideal_length();
2288       Node* len = alloc->make_ideal_length(tary, phase);
2289       if (allocated_length != len) {
2290         // New CastII improves on this.
2291         return len;
2292       }
2293     }
2294   }
2295 
2296   return NULL;
2297 }
2298 
2299 //------------------------------Identity---------------------------------------
2300 // Feed through the length in AllocateArray(...length...)._length.
2301 Node* LoadRangeNode::Identity(PhaseGVN* phase) {
2302   Node* x = LoadINode::Identity(phase);
2303   if (x != this)  return x;
2304 
2305   // Take apart the address into an oop and and offset.
2306   // Return 'this' if we cannot.
2307   Node*    adr    = in(MemNode::Address);
2308   intptr_t offset = 0;
2309   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2310   if (base == NULL)     return this;
2311   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2312   if (tary == NULL)     return this;
2313 
2314   // We can fetch the length directly through an AllocateArrayNode.
2315   // This works even if the length is not constant (clone or newArray).
2316   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2317     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2318     if (alloc != NULL) {
2319       Node* allocated_length = alloc->Ideal_length();
2320       // Do not allow make_ideal_length to allocate a CastII node.
2321       Node* len = alloc->make_ideal_length(tary, phase, false);
2322       if (allocated_length == len) {
2323         // Return allocated_length only if it would not be improved by a CastII.
2324         return allocated_length;
2325       }
2326     }
2327   }
2328 
2329   return this;
2330 
2331 }
2332 
2333 //=============================================================================
2334 //---------------------------StoreNode::make-----------------------------------
2335 // Polymorphic factory method:
2336 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2337   assert((mo == unordered || mo == release), "unexpected");
2338   Compile* C = gvn.C;
2339   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2340          ctl != NULL, "raw memory operations should have control edge");
2341 
2342   switch (bt) {
2343   case T_BOOLEAN: val = gvn.transform(new AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2344   case T_BYTE:    return new StoreBNode(ctl, mem, adr, adr_type, val, mo);
2345   case T_INT:     return new StoreINode(ctl, mem, adr, adr_type, val, mo);
2346   case T_CHAR:
2347   case T_SHORT:   return new StoreCNode(ctl, mem, adr, adr_type, val, mo);
2348   case T_LONG:    return new StoreLNode(ctl, mem, adr, adr_type, val, mo);
2349   case T_FLOAT:   return new StoreFNode(ctl, mem, adr, adr_type, val, mo);
2350   case T_DOUBLE:  return new StoreDNode(ctl, mem, adr, adr_type, val, mo);
2351   case T_METADATA:
2352   case T_ADDRESS:
2353   case T_OBJECT:
2354 #ifdef _LP64
2355     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2356       val = gvn.transform(new EncodePNode(val, val->bottom_type()->make_narrowoop()));
2357       return new StoreNNode(ctl, mem, adr, adr_type, val, mo);
2358     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2359                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2360                 adr->bottom_type()->isa_rawptr())) {
2361       val = gvn.transform(new EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2362       return new StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2363     }
2364 #endif
2365     {
2366       return new StorePNode(ctl, mem, adr, adr_type, val, mo);
2367     }
2368   default:
2369     ShouldNotReachHere();
2370     return (StoreNode*)NULL;
2371   }
2372 }
2373 
2374 StoreLNode* StoreLNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2375   bool require_atomic = true;
2376   return new StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2377 }
2378 
2379 StoreDNode* StoreDNode::make_atomic(Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2380   bool require_atomic = true;
2381   return new StoreDNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2382 }
2383 
2384 
2385 //--------------------------bottom_type----------------------------------------
2386 const Type *StoreNode::bottom_type() const {
2387   return Type::MEMORY;
2388 }
2389 
2390 //------------------------------hash-------------------------------------------
2391 uint StoreNode::hash() const {
2392   // unroll addition of interesting fields
2393   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2394 
2395   // Since they are not commoned, do not hash them:
2396   return NO_HASH;
2397 }
2398 
2399 //------------------------------Ideal------------------------------------------
2400 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2401 // When a store immediately follows a relevant allocation/initialization,
2402 // try to capture it into the initialization, or hoist it above.
2403 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2404   Node* p = MemNode::Ideal_common(phase, can_reshape);
2405   if (p)  return (p == NodeSentinel) ? NULL : p;
2406 
2407   Node* mem     = in(MemNode::Memory);
2408   Node* address = in(MemNode::Address);
2409   // Back-to-back stores to same address?  Fold em up.  Generally
2410   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2411   // since they must follow each StoreP operation.  Redundant StoreCMs
2412   // are eliminated just before matching in final_graph_reshape.
2413   {
2414     Node* st = mem;
2415     // If Store 'st' has more than one use, we cannot fold 'st' away.
2416     // For example, 'st' might be the final state at a conditional
2417     // return.  Or, 'st' might be used by some node which is live at
2418     // the same time 'st' is live, which might be unschedulable.  So,
2419     // require exactly ONE user until such time as we clone 'mem' for
2420     // each of 'mem's uses (thus making the exactly-1-user-rule hold
2421     // true).
2422     while (st->is_Store() && st->outcnt() == 1 && st->Opcode() != Op_StoreCM) {
2423       // Looking at a dead closed cycle of memory?
2424       assert(st != st->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2425       assert(Opcode() == st->Opcode() ||
2426              st->Opcode() == Op_StoreVector ||
2427              Opcode() == Op_StoreVector ||
2428              phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw ||
2429              (Opcode() == Op_StoreL && st->Opcode() == Op_StoreI) || // expanded ClearArrayNode
2430              (is_mismatched_access() || st->as_Store()->is_mismatched_access()),
2431              "no mismatched stores, except on raw memory: %s %s", NodeClassNames[Opcode()], NodeClassNames[st->Opcode()]);
2432 
2433       if (st->in(MemNode::Address)->eqv_uncast(address) &&
2434           st->as_Store()->memory_size() <= this->memory_size()) {
2435         Node* use = st->raw_out(0);
2436         phase->igvn_rehash_node_delayed(use);
2437         if (can_reshape) {
2438           use->set_req_X(MemNode::Memory, st->in(MemNode::Memory), phase->is_IterGVN());
2439         } else {
2440           // It's OK to do this in the parser, since DU info is always accurate,
2441           // and the parser always refers to nodes via SafePointNode maps.
2442           use->set_req(MemNode::Memory, st->in(MemNode::Memory));
2443         }
2444         return this;
2445       }
2446       st = st->in(MemNode::Memory);
2447     }
2448   }
2449 
2450 
2451   // Capture an unaliased, unconditional, simple store into an initializer.
2452   // Or, if it is independent of the allocation, hoist it above the allocation.
2453   if (ReduceFieldZeroing && /*can_reshape &&*/
2454       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2455     InitializeNode* init = mem->in(0)->as_Initialize();
2456     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2457     if (offset > 0) {
2458       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2459       // If the InitializeNode captured me, it made a raw copy of me,
2460       // and I need to disappear.
2461       if (moved != NULL) {
2462         // %%% hack to ensure that Ideal returns a new node:
2463         mem = MergeMemNode::make(mem);
2464         return mem;             // fold me away
2465       }
2466     }
2467   }
2468 
2469   return NULL;                  // No further progress
2470 }
2471 
2472 //------------------------------Value-----------------------------------------
2473 const Type* StoreNode::Value(PhaseGVN* phase) const {
2474   // Either input is TOP ==> the result is TOP
2475   const Type *t1 = phase->type( in(MemNode::Memory) );
2476   if( t1 == Type::TOP ) return Type::TOP;
2477   const Type *t2 = phase->type( in(MemNode::Address) );
2478   if( t2 == Type::TOP ) return Type::TOP;
2479   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2480   if( t3 == Type::TOP ) return Type::TOP;
2481   return Type::MEMORY;
2482 }
2483 
2484 //------------------------------Identity---------------------------------------
2485 // Remove redundant stores:
2486 //   Store(m, p, Load(m, p)) changes to m.
2487 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2488 Node* StoreNode::Identity(PhaseGVN* phase) {
2489   Node* mem = in(MemNode::Memory);
2490   Node* adr = in(MemNode::Address);
2491   Node* val = in(MemNode::ValueIn);
2492 
2493   // Load then Store?  Then the Store is useless
2494   if (val->is_Load() &&
2495       val->in(MemNode::Address)->eqv_uncast(adr) &&
2496       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2497       val->as_Load()->store_Opcode() == Opcode()) {
2498     return mem;
2499   }
2500 
2501   // Two stores in a row of the same value?
2502   if (mem->is_Store() &&
2503       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2504       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2505       mem->Opcode() == Opcode()) {
2506     return mem;
2507   }
2508 
2509   // Store of zero anywhere into a freshly-allocated object?
2510   // Then the store is useless.
2511   // (It must already have been captured by the InitializeNode.)
2512   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2513     // a newly allocated object is already all-zeroes everywhere
2514     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2515       return mem;
2516     }
2517 
2518     // the store may also apply to zero-bits in an earlier object
2519     Node* prev_mem = find_previous_store(phase);
2520     // Steps (a), (b):  Walk past independent stores to find an exact match.
2521     if (prev_mem != NULL) {
2522       Node* prev_val = can_see_stored_value(prev_mem, phase);
2523       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2524         // prev_val and val might differ by a cast; it would be good
2525         // to keep the more informative of the two.
2526         return mem;
2527       }
2528     }
2529   }
2530 
2531   return this;
2532 }
2533 
2534 //------------------------------match_edge-------------------------------------
2535 // Do we Match on this edge index or not?  Match only memory & value
2536 uint StoreNode::match_edge(uint idx) const {
2537   return idx == MemNode::Address || idx == MemNode::ValueIn;
2538 }
2539 
2540 //------------------------------cmp--------------------------------------------
2541 // Do not common stores up together.  They generally have to be split
2542 // back up anyways, so do not bother.
2543 uint StoreNode::cmp( const Node &n ) const {
2544   return (&n == this);          // Always fail except on self
2545 }
2546 
2547 //------------------------------Ideal_masked_input-----------------------------
2548 // Check for a useless mask before a partial-word store
2549 // (StoreB ... (AndI valIn conIa) )
2550 // If (conIa & mask == mask) this simplifies to
2551 // (StoreB ... (valIn) )
2552 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2553   Node *val = in(MemNode::ValueIn);
2554   if( val->Opcode() == Op_AndI ) {
2555     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2556     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2557       set_req(MemNode::ValueIn, val->in(1));
2558       return this;
2559     }
2560   }
2561   return NULL;
2562 }
2563 
2564 
2565 //------------------------------Ideal_sign_extended_input----------------------
2566 // Check for useless sign-extension before a partial-word store
2567 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2568 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2569 // (StoreB ... (valIn) )
2570 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2571   Node *val = in(MemNode::ValueIn);
2572   if( val->Opcode() == Op_RShiftI ) {
2573     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2574     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2575       Node *shl = val->in(1);
2576       if( shl->Opcode() == Op_LShiftI ) {
2577         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2578         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2579           set_req(MemNode::ValueIn, shl->in(1));
2580           return this;
2581         }
2582       }
2583     }
2584   }
2585   return NULL;
2586 }
2587 
2588 //------------------------------value_never_loaded-----------------------------------
2589 // Determine whether there are any possible loads of the value stored.
2590 // For simplicity, we actually check if there are any loads from the
2591 // address stored to, not just for loads of the value stored by this node.
2592 //
2593 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2594   Node *adr = in(Address);
2595   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2596   if (adr_oop == NULL)
2597     return false;
2598   if (!adr_oop->is_known_instance_field())
2599     return false; // if not a distinct instance, there may be aliases of the address
2600   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2601     Node *use = adr->fast_out(i);
2602     if (use->is_Load() || use->is_LoadStore()) {
2603       return false;
2604     }
2605   }
2606   return true;
2607 }
2608 
2609 //=============================================================================
2610 //------------------------------Ideal------------------------------------------
2611 // If the store is from an AND mask that leaves the low bits untouched, then
2612 // we can skip the AND operation.  If the store is from a sign-extension
2613 // (a left shift, then right shift) we can skip both.
2614 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2615   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2616   if( progress != NULL ) return progress;
2617 
2618   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2619   if( progress != NULL ) return progress;
2620 
2621   // Finally check the default case
2622   return StoreNode::Ideal(phase, can_reshape);
2623 }
2624 
2625 //=============================================================================
2626 //------------------------------Ideal------------------------------------------
2627 // If the store is from an AND mask that leaves the low bits untouched, then
2628 // we can skip the AND operation
2629 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2630   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2631   if( progress != NULL ) return progress;
2632 
2633   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2634   if( progress != NULL ) return progress;
2635 
2636   // Finally check the default case
2637   return StoreNode::Ideal(phase, can_reshape);
2638 }
2639 
2640 //=============================================================================
2641 //------------------------------Identity---------------------------------------
2642 Node* StoreCMNode::Identity(PhaseGVN* phase) {
2643   // No need to card mark when storing a null ptr
2644   Node* my_store = in(MemNode::OopStore);
2645   if (my_store->is_Store()) {
2646     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2647     if( t1 == TypePtr::NULL_PTR ) {
2648       return in(MemNode::Memory);
2649     }
2650   }
2651   return this;
2652 }
2653 
2654 //=============================================================================
2655 //------------------------------Ideal---------------------------------------
2656 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2657   Node* progress = StoreNode::Ideal(phase, can_reshape);
2658   if (progress != NULL) return progress;
2659 
2660   Node* my_store = in(MemNode::OopStore);
2661   if (my_store->is_MergeMem()) {
2662     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2663     set_req(MemNode::OopStore, mem);
2664     return this;
2665   }
2666 
2667   return NULL;
2668 }
2669 
2670 //------------------------------Value-----------------------------------------
2671 const Type* StoreCMNode::Value(PhaseGVN* phase) const {
2672   // Either input is TOP ==> the result is TOP
2673   const Type *t = phase->type( in(MemNode::Memory) );
2674   if( t == Type::TOP ) return Type::TOP;
2675   t = phase->type( in(MemNode::Address) );
2676   if( t == Type::TOP ) return Type::TOP;
2677   t = phase->type( in(MemNode::ValueIn) );
2678   if( t == Type::TOP ) return Type::TOP;
2679   // If extra input is TOP ==> the result is TOP
2680   t = phase->type( in(MemNode::OopStore) );
2681   if( t == Type::TOP ) return Type::TOP;
2682 
2683   return StoreNode::Value( phase );
2684 }
2685 
2686 
2687 //=============================================================================
2688 //----------------------------------SCMemProjNode------------------------------
2689 const Type* SCMemProjNode::Value(PhaseGVN* phase) const
2690 {
2691   return bottom_type();
2692 }
2693 
2694 //=============================================================================
2695 //----------------------------------LoadStoreNode------------------------------
2696 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2697   : Node(required),
2698     _type(rt),
2699     _adr_type(at)
2700 {
2701   init_req(MemNode::Control, c  );
2702   init_req(MemNode::Memory , mem);
2703   init_req(MemNode::Address, adr);
2704   init_req(MemNode::ValueIn, val);
2705   init_class_id(Class_LoadStore);
2706 }
2707 
2708 uint LoadStoreNode::ideal_reg() const {
2709   return _type->ideal_reg();
2710 }
2711 
2712 bool LoadStoreNode::result_not_used() const {
2713   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2714     Node *x = fast_out(i);
2715     if (x->Opcode() == Op_SCMemProj) continue;
2716     return false;
2717   }
2718   return true;
2719 }
2720 
2721 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2722 
2723 //=============================================================================
2724 //----------------------------------LoadStoreConditionalNode--------------------
2725 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2726   init_req(ExpectedIn, ex );
2727 }
2728 
2729 //=============================================================================
2730 //-------------------------------adr_type--------------------------------------
2731 const TypePtr* ClearArrayNode::adr_type() const {
2732   Node *adr = in(3);
2733   if (adr == NULL)  return NULL; // node is dead
2734   return MemNode::calculate_adr_type(adr->bottom_type());
2735 }
2736 
2737 //------------------------------match_edge-------------------------------------
2738 // Do we Match on this edge index or not?  Do not match memory
2739 uint ClearArrayNode::match_edge(uint idx) const {
2740   return idx > 1;
2741 }
2742 
2743 //------------------------------Identity---------------------------------------
2744 // Clearing a zero length array does nothing
2745 Node* ClearArrayNode::Identity(PhaseGVN* phase) {
2746   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2747 }
2748 
2749 //------------------------------Idealize---------------------------------------
2750 // Clearing a short array is faster with stores
2751 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2752   // Already know this is a large node, do not try to ideal it
2753   if (!IdealizeClearArrayNode || _is_large) return NULL;
2754 
2755   const int unit = BytesPerLong;
2756   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2757   if (!t)  return NULL;
2758   if (!t->is_con())  return NULL;
2759   intptr_t raw_count = t->get_con();
2760   intptr_t size = raw_count;
2761   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2762   // Clearing nothing uses the Identity call.
2763   // Negative clears are possible on dead ClearArrays
2764   // (see jck test stmt114.stmt11402.val).
2765   if (size <= 0 || size % unit != 0)  return NULL;
2766   intptr_t count = size / unit;
2767   // Length too long; communicate this to matchers and assemblers.
2768   // Assemblers are responsible to produce fast hardware clears for it.
2769   if (size > InitArrayShortSize) {
2770     return new ClearArrayNode(in(0), in(1), in(2), in(3), true);
2771   }
2772   Node *mem = in(1);
2773   if( phase->type(mem)==Type::TOP ) return NULL;
2774   Node *adr = in(3);
2775   const Type* at = phase->type(adr);
2776   if( at==Type::TOP ) return NULL;
2777   const TypePtr* atp = at->isa_ptr();
2778   // adjust atp to be the correct array element address type
2779   if (atp == NULL)  atp = TypePtr::BOTTOM;
2780   else              atp = atp->add_offset(Type::OffsetBot);
2781   // Get base for derived pointer purposes
2782   if( adr->Opcode() != Op_AddP ) Unimplemented();
2783   Node *base = adr->in(1);
2784 
2785   Node *zero = phase->makecon(TypeLong::ZERO);
2786   Node *off  = phase->MakeConX(BytesPerLong);
2787   mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2788   count--;
2789   while( count-- ) {
2790     mem = phase->transform(mem);
2791     adr = phase->transform(new AddPNode(base,adr,off));
2792     mem = new StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2793   }
2794   return mem;
2795 }
2796 
2797 //----------------------------step_through----------------------------------
2798 // Return allocation input memory edge if it is different instance
2799 // or itself if it is the one we are looking for.
2800 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2801   Node* n = *np;
2802   assert(n->is_ClearArray(), "sanity");
2803   intptr_t offset;
2804   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2805   // This method is called only before Allocate nodes are expanded
2806   // during macro nodes expansion. Before that ClearArray nodes are
2807   // only generated in PhaseMacroExpand::generate_arraycopy() (before
2808   // Allocate nodes are expanded) which follows allocations.
2809   assert(alloc != NULL, "should have allocation");
2810   if (alloc->_idx == instance_id) {
2811     // Can not bypass initialization of the instance we are looking for.
2812     return false;
2813   }
2814   // Otherwise skip it.
2815   InitializeNode* init = alloc->initialization();
2816   if (init != NULL)
2817     *np = init->in(TypeFunc::Memory);
2818   else
2819     *np = alloc->in(TypeFunc::Memory);
2820   return true;
2821 }
2822 
2823 //----------------------------clear_memory-------------------------------------
2824 // Generate code to initialize object storage to zero.
2825 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2826                                    intptr_t start_offset,
2827                                    Node* end_offset,
2828                                    PhaseGVN* phase) {
2829   intptr_t offset = start_offset;
2830 
2831   int unit = BytesPerLong;
2832   if ((offset % unit) != 0) {
2833     Node* adr = new AddPNode(dest, dest, phase->MakeConX(offset));
2834     adr = phase->transform(adr);
2835     const TypePtr* atp = TypeRawPtr::BOTTOM;
2836     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2837     mem = phase->transform(mem);
2838     offset += BytesPerInt;
2839   }
2840   assert((offset % unit) == 0, "");
2841 
2842   // Initialize the remaining stuff, if any, with a ClearArray.
2843   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2844 }
2845 
2846 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2847                                    Node* start_offset,
2848                                    Node* end_offset,
2849                                    PhaseGVN* phase) {
2850   if (start_offset == end_offset) {
2851     // nothing to do
2852     return mem;
2853   }
2854 
2855   int unit = BytesPerLong;
2856   Node* zbase = start_offset;
2857   Node* zend  = end_offset;
2858 
2859   // Scale to the unit required by the CPU:
2860   if (!Matcher::init_array_count_is_in_bytes) {
2861     Node* shift = phase->intcon(exact_log2(unit));
2862     zbase = phase->transform(new URShiftXNode(zbase, shift) );
2863     zend  = phase->transform(new URShiftXNode(zend,  shift) );
2864   }
2865 
2866   // Bulk clear double-words
2867   Node* zsize = phase->transform(new SubXNode(zend, zbase) );
2868   Node* adr = phase->transform(new AddPNode(dest, dest, start_offset) );
2869   mem = new ClearArrayNode(ctl, mem, zsize, adr, false);
2870   return phase->transform(mem);
2871 }
2872 
2873 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2874                                    intptr_t start_offset,
2875                                    intptr_t end_offset,
2876                                    PhaseGVN* phase) {
2877   if (start_offset == end_offset) {
2878     // nothing to do
2879     return mem;
2880   }
2881 
2882   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2883   intptr_t done_offset = end_offset;
2884   if ((done_offset % BytesPerLong) != 0) {
2885     done_offset -= BytesPerInt;
2886   }
2887   if (done_offset > start_offset) {
2888     mem = clear_memory(ctl, mem, dest,
2889                        start_offset, phase->MakeConX(done_offset), phase);
2890   }
2891   if (done_offset < end_offset) { // emit the final 32-bit store
2892     Node* adr = new AddPNode(dest, dest, phase->MakeConX(done_offset));
2893     adr = phase->transform(adr);
2894     const TypePtr* atp = TypeRawPtr::BOTTOM;
2895     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2896     mem = phase->transform(mem);
2897     done_offset += BytesPerInt;
2898   }
2899   assert(done_offset == end_offset, "");
2900   return mem;
2901 }
2902 
2903 //=============================================================================
2904 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2905   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2906     _adr_type(C->get_adr_type(alias_idx))
2907 {
2908   init_class_id(Class_MemBar);
2909   Node* top = C->top();
2910   init_req(TypeFunc::I_O,top);
2911   init_req(TypeFunc::FramePtr,top);
2912   init_req(TypeFunc::ReturnAdr,top);
2913   if (precedent != NULL)
2914     init_req(TypeFunc::Parms, precedent);
2915 }
2916 
2917 //------------------------------cmp--------------------------------------------
2918 uint MemBarNode::hash() const { return NO_HASH; }
2919 uint MemBarNode::cmp( const Node &n ) const {
2920   return (&n == this);          // Always fail except on self
2921 }
2922 
2923 //------------------------------make-------------------------------------------
2924 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2925   switch (opcode) {
2926   case Op_MemBarAcquire:     return new MemBarAcquireNode(C, atp, pn);
2927   case Op_LoadFence:         return new LoadFenceNode(C, atp, pn);
2928   case Op_MemBarRelease:     return new MemBarReleaseNode(C, atp, pn);
2929   case Op_StoreFence:        return new StoreFenceNode(C, atp, pn);
2930   case Op_MemBarAcquireLock: return new MemBarAcquireLockNode(C, atp, pn);
2931   case Op_MemBarReleaseLock: return new MemBarReleaseLockNode(C, atp, pn);
2932   case Op_MemBarVolatile:    return new MemBarVolatileNode(C, atp, pn);
2933   case Op_MemBarCPUOrder:    return new MemBarCPUOrderNode(C, atp, pn);
2934   case Op_OnSpinWait:        return new OnSpinWaitNode(C, atp, pn);
2935   case Op_Initialize:        return new InitializeNode(C, atp, pn);
2936   case Op_MemBarStoreStore:  return new MemBarStoreStoreNode(C, atp, pn);
2937   default: ShouldNotReachHere(); return NULL;
2938   }
2939 }
2940 
2941 //------------------------------Ideal------------------------------------------
2942 // Return a node which is more "ideal" than the current node.  Strip out
2943 // control copies
2944 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2945   if (remove_dead_region(phase, can_reshape)) return this;
2946   // Don't bother trying to transform a dead node
2947   if (in(0) && in(0)->is_top()) {
2948     return NULL;
2949   }
2950 
2951   bool progress = false;
2952   // Eliminate volatile MemBars for scalar replaced objects.
2953   if (can_reshape && req() == (Precedent+1)) {
2954     bool eliminate = false;
2955     int opc = Opcode();
2956     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2957       // Volatile field loads and stores.
2958       Node* my_mem = in(MemBarNode::Precedent);
2959       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2960       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2961         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2962         // replace this Precedent (decodeN) with the Load instead.
2963         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2964           Node* load_node = my_mem->in(1);
2965           set_req(MemBarNode::Precedent, load_node);
2966           phase->is_IterGVN()->_worklist.push(my_mem);
2967           my_mem = load_node;
2968         } else {
2969           assert(my_mem->unique_out() == this, "sanity");
2970           del_req(Precedent);
2971           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2972           my_mem = NULL;
2973         }
2974         progress = true;
2975       }
2976       if (my_mem != NULL && my_mem->is_Mem()) {
2977         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2978         // Check for scalar replaced object reference.
2979         if( t_oop != NULL && t_oop->is_known_instance_field() &&
2980             t_oop->offset() != Type::OffsetBot &&
2981             t_oop->offset() != Type::OffsetTop) {
2982           eliminate = true;
2983         }
2984       }
2985     } else if (opc == Op_MemBarRelease) {
2986       // Final field stores.
2987       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2988       if ((alloc != NULL) && alloc->is_Allocate() &&
2989           alloc->as_Allocate()->does_not_escape_thread()) {
2990         // The allocated object does not escape.
2991         eliminate = true;
2992       }
2993     }
2994     if (eliminate) {
2995       // Replace MemBar projections by its inputs.
2996       PhaseIterGVN* igvn = phase->is_IterGVN();
2997       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2998       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2999       // Must return either the original node (now dead) or a new node
3000       // (Do not return a top here, since that would break the uniqueness of top.)
3001       return new ConINode(TypeInt::ZERO);
3002     }
3003   }
3004   return progress ? this : NULL;
3005 }
3006 
3007 //------------------------------Value------------------------------------------
3008 const Type* MemBarNode::Value(PhaseGVN* phase) const {
3009   if( !in(0) ) return Type::TOP;
3010   if( phase->type(in(0)) == Type::TOP )
3011     return Type::TOP;
3012   return TypeTuple::MEMBAR;
3013 }
3014 
3015 //------------------------------match------------------------------------------
3016 // Construct projections for memory.
3017 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3018   switch (proj->_con) {
3019   case TypeFunc::Control:
3020   case TypeFunc::Memory:
3021     return new MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3022   }
3023   ShouldNotReachHere();
3024   return NULL;
3025 }
3026 
3027 //===========================InitializeNode====================================
3028 // SUMMARY:
3029 // This node acts as a memory barrier on raw memory, after some raw stores.
3030 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3031 // The Initialize can 'capture' suitably constrained stores as raw inits.
3032 // It can coalesce related raw stores into larger units (called 'tiles').
3033 // It can avoid zeroing new storage for memory units which have raw inits.
3034 // At macro-expansion, it is marked 'complete', and does not optimize further.
3035 //
3036 // EXAMPLE:
3037 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3038 //   ctl = incoming control; mem* = incoming memory
3039 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3040 // First allocate uninitialized memory and fill in the header:
3041 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3042 //   ctl := alloc.Control; mem* := alloc.Memory*
3043 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3044 // Then initialize to zero the non-header parts of the raw memory block:
3045 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3046 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3047 // After the initialize node executes, the object is ready for service:
3048 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3049 // Suppose its body is immediately initialized as {1,2}:
3050 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3051 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3052 //   mem.SLICE(#short[*]) := store2
3053 //
3054 // DETAILS:
3055 // An InitializeNode collects and isolates object initialization after
3056 // an AllocateNode and before the next possible safepoint.  As a
3057 // memory barrier (MemBarNode), it keeps critical stores from drifting
3058 // down past any safepoint or any publication of the allocation.
3059 // Before this barrier, a newly-allocated object may have uninitialized bits.
3060 // After this barrier, it may be treated as a real oop, and GC is allowed.
3061 //
3062 // The semantics of the InitializeNode include an implicit zeroing of
3063 // the new object from object header to the end of the object.
3064 // (The object header and end are determined by the AllocateNode.)
3065 //
3066 // Certain stores may be added as direct inputs to the InitializeNode.
3067 // These stores must update raw memory, and they must be to addresses
3068 // derived from the raw address produced by AllocateNode, and with
3069 // a constant offset.  They must be ordered by increasing offset.
3070 // The first one is at in(RawStores), the last at in(req()-1).
3071 // Unlike most memory operations, they are not linked in a chain,
3072 // but are displayed in parallel as users of the rawmem output of
3073 // the allocation.
3074 //
3075 // (See comments in InitializeNode::capture_store, which continue
3076 // the example given above.)
3077 //
3078 // When the associated Allocate is macro-expanded, the InitializeNode
3079 // may be rewritten to optimize collected stores.  A ClearArrayNode
3080 // may also be created at that point to represent any required zeroing.
3081 // The InitializeNode is then marked 'complete', prohibiting further
3082 // capturing of nearby memory operations.
3083 //
3084 // During macro-expansion, all captured initializations which store
3085 // constant values of 32 bits or smaller are coalesced (if advantageous)
3086 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3087 // initialized in fewer memory operations.  Memory words which are
3088 // covered by neither tiles nor non-constant stores are pre-zeroed
3089 // by explicit stores of zero.  (The code shape happens to do all
3090 // zeroing first, then all other stores, with both sequences occurring
3091 // in order of ascending offsets.)
3092 //
3093 // Alternatively, code may be inserted between an AllocateNode and its
3094 // InitializeNode, to perform arbitrary initialization of the new object.
3095 // E.g., the object copying intrinsics insert complex data transfers here.
3096 // The initialization must then be marked as 'complete' disable the
3097 // built-in zeroing semantics and the collection of initializing stores.
3098 //
3099 // While an InitializeNode is incomplete, reads from the memory state
3100 // produced by it are optimizable if they match the control edge and
3101 // new oop address associated with the allocation/initialization.
3102 // They return a stored value (if the offset matches) or else zero.
3103 // A write to the memory state, if it matches control and address,
3104 // and if it is to a constant offset, may be 'captured' by the
3105 // InitializeNode.  It is cloned as a raw memory operation and rewired
3106 // inside the initialization, to the raw oop produced by the allocation.
3107 // Operations on addresses which are provably distinct (e.g., to
3108 // other AllocateNodes) are allowed to bypass the initialization.
3109 //
3110 // The effect of all this is to consolidate object initialization
3111 // (both arrays and non-arrays, both piecewise and bulk) into a
3112 // single location, where it can be optimized as a unit.
3113 //
3114 // Only stores with an offset less than TrackedInitializationLimit words
3115 // will be considered for capture by an InitializeNode.  This puts a
3116 // reasonable limit on the complexity of optimized initializations.
3117 
3118 //---------------------------InitializeNode------------------------------------
3119 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3120   : _is_complete(Incomplete), _does_not_escape(false),
3121     MemBarNode(C, adr_type, rawoop)
3122 {
3123   init_class_id(Class_Initialize);
3124 
3125   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3126   assert(in(RawAddress) == rawoop, "proper init");
3127   // Note:  allocation() can be NULL, for secondary initialization barriers
3128 }
3129 
3130 // Since this node is not matched, it will be processed by the
3131 // register allocator.  Declare that there are no constraints
3132 // on the allocation of the RawAddress edge.
3133 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3134   // This edge should be set to top, by the set_complete.  But be conservative.
3135   if (idx == InitializeNode::RawAddress)
3136     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3137   return RegMask::Empty;
3138 }
3139 
3140 Node* InitializeNode::memory(uint alias_idx) {
3141   Node* mem = in(Memory);
3142   if (mem->is_MergeMem()) {
3143     return mem->as_MergeMem()->memory_at(alias_idx);
3144   } else {
3145     // incoming raw memory is not split
3146     return mem;
3147   }
3148 }
3149 
3150 bool InitializeNode::is_non_zero() {
3151   if (is_complete())  return false;
3152   remove_extra_zeroes();
3153   return (req() > RawStores);
3154 }
3155 
3156 void InitializeNode::set_complete(PhaseGVN* phase) {
3157   assert(!is_complete(), "caller responsibility");
3158   _is_complete = Complete;
3159 
3160   // After this node is complete, it contains a bunch of
3161   // raw-memory initializations.  There is no need for
3162   // it to have anything to do with non-raw memory effects.
3163   // Therefore, tell all non-raw users to re-optimize themselves,
3164   // after skipping the memory effects of this initialization.
3165   PhaseIterGVN* igvn = phase->is_IterGVN();
3166   if (igvn)  igvn->add_users_to_worklist(this);
3167 }
3168 
3169 // convenience function
3170 // return false if the init contains any stores already
3171 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3172   InitializeNode* init = initialization();
3173   if (init == NULL || init->is_complete())  return false;
3174   init->remove_extra_zeroes();
3175   // for now, if this allocation has already collected any inits, bail:
3176   if (init->is_non_zero())  return false;
3177   init->set_complete(phase);
3178   return true;
3179 }
3180 
3181 void InitializeNode::remove_extra_zeroes() {
3182   if (req() == RawStores)  return;
3183   Node* zmem = zero_memory();
3184   uint fill = RawStores;
3185   for (uint i = fill; i < req(); i++) {
3186     Node* n = in(i);
3187     if (n->is_top() || n == zmem)  continue;  // skip
3188     if (fill < i)  set_req(fill, n);          // compact
3189     ++fill;
3190   }
3191   // delete any empty spaces created:
3192   while (fill < req()) {
3193     del_req(fill);
3194   }
3195 }
3196 
3197 // Helper for remembering which stores go with which offsets.
3198 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3199   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3200   intptr_t offset = -1;
3201   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3202                                                phase, offset);
3203   if (base == NULL)     return -1;  // something is dead,
3204   if (offset < 0)       return -1;  //        dead, dead
3205   return offset;
3206 }
3207 
3208 // Helper for proving that an initialization expression is
3209 // "simple enough" to be folded into an object initialization.
3210 // Attempts to prove that a store's initial value 'n' can be captured
3211 // within the initialization without creating a vicious cycle, such as:
3212 //     { Foo p = new Foo(); p.next = p; }
3213 // True for constants and parameters and small combinations thereof.
3214 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3215   if (n == NULL)      return true;   // (can this really happen?)
3216   if (n->is_Proj())   n = n->in(0);
3217   if (n == this)      return false;  // found a cycle
3218   if (n->is_Con())    return true;
3219   if (n->is_Start())  return true;   // params, etc., are OK
3220   if (n->is_Root())   return true;   // even better
3221 
3222   Node* ctl = n->in(0);
3223   if (ctl != NULL && !ctl->is_top()) {
3224     if (ctl->is_Proj())  ctl = ctl->in(0);
3225     if (ctl == this)  return false;
3226 
3227     // If we already know that the enclosing memory op is pinned right after
3228     // the init, then any control flow that the store has picked up
3229     // must have preceded the init, or else be equal to the init.
3230     // Even after loop optimizations (which might change control edges)
3231     // a store is never pinned *before* the availability of its inputs.
3232     if (!MemNode::all_controls_dominate(n, this))
3233       return false;                  // failed to prove a good control
3234   }
3235 
3236   // Check data edges for possible dependencies on 'this'.
3237   if ((count += 1) > 20)  return false;  // complexity limit
3238   for (uint i = 1; i < n->req(); i++) {
3239     Node* m = n->in(i);
3240     if (m == NULL || m == n || m->is_top())  continue;
3241     uint first_i = n->find_edge(m);
3242     if (i != first_i)  continue;  // process duplicate edge just once
3243     if (!detect_init_independence(m, count)) {
3244       return false;
3245     }
3246   }
3247 
3248   return true;
3249 }
3250 
3251 // Here are all the checks a Store must pass before it can be moved into
3252 // an initialization.  Returns zero if a check fails.
3253 // On success, returns the (constant) offset to which the store applies,
3254 // within the initialized memory.
3255 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3256   const int FAIL = 0;
3257   if (st->is_unaligned_access()) {
3258     return FAIL;
3259   }
3260   if (st->req() != MemNode::ValueIn + 1)
3261     return FAIL;                // an inscrutable StoreNode (card mark?)
3262   Node* ctl = st->in(MemNode::Control);
3263   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3264     return FAIL;                // must be unconditional after the initialization
3265   Node* mem = st->in(MemNode::Memory);
3266   if (!(mem->is_Proj() && mem->in(0) == this))
3267     return FAIL;                // must not be preceded by other stores
3268   Node* adr = st->in(MemNode::Address);
3269   intptr_t offset;
3270   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3271   if (alloc == NULL)
3272     return FAIL;                // inscrutable address
3273   if (alloc != allocation())
3274     return FAIL;                // wrong allocation!  (store needs to float up)
3275   Node* val = st->in(MemNode::ValueIn);
3276   int complexity_count = 0;
3277   if (!detect_init_independence(val, complexity_count))
3278     return FAIL;                // stored value must be 'simple enough'
3279 
3280   // The Store can be captured only if nothing after the allocation
3281   // and before the Store is using the memory location that the store
3282   // overwrites.
3283   bool failed = false;
3284   // If is_complete_with_arraycopy() is true the shape of the graph is
3285   // well defined and is safe so no need for extra checks.
3286   if (!is_complete_with_arraycopy()) {
3287     // We are going to look at each use of the memory state following
3288     // the allocation to make sure nothing reads the memory that the
3289     // Store writes.
3290     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3291     int alias_idx = phase->C->get_alias_index(t_adr);
3292     ResourceMark rm;
3293     Unique_Node_List mems;
3294     mems.push(mem);
3295     Node* unique_merge = NULL;
3296     for (uint next = 0; next < mems.size(); ++next) {
3297       Node *m  = mems.at(next);
3298       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3299         Node *n = m->fast_out(j);
3300         if (n->outcnt() == 0) {
3301           continue;
3302         }
3303         if (n == st) {
3304           continue;
3305         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3306           // If the control of this use is different from the control
3307           // of the Store which is right after the InitializeNode then
3308           // this node cannot be between the InitializeNode and the
3309           // Store.
3310           continue;
3311         } else if (n->is_MergeMem()) {
3312           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3313             // We can hit a MergeMemNode (that will likely go away
3314             // later) that is a direct use of the memory state
3315             // following the InitializeNode on the same slice as the
3316             // store node that we'd like to capture. We need to check
3317             // the uses of the MergeMemNode.
3318             mems.push(n);
3319           }
3320         } else if (n->is_Mem()) {
3321           Node* other_adr = n->in(MemNode::Address);
3322           if (other_adr == adr) {
3323             failed = true;
3324             break;
3325           } else {
3326             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3327             if (other_t_adr != NULL) {
3328               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3329               if (other_alias_idx == alias_idx) {
3330                 // A load from the same memory slice as the store right
3331                 // after the InitializeNode. We check the control of the
3332                 // object/array that is loaded from. If it's the same as
3333                 // the store control then we cannot capture the store.
3334                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3335                 Node* base = other_adr;
3336                 assert(base->is_AddP(), "should be addp but is %s", base->Name());
3337                 base = base->in(AddPNode::Base);
3338                 if (base != NULL) {
3339                   base = base->uncast();
3340                   if (base->is_Proj() && base->in(0) == alloc) {
3341                     failed = true;
3342                     break;
3343                   }
3344                 }
3345               }
3346             }
3347           }
3348         } else {
3349           failed = true;
3350           break;
3351         }
3352       }
3353     }
3354   }
3355   if (failed) {
3356     if (!can_reshape) {
3357       // We decided we couldn't capture the store during parsing. We
3358       // should try again during the next IGVN once the graph is
3359       // cleaner.
3360       phase->C->record_for_igvn(st);
3361     }
3362     return FAIL;
3363   }
3364 
3365   return offset;                // success
3366 }
3367 
3368 // Find the captured store in(i) which corresponds to the range
3369 // [start..start+size) in the initialized object.
3370 // If there is one, return its index i.  If there isn't, return the
3371 // negative of the index where it should be inserted.
3372 // Return 0 if the queried range overlaps an initialization boundary
3373 // or if dead code is encountered.
3374 // If size_in_bytes is zero, do not bother with overlap checks.
3375 int InitializeNode::captured_store_insertion_point(intptr_t start,
3376                                                    int size_in_bytes,
3377                                                    PhaseTransform* phase) {
3378   const int FAIL = 0, MAX_STORE = BytesPerLong;
3379 
3380   if (is_complete())
3381     return FAIL;                // arraycopy got here first; punt
3382 
3383   assert(allocation() != NULL, "must be present");
3384 
3385   // no negatives, no header fields:
3386   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3387 
3388   // after a certain size, we bail out on tracking all the stores:
3389   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3390   if (start >= ti_limit)  return FAIL;
3391 
3392   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3393     if (i >= limit)  return -(int)i; // not found; here is where to put it
3394 
3395     Node*    st     = in(i);
3396     intptr_t st_off = get_store_offset(st, phase);
3397     if (st_off < 0) {
3398       if (st != zero_memory()) {
3399         return FAIL;            // bail out if there is dead garbage
3400       }
3401     } else if (st_off > start) {
3402       // ...we are done, since stores are ordered
3403       if (st_off < start + size_in_bytes) {
3404         return FAIL;            // the next store overlaps
3405       }
3406       return -(int)i;           // not found; here is where to put it
3407     } else if (st_off < start) {
3408       if (size_in_bytes != 0 &&
3409           start < st_off + MAX_STORE &&
3410           start < st_off + st->as_Store()->memory_size()) {
3411         return FAIL;            // the previous store overlaps
3412       }
3413     } else {
3414       if (size_in_bytes != 0 &&
3415           st->as_Store()->memory_size() != size_in_bytes) {
3416         return FAIL;            // mismatched store size
3417       }
3418       return i;
3419     }
3420 
3421     ++i;
3422   }
3423 }
3424 
3425 // Look for a captured store which initializes at the offset 'start'
3426 // with the given size.  If there is no such store, and no other
3427 // initialization interferes, then return zero_memory (the memory
3428 // projection of the AllocateNode).
3429 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3430                                           PhaseTransform* phase) {
3431   assert(stores_are_sane(phase), "");
3432   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3433   if (i == 0) {
3434     return NULL;                // something is dead
3435   } else if (i < 0) {
3436     return zero_memory();       // just primordial zero bits here
3437   } else {
3438     Node* st = in(i);           // here is the store at this position
3439     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3440     return st;
3441   }
3442 }
3443 
3444 // Create, as a raw pointer, an address within my new object at 'offset'.
3445 Node* InitializeNode::make_raw_address(intptr_t offset,
3446                                        PhaseTransform* phase) {
3447   Node* addr = in(RawAddress);
3448   if (offset != 0) {
3449     Compile* C = phase->C;
3450     addr = phase->transform( new AddPNode(C->top(), addr,
3451                                                  phase->MakeConX(offset)) );
3452   }
3453   return addr;
3454 }
3455 
3456 // Clone the given store, converting it into a raw store
3457 // initializing a field or element of my new object.
3458 // Caller is responsible for retiring the original store,
3459 // with subsume_node or the like.
3460 //
3461 // From the example above InitializeNode::InitializeNode,
3462 // here are the old stores to be captured:
3463 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3464 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3465 //
3466 // Here is the changed code; note the extra edges on init:
3467 //   alloc = (Allocate ...)
3468 //   rawoop = alloc.RawAddress
3469 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3470 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3471 //   init = (Initialize alloc.Control alloc.Memory rawoop
3472 //                      rawstore1 rawstore2)
3473 //
3474 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3475                                     PhaseTransform* phase, bool can_reshape) {
3476   assert(stores_are_sane(phase), "");
3477 
3478   if (start < 0)  return NULL;
3479   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3480 
3481   Compile* C = phase->C;
3482   int size_in_bytes = st->memory_size();
3483   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3484   if (i == 0)  return NULL;     // bail out
3485   Node* prev_mem = NULL;        // raw memory for the captured store
3486   if (i > 0) {
3487     prev_mem = in(i);           // there is a pre-existing store under this one
3488     set_req(i, C->top());       // temporarily disconnect it
3489     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3490   } else {
3491     i = -i;                     // no pre-existing store
3492     prev_mem = zero_memory();   // a slice of the newly allocated object
3493     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3494       set_req(--i, C->top());   // reuse this edge; it has been folded away
3495     else
3496       ins_req(i, C->top());     // build a new edge
3497   }
3498   Node* new_st = st->clone();
3499   new_st->set_req(MemNode::Control, in(Control));
3500   new_st->set_req(MemNode::Memory,  prev_mem);
3501   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3502   new_st = phase->transform(new_st);
3503 
3504   // At this point, new_st might have swallowed a pre-existing store
3505   // at the same offset, or perhaps new_st might have disappeared,
3506   // if it redundantly stored the same value (or zero to fresh memory).
3507 
3508   // In any case, wire it in:
3509   phase->igvn_rehash_node_delayed(this);
3510   set_req(i, new_st);
3511 
3512   // The caller may now kill the old guy.
3513   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3514   assert(check_st == new_st || check_st == NULL, "must be findable");
3515   assert(!is_complete(), "");
3516   return new_st;
3517 }
3518 
3519 static bool store_constant(jlong* tiles, int num_tiles,
3520                            intptr_t st_off, int st_size,
3521                            jlong con) {
3522   if ((st_off & (st_size-1)) != 0)
3523     return false;               // strange store offset (assume size==2**N)
3524   address addr = (address)tiles + st_off;
3525   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3526   switch (st_size) {
3527   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3528   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3529   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3530   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3531   default: return false;        // strange store size (detect size!=2**N here)
3532   }
3533   return true;                  // return success to caller
3534 }
3535 
3536 // Coalesce subword constants into int constants and possibly
3537 // into long constants.  The goal, if the CPU permits,
3538 // is to initialize the object with a small number of 64-bit tiles.
3539 // Also, convert floating-point constants to bit patterns.
3540 // Non-constants are not relevant to this pass.
3541 //
3542 // In terms of the running example on InitializeNode::InitializeNode
3543 // and InitializeNode::capture_store, here is the transformation
3544 // of rawstore1 and rawstore2 into rawstore12:
3545 //   alloc = (Allocate ...)
3546 //   rawoop = alloc.RawAddress
3547 //   tile12 = 0x00010002
3548 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3549 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3550 //
3551 void
3552 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3553                                         Node* size_in_bytes,
3554                                         PhaseGVN* phase) {
3555   Compile* C = phase->C;
3556 
3557   assert(stores_are_sane(phase), "");
3558   // Note:  After this pass, they are not completely sane,
3559   // since there may be some overlaps.
3560 
3561   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3562 
3563   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3564   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3565   size_limit = MIN2(size_limit, ti_limit);
3566   size_limit = align_size_up(size_limit, BytesPerLong);
3567   int num_tiles = size_limit / BytesPerLong;
3568 
3569   // allocate space for the tile map:
3570   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3571   jlong  tiles_buf[small_len];
3572   Node*  nodes_buf[small_len];
3573   jlong  inits_buf[small_len];
3574   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3575                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3576   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3577                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3578   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3579                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3580   // tiles: exact bitwise model of all primitive constants
3581   // nodes: last constant-storing node subsumed into the tiles model
3582   // inits: which bytes (in each tile) are touched by any initializations
3583 
3584   //// Pass A: Fill in the tile model with any relevant stores.
3585 
3586   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3587   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3588   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3589   Node* zmem = zero_memory(); // initially zero memory state
3590   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3591     Node* st = in(i);
3592     intptr_t st_off = get_store_offset(st, phase);
3593 
3594     // Figure out the store's offset and constant value:
3595     if (st_off < header_size)             continue; //skip (ignore header)
3596     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3597     int st_size = st->as_Store()->memory_size();
3598     if (st_off + st_size > size_limit)    break;
3599 
3600     // Record which bytes are touched, whether by constant or not.
3601     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3602       continue;                 // skip (strange store size)
3603 
3604     const Type* val = phase->type(st->in(MemNode::ValueIn));
3605     if (!val->singleton())                continue; //skip (non-con store)
3606     BasicType type = val->basic_type();
3607 
3608     jlong con = 0;
3609     switch (type) {
3610     case T_INT:    con = val->is_int()->get_con();  break;
3611     case T_LONG:   con = val->is_long()->get_con(); break;
3612     case T_FLOAT:  con = jint_cast(val->getf());    break;
3613     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3614     default:                              continue; //skip (odd store type)
3615     }
3616 
3617     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3618         st->Opcode() == Op_StoreL) {
3619       continue;                 // This StoreL is already optimal.
3620     }
3621 
3622     // Store down the constant.
3623     store_constant(tiles, num_tiles, st_off, st_size, con);
3624 
3625     intptr_t j = st_off >> LogBytesPerLong;
3626 
3627     if (type == T_INT && st_size == BytesPerInt
3628         && (st_off & BytesPerInt) == BytesPerInt) {
3629       jlong lcon = tiles[j];
3630       if (!Matcher::isSimpleConstant64(lcon) &&
3631           st->Opcode() == Op_StoreI) {
3632         // This StoreI is already optimal by itself.
3633         jint* intcon = (jint*) &tiles[j];
3634         intcon[1] = 0;  // undo the store_constant()
3635 
3636         // If the previous store is also optimal by itself, back up and
3637         // undo the action of the previous loop iteration... if we can.
3638         // But if we can't, just let the previous half take care of itself.
3639         st = nodes[j];
3640         st_off -= BytesPerInt;
3641         con = intcon[0];
3642         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3643           assert(st_off >= header_size, "still ignoring header");
3644           assert(get_store_offset(st, phase) == st_off, "must be");
3645           assert(in(i-1) == zmem, "must be");
3646           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3647           assert(con == tcon->is_int()->get_con(), "must be");
3648           // Undo the effects of the previous loop trip, which swallowed st:
3649           intcon[0] = 0;        // undo store_constant()
3650           set_req(i-1, st);     // undo set_req(i, zmem)
3651           nodes[j] = NULL;      // undo nodes[j] = st
3652           --old_subword;        // undo ++old_subword
3653         }
3654         continue;               // This StoreI is already optimal.
3655       }
3656     }
3657 
3658     // This store is not needed.
3659     set_req(i, zmem);
3660     nodes[j] = st;              // record for the moment
3661     if (st_size < BytesPerLong) // something has changed
3662           ++old_subword;        // includes int/float, but who's counting...
3663     else  ++old_long;
3664   }
3665 
3666   if ((old_subword + old_long) == 0)
3667     return;                     // nothing more to do
3668 
3669   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3670   // Be sure to insert them before overlapping non-constant stores.
3671   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3672   for (int j = 0; j < num_tiles; j++) {
3673     jlong con  = tiles[j];
3674     jlong init = inits[j];
3675     if (con == 0)  continue;
3676     jint con0,  con1;           // split the constant, address-wise
3677     jint init0, init1;          // split the init map, address-wise
3678     { union { jlong con; jint intcon[2]; } u;
3679       u.con = con;
3680       con0  = u.intcon[0];
3681       con1  = u.intcon[1];
3682       u.con = init;
3683       init0 = u.intcon[0];
3684       init1 = u.intcon[1];
3685     }
3686 
3687     Node* old = nodes[j];
3688     assert(old != NULL, "need the prior store");
3689     intptr_t offset = (j * BytesPerLong);
3690 
3691     bool split = !Matcher::isSimpleConstant64(con);
3692 
3693     if (offset < header_size) {
3694       assert(offset + BytesPerInt >= header_size, "second int counts");
3695       assert(*(jint*)&tiles[j] == 0, "junk in header");
3696       split = true;             // only the second word counts
3697       // Example:  int a[] = { 42 ... }
3698     } else if (con0 == 0 && init0 == -1) {
3699       split = true;             // first word is covered by full inits
3700       // Example:  int a[] = { ... foo(), 42 ... }
3701     } else if (con1 == 0 && init1 == -1) {
3702       split = true;             // second word is covered by full inits
3703       // Example:  int a[] = { ... 42, foo() ... }
3704     }
3705 
3706     // Here's a case where init0 is neither 0 nor -1:
3707     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3708     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3709     // In this case the tile is not split; it is (jlong)42.
3710     // The big tile is stored down, and then the foo() value is inserted.
3711     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3712 
3713     Node* ctl = old->in(MemNode::Control);
3714     Node* adr = make_raw_address(offset, phase);
3715     const TypePtr* atp = TypeRawPtr::BOTTOM;
3716 
3717     // One or two coalesced stores to plop down.
3718     Node*    st[2];
3719     intptr_t off[2];
3720     int  nst = 0;
3721     if (!split) {
3722       ++new_long;
3723       off[nst] = offset;
3724       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3725                                   phase->longcon(con), T_LONG, MemNode::unordered);
3726     } else {
3727       // Omit either if it is a zero.
3728       if (con0 != 0) {
3729         ++new_int;
3730         off[nst]  = offset;
3731         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3732                                     phase->intcon(con0), T_INT, MemNode::unordered);
3733       }
3734       if (con1 != 0) {
3735         ++new_int;
3736         offset += BytesPerInt;
3737         adr = make_raw_address(offset, phase);
3738         off[nst]  = offset;
3739         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3740                                     phase->intcon(con1), T_INT, MemNode::unordered);
3741       }
3742     }
3743 
3744     // Insert second store first, then the first before the second.
3745     // Insert each one just before any overlapping non-constant stores.
3746     while (nst > 0) {
3747       Node* st1 = st[--nst];
3748       C->copy_node_notes_to(st1, old);
3749       st1 = phase->transform(st1);
3750       offset = off[nst];
3751       assert(offset >= header_size, "do not smash header");
3752       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3753       guarantee(ins_idx != 0, "must re-insert constant store");
3754       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3755       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3756         set_req(--ins_idx, st1);
3757       else
3758         ins_req(ins_idx, st1);
3759     }
3760   }
3761 
3762   if (PrintCompilation && WizardMode)
3763     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3764                   old_subword, old_long, new_int, new_long);
3765   if (C->log() != NULL)
3766     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3767                    old_subword, old_long, new_int, new_long);
3768 
3769   // Clean up any remaining occurrences of zmem:
3770   remove_extra_zeroes();
3771 }
3772 
3773 // Explore forward from in(start) to find the first fully initialized
3774 // word, and return its offset.  Skip groups of subword stores which
3775 // together initialize full words.  If in(start) is itself part of a
3776 // fully initialized word, return the offset of in(start).  If there
3777 // are no following full-word stores, or if something is fishy, return
3778 // a negative value.
3779 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3780   int       int_map = 0;
3781   intptr_t  int_map_off = 0;
3782   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3783 
3784   for (uint i = start, limit = req(); i < limit; i++) {
3785     Node* st = in(i);
3786 
3787     intptr_t st_off = get_store_offset(st, phase);
3788     if (st_off < 0)  break;  // return conservative answer
3789 
3790     int st_size = st->as_Store()->memory_size();
3791     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3792       return st_off;            // we found a complete word init
3793     }
3794 
3795     // update the map:
3796 
3797     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3798     if (this_int_off != int_map_off) {
3799       // reset the map:
3800       int_map = 0;
3801       int_map_off = this_int_off;
3802     }
3803 
3804     int subword_off = st_off - this_int_off;
3805     int_map |= right_n_bits(st_size) << subword_off;
3806     if ((int_map & FULL_MAP) == FULL_MAP) {
3807       return this_int_off;      // we found a complete word init
3808     }
3809 
3810     // Did this store hit or cross the word boundary?
3811     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3812     if (next_int_off == this_int_off + BytesPerInt) {
3813       // We passed the current int, without fully initializing it.
3814       int_map_off = next_int_off;
3815       int_map >>= BytesPerInt;
3816     } else if (next_int_off > this_int_off + BytesPerInt) {
3817       // We passed the current and next int.
3818       return this_int_off + BytesPerInt;
3819     }
3820   }
3821 
3822   return -1;
3823 }
3824 
3825 
3826 // Called when the associated AllocateNode is expanded into CFG.
3827 // At this point, we may perform additional optimizations.
3828 // Linearize the stores by ascending offset, to make memory
3829 // activity as coherent as possible.
3830 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3831                                       intptr_t header_size,
3832                                       Node* size_in_bytes,
3833                                       PhaseGVN* phase) {
3834   assert(!is_complete(), "not already complete");
3835   assert(stores_are_sane(phase), "");
3836   assert(allocation() != NULL, "must be present");
3837 
3838   remove_extra_zeroes();
3839 
3840   if (ReduceFieldZeroing || ReduceBulkZeroing)
3841     // reduce instruction count for common initialization patterns
3842     coalesce_subword_stores(header_size, size_in_bytes, phase);
3843 
3844   Node* zmem = zero_memory();   // initially zero memory state
3845   Node* inits = zmem;           // accumulating a linearized chain of inits
3846   #ifdef ASSERT
3847   intptr_t first_offset = allocation()->minimum_header_size();
3848   intptr_t last_init_off = first_offset;  // previous init offset
3849   intptr_t last_init_end = first_offset;  // previous init offset+size
3850   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3851   #endif
3852   intptr_t zeroes_done = header_size;
3853 
3854   bool do_zeroing = true;       // we might give up if inits are very sparse
3855   int  big_init_gaps = 0;       // how many large gaps have we seen?
3856 
3857   if (UseTLAB && ZeroTLAB)  do_zeroing = false;
3858   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3859 
3860   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3861     Node* st = in(i);
3862     intptr_t st_off = get_store_offset(st, phase);
3863     if (st_off < 0)
3864       break;                    // unknown junk in the inits
3865     if (st->in(MemNode::Memory) != zmem)
3866       break;                    // complicated store chains somehow in list
3867 
3868     int st_size = st->as_Store()->memory_size();
3869     intptr_t next_init_off = st_off + st_size;
3870 
3871     if (do_zeroing && zeroes_done < next_init_off) {
3872       // See if this store needs a zero before it or under it.
3873       intptr_t zeroes_needed = st_off;
3874 
3875       if (st_size < BytesPerInt) {
3876         // Look for subword stores which only partially initialize words.
3877         // If we find some, we must lay down some word-level zeroes first,
3878         // underneath the subword stores.
3879         //
3880         // Examples:
3881         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3882         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3883         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3884         //
3885         // Note:  coalesce_subword_stores may have already done this,
3886         // if it was prompted by constant non-zero subword initializers.
3887         // But this case can still arise with non-constant stores.
3888 
3889         intptr_t next_full_store = find_next_fullword_store(i, phase);
3890 
3891         // In the examples above:
3892         //   in(i)          p   q   r   s     x   y     z
3893         //   st_off        12  13  14  15    12  13    14
3894         //   st_size        1   1   1   1     1   1     1
3895         //   next_full_s.  12  16  16  16    16  16    16
3896         //   z's_done      12  16  16  16    12  16    12
3897         //   z's_needed    12  16  16  16    16  16    16
3898         //   zsize          0   0   0   0     4   0     4
3899         if (next_full_store < 0) {
3900           // Conservative tack:  Zero to end of current word.
3901           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3902         } else {
3903           // Zero to beginning of next fully initialized word.
3904           // Or, don't zero at all, if we are already in that word.
3905           assert(next_full_store >= zeroes_needed, "must go forward");
3906           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3907           zeroes_needed = next_full_store;
3908         }
3909       }
3910 
3911       if (zeroes_needed > zeroes_done) {
3912         intptr_t zsize = zeroes_needed - zeroes_done;
3913         // Do some incremental zeroing on rawmem, in parallel with inits.
3914         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3915         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3916                                               zeroes_done, zeroes_needed,
3917                                               phase);
3918         zeroes_done = zeroes_needed;
3919         if (zsize > InitArrayShortSize && ++big_init_gaps > 2)
3920           do_zeroing = false;   // leave the hole, next time
3921       }
3922     }
3923 
3924     // Collect the store and move on:
3925     st->set_req(MemNode::Memory, inits);
3926     inits = st;                 // put it on the linearized chain
3927     set_req(i, zmem);           // unhook from previous position
3928 
3929     if (zeroes_done == st_off)
3930       zeroes_done = next_init_off;
3931 
3932     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3933 
3934     #ifdef ASSERT
3935     // Various order invariants.  Weaker than stores_are_sane because
3936     // a large constant tile can be filled in by smaller non-constant stores.
3937     assert(st_off >= last_init_off, "inits do not reverse");
3938     last_init_off = st_off;
3939     const Type* val = NULL;
3940     if (st_size >= BytesPerInt &&
3941         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3942         (int)val->basic_type() < (int)T_OBJECT) {
3943       assert(st_off >= last_tile_end, "tiles do not overlap");
3944       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3945       last_tile_end = MAX2(last_tile_end, next_init_off);
3946     } else {
3947       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3948       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3949       assert(st_off      >= last_init_end, "inits do not overlap");
3950       last_init_end = next_init_off;  // it's a non-tile
3951     }
3952     #endif //ASSERT
3953   }
3954 
3955   remove_extra_zeroes();        // clear out all the zmems left over
3956   add_req(inits);
3957 
3958   if (!(UseTLAB && ZeroTLAB)) {
3959     // If anything remains to be zeroed, zero it all now.
3960     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3961     // if it is the last unused 4 bytes of an instance, forget about it
3962     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3963     if (zeroes_done + BytesPerLong >= size_limit) {
3964       AllocateNode* alloc = allocation();
3965       assert(alloc != NULL, "must be present");
3966       if (alloc != NULL && alloc->Opcode() == Op_Allocate) {
3967         Node* klass_node = alloc->in(AllocateNode::KlassNode);
3968         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3969         if (zeroes_done == k->layout_helper())
3970           zeroes_done = size_limit;
3971       }
3972     }
3973     if (zeroes_done < size_limit) {
3974       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3975                                             zeroes_done, size_in_bytes, phase);
3976     }
3977   }
3978 
3979   set_complete(phase);
3980   return rawmem;
3981 }
3982 
3983 
3984 #ifdef ASSERT
3985 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3986   if (is_complete())
3987     return true;                // stores could be anything at this point
3988   assert(allocation() != NULL, "must be present");
3989   intptr_t last_off = allocation()->minimum_header_size();
3990   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3991     Node* st = in(i);
3992     intptr_t st_off = get_store_offset(st, phase);
3993     if (st_off < 0)  continue;  // ignore dead garbage
3994     if (last_off > st_off) {
3995       tty->print_cr("*** bad store offset at %d: " INTX_FORMAT " > " INTX_FORMAT, i, last_off, st_off);
3996       this->dump(2);
3997       assert(false, "ascending store offsets");
3998       return false;
3999     }
4000     last_off = st_off + st->as_Store()->memory_size();
4001   }
4002   return true;
4003 }
4004 #endif //ASSERT
4005 
4006 
4007 
4008 
4009 //============================MergeMemNode=====================================
4010 //
4011 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
4012 // contributing store or call operations.  Each contributor provides the memory
4013 // state for a particular "alias type" (see Compile::alias_type).  For example,
4014 // if a MergeMem has an input X for alias category #6, then any memory reference
4015 // to alias category #6 may use X as its memory state input, as an exact equivalent
4016 // to using the MergeMem as a whole.
4017 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
4018 //
4019 // (Here, the <N> notation gives the index of the relevant adr_type.)
4020 //
4021 // In one special case (and more cases in the future), alias categories overlap.
4022 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4023 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4024 // it is exactly equivalent to that state W:
4025 //   MergeMem(<Bot>: W) <==> W
4026 //
4027 // Usually, the merge has more than one input.  In that case, where inputs
4028 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4029 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4030 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4031 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4032 //
4033 // A merge can take a "wide" memory state as one of its narrow inputs.
4034 // This simply means that the merge observes out only the relevant parts of
4035 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4036 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4037 //
4038 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4039 // and that memory slices "leak through":
4040 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4041 //
4042 // But, in such a cascade, repeated memory slices can "block the leak":
4043 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4044 //
4045 // In the last example, Y is not part of the combined memory state of the
4046 // outermost MergeMem.  The system must, of course, prevent unschedulable
4047 // memory states from arising, so you can be sure that the state Y is somehow
4048 // a precursor to state Y'.
4049 //
4050 //
4051 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4052 // of each MergeMemNode array are exactly the numerical alias indexes, including
4053 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4054 // Compile::alias_type (and kin) produce and manage these indexes.
4055 //
4056 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4057 // (Note that this provides quick access to the top node inside MergeMem methods,
4058 // without the need to reach out via TLS to Compile::current.)
4059 //
4060 // As a consequence of what was just described, a MergeMem that represents a full
4061 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4062 // containing all alias categories.
4063 //
4064 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4065 //
4066 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4067 // a memory state for the alias type <N>, or else the top node, meaning that
4068 // there is no particular input for that alias type.  Note that the length of
4069 // a MergeMem is variable, and may be extended at any time to accommodate new
4070 // memory states at larger alias indexes.  When merges grow, they are of course
4071 // filled with "top" in the unused in() positions.
4072 //
4073 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4074 // (Top was chosen because it works smoothly with passes like GCM.)
4075 //
4076 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4077 // the type of random VM bits like TLS references.)  Since it is always the
4078 // first non-Bot memory slice, some low-level loops use it to initialize an
4079 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4080 //
4081 //
4082 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4083 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4084 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4085 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4086 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4087 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4088 //
4089 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4090 // really that different from the other memory inputs.  An abbreviation called
4091 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4092 //
4093 //
4094 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4095 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4096 // that "emerges though" the base memory will be marked as excluding the alias types
4097 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4098 //
4099 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4100 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4101 //
4102 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4103 // (It is currently unimplemented.)  As you can see, the resulting merge is
4104 // actually a disjoint union of memory states, rather than an overlay.
4105 //
4106 
4107 //------------------------------MergeMemNode-----------------------------------
4108 Node* MergeMemNode::make_empty_memory() {
4109   Node* empty_memory = (Node*) Compile::current()->top();
4110   assert(empty_memory->is_top(), "correct sentinel identity");
4111   return empty_memory;
4112 }
4113 
4114 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4115   init_class_id(Class_MergeMem);
4116   // all inputs are nullified in Node::Node(int)
4117   // set_input(0, NULL);  // no control input
4118 
4119   // Initialize the edges uniformly to top, for starters.
4120   Node* empty_mem = make_empty_memory();
4121   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4122     init_req(i,empty_mem);
4123   }
4124   assert(empty_memory() == empty_mem, "");
4125 
4126   if( new_base != NULL && new_base->is_MergeMem() ) {
4127     MergeMemNode* mdef = new_base->as_MergeMem();
4128     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4129     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4130       mms.set_memory(mms.memory2());
4131     }
4132     assert(base_memory() == mdef->base_memory(), "");
4133   } else {
4134     set_base_memory(new_base);
4135   }
4136 }
4137 
4138 // Make a new, untransformed MergeMem with the same base as 'mem'.
4139 // If mem is itself a MergeMem, populate the result with the same edges.
4140 MergeMemNode* MergeMemNode::make(Node* mem) {
4141   return new MergeMemNode(mem);
4142 }
4143 
4144 //------------------------------cmp--------------------------------------------
4145 uint MergeMemNode::hash() const { return NO_HASH; }
4146 uint MergeMemNode::cmp( const Node &n ) const {
4147   return (&n == this);          // Always fail except on self
4148 }
4149 
4150 //------------------------------Identity---------------------------------------
4151 Node* MergeMemNode::Identity(PhaseGVN* phase) {
4152   // Identity if this merge point does not record any interesting memory
4153   // disambiguations.
4154   Node* base_mem = base_memory();
4155   Node* empty_mem = empty_memory();
4156   if (base_mem != empty_mem) {  // Memory path is not dead?
4157     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4158       Node* mem = in(i);
4159       if (mem != empty_mem && mem != base_mem) {
4160         return this;            // Many memory splits; no change
4161       }
4162     }
4163   }
4164   return base_mem;              // No memory splits; ID on the one true input
4165 }
4166 
4167 //------------------------------Ideal------------------------------------------
4168 // This method is invoked recursively on chains of MergeMem nodes
4169 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4170   // Remove chain'd MergeMems
4171   //
4172   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4173   // relative to the "in(Bot)".  Since we are patching both at the same time,
4174   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4175   // but rewrite each "in(i)" relative to the new "in(Bot)".
4176   Node *progress = NULL;
4177 
4178 
4179   Node* old_base = base_memory();
4180   Node* empty_mem = empty_memory();
4181   if (old_base == empty_mem)
4182     return NULL; // Dead memory path.
4183 
4184   MergeMemNode* old_mbase;
4185   if (old_base != NULL && old_base->is_MergeMem())
4186     old_mbase = old_base->as_MergeMem();
4187   else
4188     old_mbase = NULL;
4189   Node* new_base = old_base;
4190 
4191   // simplify stacked MergeMems in base memory
4192   if (old_mbase)  new_base = old_mbase->base_memory();
4193 
4194   // the base memory might contribute new slices beyond my req()
4195   if (old_mbase)  grow_to_match(old_mbase);
4196 
4197   // Look carefully at the base node if it is a phi.
4198   PhiNode* phi_base;
4199   if (new_base != NULL && new_base->is_Phi())
4200     phi_base = new_base->as_Phi();
4201   else
4202     phi_base = NULL;
4203 
4204   Node*    phi_reg = NULL;
4205   uint     phi_len = (uint)-1;
4206   if (phi_base != NULL && !phi_base->is_copy()) {
4207     // do not examine phi if degraded to a copy
4208     phi_reg = phi_base->region();
4209     phi_len = phi_base->req();
4210     // see if the phi is unfinished
4211     for (uint i = 1; i < phi_len; i++) {
4212       if (phi_base->in(i) == NULL) {
4213         // incomplete phi; do not look at it yet!
4214         phi_reg = NULL;
4215         phi_len = (uint)-1;
4216         break;
4217       }
4218     }
4219   }
4220 
4221   // Note:  We do not call verify_sparse on entry, because inputs
4222   // can normalize to the base_memory via subsume_node or similar
4223   // mechanisms.  This method repairs that damage.
4224 
4225   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4226 
4227   // Look at each slice.
4228   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4229     Node* old_in = in(i);
4230     // calculate the old memory value
4231     Node* old_mem = old_in;
4232     if (old_mem == empty_mem)  old_mem = old_base;
4233     assert(old_mem == memory_at(i), "");
4234 
4235     // maybe update (reslice) the old memory value
4236 
4237     // simplify stacked MergeMems
4238     Node* new_mem = old_mem;
4239     MergeMemNode* old_mmem;
4240     if (old_mem != NULL && old_mem->is_MergeMem())
4241       old_mmem = old_mem->as_MergeMem();
4242     else
4243       old_mmem = NULL;
4244     if (old_mmem == this) {
4245       // This can happen if loops break up and safepoints disappear.
4246       // A merge of BotPtr (default) with a RawPtr memory derived from a
4247       // safepoint can be rewritten to a merge of the same BotPtr with
4248       // the BotPtr phi coming into the loop.  If that phi disappears
4249       // also, we can end up with a self-loop of the mergemem.
4250       // In general, if loops degenerate and memory effects disappear,
4251       // a mergemem can be left looking at itself.  This simply means
4252       // that the mergemem's default should be used, since there is
4253       // no longer any apparent effect on this slice.
4254       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4255       //       from start.  Update the input to TOP.
4256       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4257     }
4258     else if (old_mmem != NULL) {
4259       new_mem = old_mmem->memory_at(i);
4260     }
4261     // else preceding memory was not a MergeMem
4262 
4263     // replace equivalent phis (unfortunately, they do not GVN together)
4264     if (new_mem != NULL && new_mem != new_base &&
4265         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4266       if (new_mem->is_Phi()) {
4267         PhiNode* phi_mem = new_mem->as_Phi();
4268         for (uint i = 1; i < phi_len; i++) {
4269           if (phi_base->in(i) != phi_mem->in(i)) {
4270             phi_mem = NULL;
4271             break;
4272           }
4273         }
4274         if (phi_mem != NULL) {
4275           // equivalent phi nodes; revert to the def
4276           new_mem = new_base;
4277         }
4278       }
4279     }
4280 
4281     // maybe store down a new value
4282     Node* new_in = new_mem;
4283     if (new_in == new_base)  new_in = empty_mem;
4284 
4285     if (new_in != old_in) {
4286       // Warning:  Do not combine this "if" with the previous "if"
4287       // A memory slice might have be be rewritten even if it is semantically
4288       // unchanged, if the base_memory value has changed.
4289       set_req(i, new_in);
4290       progress = this;          // Report progress
4291     }
4292   }
4293 
4294   if (new_base != old_base) {
4295     set_req(Compile::AliasIdxBot, new_base);
4296     // Don't use set_base_memory(new_base), because we need to update du.
4297     assert(base_memory() == new_base, "");
4298     progress = this;
4299   }
4300 
4301   if( base_memory() == this ) {
4302     // a self cycle indicates this memory path is dead
4303     set_req(Compile::AliasIdxBot, empty_mem);
4304   }
4305 
4306   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4307   // Recursion must occur after the self cycle check above
4308   if( base_memory()->is_MergeMem() ) {
4309     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4310     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4311     if( m != NULL &&
4312         (m->is_top() ||
4313          (m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem)) ) {
4314       // propagate rollup of dead cycle to self
4315       set_req(Compile::AliasIdxBot, empty_mem);
4316     }
4317   }
4318 
4319   if( base_memory() == empty_mem ) {
4320     progress = this;
4321     // Cut inputs during Parse phase only.
4322     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4323     if( !can_reshape ) {
4324       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4325         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4326       }
4327     }
4328   }
4329 
4330   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4331     // Check if PhiNode::Ideal's "Split phis through memory merges"
4332     // transform should be attempted. Look for this->phi->this cycle.
4333     uint merge_width = req();
4334     if (merge_width > Compile::AliasIdxRaw) {
4335       PhiNode* phi = base_memory()->as_Phi();
4336       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4337         if (phi->in(i) == this) {
4338           phase->is_IterGVN()->_worklist.push(phi);
4339           break;
4340         }
4341       }
4342     }
4343   }
4344 
4345   assert(progress || verify_sparse(), "please, no dups of base");
4346   return progress;
4347 }
4348 
4349 //-------------------------set_base_memory-------------------------------------
4350 void MergeMemNode::set_base_memory(Node *new_base) {
4351   Node* empty_mem = empty_memory();
4352   set_req(Compile::AliasIdxBot, new_base);
4353   assert(memory_at(req()) == new_base, "must set default memory");
4354   // Clear out other occurrences of new_base:
4355   if (new_base != empty_mem) {
4356     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4357       if (in(i) == new_base)  set_req(i, empty_mem);
4358     }
4359   }
4360 }
4361 
4362 //------------------------------out_RegMask------------------------------------
4363 const RegMask &MergeMemNode::out_RegMask() const {
4364   return RegMask::Empty;
4365 }
4366 
4367 //------------------------------dump_spec--------------------------------------
4368 #ifndef PRODUCT
4369 void MergeMemNode::dump_spec(outputStream *st) const {
4370   st->print(" {");
4371   Node* base_mem = base_memory();
4372   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4373     Node* mem = (in(i) != NULL) ? memory_at(i) : base_mem;
4374     if (mem == base_mem) { st->print(" -"); continue; }
4375     st->print( " N%d:", mem->_idx );
4376     Compile::current()->get_adr_type(i)->dump_on(st);
4377   }
4378   st->print(" }");
4379 }
4380 #endif // !PRODUCT
4381 
4382 
4383 #ifdef ASSERT
4384 static bool might_be_same(Node* a, Node* b) {
4385   if (a == b)  return true;
4386   if (!(a->is_Phi() || b->is_Phi()))  return false;
4387   // phis shift around during optimization
4388   return true;  // pretty stupid...
4389 }
4390 
4391 // verify a narrow slice (either incoming or outgoing)
4392 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4393   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4394   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4395   if (Node::in_dump())      return;  // muzzle asserts when printing
4396   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4397   assert(n != NULL, "");
4398   // Elide intervening MergeMem's
4399   while (n->is_MergeMem()) {
4400     n = n->as_MergeMem()->memory_at(alias_idx);
4401   }
4402   Compile* C = Compile::current();
4403   const TypePtr* n_adr_type = n->adr_type();
4404   if (n == m->empty_memory()) {
4405     // Implicit copy of base_memory()
4406   } else if (n_adr_type != TypePtr::BOTTOM) {
4407     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4408     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4409   } else {
4410     // A few places like make_runtime_call "know" that VM calls are narrow,
4411     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4412     bool expected_wide_mem = false;
4413     if (n == m->base_memory()) {
4414       expected_wide_mem = true;
4415     } else if (alias_idx == Compile::AliasIdxRaw ||
4416                n == m->memory_at(Compile::AliasIdxRaw)) {
4417       expected_wide_mem = true;
4418     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4419       // memory can "leak through" calls on channels that
4420       // are write-once.  Allow this also.
4421       expected_wide_mem = true;
4422     }
4423     assert(expected_wide_mem, "expected narrow slice replacement");
4424   }
4425 }
4426 #else // !ASSERT
4427 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4428 #endif
4429 
4430 
4431 //-----------------------------memory_at---------------------------------------
4432 Node* MergeMemNode::memory_at(uint alias_idx) const {
4433   assert(alias_idx >= Compile::AliasIdxRaw ||
4434          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4435          "must avoid base_memory and AliasIdxTop");
4436 
4437   // Otherwise, it is a narrow slice.
4438   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4439   Compile *C = Compile::current();
4440   if (is_empty_memory(n)) {
4441     // the array is sparse; empty slots are the "top" node
4442     n = base_memory();
4443     assert(Node::in_dump()
4444            || n == NULL || n->bottom_type() == Type::TOP
4445            || n->adr_type() == NULL // address is TOP
4446            || n->adr_type() == TypePtr::BOTTOM
4447            || n->adr_type() == TypeRawPtr::BOTTOM
4448            || Compile::current()->AliasLevel() == 0,
4449            "must be a wide memory");
4450     // AliasLevel == 0 if we are organizing the memory states manually.
4451     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4452   } else {
4453     // make sure the stored slice is sane
4454     #ifdef ASSERT
4455     if (is_error_reported() || Node::in_dump()) {
4456     } else if (might_be_same(n, base_memory())) {
4457       // Give it a pass:  It is a mostly harmless repetition of the base.
4458       // This can arise normally from node subsumption during optimization.
4459     } else {
4460       verify_memory_slice(this, alias_idx, n);
4461     }
4462     #endif
4463   }
4464   return n;
4465 }
4466 
4467 //---------------------------set_memory_at-------------------------------------
4468 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4469   verify_memory_slice(this, alias_idx, n);
4470   Node* empty_mem = empty_memory();
4471   if (n == base_memory())  n = empty_mem;  // collapse default
4472   uint need_req = alias_idx+1;
4473   if (req() < need_req) {
4474     if (n == empty_mem)  return;  // already the default, so do not grow me
4475     // grow the sparse array
4476     do {
4477       add_req(empty_mem);
4478     } while (req() < need_req);
4479   }
4480   set_req( alias_idx, n );
4481 }
4482 
4483 
4484 
4485 //--------------------------iteration_setup------------------------------------
4486 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4487   if (other != NULL) {
4488     grow_to_match(other);
4489     // invariant:  the finite support of mm2 is within mm->req()
4490     #ifdef ASSERT
4491     for (uint i = req(); i < other->req(); i++) {
4492       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4493     }
4494     #endif
4495   }
4496   // Replace spurious copies of base_memory by top.
4497   Node* base_mem = base_memory();
4498   if (base_mem != NULL && !base_mem->is_top()) {
4499     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4500       if (in(i) == base_mem)
4501         set_req(i, empty_memory());
4502     }
4503   }
4504 }
4505 
4506 //---------------------------grow_to_match-------------------------------------
4507 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4508   Node* empty_mem = empty_memory();
4509   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4510   // look for the finite support of the other memory
4511   for (uint i = other->req(); --i >= req(); ) {
4512     if (other->in(i) != empty_mem) {
4513       uint new_len = i+1;
4514       while (req() < new_len)  add_req(empty_mem);
4515       break;
4516     }
4517   }
4518 }
4519 
4520 //---------------------------verify_sparse-------------------------------------
4521 #ifndef PRODUCT
4522 bool MergeMemNode::verify_sparse() const {
4523   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4524   Node* base_mem = base_memory();
4525   // The following can happen in degenerate cases, since empty==top.
4526   if (is_empty_memory(base_mem))  return true;
4527   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4528     assert(in(i) != NULL, "sane slice");
4529     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4530   }
4531   return true;
4532 }
4533 
4534 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4535   Node* n;
4536   n = mm->in(idx);
4537   if (mem == n)  return true;  // might be empty_memory()
4538   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4539   if (mem == n)  return true;
4540   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4541     if (mem == n)  return true;
4542     if (n == NULL)  break;
4543   }
4544   return false;
4545 }
4546 #endif // !PRODUCT