1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvm.h"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 address             SharedRuntime::_resolve_static_call_entry;
  84 
  85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  89 
  90 #ifdef COMPILER2
  91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  92 #endif // COMPILER2
  93 
  94 
  95 //----------------------------generate_stubs-----------------------------------
  96 void SharedRuntime::generate_stubs() {
  97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 104 
 105 #if defined(COMPILER2) || INCLUDE_JVMCI
 106   // Vectors are generated only by C2 and JVMCI.
 107   bool support_wide = is_wide_vector(MaxVectorSize);
 108   if (support_wide) {
 109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 110   }
 111 #endif // COMPILER2 || INCLUDE_JVMCI
 112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 114 
 115   generate_deopt_blob();
 116 
 117 #ifdef COMPILER2
 118   generate_uncommon_trap_blob();
 119 #endif // COMPILER2
 120 }
 121 
 122 #include <math.h>
 123 
 124 // Implementation of SharedRuntime
 125 
 126 #ifndef PRODUCT
 127 // For statistics
 128 int SharedRuntime::_ic_miss_ctr = 0;
 129 int SharedRuntime::_wrong_method_ctr = 0;
 130 int SharedRuntime::_resolve_static_ctr = 0;
 131 int SharedRuntime::_resolve_virtual_ctr = 0;
 132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 133 int SharedRuntime::_implicit_null_throws = 0;
 134 int SharedRuntime::_implicit_div0_throws = 0;
 135 int SharedRuntime::_throw_null_ctr = 0;
 136 
 137 int SharedRuntime::_nof_normal_calls = 0;
 138 int SharedRuntime::_nof_optimized_calls = 0;
 139 int SharedRuntime::_nof_inlined_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_calls = 0;
 141 int SharedRuntime::_nof_static_calls = 0;
 142 int SharedRuntime::_nof_inlined_static_calls = 0;
 143 int SharedRuntime::_nof_interface_calls = 0;
 144 int SharedRuntime::_nof_optimized_interface_calls = 0;
 145 int SharedRuntime::_nof_inlined_interface_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 147 int SharedRuntime::_nof_removable_exceptions = 0;
 148 
 149 int SharedRuntime::_new_instance_ctr=0;
 150 int SharedRuntime::_new_array_ctr=0;
 151 int SharedRuntime::_multi1_ctr=0;
 152 int SharedRuntime::_multi2_ctr=0;
 153 int SharedRuntime::_multi3_ctr=0;
 154 int SharedRuntime::_multi4_ctr=0;
 155 int SharedRuntime::_multi5_ctr=0;
 156 int SharedRuntime::_mon_enter_stub_ctr=0;
 157 int SharedRuntime::_mon_exit_stub_ctr=0;
 158 int SharedRuntime::_mon_enter_ctr=0;
 159 int SharedRuntime::_mon_exit_ctr=0;
 160 int SharedRuntime::_partial_subtype_ctr=0;
 161 int SharedRuntime::_jbyte_array_copy_ctr=0;
 162 int SharedRuntime::_jshort_array_copy_ctr=0;
 163 int SharedRuntime::_jint_array_copy_ctr=0;
 164 int SharedRuntime::_jlong_array_copy_ctr=0;
 165 int SharedRuntime::_oop_array_copy_ctr=0;
 166 int SharedRuntime::_checkcast_array_copy_ctr=0;
 167 int SharedRuntime::_unsafe_array_copy_ctr=0;
 168 int SharedRuntime::_generic_array_copy_ctr=0;
 169 int SharedRuntime::_slow_array_copy_ctr=0;
 170 int SharedRuntime::_find_handler_ctr=0;
 171 int SharedRuntime::_rethrow_ctr=0;
 172 
 173 int     SharedRuntime::_ICmiss_index                    = 0;
 174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 176 
 177 
 178 void SharedRuntime::trace_ic_miss(address at) {
 179   for (int i = 0; i < _ICmiss_index; i++) {
 180     if (_ICmiss_at[i] == at) {
 181       _ICmiss_count[i]++;
 182       return;
 183     }
 184   }
 185   int index = _ICmiss_index++;
 186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 187   _ICmiss_at[index] = at;
 188   _ICmiss_count[index] = 1;
 189 }
 190 
 191 void SharedRuntime::print_ic_miss_histogram() {
 192   if (ICMissHistogram) {
 193     tty->print_cr("IC Miss Histogram:");
 194     int tot_misses = 0;
 195     for (int i = 0; i < _ICmiss_index; i++) {
 196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 197       tot_misses += _ICmiss_count[i];
 198     }
 199     tty->print_cr("Total IC misses: %7d", tot_misses);
 200   }
 201 }
 202 #endif // PRODUCT
 203 
 204 #if INCLUDE_ALL_GCS
 205 
 206 // G1 write-barrier pre: executed before a pointer store.
 207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 208   if (orig == NULL) {
 209     assert(false, "should be optimized out");
 210     return;
 211   }
 212   assert(orig->is_oop(true /* ignore mark word */), "Error");
 213   // store the original value that was in the field reference
 214   thread->satb_mark_queue().enqueue(orig);
 215 JRT_END
 216 
 217 // G1 write-barrier post: executed after a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 219   thread->dirty_card_queue().enqueue(card_addr);
 220 JRT_END
 221 
 222 #endif // INCLUDE_ALL_GCS
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 226   return x * y;
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return x;
 233   } else {
 234     return x / y;
 235   }
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return 0;
 242   } else {
 243     return x % y;
 244   }
 245 JRT_END
 246 
 247 
 248 const juint  float_sign_mask  = 0x7FFFFFFF;
 249 const juint  float_infinity   = 0x7F800000;
 250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 251 const julong double_infinity  = CONST64(0x7FF0000000000000);
 252 
 253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 254 #ifdef _WIN64
 255   // 64-bit Windows on amd64 returns the wrong values for
 256   // infinity operands.
 257   union { jfloat f; juint i; } xbits, ybits;
 258   xbits.f = x;
 259   ybits.f = y;
 260   // x Mod Infinity == x unless x is infinity
 261   if (((xbits.i & float_sign_mask) != float_infinity) &&
 262        ((ybits.i & float_sign_mask) == float_infinity) ) {
 263     return x;
 264   }
 265   return ((jfloat)fmod_winx64((double)x, (double)y));
 266 #else
 267   return ((jfloat)fmod((double)x,(double)y));
 268 #endif
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 273 #ifdef _WIN64
 274   union { jdouble d; julong l; } xbits, ybits;
 275   xbits.d = x;
 276   ybits.d = y;
 277   // x Mod Infinity == x unless x is infinity
 278   if (((xbits.l & double_sign_mask) != double_infinity) &&
 279        ((ybits.l & double_sign_mask) == double_infinity) ) {
 280     return x;
 281   }
 282   return ((jdouble)fmod_winx64((double)x, (double)y));
 283 #else
 284   return ((jdouble)fmod((double)x,(double)y));
 285 #endif
 286 JRT_END
 287 
 288 #ifdef __SOFTFP__
 289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 322   return (jfloat)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 // Functions to return the opposite of the aeabi functions for nan.
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 // Intrinsics make gcc generate code for these.
 383 float  SharedRuntime::fneg(float f)   {
 384   return -f;
 385 }
 386 
 387 double SharedRuntime::dneg(double f)  {
 388   return -f;
 389 }
 390 
 391 #endif // __SOFTFP__
 392 
 393 #if defined(__SOFTFP__) || defined(E500V2)
 394 // Intrinsics make gcc generate code for these.
 395 double SharedRuntime::dabs(double f)  {
 396   return (f <= (double)0.0) ? (double)0.0 - f : f;
 397 }
 398 
 399 #endif
 400 
 401 #if defined(__SOFTFP__) || defined(PPC)
 402 double SharedRuntime::dsqrt(double f) {
 403   return sqrt(f);
 404 }
 405 #endif
 406 
 407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jint)
 411     return max_jint;
 412   if (x <= (jfloat) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jfloat) max_jlong)
 422     return max_jlong;
 423   if (x <= (jfloat) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jint)
 433     return max_jint;
 434   if (x <= (jdouble) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jdouble) max_jlong)
 444     return max_jlong;
 445   if (x <= (jdouble) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 452   return (jfloat)x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 462   return (jdouble)x;
 463 JRT_END
 464 
 465 // Exception handling across interpreter/compiler boundaries
 466 //
 467 // exception_handler_for_return_address(...) returns the continuation address.
 468 // The continuation address is the entry point of the exception handler of the
 469 // previous frame depending on the return address.
 470 
 471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 474 
 475   // Reset method handle flag.
 476   thread->set_is_method_handle_return(false);
 477 
 478 #if INCLUDE_JVMCI
 479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 480   // and other exception handler continuations do not read it
 481   thread->set_exception_pc(NULL);
 482 #endif // INCLUDE_JVMCI
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       // If we come here because of a stack overflow, the stack may be
 495       // unguarded. Reguard the stack otherwise if we return to the
 496       // deopt blob and the stack bang causes a stack overflow we
 497       // crash.
 498       bool guard_pages_enabled = thread->stack_guards_enabled();
 499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 500       if (thread->reserved_stack_activation() != thread->stack_base()) {
 501         thread->set_reserved_stack_activation(thread->stack_base());
 502       }
 503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 504       return SharedRuntime::deopt_blob()->unpack_with_exception();
 505     } else {
 506       return nm->exception_begin();
 507     }
 508   }
 509 
 510   // Entry code
 511   if (StubRoutines::returns_to_call_stub(return_address)) {
 512     return StubRoutines::catch_exception_entry();
 513   }
 514   // Interpreted code
 515   if (Interpreter::contains(return_address)) {
 516     return Interpreter::rethrow_exception_entry();
 517   }
 518 
 519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 521 
 522 #ifndef PRODUCT
 523   { ResourceMark rm;
 524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 526     tty->print_cr("b) other problem");
 527   }
 528 #endif // PRODUCT
 529 
 530   ShouldNotReachHere();
 531   return NULL;
 532 }
 533 
 534 
 535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 536   return raw_exception_handler_for_return_address(thread, return_address);
 537 JRT_END
 538 
 539 
 540 address SharedRuntime::get_poll_stub(address pc) {
 541   address stub;
 542   // Look up the code blob
 543   CodeBlob *cb = CodeCache::find_blob(pc);
 544 
 545   // Should be an nmethod
 546   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 547 
 548   // Look up the relocation information
 549   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 550     "safepoint polling: type must be poll");
 551 
 552 #ifdef ASSERT
 553   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 554     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 555     Disassembler::decode(cb);
 556     fatal("Only polling locations are used for safepoint");
 557   }
 558 #endif
 559 
 560   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 561   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 562   if (at_poll_return) {
 563     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 564            "polling page return stub not created yet");
 565     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 566   } else if (has_wide_vectors) {
 567     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 568            "polling page vectors safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 570   } else {
 571     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 572            "polling page safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 574   }
 575   log_debug(safepoint)("... found polling page %s exception at pc = "
 576                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 577                        at_poll_return ? "return" : "loop",
 578                        (intptr_t)pc, (intptr_t)stub);
 579   return stub;
 580 }
 581 
 582 
 583 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 584   assert(caller.is_interpreted_frame(), "");
 585   int args_size = ArgumentSizeComputer(sig).size() + 1;
 586   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 587   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 588   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 589   return result;
 590 }
 591 
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 594   if (JvmtiExport::can_post_on_exceptions()) {
 595     vframeStream vfst(thread, true);
 596     methodHandle method = methodHandle(thread, vfst.method());
 597     address bcp = method()->bcp_from(vfst.bci());
 598     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 599   }
 600   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 601 }
 602 
 603 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 604   Handle h_exception = Exceptions::new_exception(thread, name, message);
 605   throw_and_post_jvmti_exception(thread, h_exception);
 606 }
 607 
 608 // The interpreter code to call this tracing function is only
 609 // called/generated when UL is on for redefine, class and has the right level
 610 // and tags. Since obsolete methods are never compiled, we don't have
 611 // to modify the compilers to generate calls to this function.
 612 //
 613 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 614     JavaThread* thread, Method* method))
 615   if (method->is_obsolete()) {
 616     // We are calling an obsolete method, but this is not necessarily
 617     // an error. Our method could have been redefined just after we
 618     // fetched the Method* from the constant pool.
 619     ResourceMark rm;
 620     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 629   assert(cm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (cm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - cm->code_begin();
 636     ExceptionHandlerTable table(cm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return cm->code_begin() + t->pco();
 640     } else {
 641       // there is no exception handler for this pc => deoptimize
 642       cm->make_not_entrant();
 643 
 644       // Use Deoptimization::deoptimize for all of its side-effects:
 645       // revoking biases of monitors, gathering traps statistics, logging...
 646       // it also patches the return pc but we do not care about that
 647       // since we return a continuation to the deopt_blob below.
 648       JavaThread* thread = JavaThread::current();
 649       RegisterMap reg_map(thread, UseBiasedLocking);
 650       frame runtime_frame = thread->last_frame();
 651       frame caller_frame = runtime_frame.sender(&reg_map);
 652       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 653 
 654       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 655     }
 656   }
 657 #endif // INCLUDE_JVMCI
 658 
 659   nmethod* nm = cm->as_nmethod();
 660   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 661   // determine handler bci, if any
 662   EXCEPTION_MARK;
 663 
 664   int handler_bci = -1;
 665   int scope_depth = 0;
 666   if (!force_unwind) {
 667     int bci = sd->bci();
 668     bool recursive_exception = false;
 669     do {
 670       bool skip_scope_increment = false;
 671       // exception handler lookup
 672       Klass* ek = exception->klass();
 673       methodHandle mh(THREAD, sd->method());
 674       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 675       if (HAS_PENDING_EXCEPTION) {
 676         recursive_exception = true;
 677         // We threw an exception while trying to find the exception handler.
 678         // Transfer the new exception to the exception handle which will
 679         // be set into thread local storage, and do another lookup for an
 680         // exception handler for this exception, this time starting at the
 681         // BCI of the exception handler which caused the exception to be
 682         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 683         // argument to ensure that the correct exception is thrown (4870175).
 684         recursive_exception_occurred = true;
 685         exception = Handle(THREAD, PENDING_EXCEPTION);
 686         CLEAR_PENDING_EXCEPTION;
 687         if (handler_bci >= 0) {
 688           bci = handler_bci;
 689           handler_bci = -1;
 690           skip_scope_increment = true;
 691         }
 692       }
 693       else {
 694         recursive_exception = false;
 695       }
 696       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 697         sd = sd->sender();
 698         if (sd != NULL) {
 699           bci = sd->bci();
 700         }
 701         ++scope_depth;
 702       }
 703     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 704   }
 705 
 706   // found handling method => lookup exception handler
 707   int catch_pco = ret_pc - nm->code_begin();
 708 
 709   ExceptionHandlerTable table(nm);
 710   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 711   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 712     // Allow abbreviated catch tables.  The idea is to allow a method
 713     // to materialize its exceptions without committing to the exact
 714     // routing of exceptions.  In particular this is needed for adding
 715     // a synthetic handler to unlock monitors when inlining
 716     // synchronized methods since the unlock path isn't represented in
 717     // the bytecodes.
 718     t = table.entry_for(catch_pco, -1, 0);
 719   }
 720 
 721 #ifdef COMPILER1
 722   if (t == NULL && nm->is_compiled_by_c1()) {
 723     assert(nm->unwind_handler_begin() != NULL, "");
 724     return nm->unwind_handler_begin();
 725   }
 726 #endif
 727 
 728   if (t == NULL) {
 729     ttyLocker ttyl;
 730     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 731     tty->print_cr("   Exception:");
 732     exception->print();
 733     tty->cr();
 734     tty->print_cr(" Compiled exception table :");
 735     table.print();
 736     nm->print_code();
 737     guarantee(false, "missing exception handler");
 738     return NULL;
 739   }
 740 
 741   return nm->code_begin() + t->pco();
 742 }
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 745   // These errors occur only at call sites
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 750   // These errors occur only at call sites
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 759   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 763   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 764   // cache sites (when the callee activation is not yet set up) so we are at a call site
 765   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 766 JRT_END
 767 
 768 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 769   throw_StackOverflowError_common(thread, false);
 770 JRT_END
 771 
 772 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 773   throw_StackOverflowError_common(thread, true);
 774 JRT_END
 775 
 776 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 777   // We avoid using the normal exception construction in this case because
 778   // it performs an upcall to Java, and we're already out of stack space.
 779   Thread* THREAD = thread;
 780   Klass* k = SystemDictionary::StackOverflowError_klass();
 781   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 782   if (delayed) {
 783     java_lang_Throwable::set_message(exception_oop,
 784                                      Universe::delayed_stack_overflow_error_message());
 785   }
 786   Handle exception (thread, exception_oop);
 787   if (StackTraceInThrowable) {
 788     java_lang_Throwable::fill_in_stack_trace(exception);
 789   }
 790   // Increment counter for hs_err file reporting
 791   Atomic::inc(&Exceptions::_stack_overflow_errors);
 792   throw_and_post_jvmti_exception(thread, exception);
 793 }
 794 
 795 #if INCLUDE_JVMCI
 796 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 797   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 798   thread->set_jvmci_implicit_exception_pc(pc);
 799   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 800   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 801 }
 802 #endif // INCLUDE_JVMCI
 803 
 804 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 805                                                            address pc,
 806                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 807 {
 808   address target_pc = NULL;
 809 
 810   if (Interpreter::contains(pc)) {
 811 #ifdef CC_INTERP
 812     // C++ interpreter doesn't throw implicit exceptions
 813     ShouldNotReachHere();
 814 #else
 815     switch (exception_kind) {
 816       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 817       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 818       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 819       default:                      ShouldNotReachHere();
 820     }
 821 #endif // !CC_INTERP
 822   } else {
 823     switch (exception_kind) {
 824       case STACK_OVERFLOW: {
 825         // Stack overflow only occurs upon frame setup; the callee is
 826         // going to be unwound. Dispatch to a shared runtime stub
 827         // which will cause the StackOverflowError to be fabricated
 828         // and processed.
 829         // Stack overflow should never occur during deoptimization:
 830         // the compiled method bangs the stack by as much as the
 831         // interpreter would need in case of a deoptimization. The
 832         // deoptimization blob and uncommon trap blob bang the stack
 833         // in a debug VM to verify the correctness of the compiled
 834         // method stack banging.
 835         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 836         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 837         return StubRoutines::throw_StackOverflowError_entry();
 838       }
 839 
 840       case IMPLICIT_NULL: {
 841         if (VtableStubs::contains(pc)) {
 842           // We haven't yet entered the callee frame. Fabricate an
 843           // exception and begin dispatching it in the caller. Since
 844           // the caller was at a call site, it's safe to destroy all
 845           // caller-saved registers, as these entry points do.
 846           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 847 
 848           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 849           if (vt_stub == NULL) return NULL;
 850 
 851           if (vt_stub->is_abstract_method_error(pc)) {
 852             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 853             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 854             return StubRoutines::throw_AbstractMethodError_entry();
 855           } else {
 856             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859         } else {
 860           CodeBlob* cb = CodeCache::find_blob(pc);
 861 
 862           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 863           if (cb == NULL) return NULL;
 864 
 865           // Exception happened in CodeCache. Must be either:
 866           // 1. Inline-cache check in C2I handler blob,
 867           // 2. Inline-cache check in nmethod, or
 868           // 3. Implicit null exception in nmethod
 869 
 870           if (!cb->is_compiled()) {
 871             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 872             if (!is_in_blob) {
 873               // Allow normal crash reporting to handle this
 874               return NULL;
 875             }
 876             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 877             // There is no handler here, so we will simply unwind.
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881           // Otherwise, it's a compiled method.  Consult its exception handlers.
 882           CompiledMethod* cm = (CompiledMethod*)cb;
 883           if (cm->inlinecache_check_contains(pc)) {
 884             // exception happened inside inline-cache check code
 885             // => the nmethod is not yet active (i.e., the frame
 886             // is not set up yet) => use return address pushed by
 887             // caller => don't push another return address
 888             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 889             return StubRoutines::throw_NullPointerException_at_call_entry();
 890           }
 891 
 892           if (cm->method()->is_method_handle_intrinsic()) {
 893             // exception happened inside MH dispatch code, similar to a vtable stub
 894             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 895             return StubRoutines::throw_NullPointerException_at_call_entry();
 896           }
 897 
 898 #ifndef PRODUCT
 899           _implicit_null_throws++;
 900 #endif
 901 #if INCLUDE_JVMCI
 902           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 903             // If there's no PcDesc then we'll die way down inside of
 904             // deopt instead of just getting normal error reporting,
 905             // so only go there if it will succeed.
 906             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 907           } else {
 908 #endif // INCLUDE_JVMCI
 909           assert (cm->is_nmethod(), "Expect nmethod");
 910           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 911 #if INCLUDE_JVMCI
 912           }
 913 #endif // INCLUDE_JVMCI
 914           // If there's an unexpected fault, target_pc might be NULL,
 915           // in which case we want to fall through into the normal
 916           // error handling code.
 917         }
 918 
 919         break; // fall through
 920       }
 921 
 922 
 923       case IMPLICIT_DIVIDE_BY_ZERO: {
 924         CompiledMethod* cm = CodeCache::find_compiled(pc);
 925         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 926 #ifndef PRODUCT
 927         _implicit_div0_throws++;
 928 #endif
 929 #if INCLUDE_JVMCI
 930         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 931           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 932         } else {
 933 #endif // INCLUDE_JVMCI
 934         target_pc = cm->continuation_for_implicit_exception(pc);
 935 #if INCLUDE_JVMCI
 936         }
 937 #endif // INCLUDE_JVMCI
 938         // If there's an unexpected fault, target_pc might be NULL,
 939         // in which case we want to fall through into the normal
 940         // error handling code.
 941         break; // fall through
 942       }
 943 
 944       default: ShouldNotReachHere();
 945     }
 946 
 947     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 948 
 949     if (exception_kind == IMPLICIT_NULL) {
 950 #ifndef PRODUCT
 951       // for AbortVMOnException flag
 952       Exceptions::debug_check_abort("java.lang.NullPointerException");
 953 #endif //PRODUCT
 954       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 955     } else {
 956 #ifndef PRODUCT
 957       // for AbortVMOnException flag
 958       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 959 #endif //PRODUCT
 960       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 961     }
 962     return target_pc;
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 
 970 /**
 971  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 972  * installed in the native function entry of all native Java methods before
 973  * they get linked to their actual native methods.
 974  *
 975  * \note
 976  * This method actually never gets called!  The reason is because
 977  * the interpreter's native entries call NativeLookup::lookup() which
 978  * throws the exception when the lookup fails.  The exception is then
 979  * caught and forwarded on the return from NativeLookup::lookup() call
 980  * before the call to the native function.  This might change in the future.
 981  */
 982 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 983 {
 984   // We return a bad value here to make sure that the exception is
 985   // forwarded before we look at the return value.
 986   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 987 }
 988 JNI_END
 989 
 990 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 991   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 992 }
 993 
 994 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 995 #if INCLUDE_JVMCI
 996   if (!obj->klass()->has_finalizer()) {
 997     return;
 998   }
 999 #endif // INCLUDE_JVMCI
1000   assert(obj->is_oop(), "must be a valid oop");
1001   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1002   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1003 JRT_END
1004 
1005 
1006 jlong SharedRuntime::get_java_tid(Thread* thread) {
1007   if (thread != NULL) {
1008     if (thread->is_Java_thread()) {
1009       oop obj = ((JavaThread*)thread)->threadObj();
1010       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1011     }
1012   }
1013   return 0;
1014 }
1015 
1016 /**
1017  * This function ought to be a void function, but cannot be because
1018  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1019  * 6254741.  Once that is fixed we can remove the dummy return value.
1020  */
1021 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1022   return dtrace_object_alloc_base(Thread::current(), o, size);
1023 }
1024 
1025 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1026   assert(DTraceAllocProbes, "wrong call");
1027   Klass* klass = o->klass();
1028   Symbol* name = klass->name();
1029   HOTSPOT_OBJECT_ALLOC(
1030                    get_java_tid(thread),
1031                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1032   return 0;
1033 }
1034 
1035 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1036     JavaThread* thread, Method* method))
1037   assert(DTraceMethodProbes, "wrong call");
1038   Symbol* kname = method->klass_name();
1039   Symbol* name = method->name();
1040   Symbol* sig = method->signature();
1041   HOTSPOT_METHOD_ENTRY(
1042       get_java_tid(thread),
1043       (char *) kname->bytes(), kname->utf8_length(),
1044       (char *) name->bytes(), name->utf8_length(),
1045       (char *) sig->bytes(), sig->utf8_length());
1046   return 0;
1047 JRT_END
1048 
1049 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1050     JavaThread* thread, Method* method))
1051   assert(DTraceMethodProbes, "wrong call");
1052   Symbol* kname = method->klass_name();
1053   Symbol* name = method->name();
1054   Symbol* sig = method->signature();
1055   HOTSPOT_METHOD_RETURN(
1056       get_java_tid(thread),
1057       (char *) kname->bytes(), kname->utf8_length(),
1058       (char *) name->bytes(), name->utf8_length(),
1059       (char *) sig->bytes(), sig->utf8_length());
1060   return 0;
1061 JRT_END
1062 
1063 
1064 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1065 // for a call current in progress, i.e., arguments has been pushed on stack
1066 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1067 // vtable updates, etc.  Caller frame must be compiled.
1068 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1069   ResourceMark rm(THREAD);
1070 
1071   // last java frame on stack (which includes native call frames)
1072   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1073 
1074   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1075 }
1076 
1077 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1078   CompiledMethod* caller = vfst.nm();
1079 
1080   nmethodLocker caller_lock(caller);
1081 
1082   address pc = vfst.frame_pc();
1083   { // Get call instruction under lock because another thread may be busy patching it.
1084     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1085     return caller->attached_method_before_pc(pc);
1086   }
1087   return NULL;
1088 }
1089 
1090 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1091 // for a call current in progress, i.e., arguments has been pushed on stack
1092 // but callee has not been invoked yet.  Caller frame must be compiled.
1093 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1094                                               vframeStream& vfst,
1095                                               Bytecodes::Code& bc,
1096                                               CallInfo& callinfo, TRAPS) {
1097   Handle receiver;
1098   Handle nullHandle;  //create a handy null handle for exception returns
1099 
1100   assert(!vfst.at_end(), "Java frame must exist");
1101 
1102   // Find caller and bci from vframe
1103   methodHandle caller(THREAD, vfst.method());
1104   int          bci   = vfst.bci();
1105 
1106   Bytecode_invoke bytecode(caller, bci);
1107   int bytecode_index = bytecode.index();
1108 
1109   methodHandle attached_method = extract_attached_method(vfst);
1110   if (attached_method.not_null()) {
1111     methodHandle callee = bytecode.static_target(CHECK_NH);
1112     vmIntrinsics::ID id = callee->intrinsic_id();
1113     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114     // it attaches statically resolved method to the call site.
1115     if (MethodHandles::is_signature_polymorphic(id) &&
1116         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118 
1119       // Adjust invocation mode according to the attached method.
1120       switch (bc) {
1121         case Bytecodes::_invokeinterface:
1122           if (!attached_method->method_holder()->is_interface()) {
1123             bc = Bytecodes::_invokevirtual;
1124           }
1125           break;
1126         case Bytecodes::_invokehandle:
1127           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1128             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1129                                               : Bytecodes::_invokevirtual;
1130           }
1131           break;
1132         default:
1133           break;
1134       }
1135     }
1136   } else {
1137     bc = bytecode.invoke_code();
1138   }
1139 
1140   bool has_receiver = bc != Bytecodes::_invokestatic &&
1141                       bc != Bytecodes::_invokedynamic &&
1142                       bc != Bytecodes::_invokehandle;
1143 
1144   // Find receiver for non-static call
1145   if (has_receiver) {
1146     // This register map must be update since we need to find the receiver for
1147     // compiled frames. The receiver might be in a register.
1148     RegisterMap reg_map2(thread);
1149     frame stubFrame   = thread->last_frame();
1150     // Caller-frame is a compiled frame
1151     frame callerFrame = stubFrame.sender(&reg_map2);
1152 
1153     if (attached_method.is_null()) {
1154       methodHandle callee = bytecode.static_target(CHECK_NH);
1155       if (callee.is_null()) {
1156         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1157       }
1158     }
1159 
1160     // Retrieve from a compiled argument list
1161     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1162 
1163     if (receiver.is_null()) {
1164       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1165     }
1166   }
1167 
1168   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1169 
1170   // Resolve method
1171   if (attached_method.not_null()) {
1172     // Parameterized by attached method.
1173     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1174   } else {
1175     // Parameterized by bytecode.
1176     constantPoolHandle constants(THREAD, caller->constants());
1177     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1178   }
1179 
1180 #ifdef ASSERT
1181   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1182   if (has_receiver) {
1183     assert(receiver.not_null(), "should have thrown exception");
1184     Klass* receiver_klass = receiver->klass();
1185     Klass* rk = NULL;
1186     if (attached_method.not_null()) {
1187       // In case there's resolved method attached, use its holder during the check.
1188       rk = attached_method->method_holder();
1189     } else {
1190       // Klass is already loaded.
1191       constantPoolHandle constants(THREAD, caller->constants());
1192       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1193     }
1194     Klass* static_receiver_klass = rk;
1195     methodHandle callee = callinfo.selected_method();
1196     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1197            "actual receiver must be subclass of static receiver klass");
1198     if (receiver_klass->is_instance_klass()) {
1199       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1200         tty->print_cr("ERROR: Klass not yet initialized!!");
1201         receiver_klass->print();
1202       }
1203       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1204     }
1205   }
1206 #endif
1207 
1208   return receiver;
1209 }
1210 
1211 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1212   ResourceMark rm(THREAD);
1213   // We need first to check if any Java activations (compiled, interpreted)
1214   // exist on the stack since last JavaCall.  If not, we need
1215   // to get the target method from the JavaCall wrapper.
1216   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1217   methodHandle callee_method;
1218   if (vfst.at_end()) {
1219     // No Java frames were found on stack since we did the JavaCall.
1220     // Hence the stack can only contain an entry_frame.  We need to
1221     // find the target method from the stub frame.
1222     RegisterMap reg_map(thread, false);
1223     frame fr = thread->last_frame();
1224     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1225     fr = fr.sender(&reg_map);
1226     assert(fr.is_entry_frame(), "must be");
1227     // fr is now pointing to the entry frame.
1228     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1229   } else {
1230     Bytecodes::Code bc;
1231     CallInfo callinfo;
1232     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1233     callee_method = callinfo.selected_method();
1234   }
1235   assert(callee_method()->is_method(), "must be");
1236   return callee_method;
1237 }
1238 
1239 // Resolves a call.
1240 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1241                                            bool is_virtual,
1242                                            bool is_optimized, TRAPS) {
1243   methodHandle callee_method;
1244   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1245   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1246     int retry_count = 0;
1247     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1248            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1249       // If has a pending exception then there is no need to re-try to
1250       // resolve this method.
1251       // If the method has been redefined, we need to try again.
1252       // Hack: we have no way to update the vtables of arrays, so don't
1253       // require that java.lang.Object has been updated.
1254 
1255       // It is very unlikely that method is redefined more than 100 times
1256       // in the middle of resolve. If it is looping here more than 100 times
1257       // means then there could be a bug here.
1258       guarantee((retry_count++ < 100),
1259                 "Could not resolve to latest version of redefined method");
1260       // method is redefined in the middle of resolve so re-try.
1261       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1262     }
1263   }
1264   return callee_method;
1265 }
1266 
1267 // Resolves a call.  The compilers generate code for calls that go here
1268 // and are patched with the real destination of the call.
1269 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1270                                            bool is_virtual,
1271                                            bool is_optimized, TRAPS) {
1272 
1273   ResourceMark rm(thread);
1274   RegisterMap cbl_map(thread, false);
1275   frame caller_frame = thread->last_frame().sender(&cbl_map);
1276 
1277   CodeBlob* caller_cb = caller_frame.cb();
1278   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1279   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1280 
1281   // make sure caller is not getting deoptimized
1282   // and removed before we are done with it.
1283   // CLEANUP - with lazy deopt shouldn't need this lock
1284   nmethodLocker caller_lock(caller_nm);
1285 
1286   // determine call info & receiver
1287   // note: a) receiver is NULL for static calls
1288   //       b) an exception is thrown if receiver is NULL for non-static calls
1289   CallInfo call_info;
1290   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1291   Handle receiver = find_callee_info(thread, invoke_code,
1292                                      call_info, CHECK_(methodHandle()));
1293   methodHandle callee_method = call_info.selected_method();
1294 
1295   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1297          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1298          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1299          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1300 
1301   assert(caller_nm->is_alive(), "It should be alive");
1302 
1303 #ifndef PRODUCT
1304   // tracing/debugging/statistics
1305   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1306                 (is_virtual) ? (&_resolve_virtual_ctr) :
1307                                (&_resolve_static_ctr);
1308   Atomic::inc(addr);
1309 
1310   if (TraceCallFixup) {
1311     ResourceMark rm(thread);
1312     tty->print("resolving %s%s (%s) call to",
1313       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1314       Bytecodes::name(invoke_code));
1315     callee_method->print_short_name(tty);
1316     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1317                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1318   }
1319 #endif
1320 
1321   // JSR 292 key invariant:
1322   // If the resolved method is a MethodHandle invoke target, the call
1323   // site must be a MethodHandle call site, because the lambda form might tail-call
1324   // leaving the stack in a state unknown to either caller or callee
1325   // TODO detune for now but we might need it again
1326 //  assert(!callee_method->is_compiled_lambda_form() ||
1327 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1328 
1329   // Compute entry points. This might require generation of C2I converter
1330   // frames, so we cannot be holding any locks here. Furthermore, the
1331   // computation of the entry points is independent of patching the call.  We
1332   // always return the entry-point, but we only patch the stub if the call has
1333   // not been deoptimized.  Return values: For a virtual call this is an
1334   // (cached_oop, destination address) pair. For a static call/optimized
1335   // virtual this is just a destination address.
1336 
1337   StaticCallInfo static_call_info;
1338   CompiledICInfo virtual_call_info;
1339 
1340   // Make sure the callee nmethod does not get deoptimized and removed before
1341   // we are done patching the code.
1342   CompiledMethod* callee = callee_method->code();
1343 
1344   if (callee != NULL) {
1345     assert(callee->is_compiled(), "must be nmethod for patching");
1346   }
1347 
1348   if (callee != NULL && !callee->is_in_use()) {
1349     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1350     callee = NULL;
1351   }
1352   nmethodLocker nl_callee(callee);
1353 #ifdef ASSERT
1354   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1355 #endif
1356 
1357   bool is_nmethod = caller_nm->is_nmethod();
1358 
1359   if (is_virtual) {
1360     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1361     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1362     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1363     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1364                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1365                      CHECK_(methodHandle()));
1366   } else {
1367     // static call
1368     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1369   }
1370 
1371   // grab lock, check for deoptimization and potentially patch caller
1372   {
1373     MutexLocker ml_patch(CompiledIC_lock);
1374 
1375     // Lock blocks for safepoint during which both nmethods can change state.
1376 
1377     // Now that we are ready to patch if the Method* was redefined then
1378     // don't update call site and let the caller retry.
1379     // Don't update call site if callee nmethod was unloaded or deoptimized.
1380     // Don't update call site if callee nmethod was replaced by an other nmethod
1381     // which may happen when multiply alive nmethod (tiered compilation)
1382     // will be supported.
1383     if (!callee_method->is_old() &&
1384         (callee == NULL || (callee->is_in_use() && callee_method->code() == callee))) {
1385 #ifdef ASSERT
1386       // We must not try to patch to jump to an already unloaded method.
1387       if (dest_entry_point != 0) {
1388         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1389         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1390                "should not call unloaded nmethod");
1391       }
1392 #endif
1393       if (is_virtual) {
1394         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1395         if (inline_cache->is_clean()) {
1396           inline_cache->set_to_monomorphic(virtual_call_info);
1397         }
1398       } else {
1399         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1400         if (ssc->is_clean()) ssc->set(static_call_info);
1401       }
1402     }
1403 
1404   } // unlock CompiledIC_lock
1405 
1406   return callee_method;
1407 }
1408 
1409 
1410 // Inline caches exist only in compiled code
1411 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1412 #ifdef ASSERT
1413   RegisterMap reg_map(thread, false);
1414   frame stub_frame = thread->last_frame();
1415   assert(stub_frame.is_runtime_frame(), "sanity check");
1416   frame caller_frame = stub_frame.sender(&reg_map);
1417   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1418 #endif /* ASSERT */
1419 
1420   methodHandle callee_method;
1421   JRT_BLOCK
1422     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1423     // Return Method* through TLS
1424     thread->set_vm_result_2(callee_method());
1425   JRT_BLOCK_END
1426   // return compiled code entry point after potential safepoints
1427   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1428   return callee_method->verified_code_entry();
1429 JRT_END
1430 
1431 
1432 // Handle call site that has been made non-entrant
1433 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1434   // 6243940 We might end up in here if the callee is deoptimized
1435   // as we race to call it.  We don't want to take a safepoint if
1436   // the caller was interpreted because the caller frame will look
1437   // interpreted to the stack walkers and arguments are now
1438   // "compiled" so it is much better to make this transition
1439   // invisible to the stack walking code. The i2c path will
1440   // place the callee method in the callee_target. It is stashed
1441   // there because if we try and find the callee by normal means a
1442   // safepoint is possible and have trouble gc'ing the compiled args.
1443   RegisterMap reg_map(thread, false);
1444   frame stub_frame = thread->last_frame();
1445   assert(stub_frame.is_runtime_frame(), "sanity check");
1446   frame caller_frame = stub_frame.sender(&reg_map);
1447 
1448   if (caller_frame.is_interpreted_frame() ||
1449       caller_frame.is_entry_frame()) {
1450     Method* callee = thread->callee_target();
1451     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1452     thread->set_vm_result_2(callee);
1453     thread->set_callee_target(NULL);
1454     return callee->get_c2i_entry();
1455   }
1456 
1457   // Must be compiled to compiled path which is safe to stackwalk
1458   methodHandle callee_method;
1459   JRT_BLOCK
1460     // Force resolving of caller (if we called from compiled frame)
1461     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1462     thread->set_vm_result_2(callee_method());
1463   JRT_BLOCK_END
1464   // return compiled code entry point after potential safepoints
1465   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1466   return callee_method->verified_code_entry();
1467 JRT_END
1468 
1469 // Handle abstract method call
1470 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1471   return StubRoutines::throw_AbstractMethodError_entry();
1472 JRT_END
1473 
1474 
1475 // resolve a static call and patch code
1476 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1477   methodHandle callee_method;
1478   JRT_BLOCK
1479     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1480     thread->set_vm_result_2(callee_method());
1481   JRT_BLOCK_END
1482   // return compiled code entry point after potential safepoints
1483   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1484   return callee_method->verified_code_entry();
1485 JRT_END
1486 
1487 
1488 // resolve virtual call and update inline cache to monomorphic
1489 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1490   methodHandle callee_method;
1491   JRT_BLOCK
1492     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1493     thread->set_vm_result_2(callee_method());
1494   JRT_BLOCK_END
1495   // return compiled code entry point after potential safepoints
1496   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1497   return callee_method->verified_code_entry();
1498 JRT_END
1499 
1500 
1501 // Resolve a virtual call that can be statically bound (e.g., always
1502 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1503 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1504   methodHandle callee_method;
1505   JRT_BLOCK
1506     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1507     thread->set_vm_result_2(callee_method());
1508   JRT_BLOCK_END
1509   // return compiled code entry point after potential safepoints
1510   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1511   return callee_method->verified_code_entry();
1512 JRT_END
1513 
1514 
1515 
1516 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1517   ResourceMark rm(thread);
1518   CallInfo call_info;
1519   Bytecodes::Code bc;
1520 
1521   // receiver is NULL for static calls. An exception is thrown for NULL
1522   // receivers for non-static calls
1523   Handle receiver = find_callee_info(thread, bc, call_info,
1524                                      CHECK_(methodHandle()));
1525   // Compiler1 can produce virtual call sites that can actually be statically bound
1526   // If we fell thru to below we would think that the site was going megamorphic
1527   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1528   // we'd try and do a vtable dispatch however methods that can be statically bound
1529   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1530   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1531   // plain ic_miss) and the site will be converted to an optimized virtual call site
1532   // never to miss again. I don't believe C2 will produce code like this but if it
1533   // did this would still be the correct thing to do for it too, hence no ifdef.
1534   //
1535   if (call_info.resolved_method()->can_be_statically_bound()) {
1536     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1537     if (TraceCallFixup) {
1538       RegisterMap reg_map(thread, false);
1539       frame caller_frame = thread->last_frame().sender(&reg_map);
1540       ResourceMark rm(thread);
1541       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1542       callee_method->print_short_name(tty);
1543       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1544       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1545     }
1546     return callee_method;
1547   }
1548 
1549   methodHandle callee_method = call_info.selected_method();
1550 
1551   bool should_be_mono = false;
1552 
1553 #ifndef PRODUCT
1554   Atomic::inc(&_ic_miss_ctr);
1555 
1556   // Statistics & Tracing
1557   if (TraceCallFixup) {
1558     ResourceMark rm(thread);
1559     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1560     callee_method->print_short_name(tty);
1561     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1562   }
1563 
1564   if (ICMissHistogram) {
1565     MutexLocker m(VMStatistic_lock);
1566     RegisterMap reg_map(thread, false);
1567     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1568     // produce statistics under the lock
1569     trace_ic_miss(f.pc());
1570   }
1571 #endif
1572 
1573   // install an event collector so that when a vtable stub is created the
1574   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1575   // event can't be posted when the stub is created as locks are held
1576   // - instead the event will be deferred until the event collector goes
1577   // out of scope.
1578   JvmtiDynamicCodeEventCollector event_collector;
1579 
1580   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1581   { MutexLocker ml_patch (CompiledIC_lock);
1582     RegisterMap reg_map(thread, false);
1583     frame caller_frame = thread->last_frame().sender(&reg_map);
1584     CodeBlob* cb = caller_frame.cb();
1585     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1586     if (cb->is_compiled()) {
1587       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1588       bool should_be_mono = false;
1589       if (inline_cache->is_optimized()) {
1590         if (TraceCallFixup) {
1591           ResourceMark rm(thread);
1592           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1593           callee_method->print_short_name(tty);
1594           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1595         }
1596         should_be_mono = true;
1597       } else if (inline_cache->is_icholder_call()) {
1598         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1599         if (ic_oop != NULL) {
1600 
1601           if (receiver()->klass() == ic_oop->holder_klass()) {
1602             // This isn't a real miss. We must have seen that compiled code
1603             // is now available and we want the call site converted to a
1604             // monomorphic compiled call site.
1605             // We can't assert for callee_method->code() != NULL because it
1606             // could have been deoptimized in the meantime
1607             if (TraceCallFixup) {
1608               ResourceMark rm(thread);
1609               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1610               callee_method->print_short_name(tty);
1611               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1612             }
1613             should_be_mono = true;
1614           }
1615         }
1616       }
1617 
1618       if (should_be_mono) {
1619 
1620         // We have a path that was monomorphic but was going interpreted
1621         // and now we have (or had) a compiled entry. We correct the IC
1622         // by using a new icBuffer.
1623         CompiledICInfo info;
1624         Klass* receiver_klass = receiver()->klass();
1625         inline_cache->compute_monomorphic_entry(callee_method,
1626                                                 receiver_klass,
1627                                                 inline_cache->is_optimized(),
1628                                                 false, caller_nm->is_nmethod(),
1629                                                 info, CHECK_(methodHandle()));
1630         inline_cache->set_to_monomorphic(info);
1631       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1632         // Potential change to megamorphic
1633         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1634         if (!successful) {
1635           inline_cache->set_to_clean();
1636         }
1637       } else {
1638         // Either clean or megamorphic
1639       }
1640     } else {
1641       fatal("Unimplemented");
1642     }
1643   } // Release CompiledIC_lock
1644 
1645   return callee_method;
1646 }
1647 
1648 //
1649 // Resets a call-site in compiled code so it will get resolved again.
1650 // This routines handles both virtual call sites, optimized virtual call
1651 // sites, and static call sites. Typically used to change a call sites
1652 // destination from compiled to interpreted.
1653 //
1654 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1655   ResourceMark rm(thread);
1656   RegisterMap reg_map(thread, false);
1657   frame stub_frame = thread->last_frame();
1658   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1659   frame caller = stub_frame.sender(&reg_map);
1660 
1661   // Do nothing if the frame isn't a live compiled frame.
1662   // nmethod could be deoptimized by the time we get here
1663   // so no update to the caller is needed.
1664 
1665   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1666 
1667     address pc = caller.pc();
1668 
1669     // Check for static or virtual call
1670     bool is_static_call = false;
1671     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1672 
1673     // Default call_addr is the location of the "basic" call.
1674     // Determine the address of the call we a reresolving. With
1675     // Inline Caches we will always find a recognizable call.
1676     // With Inline Caches disabled we may or may not find a
1677     // recognizable call. We will always find a call for static
1678     // calls and for optimized virtual calls. For vanilla virtual
1679     // calls it depends on the state of the UseInlineCaches switch.
1680     //
1681     // With Inline Caches disabled we can get here for a virtual call
1682     // for two reasons:
1683     //   1 - calling an abstract method. The vtable for abstract methods
1684     //       will run us thru handle_wrong_method and we will eventually
1685     //       end up in the interpreter to throw the ame.
1686     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1687     //       call and between the time we fetch the entry address and
1688     //       we jump to it the target gets deoptimized. Similar to 1
1689     //       we will wind up in the interprter (thru a c2i with c2).
1690     //
1691     address call_addr = NULL;
1692     {
1693       // Get call instruction under lock because another thread may be
1694       // busy patching it.
1695       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1696       // Location of call instruction
1697       call_addr = caller_nm->call_instruction_address(pc);
1698     }
1699     // Make sure nmethod doesn't get deoptimized and removed until
1700     // this is done with it.
1701     // CLEANUP - with lazy deopt shouldn't need this lock
1702     nmethodLocker nmlock(caller_nm);
1703 
1704     if (call_addr != NULL) {
1705       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1706       int ret = iter.next(); // Get item
1707       if (ret) {
1708         assert(iter.addr() == call_addr, "must find call");
1709         if (iter.type() == relocInfo::static_call_type) {
1710           is_static_call = true;
1711         } else {
1712           assert(iter.type() == relocInfo::virtual_call_type ||
1713                  iter.type() == relocInfo::opt_virtual_call_type
1714                 , "unexpected relocInfo. type");
1715         }
1716       } else {
1717         assert(!UseInlineCaches, "relocation info. must exist for this address");
1718       }
1719 
1720       // Cleaning the inline cache will force a new resolve. This is more robust
1721       // than directly setting it to the new destination, since resolving of calls
1722       // is always done through the same code path. (experience shows that it
1723       // leads to very hard to track down bugs, if an inline cache gets updated
1724       // to a wrong method). It should not be performance critical, since the
1725       // resolve is only done once.
1726 
1727       bool is_nmethod = caller_nm->is_nmethod();
1728       MutexLocker ml(CompiledIC_lock);
1729       if (is_static_call) {
1730         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1731         ssc->set_to_clean();
1732       } else {
1733         // compiled, dispatched call (which used to call an interpreted method)
1734         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1735         inline_cache->set_to_clean();
1736       }
1737     }
1738   }
1739 
1740   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1741 
1742 
1743 #ifndef PRODUCT
1744   Atomic::inc(&_wrong_method_ctr);
1745 
1746   if (TraceCallFixup) {
1747     ResourceMark rm(thread);
1748     tty->print("handle_wrong_method reresolving call to");
1749     callee_method->print_short_name(tty);
1750     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1751   }
1752 #endif
1753 
1754   return callee_method;
1755 }
1756 
1757 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1758   // The faulting unsafe accesses should be changed to throw the error
1759   // synchronously instead. Meanwhile the faulting instruction will be
1760   // skipped over (effectively turning it into a no-op) and an
1761   // asynchronous exception will be raised which the thread will
1762   // handle at a later point. If the instruction is a load it will
1763   // return garbage.
1764 
1765   // Request an async exception.
1766   thread->set_pending_unsafe_access_error();
1767 
1768   // Return address of next instruction to execute.
1769   return next_pc;
1770 }
1771 
1772 #ifdef ASSERT
1773 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1774                                                                 const BasicType* sig_bt,
1775                                                                 const VMRegPair* regs) {
1776   ResourceMark rm;
1777   const int total_args_passed = method->size_of_parameters();
1778   const VMRegPair*    regs_with_member_name = regs;
1779         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1780 
1781   const int member_arg_pos = total_args_passed - 1;
1782   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1783   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1784 
1785   const bool is_outgoing = method->is_method_handle_intrinsic();
1786   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1787 
1788   for (int i = 0; i < member_arg_pos; i++) {
1789     VMReg a =    regs_with_member_name[i].first();
1790     VMReg b = regs_without_member_name[i].first();
1791     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1792   }
1793   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1794 }
1795 #endif
1796 
1797 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1798   if (destination != entry_point) {
1799     CodeBlob* callee = CodeCache::find_blob(destination);
1800     // callee == cb seems weird. It means calling interpreter thru stub.
1801     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1802       // static call or optimized virtual
1803       if (TraceCallFixup) {
1804         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1805         moop->print_short_name(tty);
1806         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1807       }
1808       return true;
1809     } else {
1810       if (TraceCallFixup) {
1811         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1812         moop->print_short_name(tty);
1813         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1814       }
1815       // assert is too strong could also be resolve destinations.
1816       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1817     }
1818   } else {
1819     if (TraceCallFixup) {
1820       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1821       moop->print_short_name(tty);
1822       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1823     }
1824   }
1825   return false;
1826 }
1827 
1828 // ---------------------------------------------------------------------------
1829 // We are calling the interpreter via a c2i. Normally this would mean that
1830 // we were called by a compiled method. However we could have lost a race
1831 // where we went int -> i2c -> c2i and so the caller could in fact be
1832 // interpreted. If the caller is compiled we attempt to patch the caller
1833 // so he no longer calls into the interpreter.
1834 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1835   Method* moop(method);
1836 
1837   address entry_point = moop->from_compiled_entry_no_trampoline();
1838 
1839   // It's possible that deoptimization can occur at a call site which hasn't
1840   // been resolved yet, in which case this function will be called from
1841   // an nmethod that has been patched for deopt and we can ignore the
1842   // request for a fixup.
1843   // Also it is possible that we lost a race in that from_compiled_entry
1844   // is now back to the i2c in that case we don't need to patch and if
1845   // we did we'd leap into space because the callsite needs to use
1846   // "to interpreter" stub in order to load up the Method*. Don't
1847   // ask me how I know this...
1848 
1849   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1850   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1851     return;
1852   }
1853 
1854   // The check above makes sure this is a nmethod.
1855   CompiledMethod* nm = cb->as_compiled_method_or_null();
1856   assert(nm, "must be");
1857 
1858   // Get the return PC for the passed caller PC.
1859   address return_pc = caller_pc + frame::pc_return_offset;
1860 
1861   // There is a benign race here. We could be attempting to patch to a compiled
1862   // entry point at the same time the callee is being deoptimized. If that is
1863   // the case then entry_point may in fact point to a c2i and we'd patch the
1864   // call site with the same old data. clear_code will set code() to NULL
1865   // at the end of it. If we happen to see that NULL then we can skip trying
1866   // to patch. If we hit the window where the callee has a c2i in the
1867   // from_compiled_entry and the NULL isn't present yet then we lose the race
1868   // and patch the code with the same old data. Asi es la vida.
1869 
1870   if (moop->code() == NULL) return;
1871 
1872   if (nm->is_in_use()) {
1873 
1874     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1875     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1876     if (NativeCall::is_call_before(return_pc)) {
1877       ResourceMark mark;
1878       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1879       //
1880       // bug 6281185. We might get here after resolving a call site to a vanilla
1881       // virtual call. Because the resolvee uses the verified entry it may then
1882       // see compiled code and attempt to patch the site by calling us. This would
1883       // then incorrectly convert the call site to optimized and its downhill from
1884       // there. If you're lucky you'll get the assert in the bugid, if not you've
1885       // just made a call site that could be megamorphic into a monomorphic site
1886       // for the rest of its life! Just another racing bug in the life of
1887       // fixup_callers_callsite ...
1888       //
1889       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1890       iter.next();
1891       assert(iter.has_current(), "must have a reloc at java call site");
1892       relocInfo::relocType typ = iter.reloc()->type();
1893       if (typ != relocInfo::static_call_type &&
1894            typ != relocInfo::opt_virtual_call_type &&
1895            typ != relocInfo::static_stub_type) {
1896         return;
1897       }
1898       address destination = call->destination();
1899       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1900         call->set_destination_mt_safe(entry_point);
1901       }
1902     }
1903   }
1904 IRT_END
1905 
1906 
1907 // same as JVM_Arraycopy, but called directly from compiled code
1908 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1909                                                 oopDesc* dest, jint dest_pos,
1910                                                 jint length,
1911                                                 JavaThread* thread)) {
1912 #ifndef PRODUCT
1913   _slow_array_copy_ctr++;
1914 #endif
1915   // Check if we have null pointers
1916   if (src == NULL || dest == NULL) {
1917     THROW(vmSymbols::java_lang_NullPointerException());
1918   }
1919   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1920   // even though the copy_array API also performs dynamic checks to ensure
1921   // that src and dest are truly arrays (and are conformable).
1922   // The copy_array mechanism is awkward and could be removed, but
1923   // the compilers don't call this function except as a last resort,
1924   // so it probably doesn't matter.
1925   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1926                                         (arrayOopDesc*)dest, dest_pos,
1927                                         length, thread);
1928 }
1929 JRT_END
1930 
1931 // The caller of generate_class_cast_message() (or one of its callers)
1932 // must use a ResourceMark in order to correctly free the result.
1933 char* SharedRuntime::generate_class_cast_message(
1934     JavaThread* thread, Klass* caster_klass) {
1935 
1936   // Get target class name from the checkcast instruction
1937   vframeStream vfst(thread, true);
1938   assert(!vfst.at_end(), "Java frame must exist");
1939   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1940   Klass* target_klass = vfst.method()->constants()->klass_at(
1941     cc.index(), thread);
1942   return generate_class_cast_message(caster_klass, target_klass);
1943 }
1944 
1945 // The caller of class_loader_and_module_name() (or one of its callers)
1946 // must use a ResourceMark in order to correctly free the result.
1947 const char* class_loader_and_module_name(Klass* klass) {
1948   const char* delim = "/";
1949   size_t delim_len = strlen(delim);
1950 
1951   const char* fqn = klass->external_name();
1952   // Length of message to return; always include FQN
1953   size_t msglen = strlen(fqn) + 1;
1954 
1955   bool has_cl_name = false;
1956   bool has_mod_name = false;
1957   bool has_version = false;
1958 
1959   // Use class loader name, if exists and not builtin
1960   const char* class_loader_name = "";
1961   ClassLoaderData* cld = klass->class_loader_data();
1962   assert(cld != NULL, "class_loader_data should not be NULL");
1963   if (!cld->is_builtin_class_loader_data()) {
1964     // If not builtin, look for name
1965     oop loader = klass->class_loader();
1966     if (loader != NULL) {
1967       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1968       if (class_loader_name_oop != NULL) {
1969         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1970         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1971           has_cl_name = true;
1972           msglen += strlen(class_loader_name) + delim_len;
1973         }
1974       }
1975     }
1976   }
1977 
1978   const char* module_name = "";
1979   const char* version = "";
1980   Klass* bottom_klass = klass->is_objArray_klass() ?
1981     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1982   if (bottom_klass->is_instance_klass()) {
1983     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1984     // Use module name, if exists
1985     if (module->is_named()) {
1986       has_mod_name = true;
1987       module_name = module->name()->as_C_string();
1988       msglen += strlen(module_name);
1989       // Use version if exists and is not a jdk module
1990       if (module->is_non_jdk_module() && module->version() != NULL) {
1991         has_version = true;
1992         version = module->version()->as_C_string();
1993         msglen += strlen("@") + strlen(version);
1994       }
1995     }
1996   } else {
1997     // klass is an array of primitives, so its module is java.base
1998     module_name = JAVA_BASE_NAME;
1999   }
2000 
2001   if (has_cl_name || has_mod_name) {
2002     msglen += delim_len;
2003   }
2004 
2005   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2006 
2007   // Just return the FQN if error in allocating string
2008   if (message == NULL) {
2009     return fqn;
2010   }
2011 
2012   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2013                class_loader_name,
2014                (has_cl_name) ? delim : "",
2015                (has_mod_name) ? module_name : "",
2016                (has_version) ? "@" : "",
2017                (has_version) ? version : "",
2018                (has_cl_name || has_mod_name) ? delim : "",
2019                fqn);
2020   return message;
2021 }
2022 
2023 char* SharedRuntime::generate_class_cast_message(
2024     Klass* caster_klass, Klass* target_klass) {
2025 
2026   const char* caster_name = class_loader_and_module_name(caster_klass);
2027 
2028   const char* target_name = class_loader_and_module_name(target_klass);
2029 
2030   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2031 
2032   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2033   if (message == NULL) {
2034     // Shouldn't happen, but don't cause even more problems if it does
2035     message = const_cast<char*>(caster_klass->external_name());
2036   } else {
2037     jio_snprintf(message,
2038                  msglen,
2039                  "%s cannot be cast to %s",
2040                  caster_name,
2041                  target_name);
2042   }
2043   return message;
2044 }
2045 
2046 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2047   (void) JavaThread::current()->reguard_stack();
2048 JRT_END
2049 
2050 
2051 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2052 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2053   // Disable ObjectSynchronizer::quick_enter() in default config
2054   // on AARCH64 and ARM until JDK-8153107 is resolved.
2055   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2056       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2057       !SafepointSynchronize::is_synchronizing()) {
2058     // Only try quick_enter() if we're not trying to reach a safepoint
2059     // so that the calling thread reaches the safepoint more quickly.
2060     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2061   }
2062   // NO_ASYNC required because an async exception on the state transition destructor
2063   // would leave you with the lock held and it would never be released.
2064   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2065   // and the model is that an exception implies the method failed.
2066   JRT_BLOCK_NO_ASYNC
2067   oop obj(_obj);
2068   if (PrintBiasedLockingStatistics) {
2069     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2070   }
2071   Handle h_obj(THREAD, obj);
2072   if (UseBiasedLocking) {
2073     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2074     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2075   } else {
2076     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2077   }
2078   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2079   JRT_BLOCK_END
2080 JRT_END
2081 
2082 // Handles the uncommon cases of monitor unlocking in compiled code
2083 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2084    oop obj(_obj);
2085   assert(JavaThread::current() == THREAD, "invariant");
2086   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2087   // testing was unable to ever fire the assert that guarded it so I have removed it.
2088   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2089 #undef MIGHT_HAVE_PENDING
2090 #ifdef MIGHT_HAVE_PENDING
2091   // Save and restore any pending_exception around the exception mark.
2092   // While the slow_exit must not throw an exception, we could come into
2093   // this routine with one set.
2094   oop pending_excep = NULL;
2095   const char* pending_file;
2096   int pending_line;
2097   if (HAS_PENDING_EXCEPTION) {
2098     pending_excep = PENDING_EXCEPTION;
2099     pending_file  = THREAD->exception_file();
2100     pending_line  = THREAD->exception_line();
2101     CLEAR_PENDING_EXCEPTION;
2102   }
2103 #endif /* MIGHT_HAVE_PENDING */
2104 
2105   {
2106     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2107     EXCEPTION_MARK;
2108     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2109   }
2110 
2111 #ifdef MIGHT_HAVE_PENDING
2112   if (pending_excep != NULL) {
2113     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2114   }
2115 #endif /* MIGHT_HAVE_PENDING */
2116 JRT_END
2117 
2118 #ifndef PRODUCT
2119 
2120 void SharedRuntime::print_statistics() {
2121   ttyLocker ttyl;
2122   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2123 
2124   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2125 
2126   SharedRuntime::print_ic_miss_histogram();
2127 
2128   if (CountRemovableExceptions) {
2129     if (_nof_removable_exceptions > 0) {
2130       Unimplemented(); // this counter is not yet incremented
2131       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2132     }
2133   }
2134 
2135   // Dump the JRT_ENTRY counters
2136   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2137   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2138   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2139   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2140   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2141   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2142   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2143 
2144   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2145   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2146   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2147   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2148   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2149 
2150   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2151   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2152   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2153   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2154   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2155   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2156   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2157   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2158   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2159   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2160   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2161   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2162   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2163   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2164   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2165   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2166 
2167   AdapterHandlerLibrary::print_statistics();
2168 
2169   if (xtty != NULL)  xtty->tail("statistics");
2170 }
2171 
2172 inline double percent(int x, int y) {
2173   return 100.0 * x / MAX2(y, 1);
2174 }
2175 
2176 class MethodArityHistogram {
2177  public:
2178   enum { MAX_ARITY = 256 };
2179  private:
2180   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2181   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2182   static int _max_arity;                      // max. arity seen
2183   static int _max_size;                       // max. arg size seen
2184 
2185   static void add_method_to_histogram(nmethod* nm) {
2186     Method* m = nm->method();
2187     ArgumentCount args(m->signature());
2188     int arity   = args.size() + (m->is_static() ? 0 : 1);
2189     int argsize = m->size_of_parameters();
2190     arity   = MIN2(arity, MAX_ARITY-1);
2191     argsize = MIN2(argsize, MAX_ARITY-1);
2192     int count = nm->method()->compiled_invocation_count();
2193     _arity_histogram[arity]  += count;
2194     _size_histogram[argsize] += count;
2195     _max_arity = MAX2(_max_arity, arity);
2196     _max_size  = MAX2(_max_size, argsize);
2197   }
2198 
2199   void print_histogram_helper(int n, int* histo, const char* name) {
2200     const int N = MIN2(5, n);
2201     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2202     double sum = 0;
2203     double weighted_sum = 0;
2204     int i;
2205     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2206     double rest = sum;
2207     double percent = sum / 100;
2208     for (i = 0; i <= N; i++) {
2209       rest -= histo[i];
2210       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2211     }
2212     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2213     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2214   }
2215 
2216   void print_histogram() {
2217     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2218     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2219     tty->print_cr("\nSame for parameter size (in words):");
2220     print_histogram_helper(_max_size, _size_histogram, "size");
2221     tty->cr();
2222   }
2223 
2224  public:
2225   MethodArityHistogram() {
2226     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2227     _max_arity = _max_size = 0;
2228     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2229     CodeCache::nmethods_do(add_method_to_histogram);
2230     print_histogram();
2231   }
2232 };
2233 
2234 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2235 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2236 int MethodArityHistogram::_max_arity;
2237 int MethodArityHistogram::_max_size;
2238 
2239 void SharedRuntime::print_call_statistics(int comp_total) {
2240   tty->print_cr("Calls from compiled code:");
2241   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2242   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2243   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2244   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2245   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2247   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2249   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2250   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2252   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2253   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2254   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2255   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2256   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2257   tty->cr();
2258   tty->print_cr("Note 1: counter updates are not MT-safe.");
2259   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2260   tty->print_cr("        %% in nested categories are relative to their category");
2261   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2262   tty->cr();
2263 
2264   MethodArityHistogram h;
2265 }
2266 #endif
2267 
2268 
2269 // A simple wrapper class around the calling convention information
2270 // that allows sharing of adapters for the same calling convention.
2271 class AdapterFingerPrint : public CHeapObj<mtCode> {
2272  private:
2273   enum {
2274     _basic_type_bits = 4,
2275     _basic_type_mask = right_n_bits(_basic_type_bits),
2276     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2277     _compact_int_count = 3
2278   };
2279   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2280   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2281 
2282   union {
2283     int  _compact[_compact_int_count];
2284     int* _fingerprint;
2285   } _value;
2286   int _length; // A negative length indicates the fingerprint is in the compact form,
2287                // Otherwise _value._fingerprint is the array.
2288 
2289   // Remap BasicTypes that are handled equivalently by the adapters.
2290   // These are correct for the current system but someday it might be
2291   // necessary to make this mapping platform dependent.
2292   static int adapter_encoding(BasicType in) {
2293     switch (in) {
2294       case T_BOOLEAN:
2295       case T_BYTE:
2296       case T_SHORT:
2297       case T_CHAR:
2298         // There are all promoted to T_INT in the calling convention
2299         return T_INT;
2300 
2301       case T_OBJECT:
2302       case T_ARRAY:
2303         // In other words, we assume that any register good enough for
2304         // an int or long is good enough for a managed pointer.
2305 #ifdef _LP64
2306         return T_LONG;
2307 #else
2308         return T_INT;
2309 #endif
2310 
2311       case T_INT:
2312       case T_LONG:
2313       case T_FLOAT:
2314       case T_DOUBLE:
2315       case T_VOID:
2316         return in;
2317 
2318       default:
2319         ShouldNotReachHere();
2320         return T_CONFLICT;
2321     }
2322   }
2323 
2324  public:
2325   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2326     // The fingerprint is based on the BasicType signature encoded
2327     // into an array of ints with eight entries per int.
2328     int* ptr;
2329     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2330     if (len <= _compact_int_count) {
2331       assert(_compact_int_count == 3, "else change next line");
2332       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2333       // Storing the signature encoded as signed chars hits about 98%
2334       // of the time.
2335       _length = -len;
2336       ptr = _value._compact;
2337     } else {
2338       _length = len;
2339       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2340       ptr = _value._fingerprint;
2341     }
2342 
2343     // Now pack the BasicTypes with 8 per int
2344     int sig_index = 0;
2345     for (int index = 0; index < len; index++) {
2346       int value = 0;
2347       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2348         int bt = ((sig_index < total_args_passed)
2349                   ? adapter_encoding(sig_bt[sig_index++])
2350                   : 0);
2351         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2352         value = (value << _basic_type_bits) | bt;
2353       }
2354       ptr[index] = value;
2355     }
2356   }
2357 
2358   ~AdapterFingerPrint() {
2359     if (_length > 0) {
2360       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2361     }
2362   }
2363 
2364   int value(int index) {
2365     if (_length < 0) {
2366       return _value._compact[index];
2367     }
2368     return _value._fingerprint[index];
2369   }
2370   int length() {
2371     if (_length < 0) return -_length;
2372     return _length;
2373   }
2374 
2375   bool is_compact() {
2376     return _length <= 0;
2377   }
2378 
2379   unsigned int compute_hash() {
2380     int hash = 0;
2381     for (int i = 0; i < length(); i++) {
2382       int v = value(i);
2383       hash = (hash << 8) ^ v ^ (hash >> 5);
2384     }
2385     return (unsigned int)hash;
2386   }
2387 
2388   const char* as_string() {
2389     stringStream st;
2390     st.print("0x");
2391     for (int i = 0; i < length(); i++) {
2392       st.print("%08x", value(i));
2393     }
2394     return st.as_string();
2395   }
2396 
2397   bool equals(AdapterFingerPrint* other) {
2398     if (other->_length != _length) {
2399       return false;
2400     }
2401     if (_length < 0) {
2402       assert(_compact_int_count == 3, "else change next line");
2403       return _value._compact[0] == other->_value._compact[0] &&
2404              _value._compact[1] == other->_value._compact[1] &&
2405              _value._compact[2] == other->_value._compact[2];
2406     } else {
2407       for (int i = 0; i < _length; i++) {
2408         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2409           return false;
2410         }
2411       }
2412     }
2413     return true;
2414   }
2415 };
2416 
2417 
2418 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2419 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2420   friend class AdapterHandlerTableIterator;
2421 
2422  private:
2423 
2424 #ifndef PRODUCT
2425   static int _lookups; // number of calls to lookup
2426   static int _buckets; // number of buckets checked
2427   static int _equals;  // number of buckets checked with matching hash
2428   static int _hits;    // number of successful lookups
2429   static int _compact; // number of equals calls with compact signature
2430 #endif
2431 
2432   AdapterHandlerEntry* bucket(int i) {
2433     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2434   }
2435 
2436  public:
2437   AdapterHandlerTable()
2438     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2439 
2440   // Create a new entry suitable for insertion in the table
2441   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2442     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2443     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2444     if (DumpSharedSpaces) {
2445       ((CDSAdapterHandlerEntry*)entry)->init();
2446     }
2447     return entry;
2448   }
2449 
2450   // Insert an entry into the table
2451   void add(AdapterHandlerEntry* entry) {
2452     int index = hash_to_index(entry->hash());
2453     add_entry(index, entry);
2454   }
2455 
2456   void free_entry(AdapterHandlerEntry* entry) {
2457     entry->deallocate();
2458     BasicHashtable<mtCode>::free_entry(entry);
2459   }
2460 
2461   // Find a entry with the same fingerprint if it exists
2462   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2463     NOT_PRODUCT(_lookups++);
2464     AdapterFingerPrint fp(total_args_passed, sig_bt);
2465     unsigned int hash = fp.compute_hash();
2466     int index = hash_to_index(hash);
2467     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2468       NOT_PRODUCT(_buckets++);
2469       if (e->hash() == hash) {
2470         NOT_PRODUCT(_equals++);
2471         if (fp.equals(e->fingerprint())) {
2472 #ifndef PRODUCT
2473           if (fp.is_compact()) _compact++;
2474           _hits++;
2475 #endif
2476           return e;
2477         }
2478       }
2479     }
2480     return NULL;
2481   }
2482 
2483 #ifndef PRODUCT
2484   void print_statistics() {
2485     ResourceMark rm;
2486     int longest = 0;
2487     int empty = 0;
2488     int total = 0;
2489     int nonempty = 0;
2490     for (int index = 0; index < table_size(); index++) {
2491       int count = 0;
2492       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2493         count++;
2494       }
2495       if (count != 0) nonempty++;
2496       if (count == 0) empty++;
2497       if (count > longest) longest = count;
2498       total += count;
2499     }
2500     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2501                   empty, longest, total, total / (double)nonempty);
2502     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2503                   _lookups, _buckets, _equals, _hits, _compact);
2504   }
2505 #endif
2506 };
2507 
2508 
2509 #ifndef PRODUCT
2510 
2511 int AdapterHandlerTable::_lookups;
2512 int AdapterHandlerTable::_buckets;
2513 int AdapterHandlerTable::_equals;
2514 int AdapterHandlerTable::_hits;
2515 int AdapterHandlerTable::_compact;
2516 
2517 #endif
2518 
2519 class AdapterHandlerTableIterator : public StackObj {
2520  private:
2521   AdapterHandlerTable* _table;
2522   int _index;
2523   AdapterHandlerEntry* _current;
2524 
2525   void scan() {
2526     while (_index < _table->table_size()) {
2527       AdapterHandlerEntry* a = _table->bucket(_index);
2528       _index++;
2529       if (a != NULL) {
2530         _current = a;
2531         return;
2532       }
2533     }
2534   }
2535 
2536  public:
2537   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2538     scan();
2539   }
2540   bool has_next() {
2541     return _current != NULL;
2542   }
2543   AdapterHandlerEntry* next() {
2544     if (_current != NULL) {
2545       AdapterHandlerEntry* result = _current;
2546       _current = _current->next();
2547       if (_current == NULL) scan();
2548       return result;
2549     } else {
2550       return NULL;
2551     }
2552   }
2553 };
2554 
2555 
2556 // ---------------------------------------------------------------------------
2557 // Implementation of AdapterHandlerLibrary
2558 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2559 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2560 const int AdapterHandlerLibrary_size = 16*K;
2561 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2562 
2563 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2564   // Should be called only when AdapterHandlerLibrary_lock is active.
2565   if (_buffer == NULL) // Initialize lazily
2566       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2567   return _buffer;
2568 }
2569 
2570 extern "C" void unexpected_adapter_call() {
2571   ShouldNotCallThis();
2572 }
2573 
2574 void AdapterHandlerLibrary::initialize() {
2575   if (_adapters != NULL) return;
2576   _adapters = new AdapterHandlerTable();
2577 
2578   // Create a special handler for abstract methods.  Abstract methods
2579   // are never compiled so an i2c entry is somewhat meaningless, but
2580   // throw AbstractMethodError just in case.
2581   // Pass wrong_method_abstract for the c2i transitions to return
2582   // AbstractMethodError for invalid invocations.
2583   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2584   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2585                                                               StubRoutines::throw_AbstractMethodError_entry(),
2586                                                               wrong_method_abstract, wrong_method_abstract);
2587 }
2588 
2589 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2590                                                       address i2c_entry,
2591                                                       address c2i_entry,
2592                                                       address c2i_unverified_entry) {
2593   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2594 }
2595 
2596 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2597   AdapterHandlerEntry* entry = get_adapter0(method);
2598   if (method->is_shared()) {
2599     // See comments around Method::link_method()
2600     MutexLocker mu(AdapterHandlerLibrary_lock);
2601     if (method->adapter() == NULL) {
2602       method->update_adapter_trampoline(entry);
2603     }
2604     address trampoline = method->from_compiled_entry();
2605     if (*(int*)trampoline == 0) {
2606       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2607       MacroAssembler _masm(&buffer);
2608       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2609       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2610 
2611       if (PrintInterpreter) {
2612         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2613       }
2614     }
2615   }
2616 
2617   return entry;
2618 }
2619 
2620 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2621   // Use customized signature handler.  Need to lock around updates to
2622   // the AdapterHandlerTable (it is not safe for concurrent readers
2623   // and a single writer: this could be fixed if it becomes a
2624   // problem).
2625 
2626   ResourceMark rm;
2627 
2628   NOT_PRODUCT(int insts_size);
2629   AdapterBlob* new_adapter = NULL;
2630   AdapterHandlerEntry* entry = NULL;
2631   AdapterFingerPrint* fingerprint = NULL;
2632   {
2633     MutexLocker mu(AdapterHandlerLibrary_lock);
2634     // make sure data structure is initialized
2635     initialize();
2636 
2637     if (method->is_abstract()) {
2638       return _abstract_method_handler;
2639     }
2640 
2641     // Fill in the signature array, for the calling-convention call.
2642     int total_args_passed = method->size_of_parameters(); // All args on stack
2643 
2644     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2645     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2646     int i = 0;
2647     if (!method->is_static())  // Pass in receiver first
2648       sig_bt[i++] = T_OBJECT;
2649     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2650       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2651       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2652         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2653     }
2654     assert(i == total_args_passed, "");
2655 
2656     // Lookup method signature's fingerprint
2657     entry = _adapters->lookup(total_args_passed, sig_bt);
2658 
2659 #ifdef ASSERT
2660     AdapterHandlerEntry* shared_entry = NULL;
2661     // Start adapter sharing verification only after the VM is booted.
2662     if (VerifyAdapterSharing && (entry != NULL)) {
2663       shared_entry = entry;
2664       entry = NULL;
2665     }
2666 #endif
2667 
2668     if (entry != NULL) {
2669       return entry;
2670     }
2671 
2672     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2673     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2674 
2675     // Make a C heap allocated version of the fingerprint to store in the adapter
2676     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2677 
2678     // StubRoutines::code2() is initialized after this function can be called. As a result,
2679     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2680     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2681     // stub that ensure that an I2C stub is called from an interpreter frame.
2682     bool contains_all_checks = StubRoutines::code2() != NULL;
2683 
2684     // Create I2C & C2I handlers
2685     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2686     if (buf != NULL) {
2687       CodeBuffer buffer(buf);
2688       short buffer_locs[20];
2689       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2690                                              sizeof(buffer_locs)/sizeof(relocInfo));
2691 
2692       MacroAssembler _masm(&buffer);
2693       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2694                                                      total_args_passed,
2695                                                      comp_args_on_stack,
2696                                                      sig_bt,
2697                                                      regs,
2698                                                      fingerprint);
2699 #ifdef ASSERT
2700       if (VerifyAdapterSharing) {
2701         if (shared_entry != NULL) {
2702           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2703           // Release the one just created and return the original
2704           _adapters->free_entry(entry);
2705           return shared_entry;
2706         } else  {
2707           entry->save_code(buf->code_begin(), buffer.insts_size());
2708         }
2709       }
2710 #endif
2711 
2712       new_adapter = AdapterBlob::create(&buffer);
2713       NOT_PRODUCT(insts_size = buffer.insts_size());
2714     }
2715     if (new_adapter == NULL) {
2716       // CodeCache is full, disable compilation
2717       // Ought to log this but compile log is only per compile thread
2718       // and we're some non descript Java thread.
2719       return NULL; // Out of CodeCache space
2720     }
2721     entry->relocate(new_adapter->content_begin());
2722 #ifndef PRODUCT
2723     // debugging suppport
2724     if (PrintAdapterHandlers || PrintStubCode) {
2725       ttyLocker ttyl;
2726       entry->print_adapter_on(tty);
2727       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2728                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2729                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2730       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2731       if (Verbose || PrintStubCode) {
2732         address first_pc = entry->base_address();
2733         if (first_pc != NULL) {
2734           Disassembler::decode(first_pc, first_pc + insts_size);
2735           tty->cr();
2736         }
2737       }
2738     }
2739 #endif
2740     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2741     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2742     if (contains_all_checks || !VerifyAdapterCalls) {
2743       _adapters->add(entry);
2744     }
2745   }
2746   // Outside of the lock
2747   if (new_adapter != NULL) {
2748     char blob_id[256];
2749     jio_snprintf(blob_id,
2750                  sizeof(blob_id),
2751                  "%s(%s)@" PTR_FORMAT,
2752                  new_adapter->name(),
2753                  fingerprint->as_string(),
2754                  new_adapter->content_begin());
2755     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2756 
2757     if (JvmtiExport::should_post_dynamic_code_generated()) {
2758       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2759     }
2760   }
2761   return entry;
2762 }
2763 
2764 address AdapterHandlerEntry::base_address() {
2765   address base = _i2c_entry;
2766   if (base == NULL)  base = _c2i_entry;
2767   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2768   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2769   return base;
2770 }
2771 
2772 void AdapterHandlerEntry::relocate(address new_base) {
2773   address old_base = base_address();
2774   assert(old_base != NULL, "");
2775   ptrdiff_t delta = new_base - old_base;
2776   if (_i2c_entry != NULL)
2777     _i2c_entry += delta;
2778   if (_c2i_entry != NULL)
2779     _c2i_entry += delta;
2780   if (_c2i_unverified_entry != NULL)
2781     _c2i_unverified_entry += delta;
2782   assert(base_address() == new_base, "");
2783 }
2784 
2785 
2786 void AdapterHandlerEntry::deallocate() {
2787   delete _fingerprint;
2788 #ifdef ASSERT
2789   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2790 #endif
2791 }
2792 
2793 
2794 #ifdef ASSERT
2795 // Capture the code before relocation so that it can be compared
2796 // against other versions.  If the code is captured after relocation
2797 // then relative instructions won't be equivalent.
2798 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2799   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2800   _saved_code_length = length;
2801   memcpy(_saved_code, buffer, length);
2802 }
2803 
2804 
2805 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2806   if (length != _saved_code_length) {
2807     return false;
2808   }
2809 
2810   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2811 }
2812 #endif
2813 
2814 
2815 /**
2816  * Create a native wrapper for this native method.  The wrapper converts the
2817  * Java-compiled calling convention to the native convention, handles
2818  * arguments, and transitions to native.  On return from the native we transition
2819  * back to java blocking if a safepoint is in progress.
2820  */
2821 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2822   ResourceMark rm;
2823   nmethod* nm = NULL;
2824 
2825   assert(method->is_native(), "must be native");
2826   assert(method->is_method_handle_intrinsic() ||
2827          method->has_native_function(), "must have something valid to call!");
2828 
2829   {
2830     // Perform the work while holding the lock, but perform any printing outside the lock
2831     MutexLocker mu(AdapterHandlerLibrary_lock);
2832     // See if somebody beat us to it
2833     if (method->code() != NULL) {
2834       return;
2835     }
2836 
2837     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2838     assert(compile_id > 0, "Must generate native wrapper");
2839 
2840 
2841     ResourceMark rm;
2842     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2843     if (buf != NULL) {
2844       CodeBuffer buffer(buf);
2845       double locs_buf[20];
2846       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2847       MacroAssembler _masm(&buffer);
2848 
2849       // Fill in the signature array, for the calling-convention call.
2850       const int total_args_passed = method->size_of_parameters();
2851 
2852       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2853       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2854       int i=0;
2855       if (!method->is_static())  // Pass in receiver first
2856         sig_bt[i++] = T_OBJECT;
2857       SignatureStream ss(method->signature());
2858       for (; !ss.at_return_type(); ss.next()) {
2859         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2860         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2861           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2862       }
2863       assert(i == total_args_passed, "");
2864       BasicType ret_type = ss.type();
2865 
2866       // Now get the compiled-Java layout as input (or output) arguments.
2867       // NOTE: Stubs for compiled entry points of method handle intrinsics
2868       // are just trampolines so the argument registers must be outgoing ones.
2869       const bool is_outgoing = method->is_method_handle_intrinsic();
2870       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2871 
2872       // Generate the compiled-to-native wrapper code
2873       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2874 
2875       if (nm != NULL) {
2876         method->set_code(method, nm);
2877 
2878         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2879         if (directive->PrintAssemblyOption) {
2880           nm->print_code();
2881         }
2882         DirectivesStack::release(directive);
2883       }
2884     }
2885   } // Unlock AdapterHandlerLibrary_lock
2886 
2887 
2888   // Install the generated code.
2889   if (nm != NULL) {
2890     const char *msg = method->is_static() ? "(static)" : "";
2891     CompileTask::print_ul(nm, msg);
2892     if (PrintCompilation) {
2893       ttyLocker ttyl;
2894       CompileTask::print(tty, nm, msg);
2895     }
2896     nm->post_compiled_method_load_event();
2897   }
2898 }
2899 
2900 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2901   assert(thread == JavaThread::current(), "must be");
2902   // The code is about to enter a JNI lazy critical native method and
2903   // _needs_gc is true, so if this thread is already in a critical
2904   // section then just return, otherwise this thread should block
2905   // until needs_gc has been cleared.
2906   if (thread->in_critical()) {
2907     return;
2908   }
2909   // Lock and unlock a critical section to give the system a chance to block
2910   GCLocker::lock_critical(thread);
2911   GCLocker::unlock_critical(thread);
2912 JRT_END
2913 
2914 // -------------------------------------------------------------------------
2915 // Java-Java calling convention
2916 // (what you use when Java calls Java)
2917 
2918 //------------------------------name_for_receiver----------------------------------
2919 // For a given signature, return the VMReg for parameter 0.
2920 VMReg SharedRuntime::name_for_receiver() {
2921   VMRegPair regs;
2922   BasicType sig_bt = T_OBJECT;
2923   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2924   // Return argument 0 register.  In the LP64 build pointers
2925   // take 2 registers, but the VM wants only the 'main' name.
2926   return regs.first();
2927 }
2928 
2929 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2930   // This method is returning a data structure allocating as a
2931   // ResourceObject, so do not put any ResourceMarks in here.
2932   char *s = sig->as_C_string();
2933   int len = (int)strlen(s);
2934   s++; len--;                   // Skip opening paren
2935 
2936   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2937   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2938   int cnt = 0;
2939   if (has_receiver) {
2940     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2941   }
2942 
2943   while (*s != ')') {          // Find closing right paren
2944     switch (*s++) {            // Switch on signature character
2945     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2946     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2947     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2948     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2949     case 'I': sig_bt[cnt++] = T_INT;     break;
2950     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2951     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2952     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2953     case 'V': sig_bt[cnt++] = T_VOID;    break;
2954     case 'L':                   // Oop
2955       while (*s++ != ';');   // Skip signature
2956       sig_bt[cnt++] = T_OBJECT;
2957       break;
2958     case '[': {                 // Array
2959       do {                      // Skip optional size
2960         while (*s >= '0' && *s <= '9') s++;
2961       } while (*s++ == '[');   // Nested arrays?
2962       // Skip element type
2963       if (s[-1] == 'L')
2964         while (*s++ != ';'); // Skip signature
2965       sig_bt[cnt++] = T_ARRAY;
2966       break;
2967     }
2968     default : ShouldNotReachHere();
2969     }
2970   }
2971 
2972   if (has_appendix) {
2973     sig_bt[cnt++] = T_OBJECT;
2974   }
2975 
2976   assert(cnt < 256, "grow table size");
2977 
2978   int comp_args_on_stack;
2979   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2980 
2981   // the calling convention doesn't count out_preserve_stack_slots so
2982   // we must add that in to get "true" stack offsets.
2983 
2984   if (comp_args_on_stack) {
2985     for (int i = 0; i < cnt; i++) {
2986       VMReg reg1 = regs[i].first();
2987       if (reg1->is_stack()) {
2988         // Yuck
2989         reg1 = reg1->bias(out_preserve_stack_slots());
2990       }
2991       VMReg reg2 = regs[i].second();
2992       if (reg2->is_stack()) {
2993         // Yuck
2994         reg2 = reg2->bias(out_preserve_stack_slots());
2995       }
2996       regs[i].set_pair(reg2, reg1);
2997     }
2998   }
2999 
3000   // results
3001   *arg_size = cnt;
3002   return regs;
3003 }
3004 
3005 // OSR Migration Code
3006 //
3007 // This code is used convert interpreter frames into compiled frames.  It is
3008 // called from very start of a compiled OSR nmethod.  A temp array is
3009 // allocated to hold the interesting bits of the interpreter frame.  All
3010 // active locks are inflated to allow them to move.  The displaced headers and
3011 // active interpreter locals are copied into the temp buffer.  Then we return
3012 // back to the compiled code.  The compiled code then pops the current
3013 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3014 // copies the interpreter locals and displaced headers where it wants.
3015 // Finally it calls back to free the temp buffer.
3016 //
3017 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3018 
3019 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3020 
3021   //
3022   // This code is dependent on the memory layout of the interpreter local
3023   // array and the monitors. On all of our platforms the layout is identical
3024   // so this code is shared. If some platform lays the their arrays out
3025   // differently then this code could move to platform specific code or
3026   // the code here could be modified to copy items one at a time using
3027   // frame accessor methods and be platform independent.
3028 
3029   frame fr = thread->last_frame();
3030   assert(fr.is_interpreted_frame(), "");
3031   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3032 
3033   // Figure out how many monitors are active.
3034   int active_monitor_count = 0;
3035   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3036        kptr < fr.interpreter_frame_monitor_begin();
3037        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3038     if (kptr->obj() != NULL) active_monitor_count++;
3039   }
3040 
3041   // QQQ we could place number of active monitors in the array so that compiled code
3042   // could double check it.
3043 
3044   Method* moop = fr.interpreter_frame_method();
3045   int max_locals = moop->max_locals();
3046   // Allocate temp buffer, 1 word per local & 2 per active monitor
3047   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3048   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3049 
3050   // Copy the locals.  Order is preserved so that loading of longs works.
3051   // Since there's no GC I can copy the oops blindly.
3052   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3053   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3054                        (HeapWord*)&buf[0],
3055                        max_locals);
3056 
3057   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3058   int i = max_locals;
3059   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3060        kptr2 < fr.interpreter_frame_monitor_begin();
3061        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3062     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3063       BasicLock *lock = kptr2->lock();
3064       // Inflate so the displaced header becomes position-independent
3065       if (lock->displaced_header()->is_unlocked())
3066         ObjectSynchronizer::inflate_helper(kptr2->obj());
3067       // Now the displaced header is free to move
3068       buf[i++] = (intptr_t)lock->displaced_header();
3069       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3070     }
3071   }
3072   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3073 
3074   return buf;
3075 JRT_END
3076 
3077 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3078   FREE_C_HEAP_ARRAY(intptr_t, buf);
3079 JRT_END
3080 
3081 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3082   AdapterHandlerTableIterator iter(_adapters);
3083   while (iter.has_next()) {
3084     AdapterHandlerEntry* a = iter.next();
3085     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3086   }
3087   return false;
3088 }
3089 
3090 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3091   AdapterHandlerTableIterator iter(_adapters);
3092   while (iter.has_next()) {
3093     AdapterHandlerEntry* a = iter.next();
3094     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3095       st->print("Adapter for signature: ");
3096       a->print_adapter_on(tty);
3097       return;
3098     }
3099   }
3100   assert(false, "Should have found handler");
3101 }
3102 
3103 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3104   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3105                p2i(this), fingerprint()->as_string(),
3106                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3107 
3108 }
3109 
3110 #if INCLUDE_CDS
3111 
3112 void CDSAdapterHandlerEntry::init() {
3113   assert(DumpSharedSpaces, "used during dump time only");
3114   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3115   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3116 };
3117 
3118 #endif // INCLUDE_CDS
3119 
3120 
3121 #ifndef PRODUCT
3122 
3123 void AdapterHandlerLibrary::print_statistics() {
3124   _adapters->print_statistics();
3125 }
3126 
3127 #endif /* PRODUCT */
3128 
3129 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3130   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3131   thread->enable_stack_reserved_zone();
3132   thread->set_reserved_stack_activation(thread->stack_base());
3133 JRT_END
3134 
3135 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3136   frame activation;
3137   CompiledMethod* nm = NULL;
3138   int count = 1;
3139 
3140   assert(fr.is_java_frame(), "Must start on Java frame");
3141 
3142   while (true) {
3143     Method* method = NULL;
3144     if (fr.is_interpreted_frame()) {
3145       method = fr.interpreter_frame_method();
3146     } else {
3147       CodeBlob* cb = fr.cb();
3148       if (cb != NULL && cb->is_compiled()) {
3149         nm = cb->as_compiled_method();
3150         method = nm->method();
3151       }
3152     }
3153     if ((method != NULL) && method->has_reserved_stack_access()) {
3154       ResourceMark rm(thread);
3155       activation = fr;
3156       warning("Potentially dangerous stack overflow in "
3157               "ReservedStackAccess annotated method %s [%d]",
3158               method->name_and_sig_as_C_string(), count++);
3159       EventReservedStackActivation event;
3160       if (event.should_commit()) {
3161         event.set_method(method);
3162         event.commit();
3163       }
3164     }
3165     if (fr.is_first_java_frame()) {
3166       break;
3167     } else {
3168       fr = fr.java_sender();
3169     }
3170   }
3171   return activation;
3172 }