1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  26 #define SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP
  27 
  28 #include "utilities/compilerWarnings.hpp"
  29 #include "utilities/debug.hpp"
  30 #include "utilities/macros.hpp"
  31 
  32 #include COMPILER_HEADER(utilities/globalDefinitions)
  33 
  34 // Defaults for macros that might be defined per compiler.
  35 #ifndef NOINLINE
  36 #define NOINLINE
  37 #endif
  38 #ifndef ALWAYSINLINE
  39 #define ALWAYSINLINE inline
  40 #endif
  41 
  42 // This file holds all globally used constants & types, class (forward)
  43 // declarations and a few frequently used utility functions.
  44 
  45 //----------------------------------------------------------------------------------------------------
  46 // Printf-style formatters for fixed- and variable-width types as pointers and
  47 // integers.  These are derived from the definitions in inttypes.h.  If the platform
  48 // doesn't provide appropriate definitions, they should be provided in
  49 // the compiler-specific definitions file (e.g., globalDefinitions_gcc.hpp)
  50 
  51 #define BOOL_TO_STR(_b_) ((_b_) ? "true" : "false")
  52 
  53 // Format 32-bit quantities.
  54 #define INT32_FORMAT           "%" PRId32
  55 #define UINT32_FORMAT          "%" PRIu32
  56 #define INT32_FORMAT_W(width)  "%" #width PRId32
  57 #define UINT32_FORMAT_W(width) "%" #width PRIu32
  58 
  59 #define PTR32_FORMAT           "0x%08" PRIx32
  60 #define PTR32_FORMAT_W(width)  "0x%" #width PRIx32
  61 
  62 // Format 64-bit quantities.
  63 #define INT64_FORMAT           "%" PRId64
  64 #define UINT64_FORMAT          "%" PRIu64
  65 #define UINT64_FORMAT_X        "%" PRIx64
  66 #define INT64_FORMAT_W(width)  "%" #width PRId64
  67 #define UINT64_FORMAT_W(width) "%" #width PRIu64
  68 
  69 #define PTR64_FORMAT           "0x%016" PRIx64
  70 
  71 // Format jlong, if necessary
  72 #ifndef JLONG_FORMAT
  73 #define JLONG_FORMAT           INT64_FORMAT
  74 #endif
  75 #ifndef JULONG_FORMAT
  76 #define JULONG_FORMAT          UINT64_FORMAT
  77 #endif
  78 #ifndef JULONG_FORMAT_X
  79 #define JULONG_FORMAT_X        UINT64_FORMAT_X
  80 #endif
  81 
  82 // Format pointers which change size between 32- and 64-bit.
  83 #ifdef  _LP64
  84 #define INTPTR_FORMAT "0x%016" PRIxPTR
  85 #define PTR_FORMAT    "0x%016" PRIxPTR
  86 #else   // !_LP64
  87 #define INTPTR_FORMAT "0x%08"  PRIxPTR
  88 #define PTR_FORMAT    "0x%08"  PRIxPTR
  89 #endif  // _LP64
  90 
  91 // Format pointers without leading zeros
  92 #define INTPTRNZ_FORMAT "0x%"  PRIxPTR
  93 
  94 #define INTPTR_FORMAT_W(width)   "%" #width PRIxPTR
  95 
  96 #define SSIZE_FORMAT             "%"   PRIdPTR
  97 #define SIZE_FORMAT              "%"   PRIuPTR
  98 #define SIZE_FORMAT_HEX          "0x%" PRIxPTR
  99 #define SSIZE_FORMAT_W(width)    "%"   #width PRIdPTR
 100 #define SIZE_FORMAT_W(width)     "%"   #width PRIuPTR
 101 #define SIZE_FORMAT_HEX_W(width) "0x%" #width PRIxPTR
 102 
 103 #define INTX_FORMAT           "%" PRIdPTR
 104 #define UINTX_FORMAT          "%" PRIuPTR
 105 #define INTX_FORMAT_W(width)  "%" #width PRIdPTR
 106 #define UINTX_FORMAT_W(width) "%" #width PRIuPTR
 107 
 108 //----------------------------------------------------------------------------------------------------
 109 // Constants
 110 
 111 const int LogBytesPerShort   = 1;
 112 const int LogBytesPerInt     = 2;
 113 #ifdef _LP64
 114 const int LogBytesPerWord    = 3;
 115 #else
 116 const int LogBytesPerWord    = 2;
 117 #endif
 118 const int LogBytesPerLong    = 3;
 119 
 120 const int BytesPerShort      = 1 << LogBytesPerShort;
 121 const int BytesPerInt        = 1 << LogBytesPerInt;
 122 const int BytesPerWord       = 1 << LogBytesPerWord;
 123 const int BytesPerLong       = 1 << LogBytesPerLong;
 124 
 125 const int LogBitsPerByte     = 3;
 126 const int LogBitsPerShort    = LogBitsPerByte + LogBytesPerShort;
 127 const int LogBitsPerInt      = LogBitsPerByte + LogBytesPerInt;
 128 const int LogBitsPerWord     = LogBitsPerByte + LogBytesPerWord;
 129 const int LogBitsPerLong     = LogBitsPerByte + LogBytesPerLong;
 130 
 131 const int BitsPerByte        = 1 << LogBitsPerByte;
 132 const int BitsPerShort       = 1 << LogBitsPerShort;
 133 const int BitsPerInt         = 1 << LogBitsPerInt;
 134 const int BitsPerWord        = 1 << LogBitsPerWord;
 135 const int BitsPerLong        = 1 << LogBitsPerLong;
 136 
 137 const int WordAlignmentMask  = (1 << LogBytesPerWord) - 1;
 138 const int LongAlignmentMask  = (1 << LogBytesPerLong) - 1;
 139 
 140 const int WordsPerLong       = 2;       // Number of stack entries for longs
 141 
 142 const int oopSize            = sizeof(char*); // Full-width oop
 143 extern int heapOopSize;                       // Oop within a java object
 144 const int wordSize           = sizeof(char*);
 145 const int longSize           = sizeof(jlong);
 146 const int jintSize           = sizeof(jint);
 147 const int size_tSize         = sizeof(size_t);
 148 
 149 const int BytesPerOop        = BytesPerWord;  // Full-width oop
 150 
 151 extern int LogBytesPerHeapOop;                // Oop within a java object
 152 extern int LogBitsPerHeapOop;
 153 extern int BytesPerHeapOop;
 154 extern int BitsPerHeapOop;
 155 
 156 const int BitsPerJavaInteger = 32;
 157 const int BitsPerJavaLong    = 64;
 158 const int BitsPerSize_t      = size_tSize * BitsPerByte;
 159 
 160 // Size of a char[] needed to represent a jint as a string in decimal.
 161 const int jintAsStringSize = 12;
 162 
 163 // In fact this should be
 164 // log2_intptr(sizeof(class JavaThread)) - log2_intptr(64);
 165 // see os::set_memory_serialize_page()
 166 #ifdef _LP64
 167 const int SerializePageShiftCount = 4;
 168 #else
 169 const int SerializePageShiftCount = 3;
 170 #endif
 171 
 172 // An opaque struct of heap-word width, so that HeapWord* can be a generic
 173 // pointer into the heap.  We require that object sizes be measured in
 174 // units of heap words, so that that
 175 //   HeapWord* hw;
 176 //   hw += oop(hw)->foo();
 177 // works, where foo is a method (like size or scavenge) that returns the
 178 // object size.
 179 class HeapWord {
 180   friend class VMStructs;
 181  private:
 182   char* i;
 183 #ifndef PRODUCT
 184  public:
 185   char* value() { return i; }
 186 #endif
 187 };
 188 
 189 // Analogous opaque struct for metadata allocated from
 190 // metaspaces.
 191 class MetaWord {
 192  private:
 193   char* i;
 194 };
 195 
 196 // HeapWordSize must be 2^LogHeapWordSize.
 197 const int HeapWordSize        = sizeof(HeapWord);
 198 #ifdef _LP64
 199 const int LogHeapWordSize     = 3;
 200 #else
 201 const int LogHeapWordSize     = 2;
 202 #endif
 203 const int HeapWordsPerLong    = BytesPerLong / HeapWordSize;
 204 const int LogHeapWordsPerLong = LogBytesPerLong - LogHeapWordSize;
 205 
 206 // The larger HeapWordSize for 64bit requires larger heaps
 207 // for the same application running in 64bit.  See bug 4967770.
 208 // The minimum alignment to a heap word size is done.  Other
 209 // parts of the memory system may require additional alignment
 210 // and are responsible for those alignments.
 211 #ifdef _LP64
 212 #define ScaleForWordSize(x) align_size_down_((x) * 13 / 10, HeapWordSize)
 213 #else
 214 #define ScaleForWordSize(x) (x)
 215 #endif
 216 
 217 // The minimum number of native machine words necessary to contain "byte_size"
 218 // bytes.
 219 inline size_t heap_word_size(size_t byte_size) {
 220   return (byte_size + (HeapWordSize-1)) >> LogHeapWordSize;
 221 }
 222 
 223 //-------------------------------------------
 224 // Constant for jlong (standardized by C++11)
 225 
 226 // Build a 64bit integer constant
 227 #define CONST64(x)  (x ## LL)
 228 #define UCONST64(x) (x ## ULL)
 229 
 230 const jlong min_jlong = CONST64(0x8000000000000000);
 231 const jlong max_jlong = CONST64(0x7fffffffffffffff);
 232 
 233 const size_t K                  = 1024;
 234 const size_t M                  = K*K;
 235 const size_t G                  = M*K;
 236 const size_t HWperKB            = K / sizeof(HeapWord);
 237 
 238 // Constants for converting from a base unit to milli-base units.  For
 239 // example from seconds to milliseconds and microseconds
 240 
 241 const int MILLIUNITS    = 1000;         // milli units per base unit
 242 const int MICROUNITS    = 1000000;      // micro units per base unit
 243 const int NANOUNITS     = 1000000000;   // nano units per base unit
 244 
 245 const jlong NANOSECS_PER_SEC      = CONST64(1000000000);
 246 const jint  NANOSECS_PER_MILLISEC = 1000000;
 247 
 248 inline const char* proper_unit_for_byte_size(size_t s) {
 249 #ifdef _LP64
 250   if (s >= 10*G) {
 251     return "G";
 252   }
 253 #endif
 254   if (s >= 10*M) {
 255     return "M";
 256   } else if (s >= 10*K) {
 257     return "K";
 258   } else {
 259     return "B";
 260   }
 261 }
 262 
 263 template <class T>
 264 inline T byte_size_in_proper_unit(T s) {
 265 #ifdef _LP64
 266   if (s >= 10*G) {
 267     return (T)(s/G);
 268   }
 269 #endif
 270   if (s >= 10*M) {
 271     return (T)(s/M);
 272   } else if (s >= 10*K) {
 273     return (T)(s/K);
 274   } else {
 275     return s;
 276   }
 277 }
 278 
 279 inline const char* exact_unit_for_byte_size(size_t s) {
 280 #ifdef _LP64
 281   if (s >= G && (s % G) == 0) {
 282     return "G";
 283   }
 284 #endif
 285   if (s >= M && (s % M) == 0) {
 286     return "M";
 287   }
 288   if (s >= K && (s % K) == 0) {
 289     return "K";
 290   }
 291   return "B";
 292 }
 293 
 294 inline size_t byte_size_in_exact_unit(size_t s) {
 295 #ifdef _LP64
 296   if (s >= G && (s % G) == 0) {
 297     return s / G;
 298   }
 299 #endif
 300   if (s >= M && (s % M) == 0) {
 301     return s / M;
 302   }
 303   if (s >= K && (s % K) == 0) {
 304     return s / K;
 305   }
 306   return s;
 307 }
 308 
 309 //----------------------------------------------------------------------------------------------------
 310 // VM type definitions
 311 
 312 // intx and uintx are the 'extended' int and 'extended' unsigned int types;
 313 // they are 32bit wide on a 32-bit platform, and 64bit wide on a 64bit platform.
 314 
 315 typedef intptr_t  intx;
 316 typedef uintptr_t uintx;
 317 
 318 const intx  min_intx  = (intx)1 << (sizeof(intx)*BitsPerByte-1);
 319 const intx  max_intx  = (uintx)min_intx - 1;
 320 const uintx max_uintx = (uintx)-1;
 321 
 322 // Table of values:
 323 //      sizeof intx         4               8
 324 // min_intx             0x80000000      0x8000000000000000
 325 // max_intx             0x7FFFFFFF      0x7FFFFFFFFFFFFFFF
 326 // max_uintx            0xFFFFFFFF      0xFFFFFFFFFFFFFFFF
 327 
 328 typedef unsigned int uint;   NEEDS_CLEANUP
 329 
 330 
 331 //----------------------------------------------------------------------------------------------------
 332 // Java type definitions
 333 
 334 // All kinds of 'plain' byte addresses
 335 typedef   signed char s_char;
 336 typedef unsigned char u_char;
 337 typedef u_char*       address;
 338 typedef uintptr_t     address_word; // unsigned integer which will hold a pointer
 339                                     // except for some implementations of a C++
 340                                     // linkage pointer to function. Should never
 341                                     // need one of those to be placed in this
 342                                     // type anyway.
 343 
 344 //  Utility functions to "portably" (?) bit twiddle pointers
 345 //  Where portable means keep ANSI C++ compilers quiet
 346 
 347 inline address       set_address_bits(address x, int m)       { return address(intptr_t(x) | m); }
 348 inline address       clear_address_bits(address x, int m)     { return address(intptr_t(x) & ~m); }
 349 
 350 //  Utility functions to "portably" make cast to/from function pointers.
 351 
 352 inline address_word  mask_address_bits(address x, int m)      { return address_word(x) & m; }
 353 inline address_word  castable_address(address x)              { return address_word(x) ; }
 354 inline address_word  castable_address(void* x)                { return address_word(x) ; }
 355 
 356 // Pointer subtraction.
 357 // The idea here is to avoid ptrdiff_t, which is signed and so doesn't have
 358 // the range we might need to find differences from one end of the heap
 359 // to the other.
 360 // A typical use might be:
 361 //     if (pointer_delta(end(), top()) >= size) {
 362 //       // enough room for an object of size
 363 //       ...
 364 // and then additions like
 365 //       ... top() + size ...
 366 // are safe because we know that top() is at least size below end().
 367 inline size_t pointer_delta(const volatile void* left,
 368                             const volatile void* right,
 369                             size_t element_size) {
 370   return (((uintptr_t) left) - ((uintptr_t) right)) / element_size;
 371 }
 372 
 373 // A version specialized for HeapWord*'s.
 374 inline size_t pointer_delta(const HeapWord* left, const HeapWord* right) {
 375   return pointer_delta(left, right, sizeof(HeapWord));
 376 }
 377 // A version specialized for MetaWord*'s.
 378 inline size_t pointer_delta(const MetaWord* left, const MetaWord* right) {
 379   return pointer_delta(left, right, sizeof(MetaWord));
 380 }
 381 
 382 //
 383 // ANSI C++ does not allow casting from one pointer type to a function pointer
 384 // directly without at best a warning. This macro accomplishes it silently
 385 // In every case that is present at this point the value be cast is a pointer
 386 // to a C linkage function. In some case the type used for the cast reflects
 387 // that linkage and a picky compiler would not complain. In other cases because
 388 // there is no convenient place to place a typedef with extern C linkage (i.e
 389 // a platform dependent header file) it doesn't. At this point no compiler seems
 390 // picky enough to catch these instances (which are few). It is possible that
 391 // using templates could fix these for all cases. This use of templates is likely
 392 // so far from the middle of the road that it is likely to be problematic in
 393 // many C++ compilers.
 394 //
 395 #define CAST_TO_FN_PTR(func_type, value) (reinterpret_cast<func_type>(value))
 396 #define CAST_FROM_FN_PTR(new_type, func_ptr) ((new_type)((address_word)(func_ptr)))
 397 
 398 // Unsigned byte types for os and stream.hpp
 399 
 400 // Unsigned one, two, four and eigth byte quantities used for describing
 401 // the .class file format. See JVM book chapter 4.
 402 
 403 typedef jubyte  u1;
 404 typedef jushort u2;
 405 typedef juint   u4;
 406 typedef julong  u8;
 407 
 408 const jubyte  max_jubyte  = (jubyte)-1;  // 0xFF       largest jubyte
 409 const jushort max_jushort = (jushort)-1; // 0xFFFF     largest jushort
 410 const juint   max_juint   = (juint)-1;   // 0xFFFFFFFF largest juint
 411 const julong  max_julong  = (julong)-1;  // 0xFF....FF largest julong
 412 
 413 typedef jbyte  s1;
 414 typedef jshort s2;
 415 typedef jint   s4;
 416 typedef jlong  s8;
 417 
 418 const jbyte min_jbyte = -(1 << 7);       // smallest jbyte
 419 const jbyte max_jbyte = (1 << 7) - 1;    // largest jbyte
 420 const jshort min_jshort = -(1 << 15);    // smallest jshort
 421 const jshort max_jshort = (1 << 15) - 1; // largest jshort
 422 
 423 const jint min_jint = (jint)1 << (sizeof(jint)*BitsPerByte-1); // 0x80000000 == smallest jint
 424 const jint max_jint = (juint)min_jint - 1;                     // 0x7FFFFFFF == largest jint
 425 
 426 //----------------------------------------------------------------------------------------------------
 427 // JVM spec restrictions
 428 
 429 const int max_method_code_size = 64*K - 1;  // JVM spec, 2nd ed. section 4.8.1 (p.134)
 430 
 431 // Default ProtectionDomainCacheSize values
 432 
 433 const int defaultProtectionDomainCacheSize = NOT_LP64(137) LP64_ONLY(2017);
 434 
 435 //----------------------------------------------------------------------------------------------------
 436 // Default and minimum StringTableSize values
 437 
 438 const int defaultStringTableSize = NOT_LP64(1009) LP64_ONLY(60013);
 439 const int minimumStringTableSize = 1009;
 440 
 441 const int defaultSymbolTableSize = 20011;
 442 const int minimumSymbolTableSize = 1009;
 443 
 444 
 445 //----------------------------------------------------------------------------------------------------
 446 // HotSwap - for JVMTI   aka Class File Replacement and PopFrame
 447 //
 448 // Determines whether on-the-fly class replacement and frame popping are enabled.
 449 
 450 #define HOTSWAP
 451 
 452 //----------------------------------------------------------------------------------------------------
 453 // Object alignment, in units of HeapWords.
 454 //
 455 // Minimum is max(BytesPerLong, BytesPerDouble, BytesPerOop) / HeapWordSize, so jlong, jdouble and
 456 // reference fields can be naturally aligned.
 457 
 458 extern int MinObjAlignment;
 459 extern int MinObjAlignmentInBytes;
 460 extern int MinObjAlignmentInBytesMask;
 461 
 462 extern int LogMinObjAlignment;
 463 extern int LogMinObjAlignmentInBytes;
 464 
 465 const int LogKlassAlignmentInBytes = 3;
 466 const int LogKlassAlignment        = LogKlassAlignmentInBytes - LogHeapWordSize;
 467 const int KlassAlignmentInBytes    = 1 << LogKlassAlignmentInBytes;
 468 const int KlassAlignment           = KlassAlignmentInBytes / HeapWordSize;
 469 
 470 // Maximal size of heap where unscaled compression can be used. Also upper bound
 471 // for heap placement: 4GB.
 472 const  uint64_t UnscaledOopHeapMax = (uint64_t(max_juint) + 1);
 473 // Maximal size of heap where compressed oops can be used. Also upper bound for heap
 474 // placement for zero based compression algorithm: UnscaledOopHeapMax << LogMinObjAlignmentInBytes.
 475 extern uint64_t OopEncodingHeapMax;
 476 
 477 // Maximal size of compressed class space. Above this limit compression is not possible.
 478 // Also upper bound for placement of zero based class space. (Class space is further limited
 479 // to be < 3G, see arguments.cpp.)
 480 const  uint64_t KlassEncodingMetaspaceMax = (uint64_t(max_juint) + 1) << LogKlassAlignmentInBytes;
 481 
 482 // Machine dependent stuff
 483 
 484 // The maximum size of the code cache.  Can be overridden by targets.
 485 #define CODE_CACHE_SIZE_LIMIT (2*G)
 486 // Allow targets to reduce the default size of the code cache.
 487 #define CODE_CACHE_DEFAULT_LIMIT CODE_CACHE_SIZE_LIMIT
 488 
 489 #include CPU_HEADER(globalDefinitions)
 490 
 491 // To assure the IRIW property on processors that are not multiple copy
 492 // atomic, sync instructions must be issued between volatile reads to
 493 // assure their ordering, instead of after volatile stores.
 494 // (See "A Tutorial Introduction to the ARM and POWER Relaxed Memory Models"
 495 // by Luc Maranget, Susmit Sarkar and Peter Sewell, INRIA/Cambridge)
 496 #ifdef CPU_NOT_MULTIPLE_COPY_ATOMIC
 497 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = true;
 498 #else
 499 const bool support_IRIW_for_not_multiple_copy_atomic_cpu = false;
 500 #endif
 501 
 502 // The byte alignment to be used by Arena::Amalloc.  See bugid 4169348.
 503 // Note: this value must be a power of 2
 504 
 505 #define ARENA_AMALLOC_ALIGNMENT (2*BytesPerWord)
 506 
 507 // Signed variants of alignment helpers.  There are two versions of each, a macro
 508 // for use in places like enum definitions that require compile-time constant
 509 // expressions and a function for all other places so as to get type checking.
 510 
 511 #define align_size_up_(size, alignment) (((size) + ((alignment) - 1)) & ~((alignment) - 1))
 512 
 513 inline bool is_size_aligned(size_t size, size_t alignment) {
 514   return align_size_up_(size, alignment) == size;
 515 }
 516 
 517 inline bool is_ptr_aligned(const void* ptr, size_t alignment) {
 518   return align_size_up_((intptr_t)ptr, (intptr_t)alignment) == (intptr_t)ptr;
 519 }
 520 
 521 inline intptr_t align_size_up(intptr_t size, intptr_t alignment) {
 522   return align_size_up_(size, alignment);
 523 }
 524 
 525 #define align_size_down_(size, alignment) ((size) & ~((alignment) - 1))
 526 
 527 inline intptr_t align_size_down(intptr_t size, intptr_t alignment) {
 528   return align_size_down_(size, alignment);
 529 }
 530 
 531 #define is_size_aligned_(size, alignment) ((size) == (align_size_up_(size, alignment)))
 532 
 533 inline void* align_ptr_up(const void* ptr, size_t alignment) {
 534   return (void*)align_size_up((intptr_t)ptr, (intptr_t)alignment);
 535 }
 536 
 537 inline void* align_ptr_down(void* ptr, size_t alignment) {
 538   return (void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 539 }
 540 
 541 inline volatile void* align_ptr_down(volatile void* ptr, size_t alignment) {
 542   return (volatile void*)align_size_down((intptr_t)ptr, (intptr_t)alignment);
 543 }
 544 
 545 // Align metaspace objects by rounding up to natural word boundary
 546 
 547 inline intptr_t align_metadata_size(intptr_t size) {
 548   return align_size_up(size, 1);
 549 }
 550 
 551 // Align objects in the Java Heap by rounding up their size, in HeapWord units.
 552 // Since the size is given in words this is somewhat of a nop, but
 553 // distinguishes it from align_object_size.
 554 inline intptr_t align_object_size(intptr_t size) {
 555   return align_size_up(size, MinObjAlignment);
 556 }
 557 
 558 inline bool is_object_aligned(intptr_t addr) {
 559   return addr == align_object_size(addr);
 560 }
 561 
 562 inline bool is_ptr_object_aligned(const void* addr) {
 563   return is_ptr_aligned(addr, MinObjAlignmentInBytes);
 564 }
 565 
 566 // Pad out certain offsets to jlong alignment, in HeapWord units.
 567 
 568 inline intptr_t align_object_offset(intptr_t offset) {
 569   return align_size_up(offset, HeapWordsPerLong);
 570 }
 571 
 572 // Align down with a lower bound. If the aligning results in 0, return 'alignment'.
 573 
 574 inline size_t align_size_down_bounded(size_t size, size_t alignment) {
 575   size_t aligned_size = align_size_down_(size, alignment);
 576   return aligned_size > 0 ? aligned_size : alignment;
 577 }
 578 
 579 // Clamp an address to be within a specific page
 580 // 1. If addr is on the page it is returned as is
 581 // 2. If addr is above the page_address the start of the *next* page will be returned
 582 // 3. Otherwise, if addr is below the page_address the start of the page will be returned
 583 inline address clamp_address_in_page(address addr, address page_address, intptr_t page_size) {
 584   if (align_size_down(intptr_t(addr), page_size) == align_size_down(intptr_t(page_address), page_size)) {
 585     // address is in the specified page, just return it as is
 586     return addr;
 587   } else if (addr > page_address) {
 588     // address is above specified page, return start of next page
 589     return (address)align_size_down(intptr_t(page_address), page_size) + page_size;
 590   } else {
 591     // address is below specified page, return start of page
 592     return (address)align_size_down(intptr_t(page_address), page_size);
 593   }
 594 }
 595 
 596 
 597 // The expected size in bytes of a cache line, used to pad data structures.
 598 #ifndef DEFAULT_CACHE_LINE_SIZE
 599   #define DEFAULT_CACHE_LINE_SIZE 64
 600 #endif
 601 
 602 
 603 //----------------------------------------------------------------------------------------------------
 604 // Utility macros for compilers
 605 // used to silence compiler warnings
 606 
 607 #define Unused_Variable(var) var
 608 
 609 
 610 //----------------------------------------------------------------------------------------------------
 611 // Miscellaneous
 612 
 613 // 6302670 Eliminate Hotspot __fabsf dependency
 614 // All fabs() callers should call this function instead, which will implicitly
 615 // convert the operand to double, avoiding a dependency on __fabsf which
 616 // doesn't exist in early versions of Solaris 8.
 617 inline double fabsd(double value) {
 618   return fabs(value);
 619 }
 620 
 621 // Returns numerator/denominator as percentage value from 0 to 100. If denominator
 622 // is zero, return 0.0.
 623 template<typename T>
 624 inline double percent_of(T numerator, T denominator) {
 625   return denominator != 0 ? (double)numerator / denominator * 100.0 : 0.0;
 626 }
 627 
 628 //----------------------------------------------------------------------------------------------------
 629 // Special casts
 630 // Cast floats into same-size integers and vice-versa w/o changing bit-pattern
 631 typedef union {
 632   jfloat f;
 633   jint i;
 634 } FloatIntConv;
 635 
 636 typedef union {
 637   jdouble d;
 638   jlong l;
 639   julong ul;
 640 } DoubleLongConv;
 641 
 642 inline jint    jint_cast    (jfloat  x)  { return ((FloatIntConv*)&x)->i; }
 643 inline jfloat  jfloat_cast  (jint    x)  { return ((FloatIntConv*)&x)->f; }
 644 
 645 inline jlong   jlong_cast   (jdouble x)  { return ((DoubleLongConv*)&x)->l;  }
 646 inline julong  julong_cast  (jdouble x)  { return ((DoubleLongConv*)&x)->ul; }
 647 inline jdouble jdouble_cast (jlong   x)  { return ((DoubleLongConv*)&x)->d;  }
 648 
 649 inline jint low (jlong value)                    { return jint(value); }
 650 inline jint high(jlong value)                    { return jint(value >> 32); }
 651 
 652 // the fancy casts are a hopefully portable way
 653 // to do unsigned 32 to 64 bit type conversion
 654 inline void set_low (jlong* value, jint low )    { *value &= (jlong)0xffffffff << 32;
 655                                                    *value |= (jlong)(julong)(juint)low; }
 656 
 657 inline void set_high(jlong* value, jint high)    { *value &= (jlong)(julong)(juint)0xffffffff;
 658                                                    *value |= (jlong)high       << 32; }
 659 
 660 inline jlong jlong_from(jint h, jint l) {
 661   jlong result = 0; // initialization to avoid warning
 662   set_high(&result, h);
 663   set_low(&result,  l);
 664   return result;
 665 }
 666 
 667 union jlong_accessor {
 668   jint  words[2];
 669   jlong long_value;
 670 };
 671 
 672 void basic_types_init(); // cannot define here; uses assert
 673 
 674 
 675 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 676 enum BasicType {
 677   T_BOOLEAN     =  4,
 678   T_CHAR        =  5,
 679   T_FLOAT       =  6,
 680   T_DOUBLE      =  7,
 681   T_BYTE        =  8,
 682   T_SHORT       =  9,
 683   T_INT         = 10,
 684   T_LONG        = 11,
 685   T_OBJECT      = 12,
 686   T_ARRAY       = 13,
 687   T_VOID        = 14,
 688   T_ADDRESS     = 15,
 689   T_NARROWOOP   = 16,
 690   T_METADATA    = 17,
 691   T_NARROWKLASS = 18,
 692   T_CONFLICT    = 19, // for stack value type with conflicting contents
 693   T_ILLEGAL     = 99
 694 };
 695 
 696 inline bool is_java_primitive(BasicType t) {
 697   return T_BOOLEAN <= t && t <= T_LONG;
 698 }
 699 
 700 inline bool is_subword_type(BasicType t) {
 701   // these guys are processed exactly like T_INT in calling sequences:
 702   return (t == T_BOOLEAN || t == T_CHAR || t == T_BYTE || t == T_SHORT);
 703 }
 704 
 705 inline bool is_signed_subword_type(BasicType t) {
 706   return (t == T_BYTE || t == T_SHORT);
 707 }
 708 
 709 // Convert a char from a classfile signature to a BasicType
 710 inline BasicType char2type(char c) {
 711   switch( c ) {
 712   case 'B': return T_BYTE;
 713   case 'C': return T_CHAR;
 714   case 'D': return T_DOUBLE;
 715   case 'F': return T_FLOAT;
 716   case 'I': return T_INT;
 717   case 'J': return T_LONG;
 718   case 'S': return T_SHORT;
 719   case 'Z': return T_BOOLEAN;
 720   case 'V': return T_VOID;
 721   case 'L': return T_OBJECT;
 722   case '[': return T_ARRAY;
 723   }
 724   return T_ILLEGAL;
 725 }
 726 
 727 extern char type2char_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 728 inline char type2char(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2char_tab[t] : 0; }
 729 extern int type2size[T_CONFLICT+1];         // Map BasicType to result stack elements
 730 extern const char* type2name_tab[T_CONFLICT+1];     // Map a BasicType to a jchar
 731 inline const char* type2name(BasicType t) { return (uint)t < T_CONFLICT+1 ? type2name_tab[t] : NULL; }
 732 extern BasicType name2type(const char* name);
 733 
 734 // Auxiliary math routines
 735 // least common multiple
 736 extern size_t lcm(size_t a, size_t b);
 737 
 738 
 739 // NOTE: replicated in SA in vm/agent/sun/jvm/hotspot/runtime/BasicType.java
 740 enum BasicTypeSize {
 741   T_BOOLEAN_size     = 1,
 742   T_CHAR_size        = 1,
 743   T_FLOAT_size       = 1,
 744   T_DOUBLE_size      = 2,
 745   T_BYTE_size        = 1,
 746   T_SHORT_size       = 1,
 747   T_INT_size         = 1,
 748   T_LONG_size        = 2,
 749   T_OBJECT_size      = 1,
 750   T_ARRAY_size       = 1,
 751   T_NARROWOOP_size   = 1,
 752   T_NARROWKLASS_size = 1,
 753   T_VOID_size        = 0
 754 };
 755 
 756 
 757 // maps a BasicType to its instance field storage type:
 758 // all sub-word integral types are widened to T_INT
 759 extern BasicType type2field[T_CONFLICT+1];
 760 extern BasicType type2wfield[T_CONFLICT+1];
 761 
 762 
 763 // size in bytes
 764 enum ArrayElementSize {
 765   T_BOOLEAN_aelem_bytes     = 1,
 766   T_CHAR_aelem_bytes        = 2,
 767   T_FLOAT_aelem_bytes       = 4,
 768   T_DOUBLE_aelem_bytes      = 8,
 769   T_BYTE_aelem_bytes        = 1,
 770   T_SHORT_aelem_bytes       = 2,
 771   T_INT_aelem_bytes         = 4,
 772   T_LONG_aelem_bytes        = 8,
 773 #ifdef _LP64
 774   T_OBJECT_aelem_bytes      = 8,
 775   T_ARRAY_aelem_bytes       = 8,
 776 #else
 777   T_OBJECT_aelem_bytes      = 4,
 778   T_ARRAY_aelem_bytes       = 4,
 779 #endif
 780   T_NARROWOOP_aelem_bytes   = 4,
 781   T_NARROWKLASS_aelem_bytes = 4,
 782   T_VOID_aelem_bytes        = 0
 783 };
 784 
 785 extern int _type2aelembytes[T_CONFLICT+1]; // maps a BasicType to nof bytes used by its array element
 786 #ifdef ASSERT
 787 extern int type2aelembytes(BasicType t, bool allow_address = false); // asserts
 788 #else
 789 inline int type2aelembytes(BasicType t, bool allow_address = false) { return _type2aelembytes[t]; }
 790 #endif
 791 
 792 
 793 // JavaValue serves as a container for arbitrary Java values.
 794 
 795 class JavaValue {
 796 
 797  public:
 798   typedef union JavaCallValue {
 799     jfloat   f;
 800     jdouble  d;
 801     jint     i;
 802     jlong    l;
 803     jobject  h;
 804   } JavaCallValue;
 805 
 806  private:
 807   BasicType _type;
 808   JavaCallValue _value;
 809 
 810  public:
 811   JavaValue(BasicType t = T_ILLEGAL) { _type = t; }
 812 
 813   JavaValue(jfloat value) {
 814     _type    = T_FLOAT;
 815     _value.f = value;
 816   }
 817 
 818   JavaValue(jdouble value) {
 819     _type    = T_DOUBLE;
 820     _value.d = value;
 821   }
 822 
 823  jfloat get_jfloat() const { return _value.f; }
 824  jdouble get_jdouble() const { return _value.d; }
 825  jint get_jint() const { return _value.i; }
 826  jlong get_jlong() const { return _value.l; }
 827  jobject get_jobject() const { return _value.h; }
 828  JavaCallValue* get_value_addr() { return &_value; }
 829  BasicType get_type() const { return _type; }
 830 
 831  void set_jfloat(jfloat f) { _value.f = f;}
 832  void set_jdouble(jdouble d) { _value.d = d;}
 833  void set_jint(jint i) { _value.i = i;}
 834  void set_jlong(jlong l) { _value.l = l;}
 835  void set_jobject(jobject h) { _value.h = h;}
 836  void set_type(BasicType t) { _type = t; }
 837 
 838  jboolean get_jboolean() const { return (jboolean) (_value.i);}
 839  jbyte get_jbyte() const { return (jbyte) (_value.i);}
 840  jchar get_jchar() const { return (jchar) (_value.i);}
 841  jshort get_jshort() const { return (jshort) (_value.i);}
 842 
 843 };
 844 
 845 
 846 #define STACK_BIAS      0
 847 // V9 Sparc CPU's running in 64 Bit mode use a stack bias of 7ff
 848 // in order to extend the reach of the stack pointer.
 849 #if defined(SPARC) && defined(_LP64)
 850 #undef STACK_BIAS
 851 #define STACK_BIAS      0x7ff
 852 #endif
 853 
 854 
 855 // TosState describes the top-of-stack state before and after the execution of
 856 // a bytecode or method. The top-of-stack value may be cached in one or more CPU
 857 // registers. The TosState corresponds to the 'machine representation' of this cached
 858 // value. There's 4 states corresponding to the JAVA types int, long, float & double
 859 // as well as a 5th state in case the top-of-stack value is actually on the top
 860 // of stack (in memory) and thus not cached. The atos state corresponds to the itos
 861 // state when it comes to machine representation but is used separately for (oop)
 862 // type specific operations (e.g. verification code).
 863 
 864 enum TosState {         // describes the tos cache contents
 865   btos = 0,             // byte, bool tos cached
 866   ztos = 1,             // byte, bool tos cached
 867   ctos = 2,             // char tos cached
 868   stos = 3,             // short tos cached
 869   itos = 4,             // int tos cached
 870   ltos = 5,             // long tos cached
 871   ftos = 6,             // float tos cached
 872   dtos = 7,             // double tos cached
 873   atos = 8,             // object cached
 874   vtos = 9,             // tos not cached
 875   number_of_states,
 876   ilgl                  // illegal state: should not occur
 877 };
 878 
 879 
 880 inline TosState as_TosState(BasicType type) {
 881   switch (type) {
 882     case T_BYTE   : return btos;
 883     case T_BOOLEAN: return ztos;
 884     case T_CHAR   : return ctos;
 885     case T_SHORT  : return stos;
 886     case T_INT    : return itos;
 887     case T_LONG   : return ltos;
 888     case T_FLOAT  : return ftos;
 889     case T_DOUBLE : return dtos;
 890     case T_VOID   : return vtos;
 891     case T_ARRAY  : // fall through
 892     case T_OBJECT : return atos;
 893     default       : return ilgl;
 894   }
 895 }
 896 
 897 inline BasicType as_BasicType(TosState state) {
 898   switch (state) {
 899     case btos : return T_BYTE;
 900     case ztos : return T_BOOLEAN;
 901     case ctos : return T_CHAR;
 902     case stos : return T_SHORT;
 903     case itos : return T_INT;
 904     case ltos : return T_LONG;
 905     case ftos : return T_FLOAT;
 906     case dtos : return T_DOUBLE;
 907     case atos : return T_OBJECT;
 908     case vtos : return T_VOID;
 909     default   : return T_ILLEGAL;
 910   }
 911 }
 912 
 913 
 914 // Helper function to convert BasicType info into TosState
 915 // Note: Cannot define here as it uses global constant at the time being.
 916 TosState as_TosState(BasicType type);
 917 
 918 
 919 // JavaThreadState keeps track of which part of the code a thread is executing in. This
 920 // information is needed by the safepoint code.
 921 //
 922 // There are 4 essential states:
 923 //
 924 //  _thread_new         : Just started, but not executed init. code yet (most likely still in OS init code)
 925 //  _thread_in_native   : In native code. This is a safepoint region, since all oops will be in jobject handles
 926 //  _thread_in_vm       : Executing in the vm
 927 //  _thread_in_Java     : Executing either interpreted or compiled Java code (or could be in a stub)
 928 //
 929 // Each state has an associated xxxx_trans state, which is an intermediate state used when a thread is in
 930 // a transition from one state to another. These extra states makes it possible for the safepoint code to
 931 // handle certain thread_states without having to suspend the thread - making the safepoint code faster.
 932 //
 933 // Given a state, the xxxx_trans state can always be found by adding 1.
 934 //
 935 enum JavaThreadState {
 936   _thread_uninitialized     =  0, // should never happen (missing initialization)
 937   _thread_new               =  2, // just starting up, i.e., in process of being initialized
 938   _thread_new_trans         =  3, // corresponding transition state (not used, included for completness)
 939   _thread_in_native         =  4, // running in native code
 940   _thread_in_native_trans   =  5, // corresponding transition state
 941   _thread_in_vm             =  6, // running in VM
 942   _thread_in_vm_trans       =  7, // corresponding transition state
 943   _thread_in_Java           =  8, // running in Java or in stub code
 944   _thread_in_Java_trans     =  9, // corresponding transition state (not used, included for completness)
 945   _thread_blocked           = 10, // blocked in vm
 946   _thread_blocked_trans     = 11, // corresponding transition state
 947   _thread_max_state         = 12  // maximum thread state+1 - used for statistics allocation
 948 };
 949 
 950 
 951 
 952 //----------------------------------------------------------------------------------------------------
 953 // 'Forward' declarations of frequently used classes
 954 // (in order to reduce interface dependencies & reduce
 955 // number of unnecessary compilations after changes)
 956 
 957 class ClassFileStream;
 958 
 959 class Event;
 960 
 961 class Thread;
 962 class  VMThread;
 963 class  JavaThread;
 964 class Threads;
 965 
 966 class VM_Operation;
 967 class VMOperationQueue;
 968 
 969 class CodeBlob;
 970 class  CompiledMethod;
 971 class   nmethod;
 972 class RuntimeBlob;
 973 class  OSRAdapter;
 974 class  I2CAdapter;
 975 class  C2IAdapter;
 976 class CompiledIC;
 977 class relocInfo;
 978 class ScopeDesc;
 979 class PcDesc;
 980 
 981 class Recompiler;
 982 class Recompilee;
 983 class RecompilationPolicy;
 984 class RFrame;
 985 class  CompiledRFrame;
 986 class  InterpretedRFrame;
 987 
 988 class vframe;
 989 class   javaVFrame;
 990 class     interpretedVFrame;
 991 class     compiledVFrame;
 992 class     deoptimizedVFrame;
 993 class   externalVFrame;
 994 class     entryVFrame;
 995 
 996 class RegisterMap;
 997 
 998 class Mutex;
 999 class Monitor;
1000 class BasicLock;
1001 class BasicObjectLock;
1002 
1003 class PeriodicTask;
1004 
1005 class JavaCallWrapper;
1006 
1007 class   oopDesc;
1008 class   metaDataOopDesc;
1009 
1010 class NativeCall;
1011 
1012 class zone;
1013 
1014 class StubQueue;
1015 
1016 class outputStream;
1017 
1018 class ResourceArea;
1019 
1020 class DebugInformationRecorder;
1021 class ScopeValue;
1022 class CompressedStream;
1023 class   DebugInfoReadStream;
1024 class   DebugInfoWriteStream;
1025 class LocationValue;
1026 class ConstantValue;
1027 class IllegalValue;
1028 
1029 class PrivilegedElement;
1030 class MonitorArray;
1031 
1032 class MonitorInfo;
1033 
1034 class OffsetClosure;
1035 class OopMapCache;
1036 class InterpreterOopMap;
1037 class OopMapCacheEntry;
1038 class OSThread;
1039 
1040 typedef int (*OSThreadStartFunc)(void*);
1041 
1042 class Space;
1043 
1044 class JavaValue;
1045 class methodHandle;
1046 class JavaCallArguments;
1047 
1048 // Basic support for errors.
1049 extern void basic_fatal(const char* msg);
1050 
1051 //----------------------------------------------------------------------------------------------------
1052 // Special constants for debugging
1053 
1054 const jint     badInt           = -3;                       // generic "bad int" value
1055 const long     badAddressVal    = -2;                       // generic "bad address" value
1056 const long     badOopVal        = -1;                       // generic "bad oop" value
1057 const intptr_t badHeapOopVal    = (intptr_t) CONST64(0x2BAD4B0BBAADBABE); // value used to zap heap after GC
1058 const int      badHandleValue   = 0xBC;                     // value used to zap vm handle area
1059 const int      badResourceValue = 0xAB;                     // value used to zap resource area
1060 const int      freeBlockPad     = 0xBA;                     // value used to pad freed blocks.
1061 const int      uninitBlockPad   = 0xF1;                     // value used to zap newly malloc'd blocks.
1062 const juint    uninitMetaWordVal= 0xf7f7f7f7;               // value used to zap newly allocated metachunk
1063 const intptr_t badJNIHandleVal  = (intptr_t) UCONST64(0xFEFEFEFEFEFEFEFE); // value used to zap jni handle area
1064 const juint    badHeapWordVal   = 0xBAADBABE;               // value used to zap heap after GC
1065 const juint    badMetaWordVal   = 0xBAADFADE;               // value used to zap metadata heap after GC
1066 const int      badCodeHeapNewVal= 0xCC;                     // value used to zap Code heap at allocation
1067 const int      badCodeHeapFreeVal = 0xDD;                   // value used to zap Code heap at deallocation
1068 
1069 
1070 // (These must be implemented as #defines because C++ compilers are
1071 // not obligated to inline non-integral constants!)
1072 #define       badAddress        ((address)::badAddressVal)
1073 #define       badOop            (cast_to_oop(::badOopVal))
1074 #define       badHeapWord       (::badHeapWordVal)
1075 #define       badJNIHandle      (cast_to_oop(::badJNIHandleVal))
1076 
1077 // Default TaskQueue size is 16K (32-bit) or 128K (64-bit)
1078 #define TASKQUEUE_SIZE (NOT_LP64(1<<14) LP64_ONLY(1<<17))
1079 
1080 //----------------------------------------------------------------------------------------------------
1081 // Utility functions for bitfield manipulations
1082 
1083 const intptr_t AllBits    = ~0; // all bits set in a word
1084 const intptr_t NoBits     =  0; // no bits set in a word
1085 const jlong    NoLongBits =  0; // no bits set in a long
1086 const intptr_t OneBit     =  1; // only right_most bit set in a word
1087 
1088 // get a word with the n.th or the right-most or left-most n bits set
1089 // (note: #define used only so that they can be used in enum constant definitions)
1090 #define nth_bit(n)        (((n) >= BitsPerWord) ? 0 : (OneBit << (n)))
1091 #define right_n_bits(n)   (nth_bit(n) - 1)
1092 #define left_n_bits(n)    (right_n_bits(n) << (((n) >= BitsPerWord) ? 0 : (BitsPerWord - (n))))
1093 
1094 // bit-operations using a mask m
1095 inline void   set_bits    (intptr_t& x, intptr_t m) { x |= m; }
1096 inline void clear_bits    (intptr_t& x, intptr_t m) { x &= ~m; }
1097 inline intptr_t mask_bits      (intptr_t  x, intptr_t m) { return x & m; }
1098 inline jlong    mask_long_bits (jlong     x, jlong    m) { return x & m; }
1099 inline bool mask_bits_are_true (intptr_t flags, intptr_t mask) { return (flags & mask) == mask; }
1100 
1101 // bit-operations using the n.th bit
1102 inline void    set_nth_bit(intptr_t& x, int n) { set_bits  (x, nth_bit(n)); }
1103 inline void  clear_nth_bit(intptr_t& x, int n) { clear_bits(x, nth_bit(n)); }
1104 inline bool is_set_nth_bit(intptr_t  x, int n) { return mask_bits (x, nth_bit(n)) != NoBits; }
1105 
1106 // returns the bitfield of x starting at start_bit_no with length field_length (no sign-extension!)
1107 inline intptr_t bitfield(intptr_t x, int start_bit_no, int field_length) {
1108   return mask_bits(x >> start_bit_no, right_n_bits(field_length));
1109 }
1110 
1111 
1112 //----------------------------------------------------------------------------------------------------
1113 // Utility functions for integers
1114 
1115 // Avoid use of global min/max macros which may cause unwanted double
1116 // evaluation of arguments.
1117 #ifdef max
1118 #undef max
1119 #endif
1120 
1121 #ifdef min
1122 #undef min
1123 #endif
1124 
1125 // The following defines serve the purpose of preventing use of accidentally
1126 // included min max macros from compiling, while continuing to allow innocent
1127 // min and max identifiers in the code to compile as intended.
1128 #define max max
1129 #define min min
1130 
1131 // It is necessary to use templates here. Having normal overloaded
1132 // functions does not work because it is necessary to provide both 32-
1133 // and 64-bit overloaded functions, which does not work, and having
1134 // explicitly-typed versions of these routines (i.e., MAX2I, MAX2L)
1135 // will be even more error-prone than macros.
1136 template<class T> inline T MAX2(T a, T b)           { return (a > b) ? a : b; }
1137 template<class T> inline T MIN2(T a, T b)           { return (a < b) ? a : b; }
1138 template<class T> inline T MAX3(T a, T b, T c)      { return MAX2(MAX2(a, b), c); }
1139 template<class T> inline T MIN3(T a, T b, T c)      { return MIN2(MIN2(a, b), c); }
1140 template<class T> inline T MAX4(T a, T b, T c, T d) { return MAX2(MAX3(a, b, c), d); }
1141 template<class T> inline T MIN4(T a, T b, T c, T d) { return MIN2(MIN3(a, b, c), d); }
1142 
1143 template<class T> inline T ABS(T x)                 { return (x > 0) ? x : -x; }
1144 
1145 // true if x is a power of 2, false otherwise
1146 inline bool is_power_of_2(intptr_t x) {
1147   return ((x != NoBits) && (mask_bits(x, x - 1) == NoBits));
1148 }
1149 
1150 // long version of is_power_of_2
1151 inline bool is_power_of_2_long(jlong x) {
1152   return ((x != NoLongBits) && (mask_long_bits(x, x - 1) == NoLongBits));
1153 }
1154 
1155 // Returns largest i such that 2^i <= x.
1156 // If x < 0, the function returns 31 on a 32-bit machine and 63 on a 64-bit machine.
1157 // If x == 0, the function returns -1.
1158 inline int log2_intptr(intptr_t x) {
1159   int i = -1;
1160   uintptr_t p = 1;
1161   while (p != 0 && p <= (uintptr_t)x) {
1162     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1163     i++; p *= 2;
1164   }
1165   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1166   // If p = 0, overflow has occurred and i = 31 or i = 63 (depending on the machine word size).
1167   return i;
1168 }
1169 
1170 //* largest i such that 2^i <= x
1171 //  A negative value of 'x' will return '63'
1172 inline int log2_long(jlong x) {
1173   int i = -1;
1174   julong p =  1;
1175   while (p != 0 && p <= (julong)x) {
1176     // p = 2^(i+1) && p <= x (i.e., 2^(i+1) <= x)
1177     i++; p *= 2;
1178   }
1179   // p = 2^(i+1) && x < p (i.e., 2^i <= x < 2^(i+1))
1180   // (if p = 0 then overflow occurred and i = 63)
1181   return i;
1182 }
1183 
1184 //* the argument must be exactly a power of 2
1185 inline int exact_log2(intptr_t x) {
1186   assert(is_power_of_2(x), "x must be a power of 2: " INTPTR_FORMAT, x);
1187   return log2_intptr(x);
1188 }
1189 
1190 //* the argument must be exactly a power of 2
1191 inline int exact_log2_long(jlong x) {
1192   assert(is_power_of_2_long(x), "x must be a power of 2: " JLONG_FORMAT, x);
1193   return log2_long(x);
1194 }
1195 
1196 
1197 // returns integer round-up to the nearest multiple of s (s must be a power of two)
1198 inline intptr_t round_to(intptr_t x, uintx s) {
1199   assert(is_power_of_2(s), "s must be a power of 2: " UINTX_FORMAT, s);
1200   const uintx m = s - 1;
1201   return mask_bits(x + m, ~m);
1202 }
1203 
1204 // returns integer round-down to the nearest multiple of s (s must be a power of two)
1205 inline intptr_t round_down(intptr_t x, uintx s) {
1206   assert(is_power_of_2(s), "s must be a power of 2: " UINTX_FORMAT, s);
1207   const uintx m = s - 1;
1208   return mask_bits(x, ~m);
1209 }
1210 
1211 
1212 inline bool is_odd (intx x) { return x & 1;      }
1213 inline bool is_even(intx x) { return !is_odd(x); }
1214 
1215 // "to" should be greater than "from."
1216 inline intx byte_size(void* from, void* to) {
1217   return (address)to - (address)from;
1218 }
1219 
1220 //----------------------------------------------------------------------------------------------------
1221 // Avoid non-portable casts with these routines (DEPRECATED)
1222 
1223 // NOTE: USE Bytes class INSTEAD WHERE POSSIBLE
1224 //       Bytes is optimized machine-specifically and may be much faster then the portable routines below.
1225 
1226 // Given sequence of four bytes, build into a 32-bit word
1227 // following the conventions used in class files.
1228 // On the 386, this could be realized with a simple address cast.
1229 //
1230 
1231 // This routine takes eight bytes:
1232 inline u8 build_u8_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1233   return  (( u8(c1) << 56 )  &  ( u8(0xff) << 56 ))
1234        |  (( u8(c2) << 48 )  &  ( u8(0xff) << 48 ))
1235        |  (( u8(c3) << 40 )  &  ( u8(0xff) << 40 ))
1236        |  (( u8(c4) << 32 )  &  ( u8(0xff) << 32 ))
1237        |  (( u8(c5) << 24 )  &  ( u8(0xff) << 24 ))
1238        |  (( u8(c6) << 16 )  &  ( u8(0xff) << 16 ))
1239        |  (( u8(c7) <<  8 )  &  ( u8(0xff) <<  8 ))
1240        |  (( u8(c8) <<  0 )  &  ( u8(0xff) <<  0 ));
1241 }
1242 
1243 // This routine takes four bytes:
1244 inline u4 build_u4_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1245   return  (( u4(c1) << 24 )  &  0xff000000)
1246        |  (( u4(c2) << 16 )  &  0x00ff0000)
1247        |  (( u4(c3) <<  8 )  &  0x0000ff00)
1248        |  (( u4(c4) <<  0 )  &  0x000000ff);
1249 }
1250 
1251 // And this one works if the four bytes are contiguous in memory:
1252 inline u4 build_u4_from( u1* p ) {
1253   return  build_u4_from( p[0], p[1], p[2], p[3] );
1254 }
1255 
1256 // Ditto for two-byte ints:
1257 inline u2 build_u2_from( u1 c1, u1 c2 ) {
1258   return  u2((( u2(c1) <<  8 )  &  0xff00)
1259           |  (( u2(c2) <<  0 )  &  0x00ff));
1260 }
1261 
1262 // And this one works if the two bytes are contiguous in memory:
1263 inline u2 build_u2_from( u1* p ) {
1264   return  build_u2_from( p[0], p[1] );
1265 }
1266 
1267 // Ditto for floats:
1268 inline jfloat build_float_from( u1 c1, u1 c2, u1 c3, u1 c4 ) {
1269   u4 u = build_u4_from( c1, c2, c3, c4 );
1270   return  *(jfloat*)&u;
1271 }
1272 
1273 inline jfloat build_float_from( u1* p ) {
1274   u4 u = build_u4_from( p );
1275   return  *(jfloat*)&u;
1276 }
1277 
1278 
1279 // now (64-bit) longs
1280 
1281 inline jlong build_long_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1282   return  (( jlong(c1) << 56 )  &  ( jlong(0xff) << 56 ))
1283        |  (( jlong(c2) << 48 )  &  ( jlong(0xff) << 48 ))
1284        |  (( jlong(c3) << 40 )  &  ( jlong(0xff) << 40 ))
1285        |  (( jlong(c4) << 32 )  &  ( jlong(0xff) << 32 ))
1286        |  (( jlong(c5) << 24 )  &  ( jlong(0xff) << 24 ))
1287        |  (( jlong(c6) << 16 )  &  ( jlong(0xff) << 16 ))
1288        |  (( jlong(c7) <<  8 )  &  ( jlong(0xff) <<  8 ))
1289        |  (( jlong(c8) <<  0 )  &  ( jlong(0xff) <<  0 ));
1290 }
1291 
1292 inline jlong build_long_from( u1* p ) {
1293   return  build_long_from( p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7] );
1294 }
1295 
1296 
1297 // Doubles, too!
1298 inline jdouble build_double_from( u1 c1, u1 c2, u1 c3, u1 c4, u1 c5, u1 c6, u1 c7, u1 c8 ) {
1299   jlong u = build_long_from( c1, c2, c3, c4, c5, c6, c7, c8 );
1300   return  *(jdouble*)&u;
1301 }
1302 
1303 inline jdouble build_double_from( u1* p ) {
1304   jlong u = build_long_from( p );
1305   return  *(jdouble*)&u;
1306 }
1307 
1308 
1309 // Portable routines to go the other way:
1310 
1311 inline void explode_short_to( u2 x, u1& c1, u1& c2 ) {
1312   c1 = u1(x >> 8);
1313   c2 = u1(x);
1314 }
1315 
1316 inline void explode_short_to( u2 x, u1* p ) {
1317   explode_short_to( x, p[0], p[1]);
1318 }
1319 
1320 inline void explode_int_to( u4 x, u1& c1, u1& c2, u1& c3, u1& c4 ) {
1321   c1 = u1(x >> 24);
1322   c2 = u1(x >> 16);
1323   c3 = u1(x >>  8);
1324   c4 = u1(x);
1325 }
1326 
1327 inline void explode_int_to( u4 x, u1* p ) {
1328   explode_int_to( x, p[0], p[1], p[2], p[3]);
1329 }
1330 
1331 
1332 // Pack and extract shorts to/from ints:
1333 
1334 inline int extract_low_short_from_int(jint x) {
1335   return x & 0xffff;
1336 }
1337 
1338 inline int extract_high_short_from_int(jint x) {
1339   return (x >> 16) & 0xffff;
1340 }
1341 
1342 inline int build_int_from_shorts( jushort low, jushort high ) {
1343   return ((int)((unsigned int)high << 16) | (unsigned int)low);
1344 }
1345 
1346 // Convert pointer to intptr_t, for use in printing pointers.
1347 inline intptr_t p2i(const void * p) {
1348   return (intptr_t) p;
1349 }
1350 
1351 // swap a & b
1352 template<class T> static void swap(T& a, T& b) {
1353   T tmp = a;
1354   a = b;
1355   b = tmp;
1356 }
1357 
1358 #define ARRAY_SIZE(array) (sizeof(array)/sizeof((array)[0]))
1359 
1360 //----------------------------------------------------------------------------------------------------
1361 // Sum and product which can never overflow: they wrap, just like the
1362 // Java operations.  Note that we don't intend these to be used for
1363 // general-purpose arithmetic: their purpose is to emulate Java
1364 // operations.
1365 
1366 // The goal of this code to avoid undefined or implementation-defined
1367 // behavior.  The use of an lvalue to reference cast is explicitly
1368 // permitted by Lvalues and rvalues [basic.lval].  [Section 3.10 Para
1369 // 15 in C++03]
1370 #define JAVA_INTEGER_OP(OP, NAME, TYPE, UNSIGNED_TYPE)  \
1371 inline TYPE NAME (TYPE in1, TYPE in2) {                 \
1372   UNSIGNED_TYPE ures = static_cast<UNSIGNED_TYPE>(in1); \
1373   ures OP ## = static_cast<UNSIGNED_TYPE>(in2);         \
1374   return reinterpret_cast<TYPE&>(ures);                 \
1375 }
1376 
1377 JAVA_INTEGER_OP(+, java_add, jint, juint)
1378 JAVA_INTEGER_OP(-, java_subtract, jint, juint)
1379 JAVA_INTEGER_OP(*, java_multiply, jint, juint)
1380 JAVA_INTEGER_OP(+, java_add, jlong, julong)
1381 JAVA_INTEGER_OP(-, java_subtract, jlong, julong)
1382 JAVA_INTEGER_OP(*, java_multiply, jlong, julong)
1383 
1384 #undef JAVA_INTEGER_OP
1385 
1386 // Dereference vptr
1387 // All C++ compilers that we know of have the vtbl pointer in the first
1388 // word.  If there are exceptions, this function needs to be made compiler
1389 // specific.
1390 static inline void* dereference_vptr(const void* addr) {
1391   return *(void**)addr;
1392 }
1393 
1394 #endif // SHARE_VM_UTILITIES_GLOBALDEFINITIONS_HPP