/* * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/ptrQueue.hpp" #include "memory/allocation.hpp" #include "memory/allocation.inline.hpp" #include "runtime/mutex.hpp" #include "runtime/mutexLocker.hpp" #include "runtime/thread.inline.hpp" #include PtrQueue::PtrQueue(PtrQueueSet* qset, bool permanent, bool active) : _qset(qset), _active(active), _permanent(permanent), _index(0), _capacity_in_bytes(0), _buf(NULL), _lock(NULL) {} PtrQueue::~PtrQueue() { assert(_permanent || (_buf == NULL), "queue must be flushed before delete"); } void PtrQueue::flush_impl() { if (_buf != NULL) { BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); if (is_empty()) { // No work to do. qset()->deallocate_buffer(node); } else { qset()->enqueue_complete_buffer(node); } _buf = NULL; set_index(0); } } void PtrQueue::enqueue_known_active(void* ptr) { while (_index == 0) { handle_zero_index(); } assert(_buf != NULL, "postcondition"); assert(index() > 0, "postcondition"); assert(index() <= capacity(), "invariant"); _index -= _element_size; _buf[index()] = ptr; } void PtrQueue::locking_enqueue_completed_buffer(BufferNode* node) { assert(_lock->owned_by_self(), "Required."); // We have to unlock _lock (which may be Shared_DirtyCardQ_lock) before // we acquire DirtyCardQ_CBL_mon inside enqueue_complete_buffer as they // have the same rank and we may get the "possible deadlock" message _lock->unlock(); qset()->enqueue_complete_buffer(node); // We must relock only because the caller will unlock, for the normal // case. _lock->lock_without_safepoint_check(); } BufferNode* BufferNode::allocate(size_t size) { size_t byte_size = size * sizeof(void*); void* data = NEW_C_HEAP_ARRAY(char, buffer_offset() + byte_size, mtGC); return new (data) BufferNode; } void BufferNode::deallocate(BufferNode* node) { node->~BufferNode(); FREE_C_HEAP_ARRAY(char, node); } PtrQueueSet::PtrQueueSet(bool notify_when_complete) : _buffer_size(0), _max_completed_queue(0), _cbl_mon(NULL), _fl_lock(NULL), _notify_when_complete(notify_when_complete), _completed_buffers_head(NULL), _completed_buffers_tail(NULL), _n_completed_buffers(0), _process_completed_threshold(0), _process_completed(false), _buf_free_list(NULL), _buf_free_list_sz(0) { _fl_owner = this; } PtrQueueSet::~PtrQueueSet() { // There are presently only a couple (derived) instances ever // created, and they are permanent, so no harm currently done by // doing nothing here. } void PtrQueueSet::initialize(Monitor* cbl_mon, Mutex* fl_lock, int process_completed_threshold, int max_completed_queue, PtrQueueSet *fl_owner) { _max_completed_queue = max_completed_queue; _process_completed_threshold = process_completed_threshold; _completed_queue_padding = 0; assert(cbl_mon != NULL && fl_lock != NULL, "Init order issue?"); _cbl_mon = cbl_mon; _fl_lock = fl_lock; _fl_owner = (fl_owner != NULL) ? fl_owner : this; } void** PtrQueueSet::allocate_buffer() { BufferNode* node = NULL; { MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); node = _fl_owner->_buf_free_list; if (node != NULL) { _fl_owner->_buf_free_list = node->next(); _fl_owner->_buf_free_list_sz--; } } if (node == NULL) { node = BufferNode::allocate(buffer_size()); } else { // Reinitialize buffer obtained from free list. node->set_index(0); node->set_next(NULL); } return BufferNode::make_buffer_from_node(node); } void PtrQueueSet::deallocate_buffer(BufferNode* node) { MutexLockerEx x(_fl_owner->_fl_lock, Mutex::_no_safepoint_check_flag); node->set_next(_fl_owner->_buf_free_list); _fl_owner->_buf_free_list = node; _fl_owner->_buf_free_list_sz++; } void PtrQueueSet::reduce_free_list() { assert(_fl_owner == this, "Free list reduction is allowed only for the owner"); // For now we'll adopt the strategy of deleting half. MutexLockerEx x(_fl_lock, Mutex::_no_safepoint_check_flag); size_t n = _buf_free_list_sz / 2; for (size_t i = 0; i < n; ++i) { assert(_buf_free_list != NULL, "_buf_free_list_sz is wrong: " SIZE_FORMAT, _buf_free_list_sz); BufferNode* node = _buf_free_list; _buf_free_list = node->next(); _buf_free_list_sz--; BufferNode::deallocate(node); } } void PtrQueue::handle_zero_index() { assert(index() == 0, "precondition"); // This thread records the full buffer and allocates a new one (while // holding the lock if there is one). if (_buf != NULL) { if (!should_enqueue_buffer()) { assert(index() > 0, "the buffer can only be re-used if it's not full"); return; } if (_lock) { assert(_lock->owned_by_self(), "Required."); // The current PtrQ may be the shared dirty card queue and // may be being manipulated by more than one worker thread // during a pause. Since the enqueueing of the completed // buffer unlocks the Shared_DirtyCardQ_lock more than one // worker thread can 'race' on reading the shared queue attributes // (_buf and _index) and multiple threads can call into this // routine for the same buffer. This will cause the completed // buffer to be added to the CBL multiple times. // We "claim" the current buffer by caching value of _buf in // a local and clearing the field while holding _lock. When // _lock is released (while enqueueing the completed buffer) // the thread that acquires _lock will skip this code, // preventing the subsequent the multiple enqueue, and // install a newly allocated buffer below. BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); _buf = NULL; // clear shared _buf field locking_enqueue_completed_buffer(node); // enqueue completed buffer // While the current thread was enqueueing the buffer another thread // may have a allocated a new buffer and inserted it into this pointer // queue. If that happens then we just return so that the current // thread doesn't overwrite the buffer allocated by the other thread // and potentially losing some dirtied cards. if (_buf != NULL) return; } else { BufferNode* node = BufferNode::make_node_from_buffer(_buf, index()); if (qset()->process_or_enqueue_complete_buffer(node)) { // Recycle the buffer. No allocation. assert(_buf == BufferNode::make_buffer_from_node(node), "invariant"); assert(capacity() == qset()->buffer_size(), "invariant"); reset(); return; } } } // Set capacity in case this is the first allocation. set_capacity(qset()->buffer_size()); // Allocate a new buffer. _buf = qset()->allocate_buffer(); reset(); } bool PtrQueueSet::process_or_enqueue_complete_buffer(BufferNode* node) { if (Thread::current()->is_Java_thread()) { // We don't lock. It is fine to be epsilon-precise here. if (_max_completed_queue == 0 || (_max_completed_queue > 0 && _n_completed_buffers >= _max_completed_queue + _completed_queue_padding)) { bool b = mut_process_buffer(node); if (b) { // True here means that the buffer hasn't been deallocated and the caller may reuse it. return true; } } } // The buffer will be enqueued. The caller will have to get a new one. enqueue_complete_buffer(node); return false; } void PtrQueueSet::enqueue_complete_buffer(BufferNode* cbn) { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); cbn->set_next(NULL); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = cbn; _completed_buffers_tail = cbn; } else { _completed_buffers_tail->set_next(cbn); _completed_buffers_tail = cbn; } _n_completed_buffers++; if (!_process_completed && _process_completed_threshold >= 0 && _n_completed_buffers >= (size_t)_process_completed_threshold) { _process_completed = true; if (_notify_when_complete) { _cbl_mon->notify(); } } DEBUG_ONLY(assert_completed_buffer_list_len_correct_locked()); } size_t PtrQueueSet::completed_buffers_list_length() { size_t n = 0; BufferNode* cbn = _completed_buffers_head; while (cbn != NULL) { n++; cbn = cbn->next(); } return n; } void PtrQueueSet::assert_completed_buffer_list_len_correct() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); assert_completed_buffer_list_len_correct_locked(); } void PtrQueueSet::assert_completed_buffer_list_len_correct_locked() { guarantee(completed_buffers_list_length() == _n_completed_buffers, "Completed buffer length is wrong."); } void PtrQueueSet::set_buffer_size(size_t sz) { assert(_buffer_size == 0 && sz > 0, "Should be called only once."); _buffer_size = sz; } // Merge lists of buffers. Notify the processing threads. // The source queue is emptied as a result. The queues // must share the monitor. void PtrQueueSet::merge_bufferlists(PtrQueueSet *src) { assert(_cbl_mon == src->_cbl_mon, "Should share the same lock"); MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); if (_completed_buffers_tail == NULL) { assert(_completed_buffers_head == NULL, "Well-formedness"); _completed_buffers_head = src->_completed_buffers_head; _completed_buffers_tail = src->_completed_buffers_tail; } else { assert(_completed_buffers_head != NULL, "Well formedness"); if (src->_completed_buffers_head != NULL) { _completed_buffers_tail->set_next(src->_completed_buffers_head); _completed_buffers_tail = src->_completed_buffers_tail; } } _n_completed_buffers += src->_n_completed_buffers; src->_n_completed_buffers = 0; src->_completed_buffers_head = NULL; src->_completed_buffers_tail = NULL; assert(_completed_buffers_head == NULL && _completed_buffers_tail == NULL || _completed_buffers_head != NULL && _completed_buffers_tail != NULL, "Sanity"); } void PtrQueueSet::notify_if_necessary() { MutexLockerEx x(_cbl_mon, Mutex::_no_safepoint_check_flag); assert(_process_completed_threshold >= 0, "_process_completed is negative"); if (_n_completed_buffers >= (size_t)_process_completed_threshold || _max_completed_queue == 0) { _process_completed = true; if (_notify_when_complete) _cbl_mon->notify(); } }