/* * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include #include "precompiled.hpp" #include "code/codeCache.hpp" #include "compiler/compileBroker.hpp" #include "compiler/disassembler.hpp" #include "gc/shared/collectedHeap.hpp" #include "logging/logConfiguration.hpp" #include "prims/jvm.h" #include "prims/whitebox.hpp" #include "runtime/arguments.hpp" #include "runtime/atomic.hpp" #include "runtime/frame.inline.hpp" #include "runtime/init.hpp" #include "runtime/os.hpp" #include "runtime/thread.inline.hpp" #include "runtime/vmThread.hpp" #include "runtime/vm_operations.hpp" #include "runtime/vm_version.hpp" #include "services/memTracker.hpp" #include "trace/traceMacros.hpp" #include "utilities/debug.hpp" #include "utilities/decoder.hpp" #include "utilities/defaultStream.hpp" #include "utilities/errorReporter.hpp" #include "utilities/events.hpp" #include "utilities/vmError.hpp" // List of environment variables that should be reported in error log file. const char *env_list[] = { // All platforms "JAVA_HOME", "JRE_HOME", "JAVA_TOOL_OPTIONS", "_JAVA_OPTIONS", "CLASSPATH", "JAVA_COMPILER", "PATH", "USERNAME", // Env variables that are defined on Solaris/Linux/BSD "LD_LIBRARY_PATH", "LD_PRELOAD", "SHELL", "DISPLAY", "HOSTTYPE", "OSTYPE", "ARCH", "MACHTYPE", // defined on Linux "LD_ASSUME_KERNEL", "_JAVA_SR_SIGNUM", // defined on Darwin "DYLD_LIBRARY_PATH", "DYLD_FALLBACK_LIBRARY_PATH", "DYLD_FRAMEWORK_PATH", "DYLD_FALLBACK_FRAMEWORK_PATH", "DYLD_INSERT_LIBRARIES", // defined on Windows "OS", "PROCESSOR_IDENTIFIER", "_ALT_JAVA_HOME_DIR", (const char *)0 }; // A simple parser for -XX:OnError, usage: // ptr = OnError; // while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr) != NULL) // ... ... static char* next_OnError_command(char* buf, int buflen, const char** ptr) { if (ptr == NULL || *ptr == NULL) return NULL; const char* cmd = *ptr; // skip leading blanks or ';' while (*cmd == ' ' || *cmd == ';') cmd++; if (*cmd == '\0') return NULL; const char * cmdend = cmd; while (*cmdend != '\0' && *cmdend != ';') cmdend++; Arguments::copy_expand_pid(cmd, cmdend - cmd, buf, buflen); *ptr = (*cmdend == '\0' ? cmdend : cmdend + 1); return buf; } static void print_bug_submit_message(outputStream *out, Thread *thread) { if (out == NULL) return; out->print_raw_cr("# If you would like to submit a bug report, please visit:"); out->print_raw ("# "); out->print_raw_cr(Arguments::java_vendor_url_bug()); // If the crash is in native code, encourage user to submit a bug to the // provider of that code. if (thread && thread->is_Java_thread() && !thread->is_hidden_from_external_view()) { JavaThread* jt = (JavaThread*)thread; if (jt->thread_state() == _thread_in_native) { out->print_cr("# The crash happened outside the Java Virtual Machine in native code.\n# See problematic frame for where to report the bug."); } } out->print_raw_cr("#"); } bool VMError::coredump_status; char VMError::coredump_message[O_BUFLEN]; void VMError::record_coredump_status(const char* message, bool status) { coredump_status = status; strncpy(coredump_message, message, sizeof(coredump_message)); coredump_message[sizeof(coredump_message)-1] = 0; } // Return a string to describe the error char* VMError::error_string(char* buf, int buflen) { char signame_buf[64]; const char *signame = os::exception_name(_id, signame_buf, sizeof(signame_buf)); if (signame) { jio_snprintf(buf, buflen, "%s (0x%x) at pc=" PTR_FORMAT ", pid=%d, tid=" UINTX_FORMAT, signame, _id, _pc, os::current_process_id(), os::current_thread_id()); } else if (_filename != NULL && _lineno > 0) { // skip directory names char separator = os::file_separator()[0]; const char *p = strrchr(_filename, separator); int n = jio_snprintf(buf, buflen, "Internal Error at %s:%d, pid=%d, tid=" UINTX_FORMAT, p ? p + 1 : _filename, _lineno, os::current_process_id(), os::current_thread_id()); if (n >= 0 && n < buflen && _message) { if (strlen(_detail_msg) > 0) { jio_snprintf(buf + n, buflen - n, "%s%s: %s", os::line_separator(), _message, _detail_msg); } else { jio_snprintf(buf + n, buflen - n, "%sError: %s", os::line_separator(), _message); } } } else { jio_snprintf(buf, buflen, "Internal Error (0x%x), pid=%d, tid=" UINTX_FORMAT, _id, os::current_process_id(), os::current_thread_id()); } return buf; } void VMError::print_stack_trace(outputStream* st, JavaThread* jt, char* buf, int buflen, bool verbose) { #ifdef ZERO if (jt->zero_stack()->sp() && jt->top_zero_frame()) { // StackFrameStream uses the frame anchor, which may not have // been set up. This can be done at any time in Zero, however, // so if it hasn't been set up then we just set it up now and // clear it again when we're done. bool has_last_Java_frame = jt->has_last_Java_frame(); if (!has_last_Java_frame) jt->set_last_Java_frame(); st->print("Java frames:"); // If the top frame is a Shark frame and the frame anchor isn't // set up then it's possible that the information in the frame // is garbage: it could be from a previous decache, or it could // simply have never been written. So we print a warning... StackFrameStream sfs(jt); if (!has_last_Java_frame && !sfs.is_done()) { if (sfs.current()->zeroframe()->is_shark_frame()) { st->print(" (TOP FRAME MAY BE JUNK)"); } } st->cr(); // Print the frames for(int i = 0; !sfs.is_done(); sfs.next(), i++) { sfs.current()->zero_print_on_error(i, st, buf, buflen); st->cr(); } // Reset the frame anchor if necessary if (!has_last_Java_frame) jt->reset_last_Java_frame(); } #else if (jt->has_last_Java_frame()) { st->print_cr("Java frames: (J=compiled Java code, j=interpreted, Vv=VM code)"); for(StackFrameStream sfs(jt); !sfs.is_done(); sfs.next()) { sfs.current()->print_on_error(st, buf, buflen, verbose); st->cr(); } } #endif // ZERO } void VMError::print_native_stack(outputStream* st, frame fr, Thread* t, char* buf, int buf_size) { // see if it's a valid frame if (fr.pc()) { st->print_cr("Native frames: (J=compiled Java code, A=aot compiled Java code, j=interpreted, Vv=VM code, C=native code)"); int count = 0; while (count++ < StackPrintLimit) { fr.print_on_error(st, buf, buf_size); st->cr(); // Compiled code may use EBP register on x86 so it looks like // non-walkable C frame. Use frame.sender() for java frames. if (t && t->is_Java_thread()) { // Catch very first native frame by using stack address. // For JavaThread stack_base and stack_size should be set. if (!t->on_local_stack((address)(fr.real_fp() + 1))) { break; } if (fr.is_java_frame() || fr.is_native_frame() || fr.is_runtime_frame()) { RegisterMap map((JavaThread*)t, false); // No update fr = fr.sender(&map); } else { fr = os::get_sender_for_C_frame(&fr); } } else { // is_first_C_frame() does only simple checks for frame pointer, // it will pass if java compiled code has a pointer in EBP. if (os::is_first_C_frame(&fr)) break; fr = os::get_sender_for_C_frame(&fr); } } if (count > StackPrintLimit) { st->print_cr("......"); } st->cr(); } } static void print_oom_reasons(outputStream* st) { st->print_cr("# Possible reasons:"); st->print_cr("# The system is out of physical RAM or swap space"); if (UseCompressedOops) { st->print_cr("# The process is running with CompressedOops enabled, and the Java Heap may be blocking the growth of the native heap"); } if (LogBytesPerWord == 2) { st->print_cr("# In 32 bit mode, the process size limit was hit"); } st->print_cr("# Possible solutions:"); st->print_cr("# Reduce memory load on the system"); st->print_cr("# Increase physical memory or swap space"); st->print_cr("# Check if swap backing store is full"); if (LogBytesPerWord == 2) { st->print_cr("# Use 64 bit Java on a 64 bit OS"); } st->print_cr("# Decrease Java heap size (-Xmx/-Xms)"); st->print_cr("# Decrease number of Java threads"); st->print_cr("# Decrease Java thread stack sizes (-Xss)"); st->print_cr("# Set larger code cache with -XX:ReservedCodeCacheSize="); if (UseCompressedOops) { switch (Universe::narrow_oop_mode()) { case Universe::UnscaledNarrowOop: st->print_cr("# JVM is running with Unscaled Compressed Oops mode in which the Java heap is"); st->print_cr("# placed in the first 4GB address space. The Java Heap base address is the"); st->print_cr("# maximum limit for the native heap growth. Please use -XX:HeapBaseMinAddress"); st->print_cr("# to set the Java Heap base and to place the Java Heap above 4GB virtual address."); break; case Universe::ZeroBasedNarrowOop: st->print_cr("# JVM is running with Zero Based Compressed Oops mode in which the Java heap is"); st->print_cr("# placed in the first 32GB address space. The Java Heap base address is the"); st->print_cr("# maximum limit for the native heap growth. Please use -XX:HeapBaseMinAddress"); st->print_cr("# to set the Java Heap base and to place the Java Heap above 32GB virtual address."); break; default: break; } } st->print_cr("# This output file may be truncated or incomplete."); } static const char* gc_mode() { if (UseG1GC) return "g1 gc"; if (UseParallelGC) return "parallel gc"; if (UseConcMarkSweepGC) return "concurrent mark sweep gc"; if (UseSerialGC) return "serial gc"; return "ERROR in GC mode"; } static void report_vm_version(outputStream* st, char* buf, int buflen) { // VM version st->print_cr("#"); JDK_Version::current().to_string(buf, buflen); const char* runtime_name = JDK_Version::runtime_name() != NULL ? JDK_Version::runtime_name() : ""; const char* runtime_version = JDK_Version::runtime_version() != NULL ? JDK_Version::runtime_version() : ""; const char* jdk_debug_level = Abstract_VM_Version::printable_jdk_debug_level() != NULL ? Abstract_VM_Version::printable_jdk_debug_level() : ""; st->print_cr("# JRE version: %s (%s) (%sbuild %s)", runtime_name, buf, jdk_debug_level, runtime_version); // This is the long version with some default settings added st->print_cr("# Java VM: %s (%s%s, %s%s%s%s%s, %s, %s)", Abstract_VM_Version::vm_name(), jdk_debug_level, Abstract_VM_Version::vm_release(), Abstract_VM_Version::vm_info_string(), TieredCompilation ? ", tiered" : "", #if INCLUDE_JVMCI EnableJVMCI ? ", jvmci" : "", UseJVMCICompiler ? ", jvmci compiler" : "", #else "", "", #endif UseCompressedOops ? ", compressed oops" : "", gc_mode(), Abstract_VM_Version::vm_platform_string() ); } // This is the main function to report a fatal error. Only one thread can // call this function, so we don't need to worry about MT-safety. But it's // possible that the error handler itself may crash or die on an internal // error, for example, when the stack/heap is badly damaged. We must be // able to handle recursive errors that happen inside error handler. // // Error reporting is done in several steps. If a crash or internal error // occurred when reporting an error, the nested signal/exception handler // can skip steps that are already (or partially) done. Error reporting will // continue from the next step. This allows us to retrieve and print // information that may be unsafe to get after a fatal error. If it happens, // you may find nested report_and_die() frames when you look at the stack // in a debugger. // // In general, a hang in error handler is much worse than a crash or internal // error, as it's harder to recover from a hang. Deadlock can happen if we // try to grab a lock that is already owned by current thread, or if the // owner is blocked forever (e.g. in os::infinite_sleep()). If possible, the // error handler and all the functions it called should avoid grabbing any // lock. An important thing to notice is that memory allocation needs a lock. // // We should avoid using large stack allocated buffers. Many errors happen // when stack space is already low. Making things even worse is that there // could be nested report_and_die() calls on stack (see above). Only one // thread can report error, so large buffers are statically allocated in data // segment. int VMError::_current_step; const char* VMError::_current_step_info; volatile jlong VMError::_reporting_start_time = -1; volatile bool VMError::_reporting_did_timeout = false; volatile jlong VMError::_step_start_time = -1; volatile bool VMError::_step_did_timeout = false; // Helper, return current timestamp for timeout handling. jlong VMError::get_current_timestamp() { return os::javaTimeNanos(); } // Factor to translate the timestamp to seconds. #define TIMESTAMP_TO_SECONDS_FACTOR (1000 * 1000 * 1000) void VMError::record_reporting_start_time() { const jlong now = get_current_timestamp(); Atomic::store(now, &_reporting_start_time); } jlong VMError::get_reporting_start_time() { return Atomic::load(&_reporting_start_time); } void VMError::record_step_start_time() { const jlong now = get_current_timestamp(); Atomic::store(now, &_step_start_time); } jlong VMError::get_step_start_time() { return Atomic::load(&_step_start_time); } void VMError::report(outputStream* st, bool _verbose) { # define BEGIN if (_current_step == 0) { _current_step = __LINE__; # define STEP(s) } if (_current_step < __LINE__) { _current_step = __LINE__; _current_step_info = s; \ record_step_start_time(); _step_did_timeout = false; # define END } // don't allocate large buffer on stack static char buf[O_BUFLEN]; BEGIN STEP("printing fatal error message") st->print_cr("#"); if (should_report_bug(_id)) { st->print_cr("# A fatal error has been detected by the Java Runtime Environment:"); } else { st->print_cr("# There is insufficient memory for the Java " "Runtime Environment to continue."); } #ifndef PRODUCT // Error handler self tests // test secondary error handling. Test it twice, to test that resetting // error handler after a secondary crash works. STEP("test secondary crash 1") if (_verbose && TestCrashInErrorHandler != 0) { st->print_cr("Will crash now (TestCrashInErrorHandler=" UINTX_FORMAT ")...", TestCrashInErrorHandler); controlled_crash(TestCrashInErrorHandler); } STEP("test secondary crash 2") if (_verbose && TestCrashInErrorHandler != 0) { st->print_cr("Will crash now (TestCrashInErrorHandler=" UINTX_FORMAT ")...", TestCrashInErrorHandler); controlled_crash(TestCrashInErrorHandler); } // TestUnresponsiveErrorHandler: We want to test both step timeouts and global timeout. // Step to global timeout ratio is 4:1, so in order to be absolutely sure we hit the // global timeout, let's execute the timeout step five times. // See corresponding test in test/runtime/ErrorHandling/TimeoutInErrorHandlingTest.java #define TIMEOUT_TEST_STEP STEP("test unresponsive error reporting step") \ if (_verbose && TestUnresponsiveErrorHandler) { os::infinite_sleep(); } TIMEOUT_TEST_STEP TIMEOUT_TEST_STEP TIMEOUT_TEST_STEP TIMEOUT_TEST_STEP TIMEOUT_TEST_STEP STEP("test safefetch in error handler") // test whether it is safe to use SafeFetch32 in Crash Handler. Test twice // to test that resetting the signal handler works correctly. if (_verbose && TestSafeFetchInErrorHandler) { st->print_cr("Will test SafeFetch..."); if (CanUseSafeFetch32()) { int* const invalid_pointer = (int*) get_segfault_address(); const int x = 0x76543210; int i1 = SafeFetch32(invalid_pointer, x); int i2 = SafeFetch32(invalid_pointer, x); if (i1 == x && i2 == x) { st->print_cr("SafeFetch OK."); // Correctly deflected and returned default pattern } else { st->print_cr("??"); } } else { st->print_cr("not possible; skipped."); } } #endif // PRODUCT STEP("printing type of error") switch(_id) { case OOM_MALLOC_ERROR: case OOM_MMAP_ERROR: if (_size) { st->print("# Native memory allocation "); st->print((_id == (int)OOM_MALLOC_ERROR) ? "(malloc) failed to allocate " : "(mmap) failed to map "); jio_snprintf(buf, sizeof(buf), SIZE_FORMAT, _size); st->print("%s", buf); st->print(" bytes"); if (strlen(_detail_msg) > 0) { st->print(" for "); st->print("%s", _detail_msg); } st->cr(); } else { if (strlen(_detail_msg) > 0) { st->print("# "); st->print_cr("%s", _detail_msg); } } // In error file give some solutions if (_verbose) { print_oom_reasons(st); } else { return; // that's enough for the screen } break; case INTERNAL_ERROR: default: break; } STEP("printing exception/signal name") st->print_cr("#"); st->print("# "); // Is it an OS exception/signal? if (os::exception_name(_id, buf, sizeof(buf))) { st->print("%s", buf); st->print(" (0x%x)", _id); // signal number st->print(" at pc=" PTR_FORMAT, p2i(_pc)); } else { if (should_report_bug(_id)) { st->print("Internal Error"); } else { st->print("Out of Memory Error"); } if (_filename != NULL && _lineno > 0) { #ifdef PRODUCT // In product mode chop off pathname? char separator = os::file_separator()[0]; const char *p = strrchr(_filename, separator); const char *file = p ? p+1 : _filename; #else const char *file = _filename; #endif st->print(" (%s:%d)", file, _lineno); } else { st->print(" (0x%x)", _id); } } STEP("printing current thread and pid") // process id, thread id st->print(", pid=%d", os::current_process_id()); st->print(", tid=" UINTX_FORMAT, os::current_thread_id()); st->cr(); STEP("printing error message") if (should_report_bug(_id)) { // already printed the message. // error message if (strlen(_detail_msg) > 0) { st->print_cr("# %s: %s", _message ? _message : "Error", _detail_msg); } else if (_message) { st->print_cr("# Error: %s", _message); } } STEP("printing Java version string") report_vm_version(st, buf, sizeof(buf)); STEP("printing problematic frame") // Print current frame if we have a context (i.e. it's a crash) if (_context) { st->print_cr("# Problematic frame:"); st->print("# "); frame fr = os::fetch_frame_from_context(_context); fr.print_on_error(st, buf, sizeof(buf)); st->cr(); st->print_cr("#"); } STEP("printing core file information") st->print("# "); if (CreateCoredumpOnCrash) { if (coredump_status) { st->print("Core dump will be written. Default location: %s", coredump_message); } else { st->print("No core dump will be written. %s", coredump_message); } } else { st->print("CreateCoredumpOnCrash turned off, no core file dumped"); } st->cr(); st->print_cr("#"); STEP("printing bug submit message") if (should_report_bug(_id) && _verbose) { print_bug_submit_message(st, _thread); } STEP("printing summary") if (_verbose) { st->cr(); st->print_cr("--------------- S U M M A R Y ------------"); st->cr(); } STEP("printing VM option summary") if (_verbose) { // VM options Arguments::print_summary_on(st); st->cr(); } STEP("printing summary machine and OS info") if (_verbose) { os::print_summary_info(st, buf, sizeof(buf)); } STEP("printing date and time") if (_verbose) { os::print_date_and_time(st, buf, sizeof(buf)); } STEP("printing thread") if (_verbose) { st->cr(); st->print_cr("--------------- T H R E A D ---------------"); st->cr(); } STEP("printing current thread") // current thread if (_verbose) { if (_thread) { st->print("Current thread (" PTR_FORMAT "): ", p2i(_thread)); _thread->print_on_error(st, buf, sizeof(buf)); st->cr(); } else { st->print_cr("Current thread is native thread"); } st->cr(); } STEP("printing current compile task") if (_verbose && _thread && _thread->is_Compiler_thread()) { CompilerThread* t = (CompilerThread*)_thread; if (t->task()) { st->cr(); st->print_cr("Current CompileTask:"); t->task()->print_line_on_error(st, buf, sizeof(buf)); st->cr(); } } STEP("printing stack bounds") if (_verbose) { st->print("Stack: "); address stack_top; size_t stack_size; if (_thread) { stack_top = _thread->stack_base(); stack_size = _thread->stack_size(); } else { stack_top = os::current_stack_base(); stack_size = os::current_stack_size(); } address stack_bottom = stack_top - stack_size; st->print("[" PTR_FORMAT "," PTR_FORMAT "]", p2i(stack_bottom), p2i(stack_top)); frame fr = _context ? os::fetch_frame_from_context(_context) : os::current_frame(); if (fr.sp()) { st->print(", sp=" PTR_FORMAT, p2i(fr.sp())); size_t free_stack_size = pointer_delta(fr.sp(), stack_bottom, 1024); st->print(", free space=" SIZE_FORMAT "k", free_stack_size); } st->cr(); } STEP("printing native stack") if (_verbose) { if (os::platform_print_native_stack(st, _context, buf, sizeof(buf))) { // We have printed the native stack in platform-specific code // Windows/x64 needs special handling. } else { frame fr = _context ? os::fetch_frame_from_context(_context) : os::current_frame(); print_native_stack(st, fr, _thread, buf, sizeof(buf)); } } STEP("printing Java stack") if (_verbose && _thread && _thread->is_Java_thread()) { print_stack_trace(st, (JavaThread*)_thread, buf, sizeof(buf)); } STEP("printing target Java thread stack") // printing Java thread stack trace if it is involved in GC crash if (_verbose && _thread && (_thread->is_Named_thread())) { JavaThread* jt = ((NamedThread *)_thread)->processed_thread(); if (jt != NULL) { st->print_cr("JavaThread " PTR_FORMAT " (nid = %d) was being processed", p2i(jt), jt->osthread()->thread_id()); print_stack_trace(st, jt, buf, sizeof(buf), true); } } STEP("printing siginfo") // signal no, signal code, address that caused the fault if (_verbose && _siginfo) { st->cr(); os::print_siginfo(st, _siginfo); st->cr(); } STEP("CDS archive access warning") // Print an explicit hint if we crashed on access to the CDS archive. if (_verbose && _siginfo) { check_failing_cds_access(st, _siginfo); st->cr(); } STEP("printing register info") // decode register contents if possible if (_verbose && _context && Universe::is_fully_initialized()) { os::print_register_info(st, _context); st->cr(); } STEP("printing registers, top of stack, instructions near pc") // registers, top of stack, instructions near pc if (_verbose && _context) { os::print_context(st, _context); st->cr(); } STEP("printing code blob if possible") if (_verbose && _context) { CodeBlob* cb = CodeCache::find_blob(_pc); if (cb != NULL) { if (Interpreter::contains(_pc)) { // The interpreter CodeBlob is very large so try to print the codelet instead. InterpreterCodelet* codelet = Interpreter::codelet_containing(_pc); if (codelet != NULL) { codelet->print_on(st); Disassembler::decode(codelet->code_begin(), codelet->code_end(), st); } } else { StubCodeDesc* desc = StubCodeDesc::desc_for(_pc); if (desc != NULL) { desc->print_on(st); Disassembler::decode(desc->begin(), desc->end(), st); } else { Disassembler::decode(cb, st); st->cr(); } } } } STEP("printing VM operation") if (_verbose && _thread && _thread->is_VM_thread()) { VMThread* t = (VMThread*)_thread; VM_Operation* op = t->vm_operation(); if (op) { op->print_on_error(st); st->cr(); st->cr(); } } STEP("printing process") if (_verbose) { st->cr(); st->print_cr("--------------- P R O C E S S ---------------"); st->cr(); } STEP("printing all threads") // all threads if (_verbose && _thread) { Threads::print_on_error(st, _thread, buf, sizeof(buf)); st->cr(); } STEP("printing VM state") if (_verbose) { // Safepoint state st->print("VM state:"); if (SafepointSynchronize::is_synchronizing()) st->print("synchronizing"); else if (SafepointSynchronize::is_at_safepoint()) st->print("at safepoint"); else st->print("not at safepoint"); // Also see if error occurred during initialization or shutdown if (!Universe::is_fully_initialized()) { st->print(" (not fully initialized)"); } else if (VM_Exit::vm_exited()) { st->print(" (shutting down)"); } else { st->print(" (normal execution)"); } st->cr(); st->cr(); } STEP("printing owned locks on error") // mutexes/monitors that currently have an owner if (_verbose) { print_owned_locks_on_error(st); st->cr(); } STEP("printing number of OutOfMemoryError and StackOverflow exceptions") if (_verbose && Exceptions::has_exception_counts()) { st->print_cr("OutOfMemory and StackOverflow Exception counts:"); Exceptions::print_exception_counts_on_error(st); st->cr(); } STEP("printing compressed oops mode") if (_verbose && UseCompressedOops) { Universe::print_compressed_oops_mode(st); if (UseCompressedClassPointers) { Metaspace::print_compressed_class_space(st); } st->cr(); } STEP("printing heap information") if (_verbose && Universe::is_fully_initialized()) { Universe::heap()->print_on_error(st); st->cr(); st->print_cr("Polling page: " INTPTR_FORMAT, p2i(os::get_polling_page())); st->cr(); } STEP("printing code cache information") if (_verbose && Universe::is_fully_initialized()) { // print code cache information before vm abort CodeCache::print_summary(st); st->cr(); } STEP("printing ring buffers") if (_verbose) { Events::print_all(st); st->cr(); } STEP("printing dynamic libraries") if (_verbose) { // dynamic libraries, or memory map os::print_dll_info(st); st->cr(); } STEP("printing VM options") if (_verbose) { // VM options Arguments::print_on(st); st->cr(); } STEP("printing warning if internal testing API used") if (WhiteBox::used()) { st->print_cr("Unsupported internal testing APIs have been used."); st->cr(); } STEP("printing log configuration") if (_verbose){ st->print_cr("Logging:"); LogConfiguration::describe_current_configuration(st); st->cr(); } STEP("printing all environment variables") if (_verbose) { os::print_environment_variables(st, env_list); st->cr(); } STEP("printing signal handlers") if (_verbose) { os::print_signal_handlers(st, buf, sizeof(buf)); st->cr(); } STEP("Native Memory Tracking") if (_verbose) { MemTracker::error_report(st); } STEP("printing system") if (_verbose) { st->cr(); st->print_cr("--------------- S Y S T E M ---------------"); st->cr(); } STEP("printing OS information") if (_verbose) { os::print_os_info(st); st->cr(); } STEP("printing CPU info") if (_verbose) { os::print_cpu_info(st, buf, sizeof(buf)); st->cr(); } STEP("printing memory info") if (_verbose) { os::print_memory_info(st); st->cr(); } STEP("printing internal vm info") if (_verbose) { st->print_cr("vm_info: %s", Abstract_VM_Version::internal_vm_info_string()); st->cr(); } // print a defined marker to show that error handling finished correctly. STEP("printing end marker") if (_verbose) { st->print_cr("END."); } END # undef BEGIN # undef STEP # undef END } // Report for the vm_info_cmd. This prints out the information above omitting // crash and thread specific information. If output is added above, it should be added // here also, if it is safe to call during a running process. void VMError::print_vm_info(outputStream* st) { char buf[O_BUFLEN]; report_vm_version(st, buf, sizeof(buf)); // STEP("printing summary") st->cr(); st->print_cr("--------------- S U M M A R Y ------------"); st->cr(); // STEP("printing VM option summary") // VM options Arguments::print_summary_on(st); st->cr(); // STEP("printing summary machine and OS info") os::print_summary_info(st, buf, sizeof(buf)); // STEP("printing date and time") os::print_date_and_time(st, buf, sizeof(buf)); // Skip: STEP("printing thread") // STEP("printing process") st->cr(); st->print_cr("--------------- P R O C E S S ---------------"); st->cr(); // STEP("printing number of OutOfMemoryError and StackOverflow exceptions") if (Exceptions::has_exception_counts()) { st->print_cr("OutOfMemory and StackOverflow Exception counts:"); Exceptions::print_exception_counts_on_error(st); st->cr(); } // STEP("printing compressed oops mode") if (UseCompressedOops) { Universe::print_compressed_oops_mode(st); if (UseCompressedClassPointers) { Metaspace::print_compressed_class_space(st); } st->cr(); } // STEP("printing heap information") if (Universe::is_fully_initialized()) { MutexLocker hl(Heap_lock); Universe::heap()->print_on_error(st); st->cr(); st->print_cr("Polling page: " INTPTR_FORMAT, p2i(os::get_polling_page())); st->cr(); } // STEP("printing code cache information") if (Universe::is_fully_initialized()) { // print code cache information before vm abort CodeCache::print_summary(st); st->cr(); } // STEP("printing ring buffers") Events::print_all(st); st->cr(); // STEP("printing dynamic libraries") // dynamic libraries, or memory map os::print_dll_info(st); st->cr(); // STEP("printing VM options") // VM options Arguments::print_on(st); st->cr(); // STEP("printing warning if internal testing API used") if (WhiteBox::used()) { st->print_cr("Unsupported internal testing APIs have been used."); st->cr(); } // STEP("printing log configuration") st->print_cr("Logging:"); LogConfiguration::describe(st); st->cr(); // STEP("printing all environment variables") os::print_environment_variables(st, env_list); st->cr(); // STEP("printing signal handlers") os::print_signal_handlers(st, buf, sizeof(buf)); st->cr(); // STEP("Native Memory Tracking") MemTracker::error_report(st); // STEP("printing system") st->cr(); st->print_cr("--------------- S Y S T E M ---------------"); st->cr(); // STEP("printing OS information") os::print_os_info(st); st->cr(); // STEP("printing CPU info") os::print_cpu_info(st, buf, sizeof(buf)); st->cr(); // STEP("printing memory info") os::print_memory_info(st); st->cr(); // STEP("printing internal vm info") st->print_cr("vm_info: %s", Abstract_VM_Version::internal_vm_info_string()); st->cr(); // print a defined marker to show that error handling finished correctly. // STEP("printing end marker") st->print_cr("END."); } volatile intptr_t VMError::first_error_tid = -1; // An error could happen before tty is initialized or after it has been // destroyed. // Please note: to prevent large stack allocations, the log- and // output-stream use a global scratch buffer for format printing. // (see VmError::report_and_die(). Access to those streams is synchronized // in VmError::report_and_die() - there is only one reporting thread at // any given time. fdStream VMError::out(defaultStream::output_fd()); fdStream VMError::log; // error log used by VMError::report_and_die() /** Expand a pattern into a buffer starting at pos and open a file using constructed path */ static int expand_and_open(const char* pattern, char* buf, size_t buflen, size_t pos) { int fd = -1; if (Arguments::copy_expand_pid(pattern, strlen(pattern), &buf[pos], buflen - pos)) { // the O_EXCL flag will cause the open to fail if the file exists fd = open(buf, O_RDWR | O_CREAT | O_EXCL, 0666); } return fd; } /** * Construct file name for a log file and return it's file descriptor. * Name and location depends on pattern, default_pattern params and access * permissions. */ static int prepare_log_file(const char* pattern, const char* default_pattern, char* buf, size_t buflen) { int fd = -1; // If possible, use specified pattern to construct log file name if (pattern != NULL) { fd = expand_and_open(pattern, buf, buflen, 0); } // Either user didn't specify, or the user's location failed, // so use the default name in the current directory if (fd == -1) { const char* cwd = os::get_current_directory(buf, buflen); if (cwd != NULL) { size_t pos = strlen(cwd); int fsep_len = jio_snprintf(&buf[pos], buflen-pos, "%s", os::file_separator()); pos += fsep_len; if (fsep_len > 0) { fd = expand_and_open(default_pattern, buf, buflen, pos); } } } // try temp directory if it exists. if (fd == -1) { const char* tmpdir = os::get_temp_directory(); if (tmpdir != NULL && strlen(tmpdir) > 0) { int pos = jio_snprintf(buf, buflen, "%s%s", tmpdir, os::file_separator()); if (pos > 0) { fd = expand_and_open(default_pattern, buf, buflen, pos); } } } return fd; } int VMError::_id; const char* VMError::_message; char VMError::_detail_msg[1024]; Thread* VMError::_thread; address VMError::_pc; void* VMError::_siginfo; void* VMError::_context; const char* VMError::_filename; int VMError::_lineno; size_t VMError::_size; void VMError::report_and_die(Thread* thread, unsigned int sig, address pc, void* siginfo, void* context, const char* detail_fmt, ...) { va_list detail_args; va_start(detail_args, detail_fmt); report_and_die(sig, NULL, detail_fmt, detail_args, thread, pc, siginfo, context, NULL, 0, 0); va_end(detail_args); } void VMError::report_and_die(Thread* thread, unsigned int sig, address pc, void* siginfo, void* context) { report_and_die(thread, sig, pc, siginfo, context, "%s", ""); } void VMError::report_and_die(const char* message, const char* detail_fmt, ...) { va_list detail_args; va_start(detail_args, detail_fmt); report_and_die(INTERNAL_ERROR, message, detail_fmt, detail_args, NULL, NULL, NULL, NULL, NULL, 0, 0); va_end(detail_args); } void VMError::report_and_die(const char* message) { report_and_die(message, "%s", ""); } void VMError::report_and_die(Thread* thread, const char* filename, int lineno, const char* message, const char* detail_fmt, va_list detail_args) { report_and_die(INTERNAL_ERROR, message, detail_fmt, detail_args, thread, NULL, NULL, NULL, filename, lineno, 0); } void VMError::report_and_die(Thread* thread, const char* filename, int lineno, size_t size, VMErrorType vm_err_type, const char* detail_fmt, va_list detail_args) { report_and_die(vm_err_type, NULL, detail_fmt, detail_args, thread, NULL, NULL, NULL, filename, lineno, size); } void VMError::report_and_die(int id, const char* message, const char* detail_fmt, va_list detail_args, Thread* thread, address pc, void* siginfo, void* context, const char* filename, int lineno, size_t size) { // Don't allocate large buffer on stack static char buffer[O_BUFLEN]; out.set_scratch_buffer(buffer, sizeof(buffer)); log.set_scratch_buffer(buffer, sizeof(buffer)); // How many errors occurred in error handler when reporting first_error. static int recursive_error_count; // We will first print a brief message to standard out (verbose = false), // then save detailed information in log file (verbose = true). static bool out_done = false; // done printing to standard out static bool log_done = false; // done saving error log static bool transmit_report_done = false; // done error reporting if (SuppressFatalErrorMessage) { os::abort(CreateCoredumpOnCrash); } intptr_t mytid = os::current_thread_id(); if (first_error_tid == -1 && Atomic::cmpxchg_ptr(mytid, &first_error_tid, -1) == -1) { // Initialize time stamps to use the same base. out.time_stamp().update_to(1); log.time_stamp().update_to(1); _id = id; _message = message; _thread = thread; _pc = pc; _siginfo = siginfo; _context = context; _filename = filename; _lineno = lineno; _size = size; jio_vsnprintf(_detail_msg, sizeof(_detail_msg), detail_fmt, detail_args); // first time set_error_reported(); reporting_started(); record_reporting_start_time(); if (ShowMessageBoxOnError || PauseAtExit) { show_message_box(buffer, sizeof(buffer)); // User has asked JVM to abort. Reset ShowMessageBoxOnError so the // WatcherThread can kill JVM if the error handler hangs. ShowMessageBoxOnError = false; } os::check_dump_limit(buffer, sizeof(buffer)); // reset signal handlers or exception filter; make sure recursive crashes // are handled properly. reset_signal_handlers(); TRACE_VM_ERROR(); } else { // If UseOsErrorReporting we call this for each level of the call stack // while searching for the exception handler. Only the first level needs // to be reported. if (UseOSErrorReporting && log_done) return; // This is not the first error, see if it happened in a different thread // or in the same thread during error reporting. if (first_error_tid != mytid) { char msgbuf[64]; jio_snprintf(msgbuf, sizeof(msgbuf), "[thread " INTX_FORMAT " also had an error]", mytid); out.print_raw_cr(msgbuf); // error reporting is not MT-safe, block current thread os::infinite_sleep(); } else { if (recursive_error_count++ > 30) { out.print_raw_cr("[Too many errors, abort]"); os::die(); } outputStream* const st = log.is_open() ? &log : &out; st->cr(); // Timeout handling. if (_step_did_timeout) { // The current step had a timeout. Lets continue reporting with the next step. st->print_raw("[timeout occurred during error reporting in step \""); st->print_raw(_current_step_info); st->print_cr("\"] after " INT64_FORMAT " s.", (int64_t) ((get_current_timestamp() - _step_start_time) / TIMESTAMP_TO_SECONDS_FACTOR)); } else if (_reporting_did_timeout) { // We hit ErrorLogTimeout. Reporting will stop altogether. Let's wrap things // up, the process is about to be stopped by the WatcherThread. st->print_cr("------ Timeout during error reporting after " INT64_FORMAT " s. ------", (int64_t) ((get_current_timestamp() - _reporting_start_time) / TIMESTAMP_TO_SECONDS_FACTOR)); st->flush(); // Watcherthread is about to call os::die. Lets just wait. os::infinite_sleep(); } else { // Crash or assert during error reporting. Lets continue reporting with the next step. jio_snprintf(buffer, sizeof(buffer), "[error occurred during error reporting (%s), id 0x%x]", _current_step_info, _id); st->print_raw_cr(buffer); st->cr(); } } } // print to screen if (!out_done) { report(&out, false); out_done = true; _current_step = 0; _current_step_info = ""; } // print to error log file if (!log_done) { // see if log file is already open if (!log.is_open()) { // open log file int fd = prepare_log_file(ErrorFile, "hs_err_pid%p.log", buffer, sizeof(buffer)); if (fd != -1) { out.print_raw("# An error report file with more information is saved as:\n# "); out.print_raw_cr(buffer); log.set_fd(fd); } else { out.print_raw_cr("# Can not save log file, dump to screen.."); log.set_fd(defaultStream::output_fd()); /* Error reporting currently needs dumpfile. * Maybe implement direct streaming in the future.*/ transmit_report_done = true; } } report(&log, true); log_done = true; _current_step = 0; _current_step_info = ""; // Run error reporting to determine whether or not to report the crash. if (!transmit_report_done && should_report_bug(_id)) { transmit_report_done = true; const int fd2 = ::dup(log.fd()); if (fd2 != -1) { FILE* const hs_err = ::fdopen(fd2, "r"); if (NULL != hs_err) { ErrorReporter er; er.call(hs_err, buffer, O_BUFLEN); ::fclose(hs_err); } } } if (log.fd() != defaultStream::output_fd()) { close(log.fd()); } log.set_fd(-1); } static bool skip_replay = ReplayCompiles; // Do not overwrite file during replay if (DumpReplayDataOnError && _thread && _thread->is_Compiler_thread() && !skip_replay) { skip_replay = true; ciEnv* env = ciEnv::current(); if (env != NULL) { int fd = prepare_log_file(ReplayDataFile, "replay_pid%p.log", buffer, sizeof(buffer)); if (fd != -1) { FILE* replay_data_file = os::open(fd, "w"); if (replay_data_file != NULL) { fileStream replay_data_stream(replay_data_file, /*need_close=*/true); env->dump_replay_data_unsafe(&replay_data_stream); out.print_raw("#\n# Compiler replay data is saved as:\n# "); out.print_raw_cr(buffer); } else { int e = errno; out.print_raw("#\n# Can't open file to dump replay data. Error: "); out.print_raw_cr(os::strerror(e)); } } } } static bool skip_bug_url = !should_report_bug(_id); if (!skip_bug_url) { skip_bug_url = true; out.print_raw_cr("#"); print_bug_submit_message(&out, _thread); } static bool skip_OnError = false; if (!skip_OnError && OnError && OnError[0]) { skip_OnError = true; // Flush output and finish logs before running OnError commands. ostream_abort(); out.print_raw_cr("#"); out.print_raw ("# -XX:OnError=\""); out.print_raw (OnError); out.print_raw_cr("\""); char* cmd; const char* ptr = OnError; while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr)) != NULL){ out.print_raw ("# Executing "); #if defined(LINUX) || defined(_ALLBSD_SOURCE) out.print_raw ("/bin/sh -c "); #elif defined(SOLARIS) out.print_raw ("/usr/bin/sh -c "); #elif defined(WINDOWS) out.print_raw ("cmd /C "); #endif out.print_raw ("\""); out.print_raw (cmd); out.print_raw_cr("\" ..."); if (os::fork_and_exec(cmd) < 0) { out.print_cr("os::fork_and_exec failed: %s (%s=%d)", os::strerror(errno), os::errno_name(errno), errno); } } // done with OnError OnError = NULL; } if (!UseOSErrorReporting) { // os::abort() will call abort hooks, try it first. static bool skip_os_abort = false; if (!skip_os_abort) { skip_os_abort = true; bool dump_core = should_report_bug(_id); os::abort(dump_core && CreateCoredumpOnCrash, _siginfo, _context); } // if os::abort() doesn't abort, try os::die(); os::die(); } } /* * OnOutOfMemoryError scripts/commands executed while VM is a safepoint - this * ensures utilities such as jmap can observe the process is a consistent state. */ class VM_ReportJavaOutOfMemory : public VM_Operation { private: const char* _message; public: VM_ReportJavaOutOfMemory(const char* message) { _message = message; } VMOp_Type type() const { return VMOp_ReportJavaOutOfMemory; } void doit(); }; void VM_ReportJavaOutOfMemory::doit() { // Don't allocate large buffer on stack static char buffer[O_BUFLEN]; tty->print_cr("#"); tty->print_cr("# java.lang.OutOfMemoryError: %s", _message); tty->print_cr("# -XX:OnOutOfMemoryError=\"%s\"", OnOutOfMemoryError); // make heap parsability Universe::heap()->ensure_parsability(false); // no need to retire TLABs char* cmd; const char* ptr = OnOutOfMemoryError; while ((cmd = next_OnError_command(buffer, sizeof(buffer), &ptr)) != NULL){ tty->print("# Executing "); #if defined(LINUX) tty->print ("/bin/sh -c "); #elif defined(SOLARIS) tty->print ("/usr/bin/sh -c "); #endif tty->print_cr("\"%s\"...", cmd); if (os::fork_and_exec(cmd) < 0) { tty->print_cr("os::fork_and_exec failed: %s (%s=%d)", os::strerror(errno), os::errno_name(errno), errno); } } } void VMError::report_java_out_of_memory(const char* message) { if (OnOutOfMemoryError && OnOutOfMemoryError[0]) { MutexLocker ml(Heap_lock); VM_ReportJavaOutOfMemory op(message); VMThread::execute(&op); } } void VMError::show_message_box(char *buf, int buflen) { bool yes; do { error_string(buf, buflen); yes = os::start_debugging(buf,buflen); } while (yes); } // Timeout handling: check if a timeout happened (either a single step did // timeout or the whole of error reporting hit ErrorLogTimeout). Interrupt // the reporting thread if that is the case. bool VMError::check_timeout() { if (ErrorLogTimeout == 0) { return false; } // Do not check for timeouts if we still have a message box to show to the // user or if there are OnError handlers to be run. if (ShowMessageBoxOnError || (OnError != NULL && OnError[0] != '\0') || Arguments::abort_hook() != NULL) { return false; } const jlong reporting_start_time_l = get_reporting_start_time(); const jlong now = get_current_timestamp(); // Timestamp is stored in nanos. if (reporting_start_time_l > 0) { const jlong end = reporting_start_time_l + (jlong)ErrorLogTimeout * TIMESTAMP_TO_SECONDS_FACTOR; if (end <= now) { _reporting_did_timeout = true; interrupt_reporting_thread(); return true; // global timeout } } const jlong step_start_time_l = get_step_start_time(); if (step_start_time_l > 0) { // A step times out after a quarter of the total timeout. Steps are mostly fast unless they // hang for some reason, so this simple rule allows for three hanging step and still // hopefully leaves time enough for the rest of the steps to finish. const jlong end = step_start_time_l + (jlong)ErrorLogTimeout * TIMESTAMP_TO_SECONDS_FACTOR / 4; if (end <= now) { _step_did_timeout = true; interrupt_reporting_thread(); return false; // (Not a global timeout) } } return false; }