1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // output_c.cpp - Class CPP file output routines for architecture definition
  26 
  27 #include "adlc.hpp"
  28 
  29 // Utilities to characterize effect statements
  30 static bool is_def(int usedef) {
  31   switch(usedef) {
  32   case Component::DEF:
  33   case Component::USE_DEF: return true; break;
  34   }
  35   return false;
  36 }
  37 
  38 // Define  an array containing the machine register names, strings.
  39 static void defineRegNames(FILE *fp, RegisterForm *registers) {
  40   if (registers) {
  41     fprintf(fp,"\n");
  42     fprintf(fp,"// An array of character pointers to machine register names.\n");
  43     fprintf(fp,"const char *Matcher::regName[REG_COUNT] = {\n");
  44 
  45     // Output the register name for each register in the allocation classes
  46     RegDef *reg_def = NULL;
  47     RegDef *next = NULL;
  48     registers->reset_RegDefs();
  49     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  50       next = registers->iter_RegDefs();
  51       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  52       fprintf(fp,"  \"%s\"%s\n", reg_def->_regname, comma);
  53     }
  54 
  55     // Finish defining enumeration
  56     fprintf(fp,"};\n");
  57 
  58     fprintf(fp,"\n");
  59     fprintf(fp,"// An array of character pointers to machine register names.\n");
  60     fprintf(fp,"const VMReg OptoReg::opto2vm[REG_COUNT] = {\n");
  61     reg_def = NULL;
  62     next = NULL;
  63     registers->reset_RegDefs();
  64     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  65       next = registers->iter_RegDefs();
  66       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  67       fprintf(fp,"\t%s%s\n", reg_def->_concrete, comma);
  68     }
  69     // Finish defining array
  70     fprintf(fp,"\t};\n");
  71     fprintf(fp,"\n");
  72 
  73     fprintf(fp," OptoReg::Name OptoReg::vm2opto[ConcreteRegisterImpl::number_of_registers];\n");
  74 
  75   }
  76 }
  77 
  78 // Define an array containing the machine register encoding values
  79 static void defineRegEncodes(FILE *fp, RegisterForm *registers) {
  80   if (registers) {
  81     fprintf(fp,"\n");
  82     fprintf(fp,"// An array of the machine register encode values\n");
  83     fprintf(fp,"const unsigned char Matcher::_regEncode[REG_COUNT] = {\n");
  84 
  85     // Output the register encoding for each register in the allocation classes
  86     RegDef *reg_def = NULL;
  87     RegDef *next    = NULL;
  88     registers->reset_RegDefs();
  89     for (reg_def = registers->iter_RegDefs(); reg_def != NULL; reg_def = next) {
  90       next = registers->iter_RegDefs();
  91       const char* register_encode = reg_def->register_encode();
  92       const char *comma = (next != NULL) ? "," : " // no trailing comma";
  93       int encval;
  94       if (!ADLParser::is_int_token(register_encode, encval)) {
  95         fprintf(fp,"  %s%s  // %s\n", register_encode, comma, reg_def->_regname);
  96       } else {
  97         // Output known constants in hex char format (backward compatibility).
  98         assert(encval < 256, "Exceeded supported width for register encoding");
  99         fprintf(fp,"  (unsigned char)'\\x%X'%s  // %s\n", encval, comma, reg_def->_regname);
 100       }
 101     }
 102     // Finish defining enumeration
 103     fprintf(fp,"};\n");
 104 
 105   } // Done defining array
 106 }
 107 
 108 // Output an enumeration of register class names
 109 static void defineRegClassEnum(FILE *fp, RegisterForm *registers) {
 110   if (registers) {
 111     // Output an enumeration of register class names
 112     fprintf(fp,"\n");
 113     fprintf(fp,"// Enumeration of register class names\n");
 114     fprintf(fp, "enum machRegisterClass {\n");
 115     registers->_rclasses.reset();
 116     for (const char *class_name = NULL; (class_name = registers->_rclasses.iter()) != NULL;) {
 117       const char * class_name_to_upper = toUpper(class_name);
 118       fprintf(fp,"  %s,\n", class_name_to_upper);
 119       delete[] class_name_to_upper;
 120     }
 121     // Finish defining enumeration
 122     fprintf(fp, "  _last_Mach_Reg_Class\n");
 123     fprintf(fp, "};\n");
 124   }
 125 }
 126 
 127 // Declare an enumeration of user-defined register classes
 128 // and a list of register masks, one for each class.
 129 void ArchDesc::declare_register_masks(FILE *fp_hpp) {
 130   const char  *rc_name;
 131 
 132   if (_register) {
 133     // Build enumeration of user-defined register classes.
 134     defineRegClassEnum(fp_hpp, _register);
 135 
 136     // Generate a list of register masks, one for each class.
 137     fprintf(fp_hpp,"\n");
 138     fprintf(fp_hpp,"// Register masks, one for each register class.\n");
 139     _register->_rclasses.reset();
 140     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 141       RegClass *reg_class = _register->getRegClass(rc_name);
 142       assert(reg_class, "Using an undefined register class");
 143       reg_class->declare_register_masks(fp_hpp);
 144     }
 145   }
 146 }
 147 
 148 // Generate an enumeration of user-defined register classes
 149 // and a list of register masks, one for each class.
 150 void ArchDesc::build_register_masks(FILE *fp_cpp) {
 151   const char  *rc_name;
 152 
 153   if (_register) {
 154     // Generate a list of register masks, one for each class.
 155     fprintf(fp_cpp,"\n");
 156     fprintf(fp_cpp,"// Register masks, one for each register class.\n");
 157     _register->_rclasses.reset();
 158     for (rc_name = NULL; (rc_name = _register->_rclasses.iter()) != NULL;) {
 159       RegClass *reg_class = _register->getRegClass(rc_name);
 160       assert(reg_class, "Using an undefined register class");
 161       reg_class->build_register_masks(fp_cpp);
 162     }
 163   }
 164 }
 165 
 166 // Compute an index for an array in the pipeline_reads_NNN arrays
 167 static int pipeline_reads_initializer(FILE *fp_cpp, NameList &pipeline_reads, PipeClassForm *pipeclass)
 168 {
 169   int templen = 1;
 170   int paramcount = 0;
 171   const char *paramname;
 172 
 173   if (pipeclass->_parameters.count() == 0)
 174     return -1;
 175 
 176   pipeclass->_parameters.reset();
 177   paramname = pipeclass->_parameters.iter();
 178   const PipeClassOperandForm *pipeopnd =
 179     (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 180   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 181     pipeclass->_parameters.reset();
 182 
 183   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 184     const PipeClassOperandForm *tmppipeopnd =
 185         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 186 
 187     if (tmppipeopnd)
 188       templen += 10 + (int)strlen(tmppipeopnd->_stage);
 189     else
 190       templen += 19;
 191 
 192     paramcount++;
 193   }
 194 
 195   // See if the count is zero
 196   if (paramcount == 0) {
 197     return -1;
 198   }
 199 
 200   char *operand_stages = new char [templen];
 201   operand_stages[0] = 0;
 202   int i = 0;
 203   templen = 0;
 204 
 205   pipeclass->_parameters.reset();
 206   paramname = pipeclass->_parameters.iter();
 207   pipeopnd = (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 208   if (pipeopnd && !pipeopnd->isWrite() && strcmp(pipeopnd->_stage, "Universal"))
 209     pipeclass->_parameters.reset();
 210 
 211   while ( (paramname = pipeclass->_parameters.iter()) != NULL ) {
 212     const PipeClassOperandForm *tmppipeopnd =
 213         (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 214     templen += sprintf(&operand_stages[templen], "  stage_%s%c\n",
 215       tmppipeopnd ? tmppipeopnd->_stage : "undefined",
 216       (++i < paramcount ? ',' : ' ') );
 217   }
 218 
 219   // See if the same string is in the table
 220   int ndx = pipeline_reads.index(operand_stages);
 221 
 222   // No, add it to the table
 223   if (ndx < 0) {
 224     pipeline_reads.addName(operand_stages);
 225     ndx = pipeline_reads.index(operand_stages);
 226 
 227     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_reads_%03d[%d] = {\n%s};\n\n",
 228       ndx+1, paramcount, operand_stages);
 229   }
 230   else
 231     delete [] operand_stages;
 232 
 233   return (ndx);
 234 }
 235 
 236 // Compute an index for an array in the pipeline_res_stages_NNN arrays
 237 static int pipeline_res_stages_initializer(
 238   FILE *fp_cpp,
 239   PipelineForm *pipeline,
 240   NameList &pipeline_res_stages,
 241   PipeClassForm *pipeclass)
 242 {
 243   const PipeClassResourceForm *piperesource;
 244   int * res_stages = new int [pipeline->_rescount];
 245   int i;
 246 
 247   for (i = 0; i < pipeline->_rescount; i++)
 248      res_stages[i] = 0;
 249 
 250   for (pipeclass->_resUsage.reset();
 251        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 252     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 253     for (i = 0; i < pipeline->_rescount; i++)
 254       if ((1 << i) & used_mask) {
 255         int stage = pipeline->_stages.index(piperesource->_stage);
 256         if (res_stages[i] < stage+1)
 257           res_stages[i] = stage+1;
 258       }
 259   }
 260 
 261   // Compute the length needed for the resource list
 262   int commentlen = 0;
 263   int max_stage = 0;
 264   for (i = 0; i < pipeline->_rescount; i++) {
 265     if (res_stages[i] == 0) {
 266       if (max_stage < 9)
 267         max_stage = 9;
 268     }
 269     else {
 270       int stagelen = (int)strlen(pipeline->_stages.name(res_stages[i]-1));
 271       if (max_stage < stagelen)
 272         max_stage = stagelen;
 273     }
 274 
 275     commentlen += (int)strlen(pipeline->_reslist.name(i));
 276   }
 277 
 278   int templen = 1 + commentlen + pipeline->_rescount * (max_stage + 14);
 279 
 280   // Allocate space for the resource list
 281   char * resource_stages = new char [templen];
 282 
 283   templen = 0;
 284   for (i = 0; i < pipeline->_rescount; i++) {
 285     const char * const resname =
 286       res_stages[i] == 0 ? "undefined" : pipeline->_stages.name(res_stages[i]-1);
 287 
 288     templen += sprintf(&resource_stages[templen], "  stage_%s%-*s // %s\n",
 289       resname, max_stage - (int)strlen(resname) + 1,
 290       (i < pipeline->_rescount-1) ? "," : "",
 291       pipeline->_reslist.name(i));
 292   }
 293 
 294   // See if the same string is in the table
 295   int ndx = pipeline_res_stages.index(resource_stages);
 296 
 297   // No, add it to the table
 298   if (ndx < 0) {
 299     pipeline_res_stages.addName(resource_stages);
 300     ndx = pipeline_res_stages.index(resource_stages);
 301 
 302     fprintf(fp_cpp, "static const enum machPipelineStages pipeline_res_stages_%03d[%d] = {\n%s};\n\n",
 303       ndx+1, pipeline->_rescount, resource_stages);
 304   }
 305   else
 306     delete [] resource_stages;
 307 
 308   delete [] res_stages;
 309 
 310   return (ndx);
 311 }
 312 
 313 // Compute an index for an array in the pipeline_res_cycles_NNN arrays
 314 static int pipeline_res_cycles_initializer(
 315   FILE *fp_cpp,
 316   PipelineForm *pipeline,
 317   NameList &pipeline_res_cycles,
 318   PipeClassForm *pipeclass)
 319 {
 320   const PipeClassResourceForm *piperesource;
 321   int * res_cycles = new int [pipeline->_rescount];
 322   int i;
 323 
 324   for (i = 0; i < pipeline->_rescount; i++)
 325      res_cycles[i] = 0;
 326 
 327   for (pipeclass->_resUsage.reset();
 328        (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 329     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 330     for (i = 0; i < pipeline->_rescount; i++)
 331       if ((1 << i) & used_mask) {
 332         int cycles = piperesource->_cycles;
 333         if (res_cycles[i] < cycles)
 334           res_cycles[i] = cycles;
 335       }
 336   }
 337 
 338   // Pre-compute the string length
 339   int templen;
 340   int cyclelen = 0, commentlen = 0;
 341   int max_cycles = 0;
 342   char temp[32];
 343 
 344   for (i = 0; i < pipeline->_rescount; i++) {
 345     if (max_cycles < res_cycles[i])
 346       max_cycles = res_cycles[i];
 347     templen = sprintf(temp, "%d", res_cycles[i]);
 348     if (cyclelen < templen)
 349       cyclelen = templen;
 350     commentlen += (int)strlen(pipeline->_reslist.name(i));
 351   }
 352 
 353   templen = 1 + commentlen + (cyclelen + 8) * pipeline->_rescount;
 354 
 355   // Allocate space for the resource list
 356   char * resource_cycles = new char [templen];
 357 
 358   templen = 0;
 359 
 360   for (i = 0; i < pipeline->_rescount; i++) {
 361     templen += sprintf(&resource_cycles[templen], "  %*d%c // %s\n",
 362       cyclelen, res_cycles[i], (i < pipeline->_rescount-1) ? ',' : ' ', pipeline->_reslist.name(i));
 363   }
 364 
 365   // See if the same string is in the table
 366   int ndx = pipeline_res_cycles.index(resource_cycles);
 367 
 368   // No, add it to the table
 369   if (ndx < 0) {
 370     pipeline_res_cycles.addName(resource_cycles);
 371     ndx = pipeline_res_cycles.index(resource_cycles);
 372 
 373     fprintf(fp_cpp, "static const uint pipeline_res_cycles_%03d[%d] = {\n%s};\n\n",
 374       ndx+1, pipeline->_rescount, resource_cycles);
 375   }
 376   else
 377     delete [] resource_cycles;
 378 
 379   delete [] res_cycles;
 380 
 381   return (ndx);
 382 }
 383 
 384 //typedef unsigned long long uint64_t;
 385 
 386 // Compute an index for an array in the pipeline_res_mask_NNN arrays
 387 static int pipeline_res_mask_initializer(
 388   FILE *fp_cpp,
 389   PipelineForm *pipeline,
 390   NameList &pipeline_res_mask,
 391   NameList &pipeline_res_args,
 392   PipeClassForm *pipeclass)
 393 {
 394   const PipeClassResourceForm *piperesource;
 395   const uint rescount      = pipeline->_rescount;
 396   const uint maxcycleused  = pipeline->_maxcycleused;
 397   const uint cyclemasksize = (maxcycleused + 31) >> 5;
 398 
 399   int i, j;
 400   int element_count = 0;
 401   uint *res_mask = new uint [cyclemasksize];
 402   uint resources_used             = 0;
 403   uint resources_used_exclusively = 0;
 404 
 405   for (pipeclass->_resUsage.reset();
 406        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 407     element_count++;
 408   }
 409 
 410   // Pre-compute the string length
 411   int templen;
 412   int commentlen = 0;
 413   int max_cycles = 0;
 414 
 415   int cyclelen = ((maxcycleused + 3) >> 2);
 416   int masklen = (rescount + 3) >> 2;
 417 
 418   int cycledigit = 0;
 419   for (i = maxcycleused; i > 0; i /= 10)
 420     cycledigit++;
 421 
 422   int maskdigit = 0;
 423   for (i = rescount; i > 0; i /= 10)
 424     maskdigit++;
 425 
 426   static const char* pipeline_use_cycle_mask = "Pipeline_Use_Cycle_Mask";
 427   static const char* pipeline_use_element    = "Pipeline_Use_Element";
 428 
 429   templen = 1 +
 430     (int)(strlen(pipeline_use_cycle_mask) + (int)strlen(pipeline_use_element) +
 431      (cyclemasksize * 12) + masklen + (cycledigit * 2) + 30) * element_count;
 432 
 433   // Allocate space for the resource list
 434   char * resource_mask = new char [templen];
 435   char * last_comma = NULL;
 436 
 437   templen = 0;
 438 
 439   for (pipeclass->_resUsage.reset();
 440        (piperesource = (const PipeClassResourceForm*)pipeclass->_resUsage.iter()) != NULL; ) {
 441     int used_mask = pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 442 
 443     if (!used_mask) {
 444       fprintf(stderr, "*** used_mask is 0 ***\n");
 445     }
 446 
 447     resources_used |= used_mask;
 448 
 449     uint lb, ub;
 450 
 451     for (lb =  0; (used_mask & (1 << lb)) == 0; lb++);
 452     for (ub = 31; (used_mask & (1 << ub)) == 0; ub--);
 453 
 454     if (lb == ub) {
 455       resources_used_exclusively |= used_mask;
 456     }
 457 
 458     int formatlen =
 459       sprintf(&resource_mask[templen], "  %s(0x%0*x, %*d, %*d, %s %s(",
 460         pipeline_use_element,
 461         masklen, used_mask,
 462         cycledigit, lb, cycledigit, ub,
 463         ((used_mask & (used_mask-1)) != 0) ? "true, " : "false,",
 464         pipeline_use_cycle_mask);
 465 
 466     templen += formatlen;
 467 
 468     memset(res_mask, 0, cyclemasksize * sizeof(uint));
 469 
 470     int cycles = piperesource->_cycles;
 471     uint stage          = pipeline->_stages.index(piperesource->_stage);
 472     if ((uint)NameList::Not_in_list == stage) {
 473       fprintf(stderr,
 474               "pipeline_res_mask_initializer: "
 475               "semantic error: "
 476               "pipeline stage undeclared: %s\n",
 477               piperesource->_stage);
 478       exit(1);
 479     }
 480     uint upper_limit    = stage + cycles - 1;
 481     uint lower_limit    = stage - 1;
 482     uint upper_idx      = upper_limit >> 5;
 483     uint lower_idx      = lower_limit >> 5;
 484     uint upper_position = upper_limit & 0x1f;
 485     uint lower_position = lower_limit & 0x1f;
 486 
 487     uint mask = (((uint)1) << upper_position) - 1;
 488 
 489     while (upper_idx > lower_idx) {
 490       res_mask[upper_idx--] |= mask;
 491       mask = (uint)-1;
 492     }
 493 
 494     mask -= (((uint)1) << lower_position) - 1;
 495     res_mask[upper_idx] |= mask;
 496 
 497     for (j = cyclemasksize-1; j >= 0; j--) {
 498       formatlen =
 499         sprintf(&resource_mask[templen], "0x%08x%s", res_mask[j], j > 0 ? ", " : "");
 500       templen += formatlen;
 501     }
 502 
 503     resource_mask[templen++] = ')';
 504     resource_mask[templen++] = ')';
 505     last_comma = &resource_mask[templen];
 506     resource_mask[templen++] = ',';
 507     resource_mask[templen++] = '\n';
 508   }
 509 
 510   resource_mask[templen] = 0;
 511   if (last_comma) {
 512     last_comma[0] = ' ';
 513   }
 514 
 515   // See if the same string is in the table
 516   int ndx = pipeline_res_mask.index(resource_mask);
 517 
 518   // No, add it to the table
 519   if (ndx < 0) {
 520     pipeline_res_mask.addName(resource_mask);
 521     ndx = pipeline_res_mask.index(resource_mask);
 522 
 523     if (strlen(resource_mask) > 0)
 524       fprintf(fp_cpp, "static const Pipeline_Use_Element pipeline_res_mask_%03d[%d] = {\n%s};\n\n",
 525         ndx+1, element_count, resource_mask);
 526 
 527     char* args = new char [9 + 2*masklen + maskdigit];
 528 
 529     sprintf(args, "0x%0*x, 0x%0*x, %*d",
 530       masklen, resources_used,
 531       masklen, resources_used_exclusively,
 532       maskdigit, element_count);
 533 
 534     pipeline_res_args.addName(args);
 535   }
 536   else {
 537     delete [] resource_mask;
 538   }
 539 
 540   delete [] res_mask;
 541 //delete [] res_masks;
 542 
 543   return (ndx);
 544 }
 545 
 546 void ArchDesc::build_pipe_classes(FILE *fp_cpp) {
 547   const char *classname;
 548   const char *resourcename;
 549   int resourcenamelen = 0;
 550   NameList pipeline_reads;
 551   NameList pipeline_res_stages;
 552   NameList pipeline_res_cycles;
 553   NameList pipeline_res_masks;
 554   NameList pipeline_res_args;
 555   const int default_latency = 1;
 556   const int non_operand_latency = 0;
 557   const int node_latency = 0;
 558 
 559   if (!_pipeline) {
 560     fprintf(fp_cpp, "uint Node::latency(uint i) const {\n");
 561     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 562     fprintf(fp_cpp, "  return %d;\n", non_operand_latency);
 563     fprintf(fp_cpp, "}\n");
 564     return;
 565   }
 566 
 567   fprintf(fp_cpp, "\n");
 568   fprintf(fp_cpp, "//------------------Pipeline Methods-----------------------------------------\n");
 569   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 570   fprintf(fp_cpp, "const char * Pipeline::stageName(uint s) {\n");
 571   fprintf(fp_cpp, "  static const char * const _stage_names[] = {\n");
 572   fprintf(fp_cpp, "    \"undefined\"");
 573 
 574   for (int s = 0; s < _pipeline->_stagecnt; s++)
 575     fprintf(fp_cpp, ", \"%s\"", _pipeline->_stages.name(s));
 576 
 577   fprintf(fp_cpp, "\n  };\n\n");
 578   fprintf(fp_cpp, "  return (s <= %d ? _stage_names[s] : \"???\");\n",
 579     _pipeline->_stagecnt);
 580   fprintf(fp_cpp, "}\n");
 581   fprintf(fp_cpp, "#endif\n\n");
 582 
 583   fprintf(fp_cpp, "uint Pipeline::functional_unit_latency(uint start, const Pipeline *pred) const {\n");
 584   fprintf(fp_cpp, "  // See if the functional units overlap\n");
 585 #if 0
 586   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 587   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 588   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: start == %%d, this->exclusively == 0x%%03x, pred->exclusively == 0x%%03x\\n\", start, resourcesUsedExclusively(), pred->resourcesUsedExclusively());\n");
 589   fprintf(fp_cpp, "  }\n");
 590   fprintf(fp_cpp, "#endif\n\n");
 591 #endif
 592   fprintf(fp_cpp, "  uint mask = resourcesUsedExclusively() & pred->resourcesUsedExclusively();\n");
 593   fprintf(fp_cpp, "  if (mask == 0)\n    return (start);\n\n");
 594 #if 0
 595   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 596   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 597   fprintf(fp_cpp, "    tty->print(\"#   functional_unit_latency: mask == 0x%%x\\n\", mask);\n");
 598   fprintf(fp_cpp, "  }\n");
 599   fprintf(fp_cpp, "#endif\n\n");
 600 #endif
 601   fprintf(fp_cpp, "  for (uint i = 0; i < pred->resourceUseCount(); i++) {\n");
 602   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred->resourceUseElement(i);\n");
 603   fprintf(fp_cpp, "    if (predUse->multiple())\n");
 604   fprintf(fp_cpp, "      continue;\n\n");
 605   fprintf(fp_cpp, "    for (uint j = 0; j < resourceUseCount(); j++) {\n");
 606   fprintf(fp_cpp, "      const Pipeline_Use_Element *currUse = resourceUseElement(j);\n");
 607   fprintf(fp_cpp, "      if (currUse->multiple())\n");
 608   fprintf(fp_cpp, "        continue;\n\n");
 609   fprintf(fp_cpp, "      if (predUse->used() & currUse->used()) {\n");
 610   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask x = predUse->mask();\n");
 611   fprintf(fp_cpp, "        Pipeline_Use_Cycle_Mask y = currUse->mask();\n\n");
 612   fprintf(fp_cpp, "        for ( y <<= start; x.overlaps(y); start++ )\n");
 613   fprintf(fp_cpp, "          y <<= 1;\n");
 614   fprintf(fp_cpp, "      }\n");
 615   fprintf(fp_cpp, "    }\n");
 616   fprintf(fp_cpp, "  }\n\n");
 617   fprintf(fp_cpp, "  // There is the potential for overlap\n");
 618   fprintf(fp_cpp, "  return (start);\n");
 619   fprintf(fp_cpp, "}\n\n");
 620   fprintf(fp_cpp, "// The following two routines assume that the root Pipeline_Use entity\n");
 621   fprintf(fp_cpp, "// consists of exactly 1 element for each functional unit\n");
 622   fprintf(fp_cpp, "// start is relative to the current cycle; used for latency-based info\n");
 623   fprintf(fp_cpp, "uint Pipeline_Use::full_latency(uint delay, const Pipeline_Use &pred) const {\n");
 624   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 625   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 626   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 627   fprintf(fp_cpp, "      uint min_delay = %d;\n",
 628     _pipeline->_maxcycleused+1);
 629   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 630   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 631   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 632   fprintf(fp_cpp, "        uint curr_delay = delay;\n");
 633   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 634   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 635   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 636   fprintf(fp_cpp, "          for ( y <<= curr_delay; x.overlaps(y); curr_delay++ )\n");
 637   fprintf(fp_cpp, "            y <<= 1;\n");
 638   fprintf(fp_cpp, "        }\n");
 639   fprintf(fp_cpp, "        if (min_delay > curr_delay)\n          min_delay = curr_delay;\n");
 640   fprintf(fp_cpp, "      }\n");
 641   fprintf(fp_cpp, "      if (delay < min_delay)\n      delay = min_delay;\n");
 642   fprintf(fp_cpp, "    }\n");
 643   fprintf(fp_cpp, "    else {\n");
 644   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 645   fprintf(fp_cpp, "        const Pipeline_Use_Element *currUse = element(j);\n");
 646   fprintf(fp_cpp, "        if (predUse->_used & currUse->_used) {\n");
 647   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask x = predUse->_mask;\n");
 648   fprintf(fp_cpp, "          Pipeline_Use_Cycle_Mask y = currUse->_mask;\n\n");
 649   fprintf(fp_cpp, "          for ( y <<= delay; x.overlaps(y); delay++ )\n");
 650   fprintf(fp_cpp, "            y <<= 1;\n");
 651   fprintf(fp_cpp, "        }\n");
 652   fprintf(fp_cpp, "      }\n");
 653   fprintf(fp_cpp, "    }\n");
 654   fprintf(fp_cpp, "  }\n\n");
 655   fprintf(fp_cpp, "  return (delay);\n");
 656   fprintf(fp_cpp, "}\n\n");
 657   fprintf(fp_cpp, "void Pipeline_Use::add_usage(const Pipeline_Use &pred) {\n");
 658   fprintf(fp_cpp, "  for (uint i = 0; i < pred._count; i++) {\n");
 659   fprintf(fp_cpp, "    const Pipeline_Use_Element *predUse = pred.element(i);\n");
 660   fprintf(fp_cpp, "    if (predUse->_multiple) {\n");
 661   fprintf(fp_cpp, "      // Multiple possible functional units, choose first unused one\n");
 662   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 663   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 664   fprintf(fp_cpp, "        if ( !predUse->_mask.overlaps(currUse->_mask) ) {\n");
 665   fprintf(fp_cpp, "          currUse->_used |= (1 << j);\n");
 666   fprintf(fp_cpp, "          _resources_used |= (1 << j);\n");
 667   fprintf(fp_cpp, "          currUse->_mask.Or(predUse->_mask);\n");
 668   fprintf(fp_cpp, "          break;\n");
 669   fprintf(fp_cpp, "        }\n");
 670   fprintf(fp_cpp, "      }\n");
 671   fprintf(fp_cpp, "    }\n");
 672   fprintf(fp_cpp, "    else {\n");
 673   fprintf(fp_cpp, "      for (uint j = predUse->_lb; j <= predUse->_ub; j++) {\n");
 674   fprintf(fp_cpp, "        Pipeline_Use_Element *currUse = element(j);\n");
 675   fprintf(fp_cpp, "        currUse->_used |= (1 << j);\n");
 676   fprintf(fp_cpp, "        _resources_used |= (1 << j);\n");
 677   fprintf(fp_cpp, "        currUse->_mask.Or(predUse->_mask);\n");
 678   fprintf(fp_cpp, "      }\n");
 679   fprintf(fp_cpp, "    }\n");
 680   fprintf(fp_cpp, "  }\n");
 681   fprintf(fp_cpp, "}\n\n");
 682 
 683   fprintf(fp_cpp, "uint Pipeline::operand_latency(uint opnd, const Pipeline *pred) const {\n");
 684   fprintf(fp_cpp, "  int const default_latency = 1;\n");
 685   fprintf(fp_cpp, "\n");
 686 #if 0
 687   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 688   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 689   fprintf(fp_cpp, "    tty->print(\"#   operand_latency(%%d), _read_stage_count = %%d\\n\", opnd, _read_stage_count);\n");
 690   fprintf(fp_cpp, "  }\n");
 691   fprintf(fp_cpp, "#endif\n\n");
 692 #endif
 693   fprintf(fp_cpp, "  assert(this, \"NULL pipeline info\");\n");
 694   fprintf(fp_cpp, "  assert(pred, \"NULL predecessor pipline info\");\n\n");
 695   fprintf(fp_cpp, "  if (pred->hasFixedLatency())\n    return (pred->fixedLatency());\n\n");
 696   fprintf(fp_cpp, "  // If this is not an operand, then assume a dependence with 0 latency\n");
 697   fprintf(fp_cpp, "  if (opnd > _read_stage_count)\n    return (0);\n\n");
 698   fprintf(fp_cpp, "  uint writeStage = pred->_write_stage;\n");
 699   fprintf(fp_cpp, "  uint readStage  = _read_stages[opnd-1];\n");
 700 #if 0
 701   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 702   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 703   fprintf(fp_cpp, "    tty->print(\"#   operand_latency: writeStage=%%s readStage=%%s, opnd=%%d\\n\", stageName(writeStage), stageName(readStage), opnd);\n");
 704   fprintf(fp_cpp, "  }\n");
 705   fprintf(fp_cpp, "#endif\n\n");
 706 #endif
 707   fprintf(fp_cpp, "\n");
 708   fprintf(fp_cpp, "  if (writeStage == stage_undefined || readStage == stage_undefined)\n");
 709   fprintf(fp_cpp, "    return (default_latency);\n");
 710   fprintf(fp_cpp, "\n");
 711   fprintf(fp_cpp, "  int delta = writeStage - readStage;\n");
 712   fprintf(fp_cpp, "  if (delta < 0) delta = 0;\n\n");
 713 #if 0
 714   fprintf(fp_cpp, "\n#ifndef PRODUCT\n");
 715   fprintf(fp_cpp, "  if (TraceOptoOutput) {\n");
 716   fprintf(fp_cpp, "    tty->print(\"# operand_latency: delta=%%d\\n\", delta);\n");
 717   fprintf(fp_cpp, "  }\n");
 718   fprintf(fp_cpp, "#endif\n\n");
 719 #endif
 720   fprintf(fp_cpp, "  return (delta);\n");
 721   fprintf(fp_cpp, "}\n\n");
 722 
 723   if (!_pipeline)
 724     /* Do Nothing */;
 725 
 726   else if (_pipeline->_maxcycleused <=
 727 #ifdef SPARC
 728     64
 729 #else
 730     32
 731 #endif
 732       ) {
 733     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 734     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask & in2._mask);\n");
 735     fprintf(fp_cpp, "}\n\n");
 736     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 737     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(in1._mask | in2._mask);\n");
 738     fprintf(fp_cpp, "}\n\n");
 739   }
 740   else {
 741     uint l;
 742     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 743     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator&(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 744     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 745     for (l = 1; l <= masklen; l++)
 746       fprintf(fp_cpp, "in1._mask%d & in2._mask%d%s\n", l, l, l < masklen ? ", " : "");
 747     fprintf(fp_cpp, ");\n");
 748     fprintf(fp_cpp, "}\n\n");
 749     fprintf(fp_cpp, "Pipeline_Use_Cycle_Mask operator|(const Pipeline_Use_Cycle_Mask &in1, const Pipeline_Use_Cycle_Mask &in2) {\n");
 750     fprintf(fp_cpp, "  return Pipeline_Use_Cycle_Mask(");
 751     for (l = 1; l <= masklen; l++)
 752       fprintf(fp_cpp, "in1._mask%d | in2._mask%d%s", l, l, l < masklen ? ", " : "");
 753     fprintf(fp_cpp, ");\n");
 754     fprintf(fp_cpp, "}\n\n");
 755     fprintf(fp_cpp, "void Pipeline_Use_Cycle_Mask::Or(const Pipeline_Use_Cycle_Mask &in2) {\n ");
 756     for (l = 1; l <= masklen; l++)
 757       fprintf(fp_cpp, " _mask%d |= in2._mask%d;", l, l);
 758     fprintf(fp_cpp, "\n}\n\n");
 759   }
 760 
 761   /* Get the length of all the resource names */
 762   for (_pipeline->_reslist.reset(), resourcenamelen = 0;
 763        (resourcename = _pipeline->_reslist.iter()) != NULL;
 764        resourcenamelen += (int)strlen(resourcename));
 765 
 766   // Create the pipeline class description
 767 
 768   fprintf(fp_cpp, "static const Pipeline pipeline_class_Zero_Instructions(0, 0, true, 0, 0, false, false, false, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 769   fprintf(fp_cpp, "static const Pipeline pipeline_class_Unknown_Instructions(0, 0, true, 0, 0, false, true, true, false, NULL, NULL, NULL, Pipeline_Use(0, 0, 0, NULL));\n\n");
 770 
 771   fprintf(fp_cpp, "const Pipeline_Use_Element Pipeline_Use::elaborated_elements[%d] = {\n", _pipeline->_rescount);
 772   for (int i1 = 0; i1 < _pipeline->_rescount; i1++) {
 773     fprintf(fp_cpp, "  Pipeline_Use_Element(0, %d, %d, false, Pipeline_Use_Cycle_Mask(", i1, i1);
 774     uint masklen = (_pipeline->_maxcycleused + 31) >> 5;
 775     for (int i2 = masklen-1; i2 >= 0; i2--)
 776       fprintf(fp_cpp, "0%s", i2 > 0 ? ", " : "");
 777     fprintf(fp_cpp, "))%s\n", i1 < (_pipeline->_rescount-1) ? "," : "");
 778   }
 779   fprintf(fp_cpp, "};\n\n");
 780 
 781   fprintf(fp_cpp, "const Pipeline_Use Pipeline_Use::elaborated_use(0, 0, %d, (Pipeline_Use_Element *)&elaborated_elements[0]);\n\n",
 782     _pipeline->_rescount);
 783 
 784   for (_pipeline->_classlist.reset(); (classname = _pipeline->_classlist.iter()) != NULL; ) {
 785     fprintf(fp_cpp, "\n");
 786     fprintf(fp_cpp, "// Pipeline Class \"%s\"\n", classname);
 787     PipeClassForm *pipeclass = _pipeline->_classdict[classname]->is_pipeclass();
 788     int maxWriteStage = -1;
 789     int maxMoreInstrs = 0;
 790     int paramcount = 0;
 791     int i = 0;
 792     const char *paramname;
 793     int resource_count = (_pipeline->_rescount + 3) >> 2;
 794 
 795     // Scan the operands, looking for last output stage and number of inputs
 796     for (pipeclass->_parameters.reset(); (paramname = pipeclass->_parameters.iter()) != NULL; ) {
 797       const PipeClassOperandForm *pipeopnd =
 798           (const PipeClassOperandForm *)pipeclass->_localUsage[paramname];
 799       if (pipeopnd) {
 800         if (pipeopnd->_iswrite) {
 801            int stagenum  = _pipeline->_stages.index(pipeopnd->_stage);
 802            int moreinsts = pipeopnd->_more_instrs;
 803           if ((maxWriteStage+maxMoreInstrs) < (stagenum+moreinsts)) {
 804             maxWriteStage = stagenum;
 805             maxMoreInstrs = moreinsts;
 806           }
 807         }
 808       }
 809 
 810       if (i++ > 0 || (pipeopnd && !pipeopnd->isWrite()))
 811         paramcount++;
 812     }
 813 
 814     // Create the list of stages for the operands that are read
 815     // Note that we will build a NameList to reduce the number of copies
 816 
 817     int pipeline_reads_index = pipeline_reads_initializer(fp_cpp, pipeline_reads, pipeclass);
 818 
 819     int pipeline_res_stages_index = pipeline_res_stages_initializer(
 820       fp_cpp, _pipeline, pipeline_res_stages, pipeclass);
 821 
 822     int pipeline_res_cycles_index = pipeline_res_cycles_initializer(
 823       fp_cpp, _pipeline, pipeline_res_cycles, pipeclass);
 824 
 825     int pipeline_res_mask_index = pipeline_res_mask_initializer(
 826       fp_cpp, _pipeline, pipeline_res_masks, pipeline_res_args, pipeclass);
 827 
 828 #if 0
 829     // Process the Resources
 830     const PipeClassResourceForm *piperesource;
 831 
 832     unsigned resources_used = 0;
 833     unsigned exclusive_resources_used = 0;
 834     unsigned resource_groups = 0;
 835     for (pipeclass->_resUsage.reset();
 836          (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL; ) {
 837       int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 838       if (used_mask)
 839         resource_groups++;
 840       resources_used |= used_mask;
 841       if ((used_mask & (used_mask-1)) == 0)
 842         exclusive_resources_used |= used_mask;
 843     }
 844 
 845     if (resource_groups > 0) {
 846       fprintf(fp_cpp, "static const uint pipeline_res_or_masks_%03d[%d] = {",
 847         pipeclass->_num, resource_groups);
 848       for (pipeclass->_resUsage.reset(), i = 1;
 849            (piperesource = (const PipeClassResourceForm *)pipeclass->_resUsage.iter()) != NULL;
 850            i++ ) {
 851         int used_mask = _pipeline->_resdict[piperesource->_resource]->is_resource()->mask();
 852         if (used_mask) {
 853           fprintf(fp_cpp, " 0x%0*x%c", resource_count, used_mask, i < (int)resource_groups ? ',' : ' ');
 854         }
 855       }
 856       fprintf(fp_cpp, "};\n\n");
 857     }
 858 #endif
 859 
 860     // Create the pipeline class description
 861     fprintf(fp_cpp, "static const Pipeline pipeline_class_%03d(",
 862       pipeclass->_num);
 863     if (maxWriteStage < 0)
 864       fprintf(fp_cpp, "(uint)stage_undefined");
 865     else if (maxMoreInstrs == 0)
 866       fprintf(fp_cpp, "(uint)stage_%s", _pipeline->_stages.name(maxWriteStage));
 867     else
 868       fprintf(fp_cpp, "((uint)stage_%s)+%d", _pipeline->_stages.name(maxWriteStage), maxMoreInstrs);
 869     fprintf(fp_cpp, ", %d, %s, %d, %d, %s, %s, %s, %s,\n",
 870       paramcount,
 871       pipeclass->hasFixedLatency() ? "true" : "false",
 872       pipeclass->fixedLatency(),
 873       pipeclass->InstructionCount(),
 874       pipeclass->hasBranchDelay() ? "true" : "false",
 875       pipeclass->hasMultipleBundles() ? "true" : "false",
 876       pipeclass->forceSerialization() ? "true" : "false",
 877       pipeclass->mayHaveNoCode() ? "true" : "false" );
 878     if (paramcount > 0) {
 879       fprintf(fp_cpp, "\n  (enum machPipelineStages * const) pipeline_reads_%03d,\n ",
 880         pipeline_reads_index+1);
 881     }
 882     else
 883       fprintf(fp_cpp, " NULL,");
 884     fprintf(fp_cpp, "  (enum machPipelineStages * const) pipeline_res_stages_%03d,\n",
 885       pipeline_res_stages_index+1);
 886     fprintf(fp_cpp, "  (uint * const) pipeline_res_cycles_%03d,\n",
 887       pipeline_res_cycles_index+1);
 888     fprintf(fp_cpp, "  Pipeline_Use(%s, (Pipeline_Use_Element *)",
 889       pipeline_res_args.name(pipeline_res_mask_index));
 890     if (strlen(pipeline_res_masks.name(pipeline_res_mask_index)) > 0)
 891       fprintf(fp_cpp, "&pipeline_res_mask_%03d[0]",
 892         pipeline_res_mask_index+1);
 893     else
 894       fprintf(fp_cpp, "NULL");
 895     fprintf(fp_cpp, "));\n");
 896   }
 897 
 898   // Generate the Node::latency method if _pipeline defined
 899   fprintf(fp_cpp, "\n");
 900   fprintf(fp_cpp, "//------------------Inter-Instruction Latency--------------------------------\n");
 901   fprintf(fp_cpp, "uint Node::latency(uint i) {\n");
 902   if (_pipeline) {
 903 #if 0
 904     fprintf(fp_cpp, "#ifndef PRODUCT\n");
 905     fprintf(fp_cpp, " if (TraceOptoOutput) {\n");
 906     fprintf(fp_cpp, "    tty->print(\"# %%4d->latency(%%d)\\n\", _idx, i);\n");
 907     fprintf(fp_cpp, " }\n");
 908     fprintf(fp_cpp, "#endif\n");
 909 #endif
 910     fprintf(fp_cpp, "  uint j;\n");
 911     fprintf(fp_cpp, "  // verify in legal range for inputs\n");
 912     fprintf(fp_cpp, "  assert(i < len(), \"index not in range\");\n\n");
 913     fprintf(fp_cpp, "  // verify input is not null\n");
 914     fprintf(fp_cpp, "  Node *pred = in(i);\n");
 915     fprintf(fp_cpp, "  if (!pred)\n    return %d;\n\n",
 916       non_operand_latency);
 917     fprintf(fp_cpp, "  if (pred->is_Proj())\n    pred = pred->in(0);\n\n");
 918     fprintf(fp_cpp, "  // if either node does not have pipeline info, use default\n");
 919     fprintf(fp_cpp, "  const Pipeline *predpipe = pred->pipeline();\n");
 920     fprintf(fp_cpp, "  assert(predpipe, \"no predecessor pipeline info\");\n\n");
 921     fprintf(fp_cpp, "  if (predpipe->hasFixedLatency())\n    return predpipe->fixedLatency();\n\n");
 922     fprintf(fp_cpp, "  const Pipeline *currpipe = pipeline();\n");
 923     fprintf(fp_cpp, "  assert(currpipe, \"no pipeline info\");\n\n");
 924     fprintf(fp_cpp, "  if (!is_Mach())\n    return %d;\n\n",
 925       node_latency);
 926     fprintf(fp_cpp, "  const MachNode *m = as_Mach();\n");
 927     fprintf(fp_cpp, "  j = m->oper_input_base();\n");
 928     fprintf(fp_cpp, "  if (i < j)\n    return currpipe->functional_unit_latency(%d, predpipe);\n\n",
 929       non_operand_latency);
 930     fprintf(fp_cpp, "  // determine which operand this is in\n");
 931     fprintf(fp_cpp, "  uint n = m->num_opnds();\n");
 932     fprintf(fp_cpp, "  int delta = %d;\n\n",
 933       non_operand_latency);
 934     fprintf(fp_cpp, "  uint k;\n");
 935     fprintf(fp_cpp, "  for (k = 1; k < n; k++) {\n");
 936     fprintf(fp_cpp, "    j += m->_opnds[k]->num_edges();\n");
 937     fprintf(fp_cpp, "    if (i < j)\n");
 938     fprintf(fp_cpp, "      break;\n");
 939     fprintf(fp_cpp, "  }\n");
 940     fprintf(fp_cpp, "  if (k < n)\n");
 941     fprintf(fp_cpp, "    delta = currpipe->operand_latency(k,predpipe);\n\n");
 942     fprintf(fp_cpp, "  return currpipe->functional_unit_latency(delta, predpipe);\n");
 943   }
 944   else {
 945     fprintf(fp_cpp, "  // assert(false, \"pipeline functionality is not defined\");\n");
 946     fprintf(fp_cpp, "  return %d;\n",
 947       non_operand_latency);
 948   }
 949   fprintf(fp_cpp, "}\n\n");
 950 
 951   // Output the list of nop nodes
 952   fprintf(fp_cpp, "// Descriptions for emitting different functional unit nops\n");
 953   const char *nop;
 954   int nopcnt = 0;
 955   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; nopcnt++ );
 956 
 957   fprintf(fp_cpp, "void Bundle::initialize_nops(MachNode * nop_list[%d]) {\n", nopcnt);
 958   int i = 0;
 959   for ( _pipeline->_noplist.reset(); (nop = _pipeline->_noplist.iter()) != NULL; i++ ) {
 960     fprintf(fp_cpp, "  nop_list[%d] = (MachNode *) new %sNode();\n", i, nop);
 961   }
 962   fprintf(fp_cpp, "};\n\n");
 963   fprintf(fp_cpp, "#ifndef PRODUCT\n");
 964   fprintf(fp_cpp, "void Bundle::dump(outputStream *st) const {\n");
 965   fprintf(fp_cpp, "  static const char * bundle_flags[] = {\n");
 966   fprintf(fp_cpp, "    \"\",\n");
 967   fprintf(fp_cpp, "    \"use nop delay\",\n");
 968   fprintf(fp_cpp, "    \"use unconditional delay\",\n");
 969   fprintf(fp_cpp, "    \"use conditional delay\",\n");
 970   fprintf(fp_cpp, "    \"used in conditional delay\",\n");
 971   fprintf(fp_cpp, "    \"used in unconditional delay\",\n");
 972   fprintf(fp_cpp, "    \"used in all conditional delays\",\n");
 973   fprintf(fp_cpp, "  };\n\n");
 974 
 975   fprintf(fp_cpp, "  static const char *resource_names[%d] = {", _pipeline->_rescount);
 976   for (i = 0; i < _pipeline->_rescount; i++)
 977     fprintf(fp_cpp, " \"%s\"%c", _pipeline->_reslist.name(i), i < _pipeline->_rescount-1 ? ',' : ' ');
 978   fprintf(fp_cpp, "};\n\n");
 979 
 980   // See if the same string is in the table
 981   fprintf(fp_cpp, "  bool needs_comma = false;\n\n");
 982   fprintf(fp_cpp, "  if (_flags) {\n");
 983   fprintf(fp_cpp, "    st->print(\"%%s\", bundle_flags[_flags]);\n");
 984   fprintf(fp_cpp, "    needs_comma = true;\n");
 985   fprintf(fp_cpp, "  };\n");
 986   fprintf(fp_cpp, "  if (instr_count()) {\n");
 987   fprintf(fp_cpp, "    st->print(\"%%s%%d instr%%s\", needs_comma ? \", \" : \"\", instr_count(), instr_count() != 1 ? \"s\" : \"\");\n");
 988   fprintf(fp_cpp, "    needs_comma = true;\n");
 989   fprintf(fp_cpp, "  };\n");
 990   fprintf(fp_cpp, "  uint r = resources_used();\n");
 991   fprintf(fp_cpp, "  if (r) {\n");
 992   fprintf(fp_cpp, "    st->print(\"%%sresource%%s:\", needs_comma ? \", \" : \"\", (r & (r-1)) != 0 ? \"s\" : \"\");\n");
 993   fprintf(fp_cpp, "    for (uint i = 0; i < %d; i++)\n", _pipeline->_rescount);
 994   fprintf(fp_cpp, "      if ((r & (1 << i)) != 0)\n");
 995   fprintf(fp_cpp, "        st->print(\" %%s\", resource_names[i]);\n");
 996   fprintf(fp_cpp, "    needs_comma = true;\n");
 997   fprintf(fp_cpp, "  };\n");
 998   fprintf(fp_cpp, "  st->print(\"\\n\");\n");
 999   fprintf(fp_cpp, "}\n");
1000   fprintf(fp_cpp, "#endif\n");
1001 }
1002 
1003 // ---------------------------------------------------------------------------
1004 //------------------------------Utilities to build Instruction Classes--------
1005 // ---------------------------------------------------------------------------
1006 
1007 static void defineOut_RegMask(FILE *fp, const char *node, const char *regMask) {
1008   fprintf(fp,"const RegMask &%sNode::out_RegMask() const { return (%s); }\n",
1009           node, regMask);
1010 }
1011 
1012 static void print_block_index(FILE *fp, int inst_position) {
1013   assert( inst_position >= 0, "Instruction number less than zero");
1014   fprintf(fp, "block_index");
1015   if( inst_position != 0 ) {
1016     fprintf(fp, " - %d", inst_position);
1017   }
1018 }
1019 
1020 // Scan the peepmatch and output a test for each instruction
1021 static void check_peepmatch_instruction_sequence(FILE *fp, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1022   int         parent        = -1;
1023   int         inst_position = 0;
1024   const char* inst_name     = NULL;
1025   int         input         = 0;
1026   fprintf(fp, "  // Check instruction sub-tree\n");
1027   pmatch->reset();
1028   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1029        inst_name != NULL;
1030        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1031     // If this is not a placeholder
1032     if( ! pmatch->is_placeholder() ) {
1033       // Define temporaries 'inst#', based on parent and parent's input index
1034       if( parent != -1 ) {                // root was initialized
1035         fprintf(fp, "  // Identify previous instruction if inside this block\n");
1036         fprintf(fp, "  if( ");
1037         print_block_index(fp, inst_position);
1038         fprintf(fp, " > 0 ) {\n    Node *n = block->get_node(");
1039         print_block_index(fp, inst_position);
1040         fprintf(fp, ");\n    inst%d = (n->is_Mach()) ? ", inst_position);
1041         fprintf(fp, "n->as_Mach() : NULL;\n  }\n");
1042       }
1043 
1044       // When not the root
1045       // Test we have the correct instruction by comparing the rule.
1046       if( parent != -1 ) {
1047         fprintf(fp, "  matches = matches && (inst%d != NULL) && (inst%d->rule() == %s_rule);\n",
1048                 inst_position, inst_position, inst_name);
1049       }
1050     } else {
1051       // Check that user did not try to constrain a placeholder
1052       assert( ! pconstraint->constrains_instruction(inst_position),
1053               "fatal(): Can not constrain a placeholder instruction");
1054     }
1055   }
1056 }
1057 
1058 // Build mapping for register indices, num_edges to input
1059 static void build_instruction_index_mapping( FILE *fp, FormDict &globals, PeepMatch *pmatch ) {
1060   int         parent        = -1;
1061   int         inst_position = 0;
1062   const char* inst_name     = NULL;
1063   int         input         = 0;
1064   fprintf(fp, "      // Build map to register info\n");
1065   pmatch->reset();
1066   for( pmatch->next_instruction( parent, inst_position, inst_name, input );
1067        inst_name != NULL;
1068        pmatch->next_instruction( parent, inst_position, inst_name, input ) ) {
1069     // If this is not a placeholder
1070     if( ! pmatch->is_placeholder() ) {
1071       // Define temporaries 'inst#', based on self's inst_position
1072       InstructForm *inst = globals[inst_name]->is_instruction();
1073       if( inst != NULL ) {
1074         char inst_prefix[]  = "instXXXX_";
1075         sprintf(inst_prefix, "inst%d_",   inst_position);
1076         char receiver[]     = "instXXXX->";
1077         sprintf(receiver,    "inst%d->", inst_position);
1078         inst->index_temps( fp, globals, inst_prefix, receiver );
1079       }
1080     }
1081   }
1082 }
1083 
1084 // Generate tests for the constraints
1085 static void check_peepconstraints(FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint) {
1086   fprintf(fp, "\n");
1087   fprintf(fp, "      // Check constraints on sub-tree-leaves\n");
1088 
1089   // Build mapping from num_edges to local variables
1090   build_instruction_index_mapping( fp, globals, pmatch );
1091 
1092   // Build constraint tests
1093   if( pconstraint != NULL ) {
1094     fprintf(fp, "      matches = matches &&");
1095     bool   first_constraint = true;
1096     while( pconstraint != NULL ) {
1097       // indentation and connecting '&&'
1098       const char *indentation = "      ";
1099       fprintf(fp, "\n%s%s", indentation, (!first_constraint ? "&& " : "  "));
1100 
1101       // Only have '==' relation implemented
1102       if( strcmp(pconstraint->_relation,"==") != 0 ) {
1103         assert( false, "Unimplemented()" );
1104       }
1105 
1106       // LEFT
1107       int left_index       = pconstraint->_left_inst;
1108       const char *left_op  = pconstraint->_left_op;
1109       // Access info on the instructions whose operands are compared
1110       InstructForm *inst_left = globals[pmatch->instruction_name(left_index)]->is_instruction();
1111       assert( inst_left, "Parser should guaranty this is an instruction");
1112       int left_op_base  = inst_left->oper_input_base(globals);
1113       // Access info on the operands being compared
1114       int left_op_index  = inst_left->operand_position(left_op, Component::USE);
1115       if( left_op_index == -1 ) {
1116         left_op_index = inst_left->operand_position(left_op, Component::DEF);
1117         if( left_op_index == -1 ) {
1118           left_op_index = inst_left->operand_position(left_op, Component::USE_DEF);
1119         }
1120       }
1121       assert( left_op_index  != NameList::Not_in_list, "Did not find operand in instruction");
1122       ComponentList components_left = inst_left->_components;
1123       const char *left_comp_type = components_left.at(left_op_index)->_type;
1124       OpClassForm *left_opclass = globals[left_comp_type]->is_opclass();
1125       Form::InterfaceType left_interface_type = left_opclass->interface_type(globals);
1126 
1127 
1128       // RIGHT
1129       int right_op_index = -1;
1130       int right_index      = pconstraint->_right_inst;
1131       const char *right_op = pconstraint->_right_op;
1132       if( right_index != -1 ) { // Match operand
1133         // Access info on the instructions whose operands are compared
1134         InstructForm *inst_right = globals[pmatch->instruction_name(right_index)]->is_instruction();
1135         assert( inst_right, "Parser should guaranty this is an instruction");
1136         int right_op_base = inst_right->oper_input_base(globals);
1137         // Access info on the operands being compared
1138         right_op_index = inst_right->operand_position(right_op, Component::USE);
1139         if( right_op_index == -1 ) {
1140           right_op_index = inst_right->operand_position(right_op, Component::DEF);
1141           if( right_op_index == -1 ) {
1142             right_op_index = inst_right->operand_position(right_op, Component::USE_DEF);
1143           }
1144         }
1145         assert( right_op_index != NameList::Not_in_list, "Did not find operand in instruction");
1146         ComponentList components_right = inst_right->_components;
1147         const char *right_comp_type = components_right.at(right_op_index)->_type;
1148         OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1149         Form::InterfaceType right_interface_type = right_opclass->interface_type(globals);
1150         assert( right_interface_type == left_interface_type, "Both must be same interface");
1151 
1152       } else {                  // Else match register
1153         // assert( false, "should be a register" );
1154       }
1155 
1156       //
1157       // Check for equivalence
1158       //
1159       // fprintf(fp, "phase->eqv( ");
1160       // fprintf(fp, "inst%d->in(%d+%d) /* %s */, inst%d->in(%d+%d) /* %s */",
1161       //         left_index,  left_op_base,  left_op_index,  left_op,
1162       //         right_index, right_op_base, right_op_index, right_op );
1163       // fprintf(fp, ")");
1164       //
1165       switch( left_interface_type ) {
1166       case Form::register_interface: {
1167         // Check that they are allocated to the same register
1168         // Need parameter for index position if not result operand
1169         char left_reg_index[] = ",instXXXX_idxXXXX";
1170         if( left_op_index != 0 ) {
1171           assert( (left_index <= 9999) && (left_op_index <= 9999), "exceed string size");
1172           // Must have index into operands
1173           sprintf(left_reg_index,",inst%d_idx%d", (int)left_index, left_op_index);
1174         } else {
1175           strcpy(left_reg_index, "");
1176         }
1177         fprintf(fp, "(inst%d->_opnds[%d]->reg(ra_,inst%d%s)  /* %d.%s */",
1178                 left_index,  left_op_index, left_index, left_reg_index, left_index, left_op );
1179         fprintf(fp, " == ");
1180 
1181         if( right_index != -1 ) {
1182           char right_reg_index[18] = ",instXXXX_idxXXXX";
1183           if( right_op_index != 0 ) {
1184             assert( (right_index <= 9999) && (right_op_index <= 9999), "exceed string size");
1185             // Must have index into operands
1186             sprintf(right_reg_index,",inst%d_idx%d", (int)right_index, right_op_index);
1187           } else {
1188             strcpy(right_reg_index, "");
1189           }
1190           fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->reg(ra_,inst%d%s)",
1191                   right_index, right_op, right_index, right_op_index, right_index, right_reg_index );
1192         } else {
1193           fprintf(fp, "%s_enc", right_op );
1194         }
1195         fprintf(fp,")");
1196         break;
1197       }
1198       case Form::constant_interface: {
1199         // Compare the '->constant()' values
1200         fprintf(fp, "(inst%d->_opnds[%d]->constant()  /* %d.%s */",
1201                 left_index,  left_op_index,  left_index, left_op );
1202         fprintf(fp, " == ");
1203         fprintf(fp, "/* %d.%s */ inst%d->_opnds[%d]->constant())",
1204                 right_index, right_op, right_index, right_op_index );
1205         break;
1206       }
1207       case Form::memory_interface: {
1208         // Compare 'base', 'index', 'scale', and 'disp'
1209         // base
1210         fprintf(fp, "( \n");
1211         fprintf(fp, "  (inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$base */",
1212           left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1213         fprintf(fp, " == ");
1214         fprintf(fp, "/* %d.%s$$base */ inst%d->_opnds[%d]->base(ra_,inst%d,inst%d_idx%d)) &&\n",
1215                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1216         // index
1217         fprintf(fp, "  (inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$index */",
1218                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1219         fprintf(fp, " == ");
1220         fprintf(fp, "/* %d.%s$$index */ inst%d->_opnds[%d]->index(ra_,inst%d,inst%d_idx%d)) &&\n",
1221                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1222         // scale
1223         fprintf(fp, "  (inst%d->_opnds[%d]->scale()  /* %d.%s$$scale */",
1224                 left_index,  left_op_index,  left_index, left_op );
1225         fprintf(fp, " == ");
1226         fprintf(fp, "/* %d.%s$$scale */ inst%d->_opnds[%d]->scale()) &&\n",
1227                 right_index, right_op, right_index, right_op_index );
1228         // disp
1229         fprintf(fp, "  (inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d)  /* %d.%s$$disp */",
1230                 left_index, left_op_index, left_index, left_index, left_op_index, left_index, left_op );
1231         fprintf(fp, " == ");
1232         fprintf(fp, "/* %d.%s$$disp */ inst%d->_opnds[%d]->disp(ra_,inst%d,inst%d_idx%d))\n",
1233                 right_index, right_op, right_index, right_op_index, right_index, right_index, right_op_index );
1234         fprintf(fp, ") \n");
1235         break;
1236       }
1237       case Form::conditional_interface: {
1238         // Compare the condition code being tested
1239         assert( false, "Unimplemented()" );
1240         break;
1241       }
1242       default: {
1243         assert( false, "ShouldNotReachHere()" );
1244         break;
1245       }
1246       }
1247 
1248       // Advance to next constraint
1249       pconstraint = pconstraint->next();
1250       first_constraint = false;
1251     }
1252 
1253     fprintf(fp, ";\n");
1254   }
1255 }
1256 
1257 // // EXPERIMENTAL -- TEMPORARY code
1258 // static Form::DataType get_operand_type(FormDict &globals, InstructForm *instr, const char *op_name ) {
1259 //   int op_index = instr->operand_position(op_name, Component::USE);
1260 //   if( op_index == -1 ) {
1261 //     op_index = instr->operand_position(op_name, Component::DEF);
1262 //     if( op_index == -1 ) {
1263 //       op_index = instr->operand_position(op_name, Component::USE_DEF);
1264 //     }
1265 //   }
1266 //   assert( op_index != NameList::Not_in_list, "Did not find operand in instruction");
1267 //
1268 //   ComponentList components_right = instr->_components;
1269 //   char *right_comp_type = components_right.at(op_index)->_type;
1270 //   OpClassForm *right_opclass = globals[right_comp_type]->is_opclass();
1271 //   Form::InterfaceType  right_interface_type = right_opclass->interface_type(globals);
1272 //
1273 //   return;
1274 // }
1275 
1276 // Construct the new sub-tree
1277 static void generate_peepreplace( FILE *fp, FormDict &globals, PeepMatch *pmatch, PeepConstraint *pconstraint, PeepReplace *preplace, int max_position ) {
1278   fprintf(fp, "      // IF instructions and constraints matched\n");
1279   fprintf(fp, "      if( matches ) {\n");
1280   fprintf(fp, "        // generate the new sub-tree\n");
1281   fprintf(fp, "        assert( true, \"Debug stopping point\");\n");
1282   if( preplace != NULL ) {
1283     // Get the root of the new sub-tree
1284     const char *root_inst = NULL;
1285     preplace->next_instruction(root_inst);
1286     InstructForm *root_form = globals[root_inst]->is_instruction();
1287     assert( root_form != NULL, "Replacement instruction was not previously defined");
1288     fprintf(fp, "        %sNode *root = new %sNode();\n", root_inst, root_inst);
1289 
1290     int         inst_num;
1291     const char *op_name;
1292     int         opnds_index = 0;            // define result operand
1293     // Then install the use-operands for the new sub-tree
1294     // preplace->reset();             // reset breaks iteration
1295     for( preplace->next_operand( inst_num, op_name );
1296          op_name != NULL;
1297          preplace->next_operand( inst_num, op_name ) ) {
1298       InstructForm *inst_form;
1299       inst_form  = globals[pmatch->instruction_name(inst_num)]->is_instruction();
1300       assert( inst_form, "Parser should guaranty this is an instruction");
1301       int inst_op_num = inst_form->operand_position(op_name, Component::USE);
1302       if( inst_op_num == NameList::Not_in_list )
1303         inst_op_num = inst_form->operand_position(op_name, Component::USE_DEF);
1304       assert( inst_op_num != NameList::Not_in_list, "Did not find operand as USE");
1305       // find the name of the OperandForm from the local name
1306       const Form *form   = inst_form->_localNames[op_name];
1307       OperandForm  *op_form = form->is_operand();
1308       if( opnds_index == 0 ) {
1309         // Initial setup of new instruction
1310         fprintf(fp, "        // ----- Initial setup -----\n");
1311         //
1312         // Add control edge for this node
1313         fprintf(fp, "        root->add_req(_in[0]);                // control edge\n");
1314         // Add unmatched edges from root of match tree
1315         int op_base = root_form->oper_input_base(globals);
1316         for( int unmatched_edge = 1; unmatched_edge < op_base; ++unmatched_edge ) {
1317           fprintf(fp, "        root->add_req(inst%d->in(%d));        // unmatched ideal edge\n",
1318                                           inst_num, unmatched_edge);
1319         }
1320         // If new instruction captures bottom type
1321         if( root_form->captures_bottom_type(globals) ) {
1322           // Get bottom type from instruction whose result we are replacing
1323           fprintf(fp, "        root->_bottom_type = inst%d->bottom_type();\n", inst_num);
1324         }
1325         // Define result register and result operand
1326         fprintf(fp, "        ra_->add_reference(root, inst%d);\n", inst_num);
1327         fprintf(fp, "        ra_->set_oop (root, ra_->is_oop(inst%d));\n", inst_num);
1328         fprintf(fp, "        ra_->set_pair(root->_idx, ra_->get_reg_second(inst%d), ra_->get_reg_first(inst%d));\n", inst_num, inst_num);
1329         fprintf(fp, "        root->_opnds[0] = inst%d->_opnds[0]->clone(); // result\n", inst_num);
1330         fprintf(fp, "        // ----- Done with initial setup -----\n");
1331       } else {
1332         if( (op_form == NULL) || (op_form->is_base_constant(globals) == Form::none) ) {
1333           // Do not have ideal edges for constants after matching
1334           fprintf(fp, "        for( unsigned x%d = inst%d_idx%d; x%d < inst%d_idx%d; x%d++ )\n",
1335                   inst_op_num, inst_num, inst_op_num,
1336                   inst_op_num, inst_num, inst_op_num+1, inst_op_num );
1337           fprintf(fp, "          root->add_req( inst%d->in(x%d) );\n",
1338                   inst_num, inst_op_num );
1339         } else {
1340           fprintf(fp, "        // no ideal edge for constants after matching\n");
1341         }
1342         fprintf(fp, "        root->_opnds[%d] = inst%d->_opnds[%d]->clone();\n",
1343                 opnds_index, inst_num, inst_op_num );
1344       }
1345       ++opnds_index;
1346     }
1347   }else {
1348     // Replacing subtree with empty-tree
1349     assert( false, "ShouldNotReachHere();");
1350   }
1351 
1352   // Return the new sub-tree
1353   fprintf(fp, "        deleted = %d;\n", max_position+1 /*zero to one based*/);
1354   fprintf(fp, "        return root;  // return new root;\n");
1355   fprintf(fp, "      }\n");
1356 }
1357 
1358 
1359 // Define the Peephole method for an instruction node
1360 void ArchDesc::definePeephole(FILE *fp, InstructForm *node) {
1361   // Generate Peephole function header
1362   fprintf(fp, "MachNode *%sNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {\n", node->_ident);
1363   fprintf(fp, "  bool  matches = true;\n");
1364 
1365   // Identify the maximum instruction position,
1366   // generate temporaries that hold current instruction
1367   //
1368   //   MachNode  *inst0 = NULL;
1369   //   ...
1370   //   MachNode  *instMAX = NULL;
1371   //
1372   int max_position = 0;
1373   Peephole *peep;
1374   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1375     PeepMatch *pmatch = peep->match();
1376     assert( pmatch != NULL, "fatal(), missing peepmatch rule");
1377     if( max_position < pmatch->max_position() )  max_position = pmatch->max_position();
1378   }
1379   for( int i = 0; i <= max_position; ++i ) {
1380     if( i == 0 ) {
1381       fprintf(fp, "  MachNode *inst0 = this;\n");
1382     } else {
1383       fprintf(fp, "  MachNode *inst%d = NULL;\n", i);
1384     }
1385   }
1386 
1387   // For each peephole rule in architecture description
1388   //   Construct a test for the desired instruction sub-tree
1389   //   then check the constraints
1390   //   If these match, Generate the new subtree
1391   for( peep = node->peepholes(); peep != NULL; peep = peep->next() ) {
1392     int         peephole_number = peep->peephole_number();
1393     PeepMatch      *pmatch      = peep->match();
1394     PeepConstraint *pconstraint = peep->constraints();
1395     PeepReplace    *preplace    = peep->replacement();
1396 
1397     // Root of this peephole is the current MachNode
1398     assert( true, // %%name?%% strcmp( node->_ident, pmatch->name(0) ) == 0,
1399             "root of PeepMatch does not match instruction");
1400 
1401     // Make each peephole rule individually selectable
1402     fprintf(fp, "  if( (OptoPeepholeAt == -1) || (OptoPeepholeAt==%d) ) {\n", peephole_number);
1403     fprintf(fp, "    matches = true;\n");
1404     // Scan the peepmatch and output a test for each instruction
1405     check_peepmatch_instruction_sequence( fp, pmatch, pconstraint );
1406 
1407     // Check constraints and build replacement inside scope
1408     fprintf(fp, "    // If instruction subtree matches\n");
1409     fprintf(fp, "    if( matches ) {\n");
1410 
1411     // Generate tests for the constraints
1412     check_peepconstraints( fp, _globalNames, pmatch, pconstraint );
1413 
1414     // Construct the new sub-tree
1415     generate_peepreplace( fp, _globalNames, pmatch, pconstraint, preplace, max_position );
1416 
1417     // End of scope for this peephole's constraints
1418     fprintf(fp, "    }\n");
1419     // Closing brace '}' to make each peephole rule individually selectable
1420     fprintf(fp, "  } // end of peephole rule #%d\n", peephole_number);
1421     fprintf(fp, "\n");
1422   }
1423 
1424   fprintf(fp, "  return NULL;  // No peephole rules matched\n");
1425   fprintf(fp, "}\n");
1426   fprintf(fp, "\n");
1427 }
1428 
1429 // Define the Expand method for an instruction node
1430 void ArchDesc::defineExpand(FILE *fp, InstructForm *node) {
1431   unsigned      cnt  = 0;          // Count nodes we have expand into
1432   unsigned      i;
1433 
1434   // Generate Expand function header
1435   fprintf(fp, "MachNode* %sNode::Expand(State* state, Node_List& proj_list, Node* mem) {\n", node->_ident);
1436   fprintf(fp, "  Compile* C = Compile::current();\n");
1437   // Generate expand code
1438   if( node->expands() ) {
1439     const char   *opid;
1440     int           new_pos, exp_pos;
1441     const char   *new_id   = NULL;
1442     const Form   *frm      = NULL;
1443     InstructForm *new_inst = NULL;
1444     OperandForm  *new_oper = NULL;
1445     unsigned      numo     = node->num_opnds() +
1446                                 node->_exprule->_newopers.count();
1447 
1448     // If necessary, generate any operands created in expand rule
1449     if (node->_exprule->_newopers.count()) {
1450       for(node->_exprule->_newopers.reset();
1451           (new_id = node->_exprule->_newopers.iter()) != NULL; cnt++) {
1452         frm = node->_localNames[new_id];
1453         assert(frm, "Invalid entry in new operands list of expand rule");
1454         new_oper = frm->is_operand();
1455         char *tmp = (char *)node->_exprule->_newopconst[new_id];
1456         if (tmp == NULL) {
1457           fprintf(fp,"  MachOper *op%d = new %sOper();\n",
1458                   cnt, new_oper->_ident);
1459         }
1460         else {
1461           fprintf(fp,"  MachOper *op%d = new %sOper(%s);\n",
1462                   cnt, new_oper->_ident, tmp);
1463         }
1464       }
1465     }
1466     cnt = 0;
1467     // Generate the temps to use for DAG building
1468     for(i = 0; i < numo; i++) {
1469       if (i < node->num_opnds()) {
1470         fprintf(fp,"  MachNode *tmp%d = this;\n", i);
1471       }
1472       else {
1473         fprintf(fp,"  MachNode *tmp%d = NULL;\n", i);
1474       }
1475     }
1476     // Build mapping from num_edges to local variables
1477     fprintf(fp,"  unsigned num0 = 0;\n");
1478     for( i = 1; i < node->num_opnds(); i++ ) {
1479       fprintf(fp,"  unsigned num%d = opnd_array(%d)->num_edges();\n",i,i);
1480     }
1481 
1482     // Build a mapping from operand index to input edges
1483     fprintf(fp,"  unsigned idx0 = oper_input_base();\n");
1484 
1485     // The order in which the memory input is added to a node is very
1486     // strange.  Store nodes get a memory input before Expand is
1487     // called and other nodes get it afterwards or before depending on
1488     // match order so oper_input_base is wrong during expansion.  This
1489     // code adjusts it so that expansion will work correctly.
1490     int has_memory_edge = node->_matrule->needs_ideal_memory_edge(_globalNames);
1491     if (has_memory_edge) {
1492       fprintf(fp,"  if (mem == (Node*)1) {\n");
1493       fprintf(fp,"    idx0--; // Adjust base because memory edge hasn't been inserted yet\n");
1494       fprintf(fp,"  }\n");
1495     }
1496 
1497     for( i = 0; i < node->num_opnds(); i++ ) {
1498       fprintf(fp,"  unsigned idx%d = idx%d + num%d;\n",
1499               i+1,i,i);
1500     }
1501 
1502     // Declare variable to hold root of expansion
1503     fprintf(fp,"  MachNode *result = NULL;\n");
1504 
1505     // Iterate over the instructions 'node' expands into
1506     ExpandRule  *expand       = node->_exprule;
1507     NameAndList *expand_instr = NULL;
1508     for (expand->reset_instructions();
1509          (expand_instr = expand->iter_instructions()) != NULL; cnt++) {
1510       new_id = expand_instr->name();
1511 
1512       InstructForm* expand_instruction = (InstructForm*)globalAD->globalNames()[new_id];
1513 
1514       if (!expand_instruction) {
1515         globalAD->syntax_err(node->_linenum, "In %s: instruction %s used in expand not declared\n",
1516                              node->_ident, new_id);
1517         continue;
1518       }
1519 
1520       // Build the node for the instruction
1521       fprintf(fp,"\n  %sNode *n%d = new %sNode();\n", new_id, cnt, new_id);
1522       // Add control edge for this node
1523       fprintf(fp,"  n%d->add_req(_in[0]);\n", cnt);
1524       // Build the operand for the value this node defines.
1525       Form *form = (Form*)_globalNames[new_id];
1526       assert(form, "'new_id' must be a defined form name");
1527       // Grab the InstructForm for the new instruction
1528       new_inst = form->is_instruction();
1529       assert(new_inst, "'new_id' must be an instruction name");
1530       if (node->is_ideal_if() && new_inst->is_ideal_if()) {
1531         fprintf(fp, "  ((MachIfNode*)n%d)->_prob = _prob;\n", cnt);
1532         fprintf(fp, "  ((MachIfNode*)n%d)->_fcnt = _fcnt;\n", cnt);
1533       }
1534 
1535       if (node->is_ideal_fastlock() && new_inst->is_ideal_fastlock()) {
1536         fprintf(fp, "  ((MachFastLockNode*)n%d)->_counters = _counters;\n", cnt);
1537         fprintf(fp, "  ((MachFastLockNode*)n%d)->_rtm_counters = _rtm_counters;\n", cnt);
1538         fprintf(fp, "  ((MachFastLockNode*)n%d)->_stack_rtm_counters = _stack_rtm_counters;\n", cnt);
1539       }
1540 
1541       // Fill in the bottom_type where requested
1542       if (node->captures_bottom_type(_globalNames) &&
1543           new_inst->captures_bottom_type(_globalNames)) {
1544         fprintf(fp, "  ((MachTypeNode*)n%d)->_bottom_type = bottom_type();\n", cnt);
1545       }
1546 
1547       const char *resultOper = new_inst->reduce_result();
1548       fprintf(fp,"  n%d->set_opnd_array(0, state->MachOperGenerator(%s));\n",
1549               cnt, machOperEnum(resultOper));
1550 
1551       // get the formal operand NameList
1552       NameList *formal_lst = &new_inst->_parameters;
1553       formal_lst->reset();
1554 
1555       // Handle any memory operand
1556       int memory_operand = new_inst->memory_operand(_globalNames);
1557       if( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
1558         int node_mem_op = node->memory_operand(_globalNames);
1559         assert( node_mem_op != InstructForm::NO_MEMORY_OPERAND,
1560                 "expand rule member needs memory but top-level inst doesn't have any" );
1561         if (has_memory_edge) {
1562           // Copy memory edge
1563           fprintf(fp,"  if (mem != (Node*)1) {\n");
1564           fprintf(fp,"    n%d->add_req(_in[1]);\t// Add memory edge\n", cnt);
1565           fprintf(fp,"  }\n");
1566         }
1567       }
1568 
1569       // Iterate over the new instruction's operands
1570       int prev_pos = -1;
1571       for( expand_instr->reset(); (opid = expand_instr->iter()) != NULL; ) {
1572         // Use 'parameter' at current position in list of new instruction's formals
1573         // instead of 'opid' when looking up info internal to new_inst
1574         const char *parameter = formal_lst->iter();
1575         if (!parameter) {
1576           globalAD->syntax_err(node->_linenum, "Operand %s of expand instruction %s has"
1577                                " no equivalent in new instruction %s.",
1578                                opid, node->_ident, new_inst->_ident);
1579           assert(0, "Wrong expand");
1580         }
1581 
1582         // Check for an operand which is created in the expand rule
1583         if ((exp_pos = node->_exprule->_newopers.index(opid)) != -1) {
1584           new_pos = new_inst->operand_position(parameter,Component::USE);
1585           exp_pos += node->num_opnds();
1586           // If there is no use of the created operand, just skip it
1587           if (new_pos != NameList::Not_in_list) {
1588             //Copy the operand from the original made above
1589             fprintf(fp,"  n%d->set_opnd_array(%d, op%d->clone()); // %s\n",
1590                     cnt, new_pos, exp_pos-node->num_opnds(), opid);
1591             // Check for who defines this operand & add edge if needed
1592             fprintf(fp,"  if(tmp%d != NULL)\n", exp_pos);
1593             fprintf(fp,"    n%d->add_req(tmp%d);\n", cnt, exp_pos);
1594           }
1595         }
1596         else {
1597           // Use operand name to get an index into instruction component list
1598           // ins = (InstructForm *) _globalNames[new_id];
1599           exp_pos = node->operand_position_format(opid);
1600           assert(exp_pos != -1, "Bad expand rule");
1601           if (prev_pos > exp_pos && expand_instruction->_matrule != NULL) {
1602             // For the add_req calls below to work correctly they need
1603             // to added in the same order that a match would add them.
1604             // This means that they would need to be in the order of
1605             // the components list instead of the formal parameters.
1606             // This is a sort of hidden invariant that previously
1607             // wasn't checked and could lead to incorrectly
1608             // constructed nodes.
1609             syntax_err(node->_linenum, "For expand in %s to work, parameter declaration order in %s must follow matchrule\n",
1610                        node->_ident, new_inst->_ident);
1611           }
1612           prev_pos = exp_pos;
1613 
1614           new_pos = new_inst->operand_position(parameter,Component::USE);
1615           if (new_pos != -1) {
1616             // Copy the operand from the ExpandNode to the new node
1617             fprintf(fp,"  n%d->set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1618                     cnt, new_pos, exp_pos, opid);
1619             // For each operand add appropriate input edges by looking at tmp's
1620             fprintf(fp,"  if(tmp%d == this) {\n", exp_pos);
1621             // Grab corresponding edges from ExpandNode and insert them here
1622             fprintf(fp,"    for(unsigned i = 0; i < num%d; i++) {\n", exp_pos);
1623             fprintf(fp,"      n%d->add_req(_in[i + idx%d]);\n", cnt, exp_pos);
1624             fprintf(fp,"    }\n");
1625             fprintf(fp,"  }\n");
1626             // This value is generated by one of the new instructions
1627             fprintf(fp,"  else n%d->add_req(tmp%d);\n", cnt, exp_pos);
1628           }
1629         }
1630 
1631         // Update the DAG tmp's for values defined by this instruction
1632         int new_def_pos = new_inst->operand_position(parameter,Component::DEF);
1633         Effect *eform = (Effect *)new_inst->_effects[parameter];
1634         // If this operand is a definition in either an effects rule
1635         // or a match rule
1636         if((eform) && (is_def(eform->_use_def))) {
1637           // Update the temp associated with this operand
1638           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1639         }
1640         else if( new_def_pos != -1 ) {
1641           // Instruction defines a value but user did not declare it
1642           // in the 'effect' clause
1643           fprintf(fp,"  tmp%d = n%d;\n", exp_pos, cnt);
1644         }
1645       } // done iterating over a new instruction's operands
1646 
1647       // Fix number of operands, as we do not generate redundant ones.
1648       // The matcher generates some redundant operands, which are removed
1649       // in the expand function (of the node we generate here). We don't
1650       // generate the redundant operands here, so set the correct _num_opnds.
1651       if (expand_instruction->num_opnds() != expand_instruction->num_unique_opnds()) {
1652         fprintf(fp, "  n%d->_num_opnds = %d; // Only unique opnds generated.\n",
1653                 cnt, expand_instruction->num_unique_opnds());
1654       }
1655 
1656       // Invoke Expand() for the newly created instruction.
1657       fprintf(fp,"  result = n%d->Expand( state, proj_list, mem );\n", cnt);
1658       assert( !new_inst->expands(), "Do not have complete support for recursive expansion");
1659     } // done iterating over new instructions
1660     fprintf(fp,"\n");
1661   } // done generating expand rule
1662 
1663   // Generate projections for instruction's additional DEFs and KILLs
1664   if( ! node->expands() && (node->needs_projections() || node->has_temps())) {
1665     // Get string representing the MachNode that projections point at
1666     const char *machNode = "this";
1667     // Generate the projections
1668     fprintf(fp,"  // Add projection edges for additional defs or kills\n");
1669 
1670     // Examine each component to see if it is a DEF or KILL
1671     node->_components.reset();
1672     // Skip the first component, if already handled as (SET dst (...))
1673     Component *comp = NULL;
1674     // For kills, the choice of projection numbers is arbitrary
1675     int proj_no = 1;
1676     bool declared_def  = false;
1677     bool declared_kill = false;
1678 
1679     while ((comp = node->_components.iter()) != NULL) {
1680       // Lookup register class associated with operand type
1681       Form *form = (Form*)_globalNames[comp->_type];
1682       assert(form, "component type must be a defined form");
1683       OperandForm *op = form->is_operand();
1684 
1685       if (comp->is(Component::TEMP) ||
1686           comp->is(Component::TEMP_DEF)) {
1687         fprintf(fp, "  // TEMP %s\n", comp->_name);
1688         if (!declared_def) {
1689           // Define the variable "def" to hold new MachProjNodes
1690           fprintf(fp, "  MachTempNode *def;\n");
1691           declared_def = true;
1692         }
1693         if (op && op->_interface && op->_interface->is_RegInterface()) {
1694           fprintf(fp,"  def = new MachTempNode(state->MachOperGenerator(%s));\n",
1695                   machOperEnum(op->_ident));
1696           fprintf(fp,"  add_req(def);\n");
1697           // The operand for TEMP is already constructed during
1698           // this mach node construction, see buildMachNode().
1699           //
1700           // int idx  = node->operand_position_format(comp->_name);
1701           // fprintf(fp,"  set_opnd_array(%d, state->MachOperGenerator(%s));\n",
1702           //         idx, machOperEnum(op->_ident));
1703         } else {
1704           assert(false, "can't have temps which aren't registers");
1705         }
1706       } else if (comp->isa(Component::KILL)) {
1707         fprintf(fp, "  // DEF/KILL %s\n", comp->_name);
1708 
1709         if (!declared_kill) {
1710           // Define the variable "kill" to hold new MachProjNodes
1711           fprintf(fp, "  MachProjNode *kill;\n");
1712           declared_kill = true;
1713         }
1714 
1715         assert(op, "Support additional KILLS for base operands");
1716         const char *regmask    = reg_mask(*op);
1717         const char *ideal_type = op->ideal_type(_globalNames, _register);
1718 
1719         if (!op->is_bound_register()) {
1720           syntax_err(node->_linenum, "In %s only bound registers can be killed: %s %s\n",
1721                      node->_ident, comp->_type, comp->_name);
1722         }
1723 
1724         fprintf(fp,"  kill = ");
1725         fprintf(fp,"new MachProjNode( %s, %d, (%s), Op_%s );\n",
1726                 machNode, proj_no++, regmask, ideal_type);
1727         fprintf(fp,"  proj_list.push(kill);\n");
1728       }
1729     }
1730   }
1731 
1732   if( !node->expands() && node->_matrule != NULL ) {
1733     // Remove duplicated operands and inputs which use the same name.
1734     // Search through match operands for the same name usage.
1735     // The matcher generates these non-unique operands. If the node
1736     // was constructed by an expand rule, there are no unique operands.
1737     uint cur_num_opnds = node->num_opnds();
1738     if (cur_num_opnds > 1 && cur_num_opnds != node->num_unique_opnds()) {
1739       Component *comp = NULL;
1740       fprintf(fp, "  // Remove duplicated operands and inputs which use the same name.\n");
1741       fprintf(fp, "  if (num_opnds() == %d) {\n", cur_num_opnds);
1742       // Build mapping from num_edges to local variables
1743       fprintf(fp,"    unsigned num0 = 0;\n");
1744       for (i = 1; i < cur_num_opnds; i++) {
1745         fprintf(fp,"    unsigned num%d = opnd_array(%d)->num_edges();", i, i);
1746         fprintf(fp, " \t// %s\n", node->opnd_ident(i));
1747       }
1748       // Build a mapping from operand index to input edges
1749       fprintf(fp,"    unsigned idx0 = oper_input_base();\n");
1750       for (i = 0; i < cur_num_opnds; i++) {
1751         fprintf(fp,"    unsigned idx%d = idx%d + num%d;\n", i+1, i, i);
1752       }
1753 
1754       uint new_num_opnds = 1;
1755       node->_components.reset();
1756       // Skip first unique operands.
1757       for (i = 1; i < cur_num_opnds; i++) {
1758         comp = node->_components.iter();
1759         if (i != node->unique_opnds_idx(i)) {
1760           break;
1761         }
1762         new_num_opnds++;
1763       }
1764       // Replace not unique operands with next unique operands.
1765       for ( ; i < cur_num_opnds; i++) {
1766         comp = node->_components.iter();
1767         uint j = node->unique_opnds_idx(i);
1768         // unique_opnds_idx(i) is unique if unique_opnds_idx(j) is not unique.
1769         if (j != node->unique_opnds_idx(j)) {
1770           fprintf(fp,"    set_opnd_array(%d, opnd_array(%d)->clone()); // %s\n",
1771                   new_num_opnds, i, comp->_name);
1772           // Delete not unique edges here.
1773           fprintf(fp,"    for (unsigned i = 0; i < num%d; i++) {\n", i);
1774           fprintf(fp,"      set_req(i + idx%d, _in[i + idx%d]);\n", new_num_opnds, i);
1775           fprintf(fp,"    }\n");
1776           fprintf(fp,"    num%d = num%d;\n", new_num_opnds, i);
1777           fprintf(fp,"    idx%d = idx%d + num%d;\n", new_num_opnds+1, new_num_opnds, new_num_opnds);
1778           new_num_opnds++;
1779         }
1780       }
1781       // Delete the rest of edges.
1782       fprintf(fp,"    for (int i = idx%d - 1; i >= (int)idx%d; i--) {\n", cur_num_opnds, new_num_opnds);
1783       fprintf(fp,"      del_req(i);\n");
1784       fprintf(fp,"    }\n");
1785       fprintf(fp,"    _num_opnds = %d;\n", new_num_opnds);
1786       assert(new_num_opnds == node->num_unique_opnds(), "what?");
1787       fprintf(fp, "  } else {\n");
1788       fprintf(fp, "    assert(_num_opnds == %d, \"There should be either %d or %d operands.\");\n",
1789                   new_num_opnds, new_num_opnds, cur_num_opnds);
1790       fprintf(fp, "  }\n");
1791     }
1792   }
1793 
1794   // If the node is a MachConstantNode, insert the MachConstantBaseNode edge.
1795   // NOTE: this edge must be the last input (see MachConstantNode::mach_constant_base_node_input).
1796   // There are nodes that don't use $constantablebase, but still require that it
1797   // is an input to the node. Example: divF_reg_immN, Repl32B_imm on x86_64.
1798   if (node->is_mach_constant() || node->needs_constant_base()) {
1799     if (node->is_ideal_call() != Form::invalid_type &&
1800         node->is_ideal_call() != Form::JAVA_LEAF) {
1801       fprintf(fp, "  // MachConstantBaseNode added in matcher.\n");
1802       _needs_clone_jvms = true;
1803     } else {
1804       fprintf(fp, "  add_req(C->mach_constant_base_node());\n");
1805     }
1806   }
1807 
1808   fprintf(fp, "\n");
1809   if (node->expands()) {
1810     fprintf(fp, "  return result;\n");
1811   } else {
1812     fprintf(fp, "  return this;\n");
1813   }
1814   fprintf(fp, "}\n");
1815   fprintf(fp, "\n");
1816 }
1817 
1818 
1819 //------------------------------Emit Routines----------------------------------
1820 // Special classes and routines for defining node emit routines which output
1821 // target specific instruction object encodings.
1822 // Define the ___Node::emit() routine
1823 //
1824 // (1) void  ___Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1825 // (2)   // ...  encoding defined by user
1826 // (3)
1827 // (4) }
1828 //
1829 
1830 class DefineEmitState {
1831 private:
1832   enum reloc_format { RELOC_NONE        = -1,
1833                       RELOC_IMMEDIATE   =  0,
1834                       RELOC_DISP        =  1,
1835                       RELOC_CALL_DISP   =  2 };
1836   enum literal_status{ LITERAL_NOT_SEEN  = 0,
1837                        LITERAL_SEEN      = 1,
1838                        LITERAL_ACCESSED  = 2,
1839                        LITERAL_OUTPUT    = 3 };
1840   // Temporaries that describe current operand
1841   bool          _cleared;
1842   OpClassForm  *_opclass;
1843   OperandForm  *_operand;
1844   int           _operand_idx;
1845   const char   *_local_name;
1846   const char   *_operand_name;
1847   bool          _doing_disp;
1848   bool          _doing_constant;
1849   Form::DataType _constant_type;
1850   DefineEmitState::literal_status _constant_status;
1851   DefineEmitState::literal_status _reg_status;
1852   bool          _doing_emit8;
1853   bool          _doing_emit_d32;
1854   bool          _doing_emit_d16;
1855   bool          _doing_emit_hi;
1856   bool          _doing_emit_lo;
1857   bool          _may_reloc;
1858   reloc_format  _reloc_form;
1859   const char *  _reloc_type;
1860   bool          _processing_noninput;
1861 
1862   NameList      _strings_to_emit;
1863 
1864   // Stable state, set by constructor
1865   ArchDesc     &_AD;
1866   FILE         *_fp;
1867   EncClass     &_encoding;
1868   InsEncode    &_ins_encode;
1869   InstructForm &_inst;
1870 
1871 public:
1872   DefineEmitState(FILE *fp, ArchDesc &AD, EncClass &encoding,
1873                   InsEncode &ins_encode, InstructForm &inst)
1874     : _AD(AD), _fp(fp), _encoding(encoding), _ins_encode(ins_encode), _inst(inst) {
1875       clear();
1876   }
1877 
1878   void clear() {
1879     _cleared       = true;
1880     _opclass       = NULL;
1881     _operand       = NULL;
1882     _operand_idx   = 0;
1883     _local_name    = "";
1884     _operand_name  = "";
1885     _doing_disp    = false;
1886     _doing_constant= false;
1887     _constant_type = Form::none;
1888     _constant_status = LITERAL_NOT_SEEN;
1889     _reg_status      = LITERAL_NOT_SEEN;
1890     _doing_emit8   = false;
1891     _doing_emit_d32= false;
1892     _doing_emit_d16= false;
1893     _doing_emit_hi = false;
1894     _doing_emit_lo = false;
1895     _may_reloc     = false;
1896     _reloc_form    = RELOC_NONE;
1897     _reloc_type    = AdlcVMDeps::none_reloc_type();
1898     _strings_to_emit.clear();
1899   }
1900 
1901   // Track necessary state when identifying a replacement variable
1902   // @arg rep_var: The formal parameter of the encoding.
1903   void update_state(const char *rep_var) {
1904     // A replacement variable or one of its subfields
1905     // Obtain replacement variable from list
1906     if ( (*rep_var) != '$' ) {
1907       // A replacement variable, '$' prefix
1908       // check_rep_var( rep_var );
1909       if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
1910         // No state needed.
1911         assert( _opclass == NULL,
1912                 "'primary', 'secondary' and 'tertiary' don't follow operand.");
1913       }
1914       else if ((strcmp(rep_var, "constanttablebase") == 0) ||
1915                (strcmp(rep_var, "constantoffset")    == 0) ||
1916                (strcmp(rep_var, "constantaddress")   == 0)) {
1917         if (!(_inst.is_mach_constant() || _inst.needs_constant_base())) {
1918           _AD.syntax_err(_encoding._linenum,
1919                          "Replacement variable %s not allowed in instruct %s (only in MachConstantNode or MachCall).\n",
1920                          rep_var, _encoding._name);
1921         }
1922       }
1923       else {
1924         // Lookup its position in (formal) parameter list of encoding
1925         int   param_no  = _encoding.rep_var_index(rep_var);
1926         if ( param_no == -1 ) {
1927           _AD.syntax_err( _encoding._linenum,
1928                           "Replacement variable %s not found in enc_class %s.\n",
1929                           rep_var, _encoding._name);
1930         }
1931 
1932         // Lookup the corresponding ins_encode parameter
1933         // This is the argument (actual parameter) to the encoding.
1934         const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
1935         if (inst_rep_var == NULL) {
1936           _AD.syntax_err( _ins_encode._linenum,
1937                           "Parameter %s not passed to enc_class %s from instruct %s.\n",
1938                           rep_var, _encoding._name, _inst._ident);
1939         }
1940 
1941         // Check if instruction's actual parameter is a local name in the instruction
1942         const Form  *local     = _inst._localNames[inst_rep_var];
1943         OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
1944         // Note: assert removed to allow constant and symbolic parameters
1945         // assert( opc, "replacement variable was not found in local names");
1946         // Lookup the index position iff the replacement variable is a localName
1947         int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
1948 
1949         if ( idx != -1 ) {
1950           // This is a local in the instruction
1951           // Update local state info.
1952           _opclass        = opc;
1953           _operand_idx    = idx;
1954           _local_name     = rep_var;
1955           _operand_name   = inst_rep_var;
1956 
1957           // !!!!!
1958           // Do not support consecutive operands.
1959           assert( _operand == NULL, "Unimplemented()");
1960           _operand = opc->is_operand();
1961         }
1962         else if( ADLParser::is_literal_constant(inst_rep_var) ) {
1963           // Instruction provided a constant expression
1964           // Check later that encoding specifies $$$constant to resolve as constant
1965           _constant_status   = LITERAL_SEEN;
1966         }
1967         else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
1968           // Instruction provided an opcode: "primary", "secondary", "tertiary"
1969           // Check later that encoding specifies $$$constant to resolve as constant
1970           _constant_status   = LITERAL_SEEN;
1971         }
1972         else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
1973           // Instruction provided a literal register name for this parameter
1974           // Check that encoding specifies $$$reg to resolve.as register.
1975           _reg_status        = LITERAL_SEEN;
1976         }
1977         else {
1978           // Check for unimplemented functionality before hard failure
1979           assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
1980           assert( false, "ShouldNotReachHere()");
1981         }
1982       } // done checking which operand this is.
1983     } else {
1984       //
1985       // A subfield variable, '$$' prefix
1986       // Check for fields that may require relocation information.
1987       // Then check that literal register parameters are accessed with 'reg' or 'constant'
1988       //
1989       if ( strcmp(rep_var,"$disp") == 0 ) {
1990         _doing_disp = true;
1991         assert( _opclass, "Must use operand or operand class before '$disp'");
1992         if( _operand == NULL ) {
1993           // Only have an operand class, generate run-time check for relocation
1994           _may_reloc    = true;
1995           _reloc_form   = RELOC_DISP;
1996           _reloc_type   = AdlcVMDeps::oop_reloc_type();
1997         } else {
1998           // Do precise check on operand: is it a ConP or not
1999           //
2000           // Check interface for value of displacement
2001           assert( ( _operand->_interface != NULL ),
2002                   "$disp can only follow memory interface operand");
2003           MemInterface *mem_interface= _operand->_interface->is_MemInterface();
2004           assert( mem_interface != NULL,
2005                   "$disp can only follow memory interface operand");
2006           const char *disp = mem_interface->_disp;
2007 
2008           if( disp != NULL && (*disp == '$') ) {
2009             // MemInterface::disp contains a replacement variable,
2010             // Check if this matches a ConP
2011             //
2012             // Lookup replacement variable, in operand's component list
2013             const char *rep_var_name = disp + 1; // Skip '$'
2014             const Component *comp = _operand->_components.search(rep_var_name);
2015             assert( comp != NULL,"Replacement variable not found in components");
2016             const char      *type = comp->_type;
2017             // Lookup operand form for replacement variable's type
2018             const Form *form = _AD.globalNames()[type];
2019             assert( form != NULL, "Replacement variable's type not found");
2020             OperandForm *op = form->is_operand();
2021             assert( op, "Attempting to emit a non-register or non-constant");
2022             // Check if this is a constant
2023             if (op->_matrule && op->_matrule->is_base_constant(_AD.globalNames())) {
2024               // Check which constant this name maps to: _c0, _c1, ..., _cn
2025               // const int idx = _operand.constant_position(_AD.globalNames(), comp);
2026               // assert( idx != -1, "Constant component not found in operand");
2027               Form::DataType dtype = op->is_base_constant(_AD.globalNames());
2028               if ( dtype == Form::idealP ) {
2029                 _may_reloc    = true;
2030                 // No longer true that idealP is always an oop
2031                 _reloc_form   = RELOC_DISP;
2032                 _reloc_type   = AdlcVMDeps::oop_reloc_type();
2033               }
2034             }
2035 
2036             else if( _operand->is_user_name_for_sReg() != Form::none ) {
2037               // The only non-constant allowed access to disp is an operand sRegX in a stackSlotX
2038               assert( op->ideal_to_sReg_type(type) != Form::none, "StackSlots access displacements using 'sRegs'");
2039               _may_reloc   = false;
2040             } else {
2041               assert( false, "fatal(); Only stackSlots can access a non-constant using 'disp'");
2042             }
2043           }
2044         } // finished with precise check of operand for relocation.
2045       } // finished with subfield variable
2046       else if ( strcmp(rep_var,"$constant") == 0 ) {
2047         _doing_constant = true;
2048         if ( _constant_status == LITERAL_NOT_SEEN ) {
2049           // Check operand for type of constant
2050           assert( _operand, "Must use operand before '$$constant'");
2051           Form::DataType dtype = _operand->is_base_constant(_AD.globalNames());
2052           _constant_type = dtype;
2053           if ( dtype == Form::idealP ) {
2054             _may_reloc    = true;
2055             // No longer true that idealP is always an oop
2056             // // _must_reloc   = true;
2057             _reloc_form   = RELOC_IMMEDIATE;
2058             _reloc_type   = AdlcVMDeps::oop_reloc_type();
2059           } else {
2060             // No relocation information needed
2061           }
2062         } else {
2063           // User-provided literals may not require relocation information !!!!!
2064           assert( _constant_status == LITERAL_SEEN, "Must know we are processing a user-provided literal");
2065         }
2066       }
2067       else if ( strcmp(rep_var,"$label") == 0 ) {
2068         // Calls containing labels require relocation
2069         if ( _inst.is_ideal_call() )  {
2070           _may_reloc    = true;
2071           // !!!!! !!!!!
2072           _reloc_type   = AdlcVMDeps::none_reloc_type();
2073         }
2074       }
2075 
2076       // literal register parameter must be accessed as a 'reg' field.
2077       if ( _reg_status != LITERAL_NOT_SEEN ) {
2078         assert( _reg_status == LITERAL_SEEN, "Must have seen register literal before now");
2079         if (strcmp(rep_var,"$reg") == 0 || reg_conversion(rep_var) != NULL) {
2080           _reg_status  = LITERAL_ACCESSED;
2081         } else {
2082           _AD.syntax_err(_encoding._linenum,
2083                          "Invalid access to literal register parameter '%s' in %s.\n",
2084                          rep_var, _encoding._name);
2085           assert( false, "invalid access to literal register parameter");
2086         }
2087       }
2088       // literal constant parameters must be accessed as a 'constant' field
2089       if (_constant_status != LITERAL_NOT_SEEN) {
2090         assert(_constant_status == LITERAL_SEEN, "Must have seen constant literal before now");
2091         if (strcmp(rep_var,"$constant") == 0) {
2092           _constant_status = LITERAL_ACCESSED;
2093         } else {
2094           _AD.syntax_err(_encoding._linenum,
2095                          "Invalid access to literal constant parameter '%s' in %s.\n",
2096                          rep_var, _encoding._name);
2097         }
2098       }
2099     } // end replacement and/or subfield
2100 
2101   }
2102 
2103   void add_rep_var(const char *rep_var) {
2104     // Handle subfield and replacement variables.
2105     if ( ( *rep_var == '$' ) && ( *(rep_var+1) == '$' ) ) {
2106       // Check for emit prefix, '$$emit32'
2107       assert( _cleared, "Can not nest $$$emit32");
2108       if ( strcmp(rep_var,"$$emit32") == 0 ) {
2109         _doing_emit_d32 = true;
2110       }
2111       else if ( strcmp(rep_var,"$$emit16") == 0 ) {
2112         _doing_emit_d16 = true;
2113       }
2114       else if ( strcmp(rep_var,"$$emit_hi") == 0 ) {
2115         _doing_emit_hi  = true;
2116       }
2117       else if ( strcmp(rep_var,"$$emit_lo") == 0 ) {
2118         _doing_emit_lo  = true;
2119       }
2120       else if ( strcmp(rep_var,"$$emit8") == 0 ) {
2121         _doing_emit8    = true;
2122       }
2123       else {
2124         _AD.syntax_err(_encoding._linenum, "Unsupported $$operation '%s'\n",rep_var);
2125         assert( false, "fatal();");
2126       }
2127     }
2128     else {
2129       // Update state for replacement variables
2130       update_state( rep_var );
2131       _strings_to_emit.addName(rep_var);
2132     }
2133     _cleared  = false;
2134   }
2135 
2136   void emit_replacement() {
2137     // A replacement variable or one of its subfields
2138     // Obtain replacement variable from list
2139     // const char *ec_rep_var = encoding->_rep_vars.iter();
2140     const char *rep_var;
2141     _strings_to_emit.reset();
2142     while ( (rep_var = _strings_to_emit.iter()) != NULL ) {
2143 
2144       if ( (*rep_var) == '$' ) {
2145         // A subfield variable, '$$' prefix
2146         emit_field( rep_var );
2147       } else {
2148         if (_strings_to_emit.peek() != NULL &&
2149             strcmp(_strings_to_emit.peek(), "$Address") == 0) {
2150           fprintf(_fp, "Address::make_raw(");
2151 
2152           emit_rep_var( rep_var );
2153           fprintf(_fp,"->base(ra_,this,idx%d), ", _operand_idx);
2154 
2155           _reg_status = LITERAL_ACCESSED;
2156           emit_rep_var( rep_var );
2157           fprintf(_fp,"->index(ra_,this,idx%d), ", _operand_idx);
2158 
2159           _reg_status = LITERAL_ACCESSED;
2160           emit_rep_var( rep_var );
2161           fprintf(_fp,"->scale(), ");
2162 
2163           _reg_status = LITERAL_ACCESSED;
2164           emit_rep_var( rep_var );
2165           Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2166           if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2167             fprintf(_fp,"->disp(ra_,this,0), ");
2168           } else {
2169             fprintf(_fp,"->disp(ra_,this,idx%d), ", _operand_idx);
2170           }
2171 
2172           _reg_status = LITERAL_ACCESSED;
2173           emit_rep_var( rep_var );
2174           fprintf(_fp,"->disp_reloc())");
2175 
2176           // skip trailing $Address
2177           _strings_to_emit.iter();
2178         } else {
2179           // A replacement variable, '$' prefix
2180           const char* next = _strings_to_emit.peek();
2181           const char* next2 = _strings_to_emit.peek(2);
2182           if (next != NULL && next2 != NULL && strcmp(next2, "$Register") == 0 &&
2183               (strcmp(next, "$base") == 0 || strcmp(next, "$index") == 0)) {
2184             // handle $rev_var$$base$$Register and $rev_var$$index$$Register by
2185             // producing as_Register(opnd_array(#)->base(ra_,this,idx1)).
2186             fprintf(_fp, "as_Register(");
2187             // emit the operand reference
2188             emit_rep_var( rep_var );
2189             rep_var = _strings_to_emit.iter();
2190             assert(strcmp(rep_var, "$base") == 0 || strcmp(rep_var, "$index") == 0, "bad pattern");
2191             // handle base or index
2192             emit_field(rep_var);
2193             rep_var = _strings_to_emit.iter();
2194             assert(strcmp(rep_var, "$Register") == 0, "bad pattern");
2195             // close up the parens
2196             fprintf(_fp, ")");
2197           } else {
2198             emit_rep_var( rep_var );
2199           }
2200         }
2201       } // end replacement and/or subfield
2202     }
2203   }
2204 
2205   void emit_reloc_type(const char* type) {
2206     fprintf(_fp, "%s", type)
2207       ;
2208   }
2209 
2210 
2211   void emit() {
2212     //
2213     //   "emit_d32_reloc(" or "emit_hi_reloc" or "emit_lo_reloc"
2214     //
2215     // Emit the function name when generating an emit function
2216     if ( _doing_emit_d32 || _doing_emit_hi || _doing_emit_lo ) {
2217       const char *d32_hi_lo = _doing_emit_d32 ? "d32" : (_doing_emit_hi ? "hi" : "lo");
2218       // In general, relocatable isn't known at compiler compile time.
2219       // Check results of prior scan
2220       if ( ! _may_reloc ) {
2221         // Definitely don't need relocation information
2222         fprintf( _fp, "emit_%s(cbuf, ", d32_hi_lo );
2223         emit_replacement(); fprintf(_fp, ")");
2224       }
2225       else {
2226         // Emit RUNTIME CHECK to see if value needs relocation info
2227         // If emitting a relocatable address, use 'emit_d32_reloc'
2228         const char *disp_constant = _doing_disp ? "disp" : _doing_constant ? "constant" : "INVALID";
2229         assert( (_doing_disp || _doing_constant)
2230                 && !(_doing_disp && _doing_constant),
2231                 "Must be emitting either a displacement or a constant");
2232         fprintf(_fp,"\n");
2233         fprintf(_fp,"if ( opnd_array(%d)->%s_reloc() != relocInfo::none ) {\n",
2234                 _operand_idx, disp_constant);
2235         fprintf(_fp,"  ");
2236         fprintf(_fp,"emit_%s_reloc(cbuf, ", d32_hi_lo );
2237         emit_replacement();             fprintf(_fp,", ");
2238         fprintf(_fp,"opnd_array(%d)->%s_reloc(), ",
2239                 _operand_idx, disp_constant);
2240         fprintf(_fp, "%d", _reloc_form);fprintf(_fp, ");");
2241         fprintf(_fp,"\n");
2242         fprintf(_fp,"} else {\n");
2243         fprintf(_fp,"  emit_%s(cbuf, ", d32_hi_lo);
2244         emit_replacement(); fprintf(_fp, ");\n"); fprintf(_fp,"}");
2245       }
2246     }
2247     else if ( _doing_emit_d16 ) {
2248       // Relocation of 16-bit values is not supported
2249       fprintf(_fp,"emit_d16(cbuf, ");
2250       emit_replacement(); fprintf(_fp, ")");
2251       // No relocation done for 16-bit values
2252     }
2253     else if ( _doing_emit8 ) {
2254       // Relocation of 8-bit values is not supported
2255       fprintf(_fp,"emit_d8(cbuf, ");
2256       emit_replacement(); fprintf(_fp, ")");
2257       // No relocation done for 8-bit values
2258     }
2259     else {
2260       // Not an emit# command, just output the replacement string.
2261       emit_replacement();
2262     }
2263 
2264     // Get ready for next state collection.
2265     clear();
2266   }
2267 
2268 private:
2269 
2270   // recognizes names which represent MacroAssembler register types
2271   // and return the conversion function to build them from OptoReg
2272   const char* reg_conversion(const char* rep_var) {
2273     if (strcmp(rep_var,"$Register") == 0)      return "as_Register";
2274     if (strcmp(rep_var,"$FloatRegister") == 0) return "as_FloatRegister";
2275 #if defined(IA32) || defined(AMD64)
2276     if (strcmp(rep_var,"$XMMRegister") == 0)   return "as_XMMRegister";
2277 #endif
2278     if (strcmp(rep_var,"$CondRegister") == 0)  return "as_ConditionRegister";
2279     return NULL;
2280   }
2281 
2282   void emit_field(const char *rep_var) {
2283     const char* reg_convert = reg_conversion(rep_var);
2284 
2285     // A subfield variable, '$$subfield'
2286     if ( strcmp(rep_var, "$reg") == 0 || reg_convert != NULL) {
2287       // $reg form or the $Register MacroAssembler type conversions
2288       assert( _operand_idx != -1,
2289               "Must use this subfield after operand");
2290       if( _reg_status == LITERAL_NOT_SEEN ) {
2291         if (_processing_noninput) {
2292           const Form  *local     = _inst._localNames[_operand_name];
2293           OperandForm *oper      = local->is_operand();
2294           const RegDef* first = oper->get_RegClass()->find_first_elem();
2295           if (reg_convert != NULL) {
2296             fprintf(_fp, "%s(%s_enc)", reg_convert, first->_regname);
2297           } else {
2298             fprintf(_fp, "%s_enc", first->_regname);
2299           }
2300         } else {
2301           fprintf(_fp,"->%s(ra_,this", reg_convert != NULL ? reg_convert : "reg");
2302           // Add parameter for index position, if not result operand
2303           if( _operand_idx != 0 ) fprintf(_fp,",idx%d", _operand_idx);
2304           fprintf(_fp,")");
2305           fprintf(_fp, "/* %s */", _operand_name);
2306         }
2307       } else {
2308         assert( _reg_status == LITERAL_OUTPUT, "should have output register literal in emit_rep_var");
2309         // Register literal has already been sent to output file, nothing more needed
2310       }
2311     }
2312     else if ( strcmp(rep_var,"$base") == 0 ) {
2313       assert( _operand_idx != -1,
2314               "Must use this subfield after operand");
2315       assert( ! _may_reloc, "UnImplemented()");
2316       fprintf(_fp,"->base(ra_,this,idx%d)", _operand_idx);
2317     }
2318     else if ( strcmp(rep_var,"$index") == 0 ) {
2319       assert( _operand_idx != -1,
2320               "Must use this subfield after operand");
2321       assert( ! _may_reloc, "UnImplemented()");
2322       fprintf(_fp,"->index(ra_,this,idx%d)", _operand_idx);
2323     }
2324     else if ( strcmp(rep_var,"$scale") == 0 ) {
2325       assert( ! _may_reloc, "UnImplemented()");
2326       fprintf(_fp,"->scale()");
2327     }
2328     else if ( strcmp(rep_var,"$cmpcode") == 0 ) {
2329       assert( ! _may_reloc, "UnImplemented()");
2330       fprintf(_fp,"->ccode()");
2331     }
2332     else if ( strcmp(rep_var,"$constant") == 0 ) {
2333       if( _constant_status == LITERAL_NOT_SEEN ) {
2334         if ( _constant_type == Form::idealD ) {
2335           fprintf(_fp,"->constantD()");
2336         } else if ( _constant_type == Form::idealF ) {
2337           fprintf(_fp,"->constantF()");
2338         } else if ( _constant_type == Form::idealL ) {
2339           fprintf(_fp,"->constantL()");
2340         } else {
2341           fprintf(_fp,"->constant()");
2342         }
2343       } else {
2344         assert( _constant_status == LITERAL_OUTPUT, "should have output constant literal in emit_rep_var");
2345         // Constant literal has already been sent to output file, nothing more needed
2346       }
2347     }
2348     else if ( strcmp(rep_var,"$disp") == 0 ) {
2349       Form::DataType stack_type = _operand ? _operand->is_user_name_for_sReg() : Form::none;
2350       if( _operand  && _operand_idx==0 && stack_type != Form::none ) {
2351         fprintf(_fp,"->disp(ra_,this,0)");
2352       } else {
2353         fprintf(_fp,"->disp(ra_,this,idx%d)", _operand_idx);
2354       }
2355     }
2356     else if ( strcmp(rep_var,"$label") == 0 ) {
2357       fprintf(_fp,"->label()");
2358     }
2359     else if ( strcmp(rep_var,"$method") == 0 ) {
2360       fprintf(_fp,"->method()");
2361     }
2362     else {
2363       printf("emit_field: %s\n",rep_var);
2364       globalAD->syntax_err(_inst._linenum, "Unknown replacement variable %s in format statement of %s.",
2365                            rep_var, _inst._ident);
2366       assert( false, "UnImplemented()");
2367     }
2368   }
2369 
2370 
2371   void emit_rep_var(const char *rep_var) {
2372     _processing_noninput = false;
2373     // A replacement variable, originally '$'
2374     if ( Opcode::as_opcode_type(rep_var) != Opcode::NOT_AN_OPCODE ) {
2375       if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(rep_var) )) {
2376         // Missing opcode
2377         _AD.syntax_err( _inst._linenum,
2378                         "Missing $%s opcode definition in %s, used by encoding %s\n",
2379                         rep_var, _inst._ident, _encoding._name);
2380       }
2381     }
2382     else if (strcmp(rep_var, "constanttablebase") == 0) {
2383       fprintf(_fp, "as_Register(ra_->get_encode(in(mach_constant_base_node_input())))");
2384     }
2385     else if (strcmp(rep_var, "constantoffset") == 0) {
2386       fprintf(_fp, "constant_offset()");
2387     }
2388     else if (strcmp(rep_var, "constantaddress") == 0) {
2389       fprintf(_fp, "InternalAddress(__ code()->consts()->start() + constant_offset())");
2390     }
2391     else {
2392       // Lookup its position in parameter list
2393       int   param_no  = _encoding.rep_var_index(rep_var);
2394       if ( param_no == -1 ) {
2395         _AD.syntax_err( _encoding._linenum,
2396                         "Replacement variable %s not found in enc_class %s.\n",
2397                         rep_var, _encoding._name);
2398       }
2399       // Lookup the corresponding ins_encode parameter
2400       const char *inst_rep_var = _ins_encode.rep_var_name(_inst, param_no);
2401 
2402       // Check if instruction's actual parameter is a local name in the instruction
2403       const Form  *local     = _inst._localNames[inst_rep_var];
2404       OpClassForm *opc       = (local != NULL) ? local->is_opclass() : NULL;
2405       // Note: assert removed to allow constant and symbolic parameters
2406       // assert( opc, "replacement variable was not found in local names");
2407       // Lookup the index position iff the replacement variable is a localName
2408       int idx  = (opc != NULL) ? _inst.operand_position_format(inst_rep_var) : -1;
2409       if( idx != -1 ) {
2410         if (_inst.is_noninput_operand(idx)) {
2411           // This operand isn't a normal input so printing it is done
2412           // specially.
2413           _processing_noninput = true;
2414         } else {
2415           // Output the emit code for this operand
2416           fprintf(_fp,"opnd_array(%d)",idx);
2417         }
2418         assert( _operand == opc->is_operand(),
2419                 "Previous emit $operand does not match current");
2420       }
2421       else if( ADLParser::is_literal_constant(inst_rep_var) ) {
2422         // else check if it is a constant expression
2423         // Removed following assert to allow primitive C types as arguments to encodings
2424         // assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2425         fprintf(_fp,"(%s)", inst_rep_var);
2426         _constant_status = LITERAL_OUTPUT;
2427       }
2428       else if( Opcode::as_opcode_type(inst_rep_var) != Opcode::NOT_AN_OPCODE ) {
2429         // else check if "primary", "secondary", "tertiary"
2430         assert( _constant_status == LITERAL_ACCESSED, "Must be processing a literal constant parameter");
2431         if (!_inst._opcode->print_opcode(_fp, Opcode::as_opcode_type(inst_rep_var) )) {
2432           // Missing opcode
2433           _AD.syntax_err( _inst._linenum,
2434                           "Missing $%s opcode definition in %s\n",
2435                           rep_var, _inst._ident);
2436 
2437         }
2438         _constant_status = LITERAL_OUTPUT;
2439       }
2440       else if((_AD.get_registers() != NULL ) && (_AD.get_registers()->getRegDef(inst_rep_var) != NULL)) {
2441         // Instruction provided a literal register name for this parameter
2442         // Check that encoding specifies $$$reg to resolve.as register.
2443         assert( _reg_status == LITERAL_ACCESSED, "Must be processing a literal register parameter");
2444         fprintf(_fp,"(%s_enc)", inst_rep_var);
2445         _reg_status = LITERAL_OUTPUT;
2446       }
2447       else {
2448         // Check for unimplemented functionality before hard failure
2449         assert( strcmp(opc->_ident,"label")==0, "Unimplemented() Label");
2450         assert( false, "ShouldNotReachHere()");
2451       }
2452       // all done
2453     }
2454   }
2455 
2456 };  // end class DefineEmitState
2457 
2458 
2459 void ArchDesc::defineSize(FILE *fp, InstructForm &inst) {
2460 
2461   //(1)
2462   // Output instruction's emit prototype
2463   fprintf(fp,"uint %sNode::size(PhaseRegAlloc *ra_) const {\n",
2464           inst._ident);
2465 
2466   fprintf(fp, "  assert(VerifyOops || MachNode::size(ra_) <= %s, \"bad fixed size\");\n", inst._size);
2467 
2468   //(2)
2469   // Print the size
2470   fprintf(fp, "  return (VerifyOops ? MachNode::size(ra_) : %s);\n", inst._size);
2471 
2472   // (3) and (4)
2473   fprintf(fp,"}\n\n");
2474 }
2475 
2476 // Emit postalloc expand function.
2477 void ArchDesc::define_postalloc_expand(FILE *fp, InstructForm &inst) {
2478   InsEncode *ins_encode = inst._insencode;
2479 
2480   // Output instruction's postalloc_expand prototype.
2481   fprintf(fp, "void  %sNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {\n",
2482           inst._ident);
2483 
2484   assert((_encode != NULL) && (ins_encode != NULL), "You must define an encode section.");
2485 
2486   // Output each operand's offset into the array of registers.
2487   inst.index_temps(fp, _globalNames);
2488 
2489   // Output variables "unsigned idx_<par_name>", Node *n_<par_name> and "MachOpnd *op_<par_name>"
2490   // for each parameter <par_name> specified in the encoding.
2491   ins_encode->reset();
2492   const char *ec_name = ins_encode->encode_class_iter();
2493   assert(ec_name != NULL, "Postalloc expand must specify an encoding.");
2494 
2495   EncClass *encoding = _encode->encClass(ec_name);
2496   if (encoding == NULL) {
2497     fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2498     abort();
2499   }
2500   if (ins_encode->current_encoding_num_args() != encoding->num_args()) {
2501     globalAD->syntax_err(ins_encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2502                          inst._ident, ins_encode->current_encoding_num_args(),
2503                          ec_name, encoding->num_args());
2504   }
2505 
2506   fprintf(fp, "  // Access to ins and operands for postalloc expand.\n");
2507   const int buflen = 2000;
2508   char idxbuf[buflen]; char *ib = idxbuf; idxbuf[0] = '\0';
2509   char nbuf  [buflen]; char *nb = nbuf;   nbuf[0]   = '\0';
2510   char opbuf [buflen]; char *ob = opbuf;  opbuf[0]  = '\0';
2511 
2512   encoding->_parameter_type.reset();
2513   encoding->_parameter_name.reset();
2514   const char *type = encoding->_parameter_type.iter();
2515   const char *name = encoding->_parameter_name.iter();
2516   int param_no = 0;
2517   for (; (type != NULL) && (name != NULL);
2518        (type = encoding->_parameter_type.iter()), (name = encoding->_parameter_name.iter())) {
2519     const char* arg_name = ins_encode->rep_var_name(inst, param_no);
2520     int idx = inst.operand_position_format(arg_name);
2521     if (strcmp(arg_name, "constanttablebase") == 0) {
2522       ib += sprintf(ib, "  unsigned idx_%-5s = mach_constant_base_node_input(); \t// %s, \t%s\n",
2523                     name, type, arg_name);
2524       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2525       // There is no operand for the constanttablebase.
2526     } else if (inst.is_noninput_operand(idx)) {
2527       globalAD->syntax_err(inst._linenum,
2528                            "In %s: you can not pass the non-input %s to a postalloc expand encoding.\n",
2529                            inst._ident, arg_name);
2530     } else {
2531       ib += sprintf(ib, "  unsigned idx_%-5s = idx%d; \t// %s, \t%s\n",
2532                     name, idx, type, arg_name);
2533       nb += sprintf(nb, "  Node    *n_%-7s = lookup(idx_%s);\n", name, name);
2534       ob += sprintf(ob, "  %sOper *op_%s = (%sOper *)opnd_array(%d);\n", type, name, type, idx);
2535     }
2536     param_no++;
2537   }
2538   assert(ib < &idxbuf[buflen-1] && nb < &nbuf[buflen-1] && ob < &opbuf[buflen-1], "buffer overflow");
2539 
2540   fprintf(fp, "%s", idxbuf);
2541   fprintf(fp, "  Node    *n_region  = lookup(0);\n");
2542   fprintf(fp, "%s%s", nbuf, opbuf);
2543   fprintf(fp, "  Compile *C = ra_->C;\n");
2544 
2545   // Output this instruction's encodings.
2546   fprintf(fp, "  {");
2547   const char *ec_code    = NULL;
2548   const char *ec_rep_var = NULL;
2549   assert(encoding == _encode->encClass(ec_name), "");
2550 
2551   DefineEmitState pending(fp, *this, *encoding, *ins_encode, inst);
2552   encoding->_code.reset();
2553   encoding->_rep_vars.reset();
2554   // Process list of user-defined strings,
2555   // and occurrences of replacement variables.
2556   // Replacement Vars are pushed into a list and then output.
2557   while ((ec_code = encoding->_code.iter()) != NULL) {
2558     if (! encoding->_code.is_signal(ec_code)) {
2559       // Emit pending code.
2560       pending.emit();
2561       pending.clear();
2562       // Emit this code section.
2563       fprintf(fp, "%s", ec_code);
2564     } else {
2565       // A replacement variable or one of its subfields.
2566       // Obtain replacement variable from list.
2567       ec_rep_var = encoding->_rep_vars.iter();
2568       pending.add_rep_var(ec_rep_var);
2569     }
2570   }
2571   // Emit pending code.
2572   pending.emit();
2573   pending.clear();
2574   fprintf(fp, "  }\n");
2575 
2576   fprintf(fp, "}\n\n");
2577 
2578   ec_name = ins_encode->encode_class_iter();
2579   assert(ec_name == NULL, "Postalloc expand may only have one encoding.");
2580 }
2581 
2582 // defineEmit -----------------------------------------------------------------
2583 void ArchDesc::defineEmit(FILE* fp, InstructForm& inst) {
2584   InsEncode* encode = inst._insencode;
2585 
2586   // (1)
2587   // Output instruction's emit prototype
2588   fprintf(fp, "void %sNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {\n", inst._ident);
2589 
2590   // If user did not define an encode section,
2591   // provide stub that does not generate any machine code.
2592   if( (_encode == NULL) || (encode == NULL) ) {
2593     fprintf(fp, "  // User did not define an encode section.\n");
2594     fprintf(fp, "}\n");
2595     return;
2596   }
2597 
2598   // Save current instruction's starting address (helps with relocation).
2599   fprintf(fp, "  cbuf.set_insts_mark();\n");
2600 
2601   // For MachConstantNodes which are ideal jump nodes, fill the jump table.
2602   if (inst.is_mach_constant() && inst.is_ideal_jump()) {
2603     fprintf(fp, "  ra_->C->constant_table().fill_jump_table(cbuf, (MachConstantNode*) this, _index2label);\n");
2604   }
2605 
2606   // Output each operand's offset into the array of registers.
2607   inst.index_temps(fp, _globalNames);
2608 
2609   // Output this instruction's encodings
2610   const char *ec_name;
2611   bool        user_defined = false;
2612   encode->reset();
2613   while ((ec_name = encode->encode_class_iter()) != NULL) {
2614     fprintf(fp, "  {\n");
2615     // Output user-defined encoding
2616     user_defined           = true;
2617 
2618     const char *ec_code    = NULL;
2619     const char *ec_rep_var = NULL;
2620     EncClass   *encoding   = _encode->encClass(ec_name);
2621     if (encoding == NULL) {
2622       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2623       abort();
2624     }
2625 
2626     if (encode->current_encoding_num_args() != encoding->num_args()) {
2627       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2628                            inst._ident, encode->current_encoding_num_args(),
2629                            ec_name, encoding->num_args());
2630     }
2631 
2632     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2633     encoding->_code.reset();
2634     encoding->_rep_vars.reset();
2635     // Process list of user-defined strings,
2636     // and occurrences of replacement variables.
2637     // Replacement Vars are pushed into a list and then output
2638     while ((ec_code = encoding->_code.iter()) != NULL) {
2639       if (!encoding->_code.is_signal(ec_code)) {
2640         // Emit pending code
2641         pending.emit();
2642         pending.clear();
2643         // Emit this code section
2644         fprintf(fp, "%s", ec_code);
2645       } else {
2646         // A replacement variable or one of its subfields
2647         // Obtain replacement variable from list
2648         ec_rep_var  = encoding->_rep_vars.iter();
2649         pending.add_rep_var(ec_rep_var);
2650       }
2651     }
2652     // Emit pending code
2653     pending.emit();
2654     pending.clear();
2655     fprintf(fp, "  }\n");
2656   } // end while instruction's encodings
2657 
2658   // Check if user stated which encoding to user
2659   if ( user_defined == false ) {
2660     fprintf(fp, "  // User did not define which encode class to use.\n");
2661   }
2662 
2663   // (3) and (4)
2664   fprintf(fp, "}\n\n");
2665 }
2666 
2667 // defineEvalConstant ---------------------------------------------------------
2668 void ArchDesc::defineEvalConstant(FILE* fp, InstructForm& inst) {
2669   InsEncode* encode = inst._constant;
2670 
2671   // (1)
2672   // Output instruction's emit prototype
2673   fprintf(fp, "void %sNode::eval_constant(Compile* C) {\n", inst._ident);
2674 
2675   // For ideal jump nodes, add a jump-table entry.
2676   if (inst.is_ideal_jump()) {
2677     fprintf(fp, "  _constant = C->constant_table().add_jump_table(this);\n");
2678   }
2679 
2680   // If user did not define an encode section,
2681   // provide stub that does not generate any machine code.
2682   if ((_encode == NULL) || (encode == NULL)) {
2683     fprintf(fp, "  // User did not define an encode section.\n");
2684     fprintf(fp, "}\n");
2685     return;
2686   }
2687 
2688   // Output this instruction's encodings
2689   const char *ec_name;
2690   bool        user_defined = false;
2691   encode->reset();
2692   while ((ec_name = encode->encode_class_iter()) != NULL) {
2693     fprintf(fp, "  {\n");
2694     // Output user-defined encoding
2695     user_defined           = true;
2696 
2697     const char *ec_code    = NULL;
2698     const char *ec_rep_var = NULL;
2699     EncClass   *encoding   = _encode->encClass(ec_name);
2700     if (encoding == NULL) {
2701       fprintf(stderr, "User did not define contents of this encode_class: %s\n", ec_name);
2702       abort();
2703     }
2704 
2705     if (encode->current_encoding_num_args() != encoding->num_args()) {
2706       globalAD->syntax_err(encode->_linenum, "In %s: passing %d arguments to %s but expecting %d",
2707                            inst._ident, encode->current_encoding_num_args(),
2708                            ec_name, encoding->num_args());
2709     }
2710 
2711     DefineEmitState pending(fp, *this, *encoding, *encode, inst);
2712     encoding->_code.reset();
2713     encoding->_rep_vars.reset();
2714     // Process list of user-defined strings,
2715     // and occurrences of replacement variables.
2716     // Replacement Vars are pushed into a list and then output
2717     while ((ec_code = encoding->_code.iter()) != NULL) {
2718       if (!encoding->_code.is_signal(ec_code)) {
2719         // Emit pending code
2720         pending.emit();
2721         pending.clear();
2722         // Emit this code section
2723         fprintf(fp, "%s", ec_code);
2724       } else {
2725         // A replacement variable or one of its subfields
2726         // Obtain replacement variable from list
2727         ec_rep_var  = encoding->_rep_vars.iter();
2728         pending.add_rep_var(ec_rep_var);
2729       }
2730     }
2731     // Emit pending code
2732     pending.emit();
2733     pending.clear();
2734     fprintf(fp, "  }\n");
2735   } // end while instruction's encodings
2736 
2737   // Check if user stated which encoding to user
2738   if (user_defined == false) {
2739     fprintf(fp, "  // User did not define which encode class to use.\n");
2740   }
2741 
2742   // (3) and (4)
2743   fprintf(fp, "}\n");
2744 }
2745 
2746 // ---------------------------------------------------------------------------
2747 //--------Utilities to build MachOper and MachNode derived Classes------------
2748 // ---------------------------------------------------------------------------
2749 
2750 //------------------------------Utilities to build Operand Classes------------
2751 static void defineIn_RegMask(FILE *fp, FormDict &globals, OperandForm &oper) {
2752   uint num_edges = oper.num_edges(globals);
2753   if( num_edges != 0 ) {
2754     // Method header
2755     fprintf(fp, "const RegMask *%sOper::in_RegMask(int index) const {\n",
2756             oper._ident);
2757 
2758     // Assert that the index is in range.
2759     fprintf(fp, "  assert(0 <= index && index < %d, \"index out of range\");\n",
2760             num_edges);
2761 
2762     // Figure out if all RegMasks are the same.
2763     const char* first_reg_class = oper.in_reg_class(0, globals);
2764     bool all_same = true;
2765     assert(first_reg_class != NULL, "did not find register mask");
2766 
2767     for (uint index = 1; all_same && index < num_edges; index++) {
2768       const char* some_reg_class = oper.in_reg_class(index, globals);
2769       assert(some_reg_class != NULL, "did not find register mask");
2770       if (strcmp(first_reg_class, some_reg_class) != 0) {
2771         all_same = false;
2772       }
2773     }
2774 
2775     if (all_same) {
2776       // Return the sole RegMask.
2777       if (strcmp(first_reg_class, "stack_slots") == 0) {
2778         fprintf(fp,"  return &(Compile::current()->FIRST_STACK_mask());\n");
2779       } else {
2780         const char* first_reg_class_to_upper = toUpper(first_reg_class);
2781         fprintf(fp,"  return &%s_mask();\n", first_reg_class_to_upper);
2782         delete[] first_reg_class_to_upper;
2783       }
2784     } else {
2785       // Build a switch statement to return the desired mask.
2786       fprintf(fp,"  switch (index) {\n");
2787 
2788       for (uint index = 0; index < num_edges; index++) {
2789         const char *reg_class = oper.in_reg_class(index, globals);
2790         assert(reg_class != NULL, "did not find register mask");
2791         if( !strcmp(reg_class, "stack_slots") ) {
2792           fprintf(fp, "  case %d: return &(Compile::current()->FIRST_STACK_mask());\n", index);
2793         } else {
2794           const char* reg_class_to_upper = toUpper(reg_class);
2795           fprintf(fp, "  case %d: return &%s_mask();\n", index, reg_class_to_upper);
2796           delete[] reg_class_to_upper;
2797         }
2798       }
2799       fprintf(fp,"  }\n");
2800       fprintf(fp,"  ShouldNotReachHere();\n");
2801       fprintf(fp,"  return NULL;\n");
2802     }
2803 
2804     // Method close
2805     fprintf(fp, "}\n\n");
2806   }
2807 }
2808 
2809 // generate code to create a clone for a class derived from MachOper
2810 //
2811 // (0)  MachOper  *MachOperXOper::clone() const {
2812 // (1)    return new MachXOper( _ccode, _c0, _c1, ..., _cn);
2813 // (2)  }
2814 //
2815 static void defineClone(FILE *fp, FormDict &globalNames, OperandForm &oper) {
2816   fprintf(fp,"MachOper *%sOper::clone() const {\n", oper._ident);
2817   // Check for constants that need to be copied over
2818   const int  num_consts    = oper.num_consts(globalNames);
2819   const bool is_ideal_bool = oper.is_ideal_bool();
2820   if( (num_consts > 0) ) {
2821     fprintf(fp,"  return new %sOper(", oper._ident);
2822     // generate parameters for constants
2823     int i = 0;
2824     fprintf(fp,"_c%d", i);
2825     for( i = 1; i < num_consts; ++i) {
2826       fprintf(fp,", _c%d", i);
2827     }
2828     // finish line (1)
2829     fprintf(fp,");\n");
2830   }
2831   else {
2832     assert( num_consts == 0, "Currently support zero or one constant per operand clone function");
2833     fprintf(fp,"  return new %sOper();\n", oper._ident);
2834   }
2835   // finish method
2836   fprintf(fp,"}\n");
2837 }
2838 
2839 // Helper functions for bug 4796752, abstracted with minimal modification
2840 // from define_oper_interface()
2841 OperandForm *rep_var_to_operand(const char *encoding, OperandForm &oper, FormDict &globals) {
2842   OperandForm *op = NULL;
2843   // Check for replacement variable
2844   if( *encoding == '$' ) {
2845     // Replacement variable
2846     const char *rep_var = encoding + 1;
2847     // Lookup replacement variable, rep_var, in operand's component list
2848     const Component *comp = oper._components.search(rep_var);
2849     assert( comp != NULL, "Replacement variable not found in components");
2850     // Lookup operand form for replacement variable's type
2851     const char      *type = comp->_type;
2852     Form            *form = (Form*)globals[type];
2853     assert( form != NULL, "Replacement variable's type not found");
2854     op = form->is_operand();
2855     assert( op, "Attempting to emit a non-register or non-constant");
2856   }
2857 
2858   return op;
2859 }
2860 
2861 int rep_var_to_constant_index(const char *encoding, OperandForm &oper, FormDict &globals) {
2862   int idx = -1;
2863   // Check for replacement variable
2864   if( *encoding == '$' ) {
2865     // Replacement variable
2866     const char *rep_var = encoding + 1;
2867     // Lookup replacement variable, rep_var, in operand's component list
2868     const Component *comp = oper._components.search(rep_var);
2869     assert( comp != NULL, "Replacement variable not found in components");
2870     // Lookup operand form for replacement variable's type
2871     const char      *type = comp->_type;
2872     Form            *form = (Form*)globals[type];
2873     assert( form != NULL, "Replacement variable's type not found");
2874     OperandForm *op = form->is_operand();
2875     assert( op, "Attempting to emit a non-register or non-constant");
2876     // Check that this is a constant and find constant's index:
2877     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2878       idx  = oper.constant_position(globals, comp);
2879     }
2880   }
2881 
2882   return idx;
2883 }
2884 
2885 bool is_regI(const char *encoding, OperandForm &oper, FormDict &globals ) {
2886   bool is_regI = false;
2887 
2888   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2889   if( op != NULL ) {
2890     // Check that this is a register
2891     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2892       // Register
2893       const char* ideal  = op->ideal_type(globals);
2894       is_regI = (ideal && (op->ideal_to_Reg_type(ideal) == Form::idealI));
2895     }
2896   }
2897 
2898   return is_regI;
2899 }
2900 
2901 bool is_conP(const char *encoding, OperandForm &oper, FormDict &globals ) {
2902   bool is_conP = false;
2903 
2904   OperandForm *op = rep_var_to_operand(encoding, oper, globals);
2905   if( op != NULL ) {
2906     // Check that this is a constant pointer
2907     if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2908       // Constant
2909       Form::DataType dtype = op->is_base_constant(globals);
2910       is_conP = (dtype == Form::idealP);
2911     }
2912   }
2913 
2914   return is_conP;
2915 }
2916 
2917 
2918 // Define a MachOper interface methods
2919 void ArchDesc::define_oper_interface(FILE *fp, OperandForm &oper, FormDict &globals,
2920                                      const char *name, const char *encoding) {
2921   bool emit_position = false;
2922   int position = -1;
2923 
2924   fprintf(fp,"  virtual int            %s", name);
2925   // Generate access method for base, index, scale, disp, ...
2926   if( (strcmp(name,"base") == 0) || (strcmp(name,"index") == 0) ) {
2927     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2928     emit_position = true;
2929   } else if ( (strcmp(name,"disp") == 0) ) {
2930     fprintf(fp,"(PhaseRegAlloc *ra_, const Node *node, int idx) const { \n");
2931   } else {
2932     fprintf(fp, "() const {\n");
2933   }
2934 
2935   // Check for hexadecimal value OR replacement variable
2936   if( *encoding == '$' ) {
2937     // Replacement variable
2938     const char *rep_var = encoding + 1;
2939     fprintf(fp,"    // Replacement variable: %s\n", encoding+1);
2940     // Lookup replacement variable, rep_var, in operand's component list
2941     const Component *comp = oper._components.search(rep_var);
2942     assert( comp != NULL, "Replacement variable not found in components");
2943     // Lookup operand form for replacement variable's type
2944     const char      *type = comp->_type;
2945     Form            *form = (Form*)globals[type];
2946     assert( form != NULL, "Replacement variable's type not found");
2947     OperandForm *op = form->is_operand();
2948     assert( op, "Attempting to emit a non-register or non-constant");
2949     // Check that this is a register or a constant and generate code:
2950     if ( (op->_matrule && op->_matrule->is_base_register(globals)) ) {
2951       // Register
2952       int idx_offset = oper.register_position( globals, rep_var);
2953       position = idx_offset;
2954       fprintf(fp,"    return (int)ra_->get_encode(node->in(idx");
2955       if ( idx_offset > 0 ) fprintf(fp,                      "+%d",idx_offset);
2956       fprintf(fp,"));\n");
2957     } else if ( op->ideal_to_sReg_type(op->_ident) != Form::none ) {
2958       // StackSlot for an sReg comes either from input node or from self, when idx==0
2959       fprintf(fp,"    if( idx != 0 ) {\n");
2960       fprintf(fp,"      // Access stack offset (register number) for input operand\n");
2961       fprintf(fp,"      return ra_->reg2offset(ra_->get_reg_first(node->in(idx)));/* sReg */\n");
2962       fprintf(fp,"    }\n");
2963       fprintf(fp,"    // Access stack offset (register number) from myself\n");
2964       fprintf(fp,"    return ra_->reg2offset(ra_->get_reg_first(node));/* sReg */\n");
2965     } else if (op->_matrule && op->_matrule->is_base_constant(globals)) {
2966       // Constant
2967       // Check which constant this name maps to: _c0, _c1, ..., _cn
2968       const int idx = oper.constant_position(globals, comp);
2969       assert( idx != -1, "Constant component not found in operand");
2970       // Output code for this constant, type dependent.
2971       fprintf(fp,"    return (int)" );
2972       oper.access_constant(fp, globals, (uint)idx /* , const_type */);
2973       fprintf(fp,";\n");
2974     } else {
2975       assert( false, "Attempting to emit a non-register or non-constant");
2976     }
2977   }
2978   else if( *encoding == '0' && *(encoding+1) == 'x' ) {
2979     // Hex value
2980     fprintf(fp,"    return %s;\n", encoding);
2981   } else {
2982     globalAD->syntax_err(oper._linenum, "In operand %s: Do not support this encode constant: '%s' for %s.",
2983                          oper._ident, encoding, name);
2984     assert( false, "Do not support octal or decimal encode constants");
2985   }
2986   fprintf(fp,"  }\n");
2987 
2988   if( emit_position && (position != -1) && (oper.num_edges(globals) > 0) ) {
2989     fprintf(fp,"  virtual int            %s_position() const { return %d; }\n", name, position);
2990     MemInterface *mem_interface = oper._interface->is_MemInterface();
2991     const char *base = mem_interface->_base;
2992     const char *disp = mem_interface->_disp;
2993     if( emit_position && (strcmp(name,"base") == 0)
2994         && base != NULL && is_regI(base, oper, globals)
2995         && disp != NULL && is_conP(disp, oper, globals) ) {
2996       // Found a memory access using a constant pointer for a displacement
2997       // and a base register containing an integer offset.
2998       // In this case the base and disp are reversed with respect to what
2999       // is expected by MachNode::get_base_and_disp() and MachNode::adr_type().
3000       // Provide a non-NULL return for disp_as_type() that will allow adr_type()
3001       // to correctly compute the access type for alias analysis.
3002       //
3003       // See BugId 4796752, operand indOffset32X in i486.ad
3004       int idx = rep_var_to_constant_index(disp, oper, globals);
3005       fprintf(fp,"  virtual const TypePtr *disp_as_type() const { return _c%d; }\n", idx);
3006     }
3007   }
3008 }
3009 
3010 //
3011 // Construct the method to copy _idx, inputs and operands to new node.
3012 static void define_fill_new_machnode(bool used, FILE *fp_cpp) {
3013   fprintf(fp_cpp, "\n");
3014   fprintf(fp_cpp, "// Copy _idx, inputs and operands to new node\n");
3015   fprintf(fp_cpp, "void MachNode::fill_new_machnode(MachNode* node) const {\n");
3016   if( !used ) {
3017     fprintf(fp_cpp, "  // This architecture does not have cisc or short branch instructions\n");
3018     fprintf(fp_cpp, "  ShouldNotCallThis();\n");
3019     fprintf(fp_cpp, "}\n");
3020   } else {
3021     // New node must use same node index for access through allocator's tables
3022     fprintf(fp_cpp, "  // New node must use same node index\n");
3023     fprintf(fp_cpp, "  node->set_idx( _idx );\n");
3024     // Copy machine-independent inputs
3025     fprintf(fp_cpp, "  // Copy machine-independent inputs\n");
3026     fprintf(fp_cpp, "  for( uint j = 0; j < req(); j++ ) {\n");
3027     fprintf(fp_cpp, "    node->add_req(in(j));\n");
3028     fprintf(fp_cpp, "  }\n");
3029     // Copy machine operands to new MachNode
3030     fprintf(fp_cpp, "  // Copy my operands, except for cisc position\n");
3031     fprintf(fp_cpp, "  int nopnds = num_opnds();\n");
3032     fprintf(fp_cpp, "  assert( node->num_opnds() == (uint)nopnds, \"Must have same number of operands\");\n");
3033     fprintf(fp_cpp, "  MachOper **to = node->_opnds;\n");
3034     fprintf(fp_cpp, "  for( int i = 0; i < nopnds; i++ ) {\n");
3035     fprintf(fp_cpp, "    if( i != cisc_operand() ) \n");
3036     fprintf(fp_cpp, "      to[i] = _opnds[i]->clone();\n");
3037     fprintf(fp_cpp, "  }\n");
3038     fprintf(fp_cpp, "}\n");
3039   }
3040   fprintf(fp_cpp, "\n");
3041 }
3042 
3043 //------------------------------defineClasses----------------------------------
3044 // Define members of MachNode and MachOper classes based on
3045 // operand and instruction lists
3046 void ArchDesc::defineClasses(FILE *fp) {
3047 
3048   // Define the contents of an array containing the machine register names
3049   defineRegNames(fp, _register);
3050   // Define an array containing the machine register encoding values
3051   defineRegEncodes(fp, _register);
3052   // Generate an enumeration of user-defined register classes
3053   // and a list of register masks, one for each class.
3054   // Only define the RegMask value objects in the expand file.
3055   // Declare each as an extern const RegMask ...; in ad_<arch>.hpp
3056   declare_register_masks(_HPP_file._fp);
3057   // build_register_masks(fp);
3058   build_register_masks(_CPP_EXPAND_file._fp);
3059   // Define the pipe_classes
3060   build_pipe_classes(_CPP_PIPELINE_file._fp);
3061 
3062   // Generate Machine Classes for each operand defined in AD file
3063   fprintf(fp,"\n");
3064   fprintf(fp,"\n");
3065   fprintf(fp,"//------------------Define classes derived from MachOper---------------------\n");
3066   // Iterate through all operands
3067   _operands.reset();
3068   OperandForm *oper;
3069   for( ; (oper = (OperandForm*)_operands.iter()) != NULL; ) {
3070     // Ensure this is a machine-world instruction
3071     if ( oper->ideal_only() ) continue;
3072     // !!!!!
3073     // The declaration of labelOper is in machine-independent file: machnode
3074     if ( strcmp(oper->_ident,"label") == 0 ) {
3075       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3076 
3077       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3078       fprintf(fp,"  return  new %sOper(_label, _block_num);\n", oper->_ident);
3079       fprintf(fp,"}\n");
3080 
3081       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3082               oper->_ident, machOperEnum(oper->_ident));
3083       // // Currently all XXXOper::Hash() methods are identical (990820)
3084       // define_hash(fp, oper->_ident);
3085       // // Currently all XXXOper::Cmp() methods are identical (990820)
3086       // define_cmp(fp, oper->_ident);
3087       fprintf(fp,"\n");
3088 
3089       continue;
3090     }
3091 
3092     // The declaration of methodOper is in machine-independent file: machnode
3093     if ( strcmp(oper->_ident,"method") == 0 ) {
3094       defineIn_RegMask(_CPP_MISC_file._fp, _globalNames, *oper);
3095 
3096       fprintf(fp,"MachOper  *%sOper::clone() const {\n", oper->_ident);
3097       fprintf(fp,"  return  new %sOper(_method);\n", oper->_ident);
3098       fprintf(fp,"}\n");
3099 
3100       fprintf(fp,"uint %sOper::opcode() const { return %s; }\n",
3101               oper->_ident, machOperEnum(oper->_ident));
3102       // // Currently all XXXOper::Hash() methods are identical (990820)
3103       // define_hash(fp, oper->_ident);
3104       // // Currently all XXXOper::Cmp() methods are identical (990820)
3105       // define_cmp(fp, oper->_ident);
3106       fprintf(fp,"\n");
3107 
3108       continue;
3109     }
3110 
3111     defineIn_RegMask(fp, _globalNames, *oper);
3112     defineClone(_CPP_CLONE_file._fp, _globalNames, *oper);
3113     // // Currently all XXXOper::Hash() methods are identical (990820)
3114     // define_hash(fp, oper->_ident);
3115     // // Currently all XXXOper::Cmp() methods are identical (990820)
3116     // define_cmp(fp, oper->_ident);
3117 
3118     // side-call to generate output that used to be in the header file:
3119     extern void gen_oper_format(FILE *fp, FormDict &globals, OperandForm &oper, bool for_c_file);
3120     gen_oper_format(_CPP_FORMAT_file._fp, _globalNames, *oper, true);
3121 
3122   }
3123 
3124 
3125   // Generate Machine Classes for each instruction defined in AD file
3126   fprintf(fp,"//------------------Define members for classes derived from MachNode----------\n");
3127   // Output the definitions for out_RegMask() // & kill_RegMask()
3128   _instructions.reset();
3129   InstructForm *instr;
3130   MachNodeForm *machnode;
3131   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3132     // Ensure this is a machine-world instruction
3133     if ( instr->ideal_only() ) continue;
3134 
3135     defineOut_RegMask(_CPP_MISC_file._fp, instr->_ident, reg_mask(*instr));
3136   }
3137 
3138   bool used = false;
3139   // Output the definitions for expand rules & peephole rules
3140   _instructions.reset();
3141   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3142     // Ensure this is a machine-world instruction
3143     if ( instr->ideal_only() ) continue;
3144     // If there are multiple defs/kills, or an explicit expand rule, build rule
3145     if( instr->expands() || instr->needs_projections() ||
3146         instr->has_temps() ||
3147         instr->is_mach_constant() ||
3148         instr->needs_constant_base() ||
3149         instr->_matrule != NULL &&
3150         instr->num_opnds() != instr->num_unique_opnds() )
3151       defineExpand(_CPP_EXPAND_file._fp, instr);
3152     // If there is an explicit peephole rule, build it
3153     if ( instr->peepholes() )
3154       definePeephole(_CPP_PEEPHOLE_file._fp, instr);
3155 
3156     // Output code to convert to the cisc version, if applicable
3157     used |= instr->define_cisc_version(*this, fp);
3158 
3159     // Output code to convert to the short branch version, if applicable
3160     used |= instr->define_short_branch_methods(*this, fp);
3161   }
3162 
3163   // Construct the method called by cisc_version() to copy inputs and operands.
3164   define_fill_new_machnode(used, fp);
3165 
3166   // Output the definitions for labels
3167   _instructions.reset();
3168   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3169     // Ensure this is a machine-world instruction
3170     if ( instr->ideal_only() ) continue;
3171 
3172     // Access the fields for operand Label
3173     int label_position = instr->label_position();
3174     if( label_position != -1 ) {
3175       // Set the label
3176       fprintf(fp,"void %sNode::label_set( Label* label, uint block_num ) {\n", instr->_ident);
3177       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3178               label_position );
3179       fprintf(fp,"  oper->_label     = label;\n");
3180       fprintf(fp,"  oper->_block_num = block_num;\n");
3181       fprintf(fp,"}\n");
3182       // Save the label
3183       fprintf(fp,"void %sNode::save_label( Label** label, uint* block_num ) {\n", instr->_ident);
3184       fprintf(fp,"  labelOper* oper  = (labelOper*)(opnd_array(%d));\n",
3185               label_position );
3186       fprintf(fp,"  *label = oper->_label;\n");
3187       fprintf(fp,"  *block_num = oper->_block_num;\n");
3188       fprintf(fp,"}\n");
3189     }
3190   }
3191 
3192   // Output the definitions for methods
3193   _instructions.reset();
3194   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3195     // Ensure this is a machine-world instruction
3196     if ( instr->ideal_only() ) continue;
3197 
3198     // Access the fields for operand Label
3199     int method_position = instr->method_position();
3200     if( method_position != -1 ) {
3201       // Access the method's address
3202       fprintf(fp,"void %sNode::method_set( intptr_t method ) {\n", instr->_ident);
3203       fprintf(fp,"  ((methodOper*)opnd_array(%d))->_method = method;\n",
3204               method_position );
3205       fprintf(fp,"}\n");
3206       fprintf(fp,"\n");
3207     }
3208   }
3209 
3210   // Define this instruction's number of relocation entries, base is '0'
3211   _instructions.reset();
3212   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
3213     // Output the definition for number of relocation entries
3214     uint reloc_size = instr->reloc(_globalNames);
3215     if ( reloc_size != 0 ) {
3216       fprintf(fp,"int %sNode::reloc() const {\n", instr->_ident);
3217       fprintf(fp,"  return %d;\n", reloc_size);
3218       fprintf(fp,"}\n");
3219       fprintf(fp,"\n");
3220     }
3221   }
3222   fprintf(fp,"\n");
3223 
3224   // Output the definitions for code generation
3225   //
3226   // address  ___Node::emit(address ptr, PhaseRegAlloc *ra_) const {
3227   //   // ...  encoding defined by user
3228   //   return ptr;
3229   // }
3230   //
3231   _instructions.reset();
3232   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3233     // Ensure this is a machine-world instruction
3234     if ( instr->ideal_only() ) continue;
3235 
3236     if (instr->_insencode) {
3237       if (instr->postalloc_expands()) {
3238         // Don't write this to _CPP_EXPAND_file, as the code generated calls C-code
3239         // from code sections in ad file that is dumped to fp.
3240         define_postalloc_expand(fp, *instr);
3241       } else {
3242         defineEmit(fp, *instr);
3243       }
3244     }
3245     if (instr->is_mach_constant()) defineEvalConstant(fp, *instr);
3246     if (instr->_size)              defineSize        (fp, *instr);
3247 
3248     // side-call to generate output that used to be in the header file:
3249     extern void gen_inst_format(FILE *fp, FormDict &globals, InstructForm &oper, bool for_c_file);
3250     gen_inst_format(_CPP_FORMAT_file._fp, _globalNames, *instr, true);
3251   }
3252 
3253   // Output the definitions for alias analysis
3254   _instructions.reset();
3255   for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3256     // Ensure this is a machine-world instruction
3257     if ( instr->ideal_only() ) continue;
3258 
3259     // Analyze machine instructions that either USE or DEF memory.
3260     int memory_operand = instr->memory_operand(_globalNames);
3261     // Some guys kill all of memory
3262     if ( instr->is_wide_memory_kill(_globalNames) ) {
3263       memory_operand = InstructForm::MANY_MEMORY_OPERANDS;
3264     }
3265 
3266     if ( memory_operand != InstructForm::NO_MEMORY_OPERAND ) {
3267       if( memory_operand == InstructForm::MANY_MEMORY_OPERANDS ) {
3268         fprintf(fp,"const TypePtr *%sNode::adr_type() const { return TypePtr::BOTTOM; }\n", instr->_ident);
3269         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return (MachOper*)-1; }\n", instr->_ident);
3270       } else {
3271         fprintf(fp,"const MachOper* %sNode::memory_operand() const { return _opnds[%d]; }\n", instr->_ident, memory_operand);
3272   }
3273     }
3274   }
3275 
3276   // Get the length of the longest identifier
3277   int max_ident_len = 0;
3278   _instructions.reset();
3279 
3280   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3281     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3282       int ident_len = (int)strlen(instr->_ident);
3283       if( max_ident_len < ident_len )
3284         max_ident_len = ident_len;
3285     }
3286   }
3287 
3288   // Emit specifically for Node(s)
3289   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3290     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3291   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return %s; }\n",
3292     max_ident_len, "Node", _pipeline ? "(&pipeline_class_Zero_Instructions)" : "NULL");
3293   fprintf(_CPP_PIPELINE_file._fp, "\n");
3294 
3295   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline_class() { return %s; }\n",
3296     max_ident_len, "MachNode", _pipeline ? "(&pipeline_class_Unknown_Instructions)" : "NULL");
3297   fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*s::pipeline() const { return pipeline_class(); }\n",
3298     max_ident_len, "MachNode");
3299   fprintf(_CPP_PIPELINE_file._fp, "\n");
3300 
3301   // Output the definitions for machine node specific pipeline data
3302   _machnodes.reset();
3303 
3304   for ( ; (machnode = (MachNodeForm*)_machnodes.iter()) != NULL; ) {
3305     fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3306       machnode->_ident, ((class PipeClassForm *)_pipeline->_classdict[machnode->_machnode_pipe])->_num);
3307   }
3308 
3309   fprintf(_CPP_PIPELINE_file._fp, "\n");
3310 
3311   // Output the definitions for instruction pipeline static data references
3312   _instructions.reset();
3313 
3314   for ( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
3315     if (instr->_ins_pipe && _pipeline->_classlist.search(instr->_ins_pipe)) {
3316       fprintf(_CPP_PIPELINE_file._fp, "\n");
3317       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline_class() { return (&pipeline_class_%03d); }\n",
3318         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3319       fprintf(_CPP_PIPELINE_file._fp, "const Pipeline * %*sNode::pipeline() const { return (&pipeline_class_%03d); }\n",
3320         max_ident_len, instr->_ident, ((class PipeClassForm *)_pipeline->_classdict[instr->_ins_pipe])->_num);
3321     }
3322   }
3323 }
3324 
3325 
3326 // -------------------------------- maps ------------------------------------
3327 
3328 // Information needed to generate the ReduceOp mapping for the DFA
3329 class OutputReduceOp : public OutputMap {
3330 public:
3331   OutputReduceOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3332     : OutputMap(hpp, cpp, globals, AD, "reduceOp") {};
3333 
3334   void declaration() { fprintf(_hpp, "extern const int   reduceOp[];\n"); }
3335   void definition()  { fprintf(_cpp, "const        int   reduceOp[] = {\n"); }
3336   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3337                        OutputMap::closing();
3338   }
3339   void map(OpClassForm &opc)  {
3340     const char *reduce = opc._ident;
3341     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3342     else          fprintf(_cpp, "  0");
3343   }
3344   void map(OperandForm &oper) {
3345     // Most operands without match rules, e.g.  eFlagsReg, do not have a result operand
3346     const char *reduce = (oper._matrule ? oper.reduce_result() : NULL);
3347     // operand stackSlot does not have a match rule, but produces a stackSlot
3348     if( oper.is_user_name_for_sReg() != Form::none ) reduce = oper.reduce_result();
3349     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3350     else          fprintf(_cpp, "  0");
3351   }
3352   void map(InstructForm &inst) {
3353     const char *reduce = (inst._matrule ? inst.reduce_result() : NULL);
3354     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3355     else          fprintf(_cpp, "  0");
3356   }
3357   void map(char         *reduce) {
3358     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3359     else          fprintf(_cpp, "  0");
3360   }
3361 };
3362 
3363 // Information needed to generate the LeftOp mapping for the DFA
3364 class OutputLeftOp : public OutputMap {
3365 public:
3366   OutputLeftOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3367     : OutputMap(hpp, cpp, globals, AD, "leftOp") {};
3368 
3369   void declaration() { fprintf(_hpp, "extern const int   leftOp[];\n"); }
3370   void definition()  { fprintf(_cpp, "const        int   leftOp[] = {\n"); }
3371   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3372                        OutputMap::closing();
3373   }
3374   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3375   void map(OperandForm &oper) {
3376     const char *reduce = oper.reduce_left(_globals);
3377     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3378     else          fprintf(_cpp, "  0");
3379   }
3380   void map(char        *name) {
3381     const char *reduce = _AD.reduceLeft(name);
3382     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3383     else          fprintf(_cpp, "  0");
3384   }
3385   void map(InstructForm &inst) {
3386     const char *reduce = inst.reduce_left(_globals);
3387     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3388     else          fprintf(_cpp, "  0");
3389   }
3390 };
3391 
3392 
3393 // Information needed to generate the RightOp mapping for the DFA
3394 class OutputRightOp : public OutputMap {
3395 public:
3396   OutputRightOp(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3397     : OutputMap(hpp, cpp, globals, AD, "rightOp") {};
3398 
3399   void declaration() { fprintf(_hpp, "extern const int   rightOp[];\n"); }
3400   void definition()  { fprintf(_cpp, "const        int   rightOp[] = {\n"); }
3401   void closing()     { fprintf(_cpp, "  0 // no trailing comma\n");
3402                        OutputMap::closing();
3403   }
3404   void map(OpClassForm &opc)  { fprintf(_cpp, "  0"); }
3405   void map(OperandForm &oper) {
3406     const char *reduce = oper.reduce_right(_globals);
3407     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3408     else          fprintf(_cpp, "  0");
3409   }
3410   void map(char        *name) {
3411     const char *reduce = _AD.reduceRight(name);
3412     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3413     else          fprintf(_cpp, "  0");
3414   }
3415   void map(InstructForm &inst) {
3416     const char *reduce = inst.reduce_right(_globals);
3417     if( reduce )  fprintf(_cpp, "  %s_rule", reduce);
3418     else          fprintf(_cpp, "  0");
3419   }
3420 };
3421 
3422 
3423 // Information needed to generate the Rule names for the DFA
3424 class OutputRuleName : public OutputMap {
3425 public:
3426   OutputRuleName(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3427     : OutputMap(hpp, cpp, globals, AD, "ruleName") {};
3428 
3429   void declaration() { fprintf(_hpp, "extern const char *ruleName[];\n"); }
3430   void definition()  { fprintf(_cpp, "const char        *ruleName[] = {\n"); }
3431   void closing()     { fprintf(_cpp, "  \"invalid rule name\" // no trailing comma\n");
3432                        OutputMap::closing();
3433   }
3434   void map(OpClassForm &opc)  { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(opc._ident) ); }
3435   void map(OperandForm &oper) { fprintf(_cpp, "  \"%s\"", _AD.machOperEnum(oper._ident) ); }
3436   void map(char        *name) { fprintf(_cpp, "  \"%s\"", name ? name : "0"); }
3437   void map(InstructForm &inst){ fprintf(_cpp, "  \"%s\"", inst._ident ? inst._ident : "0"); }
3438 };
3439 
3440 
3441 // Information needed to generate the swallowed mapping for the DFA
3442 class OutputSwallowed : public OutputMap {
3443 public:
3444   OutputSwallowed(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3445     : OutputMap(hpp, cpp, globals, AD, "swallowed") {};
3446 
3447   void declaration() { fprintf(_hpp, "extern const bool  swallowed[];\n"); }
3448   void definition()  { fprintf(_cpp, "const        bool  swallowed[] = {\n"); }
3449   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3450                        OutputMap::closing();
3451   }
3452   void map(OperandForm &oper) { // Generate the entry for this opcode
3453     const char *swallowed = oper.swallowed(_globals) ? "true" : "false";
3454     fprintf(_cpp, "  %s", swallowed);
3455   }
3456   void map(OpClassForm &opc)  { fprintf(_cpp, "  false"); }
3457   void map(char        *name) { fprintf(_cpp, "  false"); }
3458   void map(InstructForm &inst){ fprintf(_cpp, "  false"); }
3459 };
3460 
3461 
3462 // Information needed to generate the decision array for instruction chain rule
3463 class OutputInstChainRule : public OutputMap {
3464 public:
3465   OutputInstChainRule(FILE *hpp, FILE *cpp, FormDict &globals, ArchDesc &AD)
3466     : OutputMap(hpp, cpp, globals, AD, "instruction_chain_rule") {};
3467 
3468   void declaration() { fprintf(_hpp, "extern const bool  instruction_chain_rule[];\n"); }
3469   void definition()  { fprintf(_cpp, "const        bool  instruction_chain_rule[] = {\n"); }
3470   void closing()     { fprintf(_cpp, "  false // no trailing comma\n");
3471                        OutputMap::closing();
3472   }
3473   void map(OpClassForm &opc)   { fprintf(_cpp, "  false"); }
3474   void map(OperandForm &oper)  { fprintf(_cpp, "  false"); }
3475   void map(char        *name)  { fprintf(_cpp, "  false"); }
3476   void map(InstructForm &inst) { // Check for simple chain rule
3477     const char *chain = inst.is_simple_chain_rule(_globals) ? "true" : "false";
3478     fprintf(_cpp, "  %s", chain);
3479   }
3480 };
3481 
3482 
3483 //---------------------------build_map------------------------------------
3484 // Build  mapping from enumeration for densely packed operands
3485 // TO result and child types.
3486 void ArchDesc::build_map(OutputMap &map) {
3487   FILE         *fp_hpp = map.decl_file();
3488   FILE         *fp_cpp = map.def_file();
3489   int           idx    = 0;
3490   OperandForm  *op;
3491   OpClassForm  *opc;
3492   InstructForm *inst;
3493 
3494   // Construct this mapping
3495   map.declaration();
3496   fprintf(fp_cpp,"\n");
3497   map.definition();
3498 
3499   // Output the mapping for operands
3500   map.record_position(OutputMap::BEGIN_OPERANDS, idx );
3501   _operands.reset();
3502   for(; (op = (OperandForm*)_operands.iter()) != NULL; ) {
3503     // Ensure this is a machine-world instruction
3504     if ( op->ideal_only() )  continue;
3505 
3506     // Generate the entry for this opcode
3507     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*op); fprintf(fp_cpp, ",\n");
3508     ++idx;
3509   };
3510   fprintf(fp_cpp, "  // last operand\n");
3511 
3512   // Place all user-defined operand classes into the mapping
3513   map.record_position(OutputMap::BEGIN_OPCLASSES, idx );
3514   _opclass.reset();
3515   for(; (opc = (OpClassForm*)_opclass.iter()) != NULL; ) {
3516     fprintf(fp_cpp, "  /* %4d */", idx); map.map(*opc); fprintf(fp_cpp, ",\n");
3517     ++idx;
3518   };
3519   fprintf(fp_cpp, "  // last operand class\n");
3520 
3521   // Place all internally defined operands into the mapping
3522   map.record_position(OutputMap::BEGIN_INTERNALS, idx );
3523   _internalOpNames.reset();
3524   char *name = NULL;
3525   for(; (name = (char *)_internalOpNames.iter()) != NULL; ) {
3526     fprintf(fp_cpp, "  /* %4d */", idx); map.map(name); fprintf(fp_cpp, ",\n");
3527     ++idx;
3528   };
3529   fprintf(fp_cpp, "  // last internally defined operand\n");
3530 
3531   // Place all user-defined instructions into the mapping
3532   if( map.do_instructions() ) {
3533     map.record_position(OutputMap::BEGIN_INSTRUCTIONS, idx );
3534     // Output all simple instruction chain rules first
3535     map.record_position(OutputMap::BEGIN_INST_CHAIN_RULES, idx );
3536     {
3537       _instructions.reset();
3538       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3539         // Ensure this is a machine-world instruction
3540         if ( inst->ideal_only() )  continue;
3541         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3542         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3543 
3544         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3545         ++idx;
3546       };
3547       map.record_position(OutputMap::BEGIN_REMATERIALIZE, idx );
3548       _instructions.reset();
3549       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3550         // Ensure this is a machine-world instruction
3551         if ( inst->ideal_only() )  continue;
3552         if ( ! inst->is_simple_chain_rule(_globalNames) ) continue;
3553         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3554 
3555         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3556         ++idx;
3557       };
3558       map.record_position(OutputMap::END_INST_CHAIN_RULES, idx );
3559     }
3560     // Output all instructions that are NOT simple chain rules
3561     {
3562       _instructions.reset();
3563       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3564         // Ensure this is a machine-world instruction
3565         if ( inst->ideal_only() )  continue;
3566         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3567         if ( ! inst->rematerialize(_globalNames, get_registers()) ) continue;
3568 
3569         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3570         ++idx;
3571       };
3572       map.record_position(OutputMap::END_REMATERIALIZE, idx );
3573       _instructions.reset();
3574       for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
3575         // Ensure this is a machine-world instruction
3576         if ( inst->ideal_only() )  continue;
3577         if ( inst->is_simple_chain_rule(_globalNames) ) continue;
3578         if ( inst->rematerialize(_globalNames, get_registers()) ) continue;
3579 
3580         fprintf(fp_cpp, "  /* %4d */", idx); map.map(*inst); fprintf(fp_cpp, ",\n");
3581         ++idx;
3582       };
3583     }
3584     fprintf(fp_cpp, "  // last instruction\n");
3585     map.record_position(OutputMap::END_INSTRUCTIONS, idx );
3586   }
3587   // Finish defining table
3588   map.closing();
3589 };
3590 
3591 
3592 // Helper function for buildReduceMaps
3593 char reg_save_policy(const char *calling_convention) {
3594   char callconv;
3595 
3596   if      (!strcmp(calling_convention, "NS"))  callconv = 'N';
3597   else if (!strcmp(calling_convention, "SOE")) callconv = 'E';
3598   else if (!strcmp(calling_convention, "SOC")) callconv = 'C';
3599   else if (!strcmp(calling_convention, "AS"))  callconv = 'A';
3600   else                                         callconv = 'Z';
3601 
3602   return callconv;
3603 }
3604 
3605 void ArchDesc::generate_needs_clone_jvms(FILE *fp_cpp) {
3606   fprintf(fp_cpp, "bool Compile::needs_clone_jvms() { return %s; }\n\n",
3607           _needs_clone_jvms ? "true" : "false");
3608 }
3609 
3610 //---------------------------generate_assertion_checks-------------------
3611 void ArchDesc::generate_adlc_verification(FILE *fp_cpp) {
3612   fprintf(fp_cpp, "\n");
3613 
3614   fprintf(fp_cpp, "#ifndef PRODUCT\n");
3615   fprintf(fp_cpp, "void Compile::adlc_verification() {\n");
3616   globalDefs().print_asserts(fp_cpp);
3617   fprintf(fp_cpp, "}\n");
3618   fprintf(fp_cpp, "#endif\n");
3619   fprintf(fp_cpp, "\n");
3620 }
3621 
3622 //---------------------------addSourceBlocks-----------------------------
3623 void ArchDesc::addSourceBlocks(FILE *fp_cpp) {
3624   if (_source.count() > 0)
3625     _source.output(fp_cpp);
3626 
3627   generate_adlc_verification(fp_cpp);
3628 }
3629 //---------------------------addHeaderBlocks-----------------------------
3630 void ArchDesc::addHeaderBlocks(FILE *fp_hpp) {
3631   if (_header.count() > 0)
3632     _header.output(fp_hpp);
3633 }
3634 //-------------------------addPreHeaderBlocks----------------------------
3635 void ArchDesc::addPreHeaderBlocks(FILE *fp_hpp) {
3636   // Output #defines from definition block
3637   globalDefs().print_defines(fp_hpp);
3638 
3639   if (_pre_header.count() > 0)
3640     _pre_header.output(fp_hpp);
3641 }
3642 
3643 //---------------------------buildReduceMaps-----------------------------
3644 // Build  mapping from enumeration for densely packed operands
3645 // TO result and child types.
3646 void ArchDesc::buildReduceMaps(FILE *fp_hpp, FILE *fp_cpp) {
3647   RegDef       *rdef;
3648   RegDef       *next;
3649 
3650   // The emit bodies currently require functions defined in the source block.
3651 
3652   // Build external declarations for mappings
3653   fprintf(fp_hpp, "\n");
3654   fprintf(fp_hpp, "extern const char  register_save_policy[];\n");
3655   fprintf(fp_hpp, "extern const char  c_reg_save_policy[];\n");
3656   fprintf(fp_hpp, "extern const int   register_save_type[];\n");
3657   fprintf(fp_hpp, "\n");
3658 
3659   // Construct Save-Policy array
3660   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_policy\n");
3661   fprintf(fp_cpp, "const        char register_save_policy[] = {\n");
3662   _register->reset_RegDefs();
3663   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3664     next              = _register->iter_RegDefs();
3665     char policy       = reg_save_policy(rdef->_callconv);
3666     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3667     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3668   }
3669   fprintf(fp_cpp, "};\n\n");
3670 
3671   // Construct Native Save-Policy array
3672   fprintf(fp_cpp, "// Map from machine-independent register number to c_reg_save_policy\n");
3673   fprintf(fp_cpp, "const        char c_reg_save_policy[] = {\n");
3674   _register->reset_RegDefs();
3675   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3676     next        = _register->iter_RegDefs();
3677     char policy = reg_save_policy(rdef->_c_conv);
3678     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3679     fprintf(fp_cpp, "  '%c'%s // %s\n", policy, comma, rdef->_regname);
3680   }
3681   fprintf(fp_cpp, "};\n\n");
3682 
3683   // Construct Register Save Type array
3684   fprintf(fp_cpp, "// Map from machine-independent register number to register_save_type\n");
3685   fprintf(fp_cpp, "const        int register_save_type[] = {\n");
3686   _register->reset_RegDefs();
3687   for( rdef = _register->iter_RegDefs(); rdef != NULL; rdef = next ) {
3688     next = _register->iter_RegDefs();
3689     const char *comma = (next != NULL) ? "," : " // no trailing comma";
3690     fprintf(fp_cpp, "  %s%s\n", rdef->_idealtype, comma);
3691   }
3692   fprintf(fp_cpp, "};\n\n");
3693 
3694   // Construct the table for reduceOp
3695   OutputReduceOp output_reduce_op(fp_hpp, fp_cpp, _globalNames, *this);
3696   build_map(output_reduce_op);
3697   // Construct the table for leftOp
3698   OutputLeftOp output_left_op(fp_hpp, fp_cpp, _globalNames, *this);
3699   build_map(output_left_op);
3700   // Construct the table for rightOp
3701   OutputRightOp output_right_op(fp_hpp, fp_cpp, _globalNames, *this);
3702   build_map(output_right_op);
3703   // Construct the table of rule names
3704   OutputRuleName output_rule_name(fp_hpp, fp_cpp, _globalNames, *this);
3705   build_map(output_rule_name);
3706   // Construct the boolean table for subsumed operands
3707   OutputSwallowed output_swallowed(fp_hpp, fp_cpp, _globalNames, *this);
3708   build_map(output_swallowed);
3709   // // // Preserve in case we decide to use this table instead of another
3710   //// Construct the boolean table for instruction chain rules
3711   //OutputInstChainRule output_inst_chain(fp_hpp, fp_cpp, _globalNames, *this);
3712   //build_map(output_inst_chain);
3713 
3714 }
3715 
3716 
3717 //---------------------------buildMachOperGenerator---------------------------
3718 
3719 // Recurse through match tree, building path through corresponding state tree,
3720 // Until we reach the constant we are looking for.
3721 static void path_to_constant(FILE *fp, FormDict &globals,
3722                              MatchNode *mnode, uint idx) {
3723   if ( ! mnode) return;
3724 
3725   unsigned    position = 0;
3726   const char *result   = NULL;
3727   const char *name     = NULL;
3728   const char *optype   = NULL;
3729 
3730   // Base Case: access constant in ideal node linked to current state node
3731   // Each type of constant has its own access function
3732   if ( (mnode->_lChild == NULL) && (mnode->_rChild == NULL)
3733        && mnode->base_operand(position, globals, result, name, optype) ) {
3734     if (         strcmp(optype,"ConI") == 0 ) {
3735       fprintf(fp, "_leaf->get_int()");
3736     } else if ( (strcmp(optype,"ConP") == 0) ) {
3737       fprintf(fp, "_leaf->bottom_type()->is_ptr()");
3738     } else if ( (strcmp(optype,"ConN") == 0) ) {
3739       fprintf(fp, "_leaf->bottom_type()->is_narrowoop()");
3740     } else if ( (strcmp(optype,"ConNKlass") == 0) ) {
3741       fprintf(fp, "_leaf->bottom_type()->is_narrowklass()");
3742     } else if ( (strcmp(optype,"ConF") == 0) ) {
3743       fprintf(fp, "_leaf->getf()");
3744     } else if ( (strcmp(optype,"ConD") == 0) ) {
3745       fprintf(fp, "_leaf->getd()");
3746     } else if ( (strcmp(optype,"ConL") == 0) ) {
3747       fprintf(fp, "_leaf->get_long()");
3748     } else if ( (strcmp(optype,"Con")==0) ) {
3749       // !!!!! - Update if adding a machine-independent constant type
3750       fprintf(fp, "_leaf->get_int()");
3751       assert( false, "Unsupported constant type, pointer or indefinite");
3752     } else if ( (strcmp(optype,"Bool") == 0) ) {
3753       fprintf(fp, "_leaf->as_Bool()->_test._test");
3754     } else {
3755       assert( false, "Unsupported constant type");
3756     }
3757     return;
3758   }
3759 
3760   // If constant is in left child, build path and recurse
3761   uint lConsts = (mnode->_lChild) ? (mnode->_lChild->num_consts(globals) ) : 0;
3762   uint rConsts = (mnode->_rChild) ? (mnode->_rChild->num_consts(globals) ) : 0;
3763   if ( (mnode->_lChild) && (lConsts > idx) ) {
3764     fprintf(fp, "_kids[0]->");
3765     path_to_constant(fp, globals, mnode->_lChild, idx);
3766     return;
3767   }
3768   // If constant is in right child, build path and recurse
3769   if ( (mnode->_rChild) && (rConsts > (idx - lConsts) ) ) {
3770     idx = idx - lConsts;
3771     fprintf(fp, "_kids[1]->");
3772     path_to_constant(fp, globals, mnode->_rChild, idx);
3773     return;
3774   }
3775   assert( false, "ShouldNotReachHere()");
3776 }
3777 
3778 // Generate code that is executed when generating a specific Machine Operand
3779 static void genMachOperCase(FILE *fp, FormDict &globalNames, ArchDesc &AD,
3780                             OperandForm &op) {
3781   const char *opName         = op._ident;
3782   const char *opEnumName     = AD.machOperEnum(opName);
3783   uint        num_consts     = op.num_consts(globalNames);
3784 
3785   // Generate the case statement for this opcode
3786   fprintf(fp, "  case %s:", opEnumName);
3787   fprintf(fp, "\n    return new %sOper(", opName);
3788   // Access parameters for constructor from the stat object
3789   //
3790   // Build access to condition code value
3791   if ( (num_consts > 0) ) {
3792     uint i = 0;
3793     path_to_constant(fp, globalNames, op._matrule, i);
3794     for ( i = 1; i < num_consts; ++i ) {
3795       fprintf(fp, ", ");
3796       path_to_constant(fp, globalNames, op._matrule, i);
3797     }
3798   }
3799   fprintf(fp, " );\n");
3800 }
3801 
3802 
3803 // Build switch to invoke "new" MachNode or MachOper
3804 void ArchDesc::buildMachOperGenerator(FILE *fp_cpp) {
3805   int idx = 0;
3806 
3807   // Build switch to invoke 'new' for a specific MachOper
3808   fprintf(fp_cpp, "\n");
3809   fprintf(fp_cpp, "\n");
3810   fprintf(fp_cpp,
3811           "//------------------------- MachOper Generator ---------------\n");
3812   fprintf(fp_cpp,
3813           "// A switch statement on the dense-packed user-defined type system\n"
3814           "// that invokes 'new' on the corresponding class constructor.\n");
3815   fprintf(fp_cpp, "\n");
3816   fprintf(fp_cpp, "MachOper *State::MachOperGenerator");
3817   fprintf(fp_cpp, "(int opcode)");
3818   fprintf(fp_cpp, "{\n");
3819   fprintf(fp_cpp, "\n");
3820   fprintf(fp_cpp, "  switch(opcode) {\n");
3821 
3822   // Place all user-defined operands into the mapping
3823   _operands.reset();
3824   int  opIndex = 0;
3825   OperandForm *op;
3826   for( ; (op =  (OperandForm*)_operands.iter()) != NULL; ) {
3827     // Ensure this is a machine-world instruction
3828     if ( op->ideal_only() )  continue;
3829 
3830     genMachOperCase(fp_cpp, _globalNames, *this, *op);
3831   };
3832 
3833   // Do not iterate over operand classes for the  operand generator!!!
3834 
3835   // Place all internal operands into the mapping
3836   _internalOpNames.reset();
3837   const char *iopn;
3838   for( ; (iopn =  _internalOpNames.iter()) != NULL; ) {
3839     const char *opEnumName = machOperEnum(iopn);
3840     // Generate the case statement for this opcode
3841     fprintf(fp_cpp, "  case %s:", opEnumName);
3842     fprintf(fp_cpp, "    return NULL;\n");
3843   };
3844 
3845   // Generate the default case for switch(opcode)
3846   fprintf(fp_cpp, "  \n");
3847   fprintf(fp_cpp, "  default:\n");
3848   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachOper Generator invoked for: \\n\");\n");
3849   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
3850   fprintf(fp_cpp, "    break;\n");
3851   fprintf(fp_cpp, "  }\n");
3852 
3853   // Generate the closing for method Matcher::MachOperGenerator
3854   fprintf(fp_cpp, "  return NULL;\n");
3855   fprintf(fp_cpp, "};\n");
3856 }
3857 
3858 
3859 //---------------------------buildMachNode-------------------------------------
3860 // Build a new MachNode, for MachNodeGenerator or cisc-spilling
3861 void ArchDesc::buildMachNode(FILE *fp_cpp, InstructForm *inst, const char *indent) {
3862   const char *opType  = NULL;
3863   const char *opClass = inst->_ident;
3864 
3865   // Create the MachNode object
3866   fprintf(fp_cpp, "%s %sNode *node = new %sNode();\n",indent, opClass,opClass);
3867 
3868   if ( (inst->num_post_match_opnds() != 0) ) {
3869     // Instruction that contains operands which are not in match rule.
3870     //
3871     // Check if the first post-match component may be an interesting def
3872     bool           dont_care = false;
3873     ComponentList &comp_list = inst->_components;
3874     Component     *comp      = NULL;
3875     comp_list.reset();
3876     if ( comp_list.match_iter() != NULL )    dont_care = true;
3877 
3878     // Insert operands that are not in match-rule.
3879     // Only insert a DEF if the do_care flag is set
3880     comp_list.reset();
3881     while ( comp = comp_list.post_match_iter() ) {
3882       // Check if we don't care about DEFs or KILLs that are not USEs
3883       if ( dont_care && (! comp->isa(Component::USE)) ) {
3884         continue;
3885       }
3886       dont_care = true;
3887       // For each operand not in the match rule, call MachOperGenerator
3888       // with the enum for the opcode that needs to be built.
3889       ComponentList clist = inst->_components;
3890       int         index  = clist.operand_position(comp->_name, comp->_usedef, inst);
3891       const char *opcode = machOperEnum(comp->_type);
3892       fprintf(fp_cpp, "%s node->set_opnd_array(%d, ", indent, index);
3893       fprintf(fp_cpp, "MachOperGenerator(%s));\n", opcode);
3894       }
3895   }
3896   else if ( inst->is_chain_of_constant(_globalNames, opType) ) {
3897     // An instruction that chains from a constant!
3898     // In this case, we need to subsume the constant into the node
3899     // at operand position, oper_input_base().
3900     //
3901     // Fill in the constant
3902     fprintf(fp_cpp, "%s node->_opnd_array[%d] = ", indent,
3903             inst->oper_input_base(_globalNames));
3904     // #####
3905     // Check for multiple constants and then fill them in.
3906     // Just like MachOperGenerator
3907     const char *opName = inst->_matrule->_rChild->_opType;
3908     fprintf(fp_cpp, "new %sOper(", opName);
3909     // Grab operand form
3910     OperandForm *op = (_globalNames[opName])->is_operand();
3911     // Look up the number of constants
3912     uint num_consts = op->num_consts(_globalNames);
3913     if ( (num_consts > 0) ) {
3914       uint i = 0;
3915       path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3916       for ( i = 1; i < num_consts; ++i ) {
3917         fprintf(fp_cpp, ", ");
3918         path_to_constant(fp_cpp, _globalNames, op->_matrule, i);
3919       }
3920     }
3921     fprintf(fp_cpp, " );\n");
3922     // #####
3923   }
3924 
3925   // Fill in the bottom_type where requested
3926   if (inst->captures_bottom_type(_globalNames)) {
3927     if (strncmp("MachCall", inst->mach_base_class(_globalNames), strlen("MachCall"))) {
3928       fprintf(fp_cpp, "%s node->_bottom_type = _leaf->bottom_type();\n", indent);
3929     }
3930   }
3931   if( inst->is_ideal_if() ) {
3932     fprintf(fp_cpp, "%s node->_prob = _leaf->as_If()->_prob;\n", indent);
3933     fprintf(fp_cpp, "%s node->_fcnt = _leaf->as_If()->_fcnt;\n", indent);
3934   }
3935   if( inst->is_ideal_fastlock() ) {
3936     fprintf(fp_cpp, "%s node->_counters = _leaf->as_FastLock()->counters();\n", indent);
3937     fprintf(fp_cpp, "%s node->_rtm_counters = _leaf->as_FastLock()->rtm_counters();\n", indent);
3938     fprintf(fp_cpp, "%s node->_stack_rtm_counters = _leaf->as_FastLock()->stack_rtm_counters();\n", indent);
3939   }
3940 
3941 }
3942 
3943 //---------------------------declare_cisc_version------------------------------
3944 // Build CISC version of this instruction
3945 void InstructForm::declare_cisc_version(ArchDesc &AD, FILE *fp_hpp) {
3946   if( AD.can_cisc_spill() ) {
3947     InstructForm *inst_cisc = cisc_spill_alternate();
3948     if (inst_cisc != NULL) {
3949       fprintf(fp_hpp, "  virtual int            cisc_operand() const { return %d; }\n", cisc_spill_operand());
3950       fprintf(fp_hpp, "  virtual MachNode      *cisc_version(int offset);\n");
3951       fprintf(fp_hpp, "  virtual void           use_cisc_RegMask();\n");
3952       fprintf(fp_hpp, "  virtual const RegMask *cisc_RegMask() const { return _cisc_RegMask; }\n");
3953     }
3954   }
3955 }
3956 
3957 //---------------------------define_cisc_version-------------------------------
3958 // Build CISC version of this instruction
3959 bool InstructForm::define_cisc_version(ArchDesc &AD, FILE *fp_cpp) {
3960   InstructForm *inst_cisc = this->cisc_spill_alternate();
3961   if( AD.can_cisc_spill() && (inst_cisc != NULL) ) {
3962     const char   *name      = inst_cisc->_ident;
3963     assert( inst_cisc->num_opnds() == this->num_opnds(), "Must have same number of operands");
3964     OperandForm *cisc_oper = AD.cisc_spill_operand();
3965     assert( cisc_oper != NULL, "insanity check");
3966     const char *cisc_oper_name  = cisc_oper->_ident;
3967     assert( cisc_oper_name != NULL, "insanity check");
3968     //
3969     // Set the correct reg_mask_or_stack for the cisc operand
3970     fprintf(fp_cpp, "\n");
3971     fprintf(fp_cpp, "void %sNode::use_cisc_RegMask() {\n", this->_ident);
3972     // Lookup the correct reg_mask_or_stack
3973     const char *reg_mask_name = cisc_reg_mask_name();
3974     fprintf(fp_cpp, "  _cisc_RegMask = &STACK_OR_%s;\n", reg_mask_name);
3975     fprintf(fp_cpp, "}\n");
3976     //
3977     // Construct CISC version of this instruction
3978     fprintf(fp_cpp, "\n");
3979     fprintf(fp_cpp, "// Build CISC version of this instruction\n");
3980     fprintf(fp_cpp, "MachNode *%sNode::cisc_version(int offset) {\n", this->_ident);
3981     // Create the MachNode object
3982     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
3983     // Fill in the bottom_type where requested
3984     if ( this->captures_bottom_type(AD.globalNames()) ) {
3985       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
3986     }
3987 
3988     uint cur_num_opnds = num_opnds();
3989     if (cur_num_opnds > 1 && cur_num_opnds != num_unique_opnds()) {
3990       fprintf(fp_cpp,"  node->_num_opnds = %d;\n", num_unique_opnds());
3991     }
3992 
3993     fprintf(fp_cpp, "\n");
3994     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
3995     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
3996     // Construct operand to access [stack_pointer + offset]
3997     fprintf(fp_cpp, "  // Construct operand to access [stack_pointer + offset]\n");
3998     fprintf(fp_cpp, "  node->set_opnd_array(cisc_operand(), new %sOper(offset));\n", cisc_oper_name);
3999     fprintf(fp_cpp, "\n");
4000 
4001     // Return result and exit scope
4002     fprintf(fp_cpp, "  return node;\n");
4003     fprintf(fp_cpp, "}\n");
4004     fprintf(fp_cpp, "\n");
4005     return true;
4006   }
4007   return false;
4008 }
4009 
4010 //---------------------------declare_short_branch_methods----------------------
4011 // Build prototypes for short branch methods
4012 void InstructForm::declare_short_branch_methods(FILE *fp_hpp) {
4013   if (has_short_branch_form()) {
4014     fprintf(fp_hpp, "  virtual MachNode      *short_branch_version();\n");
4015   }
4016 }
4017 
4018 //---------------------------define_short_branch_methods-----------------------
4019 // Build definitions for short branch methods
4020 bool InstructForm::define_short_branch_methods(ArchDesc &AD, FILE *fp_cpp) {
4021   if (has_short_branch_form()) {
4022     InstructForm *short_branch = short_branch_form();
4023     const char   *name         = short_branch->_ident;
4024 
4025     // Construct short_branch_version() method.
4026     fprintf(fp_cpp, "// Build short branch version of this instruction\n");
4027     fprintf(fp_cpp, "MachNode *%sNode::short_branch_version() {\n", this->_ident);
4028     // Create the MachNode object
4029     fprintf(fp_cpp, "  %sNode *node = new %sNode();\n", name, name);
4030     if( is_ideal_if() ) {
4031       fprintf(fp_cpp, "  node->_prob = _prob;\n");
4032       fprintf(fp_cpp, "  node->_fcnt = _fcnt;\n");
4033     }
4034     // Fill in the bottom_type where requested
4035     if ( this->captures_bottom_type(AD.globalNames()) ) {
4036       fprintf(fp_cpp, "  node->_bottom_type = bottom_type();\n");
4037     }
4038 
4039     fprintf(fp_cpp, "\n");
4040     // Short branch version must use same node index for access
4041     // through allocator's tables
4042     fprintf(fp_cpp, "  // Copy _idx, inputs and operands to new node\n");
4043     fprintf(fp_cpp, "  fill_new_machnode(node);\n");
4044 
4045     // Return result and exit scope
4046     fprintf(fp_cpp, "  return node;\n");
4047     fprintf(fp_cpp, "}\n");
4048     fprintf(fp_cpp,"\n");
4049     return true;
4050   }
4051   return false;
4052 }
4053 
4054 
4055 //---------------------------buildMachNodeGenerator----------------------------
4056 // Build switch to invoke appropriate "new" MachNode for an opcode
4057 void ArchDesc::buildMachNodeGenerator(FILE *fp_cpp) {
4058 
4059   // Build switch to invoke 'new' for a specific MachNode
4060   fprintf(fp_cpp, "\n");
4061   fprintf(fp_cpp, "\n");
4062   fprintf(fp_cpp,
4063           "//------------------------- MachNode Generator ---------------\n");
4064   fprintf(fp_cpp,
4065           "// A switch statement on the dense-packed user-defined type system\n"
4066           "// that invokes 'new' on the corresponding class constructor.\n");
4067   fprintf(fp_cpp, "\n");
4068   fprintf(fp_cpp, "MachNode *State::MachNodeGenerator");
4069   fprintf(fp_cpp, "(int opcode)");
4070   fprintf(fp_cpp, "{\n");
4071   fprintf(fp_cpp, "  switch(opcode) {\n");
4072 
4073   // Provide constructor for all user-defined instructions
4074   _instructions.reset();
4075   int  opIndex = operandFormCount();
4076   InstructForm *inst;
4077   for( ; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4078     // Ensure that matrule is defined.
4079     if ( inst->_matrule == NULL ) continue;
4080 
4081     int         opcode  = opIndex++;
4082     const char *opClass = inst->_ident;
4083     char       *opType  = NULL;
4084 
4085     // Generate the case statement for this instruction
4086     fprintf(fp_cpp, "  case %s_rule:", opClass);
4087 
4088     // Start local scope
4089     fprintf(fp_cpp, " {\n");
4090     // Generate code to construct the new MachNode
4091     buildMachNode(fp_cpp, inst, "     ");
4092     // Return result and exit scope
4093     fprintf(fp_cpp, "      return node;\n");
4094     fprintf(fp_cpp, "    }\n");
4095   }
4096 
4097   // Generate the default case for switch(opcode)
4098   fprintf(fp_cpp, "  \n");
4099   fprintf(fp_cpp, "  default:\n");
4100   fprintf(fp_cpp, "    fprintf(stderr, \"Default MachNode Generator invoked for: \\n\");\n");
4101   fprintf(fp_cpp, "    fprintf(stderr, \"   opcode = %cd\\n\", opcode);\n", '%');
4102   fprintf(fp_cpp, "    break;\n");
4103   fprintf(fp_cpp, "  };\n");
4104 
4105   // Generate the closing for method Matcher::MachNodeGenerator
4106   fprintf(fp_cpp, "  return NULL;\n");
4107   fprintf(fp_cpp, "}\n");
4108 }
4109 
4110 
4111 //---------------------------buildInstructMatchCheck--------------------------
4112 // Output the method to Matcher which checks whether or not a specific
4113 // instruction has a matching rule for the host architecture.
4114 void ArchDesc::buildInstructMatchCheck(FILE *fp_cpp) const {
4115   fprintf(fp_cpp, "\n\n");
4116   fprintf(fp_cpp, "const bool Matcher::has_match_rule(int opcode) {\n");
4117   fprintf(fp_cpp, "  assert(_last_machine_leaf < opcode && opcode < _last_opcode, \"opcode in range\");\n");
4118   fprintf(fp_cpp, "  return _hasMatchRule[opcode];\n");
4119   fprintf(fp_cpp, "}\n\n");
4120 
4121   fprintf(fp_cpp, "const bool Matcher::_hasMatchRule[_last_opcode] = {\n");
4122   int i;
4123   for (i = 0; i < _last_opcode - 1; i++) {
4124     fprintf(fp_cpp, "    %-5s,  // %s\n",
4125             _has_match_rule[i] ? "true" : "false",
4126             NodeClassNames[i]);
4127   }
4128   fprintf(fp_cpp, "    %-5s   // %s\n",
4129           _has_match_rule[i] ? "true" : "false",
4130           NodeClassNames[i]);
4131   fprintf(fp_cpp, "};\n");
4132 }
4133 
4134 //---------------------------buildFrameMethods---------------------------------
4135 // Output the methods to Matcher which specify frame behavior
4136 void ArchDesc::buildFrameMethods(FILE *fp_cpp) {
4137   fprintf(fp_cpp,"\n\n");
4138   // Stack Direction
4139   fprintf(fp_cpp,"bool Matcher::stack_direction() const { return %s; }\n\n",
4140           _frame->_direction ? "true" : "false");
4141   // Sync Stack Slots
4142   fprintf(fp_cpp,"int Compile::sync_stack_slots() const { return %s; }\n\n",
4143           _frame->_sync_stack_slots);
4144   // Java Stack Alignment
4145   fprintf(fp_cpp,"uint Matcher::stack_alignment_in_bytes() { return %s; }\n\n",
4146           _frame->_alignment);
4147   // Java Return Address Location
4148   fprintf(fp_cpp,"OptoReg::Name Matcher::return_addr() const {");
4149   if (_frame->_return_addr_loc) {
4150     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4151             _frame->_return_addr);
4152   }
4153   else {
4154     fprintf(fp_cpp," return OptoReg::stack2reg(%s); }\n\n",
4155             _frame->_return_addr);
4156   }
4157   // Java Stack Slot Preservation
4158   fprintf(fp_cpp,"uint Compile::in_preserve_stack_slots() ");
4159   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_in_preserve_slots);
4160   // Top Of Stack Slot Preservation, for both Java and C
4161   fprintf(fp_cpp,"uint Compile::out_preserve_stack_slots() ");
4162   fprintf(fp_cpp,"{ return SharedRuntime::out_preserve_stack_slots(); }\n\n");
4163   // varargs C out slots killed
4164   fprintf(fp_cpp,"uint Compile::varargs_C_out_slots_killed() const ");
4165   fprintf(fp_cpp,"{ return %s; }\n\n", _frame->_varargs_C_out_slots_killed);
4166   // Java Argument Position
4167   fprintf(fp_cpp,"void Matcher::calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length, bool is_outgoing) {\n");
4168   fprintf(fp_cpp,"%s\n", _frame->_calling_convention);
4169   fprintf(fp_cpp,"}\n\n");
4170   // Native Argument Position
4171   fprintf(fp_cpp,"void Matcher::c_calling_convention(BasicType *sig_bt, VMRegPair *regs, uint length) {\n");
4172   fprintf(fp_cpp,"%s\n", _frame->_c_calling_convention);
4173   fprintf(fp_cpp,"}\n\n");
4174   // Java Return Value Location
4175   fprintf(fp_cpp,"OptoRegPair Matcher::return_value(uint ideal_reg, bool is_outgoing) {\n");
4176   fprintf(fp_cpp,"%s\n", _frame->_return_value);
4177   fprintf(fp_cpp,"}\n\n");
4178   // Native Return Value Location
4179   fprintf(fp_cpp,"OptoRegPair Matcher::c_return_value(uint ideal_reg, bool is_outgoing) {\n");
4180   fprintf(fp_cpp,"%s\n", _frame->_c_return_value);
4181   fprintf(fp_cpp,"}\n\n");
4182 
4183   // Inline Cache Register, mask definition, and encoding
4184   fprintf(fp_cpp,"OptoReg::Name Matcher::inline_cache_reg() {");
4185   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4186           _frame->_inline_cache_reg);
4187   fprintf(fp_cpp,"int Matcher::inline_cache_reg_encode() {");
4188   fprintf(fp_cpp," return _regEncode[inline_cache_reg()]; }\n\n");
4189 
4190   // Interpreter's Method Oop Register, mask definition, and encoding
4191   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_method_oop_reg() {");
4192   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4193           _frame->_interpreter_method_oop_reg);
4194   fprintf(fp_cpp,"int Matcher::interpreter_method_oop_reg_encode() {");
4195   fprintf(fp_cpp," return _regEncode[interpreter_method_oop_reg()]; }\n\n");
4196 
4197   // Interpreter's Frame Pointer Register, mask definition, and encoding
4198   fprintf(fp_cpp,"OptoReg::Name Matcher::interpreter_frame_pointer_reg() {");
4199   if (_frame->_interpreter_frame_pointer_reg == NULL)
4200     fprintf(fp_cpp," return OptoReg::Bad; }\n\n");
4201   else
4202     fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4203             _frame->_interpreter_frame_pointer_reg);
4204 
4205   // Frame Pointer definition
4206   /* CNC - I can not contemplate having a different frame pointer between
4207      Java and native code; makes my head hurt to think about it.
4208   fprintf(fp_cpp,"OptoReg::Name Matcher::frame_pointer() const {");
4209   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4210           _frame->_frame_pointer);
4211   */
4212   // (Native) Frame Pointer definition
4213   fprintf(fp_cpp,"OptoReg::Name Matcher::c_frame_pointer() const {");
4214   fprintf(fp_cpp," return OptoReg::Name(%s_num); }\n\n",
4215           _frame->_frame_pointer);
4216 
4217   // Number of callee-save + always-save registers for calling convention
4218   fprintf(fp_cpp, "// Number of callee-save + always-save registers\n");
4219   fprintf(fp_cpp, "int  Matcher::number_of_saved_registers() {\n");
4220   RegDef *rdef;
4221   int nof_saved_registers = 0;
4222   _register->reset_RegDefs();
4223   while( (rdef = _register->iter_RegDefs()) != NULL ) {
4224     if( !strcmp(rdef->_callconv, "SOE") ||  !strcmp(rdef->_callconv, "AS") )
4225       ++nof_saved_registers;
4226   }
4227   fprintf(fp_cpp, "  return %d;\n", nof_saved_registers);
4228   fprintf(fp_cpp, "};\n\n");
4229 }
4230 
4231 
4232 
4233 
4234 static int PrintAdlcCisc = 0;
4235 //---------------------------identify_cisc_spilling----------------------------
4236 // Get info for the CISC_oracle and MachNode::cisc_version()
4237 void ArchDesc::identify_cisc_spill_instructions() {
4238 
4239   if (_frame == NULL)
4240     return;
4241 
4242   // Find the user-defined operand for cisc-spilling
4243   if( _frame->_cisc_spilling_operand_name != NULL ) {
4244     const Form *form = _globalNames[_frame->_cisc_spilling_operand_name];
4245     OperandForm *oper = form ? form->is_operand() : NULL;
4246     // Verify the user's suggestion
4247     if( oper != NULL ) {
4248       // Ensure that match field is defined.
4249       if ( oper->_matrule != NULL )  {
4250         MatchRule &mrule = *oper->_matrule;
4251         if( strcmp(mrule._opType,"AddP") == 0 ) {
4252           MatchNode *left = mrule._lChild;
4253           MatchNode *right= mrule._rChild;
4254           if( left != NULL && right != NULL ) {
4255             const Form *left_op  = _globalNames[left->_opType]->is_operand();
4256             const Form *right_op = _globalNames[right->_opType]->is_operand();
4257             if(  (left_op != NULL && right_op != NULL)
4258               && (left_op->interface_type(_globalNames) == Form::register_interface)
4259               && (right_op->interface_type(_globalNames) == Form::constant_interface) ) {
4260               // Successfully verified operand
4261               set_cisc_spill_operand( oper );
4262               if( _cisc_spill_debug ) {
4263                 fprintf(stderr, "\n\nVerified CISC-spill operand %s\n\n", oper->_ident);
4264              }
4265             }
4266           }
4267         }
4268       }
4269     }
4270   }
4271 
4272   if( cisc_spill_operand() != NULL ) {
4273     // N^2 comparison of instructions looking for a cisc-spilling version
4274     _instructions.reset();
4275     InstructForm *instr;
4276     for( ; (instr = (InstructForm*)_instructions.iter()) != NULL; ) {
4277       // Ensure that match field is defined.
4278       if ( instr->_matrule == NULL )  continue;
4279 
4280       MatchRule &mrule = *instr->_matrule;
4281       Predicate *pred  =  instr->build_predicate();
4282 
4283       // Grab the machine type of the operand
4284       const char *rootOp = instr->_ident;
4285       mrule._machType    = rootOp;
4286 
4287       // Find result type for match
4288       const char *result = instr->reduce_result();
4289 
4290       if( PrintAdlcCisc ) fprintf(stderr, "  new instruction %s \n", instr->_ident ? instr->_ident : " ");
4291       bool  found_cisc_alternate = false;
4292       _instructions.reset2();
4293       InstructForm *instr2;
4294       for( ; !found_cisc_alternate && (instr2 = (InstructForm*)_instructions.iter2()) != NULL; ) {
4295         // Ensure that match field is defined.
4296         if( PrintAdlcCisc ) fprintf(stderr, "  instr2 == %s \n", instr2->_ident ? instr2->_ident : " ");
4297         if ( instr2->_matrule != NULL
4298             && (instr != instr2 )                // Skip self
4299             && (instr2->reduce_result() != NULL) // want same result
4300             && (strcmp(result, instr2->reduce_result()) == 0)) {
4301           MatchRule &mrule2 = *instr2->_matrule;
4302           Predicate *pred2  =  instr2->build_predicate();
4303           found_cisc_alternate = instr->cisc_spills_to(*this, instr2);
4304         }
4305       }
4306     }
4307   }
4308 }
4309 
4310 //---------------------------build_cisc_spilling-------------------------------
4311 // Get info for the CISC_oracle and MachNode::cisc_version()
4312 void ArchDesc::build_cisc_spill_instructions(FILE *fp_hpp, FILE *fp_cpp) {
4313   // Output the table for cisc spilling
4314   fprintf(fp_cpp, "//  The following instructions can cisc-spill\n");
4315   _instructions.reset();
4316   InstructForm *inst = NULL;
4317   for(; (inst = (InstructForm*)_instructions.iter()) != NULL; ) {
4318     // Ensure this is a machine-world instruction
4319     if ( inst->ideal_only() )  continue;
4320     const char *inst_name = inst->_ident;
4321     int   operand   = inst->cisc_spill_operand();
4322     if( operand != AdlcVMDeps::Not_cisc_spillable ) {
4323       InstructForm *inst2 = inst->cisc_spill_alternate();
4324       fprintf(fp_cpp, "//  %s can cisc-spill operand %d to %s\n", inst->_ident, operand, inst2->_ident);
4325     }
4326   }
4327   fprintf(fp_cpp, "\n\n");
4328 }
4329 
4330 //---------------------------identify_short_branches----------------------------
4331 // Get info for our short branch replacement oracle.
4332 void ArchDesc::identify_short_branches() {
4333   // Walk over all instructions, checking to see if they match a short
4334   // branching alternate.
4335   _instructions.reset();
4336   InstructForm *instr;
4337   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4338     // The instruction must have a match rule.
4339     if (instr->_matrule != NULL &&
4340         instr->is_short_branch()) {
4341 
4342       _instructions.reset2();
4343       InstructForm *instr2;
4344       while( (instr2 = (InstructForm*)_instructions.iter2()) != NULL ) {
4345         instr2->check_branch_variant(*this, instr);
4346       }
4347     }
4348   }
4349 }
4350 
4351 
4352 //---------------------------identify_unique_operands---------------------------
4353 // Identify unique operands.
4354 void ArchDesc::identify_unique_operands() {
4355   // Walk over all instructions.
4356   _instructions.reset();
4357   InstructForm *instr;
4358   while( (instr = (InstructForm*)_instructions.iter()) != NULL ) {
4359     // Ensure this is a machine-world instruction
4360     if (!instr->ideal_only()) {
4361       instr->set_unique_opnds();
4362     }
4363   }
4364 }