1 /*
   2  * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "code/vmreg.inline.hpp"
  35 #include "runtime/timerTrace.hpp"
  36 #include "utilities/bitMap.inline.hpp"
  37 
  38 #ifndef PRODUCT
  39 
  40   static LinearScanStatistic _stat_before_alloc;
  41   static LinearScanStatistic _stat_after_asign;
  42   static LinearScanStatistic _stat_final;
  43 
  44   static LinearScanTimers _total_timer;
  45 
  46   // helper macro for short definition of timer
  47   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  48 
  49   // helper macro for short definition of trace-output inside code
  50   #define TRACE_LINEAR_SCAN(level, code)       \
  51     if (TraceLinearScanLevel >= level) {       \
  52       code;                                    \
  53     }
  54 
  55 #else
  56 
  57   #define TIME_LINEAR_SCAN(timer_name)
  58   #define TRACE_LINEAR_SCAN(level, code)
  59 
  60 #endif
  61 
  62 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  63 #ifdef _LP64
  64 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  65 #else
  66 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  67 #endif
  68 
  69 
  70 // Implementation of LinearScan
  71 
  72 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  73  : _compilation(ir->compilation())
  74  , _ir(ir)
  75  , _gen(gen)
  76  , _frame_map(frame_map)
  77  , _num_virtual_regs(gen->max_virtual_register_number())
  78  , _has_fpu_registers(false)
  79  , _num_calls(-1)
  80  , _max_spills(0)
  81  , _unused_spill_slot(-1)
  82  , _intervals(0)   // initialized later with correct length
  83  , _new_intervals_from_allocation(new IntervalList())
  84  , _sorted_intervals(NULL)
  85  , _needs_full_resort(false)
  86  , _lir_ops(0)     // initialized later with correct length
  87  , _block_of_op(0) // initialized later with correct length
  88  , _has_info(0)
  89  , _has_call(0)
  90  , _scope_value_cache(0) // initialized later with correct length
  91  , _interval_in_loop(0)  // initialized later with correct length
  92  , _cached_blocks(*ir->linear_scan_order())
  93 #ifdef X86
  94  , _fpu_stack_allocator(NULL)
  95 #endif
  96 {
  97   assert(this->ir() != NULL,          "check if valid");
  98   assert(this->compilation() != NULL, "check if valid");
  99   assert(this->gen() != NULL,         "check if valid");
 100   assert(this->frame_map() != NULL,   "check if valid");
 101 }
 102 
 103 
 104 // ********** functions for converting LIR-Operands to register numbers
 105 //
 106 // Emulate a flat register file comprising physical integer registers,
 107 // physical floating-point registers and virtual registers, in that order.
 108 // Virtual registers already have appropriate numbers, since V0 is
 109 // the number of physical registers.
 110 // Returns -1 for hi word if opr is a single word operand.
 111 //
 112 // Note: the inverse operation (calculating an operand for register numbers)
 113 //       is done in calc_operand_for_interval()
 114 
 115 int LinearScan::reg_num(LIR_Opr opr) {
 116   assert(opr->is_register(), "should not call this otherwise");
 117 
 118   if (opr->is_virtual_register()) {
 119     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 120     return opr->vreg_number();
 121   } else if (opr->is_single_cpu()) {
 122     return opr->cpu_regnr();
 123   } else if (opr->is_double_cpu()) {
 124     return opr->cpu_regnrLo();
 125 #ifdef X86
 126   } else if (opr->is_single_xmm()) {
 127     return opr->fpu_regnr() + pd_first_xmm_reg;
 128   } else if (opr->is_double_xmm()) {
 129     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 130 #endif
 131   } else if (opr->is_single_fpu()) {
 132     return opr->fpu_regnr() + pd_first_fpu_reg;
 133   } else if (opr->is_double_fpu()) {
 134     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 135   } else {
 136     ShouldNotReachHere();
 137     return -1;
 138   }
 139 }
 140 
 141 int LinearScan::reg_numHi(LIR_Opr opr) {
 142   assert(opr->is_register(), "should not call this otherwise");
 143 
 144   if (opr->is_virtual_register()) {
 145     return -1;
 146   } else if (opr->is_single_cpu()) {
 147     return -1;
 148   } else if (opr->is_double_cpu()) {
 149     return opr->cpu_regnrHi();
 150 #ifdef X86
 151   } else if (opr->is_single_xmm()) {
 152     return -1;
 153   } else if (opr->is_double_xmm()) {
 154     return -1;
 155 #endif
 156   } else if (opr->is_single_fpu()) {
 157     return -1;
 158   } else if (opr->is_double_fpu()) {
 159     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 160   } else {
 161     ShouldNotReachHere();
 162     return -1;
 163   }
 164 }
 165 
 166 
 167 // ********** functions for classification of intervals
 168 
 169 bool LinearScan::is_precolored_interval(const Interval* i) {
 170   return i->reg_num() < LinearScan::nof_regs;
 171 }
 172 
 173 bool LinearScan::is_virtual_interval(const Interval* i) {
 174   return i->reg_num() >= LIR_OprDesc::vreg_base;
 175 }
 176 
 177 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 178   return i->reg_num() < LinearScan::nof_cpu_regs;
 179 }
 180 
 181 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 182 #if defined(__SOFTFP__) || defined(E500V2)
 183   return i->reg_num() >= LIR_OprDesc::vreg_base;
 184 #else
 185   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 186 #endif // __SOFTFP__ or E500V2
 187 }
 188 
 189 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 190   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 191 }
 192 
 193 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 194 #if defined(__SOFTFP__) || defined(E500V2)
 195   return false;
 196 #else
 197   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 198 #endif // __SOFTFP__ or E500V2
 199 }
 200 
 201 bool LinearScan::is_in_fpu_register(const Interval* i) {
 202   // fixed intervals not needed for FPU stack allocation
 203   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 204 }
 205 
 206 bool LinearScan::is_oop_interval(const Interval* i) {
 207   // fixed intervals never contain oops
 208   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 209 }
 210 
 211 
 212 // ********** General helper functions
 213 
 214 // compute next unused stack index that can be used for spilling
 215 int LinearScan::allocate_spill_slot(bool double_word) {
 216   int spill_slot;
 217   if (double_word) {
 218     if ((_max_spills & 1) == 1) {
 219       // alignment of double-word values
 220       // the hole because of the alignment is filled with the next single-word value
 221       assert(_unused_spill_slot == -1, "wasting a spill slot");
 222       _unused_spill_slot = _max_spills;
 223       _max_spills++;
 224     }
 225     spill_slot = _max_spills;
 226     _max_spills += 2;
 227 
 228   } else if (_unused_spill_slot != -1) {
 229     // re-use hole that was the result of a previous double-word alignment
 230     spill_slot = _unused_spill_slot;
 231     _unused_spill_slot = -1;
 232 
 233   } else {
 234     spill_slot = _max_spills;
 235     _max_spills++;
 236   }
 237 
 238   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 239 
 240   // the class OopMapValue uses only 11 bits for storing the name of the
 241   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 242   // that is not reported in product builds. Prevent this by checking the
 243   // spill slot here (altough this value and the later used location name
 244   // are slightly different)
 245   if (result > 2000) {
 246     bailout("too many stack slots used");
 247   }
 248 
 249   return result;
 250 }
 251 
 252 void LinearScan::assign_spill_slot(Interval* it) {
 253   // assign the canonical spill slot of the parent (if a part of the interval
 254   // is already spilled) or allocate a new spill slot
 255   if (it->canonical_spill_slot() >= 0) {
 256     it->assign_reg(it->canonical_spill_slot());
 257   } else {
 258     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 259     it->set_canonical_spill_slot(spill);
 260     it->assign_reg(spill);
 261   }
 262 }
 263 
 264 void LinearScan::propagate_spill_slots() {
 265   if (!frame_map()->finalize_frame(max_spills())) {
 266     bailout("frame too large");
 267   }
 268 }
 269 
 270 // create a new interval with a predefined reg_num
 271 // (only used for parent intervals that are created during the building phase)
 272 Interval* LinearScan::create_interval(int reg_num) {
 273   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 274 
 275   Interval* interval = new Interval(reg_num);
 276   _intervals.at_put(reg_num, interval);
 277 
 278   // assign register number for precolored intervals
 279   if (reg_num < LIR_OprDesc::vreg_base) {
 280     interval->assign_reg(reg_num);
 281   }
 282   return interval;
 283 }
 284 
 285 // assign a new reg_num to the interval and append it to the list of intervals
 286 // (only used for child intervals that are created during register allocation)
 287 void LinearScan::append_interval(Interval* it) {
 288   it->set_reg_num(_intervals.length());
 289   _intervals.append(it);
 290   _new_intervals_from_allocation->append(it);
 291 }
 292 
 293 // copy the vreg-flags if an interval is split
 294 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 295   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 296     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 297   }
 298   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 299     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 300   }
 301 
 302   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 303   //       intervals (only the very beginning of the interval must be in memory)
 304 }
 305 
 306 
 307 // ********** spill move optimization
 308 // eliminate moves from register to stack if stack slot is known to be correct
 309 
 310 // called during building of intervals
 311 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 312   assert(interval->is_split_parent(), "can only be called for split parents");
 313 
 314   switch (interval->spill_state()) {
 315     case noDefinitionFound:
 316       assert(interval->spill_definition_pos() == -1, "must no be set before");
 317       interval->set_spill_definition_pos(def_pos);
 318       interval->set_spill_state(oneDefinitionFound);
 319       break;
 320 
 321     case oneDefinitionFound:
 322       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 323       if (def_pos < interval->spill_definition_pos() - 2) {
 324         // second definition found, so no spill optimization possible for this interval
 325         interval->set_spill_state(noOptimization);
 326       } else {
 327         // two consecutive definitions (because of two-operand LIR form)
 328         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 329       }
 330       break;
 331 
 332     case noOptimization:
 333       // nothing to do
 334       break;
 335 
 336     default:
 337       assert(false, "other states not allowed at this time");
 338   }
 339 }
 340 
 341 // called during register allocation
 342 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 343   switch (interval->spill_state()) {
 344     case oneDefinitionFound: {
 345       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 346       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 347 
 348       if (def_loop_depth < spill_loop_depth) {
 349         // the loop depth of the spilling position is higher then the loop depth
 350         // at the definition of the interval -> move write to memory out of loop
 351         // by storing at definitin of the interval
 352         interval->set_spill_state(storeAtDefinition);
 353       } else {
 354         // the interval is currently spilled only once, so for now there is no
 355         // reason to store the interval at the definition
 356         interval->set_spill_state(oneMoveInserted);
 357       }
 358       break;
 359     }
 360 
 361     case oneMoveInserted: {
 362       // the interval is spilled more then once, so it is better to store it to
 363       // memory at the definition
 364       interval->set_spill_state(storeAtDefinition);
 365       break;
 366     }
 367 
 368     case storeAtDefinition:
 369     case startInMemory:
 370     case noOptimization:
 371     case noDefinitionFound:
 372       // nothing to do
 373       break;
 374 
 375     default:
 376       assert(false, "other states not allowed at this time");
 377   }
 378 }
 379 
 380 
 381 bool LinearScan::must_store_at_definition(const Interval* i) {
 382   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 383 }
 384 
 385 // called once before asignment of register numbers
 386 void LinearScan::eliminate_spill_moves() {
 387   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 388   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 389 
 390   // collect all intervals that must be stored after their definion.
 391   // the list is sorted by Interval::spill_definition_pos
 392   Interval* interval;
 393   Interval* temp_list;
 394   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 395 
 396 #ifdef ASSERT
 397   Interval* prev = NULL;
 398   Interval* temp = interval;
 399   while (temp != Interval::end()) {
 400     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 401     if (prev != NULL) {
 402       assert(temp->from() >= prev->from(), "intervals not sorted");
 403       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 404     }
 405 
 406     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 407     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 408     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 409 
 410     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 411 
 412     temp = temp->next();
 413   }
 414 #endif
 415 
 416   LIR_InsertionBuffer insertion_buffer;
 417   int num_blocks = block_count();
 418   for (int i = 0; i < num_blocks; i++) {
 419     BlockBegin* block = block_at(i);
 420     LIR_OpList* instructions = block->lir()->instructions_list();
 421     int         num_inst = instructions->length();
 422     bool        has_new = false;
 423 
 424     // iterate all instructions of the block. skip the first because it is always a label
 425     for (int j = 1; j < num_inst; j++) {
 426       LIR_Op* op = instructions->at(j);
 427       int op_id = op->id();
 428 
 429       if (op_id == -1) {
 430         // remove move from register to stack if the stack slot is guaranteed to be correct.
 431         // only moves that have been inserted by LinearScan can be removed.
 432         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 433         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 434         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 435 
 436         LIR_Op1* op1 = (LIR_Op1*)op;
 437         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 438 
 439         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 440           // move target is a stack slot that is always correct, so eliminate instruction
 441           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 442           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 443         }
 444 
 445       } else {
 446         // insert move from register to stack just after the beginning of the interval
 447         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 448         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 449 
 450         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 451           if (!has_new) {
 452             // prepare insertion buffer (appended when all instructions of the block are processed)
 453             insertion_buffer.init(block->lir());
 454             has_new = true;
 455           }
 456 
 457           LIR_Opr from_opr = operand_for_interval(interval);
 458           LIR_Opr to_opr = canonical_spill_opr(interval);
 459           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 460           assert(to_opr->is_stack(), "to operand must be a stack slot");
 461 
 462           insertion_buffer.move(j, from_opr, to_opr);
 463           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 464 
 465           interval = interval->next();
 466         }
 467       }
 468     } // end of instruction iteration
 469 
 470     if (has_new) {
 471       block->lir()->append(&insertion_buffer);
 472     }
 473   } // end of block iteration
 474 
 475   assert(interval == Interval::end(), "missed an interval");
 476 }
 477 
 478 
 479 // ********** Phase 1: number all instructions in all blocks
 480 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 481 
 482 void LinearScan::number_instructions() {
 483   {
 484     // dummy-timer to measure the cost of the timer itself
 485     // (this time is then subtracted from all other timers to get the real value)
 486     TIME_LINEAR_SCAN(timer_do_nothing);
 487   }
 488   TIME_LINEAR_SCAN(timer_number_instructions);
 489 
 490   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 491   int num_blocks = block_count();
 492   int num_instructions = 0;
 493   int i;
 494   for (i = 0; i < num_blocks; i++) {
 495     num_instructions += block_at(i)->lir()->instructions_list()->length();
 496   }
 497 
 498   // initialize with correct length
 499   _lir_ops = LIR_OpArray(num_instructions, num_instructions, NULL);
 500   _block_of_op = BlockBeginArray(num_instructions, num_instructions, NULL);
 501 
 502   int op_id = 0;
 503   int idx = 0;
 504 
 505   for (i = 0; i < num_blocks; i++) {
 506     BlockBegin* block = block_at(i);
 507     block->set_first_lir_instruction_id(op_id);
 508     LIR_OpList* instructions = block->lir()->instructions_list();
 509 
 510     int num_inst = instructions->length();
 511     for (int j = 0; j < num_inst; j++) {
 512       LIR_Op* op = instructions->at(j);
 513       op->set_id(op_id);
 514 
 515       _lir_ops.at_put(idx, op);
 516       _block_of_op.at_put(idx, block);
 517       assert(lir_op_with_id(op_id) == op, "must match");
 518 
 519       idx++;
 520       op_id += 2; // numbering of lir_ops by two
 521     }
 522     block->set_last_lir_instruction_id(op_id - 2);
 523   }
 524   assert(idx == num_instructions, "must match");
 525   assert(idx * 2 == op_id, "must match");
 526 
 527   _has_call.initialize(num_instructions);
 528   _has_info.initialize(num_instructions);
 529 }
 530 
 531 
 532 // ********** Phase 2: compute local live sets separately for each block
 533 // (sets live_gen and live_kill for each block)
 534 
 535 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 536   LIR_Opr opr = value->operand();
 537   Constant* con = value->as_Constant();
 538 
 539   // check some asumptions about debug information
 540   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 541   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 542   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 543 
 544   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 545     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 546     int reg = opr->vreg_number();
 547     if (!live_kill.at(reg)) {
 548       live_gen.set_bit(reg);
 549       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 550     }
 551   }
 552 }
 553 
 554 
 555 void LinearScan::compute_local_live_sets() {
 556   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 557 
 558   int  num_blocks = block_count();
 559   int  live_size = live_set_size();
 560   bool local_has_fpu_registers = false;
 561   int  local_num_calls = 0;
 562   LIR_OpVisitState visitor;
 563 
 564   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 565 
 566   // iterate all blocks
 567   for (int i = 0; i < num_blocks; i++) {
 568     BlockBegin* block = block_at(i);
 569 
 570     ResourceBitMap live_gen(live_size);
 571     ResourceBitMap live_kill(live_size);
 572 
 573     if (block->is_set(BlockBegin::exception_entry_flag)) {
 574       // Phi functions at the begin of an exception handler are
 575       // implicitly defined (= killed) at the beginning of the block.
 576       for_each_phi_fun(block, phi,
 577         live_kill.set_bit(phi->operand()->vreg_number())
 578       );
 579     }
 580 
 581     LIR_OpList* instructions = block->lir()->instructions_list();
 582     int num_inst = instructions->length();
 583 
 584     // iterate all instructions of the block. skip the first because it is always a label
 585     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 586     for (int j = 1; j < num_inst; j++) {
 587       LIR_Op* op = instructions->at(j);
 588 
 589       // visit operation to collect all operands
 590       visitor.visit(op);
 591 
 592       if (visitor.has_call()) {
 593         _has_call.set_bit(op->id() >> 1);
 594         local_num_calls++;
 595       }
 596       if (visitor.info_count() > 0) {
 597         _has_info.set_bit(op->id() >> 1);
 598       }
 599 
 600       // iterate input operands of instruction
 601       int k, n, reg;
 602       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 603       for (k = 0; k < n; k++) {
 604         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 605         assert(opr->is_register(), "visitor should only return register operands");
 606 
 607         if (opr->is_virtual_register()) {
 608           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 609           reg = opr->vreg_number();
 610           if (!live_kill.at(reg)) {
 611             live_gen.set_bit(reg);
 612             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 613           }
 614           if (block->loop_index() >= 0) {
 615             local_interval_in_loop.set_bit(reg, block->loop_index());
 616           }
 617           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 618         }
 619 
 620 #ifdef ASSERT
 621         // fixed intervals are never live at block boundaries, so
 622         // they need not be processed in live sets.
 623         // this is checked by these assertions to be sure about it.
 624         // the entry block may have incoming values in registers, which is ok.
 625         if (!opr->is_virtual_register() && block != ir()->start()) {
 626           reg = reg_num(opr);
 627           if (is_processed_reg_num(reg)) {
 628             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 629           }
 630           reg = reg_numHi(opr);
 631           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 632             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 633           }
 634         }
 635 #endif
 636       }
 637 
 638       // Add uses of live locals from interpreter's point of view for proper debug information generation
 639       n = visitor.info_count();
 640       for (k = 0; k < n; k++) {
 641         CodeEmitInfo* info = visitor.info_at(k);
 642         ValueStack* stack = info->stack();
 643         for_each_state_value(stack, value,
 644           set_live_gen_kill(value, op, live_gen, live_kill)
 645         );
 646       }
 647 
 648       // iterate temp operands of instruction
 649       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 650       for (k = 0; k < n; k++) {
 651         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 652         assert(opr->is_register(), "visitor should only return register operands");
 653 
 654         if (opr->is_virtual_register()) {
 655           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 656           reg = opr->vreg_number();
 657           live_kill.set_bit(reg);
 658           if (block->loop_index() >= 0) {
 659             local_interval_in_loop.set_bit(reg, block->loop_index());
 660           }
 661           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 662         }
 663 
 664 #ifdef ASSERT
 665         // fixed intervals are never live at block boundaries, so
 666         // they need not be processed in live sets
 667         // process them only in debug mode so that this can be checked
 668         if (!opr->is_virtual_register()) {
 669           reg = reg_num(opr);
 670           if (is_processed_reg_num(reg)) {
 671             live_kill.set_bit(reg_num(opr));
 672           }
 673           reg = reg_numHi(opr);
 674           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 675             live_kill.set_bit(reg);
 676           }
 677         }
 678 #endif
 679       }
 680 
 681       // iterate output operands of instruction
 682       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 683       for (k = 0; k < n; k++) {
 684         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 685         assert(opr->is_register(), "visitor should only return register operands");
 686 
 687         if (opr->is_virtual_register()) {
 688           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 689           reg = opr->vreg_number();
 690           live_kill.set_bit(reg);
 691           if (block->loop_index() >= 0) {
 692             local_interval_in_loop.set_bit(reg, block->loop_index());
 693           }
 694           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 695         }
 696 
 697 #ifdef ASSERT
 698         // fixed intervals are never live at block boundaries, so
 699         // they need not be processed in live sets
 700         // process them only in debug mode so that this can be checked
 701         if (!opr->is_virtual_register()) {
 702           reg = reg_num(opr);
 703           if (is_processed_reg_num(reg)) {
 704             live_kill.set_bit(reg_num(opr));
 705           }
 706           reg = reg_numHi(opr);
 707           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 708             live_kill.set_bit(reg);
 709           }
 710         }
 711 #endif
 712       }
 713     } // end of instruction iteration
 714 
 715     block->set_live_gen (live_gen);
 716     block->set_live_kill(live_kill);
 717     block->set_live_in  (ResourceBitMap(live_size));
 718     block->set_live_out (ResourceBitMap(live_size));
 719 
 720     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 721     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 722   } // end of block iteration
 723 
 724   // propagate local calculated information into LinearScan object
 725   _has_fpu_registers = local_has_fpu_registers;
 726   compilation()->set_has_fpu_code(local_has_fpu_registers);
 727 
 728   _num_calls = local_num_calls;
 729   _interval_in_loop = local_interval_in_loop;
 730 }
 731 
 732 
 733 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 734 // (sets live_in and live_out for each block)
 735 
 736 void LinearScan::compute_global_live_sets() {
 737   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 738 
 739   int  num_blocks = block_count();
 740   bool change_occurred;
 741   bool change_occurred_in_block;
 742   int  iteration_count = 0;
 743   ResourceBitMap live_out(live_set_size()); // scratch set for calculations
 744 
 745   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 746   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 747   // Exception handlers must be processed because not all live values are
 748   // present in the state array, e.g. because of global value numbering
 749   do {
 750     change_occurred = false;
 751 
 752     // iterate all blocks in reverse order
 753     for (int i = num_blocks - 1; i >= 0; i--) {
 754       BlockBegin* block = block_at(i);
 755 
 756       change_occurred_in_block = false;
 757 
 758       // live_out(block) is the union of live_in(sux), for successors sux of block
 759       int n = block->number_of_sux();
 760       int e = block->number_of_exception_handlers();
 761       if (n + e > 0) {
 762         // block has successors
 763         if (n > 0) {
 764           live_out.set_from(block->sux_at(0)->live_in());
 765           for (int j = 1; j < n; j++) {
 766             live_out.set_union(block->sux_at(j)->live_in());
 767           }
 768         } else {
 769           live_out.clear();
 770         }
 771         for (int j = 0; j < e; j++) {
 772           live_out.set_union(block->exception_handler_at(j)->live_in());
 773         }
 774 
 775         if (!block->live_out().is_same(live_out)) {
 776           // A change occurred.  Swap the old and new live out sets to avoid copying.
 777           ResourceBitMap temp = block->live_out();
 778           block->set_live_out(live_out);
 779           live_out = temp;
 780 
 781           change_occurred = true;
 782           change_occurred_in_block = true;
 783         }
 784       }
 785 
 786       if (iteration_count == 0 || change_occurred_in_block) {
 787         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 788         // note: live_in has to be computed only in first iteration or if live_out has changed!
 789         ResourceBitMap live_in = block->live_in();
 790         live_in.set_from(block->live_out());
 791         live_in.set_difference(block->live_kill());
 792         live_in.set_union(block->live_gen());
 793       }
 794 
 795 #ifndef PRODUCT
 796       if (TraceLinearScanLevel >= 4) {
 797         char c = ' ';
 798         if (iteration_count == 0 || change_occurred_in_block) {
 799           c = '*';
 800         }
 801         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 802         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 803       }
 804 #endif
 805     }
 806     iteration_count++;
 807 
 808     if (change_occurred && iteration_count > 50) {
 809       BAILOUT("too many iterations in compute_global_live_sets");
 810     }
 811   } while (change_occurred);
 812 
 813 
 814 #ifdef ASSERT
 815   // check that fixed intervals are not live at block boundaries
 816   // (live set must be empty at fixed intervals)
 817   for (int i = 0; i < num_blocks; i++) {
 818     BlockBegin* block = block_at(i);
 819     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 820       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 821       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 822       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 823     }
 824   }
 825 #endif
 826 
 827   // check that the live_in set of the first block is empty
 828   ResourceBitMap live_in_args(ir()->start()->live_in().size());
 829   if (!ir()->start()->live_in().is_same(live_in_args)) {
 830 #ifdef ASSERT
 831     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 832     tty->print_cr("affected registers:");
 833     print_bitmap(ir()->start()->live_in());
 834 
 835     // print some additional information to simplify debugging
 836     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 837       if (ir()->start()->live_in().at(i)) {
 838         Instruction* instr = gen()->instruction_for_vreg(i);
 839         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 840 
 841         for (int j = 0; j < num_blocks; j++) {
 842           BlockBegin* block = block_at(j);
 843           if (block->live_gen().at(i)) {
 844             tty->print_cr("  used in block B%d", block->block_id());
 845           }
 846           if (block->live_kill().at(i)) {
 847             tty->print_cr("  defined in block B%d", block->block_id());
 848           }
 849         }
 850       }
 851     }
 852 
 853 #endif
 854     // when this fails, virtual registers are used before they are defined.
 855     assert(false, "live_in set of first block must be empty");
 856     // bailout of if this occurs in product mode.
 857     bailout("live_in set of first block not empty");
 858   }
 859 }
 860 
 861 
 862 // ********** Phase 4: build intervals
 863 // (fills the list _intervals)
 864 
 865 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 866   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 867   LIR_Opr opr = value->operand();
 868   Constant* con = value->as_Constant();
 869 
 870   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 871     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 872     add_use(opr, from, to, use_kind);
 873   }
 874 }
 875 
 876 
 877 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 878   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 879   assert(opr->is_register(), "should not be called otherwise");
 880 
 881   if (opr->is_virtual_register()) {
 882     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 883     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 884 
 885   } else {
 886     int reg = reg_num(opr);
 887     if (is_processed_reg_num(reg)) {
 888       add_def(reg, def_pos, use_kind, opr->type_register());
 889     }
 890     reg = reg_numHi(opr);
 891     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 892       add_def(reg, def_pos, use_kind, opr->type_register());
 893     }
 894   }
 895 }
 896 
 897 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 898   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 899   assert(opr->is_register(), "should not be called otherwise");
 900 
 901   if (opr->is_virtual_register()) {
 902     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 903     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 904 
 905   } else {
 906     int reg = reg_num(opr);
 907     if (is_processed_reg_num(reg)) {
 908       add_use(reg, from, to, use_kind, opr->type_register());
 909     }
 910     reg = reg_numHi(opr);
 911     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 912       add_use(reg, from, to, use_kind, opr->type_register());
 913     }
 914   }
 915 }
 916 
 917 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 918   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 919   assert(opr->is_register(), "should not be called otherwise");
 920 
 921   if (opr->is_virtual_register()) {
 922     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 923     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 924 
 925   } else {
 926     int reg = reg_num(opr);
 927     if (is_processed_reg_num(reg)) {
 928       add_temp(reg, temp_pos, use_kind, opr->type_register());
 929     }
 930     reg = reg_numHi(opr);
 931     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 932       add_temp(reg, temp_pos, use_kind, opr->type_register());
 933     }
 934   }
 935 }
 936 
 937 
 938 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 939   Interval* interval = interval_at(reg_num);
 940   if (interval != NULL) {
 941     assert(interval->reg_num() == reg_num, "wrong interval");
 942 
 943     if (type != T_ILLEGAL) {
 944       interval->set_type(type);
 945     }
 946 
 947     Range* r = interval->first();
 948     if (r->from() <= def_pos) {
 949       // Update the starting point (when a range is first created for a use, its
 950       // start is the beginning of the current block until a def is encountered.)
 951       r->set_from(def_pos);
 952       interval->add_use_pos(def_pos, use_kind);
 953 
 954     } else {
 955       // Dead value - make vacuous interval
 956       // also add use_kind for dead intervals
 957       interval->add_range(def_pos, def_pos + 1);
 958       interval->add_use_pos(def_pos, use_kind);
 959       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 960     }
 961 
 962   } else {
 963     // Dead value - make vacuous interval
 964     // also add use_kind for dead intervals
 965     interval = create_interval(reg_num);
 966     if (type != T_ILLEGAL) {
 967       interval->set_type(type);
 968     }
 969 
 970     interval->add_range(def_pos, def_pos + 1);
 971     interval->add_use_pos(def_pos, use_kind);
 972     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 973   }
 974 
 975   change_spill_definition_pos(interval, def_pos);
 976   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 977         // detection of method-parameters and roundfp-results
 978         // TODO: move this directly to position where use-kind is computed
 979     interval->set_spill_state(startInMemory);
 980   }
 981 }
 982 
 983 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
 984   Interval* interval = interval_at(reg_num);
 985   if (interval == NULL) {
 986     interval = create_interval(reg_num);
 987   }
 988   assert(interval->reg_num() == reg_num, "wrong interval");
 989 
 990   if (type != T_ILLEGAL) {
 991     interval->set_type(type);
 992   }
 993 
 994   interval->add_range(from, to);
 995   interval->add_use_pos(to, use_kind);
 996 }
 997 
 998 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
 999   Interval* interval = interval_at(reg_num);
1000   if (interval == NULL) {
1001     interval = create_interval(reg_num);
1002   }
1003   assert(interval->reg_num() == reg_num, "wrong interval");
1004 
1005   if (type != T_ILLEGAL) {
1006     interval->set_type(type);
1007   }
1008 
1009   interval->add_range(temp_pos, temp_pos + 1);
1010   interval->add_use_pos(temp_pos, use_kind);
1011 }
1012 
1013 
1014 // the results of this functions are used for optimizing spilling and reloading
1015 // if the functions return shouldHaveRegister and the interval is spilled,
1016 // it is not reloaded to a register.
1017 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1018   if (op->code() == lir_move) {
1019     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1020     LIR_Op1* move = (LIR_Op1*)op;
1021     LIR_Opr res = move->result_opr();
1022     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1023 
1024     if (result_in_memory) {
1025       // Begin of an interval with must_start_in_memory set.
1026       // This interval will always get a stack slot first, so return noUse.
1027       return noUse;
1028 
1029     } else if (move->in_opr()->is_stack()) {
1030       // method argument (condition must be equal to handle_method_arguments)
1031       return noUse;
1032 
1033     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1034       // Move from register to register
1035       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1036         // special handling of phi-function moves inside osr-entry blocks
1037         // input operand must have a register instead of output operand (leads to better register allocation)
1038         return shouldHaveRegister;
1039       }
1040     }
1041   }
1042 
1043   if (opr->is_virtual() &&
1044       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1045     // result is a stack-slot, so prevent immediate reloading
1046     return noUse;
1047   }
1048 
1049   // all other operands require a register
1050   return mustHaveRegister;
1051 }
1052 
1053 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1054   if (op->code() == lir_move) {
1055     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1056     LIR_Op1* move = (LIR_Op1*)op;
1057     LIR_Opr res = move->result_opr();
1058     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1059 
1060     if (result_in_memory) {
1061       // Move to an interval with must_start_in_memory set.
1062       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1063       return mustHaveRegister;
1064 
1065     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1066       // Move from register to register
1067       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1068         // special handling of phi-function moves inside osr-entry blocks
1069         // input operand must have a register instead of output operand (leads to better register allocation)
1070         return mustHaveRegister;
1071       }
1072 
1073       // The input operand is not forced to a register (moves from stack to register are allowed),
1074       // but it is faster if the input operand is in a register
1075       return shouldHaveRegister;
1076     }
1077   }
1078 
1079 
1080 #if defined(X86) || defined(S390)
1081   if (op->code() == lir_cmove) {
1082     // conditional moves can handle stack operands
1083     assert(op->result_opr()->is_register(), "result must always be in a register");
1084     return shouldHaveRegister;
1085   }
1086 
1087   // optimizations for second input operand of arithmehtic operations on Intel
1088   // this operand is allowed to be on the stack in some cases
1089   BasicType opr_type = opr->type_register();
1090   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1091     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2 S390_ONLY(|| true)) {
1092       // SSE float instruction (T_DOUBLE only supported with SSE2)
1093       switch (op->code()) {
1094         case lir_cmp:
1095         case lir_add:
1096         case lir_sub:
1097         case lir_mul:
1098         case lir_div:
1099         {
1100           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1101           LIR_Op2* op2 = (LIR_Op2*)op;
1102           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1103             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1104             return shouldHaveRegister;
1105           }
1106         }
1107         default:
1108           break;
1109       }
1110     } else {
1111       // FPU stack float instruction
1112       switch (op->code()) {
1113         case lir_add:
1114         case lir_sub:
1115         case lir_mul:
1116         case lir_div:
1117         {
1118           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1119           LIR_Op2* op2 = (LIR_Op2*)op;
1120           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1121             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1122             return shouldHaveRegister;
1123           }
1124         }
1125         default:
1126           break;
1127       }
1128     }
1129     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1130     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1131     // T_OBJECT doesn't get spilled along with T_LONG.
1132   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1133     // integer instruction (note: long operands must always be in register)
1134     switch (op->code()) {
1135       case lir_cmp:
1136       case lir_add:
1137       case lir_sub:
1138       case lir_logic_and:
1139       case lir_logic_or:
1140       case lir_logic_xor:
1141       {
1142         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1143         LIR_Op2* op2 = (LIR_Op2*)op;
1144         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1145           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1146           return shouldHaveRegister;
1147         }
1148       }
1149       default:
1150         break;
1151     }
1152   }
1153 #endif // X86 S390
1154 
1155   // all other operands require a register
1156   return mustHaveRegister;
1157 }
1158 
1159 
1160 void LinearScan::handle_method_arguments(LIR_Op* op) {
1161   // special handling for method arguments (moves from stack to virtual register):
1162   // the interval gets no register assigned, but the stack slot.
1163   // it is split before the first use by the register allocator.
1164 
1165   if (op->code() == lir_move) {
1166     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1167     LIR_Op1* move = (LIR_Op1*)op;
1168 
1169     if (move->in_opr()->is_stack()) {
1170 #ifdef ASSERT
1171       int arg_size = compilation()->method()->arg_size();
1172       LIR_Opr o = move->in_opr();
1173       if (o->is_single_stack()) {
1174         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1175       } else if (o->is_double_stack()) {
1176         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1177       } else {
1178         ShouldNotReachHere();
1179       }
1180 
1181       assert(move->id() > 0, "invalid id");
1182       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1183       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1184 
1185       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1186 #endif
1187 
1188       Interval* interval = interval_at(reg_num(move->result_opr()));
1189 
1190       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1191       interval->set_canonical_spill_slot(stack_slot);
1192       interval->assign_reg(stack_slot);
1193     }
1194   }
1195 }
1196 
1197 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1198   // special handling for doubleword move from memory to register:
1199   // in this case the registers of the input address and the result
1200   // registers must not overlap -> add a temp range for the input registers
1201   if (op->code() == lir_move) {
1202     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1203     LIR_Op1* move = (LIR_Op1*)op;
1204 
1205     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1206       LIR_Address* address = move->in_opr()->as_address_ptr();
1207       if (address != NULL) {
1208         if (address->base()->is_valid()) {
1209           add_temp(address->base(), op->id(), noUse);
1210         }
1211         if (address->index()->is_valid()) {
1212           add_temp(address->index(), op->id(), noUse);
1213         }
1214       }
1215     }
1216   }
1217 }
1218 
1219 void LinearScan::add_register_hints(LIR_Op* op) {
1220   switch (op->code()) {
1221     case lir_move:      // fall through
1222     case lir_convert: {
1223       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1224       LIR_Op1* move = (LIR_Op1*)op;
1225 
1226       LIR_Opr move_from = move->in_opr();
1227       LIR_Opr move_to = move->result_opr();
1228 
1229       if (move_to->is_register() && move_from->is_register()) {
1230         Interval* from = interval_at(reg_num(move_from));
1231         Interval* to = interval_at(reg_num(move_to));
1232         if (from != NULL && to != NULL) {
1233           to->set_register_hint(from);
1234           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1235         }
1236       }
1237       break;
1238     }
1239     case lir_cmove: {
1240       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1241       LIR_Op2* cmove = (LIR_Op2*)op;
1242 
1243       LIR_Opr move_from = cmove->in_opr1();
1244       LIR_Opr move_to = cmove->result_opr();
1245 
1246       if (move_to->is_register() && move_from->is_register()) {
1247         Interval* from = interval_at(reg_num(move_from));
1248         Interval* to = interval_at(reg_num(move_to));
1249         if (from != NULL && to != NULL) {
1250           to->set_register_hint(from);
1251           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1252         }
1253       }
1254       break;
1255     }
1256     default:
1257       break;
1258   }
1259 }
1260 
1261 
1262 void LinearScan::build_intervals() {
1263   TIME_LINEAR_SCAN(timer_build_intervals);
1264 
1265   // initialize interval list with expected number of intervals
1266   // (32 is added to have some space for split children without having to resize the list)
1267   _intervals = IntervalList(num_virtual_regs() + 32);
1268   // initialize all slots that are used by build_intervals
1269   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1270 
1271   // create a list with all caller-save registers (cpu, fpu, xmm)
1272   // when an instruction is a call, a temp range is created for all these registers
1273   int num_caller_save_registers = 0;
1274   int caller_save_registers[LinearScan::nof_regs];
1275 
1276   int i;
1277   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1278     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1279     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1280     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1281     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1282   }
1283 
1284   // temp ranges for fpu registers are only created when the method has
1285   // virtual fpu operands. Otherwise no allocation for fpu registers is
1286   // perfomed and so the temp ranges would be useless
1287   if (has_fpu_registers()) {
1288 #ifdef X86
1289     if (UseSSE < 2) {
1290 #endif
1291       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1292         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1293         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1294         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1295         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1296       }
1297 #ifdef X86
1298     }
1299     if (UseSSE > 0) {
1300       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
1301       for (i = 0; i < num_caller_save_xmm_regs; i ++) {
1302         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1303         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1304         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1305         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1306       }
1307     }
1308 #endif
1309   }
1310   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1311 
1312 
1313   LIR_OpVisitState visitor;
1314 
1315   // iterate all blocks in reverse order
1316   for (i = block_count() - 1; i >= 0; i--) {
1317     BlockBegin* block = block_at(i);
1318     LIR_OpList* instructions = block->lir()->instructions_list();
1319     int         block_from =   block->first_lir_instruction_id();
1320     int         block_to =     block->last_lir_instruction_id();
1321 
1322     assert(block_from == instructions->at(0)->id(), "must be");
1323     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1324 
1325     // Update intervals for registers live at the end of this block;
1326     ResourceBitMap live = block->live_out();
1327     int size = (int)live.size();
1328     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1329       assert(live.at(number), "should not stop here otherwise");
1330       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1331       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1332 
1333       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1334 
1335       // add special use positions for loop-end blocks when the
1336       // interval is used anywhere inside this loop.  It's possible
1337       // that the block was part of a non-natural loop, so it might
1338       // have an invalid loop index.
1339       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1340           block->loop_index() != -1 &&
1341           is_interval_in_loop(number, block->loop_index())) {
1342         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1343       }
1344     }
1345 
1346     // iterate all instructions of the block in reverse order.
1347     // skip the first instruction because it is always a label
1348     // definitions of intervals are processed before uses
1349     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1350     for (int j = instructions->length() - 1; j >= 1; j--) {
1351       LIR_Op* op = instructions->at(j);
1352       int op_id = op->id();
1353 
1354       // visit operation to collect all operands
1355       visitor.visit(op);
1356 
1357       // add a temp range for each register if operation destroys caller-save registers
1358       if (visitor.has_call()) {
1359         for (int k = 0; k < num_caller_save_registers; k++) {
1360           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1361         }
1362         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1363       }
1364 
1365       // Add any platform dependent temps
1366       pd_add_temps(op);
1367 
1368       // visit definitions (output and temp operands)
1369       int k, n;
1370       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1371       for (k = 0; k < n; k++) {
1372         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1373         assert(opr->is_register(), "visitor should only return register operands");
1374         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1375       }
1376 
1377       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1378       for (k = 0; k < n; k++) {
1379         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1380         assert(opr->is_register(), "visitor should only return register operands");
1381         add_temp(opr, op_id, mustHaveRegister);
1382       }
1383 
1384       // visit uses (input operands)
1385       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1386       for (k = 0; k < n; k++) {
1387         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1388         assert(opr->is_register(), "visitor should only return register operands");
1389         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1390       }
1391 
1392       // Add uses of live locals from interpreter's point of view for proper
1393       // debug information generation
1394       // Treat these operands as temp values (if the life range is extended
1395       // to a call site, the value would be in a register at the call otherwise)
1396       n = visitor.info_count();
1397       for (k = 0; k < n; k++) {
1398         CodeEmitInfo* info = visitor.info_at(k);
1399         ValueStack* stack = info->stack();
1400         for_each_state_value(stack, value,
1401           add_use(value, block_from, op_id + 1, noUse);
1402         );
1403       }
1404 
1405       // special steps for some instructions (especially moves)
1406       handle_method_arguments(op);
1407       handle_doubleword_moves(op);
1408       add_register_hints(op);
1409 
1410     } // end of instruction iteration
1411   } // end of block iteration
1412 
1413 
1414   // add the range [0, 1[ to all fixed intervals
1415   // -> the register allocator need not handle unhandled fixed intervals
1416   for (int n = 0; n < LinearScan::nof_regs; n++) {
1417     Interval* interval = interval_at(n);
1418     if (interval != NULL) {
1419       interval->add_range(0, 1);
1420     }
1421   }
1422 }
1423 
1424 
1425 // ********** Phase 5: actual register allocation
1426 
1427 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1428   if (*a != NULL) {
1429     if (*b != NULL) {
1430       return (*a)->from() - (*b)->from();
1431     } else {
1432       return -1;
1433     }
1434   } else {
1435     if (*b != NULL) {
1436       return 1;
1437     } else {
1438       return 0;
1439     }
1440   }
1441 }
1442 
1443 #ifndef PRODUCT
1444 int interval_cmp(Interval* const& l, Interval* const& r) {
1445   return l->from() - r->from();
1446 }
1447 
1448 bool find_interval(Interval* interval, IntervalArray* intervals) {
1449   bool found;
1450   int idx = intervals->find_sorted<Interval*, interval_cmp>(interval, found);
1451 
1452   if (!found) {
1453     return false;
1454   }
1455 
1456   int from = interval->from();
1457 
1458   // The index we've found using binary search is pointing to an interval
1459   // that is defined in the same place as the interval we were looking for.
1460   // So now we have to look around that index and find exact interval.
1461   for (int i = idx; i >= 0; i--) {
1462     if (intervals->at(i) == interval) {
1463       return true;
1464     }
1465     if (intervals->at(i)->from() != from) {
1466       break;
1467     }
1468   }
1469 
1470   for (int i = idx + 1; i < intervals->length(); i++) {
1471     if (intervals->at(i) == interval) {
1472       return true;
1473     }
1474     if (intervals->at(i)->from() != from) {
1475       break;
1476     }
1477   }
1478 
1479   return false;
1480 }
1481 
1482 bool LinearScan::is_sorted(IntervalArray* intervals) {
1483   int from = -1;
1484   int null_count = 0;
1485 
1486   for (int i = 0; i < intervals->length(); i++) {
1487     Interval* it = intervals->at(i);
1488     if (it != NULL) {
1489       assert(from <= it->from(), "Intervals are unordered");
1490       from = it->from();
1491     } else {
1492       null_count++;
1493     }
1494   }
1495 
1496   assert(null_count == 0, "Sorted intervals should not contain nulls");
1497 
1498   null_count = 0;
1499 
1500   for (int i = 0; i < interval_count(); i++) {
1501     Interval* interval = interval_at(i);
1502     if (interval != NULL) {
1503       assert(find_interval(interval, intervals), "Lists do not contain same intervals");
1504     } else {
1505       null_count++;
1506     }
1507   }
1508 
1509   assert(interval_count() - null_count == intervals->length(),
1510       "Sorted list should contain the same amount of non-NULL intervals as unsorted list");
1511 
1512   return true;
1513 }
1514 #endif
1515 
1516 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1517   if (*prev != NULL) {
1518     (*prev)->set_next(interval);
1519   } else {
1520     *first = interval;
1521   }
1522   *prev = interval;
1523 }
1524 
1525 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1526   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1527 
1528   *list1 = *list2 = Interval::end();
1529 
1530   Interval* list1_prev = NULL;
1531   Interval* list2_prev = NULL;
1532   Interval* v;
1533 
1534   const int n = _sorted_intervals->length();
1535   for (int i = 0; i < n; i++) {
1536     v = _sorted_intervals->at(i);
1537     if (v == NULL) continue;
1538 
1539     if (is_list1(v)) {
1540       add_to_list(list1, &list1_prev, v);
1541     } else if (is_list2 == NULL || is_list2(v)) {
1542       add_to_list(list2, &list2_prev, v);
1543     }
1544   }
1545 
1546   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1547   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1548 
1549   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1550   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1551 }
1552 
1553 
1554 void LinearScan::sort_intervals_before_allocation() {
1555   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1556 
1557   if (_needs_full_resort) {
1558     // There is no known reason why this should occur but just in case...
1559     assert(false, "should never occur");
1560     // Re-sort existing interval list because an Interval::from() has changed
1561     _sorted_intervals->sort(interval_cmp);
1562     _needs_full_resort = false;
1563   }
1564 
1565   IntervalList* unsorted_list = &_intervals;
1566   int unsorted_len = unsorted_list->length();
1567   int sorted_len = 0;
1568   int unsorted_idx;
1569   int sorted_idx = 0;
1570   int sorted_from_max = -1;
1571 
1572   // calc number of items for sorted list (sorted list must not contain NULL values)
1573   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1574     if (unsorted_list->at(unsorted_idx) != NULL) {
1575       sorted_len++;
1576     }
1577   }
1578   IntervalArray* sorted_list = new IntervalArray(sorted_len, sorted_len, NULL);
1579 
1580   // special sorting algorithm: the original interval-list is almost sorted,
1581   // only some intervals are swapped. So this is much faster than a complete QuickSort
1582   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1583     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1584 
1585     if (cur_interval != NULL) {
1586       int cur_from = cur_interval->from();
1587 
1588       if (sorted_from_max <= cur_from) {
1589         sorted_list->at_put(sorted_idx++, cur_interval);
1590         sorted_from_max = cur_interval->from();
1591       } else {
1592         // the asumption that the intervals are already sorted failed,
1593         // so this interval must be sorted in manually
1594         int j;
1595         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1596           sorted_list->at_put(j + 1, sorted_list->at(j));
1597         }
1598         sorted_list->at_put(j + 1, cur_interval);
1599         sorted_idx++;
1600       }
1601     }
1602   }
1603   _sorted_intervals = sorted_list;
1604   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1605 }
1606 
1607 void LinearScan::sort_intervals_after_allocation() {
1608   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1609 
1610   if (_needs_full_resort) {
1611     // Re-sort existing interval list because an Interval::from() has changed
1612     _sorted_intervals->sort(interval_cmp);
1613     _needs_full_resort = false;
1614   }
1615 
1616   IntervalArray* old_list = _sorted_intervals;
1617   IntervalList* new_list = _new_intervals_from_allocation;
1618   int old_len = old_list->length();
1619   int new_len = new_list->length();
1620 
1621   if (new_len == 0) {
1622     // no intervals have been added during allocation, so sorted list is already up to date
1623     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1624     return;
1625   }
1626 
1627   // conventional sort-algorithm for new intervals
1628   new_list->sort(interval_cmp);
1629 
1630   // merge old and new list (both already sorted) into one combined list
1631   int combined_list_len = old_len + new_len;
1632   IntervalArray* combined_list = new IntervalArray(combined_list_len, combined_list_len, NULL);
1633   int old_idx = 0;
1634   int new_idx = 0;
1635 
1636   while (old_idx + new_idx < old_len + new_len) {
1637     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1638       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1639       old_idx++;
1640     } else {
1641       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1642       new_idx++;
1643     }
1644   }
1645 
1646   _sorted_intervals = combined_list;
1647   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1648 }
1649 
1650 
1651 void LinearScan::allocate_registers() {
1652   TIME_LINEAR_SCAN(timer_allocate_registers);
1653 
1654   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1655   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1656 
1657   // allocate cpu registers
1658   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1659                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1660 
1661   // allocate fpu registers
1662   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1663                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1664 
1665   // the fpu interval allocation cannot be moved down below with the fpu section as
1666   // the cpu_lsw.walk() changes interval positions.
1667 
1668   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1669   cpu_lsw.walk();
1670   cpu_lsw.finish_allocation();
1671 
1672   if (has_fpu_registers()) {
1673     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1674     fpu_lsw.walk();
1675     fpu_lsw.finish_allocation();
1676   }
1677 }
1678 
1679 
1680 // ********** Phase 6: resolve data flow
1681 // (insert moves at edges between blocks if intervals have been split)
1682 
1683 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1684 // instead of returning NULL
1685 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1686   Interval* result = interval->split_child_at_op_id(op_id, mode);
1687   if (result != NULL) {
1688     return result;
1689   }
1690 
1691   assert(false, "must find an interval, but do a clean bailout in product mode");
1692   result = new Interval(LIR_OprDesc::vreg_base);
1693   result->assign_reg(0);
1694   result->set_type(T_INT);
1695   BAILOUT_("LinearScan: interval is NULL", result);
1696 }
1697 
1698 
1699 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1700   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1701   assert(interval_at(reg_num) != NULL, "no interval found");
1702 
1703   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1704 }
1705 
1706 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1707   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1708   assert(interval_at(reg_num) != NULL, "no interval found");
1709 
1710   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1711 }
1712 
1713 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1714   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1715   assert(interval_at(reg_num) != NULL, "no interval found");
1716 
1717   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1718 }
1719 
1720 
1721 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1722   DEBUG_ONLY(move_resolver.check_empty());
1723 
1724   const int num_regs = num_virtual_regs();
1725   const int size = live_set_size();
1726   const ResourceBitMap live_at_edge = to_block->live_in();
1727 
1728   // visit all registers where the live_at_edge bit is set
1729   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1730     assert(r < num_regs, "live information set for not exisiting interval");
1731     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1732 
1733     Interval* from_interval = interval_at_block_end(from_block, r);
1734     Interval* to_interval = interval_at_block_begin(to_block, r);
1735 
1736     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1737       // need to insert move instruction
1738       move_resolver.add_mapping(from_interval, to_interval);
1739     }
1740   }
1741 }
1742 
1743 
1744 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1745   if (from_block->number_of_sux() <= 1) {
1746     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1747 
1748     LIR_OpList* instructions = from_block->lir()->instructions_list();
1749     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1750     if (branch != NULL) {
1751       // insert moves before branch
1752       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1753       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1754     } else {
1755       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1756     }
1757 
1758   } else {
1759     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1760 #ifdef ASSERT
1761     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1762 
1763     // because the number of predecessor edges matches the number of
1764     // successor edges, blocks which are reached by switch statements
1765     // may have be more than one predecessor but it will be guaranteed
1766     // that all predecessors will be the same.
1767     for (int i = 0; i < to_block->number_of_preds(); i++) {
1768       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1769     }
1770 #endif
1771 
1772     move_resolver.set_insert_position(to_block->lir(), 0);
1773   }
1774 }
1775 
1776 
1777 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1778 void LinearScan::resolve_data_flow() {
1779   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1780 
1781   int num_blocks = block_count();
1782   MoveResolver move_resolver(this);
1783   ResourceBitMap block_completed(num_blocks);
1784   ResourceBitMap already_resolved(num_blocks);
1785 
1786   int i;
1787   for (i = 0; i < num_blocks; i++) {
1788     BlockBegin* block = block_at(i);
1789 
1790     // check if block has only one predecessor and only one successor
1791     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1792       LIR_OpList* instructions = block->lir()->instructions_list();
1793       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1794       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1795       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1796 
1797       // check if block is empty (only label and branch)
1798       if (instructions->length() == 2) {
1799         BlockBegin* pred = block->pred_at(0);
1800         BlockBegin* sux = block->sux_at(0);
1801 
1802         // prevent optimization of two consecutive blocks
1803         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1804           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1805           block_completed.set_bit(block->linear_scan_number());
1806 
1807           // directly resolve between pred and sux (without looking at the empty block between)
1808           resolve_collect_mappings(pred, sux, move_resolver);
1809           if (move_resolver.has_mappings()) {
1810             move_resolver.set_insert_position(block->lir(), 0);
1811             move_resolver.resolve_and_append_moves();
1812           }
1813         }
1814       }
1815     }
1816   }
1817 
1818 
1819   for (i = 0; i < num_blocks; i++) {
1820     if (!block_completed.at(i)) {
1821       BlockBegin* from_block = block_at(i);
1822       already_resolved.set_from(block_completed);
1823 
1824       int num_sux = from_block->number_of_sux();
1825       for (int s = 0; s < num_sux; s++) {
1826         BlockBegin* to_block = from_block->sux_at(s);
1827 
1828         // check for duplicate edges between the same blocks (can happen with switch blocks)
1829         if (!already_resolved.at(to_block->linear_scan_number())) {
1830           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1831           already_resolved.set_bit(to_block->linear_scan_number());
1832 
1833           // collect all intervals that have been split between from_block and to_block
1834           resolve_collect_mappings(from_block, to_block, move_resolver);
1835           if (move_resolver.has_mappings()) {
1836             resolve_find_insert_pos(from_block, to_block, move_resolver);
1837             move_resolver.resolve_and_append_moves();
1838           }
1839         }
1840       }
1841     }
1842   }
1843 }
1844 
1845 
1846 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1847   if (interval_at(reg_num) == NULL) {
1848     // if a phi function is never used, no interval is created -> ignore this
1849     return;
1850   }
1851 
1852   Interval* interval = interval_at_block_begin(block, reg_num);
1853   int reg = interval->assigned_reg();
1854   int regHi = interval->assigned_regHi();
1855 
1856   if ((reg < nof_regs && interval->always_in_memory()) ||
1857       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1858     // the interval is split to get a short range that is located on the stack
1859     // in the following two cases:
1860     // * the interval started in memory (e.g. method parameter), but is currently in a register
1861     //   this is an optimization for exception handling that reduces the number of moves that
1862     //   are necessary for resolving the states when an exception uses this exception handler
1863     // * the interval would be on the fpu stack at the begin of the exception handler
1864     //   this is not allowed because of the complicated fpu stack handling on Intel
1865 
1866     // range that will be spilled to memory
1867     int from_op_id = block->first_lir_instruction_id();
1868     int to_op_id = from_op_id + 1;  // short live range of length 1
1869     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1870            "no split allowed between exception entry and first instruction");
1871 
1872     if (interval->from() != from_op_id) {
1873       // the part before from_op_id is unchanged
1874       interval = interval->split(from_op_id);
1875       interval->assign_reg(reg, regHi);
1876       append_interval(interval);
1877     } else {
1878       _needs_full_resort = true;
1879     }
1880     assert(interval->from() == from_op_id, "must be true now");
1881 
1882     Interval* spilled_part = interval;
1883     if (interval->to() != to_op_id) {
1884       // the part after to_op_id is unchanged
1885       spilled_part = interval->split_from_start(to_op_id);
1886       append_interval(spilled_part);
1887       move_resolver.add_mapping(spilled_part, interval);
1888     }
1889     assign_spill_slot(spilled_part);
1890 
1891     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1892   }
1893 }
1894 
1895 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1896   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1897   DEBUG_ONLY(move_resolver.check_empty());
1898 
1899   // visit all registers where the live_in bit is set
1900   int size = live_set_size();
1901   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1902     resolve_exception_entry(block, r, move_resolver);
1903   }
1904 
1905   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1906   for_each_phi_fun(block, phi,
1907     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1908   );
1909 
1910   if (move_resolver.has_mappings()) {
1911     // insert moves after first instruction
1912     move_resolver.set_insert_position(block->lir(), 0);
1913     move_resolver.resolve_and_append_moves();
1914   }
1915 }
1916 
1917 
1918 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1919   if (interval_at(reg_num) == NULL) {
1920     // if a phi function is never used, no interval is created -> ignore this
1921     return;
1922   }
1923 
1924   // the computation of to_interval is equal to resolve_collect_mappings,
1925   // but from_interval is more complicated because of phi functions
1926   BlockBegin* to_block = handler->entry_block();
1927   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1928 
1929   if (phi != NULL) {
1930     // phi function of the exception entry block
1931     // no moves are created for this phi function in the LIR_Generator, so the
1932     // interval at the throwing instruction must be searched using the operands
1933     // of the phi function
1934     Value from_value = phi->operand_at(handler->phi_operand());
1935 
1936     // with phi functions it can happen that the same from_value is used in
1937     // multiple mappings, so notify move-resolver that this is allowed
1938     move_resolver.set_multiple_reads_allowed();
1939 
1940     Constant* con = from_value->as_Constant();
1941     if (con != NULL && !con->is_pinned()) {
1942       // unpinned constants may have no register, so add mapping from constant to interval
1943       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1944     } else {
1945       // search split child at the throwing op_id
1946       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1947       move_resolver.add_mapping(from_interval, to_interval);
1948     }
1949 
1950   } else {
1951     // no phi function, so use reg_num also for from_interval
1952     // search split child at the throwing op_id
1953     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1954     if (from_interval != to_interval) {
1955       // optimization to reduce number of moves: when to_interval is on stack and
1956       // the stack slot is known to be always correct, then no move is necessary
1957       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1958         move_resolver.add_mapping(from_interval, to_interval);
1959       }
1960     }
1961   }
1962 }
1963 
1964 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1965   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1966 
1967   DEBUG_ONLY(move_resolver.check_empty());
1968   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1969   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1970   assert(handler->entry_code() == NULL, "code already present");
1971 
1972   // visit all registers where the live_in bit is set
1973   BlockBegin* block = handler->entry_block();
1974   int size = live_set_size();
1975   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1976     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1977   }
1978 
1979   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1980   for_each_phi_fun(block, phi,
1981     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1982   );
1983 
1984   if (move_resolver.has_mappings()) {
1985     LIR_List* entry_code = new LIR_List(compilation());
1986     move_resolver.set_insert_position(entry_code, 0);
1987     move_resolver.resolve_and_append_moves();
1988 
1989     entry_code->jump(handler->entry_block());
1990     handler->set_entry_code(entry_code);
1991   }
1992 }
1993 
1994 
1995 void LinearScan::resolve_exception_handlers() {
1996   MoveResolver move_resolver(this);
1997   LIR_OpVisitState visitor;
1998   int num_blocks = block_count();
1999 
2000   int i;
2001   for (i = 0; i < num_blocks; i++) {
2002     BlockBegin* block = block_at(i);
2003     if (block->is_set(BlockBegin::exception_entry_flag)) {
2004       resolve_exception_entry(block, move_resolver);
2005     }
2006   }
2007 
2008   for (i = 0; i < num_blocks; i++) {
2009     BlockBegin* block = block_at(i);
2010     LIR_List* ops = block->lir();
2011     int num_ops = ops->length();
2012 
2013     // iterate all instructions of the block. skip the first because it is always a label
2014     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
2015     for (int j = 1; j < num_ops; j++) {
2016       LIR_Op* op = ops->at(j);
2017       int op_id = op->id();
2018 
2019       if (op_id != -1 && has_info(op_id)) {
2020         // visit operation to collect all operands
2021         visitor.visit(op);
2022         assert(visitor.info_count() > 0, "should not visit otherwise");
2023 
2024         XHandlers* xhandlers = visitor.all_xhandler();
2025         int n = xhandlers->length();
2026         for (int k = 0; k < n; k++) {
2027           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2028         }
2029 
2030 #ifdef ASSERT
2031       } else {
2032         visitor.visit(op);
2033         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2034 #endif
2035       }
2036     }
2037   }
2038 }
2039 
2040 
2041 // ********** Phase 7: assign register numbers back to LIR
2042 // (includes computation of debug information and oop maps)
2043 
2044 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2045   VMReg reg = interval->cached_vm_reg();
2046   if (!reg->is_valid() ) {
2047     reg = vm_reg_for_operand(operand_for_interval(interval));
2048     interval->set_cached_vm_reg(reg);
2049   }
2050   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2051   return reg;
2052 }
2053 
2054 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2055   assert(opr->is_oop(), "currently only implemented for oop operands");
2056   return frame_map()->regname(opr);
2057 }
2058 
2059 
2060 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2061   LIR_Opr opr = interval->cached_opr();
2062   if (opr->is_illegal()) {
2063     opr = calc_operand_for_interval(interval);
2064     interval->set_cached_opr(opr);
2065   }
2066 
2067   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2068   return opr;
2069 }
2070 
2071 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2072   int assigned_reg = interval->assigned_reg();
2073   BasicType type = interval->type();
2074 
2075   if (assigned_reg >= nof_regs) {
2076     // stack slot
2077     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2078     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2079 
2080   } else {
2081     // register
2082     switch (type) {
2083       case T_OBJECT: {
2084         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2085         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2086         return LIR_OprFact::single_cpu_oop(assigned_reg);
2087       }
2088 
2089       case T_ADDRESS: {
2090         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2091         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2092         return LIR_OprFact::single_cpu_address(assigned_reg);
2093       }
2094 
2095       case T_METADATA: {
2096         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2097         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2098         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2099       }
2100 
2101 #ifdef __SOFTFP__
2102       case T_FLOAT:  // fall through
2103 #endif // __SOFTFP__
2104       case T_INT: {
2105         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2106         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2107         return LIR_OprFact::single_cpu(assigned_reg);
2108       }
2109 
2110 #ifdef __SOFTFP__
2111       case T_DOUBLE:  // fall through
2112 #endif // __SOFTFP__
2113       case T_LONG: {
2114         int assigned_regHi = interval->assigned_regHi();
2115         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2116         assert(num_physical_regs(T_LONG) == 1 ||
2117                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2118 
2119         assert(assigned_reg != assigned_regHi, "invalid allocation");
2120         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2121                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2122         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2123         if (requires_adjacent_regs(T_LONG)) {
2124           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2125         }
2126 
2127 #ifdef _LP64
2128         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2129 #else
2130 #if defined(SPARC) || defined(PPC32)
2131         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2132 #else
2133         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2134 #endif // SPARC
2135 #endif // LP64
2136       }
2137 
2138 #ifndef __SOFTFP__
2139       case T_FLOAT: {
2140 #ifdef X86
2141         if (UseSSE >= 1) {
2142           int last_xmm_reg = pd_last_xmm_reg;
2143 #ifdef _LP64
2144           if (UseAVX < 3) {
2145             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2146           }
2147 #endif
2148           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2149           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2150           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2151         }
2152 #endif
2153 
2154         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2155         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2156         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2157       }
2158 
2159       case T_DOUBLE: {
2160 #ifdef X86
2161         if (UseSSE >= 2) {
2162           int last_xmm_reg = pd_last_xmm_reg;
2163 #ifdef _LP64
2164           if (UseAVX < 3) {
2165             last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
2166           }
2167 #endif
2168           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= last_xmm_reg, "no xmm register");
2169           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2170           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2171         }
2172 #endif
2173 
2174 #ifdef SPARC
2175         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2176         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2177         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2178         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2179 #elif defined(ARM32)
2180         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2181         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2182         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2183         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2184 #else
2185         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2186         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2187         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2188 #endif
2189         return result;
2190       }
2191 #endif // __SOFTFP__
2192 
2193       default: {
2194         ShouldNotReachHere();
2195         return LIR_OprFact::illegalOpr;
2196       }
2197     }
2198   }
2199 }
2200 
2201 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2202   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2203   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2204 }
2205 
2206 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2207   assert(opr->is_virtual(), "should not call this otherwise");
2208 
2209   Interval* interval = interval_at(opr->vreg_number());
2210   assert(interval != NULL, "interval must exist");
2211 
2212   if (op_id != -1) {
2213 #ifdef ASSERT
2214     BlockBegin* block = block_of_op_with_id(op_id);
2215     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2216       // check if spill moves could have been appended at the end of this block, but
2217       // before the branch instruction. So the split child information for this branch would
2218       // be incorrect.
2219       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2220       if (branch != NULL) {
2221         if (block->live_out().at(opr->vreg_number())) {
2222           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2223           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2224         }
2225       }
2226     }
2227 #endif
2228 
2229     // operands are not changed when an interval is split during allocation,
2230     // so search the right interval here
2231     interval = split_child_at_op_id(interval, op_id, mode);
2232   }
2233 
2234   LIR_Opr res = operand_for_interval(interval);
2235 
2236 #ifdef X86
2237   // new semantic for is_last_use: not only set on definite end of interval,
2238   // but also before hole
2239   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2240   // last use information is completely correct
2241   // information is only needed for fpu stack allocation
2242   if (res->is_fpu_register()) {
2243     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2244       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2245       res = res->make_last_use();
2246     }
2247   }
2248 #endif
2249 
2250   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2251 
2252   return res;
2253 }
2254 
2255 
2256 #ifdef ASSERT
2257 // some methods used to check correctness of debug information
2258 
2259 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2260   if (values == NULL) {
2261     return;
2262   }
2263 
2264   for (int i = 0; i < values->length(); i++) {
2265     ScopeValue* value = values->at(i);
2266 
2267     if (value->is_location()) {
2268       Location location = ((LocationValue*)value)->location();
2269       assert(location.where() == Location::on_stack, "value is in register");
2270     }
2271   }
2272 }
2273 
2274 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2275   if (values == NULL) {
2276     return;
2277   }
2278 
2279   for (int i = 0; i < values->length(); i++) {
2280     MonitorValue* value = values->at(i);
2281 
2282     if (value->owner()->is_location()) {
2283       Location location = ((LocationValue*)value->owner())->location();
2284       assert(location.where() == Location::on_stack, "owner is in register");
2285     }
2286     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2287   }
2288 }
2289 
2290 void assert_equal(Location l1, Location l2) {
2291   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2292 }
2293 
2294 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2295   if (v1->is_location()) {
2296     assert(v2->is_location(), "");
2297     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2298   } else if (v1->is_constant_int()) {
2299     assert(v2->is_constant_int(), "");
2300     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2301   } else if (v1->is_constant_double()) {
2302     assert(v2->is_constant_double(), "");
2303     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2304   } else if (v1->is_constant_long()) {
2305     assert(v2->is_constant_long(), "");
2306     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2307   } else if (v1->is_constant_oop()) {
2308     assert(v2->is_constant_oop(), "");
2309     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2310   } else {
2311     ShouldNotReachHere();
2312   }
2313 }
2314 
2315 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2316   assert_equal(m1->owner(), m2->owner());
2317   assert_equal(m1->basic_lock(), m2->basic_lock());
2318 }
2319 
2320 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2321   assert(d1->scope() == d2->scope(), "not equal");
2322   assert(d1->bci() == d2->bci(), "not equal");
2323 
2324   if (d1->locals() != NULL) {
2325     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2326     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2327     for (int i = 0; i < d1->locals()->length(); i++) {
2328       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2329     }
2330   } else {
2331     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2332   }
2333 
2334   if (d1->expressions() != NULL) {
2335     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2336     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2337     for (int i = 0; i < d1->expressions()->length(); i++) {
2338       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2339     }
2340   } else {
2341     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2342   }
2343 
2344   if (d1->monitors() != NULL) {
2345     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2346     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2347     for (int i = 0; i < d1->monitors()->length(); i++) {
2348       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2349     }
2350   } else {
2351     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2352   }
2353 
2354   if (d1->caller() != NULL) {
2355     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2356     assert_equal(d1->caller(), d2->caller());
2357   } else {
2358     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2359   }
2360 }
2361 
2362 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2363   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2364     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2365     switch (code) {
2366       case Bytecodes::_ifnull    : // fall through
2367       case Bytecodes::_ifnonnull : // fall through
2368       case Bytecodes::_ifeq      : // fall through
2369       case Bytecodes::_ifne      : // fall through
2370       case Bytecodes::_iflt      : // fall through
2371       case Bytecodes::_ifge      : // fall through
2372       case Bytecodes::_ifgt      : // fall through
2373       case Bytecodes::_ifle      : // fall through
2374       case Bytecodes::_if_icmpeq : // fall through
2375       case Bytecodes::_if_icmpne : // fall through
2376       case Bytecodes::_if_icmplt : // fall through
2377       case Bytecodes::_if_icmpge : // fall through
2378       case Bytecodes::_if_icmpgt : // fall through
2379       case Bytecodes::_if_icmple : // fall through
2380       case Bytecodes::_if_acmpeq : // fall through
2381       case Bytecodes::_if_acmpne :
2382         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2383         break;
2384     }
2385   }
2386 }
2387 
2388 #endif // ASSERT
2389 
2390 
2391 IntervalWalker* LinearScan::init_compute_oop_maps() {
2392   // setup lists of potential oops for walking
2393   Interval* oop_intervals;
2394   Interval* non_oop_intervals;
2395 
2396   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2397 
2398   // intervals that have no oops inside need not to be processed
2399   // to ensure a walking until the last instruction id, add a dummy interval
2400   // with a high operation id
2401   non_oop_intervals = new Interval(any_reg);
2402   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2403 
2404   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2405 }
2406 
2407 
2408 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2409   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2410 
2411   // walk before the current operation -> intervals that start at
2412   // the operation (= output operands of the operation) are not
2413   // included in the oop map
2414   iw->walk_before(op->id());
2415 
2416   int frame_size = frame_map()->framesize();
2417   int arg_count = frame_map()->oop_map_arg_count();
2418   OopMap* map = new OopMap(frame_size, arg_count);
2419 
2420   // Iterate through active intervals
2421   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2422     int assigned_reg = interval->assigned_reg();
2423 
2424     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2425     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2426     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2427 
2428     // Check if this range covers the instruction. Intervals that
2429     // start or end at the current operation are not included in the
2430     // oop map, except in the case of patching moves.  For patching
2431     // moves, any intervals which end at this instruction are included
2432     // in the oop map since we may safepoint while doing the patch
2433     // before we've consumed the inputs.
2434     if (op->is_patching() || op->id() < interval->current_to()) {
2435 
2436       // caller-save registers must not be included into oop-maps at calls
2437       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2438 
2439       VMReg name = vm_reg_for_interval(interval);
2440       set_oop(map, name);
2441 
2442       // Spill optimization: when the stack value is guaranteed to be always correct,
2443       // then it must be added to the oop map even if the interval is currently in a register
2444       if (interval->always_in_memory() &&
2445           op->id() > interval->spill_definition_pos() &&
2446           interval->assigned_reg() != interval->canonical_spill_slot()) {
2447         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2448         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2449         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2450 
2451         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2452       }
2453     }
2454   }
2455 
2456   // add oops from lock stack
2457   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2458   int locks_count = info->stack()->total_locks_size();
2459   for (int i = 0; i < locks_count; i++) {
2460     set_oop(map, frame_map()->monitor_object_regname(i));
2461   }
2462 
2463   return map;
2464 }
2465 
2466 
2467 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2468   assert(visitor.info_count() > 0, "no oop map needed");
2469 
2470   // compute oop_map only for first CodeEmitInfo
2471   // because it is (in most cases) equal for all other infos of the same operation
2472   CodeEmitInfo* first_info = visitor.info_at(0);
2473   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2474 
2475   for (int i = 0; i < visitor.info_count(); i++) {
2476     CodeEmitInfo* info = visitor.info_at(i);
2477     OopMap* oop_map = first_oop_map;
2478 
2479     // compute worst case interpreter size in case of a deoptimization
2480     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2481 
2482     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2483       // this info has a different number of locks then the precomputed oop map
2484       // (possible for lock and unlock instructions) -> compute oop map with
2485       // correct lock information
2486       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2487     }
2488 
2489     if (info->_oop_map == NULL) {
2490       info->_oop_map = oop_map;
2491     } else {
2492       // a CodeEmitInfo can not be shared between different LIR-instructions
2493       // because interval splitting can occur anywhere between two instructions
2494       // and so the oop maps must be different
2495       // -> check if the already set oop_map is exactly the one calculated for this operation
2496       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2497     }
2498   }
2499 }
2500 
2501 
2502 // frequently used constants
2503 // Allocate them with new so they are never destroyed (otherwise, a
2504 // forced exit could destroy these objects while they are still in
2505 // use).
2506 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2507 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2508 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2509 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2510 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2511 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2512 
2513 void LinearScan::init_compute_debug_info() {
2514   // cache for frequently used scope values
2515   // (cpu registers and stack slots)
2516   int cache_size = (LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2;
2517   _scope_value_cache = ScopeValueArray(cache_size, cache_size, NULL);
2518 }
2519 
2520 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2521   Location loc;
2522   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2523     bailout("too large frame");
2524   }
2525   ScopeValue* object_scope_value = new LocationValue(loc);
2526 
2527   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2528     bailout("too large frame");
2529   }
2530   return new MonitorValue(object_scope_value, loc);
2531 }
2532 
2533 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2534   Location loc;
2535   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2536     bailout("too large frame");
2537   }
2538   return new LocationValue(loc);
2539 }
2540 
2541 
2542 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2543   assert(opr->is_constant(), "should not be called otherwise");
2544 
2545   LIR_Const* c = opr->as_constant_ptr();
2546   BasicType t = c->type();
2547   switch (t) {
2548     case T_OBJECT: {
2549       jobject value = c->as_jobject();
2550       if (value == NULL) {
2551         scope_values->append(_oop_null_scope_value);
2552       } else {
2553         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2554       }
2555       return 1;
2556     }
2557 
2558     case T_INT: // fall through
2559     case T_FLOAT: {
2560       int value = c->as_jint_bits();
2561       switch (value) {
2562         case -1: scope_values->append(_int_m1_scope_value); break;
2563         case 0:  scope_values->append(_int_0_scope_value); break;
2564         case 1:  scope_values->append(_int_1_scope_value); break;
2565         case 2:  scope_values->append(_int_2_scope_value); break;
2566         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2567       }
2568       return 1;
2569     }
2570 
2571     case T_LONG: // fall through
2572     case T_DOUBLE: {
2573 #ifdef _LP64
2574       scope_values->append(_int_0_scope_value);
2575       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2576 #else
2577       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2578         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2579         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2580       } else {
2581         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2582         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2583       }
2584 #endif
2585       return 2;
2586     }
2587 
2588     case T_ADDRESS: {
2589 #ifdef _LP64
2590       scope_values->append(new ConstantLongValue(c->as_jint()));
2591 #else
2592       scope_values->append(new ConstantIntValue(c->as_jint()));
2593 #endif
2594       return 1;
2595     }
2596 
2597     default:
2598       ShouldNotReachHere();
2599       return -1;
2600   }
2601 }
2602 
2603 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2604   if (opr->is_single_stack()) {
2605     int stack_idx = opr->single_stack_ix();
2606     bool is_oop = opr->is_oop_register();
2607     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2608 
2609     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2610     if (sv == NULL) {
2611       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2612       sv = location_for_name(stack_idx, loc_type);
2613       _scope_value_cache.at_put(cache_idx, sv);
2614     }
2615 
2616     // check if cached value is correct
2617     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2618 
2619     scope_values->append(sv);
2620     return 1;
2621 
2622   } else if (opr->is_single_cpu()) {
2623     bool is_oop = opr->is_oop_register();
2624     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2625     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2626 
2627     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2628     if (sv == NULL) {
2629       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2630       VMReg rname = frame_map()->regname(opr);
2631       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2632       _scope_value_cache.at_put(cache_idx, sv);
2633     }
2634 
2635     // check if cached value is correct
2636     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2637 
2638     scope_values->append(sv);
2639     return 1;
2640 
2641 #ifdef X86
2642   } else if (opr->is_single_xmm()) {
2643     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2644     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2645 
2646     scope_values->append(sv);
2647     return 1;
2648 #endif
2649 
2650   } else if (opr->is_single_fpu()) {
2651 #ifdef X86
2652     // the exact location of fpu stack values is only known
2653     // during fpu stack allocation, so the stack allocator object
2654     // must be present
2655     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2656     assert(_fpu_stack_allocator != NULL, "must be present");
2657     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2658 #endif
2659 
2660     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2661     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2662 #ifndef __SOFTFP__
2663 #ifndef VM_LITTLE_ENDIAN
2664     // On S390 a (single precision) float value occupies only the high
2665     // word of the full double register. So when the double register is
2666     // stored to memory (e.g. by the RegisterSaver), then the float value
2667     // is found at offset 0. I.e. the code below is not needed on S390.
2668 #ifndef S390
2669     if (! float_saved_as_double) {
2670       // On big endian system, we may have an issue if float registers use only
2671       // the low half of the (same) double registers.
2672       // Both the float and the double could have the same regnr but would correspond
2673       // to two different addresses once saved.
2674 
2675       // get next safely (no assertion checks)
2676       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2677       if (next->is_reg() &&
2678           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2679         // the back-end does use the same numbering for the double and the float
2680         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2681       }
2682     }
2683 #endif // !S390
2684 #endif
2685 #endif
2686     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2687 
2688     scope_values->append(sv);
2689     return 1;
2690 
2691   } else {
2692     // double-size operands
2693 
2694     ScopeValue* first;
2695     ScopeValue* second;
2696 
2697     if (opr->is_double_stack()) {
2698 #ifdef _LP64
2699       Location loc1;
2700       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2701       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2702         bailout("too large frame");
2703       }
2704       // Does this reverse on x86 vs. sparc?
2705       first =  new LocationValue(loc1);
2706       second = _int_0_scope_value;
2707 #else
2708       Location loc1, loc2;
2709       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2710         bailout("too large frame");
2711       }
2712       first =  new LocationValue(loc1);
2713       second = new LocationValue(loc2);
2714 #endif // _LP64
2715 
2716     } else if (opr->is_double_cpu()) {
2717 #ifdef _LP64
2718       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2719       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2720       second = _int_0_scope_value;
2721 #else
2722       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2723       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2724 
2725       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2726         // lo/hi and swapped relative to first and second, so swap them
2727         VMReg tmp = rname_first;
2728         rname_first = rname_second;
2729         rname_second = tmp;
2730       }
2731 
2732       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2733       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2734 #endif //_LP64
2735 
2736 
2737 #ifdef X86
2738     } else if (opr->is_double_xmm()) {
2739       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2740       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2741 #  ifdef _LP64
2742       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2743       second = _int_0_scope_value;
2744 #  else
2745       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2746       // %%% This is probably a waste but we'll keep things as they were for now
2747       if (true) {
2748         VMReg rname_second = rname_first->next();
2749         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2750       }
2751 #  endif
2752 #endif
2753 
2754     } else if (opr->is_double_fpu()) {
2755       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2756       // the double as float registers in the native ordering. On X86,
2757       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2758       // the low-order word of the double and fpu_regnrLo + 1 is the
2759       // name for the other half.  *first and *second must represent the
2760       // least and most significant words, respectively.
2761 
2762 #ifdef X86
2763       // the exact location of fpu stack values is only known
2764       // during fpu stack allocation, so the stack allocator object
2765       // must be present
2766       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2767       assert(_fpu_stack_allocator != NULL, "must be present");
2768       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2769 
2770       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2771 #endif
2772 #ifdef SPARC
2773       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2774 #endif
2775 #ifdef ARM32
2776       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2777 #endif
2778 #ifdef PPC32
2779       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2780 #endif
2781 
2782 #ifdef VM_LITTLE_ENDIAN
2783       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2784 #else
2785       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2786 #endif
2787 
2788 #ifdef _LP64
2789       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2790       second = _int_0_scope_value;
2791 #else
2792       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2793       // %%% This is probably a waste but we'll keep things as they were for now
2794       if (true) {
2795         VMReg rname_second = rname_first->next();
2796         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2797       }
2798 #endif
2799 
2800     } else {
2801       ShouldNotReachHere();
2802       first = NULL;
2803       second = NULL;
2804     }
2805 
2806     assert(first != NULL && second != NULL, "must be set");
2807     // The convention the interpreter uses is that the second local
2808     // holds the first raw word of the native double representation.
2809     // This is actually reasonable, since locals and stack arrays
2810     // grow downwards in all implementations.
2811     // (If, on some machine, the interpreter's Java locals or stack
2812     // were to grow upwards, the embedded doubles would be word-swapped.)
2813     scope_values->append(second);
2814     scope_values->append(first);
2815     return 2;
2816   }
2817 }
2818 
2819 
2820 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2821   if (value != NULL) {
2822     LIR_Opr opr = value->operand();
2823     Constant* con = value->as_Constant();
2824 
2825     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2826     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2827 
2828     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2829       // Unpinned constants may have a virtual operand for a part of the lifetime
2830       // or may be illegal when it was optimized away,
2831       // so always use a constant operand
2832       opr = LIR_OprFact::value_type(con->type());
2833     }
2834     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2835 
2836     if (opr->is_virtual()) {
2837       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2838 
2839       BlockBegin* block = block_of_op_with_id(op_id);
2840       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2841         // generating debug information for the last instruction of a block.
2842         // if this instruction is a branch, spill moves are inserted before this branch
2843         // and so the wrong operand would be returned (spill moves at block boundaries are not
2844         // considered in the live ranges of intervals)
2845         // Solution: use the first op_id of the branch target block instead.
2846         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2847           if (block->live_out().at(opr->vreg_number())) {
2848             op_id = block->sux_at(0)->first_lir_instruction_id();
2849             mode = LIR_OpVisitState::outputMode;
2850           }
2851         }
2852       }
2853 
2854       // Get current location of operand
2855       // The operand must be live because debug information is considered when building the intervals
2856       // if the interval is not live, color_lir_opr will cause an assertion failure
2857       opr = color_lir_opr(opr, op_id, mode);
2858       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2859 
2860       // Append to ScopeValue array
2861       return append_scope_value_for_operand(opr, scope_values);
2862 
2863     } else {
2864       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2865       assert(opr->is_constant(), "operand must be constant");
2866 
2867       return append_scope_value_for_constant(opr, scope_values);
2868     }
2869   } else {
2870     // append a dummy value because real value not needed
2871     scope_values->append(_illegal_value);
2872     return 1;
2873   }
2874 }
2875 
2876 
2877 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2878   IRScopeDebugInfo* caller_debug_info = NULL;
2879 
2880   ValueStack* caller_state = cur_state->caller_state();
2881   if (caller_state != NULL) {
2882     // process recursively to compute outermost scope first
2883     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2884   }
2885 
2886   // initialize these to null.
2887   // If we don't need deopt info or there are no locals, expressions or monitors,
2888   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2889   GrowableArray<ScopeValue*>*   locals      = NULL;
2890   GrowableArray<ScopeValue*>*   expressions = NULL;
2891   GrowableArray<MonitorValue*>* monitors    = NULL;
2892 
2893   // describe local variable values
2894   int nof_locals = cur_state->locals_size();
2895   if (nof_locals > 0) {
2896     locals = new GrowableArray<ScopeValue*>(nof_locals);
2897 
2898     int pos = 0;
2899     while (pos < nof_locals) {
2900       assert(pos < cur_state->locals_size(), "why not?");
2901 
2902       Value local = cur_state->local_at(pos);
2903       pos += append_scope_value(op_id, local, locals);
2904 
2905       assert(locals->length() == pos, "must match");
2906     }
2907     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2908     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2909   } else if (cur_scope->method()->max_locals() > 0) {
2910     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2911     nof_locals = cur_scope->method()->max_locals();
2912     locals = new GrowableArray<ScopeValue*>(nof_locals);
2913     for(int i = 0; i < nof_locals; i++) {
2914       locals->append(_illegal_value);
2915     }
2916   }
2917 
2918   // describe expression stack
2919   int nof_stack = cur_state->stack_size();
2920   if (nof_stack > 0) {
2921     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2922 
2923     int pos = 0;
2924     while (pos < nof_stack) {
2925       Value expression = cur_state->stack_at_inc(pos);
2926       append_scope_value(op_id, expression, expressions);
2927 
2928       assert(expressions->length() == pos, "must match");
2929     }
2930     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2931   }
2932 
2933   // describe monitors
2934   int nof_locks = cur_state->locks_size();
2935   if (nof_locks > 0) {
2936     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2937     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2938     for (int i = 0; i < nof_locks; i++) {
2939       monitors->append(location_for_monitor_index(lock_offset + i));
2940     }
2941   }
2942 
2943   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2944 }
2945 
2946 
2947 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2948   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2949 
2950   IRScope* innermost_scope = info->scope();
2951   ValueStack* innermost_state = info->stack();
2952 
2953   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2954 
2955   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2956 
2957   if (info->_scope_debug_info == NULL) {
2958     // compute debug information
2959     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2960   } else {
2961     // debug information already set. Check that it is correct from the current point of view
2962     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2963   }
2964 }
2965 
2966 
2967 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2968   LIR_OpVisitState visitor;
2969   int num_inst = instructions->length();
2970   bool has_dead = false;
2971 
2972   for (int j = 0; j < num_inst; j++) {
2973     LIR_Op* op = instructions->at(j);
2974     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2975       has_dead = true;
2976       continue;
2977     }
2978     int op_id = op->id();
2979 
2980     // visit instruction to get list of operands
2981     visitor.visit(op);
2982 
2983     // iterate all modes of the visitor and process all virtual operands
2984     for_each_visitor_mode(mode) {
2985       int n = visitor.opr_count(mode);
2986       for (int k = 0; k < n; k++) {
2987         LIR_Opr opr = visitor.opr_at(mode, k);
2988         if (opr->is_virtual_register()) {
2989           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2990         }
2991       }
2992     }
2993 
2994     if (visitor.info_count() > 0) {
2995       // exception handling
2996       if (compilation()->has_exception_handlers()) {
2997         XHandlers* xhandlers = visitor.all_xhandler();
2998         int n = xhandlers->length();
2999         for (int k = 0; k < n; k++) {
3000           XHandler* handler = xhandlers->handler_at(k);
3001           if (handler->entry_code() != NULL) {
3002             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
3003           }
3004         }
3005       } else {
3006         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
3007       }
3008 
3009       // compute oop map
3010       assert(iw != NULL, "needed for compute_oop_map");
3011       compute_oop_map(iw, visitor, op);
3012 
3013       // compute debug information
3014       if (!use_fpu_stack_allocation()) {
3015         // compute debug information if fpu stack allocation is not needed.
3016         // when fpu stack allocation is needed, the debug information can not
3017         // be computed here because the exact location of fpu operands is not known
3018         // -> debug information is created inside the fpu stack allocator
3019         int n = visitor.info_count();
3020         for (int k = 0; k < n; k++) {
3021           compute_debug_info(visitor.info_at(k), op_id);
3022         }
3023       }
3024     }
3025 
3026 #ifdef ASSERT
3027     // make sure we haven't made the op invalid.
3028     op->verify();
3029 #endif
3030 
3031     // remove useless moves
3032     if (op->code() == lir_move) {
3033       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
3034       LIR_Op1* move = (LIR_Op1*)op;
3035       LIR_Opr src = move->in_opr();
3036       LIR_Opr dst = move->result_opr();
3037       if (dst == src ||
3038           (!dst->is_pointer() && !src->is_pointer() &&
3039            src->is_same_register(dst))) {
3040         instructions->at_put(j, NULL);
3041         has_dead = true;
3042       }
3043     }
3044   }
3045 
3046   if (has_dead) {
3047     // iterate all instructions of the block and remove all null-values.
3048     int insert_point = 0;
3049     for (int j = 0; j < num_inst; j++) {
3050       LIR_Op* op = instructions->at(j);
3051       if (op != NULL) {
3052         if (insert_point != j) {
3053           instructions->at_put(insert_point, op);
3054         }
3055         insert_point++;
3056       }
3057     }
3058     instructions->trunc_to(insert_point);
3059   }
3060 }
3061 
3062 void LinearScan::assign_reg_num() {
3063   TIME_LINEAR_SCAN(timer_assign_reg_num);
3064 
3065   init_compute_debug_info();
3066   IntervalWalker* iw = init_compute_oop_maps();
3067 
3068   int num_blocks = block_count();
3069   for (int i = 0; i < num_blocks; i++) {
3070     BlockBegin* block = block_at(i);
3071     assign_reg_num(block->lir()->instructions_list(), iw);
3072   }
3073 }
3074 
3075 
3076 void LinearScan::do_linear_scan() {
3077   NOT_PRODUCT(_total_timer.begin_method());
3078 
3079   number_instructions();
3080 
3081   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3082 
3083   compute_local_live_sets();
3084   compute_global_live_sets();
3085   CHECK_BAILOUT();
3086 
3087   build_intervals();
3088   CHECK_BAILOUT();
3089   sort_intervals_before_allocation();
3090 
3091   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3092   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3093 
3094   allocate_registers();
3095   CHECK_BAILOUT();
3096 
3097   resolve_data_flow();
3098   if (compilation()->has_exception_handlers()) {
3099     resolve_exception_handlers();
3100   }
3101   // fill in number of spill slots into frame_map
3102   propagate_spill_slots();
3103   CHECK_BAILOUT();
3104 
3105   NOT_PRODUCT(print_intervals("After Register Allocation"));
3106   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3107 
3108   sort_intervals_after_allocation();
3109 
3110   DEBUG_ONLY(verify());
3111 
3112   eliminate_spill_moves();
3113   assign_reg_num();
3114   CHECK_BAILOUT();
3115 
3116   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3117   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3118 
3119   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3120 
3121     if (use_fpu_stack_allocation()) {
3122       allocate_fpu_stack(); // Only has effect on Intel
3123       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3124     }
3125   }
3126 
3127   { TIME_LINEAR_SCAN(timer_optimize_lir);
3128 
3129     EdgeMoveOptimizer::optimize(ir()->code());
3130     ControlFlowOptimizer::optimize(ir()->code());
3131     // check that cfg is still correct after optimizations
3132     ir()->verify();
3133   }
3134 
3135   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3136   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3137   NOT_PRODUCT(_total_timer.end_method(this));
3138 }
3139 
3140 
3141 // ********** Printing functions
3142 
3143 #ifndef PRODUCT
3144 
3145 void LinearScan::print_timers(double total) {
3146   _total_timer.print(total);
3147 }
3148 
3149 void LinearScan::print_statistics() {
3150   _stat_before_alloc.print("before allocation");
3151   _stat_after_asign.print("after assignment of register");
3152   _stat_final.print("after optimization");
3153 }
3154 
3155 void LinearScan::print_bitmap(BitMap& b) {
3156   for (unsigned int i = 0; i < b.size(); i++) {
3157     if (b.at(i)) tty->print("%d ", i);
3158   }
3159   tty->cr();
3160 }
3161 
3162 void LinearScan::print_intervals(const char* label) {
3163   if (TraceLinearScanLevel >= 1) {
3164     int i;
3165     tty->cr();
3166     tty->print_cr("%s", label);
3167 
3168     for (i = 0; i < interval_count(); i++) {
3169       Interval* interval = interval_at(i);
3170       if (interval != NULL) {
3171         interval->print();
3172       }
3173     }
3174 
3175     tty->cr();
3176     tty->print_cr("--- Basic Blocks ---");
3177     for (i = 0; i < block_count(); i++) {
3178       BlockBegin* block = block_at(i);
3179       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3180     }
3181     tty->cr();
3182     tty->cr();
3183   }
3184 
3185   if (PrintCFGToFile) {
3186     CFGPrinter::print_intervals(&_intervals, label);
3187   }
3188 }
3189 
3190 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3191   if (TraceLinearScanLevel >= level) {
3192     tty->cr();
3193     tty->print_cr("%s", label);
3194     print_LIR(ir()->linear_scan_order());
3195     tty->cr();
3196   }
3197 
3198   if (level == 1 && PrintCFGToFile) {
3199     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3200   }
3201 }
3202 
3203 #endif //PRODUCT
3204 
3205 
3206 // ********** verification functions for allocation
3207 // (check that all intervals have a correct register and that no registers are overwritten)
3208 #ifdef ASSERT
3209 
3210 void LinearScan::verify() {
3211   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3212   verify_intervals();
3213 
3214   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3215   verify_no_oops_in_fixed_intervals();
3216 
3217   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3218   verify_constants();
3219 
3220   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3221   verify_registers();
3222 
3223   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3224 }
3225 
3226 void LinearScan::verify_intervals() {
3227   int len = interval_count();
3228   bool has_error = false;
3229 
3230   for (int i = 0; i < len; i++) {
3231     Interval* i1 = interval_at(i);
3232     if (i1 == NULL) continue;
3233 
3234     i1->check_split_children();
3235 
3236     if (i1->reg_num() != i) {
3237       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3238       has_error = true;
3239     }
3240 
3241     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3242       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3243       has_error = true;
3244     }
3245 
3246     if (i1->assigned_reg() == any_reg) {
3247       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3248       has_error = true;
3249     }
3250 
3251     if (i1->assigned_reg() == i1->assigned_regHi()) {
3252       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3253       has_error = true;
3254     }
3255 
3256     if (!is_processed_reg_num(i1->assigned_reg())) {
3257       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3258       has_error = true;
3259     }
3260 
3261     // special intervals that are created in MoveResolver
3262     // -> ignore them because the range information has no meaning there
3263     if (i1->from() == 1 && i1->to() == 2) continue;
3264 
3265     if (i1->first() == Range::end()) {
3266       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3267       has_error = true;
3268     }
3269 
3270     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3271       if (r->from() >= r->to()) {
3272         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3273         has_error = true;
3274       }
3275     }
3276 
3277     for (int j = i + 1; j < len; j++) {
3278       Interval* i2 = interval_at(j);
3279       if (i2 == NULL || (i2->from() == 1 && i2->to() == 2)) continue;
3280 
3281       int r1 = i1->assigned_reg();
3282       int r1Hi = i1->assigned_regHi();
3283       int r2 = i2->assigned_reg();
3284       int r2Hi = i2->assigned_regHi();
3285       if ((r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi))) && i1->intersects(i2)) {
3286         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3287         i1->print(); tty->cr();
3288         i2->print(); tty->cr();
3289         has_error = true;
3290       }
3291     }
3292   }
3293 
3294   assert(has_error == false, "register allocation invalid");
3295 }
3296 
3297 
3298 void LinearScan::verify_no_oops_in_fixed_intervals() {
3299   Interval* fixed_intervals;
3300   Interval* other_intervals;
3301   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3302 
3303   // to ensure a walking until the last instruction id, add a dummy interval
3304   // with a high operation id
3305   other_intervals = new Interval(any_reg);
3306   other_intervals->add_range(max_jint - 2, max_jint - 1);
3307   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3308 
3309   LIR_OpVisitState visitor;
3310   for (int i = 0; i < block_count(); i++) {
3311     BlockBegin* block = block_at(i);
3312 
3313     LIR_OpList* instructions = block->lir()->instructions_list();
3314 
3315     for (int j = 0; j < instructions->length(); j++) {
3316       LIR_Op* op = instructions->at(j);
3317       int op_id = op->id();
3318 
3319       visitor.visit(op);
3320 
3321       if (visitor.info_count() > 0) {
3322         iw->walk_before(op->id());
3323         bool check_live = true;
3324         if (op->code() == lir_move) {
3325           LIR_Op1* move = (LIR_Op1*)op;
3326           check_live = (move->patch_code() == lir_patch_none);
3327         }
3328         LIR_OpBranch* branch = op->as_OpBranch();
3329         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3330           // Don't bother checking the stub in this case since the
3331           // exception stub will never return to normal control flow.
3332           check_live = false;
3333         }
3334 
3335         // Make sure none of the fixed registers is live across an
3336         // oopmap since we can't handle that correctly.
3337         if (check_live) {
3338           for (Interval* interval = iw->active_first(fixedKind);
3339                interval != Interval::end();
3340                interval = interval->next()) {
3341             if (interval->current_to() > op->id() + 1) {
3342               // This interval is live out of this op so make sure
3343               // that this interval represents some value that's
3344               // referenced by this op either as an input or output.
3345               bool ok = false;
3346               for_each_visitor_mode(mode) {
3347                 int n = visitor.opr_count(mode);
3348                 for (int k = 0; k < n; k++) {
3349                   LIR_Opr opr = visitor.opr_at(mode, k);
3350                   if (opr->is_fixed_cpu()) {
3351                     if (interval_at(reg_num(opr)) == interval) {
3352                       ok = true;
3353                       break;
3354                     }
3355                     int hi = reg_numHi(opr);
3356                     if (hi != -1 && interval_at(hi) == interval) {
3357                       ok = true;
3358                       break;
3359                     }
3360                   }
3361                 }
3362               }
3363               assert(ok, "fixed intervals should never be live across an oopmap point");
3364             }
3365           }
3366         }
3367       }
3368 
3369       // oop-maps at calls do not contain registers, so check is not needed
3370       if (!visitor.has_call()) {
3371 
3372         for_each_visitor_mode(mode) {
3373           int n = visitor.opr_count(mode);
3374           for (int k = 0; k < n; k++) {
3375             LIR_Opr opr = visitor.opr_at(mode, k);
3376 
3377             if (opr->is_fixed_cpu() && opr->is_oop()) {
3378               // operand is a non-virtual cpu register and contains an oop
3379               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3380 
3381               Interval* interval = interval_at(reg_num(opr));
3382               assert(interval != NULL, "no interval");
3383 
3384               if (mode == LIR_OpVisitState::inputMode) {
3385                 if (interval->to() >= op_id + 1) {
3386                   assert(interval->to() < op_id + 2 ||
3387                          interval->has_hole_between(op_id, op_id + 2),
3388                          "oop input operand live after instruction");
3389                 }
3390               } else if (mode == LIR_OpVisitState::outputMode) {
3391                 if (interval->from() <= op_id - 1) {
3392                   assert(interval->has_hole_between(op_id - 1, op_id),
3393                          "oop input operand live after instruction");
3394                 }
3395               }
3396             }
3397           }
3398         }
3399       }
3400     }
3401   }
3402 }
3403 
3404 
3405 void LinearScan::verify_constants() {
3406   int num_regs = num_virtual_regs();
3407   int size = live_set_size();
3408   int num_blocks = block_count();
3409 
3410   for (int i = 0; i < num_blocks; i++) {
3411     BlockBegin* block = block_at(i);
3412     ResourceBitMap live_at_edge = block->live_in();
3413 
3414     // visit all registers where the live_at_edge bit is set
3415     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3416       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3417 
3418       Value value = gen()->instruction_for_vreg(r);
3419 
3420       assert(value != NULL, "all intervals live across block boundaries must have Value");
3421       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3422       assert(value->operand()->vreg_number() == r, "register number must match");
3423       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3424     }
3425   }
3426 }
3427 
3428 
3429 class RegisterVerifier: public StackObj {
3430  private:
3431   LinearScan*   _allocator;
3432   BlockList     _work_list;      // all blocks that must be processed
3433   IntervalsList _saved_states;   // saved information of previous check
3434 
3435   // simplified access to methods of LinearScan
3436   Compilation*  compilation() const              { return _allocator->compilation(); }
3437   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3438   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3439 
3440   // currently, only registers are processed
3441   int           state_size()                     { return LinearScan::nof_regs; }
3442 
3443   // accessors
3444   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3445   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3446   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3447 
3448   // helper functions
3449   IntervalList* copy(IntervalList* input_state);
3450   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3451   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3452 
3453   void process_block(BlockBegin* block);
3454   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3455   void process_successor(BlockBegin* block, IntervalList* input_state);
3456   void process_operations(LIR_List* ops, IntervalList* input_state);
3457 
3458  public:
3459   RegisterVerifier(LinearScan* allocator)
3460     : _allocator(allocator)
3461     , _work_list(16)
3462     , _saved_states(BlockBegin::number_of_blocks(), BlockBegin::number_of_blocks(), NULL)
3463   { }
3464 
3465   void verify(BlockBegin* start);
3466 };
3467 
3468 
3469 // entry function from LinearScan that starts the verification
3470 void LinearScan::verify_registers() {
3471   RegisterVerifier verifier(this);
3472   verifier.verify(block_at(0));
3473 }
3474 
3475 
3476 void RegisterVerifier::verify(BlockBegin* start) {
3477   // setup input registers (method arguments) for first block
3478   int input_state_len = state_size();
3479   IntervalList* input_state = new IntervalList(input_state_len, input_state_len, NULL);
3480   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3481   for (int n = 0; n < args->length(); n++) {
3482     LIR_Opr opr = args->at(n);
3483     if (opr->is_register()) {
3484       Interval* interval = interval_at(reg_num(opr));
3485 
3486       if (interval->assigned_reg() < state_size()) {
3487         input_state->at_put(interval->assigned_reg(), interval);
3488       }
3489       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3490         input_state->at_put(interval->assigned_regHi(), interval);
3491       }
3492     }
3493   }
3494 
3495   set_state_for_block(start, input_state);
3496   add_to_work_list(start);
3497 
3498   // main loop for verification
3499   do {
3500     BlockBegin* block = _work_list.at(0);
3501     _work_list.remove_at(0);
3502 
3503     process_block(block);
3504   } while (!_work_list.is_empty());
3505 }
3506 
3507 void RegisterVerifier::process_block(BlockBegin* block) {
3508   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3509 
3510   // must copy state because it is modified
3511   IntervalList* input_state = copy(state_for_block(block));
3512 
3513   if (TraceLinearScanLevel >= 4) {
3514     tty->print_cr("Input-State of intervals:");
3515     tty->print("    ");
3516     for (int i = 0; i < state_size(); i++) {
3517       if (input_state->at(i) != NULL) {
3518         tty->print(" %4d", input_state->at(i)->reg_num());
3519       } else {
3520         tty->print("   __");
3521       }
3522     }
3523     tty->cr();
3524     tty->cr();
3525   }
3526 
3527   // process all operations of the block
3528   process_operations(block->lir(), input_state);
3529 
3530   // iterate all successors
3531   for (int i = 0; i < block->number_of_sux(); i++) {
3532     process_successor(block->sux_at(i), input_state);
3533   }
3534 }
3535 
3536 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3537   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3538 
3539   // must copy state because it is modified
3540   input_state = copy(input_state);
3541 
3542   if (xhandler->entry_code() != NULL) {
3543     process_operations(xhandler->entry_code(), input_state);
3544   }
3545   process_successor(xhandler->entry_block(), input_state);
3546 }
3547 
3548 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3549   IntervalList* saved_state = state_for_block(block);
3550 
3551   if (saved_state != NULL) {
3552     // this block was already processed before.
3553     // check if new input_state is consistent with saved_state
3554 
3555     bool saved_state_correct = true;
3556     for (int i = 0; i < state_size(); i++) {
3557       if (input_state->at(i) != saved_state->at(i)) {
3558         // current input_state and previous saved_state assume a different
3559         // interval in this register -> assume that this register is invalid
3560         if (saved_state->at(i) != NULL) {
3561           // invalidate old calculation only if it assumed that
3562           // register was valid. when the register was already invalid,
3563           // then the old calculation was correct.
3564           saved_state_correct = false;
3565           saved_state->at_put(i, NULL);
3566 
3567           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3568         }
3569       }
3570     }
3571 
3572     if (saved_state_correct) {
3573       // already processed block with correct input_state
3574       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3575     } else {
3576       // must re-visit this block
3577       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3578       add_to_work_list(block);
3579     }
3580 
3581   } else {
3582     // block was not processed before, so set initial input_state
3583     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3584 
3585     set_state_for_block(block, copy(input_state));
3586     add_to_work_list(block);
3587   }
3588 }
3589 
3590 
3591 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3592   IntervalList* copy_state = new IntervalList(input_state->length());
3593   copy_state->appendAll(input_state);
3594   return copy_state;
3595 }
3596 
3597 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3598   if (reg != LinearScan::any_reg && reg < state_size()) {
3599     if (interval != NULL) {
3600       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3601     } else if (input_state->at(reg) != NULL) {
3602       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3603     }
3604 
3605     input_state->at_put(reg, interval);
3606   }
3607 }
3608 
3609 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3610   if (reg != LinearScan::any_reg && reg < state_size()) {
3611     if (input_state->at(reg) != interval) {
3612       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3613       return true;
3614     }
3615   }
3616   return false;
3617 }
3618 
3619 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3620   // visit all instructions of the block
3621   LIR_OpVisitState visitor;
3622   bool has_error = false;
3623 
3624   for (int i = 0; i < ops->length(); i++) {
3625     LIR_Op* op = ops->at(i);
3626     visitor.visit(op);
3627 
3628     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3629 
3630     // check if input operands are correct
3631     int j;
3632     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3633     for (j = 0; j < n; j++) {
3634       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3635       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3636         Interval* interval = interval_at(reg_num(opr));
3637         if (op->id() != -1) {
3638           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3639         }
3640 
3641         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3642         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3643 
3644         // When an operand is marked with is_last_use, then the fpu stack allocator
3645         // removes the register from the fpu stack -> the register contains no value
3646         if (opr->is_last_use()) {
3647           state_put(input_state, interval->assigned_reg(),   NULL);
3648           state_put(input_state, interval->assigned_regHi(), NULL);
3649         }
3650       }
3651     }
3652 
3653     // invalidate all caller save registers at calls
3654     if (visitor.has_call()) {
3655       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3656         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3657       }
3658       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3659         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3660       }
3661 
3662 #ifdef X86
3663       int num_caller_save_xmm_regs = FrameMap::get_num_caller_save_xmms();
3664       for (j = 0; j < num_caller_save_xmm_regs; j++) {
3665         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3666       }
3667 #endif
3668     }
3669 
3670     // process xhandler before output and temp operands
3671     XHandlers* xhandlers = visitor.all_xhandler();
3672     n = xhandlers->length();
3673     for (int k = 0; k < n; k++) {
3674       process_xhandler(xhandlers->handler_at(k), input_state);
3675     }
3676 
3677     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3678     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3679     for (j = 0; j < n; j++) {
3680       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3681       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3682         Interval* interval = interval_at(reg_num(opr));
3683         if (op->id() != -1) {
3684           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3685         }
3686 
3687         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3688         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3689       }
3690     }
3691 
3692     // set output operands
3693     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3694     for (j = 0; j < n; j++) {
3695       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3696       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3697         Interval* interval = interval_at(reg_num(opr));
3698         if (op->id() != -1) {
3699           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3700         }
3701 
3702         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3703         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3704       }
3705     }
3706   }
3707   assert(has_error == false, "Error in register allocation");
3708 }
3709 
3710 #endif // ASSERT
3711 
3712 
3713 
3714 // **** Implementation of MoveResolver ******************************
3715 
3716 MoveResolver::MoveResolver(LinearScan* allocator) :
3717   _allocator(allocator),
3718   _multiple_reads_allowed(false),
3719   _mapping_from(8),
3720   _mapping_from_opr(8),
3721   _mapping_to(8),
3722   _insert_list(NULL),
3723   _insert_idx(-1),
3724   _insertion_buffer()
3725 {
3726   for (int i = 0; i < LinearScan::nof_regs; i++) {
3727     _register_blocked[i] = 0;
3728   }
3729   DEBUG_ONLY(check_empty());
3730 }
3731 
3732 
3733 #ifdef ASSERT
3734 
3735 void MoveResolver::check_empty() {
3736   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3737   for (int i = 0; i < LinearScan::nof_regs; i++) {
3738     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3739   }
3740   assert(_multiple_reads_allowed == false, "must have default value");
3741 }
3742 
3743 void MoveResolver::verify_before_resolve() {
3744   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3745   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3746   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3747 
3748   int i, j;
3749   if (!_multiple_reads_allowed) {
3750     for (i = 0; i < _mapping_from.length(); i++) {
3751       for (j = i + 1; j < _mapping_from.length(); j++) {
3752         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3753       }
3754     }
3755   }
3756 
3757   for (i = 0; i < _mapping_to.length(); i++) {
3758     for (j = i + 1; j < _mapping_to.length(); j++) {
3759       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3760     }
3761   }
3762 
3763 
3764   ResourceBitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3765   if (!_multiple_reads_allowed) {
3766     for (i = 0; i < _mapping_from.length(); i++) {
3767       Interval* it = _mapping_from.at(i);
3768       if (it != NULL) {
3769         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3770         used_regs.set_bit(it->assigned_reg());
3771 
3772         if (it->assigned_regHi() != LinearScan::any_reg) {
3773           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3774           used_regs.set_bit(it->assigned_regHi());
3775         }
3776       }
3777     }
3778   }
3779 
3780   used_regs.clear();
3781   for (i = 0; i < _mapping_to.length(); i++) {
3782     Interval* it = _mapping_to.at(i);
3783     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3784     used_regs.set_bit(it->assigned_reg());
3785 
3786     if (it->assigned_regHi() != LinearScan::any_reg) {
3787       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3788       used_regs.set_bit(it->assigned_regHi());
3789     }
3790   }
3791 
3792   used_regs.clear();
3793   for (i = 0; i < _mapping_from.length(); i++) {
3794     Interval* it = _mapping_from.at(i);
3795     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3796       used_regs.set_bit(it->assigned_reg());
3797     }
3798   }
3799   for (i = 0; i < _mapping_to.length(); i++) {
3800     Interval* it = _mapping_to.at(i);
3801     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3802   }
3803 }
3804 
3805 #endif // ASSERT
3806 
3807 
3808 // mark assigned_reg and assigned_regHi of the interval as blocked
3809 void MoveResolver::block_registers(Interval* it) {
3810   int reg = it->assigned_reg();
3811   if (reg < LinearScan::nof_regs) {
3812     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3813     set_register_blocked(reg, 1);
3814   }
3815   reg = it->assigned_regHi();
3816   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3817     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3818     set_register_blocked(reg, 1);
3819   }
3820 }
3821 
3822 // mark assigned_reg and assigned_regHi of the interval as unblocked
3823 void MoveResolver::unblock_registers(Interval* it) {
3824   int reg = it->assigned_reg();
3825   if (reg < LinearScan::nof_regs) {
3826     assert(register_blocked(reg) > 0, "register already marked as unused");
3827     set_register_blocked(reg, -1);
3828   }
3829   reg = it->assigned_regHi();
3830   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3831     assert(register_blocked(reg) > 0, "register already marked as unused");
3832     set_register_blocked(reg, -1);
3833   }
3834 }
3835 
3836 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3837 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3838   int from_reg = -1;
3839   int from_regHi = -1;
3840   if (from != NULL) {
3841     from_reg = from->assigned_reg();
3842     from_regHi = from->assigned_regHi();
3843   }
3844 
3845   int reg = to->assigned_reg();
3846   if (reg < LinearScan::nof_regs) {
3847     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3848       return false;
3849     }
3850   }
3851   reg = to->assigned_regHi();
3852   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3853     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3854       return false;
3855     }
3856   }
3857 
3858   return true;
3859 }
3860 
3861 
3862 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3863   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3864   _insertion_buffer.init(list);
3865 }
3866 
3867 void MoveResolver::append_insertion_buffer() {
3868   if (_insertion_buffer.initialized()) {
3869     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3870   }
3871   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3872 
3873   _insert_list = NULL;
3874   _insert_idx = -1;
3875 }
3876 
3877 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3878   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3879   assert(from_interval->type() == to_interval->type(), "move between different types");
3880   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3881   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3882 
3883   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3884   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3885 
3886   if (!_multiple_reads_allowed) {
3887     // the last_use flag is an optimization for FPU stack allocation. When the same
3888     // input interval is used in more than one move, then it is too difficult to determine
3889     // if this move is really the last use.
3890     from_opr = from_opr->make_last_use();
3891   }
3892   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3893 
3894   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3895 }
3896 
3897 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3898   assert(from_opr->type() == to_interval->type(), "move between different types");
3899   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3900   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3901 
3902   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3903   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3904 
3905   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3906 }
3907 
3908 
3909 void MoveResolver::resolve_mappings() {
3910   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3911   DEBUG_ONLY(verify_before_resolve());
3912 
3913   // Block all registers that are used as input operands of a move.
3914   // When a register is blocked, no move to this register is emitted.
3915   // This is necessary for detecting cycles in moves.
3916   int i;
3917   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3918     Interval* from_interval = _mapping_from.at(i);
3919     if (from_interval != NULL) {
3920       block_registers(from_interval);
3921     }
3922   }
3923 
3924   int spill_candidate = -1;
3925   while (_mapping_from.length() > 0) {
3926     bool processed_interval = false;
3927 
3928     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3929       Interval* from_interval = _mapping_from.at(i);
3930       Interval* to_interval = _mapping_to.at(i);
3931 
3932       if (save_to_process_move(from_interval, to_interval)) {
3933         // this inverval can be processed because target is free
3934         if (from_interval != NULL) {
3935           insert_move(from_interval, to_interval);
3936           unblock_registers(from_interval);
3937         } else {
3938           insert_move(_mapping_from_opr.at(i), to_interval);
3939         }
3940         _mapping_from.remove_at(i);
3941         _mapping_from_opr.remove_at(i);
3942         _mapping_to.remove_at(i);
3943 
3944         processed_interval = true;
3945       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3946         // this interval cannot be processed now because target is not free
3947         // it starts in a register, so it is a possible candidate for spilling
3948         spill_candidate = i;
3949       }
3950     }
3951 
3952     if (!processed_interval) {
3953       // no move could be processed because there is a cycle in the move list
3954       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3955       assert(spill_candidate != -1, "no interval in register for spilling found");
3956 
3957       // create a new spill interval and assign a stack slot to it
3958       Interval* from_interval = _mapping_from.at(spill_candidate);
3959       Interval* spill_interval = new Interval(-1);
3960       spill_interval->set_type(from_interval->type());
3961 
3962       // add a dummy range because real position is difficult to calculate
3963       // Note: this range is a special case when the integrity of the allocation is checked
3964       spill_interval->add_range(1, 2);
3965 
3966       //       do not allocate a new spill slot for temporary interval, but
3967       //       use spill slot assigned to from_interval. Otherwise moves from
3968       //       one stack slot to another can happen (not allowed by LIR_Assembler
3969       int spill_slot = from_interval->canonical_spill_slot();
3970       if (spill_slot < 0) {
3971         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3972         from_interval->set_canonical_spill_slot(spill_slot);
3973       }
3974       spill_interval->assign_reg(spill_slot);
3975       allocator()->append_interval(spill_interval);
3976 
3977       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3978 
3979       // insert a move from register to stack and update the mapping
3980       insert_move(from_interval, spill_interval);
3981       _mapping_from.at_put(spill_candidate, spill_interval);
3982       unblock_registers(from_interval);
3983     }
3984   }
3985 
3986   // reset to default value
3987   _multiple_reads_allowed = false;
3988 
3989   // check that all intervals have been processed
3990   DEBUG_ONLY(check_empty());
3991 }
3992 
3993 
3994 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3995   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3996   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3997 
3998   create_insertion_buffer(insert_list);
3999   _insert_list = insert_list;
4000   _insert_idx = insert_idx;
4001 }
4002 
4003 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
4004   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
4005 
4006   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
4007     // insert position changed -> resolve current mappings
4008     resolve_mappings();
4009   }
4010 
4011   if (insert_list != _insert_list) {
4012     // block changed -> append insertion_buffer because it is
4013     // bound to a specific block and create a new insertion_buffer
4014     append_insertion_buffer();
4015     create_insertion_buffer(insert_list);
4016   }
4017 
4018   _insert_list = insert_list;
4019   _insert_idx = insert_idx;
4020 }
4021 
4022 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
4023   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4024 
4025   _mapping_from.append(from_interval);
4026   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
4027   _mapping_to.append(to_interval);
4028 }
4029 
4030 
4031 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
4032   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
4033   assert(from_opr->is_constant(), "only for constants");
4034 
4035   _mapping_from.append(NULL);
4036   _mapping_from_opr.append(from_opr);
4037   _mapping_to.append(to_interval);
4038 }
4039 
4040 void MoveResolver::resolve_and_append_moves() {
4041   if (has_mappings()) {
4042     resolve_mappings();
4043   }
4044   append_insertion_buffer();
4045 }
4046 
4047 
4048 
4049 // **** Implementation of Range *************************************
4050 
4051 Range::Range(int from, int to, Range* next) :
4052   _from(from),
4053   _to(to),
4054   _next(next)
4055 {
4056 }
4057 
4058 // initialize sentinel
4059 Range* Range::_end = NULL;
4060 void Range::initialize(Arena* arena) {
4061   _end = new (arena) Range(max_jint, max_jint, NULL);
4062 }
4063 
4064 int Range::intersects_at(Range* r2) const {
4065   const Range* r1 = this;
4066 
4067   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4068   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4069 
4070   do {
4071     if (r1->from() < r2->from()) {
4072       if (r1->to() <= r2->from()) {
4073         r1 = r1->next(); if (r1 == _end) return -1;
4074       } else {
4075         return r2->from();
4076       }
4077     } else if (r2->from() < r1->from()) {
4078       if (r2->to() <= r1->from()) {
4079         r2 = r2->next(); if (r2 == _end) return -1;
4080       } else {
4081         return r1->from();
4082       }
4083     } else { // r1->from() == r2->from()
4084       if (r1->from() == r1->to()) {
4085         r1 = r1->next(); if (r1 == _end) return -1;
4086       } else if (r2->from() == r2->to()) {
4087         r2 = r2->next(); if (r2 == _end) return -1;
4088       } else {
4089         return r1->from();
4090       }
4091     }
4092   } while (true);
4093 }
4094 
4095 #ifndef PRODUCT
4096 void Range::print(outputStream* out) const {
4097   out->print("[%d, %d[ ", _from, _to);
4098 }
4099 #endif
4100 
4101 
4102 
4103 // **** Implementation of Interval **********************************
4104 
4105 // initialize sentinel
4106 Interval* Interval::_end = NULL;
4107 void Interval::initialize(Arena* arena) {
4108   Range::initialize(arena);
4109   _end = new (arena) Interval(-1);
4110 }
4111 
4112 Interval::Interval(int reg_num) :
4113   _reg_num(reg_num),
4114   _type(T_ILLEGAL),
4115   _first(Range::end()),
4116   _use_pos_and_kinds(12),
4117   _current(Range::end()),
4118   _next(_end),
4119   _state(invalidState),
4120   _assigned_reg(LinearScan::any_reg),
4121   _assigned_regHi(LinearScan::any_reg),
4122   _cached_to(-1),
4123   _cached_opr(LIR_OprFact::illegalOpr),
4124   _cached_vm_reg(VMRegImpl::Bad()),
4125   _split_children(0),
4126   _canonical_spill_slot(-1),
4127   _insert_move_when_activated(false),
4128   _register_hint(NULL),
4129   _spill_state(noDefinitionFound),
4130   _spill_definition_pos(-1)
4131 {
4132   _split_parent = this;
4133   _current_split_child = this;
4134 }
4135 
4136 int Interval::calc_to() {
4137   assert(_first != Range::end(), "interval has no range");
4138 
4139   Range* r = _first;
4140   while (r->next() != Range::end()) {
4141     r = r->next();
4142   }
4143   return r->to();
4144 }
4145 
4146 
4147 #ifdef ASSERT
4148 // consistency check of split-children
4149 void Interval::check_split_children() {
4150   if (_split_children.length() > 0) {
4151     assert(is_split_parent(), "only split parents can have children");
4152 
4153     for (int i = 0; i < _split_children.length(); i++) {
4154       Interval* i1 = _split_children.at(i);
4155 
4156       assert(i1->split_parent() == this, "not a split child of this interval");
4157       assert(i1->type() == type(), "must be equal for all split children");
4158       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4159 
4160       for (int j = i + 1; j < _split_children.length(); j++) {
4161         Interval* i2 = _split_children.at(j);
4162 
4163         assert(i1->reg_num() != i2->reg_num(), "same register number");
4164 
4165         if (i1->from() < i2->from()) {
4166           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4167         } else {
4168           assert(i2->from() < i1->from(), "intervals start at same op_id");
4169           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4170         }
4171       }
4172     }
4173   }
4174 }
4175 #endif // ASSERT
4176 
4177 Interval* Interval::register_hint(bool search_split_child) const {
4178   if (!search_split_child) {
4179     return _register_hint;
4180   }
4181 
4182   if (_register_hint != NULL) {
4183     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4184 
4185     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4186       return _register_hint;
4187 
4188     } else if (_register_hint->_split_children.length() > 0) {
4189       // search the first split child that has a register assigned
4190       int len = _register_hint->_split_children.length();
4191       for (int i = 0; i < len; i++) {
4192         Interval* cur = _register_hint->_split_children.at(i);
4193 
4194         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4195           return cur;
4196         }
4197       }
4198     }
4199   }
4200 
4201   // no hint interval found that has a register assigned
4202   return NULL;
4203 }
4204 
4205 
4206 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4207   assert(is_split_parent(), "can only be called for split parents");
4208   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4209 
4210   Interval* result;
4211   if (_split_children.length() == 0) {
4212     result = this;
4213   } else {
4214     result = NULL;
4215     int len = _split_children.length();
4216 
4217     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4218     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4219 
4220     int i;
4221     for (i = 0; i < len; i++) {
4222       Interval* cur = _split_children.at(i);
4223       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4224         if (i > 0) {
4225           // exchange current split child to start of list (faster access for next call)
4226           _split_children.at_put(i, _split_children.at(0));
4227           _split_children.at_put(0, cur);
4228         }
4229 
4230         // interval found
4231         result = cur;
4232         break;
4233       }
4234     }
4235 
4236 #ifdef ASSERT
4237     for (i = 0; i < len; i++) {
4238       Interval* tmp = _split_children.at(i);
4239       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4240         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4241         result->print();
4242         tmp->print();
4243         assert(false, "two valid result intervals found");
4244       }
4245     }
4246 #endif
4247   }
4248 
4249   assert(result != NULL, "no matching interval found");
4250   assert(result->covers(op_id, mode), "op_id not covered by interval");
4251 
4252   return result;
4253 }
4254 
4255 
4256 // returns the last split child that ends before the given op_id
4257 Interval* Interval::split_child_before_op_id(int op_id) {
4258   assert(op_id >= 0, "invalid op_id");
4259 
4260   Interval* parent = split_parent();
4261   Interval* result = NULL;
4262 
4263   int len = parent->_split_children.length();
4264   assert(len > 0, "no split children available");
4265 
4266   for (int i = len - 1; i >= 0; i--) {
4267     Interval* cur = parent->_split_children.at(i);
4268     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4269       result = cur;
4270     }
4271   }
4272 
4273   assert(result != NULL, "no split child found");
4274   return result;
4275 }
4276 
4277 
4278 // checks if op_id is covered by any split child
4279 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4280   assert(is_split_parent(), "can only be called for split parents");
4281   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4282 
4283   if (_split_children.length() == 0) {
4284     // simple case if interval was not split
4285     return covers(op_id, mode);
4286 
4287   } else {
4288     // extended case: check all split children
4289     int len = _split_children.length();
4290     for (int i = 0; i < len; i++) {
4291       Interval* cur = _split_children.at(i);
4292       if (cur->covers(op_id, mode)) {
4293         return true;
4294       }
4295     }
4296     return false;
4297   }
4298 }
4299 
4300 
4301 // Note: use positions are sorted descending -> first use has highest index
4302 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4303   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4304 
4305   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4306     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4307       return _use_pos_and_kinds.at(i);
4308     }
4309   }
4310   return max_jint;
4311 }
4312 
4313 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4314   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4315 
4316   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4317     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4318       return _use_pos_and_kinds.at(i);
4319     }
4320   }
4321   return max_jint;
4322 }
4323 
4324 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4325   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4326 
4327   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4328     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4329       return _use_pos_and_kinds.at(i);
4330     }
4331   }
4332   return max_jint;
4333 }
4334 
4335 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4336   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4337 
4338   int prev = 0;
4339   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4340     if (_use_pos_and_kinds.at(i) > from) {
4341       return prev;
4342     }
4343     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4344       prev = _use_pos_and_kinds.at(i);
4345     }
4346   }
4347   return prev;
4348 }
4349 
4350 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4351   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4352 
4353   // do not add use positions for precolored intervals because
4354   // they are never used
4355   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4356 #ifdef ASSERT
4357     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4358     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4359       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4360       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4361       if (i > 0) {
4362         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4363       }
4364     }
4365 #endif
4366 
4367     // Note: add_use is called in descending order, so list gets sorted
4368     //       automatically by just appending new use positions
4369     int len = _use_pos_and_kinds.length();
4370     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4371       _use_pos_and_kinds.append(pos);
4372       _use_pos_and_kinds.append(use_kind);
4373     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4374       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4375       _use_pos_and_kinds.at_put(len - 1, use_kind);
4376     }
4377   }
4378 }
4379 
4380 void Interval::add_range(int from, int to) {
4381   assert(from < to, "invalid range");
4382   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4383   assert(from <= first()->to(), "not inserting at begin of interval");
4384 
4385   if (first()->from() <= to) {
4386     // join intersecting ranges
4387     first()->set_from(MIN2(from, first()->from()));
4388     first()->set_to  (MAX2(to,   first()->to()));
4389   } else {
4390     // insert new range
4391     _first = new Range(from, to, first());
4392   }
4393 }
4394 
4395 Interval* Interval::new_split_child() {
4396   // allocate new interval
4397   Interval* result = new Interval(-1);
4398   result->set_type(type());
4399 
4400   Interval* parent = split_parent();
4401   result->_split_parent = parent;
4402   result->set_register_hint(parent);
4403 
4404   // insert new interval in children-list of parent
4405   if (parent->_split_children.length() == 0) {
4406     assert(is_split_parent(), "list must be initialized at first split");
4407 
4408     parent->_split_children = IntervalList(4);
4409     parent->_split_children.append(this);
4410   }
4411   parent->_split_children.append(result);
4412 
4413   return result;
4414 }
4415 
4416 // split this interval at the specified position and return
4417 // the remainder as a new interval.
4418 //
4419 // when an interval is split, a bi-directional link is established between the original interval
4420 // (the split parent) and the intervals that are split off this interval (the split children)
4421 // When a split child is split again, the new created interval is also a direct child
4422 // of the original parent (there is no tree of split children stored, but a flat list)
4423 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4424 //
4425 // Note: The new interval has no valid reg_num
4426 Interval* Interval::split(int split_pos) {
4427   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4428 
4429   // allocate new interval
4430   Interval* result = new_split_child();
4431 
4432   // split the ranges
4433   Range* prev = NULL;
4434   Range* cur = _first;
4435   while (cur != Range::end() && cur->to() <= split_pos) {
4436     prev = cur;
4437     cur = cur->next();
4438   }
4439   assert(cur != Range::end(), "split interval after end of last range");
4440 
4441   if (cur->from() < split_pos) {
4442     result->_first = new Range(split_pos, cur->to(), cur->next());
4443     cur->set_to(split_pos);
4444     cur->set_next(Range::end());
4445 
4446   } else {
4447     assert(prev != NULL, "split before start of first range");
4448     result->_first = cur;
4449     prev->set_next(Range::end());
4450   }
4451   result->_current = result->_first;
4452   _cached_to = -1; // clear cached value
4453 
4454   // split list of use positions
4455   int total_len = _use_pos_and_kinds.length();
4456   int start_idx = total_len - 2;
4457   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4458     start_idx -= 2;
4459   }
4460 
4461   intStack new_use_pos_and_kinds(total_len - start_idx);
4462   int i;
4463   for (i = start_idx + 2; i < total_len; i++) {
4464     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4465   }
4466 
4467   _use_pos_and_kinds.trunc_to(start_idx + 2);
4468   result->_use_pos_and_kinds = _use_pos_and_kinds;
4469   _use_pos_and_kinds = new_use_pos_and_kinds;
4470 
4471 #ifdef ASSERT
4472   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4473   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4474   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4475 
4476   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4477     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4478     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4479   }
4480   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4481     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4482     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4483   }
4484 #endif
4485 
4486   return result;
4487 }
4488 
4489 // split this interval at the specified position and return
4490 // the head as a new interval (the original interval is the tail)
4491 //
4492 // Currently, only the first range can be split, and the new interval
4493 // must not have split positions
4494 Interval* Interval::split_from_start(int split_pos) {
4495   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4496   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4497   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4498   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4499 
4500   // allocate new interval
4501   Interval* result = new_split_child();
4502 
4503   // the new created interval has only one range (checked by assertion above),
4504   // so the splitting of the ranges is very simple
4505   result->add_range(_first->from(), split_pos);
4506 
4507   if (split_pos == _first->to()) {
4508     assert(_first->next() != Range::end(), "must not be at end");
4509     _first = _first->next();
4510   } else {
4511     _first->set_from(split_pos);
4512   }
4513 
4514   return result;
4515 }
4516 
4517 
4518 // returns true if the op_id is inside the interval
4519 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4520   Range* cur  = _first;
4521 
4522   while (cur != Range::end() && cur->to() < op_id) {
4523     cur = cur->next();
4524   }
4525   if (cur != Range::end()) {
4526     assert(cur->to() != cur->next()->from(), "ranges not separated");
4527 
4528     if (mode == LIR_OpVisitState::outputMode) {
4529       return cur->from() <= op_id && op_id < cur->to();
4530     } else {
4531       return cur->from() <= op_id && op_id <= cur->to();
4532     }
4533   }
4534   return false;
4535 }
4536 
4537 // returns true if the interval has any hole between hole_from and hole_to
4538 // (even if the hole has only the length 1)
4539 bool Interval::has_hole_between(int hole_from, int hole_to) {
4540   assert(hole_from < hole_to, "check");
4541   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4542 
4543   Range* cur  = _first;
4544   while (cur != Range::end()) {
4545     assert(cur->to() < cur->next()->from(), "no space between ranges");
4546 
4547     // hole-range starts before this range -> hole
4548     if (hole_from < cur->from()) {
4549       return true;
4550 
4551     // hole-range completely inside this range -> no hole
4552     } else if (hole_to <= cur->to()) {
4553       return false;
4554 
4555     // overlapping of hole-range with this range -> hole
4556     } else if (hole_from <= cur->to()) {
4557       return true;
4558     }
4559 
4560     cur = cur->next();
4561   }
4562 
4563   return false;
4564 }
4565 
4566 
4567 #ifndef PRODUCT
4568 void Interval::print(outputStream* out) const {
4569   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4570   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4571 
4572   const char* type_name;
4573   LIR_Opr opr = LIR_OprFact::illegal();
4574   if (reg_num() < LIR_OprDesc::vreg_base) {
4575     type_name = "fixed";
4576     // need a temporary operand for fixed intervals because type() cannot be called
4577 #ifdef X86
4578     int last_xmm_reg = pd_last_xmm_reg;
4579 #ifdef _LP64
4580     if (UseAVX < 3) {
4581       last_xmm_reg = pd_first_xmm_reg + (pd_nof_xmm_regs_frame_map / 2) - 1;
4582     }
4583 #endif
4584 #endif
4585     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4586       opr = LIR_OprFact::single_cpu(assigned_reg());
4587     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4588       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4589 #ifdef X86
4590     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= last_xmm_reg) {
4591       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4592 #endif
4593     } else {
4594       ShouldNotReachHere();
4595     }
4596   } else {
4597     type_name = type2name(type());
4598     if (assigned_reg() != -1 &&
4599         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4600       opr = LinearScan::calc_operand_for_interval(this);
4601     }
4602   }
4603 
4604   out->print("%d %s ", reg_num(), type_name);
4605   if (opr->is_valid()) {
4606     out->print("\"");
4607     opr->print(out);
4608     out->print("\" ");
4609   }
4610   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4611 
4612   // print ranges
4613   Range* cur = _first;
4614   while (cur != Range::end()) {
4615     cur->print(out);
4616     cur = cur->next();
4617     assert(cur != NULL, "range list not closed with range sentinel");
4618   }
4619 
4620   // print use positions
4621   int prev = 0;
4622   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4623   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4624     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4625     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4626 
4627     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4628     prev = _use_pos_and_kinds.at(i);
4629   }
4630 
4631   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4632   out->cr();
4633 }
4634 #endif
4635 
4636 
4637 
4638 // **** Implementation of IntervalWalker ****************************
4639 
4640 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4641  : _compilation(allocator->compilation())
4642  , _allocator(allocator)
4643 {
4644   _unhandled_first[fixedKind] = unhandled_fixed_first;
4645   _unhandled_first[anyKind]   = unhandled_any_first;
4646   _active_first[fixedKind]    = Interval::end();
4647   _inactive_first[fixedKind]  = Interval::end();
4648   _active_first[anyKind]      = Interval::end();
4649   _inactive_first[anyKind]    = Interval::end();
4650   _current_position = -1;
4651   _current = NULL;
4652   next_interval();
4653 }
4654 
4655 
4656 // append interval at top of list
4657 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4658   interval->set_next(*list); *list = interval;
4659 }
4660 
4661 
4662 // append interval in order of current range from()
4663 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4664   Interval* prev = NULL;
4665   Interval* cur  = *list;
4666   while (cur->current_from() < interval->current_from()) {
4667     prev = cur; cur = cur->next();
4668   }
4669   if (prev == NULL) {
4670     *list = interval;
4671   } else {
4672     prev->set_next(interval);
4673   }
4674   interval->set_next(cur);
4675 }
4676 
4677 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4678   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4679 
4680   Interval* prev = NULL;
4681   Interval* cur  = *list;
4682   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4683     prev = cur; cur = cur->next();
4684   }
4685   if (prev == NULL) {
4686     *list = interval;
4687   } else {
4688     prev->set_next(interval);
4689   }
4690   interval->set_next(cur);
4691 }
4692 
4693 
4694 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4695   while (*list != Interval::end() && *list != i) {
4696     list = (*list)->next_addr();
4697   }
4698   if (*list != Interval::end()) {
4699     assert(*list == i, "check");
4700     *list = (*list)->next();
4701     return true;
4702   } else {
4703     return false;
4704   }
4705 }
4706 
4707 void IntervalWalker::remove_from_list(Interval* i) {
4708   bool deleted;
4709 
4710   if (i->state() == activeState) {
4711     deleted = remove_from_list(active_first_addr(anyKind), i);
4712   } else {
4713     assert(i->state() == inactiveState, "invalid state");
4714     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4715   }
4716 
4717   assert(deleted, "interval has not been found in list");
4718 }
4719 
4720 
4721 void IntervalWalker::walk_to(IntervalState state, int from) {
4722   assert (state == activeState || state == inactiveState, "wrong state");
4723   for_each_interval_kind(kind) {
4724     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4725     Interval* next   = *prev;
4726     while (next->current_from() <= from) {
4727       Interval* cur = next;
4728       next = cur->next();
4729 
4730       bool range_has_changed = false;
4731       while (cur->current_to() <= from) {
4732         cur->next_range();
4733         range_has_changed = true;
4734       }
4735 
4736       // also handle move from inactive list to active list
4737       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4738 
4739       if (range_has_changed) {
4740         // remove cur from list
4741         *prev = next;
4742         if (cur->current_at_end()) {
4743           // move to handled state (not maintained as a list)
4744           cur->set_state(handledState);
4745           interval_moved(cur, kind, state, handledState);
4746         } else if (cur->current_from() <= from){
4747           // sort into active list
4748           append_sorted(active_first_addr(kind), cur);
4749           cur->set_state(activeState);
4750           if (*prev == cur) {
4751             assert(state == activeState, "check");
4752             prev = cur->next_addr();
4753           }
4754           interval_moved(cur, kind, state, activeState);
4755         } else {
4756           // sort into inactive list
4757           append_sorted(inactive_first_addr(kind), cur);
4758           cur->set_state(inactiveState);
4759           if (*prev == cur) {
4760             assert(state == inactiveState, "check");
4761             prev = cur->next_addr();
4762           }
4763           interval_moved(cur, kind, state, inactiveState);
4764         }
4765       } else {
4766         prev = cur->next_addr();
4767         continue;
4768       }
4769     }
4770   }
4771 }
4772 
4773 
4774 void IntervalWalker::next_interval() {
4775   IntervalKind kind;
4776   Interval* any   = _unhandled_first[anyKind];
4777   Interval* fixed = _unhandled_first[fixedKind];
4778 
4779   if (any != Interval::end()) {
4780     // intervals may start at same position -> prefer fixed interval
4781     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4782 
4783     assert (kind == fixedKind && fixed->from() <= any->from() ||
4784             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4785     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4786 
4787   } else if (fixed != Interval::end()) {
4788     kind = fixedKind;
4789   } else {
4790     _current = NULL; return;
4791   }
4792   _current_kind = kind;
4793   _current = _unhandled_first[kind];
4794   _unhandled_first[kind] = _current->next();
4795   _current->set_next(Interval::end());
4796   _current->rewind_range();
4797 }
4798 
4799 
4800 void IntervalWalker::walk_to(int lir_op_id) {
4801   assert(_current_position <= lir_op_id, "can not walk backwards");
4802   while (current() != NULL) {
4803     bool is_active = current()->from() <= lir_op_id;
4804     int id = is_active ? current()->from() : lir_op_id;
4805 
4806     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4807 
4808     // set _current_position prior to call of walk_to
4809     _current_position = id;
4810 
4811     // call walk_to even if _current_position == id
4812     walk_to(activeState, id);
4813     walk_to(inactiveState, id);
4814 
4815     if (is_active) {
4816       current()->set_state(activeState);
4817       if (activate_current()) {
4818         append_sorted(active_first_addr(current_kind()), current());
4819         interval_moved(current(), current_kind(), unhandledState, activeState);
4820       }
4821 
4822       next_interval();
4823     } else {
4824       return;
4825     }
4826   }
4827 }
4828 
4829 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4830 #ifndef PRODUCT
4831   if (TraceLinearScanLevel >= 4) {
4832     #define print_state(state) \
4833     switch(state) {\
4834       case unhandledState: tty->print("unhandled"); break;\
4835       case activeState: tty->print("active"); break;\
4836       case inactiveState: tty->print("inactive"); break;\
4837       case handledState: tty->print("handled"); break;\
4838       default: ShouldNotReachHere(); \
4839     }
4840 
4841     print_state(from); tty->print(" to "); print_state(to);
4842     tty->fill_to(23);
4843     interval->print();
4844 
4845     #undef print_state
4846   }
4847 #endif
4848 }
4849 
4850 
4851 
4852 // **** Implementation of LinearScanWalker **************************
4853 
4854 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4855   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4856   , _move_resolver(allocator)
4857 {
4858   for (int i = 0; i < LinearScan::nof_regs; i++) {
4859     _spill_intervals[i] = new IntervalList(2);
4860   }
4861 }
4862 
4863 
4864 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4865   for (int i = _first_reg; i <= _last_reg; i++) {
4866     _use_pos[i] = max_jint;
4867 
4868     if (!only_process_use_pos) {
4869       _block_pos[i] = max_jint;
4870       _spill_intervals[i]->clear();
4871     }
4872   }
4873 }
4874 
4875 inline void LinearScanWalker::exclude_from_use(int reg) {
4876   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4877   if (reg >= _first_reg && reg <= _last_reg) {
4878     _use_pos[reg] = 0;
4879   }
4880 }
4881 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4882   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4883 
4884   exclude_from_use(i->assigned_reg());
4885   exclude_from_use(i->assigned_regHi());
4886 }
4887 
4888 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4889   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4890 
4891   if (reg >= _first_reg && reg <= _last_reg) {
4892     if (_use_pos[reg] > use_pos) {
4893       _use_pos[reg] = use_pos;
4894     }
4895     if (!only_process_use_pos) {
4896       _spill_intervals[reg]->append(i);
4897     }
4898   }
4899 }
4900 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4901   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4902   if (use_pos != -1) {
4903     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4904     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4905   }
4906 }
4907 
4908 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4909   if (reg >= _first_reg && reg <= _last_reg) {
4910     if (_block_pos[reg] > block_pos) {
4911       _block_pos[reg] = block_pos;
4912     }
4913     if (_use_pos[reg] > block_pos) {
4914       _use_pos[reg] = block_pos;
4915     }
4916   }
4917 }
4918 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4919   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4920   if (block_pos != -1) {
4921     set_block_pos(i->assigned_reg(), i, block_pos);
4922     set_block_pos(i->assigned_regHi(), i, block_pos);
4923   }
4924 }
4925 
4926 
4927 void LinearScanWalker::free_exclude_active_fixed() {
4928   Interval* list = active_first(fixedKind);
4929   while (list != Interval::end()) {
4930     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4931     exclude_from_use(list);
4932     list = list->next();
4933   }
4934 }
4935 
4936 void LinearScanWalker::free_exclude_active_any() {
4937   Interval* list = active_first(anyKind);
4938   while (list != Interval::end()) {
4939     exclude_from_use(list);
4940     list = list->next();
4941   }
4942 }
4943 
4944 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4945   Interval* list = inactive_first(fixedKind);
4946   while (list != Interval::end()) {
4947     if (cur->to() <= list->current_from()) {
4948       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4949       set_use_pos(list, list->current_from(), true);
4950     } else {
4951       set_use_pos(list, list->current_intersects_at(cur), true);
4952     }
4953     list = list->next();
4954   }
4955 }
4956 
4957 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4958   Interval* list = inactive_first(anyKind);
4959   while (list != Interval::end()) {
4960     set_use_pos(list, list->current_intersects_at(cur), true);
4961     list = list->next();
4962   }
4963 }
4964 
4965 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4966   Interval* list = unhandled_first(kind);
4967   while (list != Interval::end()) {
4968     set_use_pos(list, list->intersects_at(cur), true);
4969     if (kind == fixedKind && cur->to() <= list->from()) {
4970       set_use_pos(list, list->from(), true);
4971     }
4972     list = list->next();
4973   }
4974 }
4975 
4976 void LinearScanWalker::spill_exclude_active_fixed() {
4977   Interval* list = active_first(fixedKind);
4978   while (list != Interval::end()) {
4979     exclude_from_use(list);
4980     list = list->next();
4981   }
4982 }
4983 
4984 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4985   Interval* list = unhandled_first(fixedKind);
4986   while (list != Interval::end()) {
4987     set_block_pos(list, list->intersects_at(cur));
4988     list = list->next();
4989   }
4990 }
4991 
4992 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4993   Interval* list = inactive_first(fixedKind);
4994   while (list != Interval::end()) {
4995     if (cur->to() > list->current_from()) {
4996       set_block_pos(list, list->current_intersects_at(cur));
4997     } else {
4998       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4999     }
5000 
5001     list = list->next();
5002   }
5003 }
5004 
5005 void LinearScanWalker::spill_collect_active_any() {
5006   Interval* list = active_first(anyKind);
5007   while (list != Interval::end()) {
5008     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5009     list = list->next();
5010   }
5011 }
5012 
5013 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
5014   Interval* list = inactive_first(anyKind);
5015   while (list != Interval::end()) {
5016     if (list->current_intersects(cur)) {
5017       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
5018     }
5019     list = list->next();
5020   }
5021 }
5022 
5023 
5024 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
5025   // output all moves here. When source and target are equal, the move is
5026   // optimized away later in assign_reg_nums
5027 
5028   op_id = (op_id + 1) & ~1;
5029   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
5030   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
5031 
5032   // calculate index of instruction inside instruction list of current block
5033   // the minimal index (for a block with no spill moves) can be calculated because the
5034   // numbering of instructions is known.
5035   // When the block already contains spill moves, the index must be increased until the
5036   // correct index is reached.
5037   LIR_OpList* list = op_block->lir()->instructions_list();
5038   int index = (op_id - list->at(0)->id()) / 2;
5039   assert(list->at(index)->id() <= op_id, "error in calculation");
5040 
5041   while (list->at(index)->id() != op_id) {
5042     index++;
5043     assert(0 <= index && index < list->length(), "index out of bounds");
5044   }
5045   assert(1 <= index && index < list->length(), "index out of bounds");
5046   assert(list->at(index)->id() == op_id, "error in calculation");
5047 
5048   // insert new instruction before instruction at position index
5049   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5050   _move_resolver.add_mapping(src_it, dst_it);
5051 }
5052 
5053 
5054 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5055   int from_block_nr = min_block->linear_scan_number();
5056   int to_block_nr = max_block->linear_scan_number();
5057 
5058   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5059   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5060   assert(from_block_nr < to_block_nr, "must cross block boundary");
5061 
5062   // Try to split at end of max_block. If this would be after
5063   // max_split_pos, then use the begin of max_block
5064   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5065   if (optimal_split_pos > max_split_pos) {
5066     optimal_split_pos = max_block->first_lir_instruction_id();
5067   }
5068 
5069   int min_loop_depth = max_block->loop_depth();
5070   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5071     BlockBegin* cur = block_at(i);
5072 
5073     if (cur->loop_depth() < min_loop_depth) {
5074       // block with lower loop-depth found -> split at the end of this block
5075       min_loop_depth = cur->loop_depth();
5076       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5077     }
5078   }
5079   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5080 
5081   return optimal_split_pos;
5082 }
5083 
5084 
5085 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5086   int optimal_split_pos = -1;
5087   if (min_split_pos == max_split_pos) {
5088     // trivial case, no optimization of split position possible
5089     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5090     optimal_split_pos = min_split_pos;
5091 
5092   } else {
5093     assert(min_split_pos < max_split_pos, "must be true then");
5094     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5095 
5096     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5097     // beginning of a block, then min_split_pos is also a possible split position.
5098     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5099     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5100 
5101     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5102     // when an interval ends at the end of the last block of the method
5103     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5104     // block at this op_id)
5105     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5106 
5107     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5108     if (min_block == max_block) {
5109       // split position cannot be moved to block boundary, so split as late as possible
5110       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5111       optimal_split_pos = max_split_pos;
5112 
5113     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5114       // Do not move split position if the interval has a hole before max_split_pos.
5115       // Intervals resulting from Phi-Functions have more than one definition (marked
5116       // as mustHaveRegister) with a hole before each definition. When the register is needed
5117       // for the second definition, an earlier reloading is unnecessary.
5118       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5119       optimal_split_pos = max_split_pos;
5120 
5121     } else {
5122       // seach optimal block boundary between min_split_pos and max_split_pos
5123       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5124 
5125       if (do_loop_optimization) {
5126         // Loop optimization: if a loop-end marker is found between min- and max-position,
5127         // then split before this loop
5128         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5129         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5130 
5131         assert(loop_end_pos > min_split_pos, "invalid order");
5132         if (loop_end_pos < max_split_pos) {
5133           // loop-end marker found between min- and max-position
5134           // if it is not the end marker for the same loop as the min-position, then move
5135           // the max-position to this loop block.
5136           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5137           // of the interval (normally, only mustHaveRegister causes a reloading)
5138           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5139 
5140           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5141           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5142 
5143           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5144           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5145             optimal_split_pos = -1;
5146             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5147           } else {
5148             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5149           }
5150         }
5151       }
5152 
5153       if (optimal_split_pos == -1) {
5154         // not calculated by loop optimization
5155         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5156       }
5157     }
5158   }
5159   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5160 
5161   return optimal_split_pos;
5162 }
5163 
5164 
5165 /*
5166   split an interval at the optimal position between min_split_pos and
5167   max_split_pos in two parts:
5168   1) the left part has already a location assigned
5169   2) the right part is sorted into to the unhandled-list
5170 */
5171 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5172   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5173   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5174 
5175   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5176   assert(current_position() < min_split_pos, "cannot split before current position");
5177   assert(min_split_pos <= max_split_pos,     "invalid order");
5178   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5179 
5180   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5181 
5182   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5183   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5184   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5185 
5186   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5187     // the split position would be just before the end of the interval
5188     // -> no split at all necessary
5189     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5190     return;
5191   }
5192 
5193   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5194   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5195 
5196   if (!allocator()->is_block_begin(optimal_split_pos)) {
5197     // move position before actual instruction (odd op_id)
5198     optimal_split_pos = (optimal_split_pos - 1) | 1;
5199   }
5200 
5201   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5202   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5203   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5204 
5205   Interval* split_part = it->split(optimal_split_pos);
5206 
5207   allocator()->append_interval(split_part);
5208   allocator()->copy_register_flags(it, split_part);
5209   split_part->set_insert_move_when_activated(move_necessary);
5210   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5211 
5212   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5213   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5214   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5215 }
5216 
5217 /*
5218   split an interval at the optimal position between min_split_pos and
5219   max_split_pos in two parts:
5220   1) the left part has already a location assigned
5221   2) the right part is always on the stack and therefore ignored in further processing
5222 */
5223 void LinearScanWalker::split_for_spilling(Interval* it) {
5224   // calculate allowed range of splitting position
5225   int max_split_pos = current_position();
5226   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5227 
5228   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5229   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5230 
5231   assert(it->state() == activeState,     "why spill interval that is not active?");
5232   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5233   assert(min_split_pos <= max_split_pos, "invalid order");
5234   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5235   assert(current_position() < it->to(),  "interval must not end before current position");
5236 
5237   if (min_split_pos == it->from()) {
5238     // the whole interval is never used, so spill it entirely to memory
5239     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5240     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5241 
5242     allocator()->assign_spill_slot(it);
5243     allocator()->change_spill_state(it, min_split_pos);
5244 
5245     // Also kick parent intervals out of register to memory when they have no use
5246     // position. This avoids short interval in register surrounded by intervals in
5247     // memory -> avoid useless moves from memory to register and back
5248     Interval* parent = it;
5249     while (parent != NULL && parent->is_split_child()) {
5250       parent = parent->split_child_before_op_id(parent->from());
5251 
5252       if (parent->assigned_reg() < LinearScan::nof_regs) {
5253         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5254           // parent is never used, so kick it out of its assigned register
5255           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5256           allocator()->assign_spill_slot(parent);
5257         } else {
5258           // do not go further back because the register is actually used by the interval
5259           parent = NULL;
5260         }
5261       }
5262     }
5263 
5264   } else {
5265     // search optimal split pos, split interval and spill only the right hand part
5266     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5267 
5268     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5269     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5270     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5271 
5272     if (!allocator()->is_block_begin(optimal_split_pos)) {
5273       // move position before actual instruction (odd op_id)
5274       optimal_split_pos = (optimal_split_pos - 1) | 1;
5275     }
5276 
5277     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5278     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5279     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5280 
5281     Interval* spilled_part = it->split(optimal_split_pos);
5282     allocator()->append_interval(spilled_part);
5283     allocator()->assign_spill_slot(spilled_part);
5284     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5285 
5286     if (!allocator()->is_block_begin(optimal_split_pos)) {
5287       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5288       insert_move(optimal_split_pos, it, spilled_part);
5289     }
5290 
5291     // the current_split_child is needed later when moves are inserted for reloading
5292     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5293     spilled_part->make_current_split_child();
5294 
5295     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5296     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5297     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5298   }
5299 }
5300 
5301 
5302 void LinearScanWalker::split_stack_interval(Interval* it) {
5303   int min_split_pos = current_position() + 1;
5304   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5305 
5306   split_before_usage(it, min_split_pos, max_split_pos);
5307 }
5308 
5309 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5310   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5311   int max_split_pos = register_available_until;
5312 
5313   split_before_usage(it, min_split_pos, max_split_pos);
5314 }
5315 
5316 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5317   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5318 
5319   int current_pos = current_position();
5320   if (it->state() == inactiveState) {
5321     // the interval is currently inactive, so no spill slot is needed for now.
5322     // when the split part is activated, the interval has a new chance to get a register,
5323     // so in the best case no stack slot is necessary
5324     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5325     split_before_usage(it, current_pos + 1, current_pos + 1);
5326 
5327   } else {
5328     // search the position where the interval must have a register and split
5329     // at the optimal position before.
5330     // The new created part is added to the unhandled list and will get a register
5331     // when it is activated
5332     int min_split_pos = current_pos + 1;
5333     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5334 
5335     split_before_usage(it, min_split_pos, max_split_pos);
5336 
5337     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5338     split_for_spilling(it);
5339   }
5340 }
5341 
5342 
5343 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5344   int min_full_reg = any_reg;
5345   int max_partial_reg = any_reg;
5346 
5347   for (int i = _first_reg; i <= _last_reg; i++) {
5348     if (i == ignore_reg) {
5349       // this register must be ignored
5350 
5351     } else if (_use_pos[i] >= interval_to) {
5352       // this register is free for the full interval
5353       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5354         min_full_reg = i;
5355       }
5356     } else if (_use_pos[i] > reg_needed_until) {
5357       // this register is at least free until reg_needed_until
5358       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5359         max_partial_reg = i;
5360       }
5361     }
5362   }
5363 
5364   if (min_full_reg != any_reg) {
5365     return min_full_reg;
5366   } else if (max_partial_reg != any_reg) {
5367     *need_split = true;
5368     return max_partial_reg;
5369   } else {
5370     return any_reg;
5371   }
5372 }
5373 
5374 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5375   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5376 
5377   int min_full_reg = any_reg;
5378   int max_partial_reg = any_reg;
5379 
5380   for (int i = _first_reg; i < _last_reg; i+=2) {
5381     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5382       // this register is free for the full interval
5383       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5384         min_full_reg = i;
5385       }
5386     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5387       // this register is at least free until reg_needed_until
5388       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5389         max_partial_reg = i;
5390       }
5391     }
5392   }
5393 
5394   if (min_full_reg != any_reg) {
5395     return min_full_reg;
5396   } else if (max_partial_reg != any_reg) {
5397     *need_split = true;
5398     return max_partial_reg;
5399   } else {
5400     return any_reg;
5401   }
5402 }
5403 
5404 
5405 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5406   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5407 
5408   init_use_lists(true);
5409   free_exclude_active_fixed();
5410   free_exclude_active_any();
5411   free_collect_inactive_fixed(cur);
5412   free_collect_inactive_any(cur);
5413 //  free_collect_unhandled(fixedKind, cur);
5414   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5415 
5416   // _use_pos contains the start of the next interval that has this register assigned
5417   // (either as a fixed register or a normal allocated register in the past)
5418   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5419   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5420   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5421 
5422   int hint_reg, hint_regHi;
5423   Interval* register_hint = cur->register_hint();
5424   if (register_hint != NULL) {
5425     hint_reg = register_hint->assigned_reg();
5426     hint_regHi = register_hint->assigned_regHi();
5427 
5428     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5429       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5430       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5431     }
5432     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5433 
5434   } else {
5435     hint_reg = any_reg;
5436     hint_regHi = any_reg;
5437   }
5438   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5439   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5440 
5441   // the register must be free at least until this position
5442   int reg_needed_until = cur->from() + 1;
5443   int interval_to = cur->to();
5444 
5445   bool need_split = false;
5446   int split_pos = -1;
5447   int reg = any_reg;
5448   int regHi = any_reg;
5449 
5450   if (_adjacent_regs) {
5451     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5452     regHi = reg + 1;
5453     if (reg == any_reg) {
5454       return false;
5455     }
5456     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5457 
5458   } else {
5459     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5460     if (reg == any_reg) {
5461       return false;
5462     }
5463     split_pos = _use_pos[reg];
5464 
5465     if (_num_phys_regs == 2) {
5466       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5467 
5468       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5469         // do not split interval if only one register can be assigned until the split pos
5470         // (when one register is found for the whole interval, split&spill is only
5471         // performed for the hi register)
5472         return false;
5473 
5474       } else if (regHi != any_reg) {
5475         split_pos = MIN2(split_pos, _use_pos[regHi]);
5476 
5477         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5478         if (reg > regHi) {
5479           int temp = reg;
5480           reg = regHi;
5481           regHi = temp;
5482         }
5483       }
5484     }
5485   }
5486 
5487   cur->assign_reg(reg, regHi);
5488   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5489 
5490   assert(split_pos > 0, "invalid split_pos");
5491   if (need_split) {
5492     // register not available for full interval, so split it
5493     split_when_partial_register_available(cur, split_pos);
5494   }
5495 
5496   // only return true if interval is completely assigned
5497   return _num_phys_regs == 1 || regHi != any_reg;
5498 }
5499 
5500 
5501 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5502   int max_reg = any_reg;
5503 
5504   for (int i = _first_reg; i <= _last_reg; i++) {
5505     if (i == ignore_reg) {
5506       // this register must be ignored
5507 
5508     } else if (_use_pos[i] > reg_needed_until) {
5509       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5510         max_reg = i;
5511       }
5512     }
5513   }
5514 
5515   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5516     *need_split = true;
5517   }
5518 
5519   return max_reg;
5520 }
5521 
5522 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5523   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5524 
5525   int max_reg = any_reg;
5526 
5527   for (int i = _first_reg; i < _last_reg; i+=2) {
5528     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5529       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5530         max_reg = i;
5531       }
5532     }
5533   }
5534 
5535   if (max_reg != any_reg &&
5536       (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to)) {
5537     *need_split = true;
5538   }
5539 
5540   return max_reg;
5541 }
5542 
5543 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5544   assert(reg != any_reg, "no register assigned");
5545 
5546   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5547     Interval* it = _spill_intervals[reg]->at(i);
5548     remove_from_list(it);
5549     split_and_spill_interval(it);
5550   }
5551 
5552   if (regHi != any_reg) {
5553     IntervalList* processed = _spill_intervals[reg];
5554     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5555       Interval* it = _spill_intervals[regHi]->at(i);
5556       if (processed->find(it) == -1) {
5557         remove_from_list(it);
5558         split_and_spill_interval(it);
5559       }
5560     }
5561   }
5562 }
5563 
5564 
5565 // Split an Interval and spill it to memory so that cur can be placed in a register
5566 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5567   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5568 
5569   // collect current usage of registers
5570   init_use_lists(false);
5571   spill_exclude_active_fixed();
5572 //  spill_block_unhandled_fixed(cur);
5573   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5574   spill_block_inactive_fixed(cur);
5575   spill_collect_active_any();
5576   spill_collect_inactive_any(cur);
5577 
5578 #ifndef PRODUCT
5579   if (TraceLinearScanLevel >= 4) {
5580     tty->print_cr("      state of registers:");
5581     for (int i = _first_reg; i <= _last_reg; i++) {
5582       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5583       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5584         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5585       }
5586       tty->cr();
5587     }
5588   }
5589 #endif
5590 
5591   // the register must be free at least until this position
5592   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5593   int interval_to = cur->to();
5594   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5595 
5596   int split_pos = 0;
5597   int use_pos = 0;
5598   bool need_split = false;
5599   int reg, regHi;
5600 
5601   if (_adjacent_regs) {
5602     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5603     regHi = reg + 1;
5604 
5605     if (reg != any_reg) {
5606       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5607       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5608     }
5609   } else {
5610     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5611     regHi = any_reg;
5612 
5613     if (reg != any_reg) {
5614       use_pos = _use_pos[reg];
5615       split_pos = _block_pos[reg];
5616 
5617       if (_num_phys_regs == 2) {
5618         if (cur->assigned_reg() != any_reg) {
5619           regHi = reg;
5620           reg = cur->assigned_reg();
5621         } else {
5622           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5623           if (regHi != any_reg) {
5624             use_pos = MIN2(use_pos, _use_pos[regHi]);
5625             split_pos = MIN2(split_pos, _block_pos[regHi]);
5626           }
5627         }
5628 
5629         if (regHi != any_reg && reg > regHi) {
5630           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5631           int temp = reg;
5632           reg = regHi;
5633           regHi = temp;
5634         }
5635       }
5636     }
5637   }
5638 
5639   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5640     // the first use of cur is later than the spilling position -> spill cur
5641     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5642 
5643     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5644       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5645       // assign a reasonable register and do a bailout in product mode to avoid errors
5646       allocator()->assign_spill_slot(cur);
5647       BAILOUT("LinearScan: no register found");
5648     }
5649 
5650     split_and_spill_interval(cur);
5651   } else {
5652     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5653     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5654     assert(split_pos > 0, "invalid split_pos");
5655     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5656 
5657     cur->assign_reg(reg, regHi);
5658     if (need_split) {
5659       // register not available for full interval, so split it
5660       split_when_partial_register_available(cur, split_pos);
5661     }
5662 
5663     // perform splitting and spilling for all affected intervalls
5664     split_and_spill_intersecting_intervals(reg, regHi);
5665   }
5666 }
5667 
5668 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5669 #ifdef X86
5670   // fast calculation of intervals that can never get a register because the
5671   // the next instruction is a call that blocks all registers
5672   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5673 
5674   // check if this interval is the result of a split operation
5675   // (an interval got a register until this position)
5676   int pos = cur->from();
5677   if ((pos & 1) == 1) {
5678     // the current instruction is a call that blocks all registers
5679     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5680       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5681 
5682       // safety check that there is really no register available
5683       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5684       return true;
5685     }
5686 
5687   }
5688 #endif
5689   return false;
5690 }
5691 
5692 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5693   BasicType type = cur->type();
5694   _num_phys_regs = LinearScan::num_physical_regs(type);
5695   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5696 
5697   if (pd_init_regs_for_alloc(cur)) {
5698     // the appropriate register range was selected.
5699   } else if (type == T_FLOAT || type == T_DOUBLE) {
5700     _first_reg = pd_first_fpu_reg;
5701     _last_reg = pd_last_fpu_reg;
5702   } else {
5703     _first_reg = pd_first_cpu_reg;
5704     _last_reg = FrameMap::last_cpu_reg();
5705   }
5706 
5707   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5708   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5709 }
5710 
5711 
5712 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5713   if (op->code() != lir_move) {
5714     return false;
5715   }
5716   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5717 
5718   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5719   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5720   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5721 }
5722 
5723 // optimization (especially for phi functions of nested loops):
5724 // assign same spill slot to non-intersecting intervals
5725 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5726   if (cur->is_split_child()) {
5727     // optimization is only suitable for split parents
5728     return;
5729   }
5730 
5731   Interval* register_hint = cur->register_hint(false);
5732   if (register_hint == NULL) {
5733     // cur is not the target of a move, otherwise register_hint would be set
5734     return;
5735   }
5736   assert(register_hint->is_split_parent(), "register hint must be split parent");
5737 
5738   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5739     // combining the stack slots for intervals where spill move optimization is applied
5740     // is not benefitial and would cause problems
5741     return;
5742   }
5743 
5744   int begin_pos = cur->from();
5745   int end_pos = cur->to();
5746   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5747     // safety check that lir_op_with_id is allowed
5748     return;
5749   }
5750 
5751   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5752     // cur and register_hint are not connected with two moves
5753     return;
5754   }
5755 
5756   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5757   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5758   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5759     // register_hint must be split, otherwise the re-writing of use positions does not work
5760     return;
5761   }
5762 
5763   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5764   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5765   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5766   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5767 
5768   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5769     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5770     return;
5771   }
5772   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5773 
5774   // modify intervals such that cur gets the same stack slot as register_hint
5775   // delete use positions to prevent the intervals to get a register at beginning
5776   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5777   cur->remove_first_use_pos();
5778   end_hint->remove_first_use_pos();
5779 }
5780 
5781 
5782 // allocate a physical register or memory location to an interval
5783 bool LinearScanWalker::activate_current() {
5784   Interval* cur = current();
5785   bool result = true;
5786 
5787   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5788   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5789 
5790   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5791     // activating an interval that has a stack slot assigned -> split it at first use position
5792     // used for method parameters
5793     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5794 
5795     split_stack_interval(cur);
5796     result = false;
5797 
5798   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5799     // activating an interval that must start in a stack slot, but may get a register later
5800     // used for lir_roundfp: rounding is done by store to stack and reload later
5801     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5802     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5803 
5804     allocator()->assign_spill_slot(cur);
5805     split_stack_interval(cur);
5806     result = false;
5807 
5808   } else if (cur->assigned_reg() == any_reg) {
5809     // interval has not assigned register -> normal allocation
5810     // (this is the normal case for most intervals)
5811     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5812 
5813     // assign same spill slot to non-intersecting intervals
5814     combine_spilled_intervals(cur);
5815 
5816     init_vars_for_alloc(cur);
5817     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5818       // no empty register available.
5819       // split and spill another interval so that this interval gets a register
5820       alloc_locked_reg(cur);
5821     }
5822 
5823     // spilled intervals need not be move to active-list
5824     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5825       result = false;
5826     }
5827   }
5828 
5829   // load spilled values that become active from stack slot to register
5830   if (cur->insert_move_when_activated()) {
5831     assert(cur->is_split_child(), "must be");
5832     assert(cur->current_split_child() != NULL, "must be");
5833     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5834     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5835 
5836     insert_move(cur->from(), cur->current_split_child(), cur);
5837   }
5838   cur->make_current_split_child();
5839 
5840   return result; // true = interval is moved to active list
5841 }
5842 
5843 
5844 // Implementation of EdgeMoveOptimizer
5845 
5846 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5847   _edge_instructions(4),
5848   _edge_instructions_idx(4)
5849 {
5850 }
5851 
5852 void EdgeMoveOptimizer::optimize(BlockList* code) {
5853   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5854 
5855   // ignore the first block in the list (index 0 is not processed)
5856   for (int i = code->length() - 1; i >= 1; i--) {
5857     BlockBegin* block = code->at(i);
5858 
5859     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5860       optimizer.optimize_moves_at_block_end(block);
5861     }
5862     if (block->number_of_sux() == 2) {
5863       optimizer.optimize_moves_at_block_begin(block);
5864     }
5865   }
5866 }
5867 
5868 
5869 // clear all internal data structures
5870 void EdgeMoveOptimizer::init_instructions() {
5871   _edge_instructions.clear();
5872   _edge_instructions_idx.clear();
5873 }
5874 
5875 // append a lir-instruction-list and the index of the current operation in to the list
5876 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5877   _edge_instructions.append(instructions);
5878   _edge_instructions_idx.append(instructions_idx);
5879 }
5880 
5881 // return the current operation of the given edge (predecessor or successor)
5882 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5883   LIR_OpList* instructions = _edge_instructions.at(edge);
5884   int idx = _edge_instructions_idx.at(edge);
5885 
5886   if (idx < instructions->length()) {
5887     return instructions->at(idx);
5888   } else {
5889     return NULL;
5890   }
5891 }
5892 
5893 // removes the current operation of the given edge (predecessor or successor)
5894 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5895   LIR_OpList* instructions = _edge_instructions.at(edge);
5896   int idx = _edge_instructions_idx.at(edge);
5897   instructions->remove_at(idx);
5898 
5899   if (decrement_index) {
5900     _edge_instructions_idx.at_put(edge, idx - 1);
5901   }
5902 }
5903 
5904 
5905 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5906   if (op1 == NULL || op2 == NULL) {
5907     // at least one block is already empty -> no optimization possible
5908     return true;
5909   }
5910 
5911   if (op1->code() == lir_move && op2->code() == lir_move) {
5912     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5913     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5914     LIR_Op1* move1 = (LIR_Op1*)op1;
5915     LIR_Op1* move2 = (LIR_Op1*)op2;
5916     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5917       // these moves are exactly equal and can be optimized
5918       return false;
5919     }
5920 
5921   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5922     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5923     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5924     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5925     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5926     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5927       // equal FPU stack operations can be optimized
5928       return false;
5929     }
5930 
5931   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5932     // equal FPU stack operations can be optimized
5933     return false;
5934   }
5935 
5936   // no optimization possible
5937   return true;
5938 }
5939 
5940 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5941   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5942 
5943   if (block->is_predecessor(block)) {
5944     // currently we can't handle this correctly.
5945     return;
5946   }
5947 
5948   init_instructions();
5949   int num_preds = block->number_of_preds();
5950   assert(num_preds > 1, "do not call otherwise");
5951   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5952 
5953   // setup a list with the lir-instructions of all predecessors
5954   int i;
5955   for (i = 0; i < num_preds; i++) {
5956     BlockBegin* pred = block->pred_at(i);
5957     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5958 
5959     if (pred->number_of_sux() != 1) {
5960       // this can happen with switch-statements where multiple edges are between
5961       // the same blocks.
5962       return;
5963     }
5964 
5965     assert(pred->number_of_sux() == 1, "can handle only one successor");
5966     assert(pred->sux_at(0) == block, "invalid control flow");
5967     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5968     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5969     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5970 
5971     if (pred_instructions->last()->info() != NULL) {
5972       // can not optimize instructions when debug info is needed
5973       return;
5974     }
5975 
5976     // ignore the unconditional branch at the end of the block
5977     append_instructions(pred_instructions, pred_instructions->length() - 2);
5978   }
5979 
5980 
5981   // process lir-instructions while all predecessors end with the same instruction
5982   while (true) {
5983     LIR_Op* op = instruction_at(0);
5984     for (i = 1; i < num_preds; i++) {
5985       if (operations_different(op, instruction_at(i))) {
5986         // these instructions are different and cannot be optimized ->
5987         // no further optimization possible
5988         return;
5989       }
5990     }
5991 
5992     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5993 
5994     // insert the instruction at the beginning of the current block
5995     block->lir()->insert_before(1, op);
5996 
5997     // delete the instruction at the end of all predecessors
5998     for (i = 0; i < num_preds; i++) {
5999       remove_cur_instruction(i, true);
6000     }
6001   }
6002 }
6003 
6004 
6005 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
6006   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
6007 
6008   init_instructions();
6009   int num_sux = block->number_of_sux();
6010 
6011   LIR_OpList* cur_instructions = block->lir()->instructions_list();
6012 
6013   assert(num_sux == 2, "method should not be called otherwise");
6014   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
6015   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6016   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
6017 
6018   if (cur_instructions->last()->info() != NULL) {
6019     // can no optimize instructions when debug info is needed
6020     return;
6021   }
6022 
6023   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
6024   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
6025     // not a valid case for optimization
6026     // currently, only blocks that end with two branches (conditional branch followed
6027     // by unconditional branch) are optimized
6028     return;
6029   }
6030 
6031   // now it is guaranteed that the block ends with two branch instructions.
6032   // the instructions are inserted at the end of the block before these two branches
6033   int insert_idx = cur_instructions->length() - 2;
6034 
6035   int i;
6036 #ifdef ASSERT
6037   for (i = insert_idx - 1; i >= 0; i--) {
6038     LIR_Op* op = cur_instructions->at(i);
6039     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
6040       assert(false, "block with two successors can have only two branch instructions");
6041     }
6042   }
6043 #endif
6044 
6045   // setup a list with the lir-instructions of all successors
6046   for (i = 0; i < num_sux; i++) {
6047     BlockBegin* sux = block->sux_at(i);
6048     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
6049 
6050     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6051 
6052     if (sux->number_of_preds() != 1) {
6053       // this can happen with switch-statements where multiple edges are between
6054       // the same blocks.
6055       return;
6056     }
6057     assert(sux->pred_at(0) == block, "invalid control flow");
6058     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6059 
6060     // ignore the label at the beginning of the block
6061     append_instructions(sux_instructions, 1);
6062   }
6063 
6064   // process lir-instructions while all successors begin with the same instruction
6065   while (true) {
6066     LIR_Op* op = instruction_at(0);
6067     for (i = 1; i < num_sux; i++) {
6068       if (operations_different(op, instruction_at(i))) {
6069         // these instructions are different and cannot be optimized ->
6070         // no further optimization possible
6071         return;
6072       }
6073     }
6074 
6075     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6076 
6077     // insert instruction at end of current block
6078     block->lir()->insert_before(insert_idx, op);
6079     insert_idx++;
6080 
6081     // delete the instructions at the beginning of all successors
6082     for (i = 0; i < num_sux; i++) {
6083       remove_cur_instruction(i, false);
6084     }
6085   }
6086 }
6087 
6088 
6089 // Implementation of ControlFlowOptimizer
6090 
6091 ControlFlowOptimizer::ControlFlowOptimizer() :
6092   _original_preds(4)
6093 {
6094 }
6095 
6096 void ControlFlowOptimizer::optimize(BlockList* code) {
6097   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6098 
6099   // push the OSR entry block to the end so that we're not jumping over it.
6100   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6101   if (osr_entry) {
6102     int index = osr_entry->linear_scan_number();
6103     assert(code->at(index) == osr_entry, "wrong index");
6104     code->remove_at(index);
6105     code->append(osr_entry);
6106   }
6107 
6108   optimizer.reorder_short_loops(code);
6109   optimizer.delete_empty_blocks(code);
6110   optimizer.delete_unnecessary_jumps(code);
6111   optimizer.delete_jumps_to_return(code);
6112 }
6113 
6114 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6115   int i = header_idx + 1;
6116   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6117   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6118     i++;
6119   }
6120 
6121   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6122     int end_idx = i - 1;
6123     BlockBegin* end_block = code->at(end_idx);
6124 
6125     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6126       // short loop from header_idx to end_idx found -> reorder blocks such that
6127       // the header_block is the last block instead of the first block of the loop
6128       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6129                                          end_idx - header_idx + 1,
6130                                          header_block->block_id(), end_block->block_id()));
6131 
6132       for (int j = header_idx; j < end_idx; j++) {
6133         code->at_put(j, code->at(j + 1));
6134       }
6135       code->at_put(end_idx, header_block);
6136 
6137       // correct the flags so that any loop alignment occurs in the right place.
6138       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6139       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6140       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6141     }
6142   }
6143 }
6144 
6145 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6146   for (int i = code->length() - 1; i >= 0; i--) {
6147     BlockBegin* block = code->at(i);
6148 
6149     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6150       reorder_short_loop(code, block, i);
6151     }
6152   }
6153 
6154   DEBUG_ONLY(verify(code));
6155 }
6156 
6157 // only blocks with exactly one successor can be deleted. Such blocks
6158 // must always end with an unconditional branch to this successor
6159 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6160   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6161     return false;
6162   }
6163 
6164   LIR_OpList* instructions = block->lir()->instructions_list();
6165 
6166   assert(instructions->length() >= 2, "block must have label and branch");
6167   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6168   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6169   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6170   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6171 
6172   // block must have exactly one successor
6173 
6174   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6175     return true;
6176   }
6177   return false;
6178 }
6179 
6180 // substitute branch targets in all branch-instructions of this blocks
6181 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6182   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6183 
6184   LIR_OpList* instructions = block->lir()->instructions_list();
6185 
6186   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6187   for (int i = instructions->length() - 1; i >= 1; i--) {
6188     LIR_Op* op = instructions->at(i);
6189 
6190     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6191       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6192       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6193 
6194       if (branch->block() == target_from) {
6195         branch->change_block(target_to);
6196       }
6197       if (branch->ublock() == target_from) {
6198         branch->change_ublock(target_to);
6199       }
6200     }
6201   }
6202 }
6203 
6204 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6205   int old_pos = 0;
6206   int new_pos = 0;
6207   int num_blocks = code->length();
6208 
6209   while (old_pos < num_blocks) {
6210     BlockBegin* block = code->at(old_pos);
6211 
6212     if (can_delete_block(block)) {
6213       BlockBegin* new_target = block->sux_at(0);
6214 
6215       // propagate backward branch target flag for correct code alignment
6216       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6217         new_target->set(BlockBegin::backward_branch_target_flag);
6218       }
6219 
6220       // collect a list with all predecessors that contains each predecessor only once
6221       // the predecessors of cur are changed during the substitution, so a copy of the
6222       // predecessor list is necessary
6223       int j;
6224       _original_preds.clear();
6225       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6226         BlockBegin* pred = block->pred_at(j);
6227         if (_original_preds.find(pred) == -1) {
6228           _original_preds.append(pred);
6229         }
6230       }
6231 
6232       for (j = _original_preds.length() - 1; j >= 0; j--) {
6233         BlockBegin* pred = _original_preds.at(j);
6234         substitute_branch_target(pred, block, new_target);
6235         pred->substitute_sux(block, new_target);
6236       }
6237     } else {
6238       // adjust position of this block in the block list if blocks before
6239       // have been deleted
6240       if (new_pos != old_pos) {
6241         code->at_put(new_pos, code->at(old_pos));
6242       }
6243       new_pos++;
6244     }
6245     old_pos++;
6246   }
6247   code->trunc_to(new_pos);
6248 
6249   DEBUG_ONLY(verify(code));
6250 }
6251 
6252 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6253   // skip the last block because there a branch is always necessary
6254   for (int i = code->length() - 2; i >= 0; i--) {
6255     BlockBegin* block = code->at(i);
6256     LIR_OpList* instructions = block->lir()->instructions_list();
6257 
6258     LIR_Op* last_op = instructions->last();
6259     if (last_op->code() == lir_branch) {
6260       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6261       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6262 
6263       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6264       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6265 
6266       if (last_branch->info() == NULL) {
6267         if (last_branch->block() == code->at(i + 1)) {
6268 
6269           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6270 
6271           // delete last branch instruction
6272           instructions->trunc_to(instructions->length() - 1);
6273 
6274         } else {
6275           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6276           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6277             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6278             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6279 
6280             if (prev_branch->stub() == NULL) {
6281 
6282               LIR_Op2* prev_cmp = NULL;
6283               // There might be a cmove inserted for profiling which depends on the same
6284               // compare. If we change the condition of the respective compare, we have
6285               // to take care of this cmove as well.
6286               LIR_Op2* prev_cmove = NULL;
6287 
6288               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6289                 prev_op = instructions->at(j);
6290                 // check for the cmove
6291                 if (prev_op->code() == lir_cmove) {
6292                   assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
6293                   prev_cmove = (LIR_Op2*)prev_op;
6294                   assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
6295                 }
6296                 if (prev_op->code() == lir_cmp) {
6297                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6298                   prev_cmp = (LIR_Op2*)prev_op;
6299                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6300                 }
6301               }
6302               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6303               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6304 
6305                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6306 
6307                 // eliminate a conditional branch to the immediate successor
6308                 prev_branch->change_block(last_branch->block());
6309                 prev_branch->negate_cond();
6310                 prev_cmp->set_condition(prev_branch->cond());
6311                 instructions->trunc_to(instructions->length() - 1);
6312                 // if we do change the condition, we have to change the cmove as well
6313                 if (prev_cmove != NULL) {
6314                   prev_cmove->set_condition(prev_branch->cond());
6315                   LIR_Opr t = prev_cmove->in_opr1();
6316                   prev_cmove->set_in_opr1(prev_cmove->in_opr2());
6317                   prev_cmove->set_in_opr2(t);
6318                 }
6319               }
6320             }
6321           }
6322         }
6323       }
6324     }
6325   }
6326 
6327   DEBUG_ONLY(verify(code));
6328 }
6329 
6330 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6331 #ifdef ASSERT
6332   ResourceBitMap return_converted(BlockBegin::number_of_blocks());
6333 #endif
6334 
6335   for (int i = code->length() - 1; i >= 0; i--) {
6336     BlockBegin* block = code->at(i);
6337     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6338     LIR_Op*     cur_last_op = cur_instructions->last();
6339 
6340     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6341     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6342       // the block contains only a label and a return
6343       // if a predecessor ends with an unconditional jump to this block, then the jump
6344       // can be replaced with a return instruction
6345       //
6346       // Note: the original block with only a return statement cannot be deleted completely
6347       //       because the predecessors might have other (conditional) jumps to this block
6348       //       -> this may lead to unnecesary return instructions in the final code
6349 
6350       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6351       assert(block->number_of_sux() == 0 ||
6352              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6353              "blocks that end with return must not have successors");
6354 
6355       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6356       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6357 
6358       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6359         BlockBegin* pred = block->pred_at(j);
6360         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6361         LIR_Op*     pred_last_op = pred_instructions->last();
6362 
6363         if (pred_last_op->code() == lir_branch) {
6364           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6365           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6366 
6367           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6368             // replace the jump to a return with a direct return
6369             // Note: currently the edge between the blocks is not deleted
6370             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6371 #ifdef ASSERT
6372             return_converted.set_bit(pred->block_id());
6373 #endif
6374           }
6375         }
6376       }
6377     }
6378   }
6379 }
6380 
6381 
6382 #ifdef ASSERT
6383 void ControlFlowOptimizer::verify(BlockList* code) {
6384   for (int i = 0; i < code->length(); i++) {
6385     BlockBegin* block = code->at(i);
6386     LIR_OpList* instructions = block->lir()->instructions_list();
6387 
6388     int j;
6389     for (j = 0; j < instructions->length(); j++) {
6390       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6391 
6392       if (op_branch != NULL) {
6393         assert(op_branch->block() == NULL || code->find(op_branch->block()) != -1, "branch target not valid");
6394         assert(op_branch->ublock() == NULL || code->find(op_branch->ublock()) != -1, "branch target not valid");
6395       }
6396     }
6397 
6398     for (j = 0; j < block->number_of_sux() - 1; j++) {
6399       BlockBegin* sux = block->sux_at(j);
6400       assert(code->find(sux) != -1, "successor not valid");
6401     }
6402 
6403     for (j = 0; j < block->number_of_preds() - 1; j++) {
6404       BlockBegin* pred = block->pred_at(j);
6405       assert(code->find(pred) != -1, "successor not valid");
6406     }
6407   }
6408 }
6409 #endif
6410 
6411 
6412 #ifndef PRODUCT
6413 
6414 // Implementation of LinearStatistic
6415 
6416 const char* LinearScanStatistic::counter_name(int counter_idx) {
6417   switch (counter_idx) {
6418     case counter_method:          return "compiled methods";
6419     case counter_fpu_method:      return "methods using fpu";
6420     case counter_loop_method:     return "methods with loops";
6421     case counter_exception_method:return "methods with xhandler";
6422 
6423     case counter_loop:            return "loops";
6424     case counter_block:           return "blocks";
6425     case counter_loop_block:      return "blocks inside loop";
6426     case counter_exception_block: return "exception handler entries";
6427     case counter_interval:        return "intervals";
6428     case counter_fixed_interval:  return "fixed intervals";
6429     case counter_range:           return "ranges";
6430     case counter_fixed_range:     return "fixed ranges";
6431     case counter_use_pos:         return "use positions";
6432     case counter_fixed_use_pos:   return "fixed use positions";
6433     case counter_spill_slots:     return "spill slots";
6434 
6435     // counter for classes of lir instructions
6436     case counter_instruction:     return "total instructions";
6437     case counter_label:           return "labels";
6438     case counter_entry:           return "method entries";
6439     case counter_return:          return "method returns";
6440     case counter_call:            return "method calls";
6441     case counter_move:            return "moves";
6442     case counter_cmp:             return "compare";
6443     case counter_cond_branch:     return "conditional branches";
6444     case counter_uncond_branch:   return "unconditional branches";
6445     case counter_stub_branch:     return "branches to stub";
6446     case counter_alu:             return "artithmetic + logic";
6447     case counter_alloc:           return "allocations";
6448     case counter_sync:            return "synchronisation";
6449     case counter_throw:           return "throw";
6450     case counter_unwind:          return "unwind";
6451     case counter_typecheck:       return "type+null-checks";
6452     case counter_fpu_stack:       return "fpu-stack";
6453     case counter_misc_inst:       return "other instructions";
6454     case counter_other_inst:      return "misc. instructions";
6455 
6456     // counter for different types of moves
6457     case counter_move_total:      return "total moves";
6458     case counter_move_reg_reg:    return "register->register";
6459     case counter_move_reg_stack:  return "register->stack";
6460     case counter_move_stack_reg:  return "stack->register";
6461     case counter_move_stack_stack:return "stack->stack";
6462     case counter_move_reg_mem:    return "register->memory";
6463     case counter_move_mem_reg:    return "memory->register";
6464     case counter_move_const_any:  return "constant->any";
6465 
6466     case blank_line_1:            return "";
6467     case blank_line_2:            return "";
6468 
6469     default: ShouldNotReachHere(); return "";
6470   }
6471 }
6472 
6473 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6474   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6475     return counter_method;
6476   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6477     return counter_block;
6478   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6479     return counter_instruction;
6480   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6481     return counter_move_total;
6482   }
6483   return invalid_counter;
6484 }
6485 
6486 LinearScanStatistic::LinearScanStatistic() {
6487   for (int i = 0; i < number_of_counters; i++) {
6488     _counters_sum[i] = 0;
6489     _counters_max[i] = -1;
6490   }
6491 
6492 }
6493 
6494 // add the method-local numbers to the total sum
6495 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6496   for (int i = 0; i < number_of_counters; i++) {
6497     _counters_sum[i] += method_statistic._counters_sum[i];
6498     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6499   }
6500 }
6501 
6502 void LinearScanStatistic::print(const char* title) {
6503   if (CountLinearScan || TraceLinearScanLevel > 0) {
6504     tty->cr();
6505     tty->print_cr("***** LinearScan statistic - %s *****", title);
6506 
6507     for (int i = 0; i < number_of_counters; i++) {
6508       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6509         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6510 
6511         LinearScanStatistic::Counter cntr = base_counter(i);
6512         if (cntr != invalid_counter) {
6513           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[cntr]);
6514         } else {
6515           tty->print("           ");
6516         }
6517 
6518         if (_counters_max[i] >= 0) {
6519           tty->print("%8d", _counters_max[i]);
6520         }
6521       }
6522       tty->cr();
6523     }
6524   }
6525 }
6526 
6527 void LinearScanStatistic::collect(LinearScan* allocator) {
6528   inc_counter(counter_method);
6529   if (allocator->has_fpu_registers()) {
6530     inc_counter(counter_fpu_method);
6531   }
6532   if (allocator->num_loops() > 0) {
6533     inc_counter(counter_loop_method);
6534   }
6535   inc_counter(counter_loop, allocator->num_loops());
6536   inc_counter(counter_spill_slots, allocator->max_spills());
6537 
6538   int i;
6539   for (i = 0; i < allocator->interval_count(); i++) {
6540     Interval* cur = allocator->interval_at(i);
6541 
6542     if (cur != NULL) {
6543       inc_counter(counter_interval);
6544       inc_counter(counter_use_pos, cur->num_use_positions());
6545       if (LinearScan::is_precolored_interval(cur)) {
6546         inc_counter(counter_fixed_interval);
6547         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6548       }
6549 
6550       Range* range = cur->first();
6551       while (range != Range::end()) {
6552         inc_counter(counter_range);
6553         if (LinearScan::is_precolored_interval(cur)) {
6554           inc_counter(counter_fixed_range);
6555         }
6556         range = range->next();
6557       }
6558     }
6559   }
6560 
6561   bool has_xhandlers = false;
6562   // Note: only count blocks that are in code-emit order
6563   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6564     BlockBegin* cur = allocator->ir()->code()->at(i);
6565 
6566     inc_counter(counter_block);
6567     if (cur->loop_depth() > 0) {
6568       inc_counter(counter_loop_block);
6569     }
6570     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6571       inc_counter(counter_exception_block);
6572       has_xhandlers = true;
6573     }
6574 
6575     LIR_OpList* instructions = cur->lir()->instructions_list();
6576     for (int j = 0; j < instructions->length(); j++) {
6577       LIR_Op* op = instructions->at(j);
6578 
6579       inc_counter(counter_instruction);
6580 
6581       switch (op->code()) {
6582         case lir_label:           inc_counter(counter_label); break;
6583         case lir_std_entry:
6584         case lir_osr_entry:       inc_counter(counter_entry); break;
6585         case lir_return:          inc_counter(counter_return); break;
6586 
6587         case lir_rtcall:
6588         case lir_static_call:
6589         case lir_optvirtual_call:
6590         case lir_virtual_call:    inc_counter(counter_call); break;
6591 
6592         case lir_move: {
6593           inc_counter(counter_move);
6594           inc_counter(counter_move_total);
6595 
6596           LIR_Opr in = op->as_Op1()->in_opr();
6597           LIR_Opr res = op->as_Op1()->result_opr();
6598           if (in->is_register()) {
6599             if (res->is_register()) {
6600               inc_counter(counter_move_reg_reg);
6601             } else if (res->is_stack()) {
6602               inc_counter(counter_move_reg_stack);
6603             } else if (res->is_address()) {
6604               inc_counter(counter_move_reg_mem);
6605             } else {
6606               ShouldNotReachHere();
6607             }
6608           } else if (in->is_stack()) {
6609             if (res->is_register()) {
6610               inc_counter(counter_move_stack_reg);
6611             } else {
6612               inc_counter(counter_move_stack_stack);
6613             }
6614           } else if (in->is_address()) {
6615             assert(res->is_register(), "must be");
6616             inc_counter(counter_move_mem_reg);
6617           } else if (in->is_constant()) {
6618             inc_counter(counter_move_const_any);
6619           } else {
6620             ShouldNotReachHere();
6621           }
6622           break;
6623         }
6624 
6625         case lir_cmp:             inc_counter(counter_cmp); break;
6626 
6627         case lir_branch:
6628         case lir_cond_float_branch: {
6629           LIR_OpBranch* branch = op->as_OpBranch();
6630           if (branch->block() == NULL) {
6631             inc_counter(counter_stub_branch);
6632           } else if (branch->cond() == lir_cond_always) {
6633             inc_counter(counter_uncond_branch);
6634           } else {
6635             inc_counter(counter_cond_branch);
6636           }
6637           break;
6638         }
6639 
6640         case lir_neg:
6641         case lir_add:
6642         case lir_sub:
6643         case lir_mul:
6644         case lir_mul_strictfp:
6645         case lir_div:
6646         case lir_div_strictfp:
6647         case lir_rem:
6648         case lir_sqrt:
6649         case lir_abs:
6650         case lir_log10:
6651         case lir_logic_and:
6652         case lir_logic_or:
6653         case lir_logic_xor:
6654         case lir_shl:
6655         case lir_shr:
6656         case lir_ushr:            inc_counter(counter_alu); break;
6657 
6658         case lir_alloc_object:
6659         case lir_alloc_array:     inc_counter(counter_alloc); break;
6660 
6661         case lir_monaddr:
6662         case lir_lock:
6663         case lir_unlock:          inc_counter(counter_sync); break;
6664 
6665         case lir_throw:           inc_counter(counter_throw); break;
6666 
6667         case lir_unwind:          inc_counter(counter_unwind); break;
6668 
6669         case lir_null_check:
6670         case lir_leal:
6671         case lir_instanceof:
6672         case lir_checkcast:
6673         case lir_store_check:     inc_counter(counter_typecheck); break;
6674 
6675         case lir_fpop_raw:
6676         case lir_fxch:
6677         case lir_fld:             inc_counter(counter_fpu_stack); break;
6678 
6679         case lir_nop:
6680         case lir_push:
6681         case lir_pop:
6682         case lir_convert:
6683         case lir_roundfp:
6684         case lir_cmove:           inc_counter(counter_misc_inst); break;
6685 
6686         default:                  inc_counter(counter_other_inst); break;
6687       }
6688     }
6689   }
6690 
6691   if (has_xhandlers) {
6692     inc_counter(counter_exception_method);
6693   }
6694 }
6695 
6696 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6697   if (CountLinearScan || TraceLinearScanLevel > 0) {
6698 
6699     LinearScanStatistic local_statistic = LinearScanStatistic();
6700 
6701     local_statistic.collect(allocator);
6702     global_statistic.sum_up(local_statistic);
6703 
6704     if (TraceLinearScanLevel > 2) {
6705       local_statistic.print("current local statistic");
6706     }
6707   }
6708 }
6709 
6710 
6711 // Implementation of LinearTimers
6712 
6713 LinearScanTimers::LinearScanTimers() {
6714   for (int i = 0; i < number_of_timers; i++) {
6715     timer(i)->reset();
6716   }
6717 }
6718 
6719 const char* LinearScanTimers::timer_name(int idx) {
6720   switch (idx) {
6721     case timer_do_nothing:               return "Nothing (Time Check)";
6722     case timer_number_instructions:      return "Number Instructions";
6723     case timer_compute_local_live_sets:  return "Local Live Sets";
6724     case timer_compute_global_live_sets: return "Global Live Sets";
6725     case timer_build_intervals:          return "Build Intervals";
6726     case timer_sort_intervals_before:    return "Sort Intervals Before";
6727     case timer_allocate_registers:       return "Allocate Registers";
6728     case timer_resolve_data_flow:        return "Resolve Data Flow";
6729     case timer_sort_intervals_after:     return "Sort Intervals After";
6730     case timer_eliminate_spill_moves:    return "Spill optimization";
6731     case timer_assign_reg_num:           return "Assign Reg Num";
6732     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6733     case timer_optimize_lir:             return "Optimize LIR";
6734     default: ShouldNotReachHere();       return "";
6735   }
6736 }
6737 
6738 void LinearScanTimers::begin_method() {
6739   if (TimeEachLinearScan) {
6740     // reset all timers to measure only current method
6741     for (int i = 0; i < number_of_timers; i++) {
6742       timer(i)->reset();
6743     }
6744   }
6745 }
6746 
6747 void LinearScanTimers::end_method(LinearScan* allocator) {
6748   if (TimeEachLinearScan) {
6749 
6750     double c = timer(timer_do_nothing)->seconds();
6751     double total = 0;
6752     for (int i = 1; i < number_of_timers; i++) {
6753       total += timer(i)->seconds() - c;
6754     }
6755 
6756     if (total >= 0.0005) {
6757       // print all information in one line for automatic processing
6758       tty->print("@"); allocator->compilation()->method()->print_name();
6759 
6760       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6761       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6762       tty->print("@ %d ", allocator->block_count());
6763       tty->print("@ %d ", allocator->num_virtual_regs());
6764       tty->print("@ %d ", allocator->interval_count());
6765       tty->print("@ %d ", allocator->_num_calls);
6766       tty->print("@ %d ", allocator->num_loops());
6767 
6768       tty->print("@ %6.6f ", total);
6769       for (int i = 1; i < number_of_timers; i++) {
6770         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6771       }
6772       tty->cr();
6773     }
6774   }
6775 }
6776 
6777 void LinearScanTimers::print(double total_time) {
6778   if (TimeLinearScan) {
6779     // correction value: sum of dummy-timer that only measures the time that
6780     // is necesary to start and stop itself
6781     double c = timer(timer_do_nothing)->seconds();
6782 
6783     for (int i = 0; i < number_of_timers; i++) {
6784       double t = timer(i)->seconds();
6785       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6786     }
6787   }
6788 }
6789 
6790 #endif // #ifndef PRODUCT