1 /*
   2  * Copyright (c) 1998, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.inline.hpp"
  27 #include "opto/ad.hpp"
  28 #include "opto/block.hpp"
  29 #include "opto/c2compiler.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/runtime.hpp"
  34 #include "opto/chaitin.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 
  37 // Optimization - Graph Style
  38 
  39 // Check whether val is not-null-decoded compressed oop,
  40 // i.e. will grab into the base of the heap if it represents NULL.
  41 static bool accesses_heap_base_zone(Node *val) {
  42   if (Universe::narrow_oop_base() > 0) { // Implies UseCompressedOops.
  43     if (val && val->is_Mach()) {
  44       if (val->as_Mach()->ideal_Opcode() == Op_DecodeN) {
  45         // This assumes all Decodes with TypePtr::NotNull are matched to nodes that
  46         // decode NULL to point to the heap base (Decode_NN).
  47         if (val->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull) {
  48           return true;
  49         }
  50       }
  51       // Must recognize load operation with Decode matched in memory operand.
  52       // We should not reach here exept for PPC/AIX, as os::zero_page_read_protected()
  53       // returns true everywhere else. On PPC, no such memory operands
  54       // exist, therefore we did not yet implement a check for such operands.
  55       NOT_AIX(Unimplemented());
  56     }
  57   }
  58   return false;
  59 }
  60 
  61 static bool needs_explicit_null_check_for_read(Node *val) {
  62   // On some OSes (AIX) the page at address 0 is only write protected.
  63   // If so, only Store operations will trap.
  64   if (os::zero_page_read_protected()) {
  65     return false;  // Implicit null check will work.
  66   }
  67   // Also a read accessing the base of a heap-based compressed heap will trap.
  68   if (accesses_heap_base_zone(val) &&                    // Hits the base zone page.
  69       Universe::narrow_oop_use_implicit_null_checks()) { // Base zone page is protected.
  70     return false;
  71   }
  72 
  73   return true;
  74 }
  75 
  76 //------------------------------implicit_null_check----------------------------
  77 // Detect implicit-null-check opportunities.  Basically, find NULL checks
  78 // with suitable memory ops nearby.  Use the memory op to do the NULL check.
  79 // I can generate a memory op if there is not one nearby.
  80 // The proj is the control projection for the not-null case.
  81 // The val is the pointer being checked for nullness or
  82 // decodeHeapOop_not_null node if it did not fold into address.
  83 void PhaseCFG::implicit_null_check(Block* block, Node *proj, Node *val, int allowed_reasons) {
  84   // Assume if null check need for 0 offset then always needed
  85   // Intel solaris doesn't support any null checks yet and no
  86   // mechanism exists (yet) to set the switches at an os_cpu level
  87   if( !ImplicitNullChecks || MacroAssembler::needs_explicit_null_check(0)) return;
  88 
  89   // Make sure the ptr-is-null path appears to be uncommon!
  90   float f = block->end()->as_MachIf()->_prob;
  91   if( proj->Opcode() == Op_IfTrue ) f = 1.0f - f;
  92   if( f > PROB_UNLIKELY_MAG(4) ) return;
  93 
  94   uint bidx = 0;                // Capture index of value into memop
  95   bool was_store;               // Memory op is a store op
  96 
  97   // Get the successor block for if the test ptr is non-null
  98   Block* not_null_block;  // this one goes with the proj
  99   Block* null_block;
 100   if (block->get_node(block->number_of_nodes()-1) == proj) {
 101     null_block     = block->_succs[0];
 102     not_null_block = block->_succs[1];
 103   } else {
 104     assert(block->get_node(block->number_of_nodes()-2) == proj, "proj is one or the other");
 105     not_null_block = block->_succs[0];
 106     null_block     = block->_succs[1];
 107   }
 108   while (null_block->is_Empty() == Block::empty_with_goto) {
 109     null_block     = null_block->_succs[0];
 110   }
 111 
 112   // Search the exception block for an uncommon trap.
 113   // (See Parse::do_if and Parse::do_ifnull for the reason
 114   // we need an uncommon trap.  Briefly, we need a way to
 115   // detect failure of this optimization, as in 6366351.)
 116   {
 117     bool found_trap = false;
 118     for (uint i1 = 0; i1 < null_block->number_of_nodes(); i1++) {
 119       Node* nn = null_block->get_node(i1);
 120       if (nn->is_MachCall() &&
 121           nn->as_MachCall()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point()) {
 122         const Type* trtype = nn->in(TypeFunc::Parms)->bottom_type();
 123         if (trtype->isa_int() && trtype->is_int()->is_con()) {
 124           jint tr_con = trtype->is_int()->get_con();
 125           Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(tr_con);
 126           Deoptimization::DeoptAction action = Deoptimization::trap_request_action(tr_con);
 127           assert((int)reason < (int)BitsPerInt, "recode bit map");
 128           if (is_set_nth_bit(allowed_reasons, (int) reason)
 129               && action != Deoptimization::Action_none) {
 130             // This uncommon trap is sure to recompile, eventually.
 131             // When that happens, C->too_many_traps will prevent
 132             // this transformation from happening again.
 133             found_trap = true;
 134           }
 135         }
 136         break;
 137       }
 138     }
 139     if (!found_trap) {
 140       // We did not find an uncommon trap.
 141       return;
 142     }
 143   }
 144 
 145   // Check for decodeHeapOop_not_null node which did not fold into address
 146   bool is_decoden = ((intptr_t)val) & 1;
 147   val = (Node*)(((intptr_t)val) & ~1);
 148 
 149   assert(!is_decoden || (val->in(0) == NULL) && val->is_Mach() &&
 150          (val->as_Mach()->ideal_Opcode() == Op_DecodeN), "sanity");
 151 
 152   // Search the successor block for a load or store who's base value is also
 153   // the tested value.  There may be several.
 154   Node_List *out = new Node_List(Thread::current()->resource_area());
 155   MachNode *best = NULL;        // Best found so far
 156   for (DUIterator i = val->outs(); val->has_out(i); i++) {
 157     Node *m = val->out(i);
 158     if( !m->is_Mach() ) continue;
 159     MachNode *mach = m->as_Mach();
 160     was_store = false;
 161     int iop = mach->ideal_Opcode();
 162     switch( iop ) {
 163     case Op_LoadB:
 164     case Op_LoadUB:
 165     case Op_LoadUS:
 166     case Op_LoadD:
 167     case Op_LoadF:
 168     case Op_LoadI:
 169     case Op_LoadL:
 170     case Op_LoadP:
 171     case Op_LoadN:
 172     case Op_LoadS:
 173     case Op_LoadKlass:
 174     case Op_LoadNKlass:
 175     case Op_LoadRange:
 176     case Op_LoadD_unaligned:
 177     case Op_LoadL_unaligned:
 178       assert(mach->in(2) == val, "should be address");
 179       break;
 180     case Op_StoreB:
 181     case Op_StoreC:
 182     case Op_StoreCM:
 183     case Op_StoreD:
 184     case Op_StoreF:
 185     case Op_StoreI:
 186     case Op_StoreL:
 187     case Op_StoreP:
 188     case Op_StoreN:
 189     case Op_StoreNKlass:
 190       was_store = true;         // Memory op is a store op
 191       // Stores will have their address in slot 2 (memory in slot 1).
 192       // If the value being nul-checked is in another slot, it means we
 193       // are storing the checked value, which does NOT check the value!
 194       if( mach->in(2) != val ) continue;
 195       break;                    // Found a memory op?
 196     case Op_StrComp:
 197     case Op_StrEquals:
 198     case Op_StrIndexOf:
 199     case Op_StrIndexOfChar:
 200     case Op_AryEq:
 201     case Op_StrInflatedCopy:
 202     case Op_StrCompressedCopy:
 203     case Op_EncodeISOArray:
 204     case Op_HasNegatives:
 205       // Not a legit memory op for implicit null check regardless of
 206       // embedded loads
 207       continue;
 208     default:                    // Also check for embedded loads
 209       if( !mach->needs_anti_dependence_check() )
 210         continue;               // Not an memory op; skip it
 211       if( must_clone[iop] ) {
 212         // Do not move nodes which produce flags because
 213         // RA will try to clone it to place near branch and
 214         // it will cause recompilation, see clone_node().
 215         continue;
 216       }
 217       {
 218         // Check that value is used in memory address in
 219         // instructions with embedded load (CmpP val1,(val2+off)).
 220         Node* base;
 221         Node* index;
 222         const MachOper* oper = mach->memory_inputs(base, index);
 223         if (oper == NULL || oper == (MachOper*)-1) {
 224           continue;             // Not an memory op; skip it
 225         }
 226         if (val == base ||
 227             val == index && val->bottom_type()->isa_narrowoop()) {
 228           break;                // Found it
 229         } else {
 230           continue;             // Skip it
 231         }
 232       }
 233       break;
 234     }
 235 
 236     // On some OSes (AIX) the page at address 0 is only write protected.
 237     // If so, only Store operations will trap.
 238     // But a read accessing the base of a heap-based compressed heap will trap.
 239     if (!was_store && needs_explicit_null_check_for_read(val)) {
 240       continue;
 241     }
 242 
 243     // Check that node's control edge is not-null block's head or dominates it,
 244     // otherwise we can't hoist it because there are other control dependencies.
 245     Node* ctrl = mach->in(0);
 246     if (ctrl != NULL && !(ctrl == not_null_block->head() ||
 247         get_block_for_node(ctrl)->dominates(not_null_block))) {
 248       continue;
 249     }
 250 
 251     // check if the offset is not too high for implicit exception
 252     {
 253       intptr_t offset = 0;
 254       const TypePtr *adr_type = NULL;  // Do not need this return value here
 255       const Node* base = mach->get_base_and_disp(offset, adr_type);
 256       if (base == NULL || base == NodeSentinel) {
 257         // Narrow oop address doesn't have base, only index.
 258         // Give up if offset is beyond page size or if heap base is not protected.
 259         if (val->bottom_type()->isa_narrowoop() &&
 260             (MacroAssembler::needs_explicit_null_check(offset) ||
 261              !Universe::narrow_oop_use_implicit_null_checks()))
 262           continue;
 263         // cannot reason about it; is probably not implicit null exception
 264       } else {
 265         const TypePtr* tptr;
 266         if (UseCompressedOops && (Universe::narrow_oop_shift() == 0 ||
 267                                   Universe::narrow_klass_shift() == 0)) {
 268           // 32-bits narrow oop can be the base of address expressions
 269           tptr = base->get_ptr_type();
 270         } else {
 271           // only regular oops are expected here
 272           tptr = base->bottom_type()->is_ptr();
 273         }
 274         // Give up if offset is not a compile-time constant.
 275         if (offset == Type::OffsetBot || tptr->_offset == Type::OffsetBot)
 276           continue;
 277         offset += tptr->_offset; // correct if base is offseted
 278         // Give up if reference is beyond page size.
 279         if (MacroAssembler::needs_explicit_null_check(offset))
 280           continue;
 281         // Give up if base is a decode node and the heap base is not protected.
 282         if (base->is_Mach() && base->as_Mach()->ideal_Opcode() == Op_DecodeN &&
 283             !Universe::narrow_oop_use_implicit_null_checks())
 284           continue;
 285       }
 286     }
 287 
 288     // Check ctrl input to see if the null-check dominates the memory op
 289     Block *cb = get_block_for_node(mach);
 290     cb = cb->_idom;             // Always hoist at least 1 block
 291     if( !was_store ) {          // Stores can be hoisted only one block
 292       while( cb->_dom_depth > (block->_dom_depth + 1))
 293         cb = cb->_idom;         // Hoist loads as far as we want
 294       // The non-null-block should dominate the memory op, too. Live
 295       // range spilling will insert a spill in the non-null-block if it is
 296       // needs to spill the memory op for an implicit null check.
 297       if (cb->_dom_depth == (block->_dom_depth + 1)) {
 298         if (cb != not_null_block) continue;
 299         cb = cb->_idom;
 300       }
 301     }
 302     if( cb != block ) continue;
 303 
 304     // Found a memory user; see if it can be hoisted to check-block
 305     uint vidx = 0;              // Capture index of value into memop
 306     uint j;
 307     for( j = mach->req()-1; j > 0; j-- ) {
 308       if( mach->in(j) == val ) {
 309         vidx = j;
 310         // Ignore DecodeN val which could be hoisted to where needed.
 311         if( is_decoden ) continue;
 312       }
 313       // Block of memory-op input
 314       Block *inb = get_block_for_node(mach->in(j));
 315       Block *b = block;          // Start from nul check
 316       while( b != inb && b->_dom_depth > inb->_dom_depth )
 317         b = b->_idom;           // search upwards for input
 318       // See if input dominates null check
 319       if( b != inb )
 320         break;
 321     }
 322     if( j > 0 )
 323       continue;
 324     Block *mb = get_block_for_node(mach);
 325     // Hoisting stores requires more checks for the anti-dependence case.
 326     // Give up hoisting if we have to move the store past any load.
 327     if( was_store ) {
 328       Block *b = mb;            // Start searching here for a local load
 329       // mach use (faulting) trying to hoist
 330       // n might be blocker to hoisting
 331       while( b != block ) {
 332         uint k;
 333         for( k = 1; k < b->number_of_nodes(); k++ ) {
 334           Node *n = b->get_node(k);
 335           if( n->needs_anti_dependence_check() &&
 336               n->in(LoadNode::Memory) == mach->in(StoreNode::Memory) )
 337             break;              // Found anti-dependent load
 338         }
 339         if( k < b->number_of_nodes() )
 340           break;                // Found anti-dependent load
 341         // Make sure control does not do a merge (would have to check allpaths)
 342         if( b->num_preds() != 2 ) break;
 343         b = get_block_for_node(b->pred(1)); // Move up to predecessor block
 344       }
 345       if( b != block ) continue;
 346     }
 347 
 348     // Make sure this memory op is not already being used for a NullCheck
 349     Node *e = mb->end();
 350     if( e->is_MachNullCheck() && e->in(1) == mach )
 351       continue;                 // Already being used as a NULL check
 352 
 353     // Found a candidate!  Pick one with least dom depth - the highest
 354     // in the dom tree should be closest to the null check.
 355     if (best == NULL || get_block_for_node(mach)->_dom_depth < get_block_for_node(best)->_dom_depth) {
 356       best = mach;
 357       bidx = vidx;
 358     }
 359   }
 360   // No candidate!
 361   if (best == NULL) {
 362     return;
 363   }
 364 
 365   // ---- Found an implicit null check
 366 #ifndef PRODUCT
 367   extern int implicit_null_checks;
 368   implicit_null_checks++;
 369 #endif
 370 
 371   if( is_decoden ) {
 372     // Check if we need to hoist decodeHeapOop_not_null first.
 373     Block *valb = get_block_for_node(val);
 374     if( block != valb && block->_dom_depth < valb->_dom_depth ) {
 375       // Hoist it up to the end of the test block.
 376       valb->find_remove(val);
 377       block->add_inst(val);
 378       map_node_to_block(val, block);
 379       // DecodeN on x86 may kill flags. Check for flag-killing projections
 380       // that also need to be hoisted.
 381       for (DUIterator_Fast jmax, j = val->fast_outs(jmax); j < jmax; j++) {
 382         Node* n = val->fast_out(j);
 383         if( n->is_MachProj() ) {
 384           get_block_for_node(n)->find_remove(n);
 385           block->add_inst(n);
 386           map_node_to_block(n, block);
 387         }
 388       }
 389     }
 390   }
 391   // Hoist the memory candidate up to the end of the test block.
 392   Block *old_block = get_block_for_node(best);
 393   old_block->find_remove(best);
 394   block->add_inst(best);
 395   map_node_to_block(best, block);
 396 
 397   // Move the control dependence if it is pinned to not-null block.
 398   // Don't change it in other cases: NULL or dominating control.
 399   if (best->in(0) == not_null_block->head()) {
 400     // Set it to control edge of null check.
 401     best->set_req(0, proj->in(0)->in(0));
 402   }
 403 
 404   // Check for flag-killing projections that also need to be hoisted
 405   // Should be DU safe because no edge updates.
 406   for (DUIterator_Fast jmax, j = best->fast_outs(jmax); j < jmax; j++) {
 407     Node* n = best->fast_out(j);
 408     if( n->is_MachProj() ) {
 409       get_block_for_node(n)->find_remove(n);
 410       block->add_inst(n);
 411       map_node_to_block(n, block);
 412     }
 413   }
 414 
 415   // proj==Op_True --> ne test; proj==Op_False --> eq test.
 416   // One of two graph shapes got matched:
 417   //   (IfTrue  (If (Bool NE (CmpP ptr NULL))))
 418   //   (IfFalse (If (Bool EQ (CmpP ptr NULL))))
 419   // NULL checks are always branch-if-eq.  If we see a IfTrue projection
 420   // then we are replacing a 'ne' test with a 'eq' NULL check test.
 421   // We need to flip the projections to keep the same semantics.
 422   if( proj->Opcode() == Op_IfTrue ) {
 423     // Swap order of projections in basic block to swap branch targets
 424     Node *tmp1 = block->get_node(block->end_idx()+1);
 425     Node *tmp2 = block->get_node(block->end_idx()+2);
 426     block->map_node(tmp2, block->end_idx()+1);
 427     block->map_node(tmp1, block->end_idx()+2);
 428     Node *tmp = new Node(C->top()); // Use not NULL input
 429     tmp1->replace_by(tmp);
 430     tmp2->replace_by(tmp1);
 431     tmp->replace_by(tmp2);
 432     tmp->destruct();
 433   }
 434 
 435   // Remove the existing null check; use a new implicit null check instead.
 436   // Since schedule-local needs precise def-use info, we need to correct
 437   // it as well.
 438   Node *old_tst = proj->in(0);
 439   MachNode *nul_chk = new MachNullCheckNode(old_tst->in(0),best,bidx);
 440   block->map_node(nul_chk, block->end_idx());
 441   map_node_to_block(nul_chk, block);
 442   // Redirect users of old_test to nul_chk
 443   for (DUIterator_Last i2min, i2 = old_tst->last_outs(i2min); i2 >= i2min; --i2)
 444     old_tst->last_out(i2)->set_req(0, nul_chk);
 445   // Clean-up any dead code
 446   for (uint i3 = 0; i3 < old_tst->req(); i3++) {
 447     Node* in = old_tst->in(i3);
 448     old_tst->set_req(i3, NULL);
 449     if (in->outcnt() == 0) {
 450       // Remove dead input node
 451       in->disconnect_inputs(NULL, C);
 452       block->find_remove(in);
 453     }
 454   }
 455 
 456   latency_from_uses(nul_chk);
 457   latency_from_uses(best);
 458 
 459   // insert anti-dependences to defs in this block
 460   if (! best->needs_anti_dependence_check()) {
 461     for (uint k = 1; k < block->number_of_nodes(); k++) {
 462       Node *n = block->get_node(k);
 463       if (n->needs_anti_dependence_check() &&
 464           n->in(LoadNode::Memory) == best->in(StoreNode::Memory)) {
 465         // Found anti-dependent load
 466         insert_anti_dependences(block, n);
 467       }
 468     }
 469   }
 470 }
 471 
 472 
 473 //------------------------------select-----------------------------------------
 474 // Select a nice fellow from the worklist to schedule next. If there is only
 475 // one choice, then use it. Projections take top priority for correctness
 476 // reasons - if I see a projection, then it is next.  There are a number of
 477 // other special cases, for instructions that consume condition codes, et al.
 478 // These are chosen immediately. Some instructions are required to immediately
 479 // precede the last instruction in the block, and these are taken last. Of the
 480 // remaining cases (most), choose the instruction with the greatest latency
 481 // (that is, the most number of pseudo-cycles required to the end of the
 482 // routine). If there is a tie, choose the instruction with the most inputs.
 483 Node* PhaseCFG::select(
 484   Block* block,
 485   Node_List &worklist,
 486   GrowableArray<int> &ready_cnt,
 487   VectorSet &next_call,
 488   uint sched_slot,
 489   intptr_t* recalc_pressure_nodes) {
 490 
 491   // If only a single entry on the stack, use it
 492   uint cnt = worklist.size();
 493   if (cnt == 1) {
 494     Node *n = worklist[0];
 495     worklist.map(0,worklist.pop());
 496     return n;
 497   }
 498 
 499   uint choice  = 0; // Bigger is most important
 500   uint latency = 0; // Bigger is scheduled first
 501   uint score   = 0; // Bigger is better
 502   int idx = -1;     // Index in worklist
 503   int cand_cnt = 0; // Candidate count
 504   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 505 
 506   for( uint i=0; i<cnt; i++ ) { // Inspect entire worklist
 507     // Order in worklist is used to break ties.
 508     // See caller for how this is used to delay scheduling
 509     // of induction variable increments to after the other
 510     // uses of the phi are scheduled.
 511     Node *n = worklist[i];      // Get Node on worklist
 512 
 513     int iop = n->is_Mach() ? n->as_Mach()->ideal_Opcode() : 0;
 514     if( n->is_Proj() ||         // Projections always win
 515         n->Opcode()== Op_Con || // So does constant 'Top'
 516         iop == Op_CreateEx ||   // Create-exception must start block
 517         iop == Op_CheckCastPP
 518         ) {
 519       worklist.map(i,worklist.pop());
 520       return n;
 521     }
 522 
 523     // Final call in a block must be adjacent to 'catch'
 524     Node *e = block->end();
 525     if( e->is_Catch() && e->in(0)->in(0) == n )
 526       continue;
 527 
 528     // Memory op for an implicit null check has to be at the end of the block
 529     if( e->is_MachNullCheck() && e->in(1) == n )
 530       continue;
 531 
 532     // Schedule IV increment last.
 533     if (e->is_Mach() && e->as_Mach()->ideal_Opcode() == Op_CountedLoopEnd) {
 534       // Cmp might be matched into CountedLoopEnd node.
 535       Node *cmp = (e->in(1)->ideal_reg() == Op_RegFlags) ? e->in(1) : e;
 536       if (cmp->req() > 1 && cmp->in(1) == n && n->is_iteratively_computed()) {
 537         continue;
 538       }
 539     }
 540 
 541     uint n_choice  = 2;
 542 
 543     // See if this instruction is consumed by a branch. If so, then (as the
 544     // branch is the last instruction in the basic block) force it to the
 545     // end of the basic block
 546     if ( must_clone[iop] ) {
 547       // See if any use is a branch
 548       bool found_machif = false;
 549 
 550       for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 551         Node* use = n->fast_out(j);
 552 
 553         // The use is a conditional branch, make them adjacent
 554         if (use->is_MachIf() && get_block_for_node(use) == block) {
 555           found_machif = true;
 556           break;
 557         }
 558 
 559         // More than this instruction pending for successor to be ready,
 560         // don't choose this if other opportunities are ready
 561         if (ready_cnt.at(use->_idx) > 1)
 562           n_choice = 1;
 563       }
 564 
 565       // loop terminated, prefer not to use this instruction
 566       if (found_machif)
 567         continue;
 568     }
 569 
 570     // See if this has a predecessor that is "must_clone", i.e. sets the
 571     // condition code. If so, choose this first
 572     for (uint j = 0; j < n->req() ; j++) {
 573       Node *inn = n->in(j);
 574       if (inn) {
 575         if (inn->is_Mach() && must_clone[inn->as_Mach()->ideal_Opcode()] ) {
 576           n_choice = 3;
 577           break;
 578         }
 579       }
 580     }
 581 
 582     // MachTemps should be scheduled last so they are near their uses
 583     if (n->is_MachTemp()) {
 584       n_choice = 1;
 585     }
 586 
 587     uint n_latency = get_latency_for_node(n);
 588     uint n_score = n->req();   // Many inputs get high score to break ties
 589 
 590     if (OptoRegScheduling && block_size_threshold_ok) {
 591       if (recalc_pressure_nodes[n->_idx] == 0x7fff7fff) {
 592         _regalloc->_scratch_int_pressure.init(_regalloc->_sched_int_pressure.high_pressure_limit());
 593         _regalloc->_scratch_float_pressure.init(_regalloc->_sched_float_pressure.high_pressure_limit());
 594         // simulate the notion that we just picked this node to schedule
 595         n->add_flag(Node::Flag_is_scheduled);
 596         // now caculate its effect upon the graph if we did
 597         adjust_register_pressure(n, block, recalc_pressure_nodes, false);
 598         // return its state for finalize in case somebody else wins
 599         n->remove_flag(Node::Flag_is_scheduled);
 600         // now save the two final pressure components of register pressure, limiting pressure calcs to short size
 601         short int_pressure = (short)_regalloc->_scratch_int_pressure.current_pressure();
 602         short float_pressure = (short)_regalloc->_scratch_float_pressure.current_pressure();
 603         recalc_pressure_nodes[n->_idx] = int_pressure;
 604         recalc_pressure_nodes[n->_idx] |= (float_pressure << 16);
 605       }
 606 
 607       if (_scheduling_for_pressure) {
 608         latency = n_latency;
 609         if (n_choice != 3) {
 610           // Now evaluate each register pressure component based on threshold in the score.
 611           // In general the defining register type will dominate the score, ergo we will not see register pressure grow on both banks
 612           // on a single instruction, but we might see it shrink on both banks.
 613           // For each use of register that has a register class that is over the high pressure limit, we build n_score up for
 614           // live ranges that terminate on this instruction.
 615           if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 616             short int_pressure = (short)recalc_pressure_nodes[n->_idx];
 617             n_score = (int_pressure < 0) ? ((score + n_score) - int_pressure) : (int_pressure > 0) ? 1 : n_score;
 618           }
 619           if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 620             short float_pressure = (short)(recalc_pressure_nodes[n->_idx] >> 16);
 621             n_score = (float_pressure < 0) ? ((score + n_score) - float_pressure) : (float_pressure > 0) ? 1 : n_score;
 622           }
 623         } else {
 624           // make sure we choose these candidates
 625           score = 0;
 626         }
 627       }
 628     }
 629 
 630     // Keep best latency found
 631     cand_cnt++;
 632     if (choice < n_choice ||
 633         (choice == n_choice &&
 634          ((StressLCM && Compile::randomized_select(cand_cnt)) ||
 635           (!StressLCM &&
 636            (latency < n_latency ||
 637             (latency == n_latency &&
 638              (score < n_score))))))) {
 639       choice  = n_choice;
 640       latency = n_latency;
 641       score   = n_score;
 642       idx     = i;               // Also keep index in worklist
 643     }
 644   } // End of for all ready nodes in worklist
 645 
 646   assert(idx >= 0, "index should be set");
 647   Node *n = worklist[(uint)idx];      // Get the winner
 648 
 649   worklist.map((uint)idx, worklist.pop());     // Compress worklist
 650   return n;
 651 }
 652 
 653 //-------------------------adjust_register_pressure----------------------------
 654 void PhaseCFG::adjust_register_pressure(Node* n, Block* block, intptr_t* recalc_pressure_nodes, bool finalize_mode) {
 655   PhaseLive* liveinfo = _regalloc->get_live();
 656   IndexSet* liveout = liveinfo->live(block);
 657   // first adjust the register pressure for the sources
 658   for (uint i = 1; i < n->req(); i++) {
 659     bool lrg_ends = false;
 660     Node *src_n = n->in(i);
 661     if (src_n == NULL) continue;
 662     if (!src_n->is_Mach()) continue;
 663     uint src = _regalloc->_lrg_map.find(src_n);
 664     if (src == 0) continue;
 665     LRG& lrg_src = _regalloc->lrgs(src);
 666     // detect if the live range ends or not
 667     if (liveout->member(src) == false) {
 668       lrg_ends = true;
 669       for (DUIterator_Fast jmax, j = src_n->fast_outs(jmax); j < jmax; j++) {
 670         Node* m = src_n->fast_out(j); // Get user
 671         if (m == n) continue;
 672         if (!m->is_Mach()) continue;
 673         MachNode *mach = m->as_Mach();
 674         bool src_matches = false;
 675         int iop = mach->ideal_Opcode();
 676 
 677         switch (iop) {
 678         case Op_StoreB:
 679         case Op_StoreC:
 680         case Op_StoreCM:
 681         case Op_StoreD:
 682         case Op_StoreF:
 683         case Op_StoreI:
 684         case Op_StoreL:
 685         case Op_StoreP:
 686         case Op_StoreN:
 687         case Op_StoreVector:
 688         case Op_StoreNKlass:
 689           for (uint k = 1; k < m->req(); k++) {
 690             Node *in = m->in(k);
 691             if (in == src_n) {
 692               src_matches = true;
 693               break;
 694             }
 695           }
 696           break;
 697 
 698         default:
 699           src_matches = true;
 700           break;
 701         }
 702 
 703         // If we have a store as our use, ignore the non source operands
 704         if (src_matches == false) continue;
 705 
 706         // Mark every unscheduled use which is not n with a recalculation
 707         if ((get_block_for_node(m) == block) && (!m->is_scheduled())) {
 708           if (finalize_mode && !m->is_Phi()) {
 709             recalc_pressure_nodes[m->_idx] = 0x7fff7fff;
 710           }
 711           lrg_ends = false;
 712         }
 713       }
 714     }
 715     // if none, this live range ends and we can adjust register pressure
 716     if (lrg_ends) {
 717       if (finalize_mode) {
 718         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 719       } else {
 720         _regalloc->lower_pressure(block, 0, lrg_src, NULL, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 721       }
 722     }
 723   }
 724 
 725   // now add the register pressure from the dest and evaluate which heuristic we should use:
 726   // 1.) The default, latency scheduling
 727   // 2.) Register pressure scheduling based on the high pressure limit threshold for int or float register stacks
 728   uint dst = _regalloc->_lrg_map.find(n);
 729   if (dst != 0) {
 730     LRG& lrg_dst = _regalloc->lrgs(dst);
 731     if (finalize_mode) {
 732       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_sched_int_pressure, _regalloc->_sched_float_pressure);
 733       // check to see if we fall over the register pressure cliff here
 734       if (_regalloc->_sched_int_pressure.current_pressure() > _regalloc->_sched_int_pressure.high_pressure_limit()) {
 735         _scheduling_for_pressure = true;
 736       } else if (_regalloc->_sched_float_pressure.current_pressure() > _regalloc->_sched_float_pressure.high_pressure_limit()) {
 737         _scheduling_for_pressure = true;
 738       } else {
 739         // restore latency scheduling mode
 740         _scheduling_for_pressure = false;
 741       }
 742     } else {
 743       _regalloc->raise_pressure(block, lrg_dst, _regalloc->_scratch_int_pressure, _regalloc->_scratch_float_pressure);
 744     }
 745   }
 746 }
 747 
 748 //------------------------------set_next_call----------------------------------
 749 void PhaseCFG::set_next_call(Block* block, Node* n, VectorSet& next_call) {
 750   if( next_call.test_set(n->_idx) ) return;
 751   for( uint i=0; i<n->len(); i++ ) {
 752     Node *m = n->in(i);
 753     if( !m ) continue;  // must see all nodes in block that precede call
 754     if (get_block_for_node(m) == block) {
 755       set_next_call(block, m, next_call);
 756     }
 757   }
 758 }
 759 
 760 //------------------------------needed_for_next_call---------------------------
 761 // Set the flag 'next_call' for each Node that is needed for the next call to
 762 // be scheduled.  This flag lets me bias scheduling so Nodes needed for the
 763 // next subroutine call get priority - basically it moves things NOT needed
 764 // for the next call till after the call.  This prevents me from trying to
 765 // carry lots of stuff live across a call.
 766 void PhaseCFG::needed_for_next_call(Block* block, Node* this_call, VectorSet& next_call) {
 767   // Find the next control-defining Node in this block
 768   Node* call = NULL;
 769   for (DUIterator_Fast imax, i = this_call->fast_outs(imax); i < imax; i++) {
 770     Node* m = this_call->fast_out(i);
 771     if (get_block_for_node(m) == block && // Local-block user
 772         m != this_call &&       // Not self-start node
 773         m->is_MachCall()) {
 774       call = m;
 775       break;
 776     }
 777   }
 778   if (call == NULL)  return;    // No next call (e.g., block end is near)
 779   // Set next-call for all inputs to this call
 780   set_next_call(block, call, next_call);
 781 }
 782 
 783 //------------------------------add_call_kills-------------------------------------
 784 // helper function that adds caller save registers to MachProjNode
 785 static void add_call_kills(MachProjNode *proj, RegMask& regs, const char* save_policy, bool exclude_soe) {
 786   // Fill in the kill mask for the call
 787   for( OptoReg::Name r = OptoReg::Name(0); r < _last_Mach_Reg; r=OptoReg::add(r,1) ) {
 788     if( !regs.Member(r) ) {     // Not already defined by the call
 789       // Save-on-call register?
 790       if ((save_policy[r] == 'C') ||
 791           (save_policy[r] == 'A') ||
 792           ((save_policy[r] == 'E') && exclude_soe)) {
 793         proj->_rout.Insert(r);
 794       }
 795     }
 796   }
 797 }
 798 
 799 
 800 //------------------------------sched_call-------------------------------------
 801 uint PhaseCFG::sched_call(Block* block, uint node_cnt, Node_List& worklist, GrowableArray<int>& ready_cnt, MachCallNode* mcall, VectorSet& next_call) {
 802   RegMask regs;
 803 
 804   // Schedule all the users of the call right now.  All the users are
 805   // projection Nodes, so they must be scheduled next to the call.
 806   // Collect all the defined registers.
 807   for (DUIterator_Fast imax, i = mcall->fast_outs(imax); i < imax; i++) {
 808     Node* n = mcall->fast_out(i);
 809     assert( n->is_MachProj(), "" );
 810     int n_cnt = ready_cnt.at(n->_idx)-1;
 811     ready_cnt.at_put(n->_idx, n_cnt);
 812     assert( n_cnt == 0, "" );
 813     // Schedule next to call
 814     block->map_node(n, node_cnt++);
 815     // Collect defined registers
 816     regs.OR(n->out_RegMask());
 817     // Check for scheduling the next control-definer
 818     if( n->bottom_type() == Type::CONTROL )
 819       // Warm up next pile of heuristic bits
 820       needed_for_next_call(block, n, next_call);
 821 
 822     // Children of projections are now all ready
 823     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
 824       Node* m = n->fast_out(j); // Get user
 825       if(get_block_for_node(m) != block) {
 826         continue;
 827       }
 828       if( m->is_Phi() ) continue;
 829       int m_cnt = ready_cnt.at(m->_idx) - 1;
 830       ready_cnt.at_put(m->_idx, m_cnt);
 831       if( m_cnt == 0 )
 832         worklist.push(m);
 833     }
 834 
 835   }
 836 
 837   // Act as if the call defines the Frame Pointer.
 838   // Certainly the FP is alive and well after the call.
 839   regs.Insert(_matcher.c_frame_pointer());
 840 
 841   // Set all registers killed and not already defined by the call.
 842   uint r_cnt = mcall->tf()->range()->cnt();
 843   int op = mcall->ideal_Opcode();
 844   MachProjNode *proj = new MachProjNode( mcall, r_cnt+1, RegMask::Empty, MachProjNode::fat_proj );
 845   map_node_to_block(proj, block);
 846   block->insert_node(proj, node_cnt++);
 847 
 848   // Select the right register save policy.
 849   const char *save_policy = NULL;
 850   switch (op) {
 851     case Op_CallRuntime:
 852     case Op_CallLeaf:
 853     case Op_CallLeafNoFP:
 854       // Calling C code so use C calling convention
 855       save_policy = _matcher._c_reg_save_policy;
 856       break;
 857 
 858     case Op_CallStaticJava:
 859     case Op_CallDynamicJava:
 860       // Calling Java code so use Java calling convention
 861       save_policy = _matcher._register_save_policy;
 862       break;
 863 
 864     default:
 865       ShouldNotReachHere();
 866   }
 867 
 868   // When using CallRuntime mark SOE registers as killed by the call
 869   // so values that could show up in the RegisterMap aren't live in a
 870   // callee saved register since the register wouldn't know where to
 871   // find them.  CallLeaf and CallLeafNoFP are ok because they can't
 872   // have debug info on them.  Strictly speaking this only needs to be
 873   // done for oops since idealreg2debugmask takes care of debug info
 874   // references but there no way to handle oops differently than other
 875   // pointers as far as the kill mask goes.
 876   bool exclude_soe = op == Op_CallRuntime;
 877 
 878   // If the call is a MethodHandle invoke, we need to exclude the
 879   // register which is used to save the SP value over MH invokes from
 880   // the mask.  Otherwise this register could be used for
 881   // deoptimization information.
 882   if (op == Op_CallStaticJava) {
 883     MachCallStaticJavaNode* mcallstaticjava = (MachCallStaticJavaNode*) mcall;
 884     if (mcallstaticjava->_method_handle_invoke)
 885       proj->_rout.OR(Matcher::method_handle_invoke_SP_save_mask());
 886   }
 887 
 888   add_call_kills(proj, regs, save_policy, exclude_soe);
 889 
 890   return node_cnt;
 891 }
 892 
 893 
 894 //------------------------------schedule_local---------------------------------
 895 // Topological sort within a block.  Someday become a real scheduler.
 896 bool PhaseCFG::schedule_local(Block* block, GrowableArray<int>& ready_cnt, VectorSet& next_call, intptr_t *recalc_pressure_nodes) {
 897   // Already "sorted" are the block start Node (as the first entry), and
 898   // the block-ending Node and any trailing control projections.  We leave
 899   // these alone.  PhiNodes and ParmNodes are made to follow the block start
 900   // Node.  Everything else gets topo-sorted.
 901 
 902 #ifndef PRODUCT
 903     if (trace_opto_pipelining()) {
 904       tty->print_cr("# --- schedule_local B%d, before: ---", block->_pre_order);
 905       for (uint i = 0;i < block->number_of_nodes(); i++) {
 906         tty->print("# ");
 907         block->get_node(i)->fast_dump();
 908       }
 909       tty->print_cr("#");
 910     }
 911 #endif
 912 
 913   // RootNode is already sorted
 914   if (block->number_of_nodes() == 1) {
 915     return true;
 916   }
 917 
 918   bool block_size_threshold_ok = (block->number_of_nodes() > 10) ? true : false;
 919 
 920   // We track the uses of local definitions as input dependences so that
 921   // we know when a given instruction is avialable to be scheduled.
 922   uint i;
 923   if (OptoRegScheduling && block_size_threshold_ok) {
 924     for (i = 1; i < block->number_of_nodes(); i++) { // setup nodes for pressure calc
 925       Node *n = block->get_node(i);
 926       n->remove_flag(Node::Flag_is_scheduled);
 927       if (!n->is_Phi()) {
 928         recalc_pressure_nodes[n->_idx] = 0x7fff7fff;
 929       }
 930     }
 931   }
 932 
 933   // Move PhiNodes and ParmNodes from 1 to cnt up to the start
 934   uint node_cnt = block->end_idx();
 935   uint phi_cnt = 1;
 936   for( i = 1; i<node_cnt; i++ ) { // Scan for Phi
 937     Node *n = block->get_node(i);
 938     if( n->is_Phi() ||          // Found a PhiNode or ParmNode
 939         (n->is_Proj()  && n->in(0) == block->head()) ) {
 940       // Move guy at 'phi_cnt' to the end; makes a hole at phi_cnt
 941       block->map_node(block->get_node(phi_cnt), i);
 942       block->map_node(n, phi_cnt++);  // swap Phi/Parm up front
 943       if (OptoRegScheduling && block_size_threshold_ok) {
 944         // mark n as scheduled
 945         n->add_flag(Node::Flag_is_scheduled);
 946       }
 947     } else {                    // All others
 948       // Count block-local inputs to 'n'
 949       uint cnt = n->len();      // Input count
 950       uint local = 0;
 951       for( uint j=0; j<cnt; j++ ) {
 952         Node *m = n->in(j);
 953         if( m && get_block_for_node(m) == block && !m->is_top() )
 954           local++;              // One more block-local input
 955       }
 956       ready_cnt.at_put(n->_idx, local); // Count em up
 957 
 958 #ifdef ASSERT
 959       if( UseConcMarkSweepGC || UseG1GC ) {
 960         if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_StoreCM ) {
 961           // Check the precedence edges
 962           for (uint prec = n->req(); prec < n->len(); prec++) {
 963             Node* oop_store = n->in(prec);
 964             if (oop_store != NULL) {
 965               assert(get_block_for_node(oop_store)->_dom_depth <= block->_dom_depth, "oop_store must dominate card-mark");
 966             }
 967           }
 968         }
 969       }
 970 #endif
 971 
 972       // A few node types require changing a required edge to a precedence edge
 973       // before allocation.
 974       if( n->is_Mach() && n->req() > TypeFunc::Parms &&
 975           (n->as_Mach()->ideal_Opcode() == Op_MemBarAcquire ||
 976            n->as_Mach()->ideal_Opcode() == Op_MemBarVolatile) ) {
 977         // MemBarAcquire could be created without Precedent edge.
 978         // del_req() replaces the specified edge with the last input edge
 979         // and then removes the last edge. If the specified edge > number of
 980         // edges the last edge will be moved outside of the input edges array
 981         // and the edge will be lost. This is why this code should be
 982         // executed only when Precedent (== TypeFunc::Parms) edge is present.
 983         Node *x = n->in(TypeFunc::Parms);
 984         if (x != NULL && get_block_for_node(x) == block && n->find_prec_edge(x) != -1) {
 985           // Old edge to node within same block will get removed, but no precedence
 986           // edge will get added because it already exists. Update ready count.
 987           int cnt = ready_cnt.at(n->_idx);
 988           assert(cnt > 1, "MemBar node %d must not get ready here", n->_idx);
 989           ready_cnt.at_put(n->_idx, cnt-1);
 990         }
 991         n->del_req(TypeFunc::Parms);
 992         n->add_prec(x);
 993       }
 994     }
 995   }
 996   for(uint i2=i; i2< block->number_of_nodes(); i2++ ) // Trailing guys get zapped count
 997     ready_cnt.at_put(block->get_node(i2)->_idx, 0);
 998 
 999   // All the prescheduled guys do not hold back internal nodes
1000   uint i3;
1001   for (i3 = 0; i3 < phi_cnt; i3++) {  // For all pre-scheduled
1002     Node *n = block->get_node(i3);       // Get pre-scheduled
1003     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++) {
1004       Node* m = n->fast_out(j);
1005       if (get_block_for_node(m) == block) { // Local-block user
1006         int m_cnt = ready_cnt.at(m->_idx)-1;
1007         if (OptoRegScheduling && block_size_threshold_ok) {
1008           // mark m as scheduled
1009           if (m_cnt < 0) {
1010             m->add_flag(Node::Flag_is_scheduled);
1011           }
1012         }
1013         ready_cnt.at_put(m->_idx, m_cnt);   // Fix ready count
1014       }
1015     }
1016   }
1017 
1018   Node_List delay;
1019   // Make a worklist
1020   Node_List worklist;
1021   for(uint i4=i3; i4<node_cnt; i4++ ) {    // Put ready guys on worklist
1022     Node *m = block->get_node(i4);
1023     if( !ready_cnt.at(m->_idx) ) {   // Zero ready count?
1024       if (m->is_iteratively_computed()) {
1025         // Push induction variable increments last to allow other uses
1026         // of the phi to be scheduled first. The select() method breaks
1027         // ties in scheduling by worklist order.
1028         delay.push(m);
1029       } else if (m->is_Mach() && m->as_Mach()->ideal_Opcode() == Op_CreateEx) {
1030         // Force the CreateEx to the top of the list so it's processed
1031         // first and ends up at the start of the block.
1032         worklist.insert(0, m);
1033       } else {
1034         worklist.push(m);         // Then on to worklist!
1035       }
1036     }
1037   }
1038   while (delay.size()) {
1039     Node* d = delay.pop();
1040     worklist.push(d);
1041   }
1042 
1043   if (OptoRegScheduling && block_size_threshold_ok) {
1044     // To stage register pressure calculations we need to examine the live set variables
1045     // breaking them up by register class to compartmentalize the calculations.
1046     uint float_pressure = Matcher::float_pressure(FLOATPRESSURE);
1047     _regalloc->_sched_int_pressure.init(INTPRESSURE);
1048     _regalloc->_sched_float_pressure.init(float_pressure);
1049     _regalloc->_scratch_int_pressure.init(INTPRESSURE);
1050     _regalloc->_scratch_float_pressure.init(float_pressure);
1051 
1052     _regalloc->compute_entry_block_pressure(block);
1053   }
1054 
1055   // Warm up the 'next_call' heuristic bits
1056   needed_for_next_call(block, block->head(), next_call);
1057 
1058 #ifndef PRODUCT
1059     if (trace_opto_pipelining()) {
1060       for (uint j=0; j< block->number_of_nodes(); j++) {
1061         Node     *n = block->get_node(j);
1062         int     idx = n->_idx;
1063         tty->print("#   ready cnt:%3d  ", ready_cnt.at(idx));
1064         tty->print("latency:%3d  ", get_latency_for_node(n));
1065         tty->print("%4d: %s\n", idx, n->Name());
1066       }
1067     }
1068 #endif
1069 
1070   uint max_idx = (uint)ready_cnt.length();
1071   // Pull from worklist and schedule
1072   while( worklist.size() ) {    // Worklist is not ready
1073 
1074 #ifndef PRODUCT
1075     if (trace_opto_pipelining()) {
1076       tty->print("#   ready list:");
1077       for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1078         Node *n = worklist[i];      // Get Node on worklist
1079         tty->print(" %d", n->_idx);
1080       }
1081       tty->cr();
1082     }
1083 #endif
1084 
1085     // Select and pop a ready guy from worklist
1086     Node* n = select(block, worklist, ready_cnt, next_call, phi_cnt, recalc_pressure_nodes);
1087     block->map_node(n, phi_cnt++);    // Schedule him next
1088 
1089     if (OptoRegScheduling && block_size_threshold_ok) {
1090       n->add_flag(Node::Flag_is_scheduled);
1091 
1092       // Now adjust the resister pressure with the node we selected
1093       if (!n->is_Phi()) {
1094         adjust_register_pressure(n, block, recalc_pressure_nodes, true);
1095       }
1096     }
1097 
1098 #ifndef PRODUCT
1099     if (trace_opto_pipelining()) {
1100       tty->print("#    select %d: %s", n->_idx, n->Name());
1101       tty->print(", latency:%d", get_latency_for_node(n));
1102       n->dump();
1103       if (Verbose) {
1104         tty->print("#   ready list:");
1105         for( uint i=0; i<worklist.size(); i++ ) { // Inspect entire worklist
1106           Node *n = worklist[i];      // Get Node on worklist
1107           tty->print(" %d", n->_idx);
1108         }
1109         tty->cr();
1110       }
1111     }
1112 
1113 #endif
1114     if( n->is_MachCall() ) {
1115       MachCallNode *mcall = n->as_MachCall();
1116       phi_cnt = sched_call(block, phi_cnt, worklist, ready_cnt, mcall, next_call);
1117       continue;
1118     }
1119 
1120     if (n->is_Mach() && n->as_Mach()->has_call()) {
1121       RegMask regs;
1122       regs.Insert(_matcher.c_frame_pointer());
1123       regs.OR(n->out_RegMask());
1124 
1125       MachProjNode *proj = new MachProjNode( n, 1, RegMask::Empty, MachProjNode::fat_proj );
1126       map_node_to_block(proj, block);
1127       block->insert_node(proj, phi_cnt++);
1128 
1129       add_call_kills(proj, regs, _matcher._c_reg_save_policy, false);
1130     }
1131 
1132     // Children are now all ready
1133     for (DUIterator_Fast i5max, i5 = n->fast_outs(i5max); i5 < i5max; i5++) {
1134       Node* m = n->fast_out(i5); // Get user
1135       if (get_block_for_node(m) != block) {
1136         continue;
1137       }
1138       if( m->is_Phi() ) continue;
1139       if (m->_idx >= max_idx) { // new node, skip it
1140         assert(m->is_MachProj() && n->is_Mach() && n->as_Mach()->has_call(), "unexpected node types");
1141         continue;
1142       }
1143       int m_cnt = ready_cnt.at(m->_idx) - 1;
1144       ready_cnt.at_put(m->_idx, m_cnt);
1145       if( m_cnt == 0 )
1146         worklist.push(m);
1147     }
1148   }
1149 
1150   if( phi_cnt != block->end_idx() ) {
1151     // did not schedule all.  Retry, Bailout, or Die
1152     if (C->subsume_loads() == true && !C->failing()) {
1153       // Retry with subsume_loads == false
1154       // If this is the first failure, the sentinel string will "stick"
1155       // to the Compile object, and the C2Compiler will see it and retry.
1156       C->record_failure(C2Compiler::retry_no_subsuming_loads());
1157     } else {
1158       assert(false, "graph should be schedulable");
1159     }
1160     // assert( phi_cnt == end_idx(), "did not schedule all" );
1161     return false;
1162   }
1163 
1164   if (OptoRegScheduling && block_size_threshold_ok) {
1165     _regalloc->compute_exit_block_pressure(block);
1166     block->_reg_pressure = _regalloc->_sched_int_pressure.final_pressure();
1167     block->_freg_pressure = _regalloc->_sched_float_pressure.final_pressure();
1168   }
1169 
1170 #ifndef PRODUCT
1171   if (trace_opto_pipelining()) {
1172     tty->print_cr("#");
1173     tty->print_cr("# after schedule_local");
1174     for (uint i = 0;i < block->number_of_nodes();i++) {
1175       tty->print("# ");
1176       block->get_node(i)->fast_dump();
1177     }
1178     tty->print_cr("# ");
1179 
1180     if (OptoRegScheduling && block_size_threshold_ok) {
1181       tty->print_cr("# pressure info : %d", block->_pre_order);
1182       _regalloc->print_pressure_info(_regalloc->_sched_int_pressure, "int register info");
1183       _regalloc->print_pressure_info(_regalloc->_sched_float_pressure, "float register info");
1184     }
1185     tty->cr();
1186   }
1187 #endif
1188 
1189   return true;
1190 }
1191 
1192 //--------------------------catch_cleanup_fix_all_inputs-----------------------
1193 static void catch_cleanup_fix_all_inputs(Node *use, Node *old_def, Node *new_def) {
1194   for (uint l = 0; l < use->len(); l++) {
1195     if (use->in(l) == old_def) {
1196       if (l < use->req()) {
1197         use->set_req(l, new_def);
1198       } else {
1199         use->rm_prec(l);
1200         use->add_prec(new_def);
1201         l--;
1202       }
1203     }
1204   }
1205 }
1206 
1207 //------------------------------catch_cleanup_find_cloned_def------------------
1208 Node* PhaseCFG::catch_cleanup_find_cloned_def(Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1209   assert( use_blk != def_blk, "Inter-block cleanup only");
1210 
1211   // The use is some block below the Catch.  Find and return the clone of the def
1212   // that dominates the use. If there is no clone in a dominating block, then
1213   // create a phi for the def in a dominating block.
1214 
1215   // Find which successor block dominates this use.  The successor
1216   // blocks must all be single-entry (from the Catch only; I will have
1217   // split blocks to make this so), hence they all dominate.
1218   while( use_blk->_dom_depth > def_blk->_dom_depth+1 )
1219     use_blk = use_blk->_idom;
1220 
1221   // Find the successor
1222   Node *fixup = NULL;
1223 
1224   uint j;
1225   for( j = 0; j < def_blk->_num_succs; j++ )
1226     if( use_blk == def_blk->_succs[j] )
1227       break;
1228 
1229   if( j == def_blk->_num_succs ) {
1230     // Block at same level in dom-tree is not a successor.  It needs a
1231     // PhiNode, the PhiNode uses from the def and IT's uses need fixup.
1232     Node_Array inputs = new Node_List(Thread::current()->resource_area());
1233     for(uint k = 1; k < use_blk->num_preds(); k++) {
1234       Block* block = get_block_for_node(use_blk->pred(k));
1235       inputs.map(k, catch_cleanup_find_cloned_def(block, def, def_blk, n_clone_idx));
1236     }
1237 
1238     // Check to see if the use_blk already has an identical phi inserted.
1239     // If it exists, it will be at the first position since all uses of a
1240     // def are processed together.
1241     Node *phi = use_blk->get_node(1);
1242     if( phi->is_Phi() ) {
1243       fixup = phi;
1244       for (uint k = 1; k < use_blk->num_preds(); k++) {
1245         if (phi->in(k) != inputs[k]) {
1246           // Not a match
1247           fixup = NULL;
1248           break;
1249         }
1250       }
1251     }
1252 
1253     // If an existing PhiNode was not found, make a new one.
1254     if (fixup == NULL) {
1255       Node *new_phi = PhiNode::make(use_blk->head(), def);
1256       use_blk->insert_node(new_phi, 1);
1257       map_node_to_block(new_phi, use_blk);
1258       for (uint k = 1; k < use_blk->num_preds(); k++) {
1259         new_phi->set_req(k, inputs[k]);
1260       }
1261       fixup = new_phi;
1262     }
1263 
1264   } else {
1265     // Found the use just below the Catch.  Make it use the clone.
1266     fixup = use_blk->get_node(n_clone_idx);
1267   }
1268 
1269   return fixup;
1270 }
1271 
1272 //--------------------------catch_cleanup_intra_block--------------------------
1273 // Fix all input edges in use that reference "def".  The use is in the same
1274 // block as the def and both have been cloned in each successor block.
1275 static void catch_cleanup_intra_block(Node *use, Node *def, Block *blk, int beg, int n_clone_idx) {
1276 
1277   // Both the use and def have been cloned. For each successor block,
1278   // get the clone of the use, and make its input the clone of the def
1279   // found in that block.
1280 
1281   uint use_idx = blk->find_node(use);
1282   uint offset_idx = use_idx - beg;
1283   for( uint k = 0; k < blk->_num_succs; k++ ) {
1284     // Get clone in each successor block
1285     Block *sb = blk->_succs[k];
1286     Node *clone = sb->get_node(offset_idx+1);
1287     assert( clone->Opcode() == use->Opcode(), "" );
1288 
1289     // Make use-clone reference the def-clone
1290     catch_cleanup_fix_all_inputs(clone, def, sb->get_node(n_clone_idx));
1291   }
1292 }
1293 
1294 //------------------------------catch_cleanup_inter_block---------------------
1295 // Fix all input edges in use that reference "def".  The use is in a different
1296 // block than the def.
1297 void PhaseCFG::catch_cleanup_inter_block(Node *use, Block *use_blk, Node *def, Block *def_blk, int n_clone_idx) {
1298   if( !use_blk ) return;        // Can happen if the use is a precedence edge
1299 
1300   Node *new_def = catch_cleanup_find_cloned_def(use_blk, def, def_blk, n_clone_idx);
1301   catch_cleanup_fix_all_inputs(use, def, new_def);
1302 }
1303 
1304 //------------------------------call_catch_cleanup-----------------------------
1305 // If we inserted any instructions between a Call and his CatchNode,
1306 // clone the instructions on all paths below the Catch.
1307 void PhaseCFG::call_catch_cleanup(Block* block) {
1308 
1309   // End of region to clone
1310   uint end = block->end_idx();
1311   if( !block->get_node(end)->is_Catch() ) return;
1312   // Start of region to clone
1313   uint beg = end;
1314   while(!block->get_node(beg-1)->is_MachProj() ||
1315         !block->get_node(beg-1)->in(0)->is_MachCall() ) {
1316     beg--;
1317     assert(beg > 0,"Catch cleanup walking beyond block boundary");
1318   }
1319   // Range of inserted instructions is [beg, end)
1320   if( beg == end ) return;
1321 
1322   // Clone along all Catch output paths.  Clone area between the 'beg' and
1323   // 'end' indices.
1324   for( uint i = 0; i < block->_num_succs; i++ ) {
1325     Block *sb = block->_succs[i];
1326     // Clone the entire area; ignoring the edge fixup for now.
1327     for( uint j = end; j > beg; j-- ) {
1328       Node *clone = block->get_node(j-1)->clone();
1329       sb->insert_node(clone, 1);
1330       map_node_to_block(clone, sb);
1331       if (clone->needs_anti_dependence_check()) {
1332         insert_anti_dependences(sb, clone);
1333       }
1334     }
1335   }
1336 
1337 
1338   // Fixup edges.  Check the def-use info per cloned Node
1339   for(uint i2 = beg; i2 < end; i2++ ) {
1340     uint n_clone_idx = i2-beg+1; // Index of clone of n in each successor block
1341     Node *n = block->get_node(i2);        // Node that got cloned
1342     // Need DU safe iterator because of edge manipulation in calls.
1343     Unique_Node_List *out = new Unique_Node_List(Thread::current()->resource_area());
1344     for (DUIterator_Fast j1max, j1 = n->fast_outs(j1max); j1 < j1max; j1++) {
1345       out->push(n->fast_out(j1));
1346     }
1347     uint max = out->size();
1348     for (uint j = 0; j < max; j++) {// For all users
1349       Node *use = out->pop();
1350       Block *buse = get_block_for_node(use);
1351       if( use->is_Phi() ) {
1352         for( uint k = 1; k < use->req(); k++ )
1353           if( use->in(k) == n ) {
1354             Block* b = get_block_for_node(buse->pred(k));
1355             Node *fixup = catch_cleanup_find_cloned_def(b, n, block, n_clone_idx);
1356             use->set_req(k, fixup);
1357           }
1358       } else {
1359         if (block == buse) {
1360           catch_cleanup_intra_block(use, n, block, beg, n_clone_idx);
1361         } else {
1362           catch_cleanup_inter_block(use, buse, n, block, n_clone_idx);
1363         }
1364       }
1365     } // End for all users
1366 
1367   } // End of for all Nodes in cloned area
1368 
1369   // Remove the now-dead cloned ops
1370   for(uint i3 = beg; i3 < end; i3++ ) {
1371     block->get_node(beg)->disconnect_inputs(NULL, C);
1372     block->remove_node(beg);
1373   }
1374 
1375   // If the successor blocks have a CreateEx node, move it back to the top
1376   for(uint i4 = 0; i4 < block->_num_succs; i4++ ) {
1377     Block *sb = block->_succs[i4];
1378     uint new_cnt = end - beg;
1379     // Remove any newly created, but dead, nodes.
1380     for( uint j = new_cnt; j > 0; j-- ) {
1381       Node *n = sb->get_node(j);
1382       if (n->outcnt() == 0 &&
1383           (!n->is_Proj() || n->as_Proj()->in(0)->outcnt() == 1) ){
1384         n->disconnect_inputs(NULL, C);
1385         sb->remove_node(j);
1386         new_cnt--;
1387       }
1388     }
1389     // If any newly created nodes remain, move the CreateEx node to the top
1390     if (new_cnt > 0) {
1391       Node *cex = sb->get_node(1+new_cnt);
1392       if( cex->is_Mach() && cex->as_Mach()->ideal_Opcode() == Op_CreateEx ) {
1393         sb->remove_node(1+new_cnt);
1394         sb->insert_node(cex, 1);
1395       }
1396     }
1397   }
1398 }