1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvm.h"
  49 #include "prims/jvmtiExport.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/sharedRuntime.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/vframe.hpp"
  64 #include "runtime/vframeArray.hpp"
  65 #include "trace/tracing.hpp"
  66 #include "utilities/copy.hpp"
  67 #include "utilities/dtrace.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/hashtable.inline.hpp"
  70 #include "utilities/macros.hpp"
  71 #include "utilities/xmlstream.hpp"
  72 #ifdef COMPILER1
  73 #include "c1/c1_Runtime1.hpp"
  74 #endif
  75 
  76 // Shared stub locations
  77 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  78 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  79 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  83 address             SharedRuntime::_resolve_static_call_entry;
  84 
  85 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  89 
  90 #ifdef COMPILER2
  91 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  92 #endif // COMPILER2
  93 
  94 
  95 //----------------------------generate_stubs-----------------------------------
  96 void SharedRuntime::generate_stubs() {
  97   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  98   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  99   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 100   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 101   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 102   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 103   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 104 
 105 #if defined(COMPILER2) || INCLUDE_JVMCI
 106   // Vectors are generated only by C2 and JVMCI.
 107   bool support_wide = is_wide_vector(MaxVectorSize);
 108   if (support_wide) {
 109     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 110   }
 111 #endif // COMPILER2 || INCLUDE_JVMCI
 112   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 113   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 114 
 115   generate_deopt_blob();
 116 
 117 #ifdef COMPILER2
 118   generate_uncommon_trap_blob();
 119 #endif // COMPILER2
 120 }
 121 
 122 #include <math.h>
 123 
 124 // Implementation of SharedRuntime
 125 
 126 #ifndef PRODUCT
 127 // For statistics
 128 int SharedRuntime::_ic_miss_ctr = 0;
 129 int SharedRuntime::_wrong_method_ctr = 0;
 130 int SharedRuntime::_resolve_static_ctr = 0;
 131 int SharedRuntime::_resolve_virtual_ctr = 0;
 132 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 133 int SharedRuntime::_implicit_null_throws = 0;
 134 int SharedRuntime::_implicit_div0_throws = 0;
 135 int SharedRuntime::_throw_null_ctr = 0;
 136 
 137 int SharedRuntime::_nof_normal_calls = 0;
 138 int SharedRuntime::_nof_optimized_calls = 0;
 139 int SharedRuntime::_nof_inlined_calls = 0;
 140 int SharedRuntime::_nof_megamorphic_calls = 0;
 141 int SharedRuntime::_nof_static_calls = 0;
 142 int SharedRuntime::_nof_inlined_static_calls = 0;
 143 int SharedRuntime::_nof_interface_calls = 0;
 144 int SharedRuntime::_nof_optimized_interface_calls = 0;
 145 int SharedRuntime::_nof_inlined_interface_calls = 0;
 146 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 147 int SharedRuntime::_nof_removable_exceptions = 0;
 148 
 149 int SharedRuntime::_new_instance_ctr=0;
 150 int SharedRuntime::_new_array_ctr=0;
 151 int SharedRuntime::_multi1_ctr=0;
 152 int SharedRuntime::_multi2_ctr=0;
 153 int SharedRuntime::_multi3_ctr=0;
 154 int SharedRuntime::_multi4_ctr=0;
 155 int SharedRuntime::_multi5_ctr=0;
 156 int SharedRuntime::_mon_enter_stub_ctr=0;
 157 int SharedRuntime::_mon_exit_stub_ctr=0;
 158 int SharedRuntime::_mon_enter_ctr=0;
 159 int SharedRuntime::_mon_exit_ctr=0;
 160 int SharedRuntime::_partial_subtype_ctr=0;
 161 int SharedRuntime::_jbyte_array_copy_ctr=0;
 162 int SharedRuntime::_jshort_array_copy_ctr=0;
 163 int SharedRuntime::_jint_array_copy_ctr=0;
 164 int SharedRuntime::_jlong_array_copy_ctr=0;
 165 int SharedRuntime::_oop_array_copy_ctr=0;
 166 int SharedRuntime::_checkcast_array_copy_ctr=0;
 167 int SharedRuntime::_unsafe_array_copy_ctr=0;
 168 int SharedRuntime::_generic_array_copy_ctr=0;
 169 int SharedRuntime::_slow_array_copy_ctr=0;
 170 int SharedRuntime::_find_handler_ctr=0;
 171 int SharedRuntime::_rethrow_ctr=0;
 172 
 173 int     SharedRuntime::_ICmiss_index                    = 0;
 174 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 175 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 176 
 177 
 178 void SharedRuntime::trace_ic_miss(address at) {
 179   for (int i = 0; i < _ICmiss_index; i++) {
 180     if (_ICmiss_at[i] == at) {
 181       _ICmiss_count[i]++;
 182       return;
 183     }
 184   }
 185   int index = _ICmiss_index++;
 186   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 187   _ICmiss_at[index] = at;
 188   _ICmiss_count[index] = 1;
 189 }
 190 
 191 void SharedRuntime::print_ic_miss_histogram() {
 192   if (ICMissHistogram) {
 193     tty->print_cr("IC Miss Histogram:");
 194     int tot_misses = 0;
 195     for (int i = 0; i < _ICmiss_index; i++) {
 196       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 197       tot_misses += _ICmiss_count[i];
 198     }
 199     tty->print_cr("Total IC misses: %7d", tot_misses);
 200   }
 201 }
 202 #endif // PRODUCT
 203 
 204 #if INCLUDE_ALL_GCS
 205 
 206 // G1 write-barrier pre: executed before a pointer store.
 207 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 208   if (orig == NULL) {
 209     assert(false, "should be optimized out");
 210     return;
 211   }
 212   assert(orig->is_oop(true /* ignore mark word */), "Error");
 213   // store the original value that was in the field reference
 214   thread->satb_mark_queue().enqueue(orig);
 215 JRT_END
 216 
 217 // G1 write-barrier post: executed after a pointer store.
 218 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 219   thread->dirty_card_queue().enqueue(card_addr);
 220 JRT_END
 221 
 222 #endif // INCLUDE_ALL_GCS
 223 
 224 
 225 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 226   return x * y;
 227 JRT_END
 228 
 229 
 230 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 231   if (x == min_jlong && y == CONST64(-1)) {
 232     return x;
 233   } else {
 234     return x / y;
 235   }
 236 JRT_END
 237 
 238 
 239 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 240   if (x == min_jlong && y == CONST64(-1)) {
 241     return 0;
 242   } else {
 243     return x % y;
 244   }
 245 JRT_END
 246 
 247 
 248 const juint  float_sign_mask  = 0x7FFFFFFF;
 249 const juint  float_infinity   = 0x7F800000;
 250 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 251 const julong double_infinity  = CONST64(0x7FF0000000000000);
 252 
 253 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 254 #ifdef _WIN64
 255   // 64-bit Windows on amd64 returns the wrong values for
 256   // infinity operands.
 257   union { jfloat f; juint i; } xbits, ybits;
 258   xbits.f = x;
 259   ybits.f = y;
 260   // x Mod Infinity == x unless x is infinity
 261   if (((xbits.i & float_sign_mask) != float_infinity) &&
 262        ((ybits.i & float_sign_mask) == float_infinity) ) {
 263     return x;
 264   }
 265   return ((jfloat)fmod_winx64((double)x, (double)y));
 266 #else
 267   return ((jfloat)fmod((double)x,(double)y));
 268 #endif
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 273 #ifdef _WIN64
 274   union { jdouble d; julong l; } xbits, ybits;
 275   xbits.d = x;
 276   ybits.d = y;
 277   // x Mod Infinity == x unless x is infinity
 278   if (((xbits.l & double_sign_mask) != double_infinity) &&
 279        ((ybits.l & double_sign_mask) == double_infinity) ) {
 280     return x;
 281   }
 282   return ((jdouble)fmod_winx64((double)x, (double)y));
 283 #else
 284   return ((jdouble)fmod((double)x,(double)y));
 285 #endif
 286 JRT_END
 287 
 288 #ifdef __SOFTFP__
 289 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 290   return x + y;
 291 JRT_END
 292 
 293 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 294   return x - y;
 295 JRT_END
 296 
 297 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 298   return x * y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 302   return x / y;
 303 JRT_END
 304 
 305 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 306   return x + y;
 307 JRT_END
 308 
 309 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 310   return x - y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 314   return x * y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 318   return x / y;
 319 JRT_END
 320 
 321 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 322   return (jfloat)x;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 326   return (jdouble)x;
 327 JRT_END
 328 
 329 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 330   return (jdouble)x;
 331 JRT_END
 332 
 333 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 334   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 335 JRT_END
 336 
 337 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 338   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 342   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 // Functions to return the opposite of the aeabi functions for nan.
 350 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 351   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 352 JRT_END
 353 
 354 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 355   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 356 JRT_END
 357 
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 359   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 363   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 367   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 371   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 375   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 379   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 // Intrinsics make gcc generate code for these.
 383 float  SharedRuntime::fneg(float f)   {
 384   return -f;
 385 }
 386 
 387 double SharedRuntime::dneg(double f)  {
 388   return -f;
 389 }
 390 
 391 #endif // __SOFTFP__
 392 
 393 #if defined(__SOFTFP__) || defined(E500V2)
 394 // Intrinsics make gcc generate code for these.
 395 double SharedRuntime::dabs(double f)  {
 396   return (f <= (double)0.0) ? (double)0.0 - f : f;
 397 }
 398 
 399 #endif
 400 
 401 #if defined(__SOFTFP__) || defined(PPC)
 402 double SharedRuntime::dsqrt(double f) {
 403   return sqrt(f);
 404 }
 405 #endif
 406 
 407 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 408   if (g_isnan(x))
 409     return 0;
 410   if (x >= (jfloat) max_jint)
 411     return max_jint;
 412   if (x <= (jfloat) min_jint)
 413     return min_jint;
 414   return (jint) x;
 415 JRT_END
 416 
 417 
 418 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 419   if (g_isnan(x))
 420     return 0;
 421   if (x >= (jfloat) max_jlong)
 422     return max_jlong;
 423   if (x <= (jfloat) min_jlong)
 424     return min_jlong;
 425   return (jlong) x;
 426 JRT_END
 427 
 428 
 429 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 430   if (g_isnan(x))
 431     return 0;
 432   if (x >= (jdouble) max_jint)
 433     return max_jint;
 434   if (x <= (jdouble) min_jint)
 435     return min_jint;
 436   return (jint) x;
 437 JRT_END
 438 
 439 
 440 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 441   if (g_isnan(x))
 442     return 0;
 443   if (x >= (jdouble) max_jlong)
 444     return max_jlong;
 445   if (x <= (jdouble) min_jlong)
 446     return min_jlong;
 447   return (jlong) x;
 448 JRT_END
 449 
 450 
 451 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 452   return (jfloat)x;
 453 JRT_END
 454 
 455 
 456 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 457   return (jfloat)x;
 458 JRT_END
 459 
 460 
 461 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 462   return (jdouble)x;
 463 JRT_END
 464 
 465 // Exception handling across interpreter/compiler boundaries
 466 //
 467 // exception_handler_for_return_address(...) returns the continuation address.
 468 // The continuation address is the entry point of the exception handler of the
 469 // previous frame depending on the return address.
 470 
 471 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 472   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 473   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 474 
 475   // Reset method handle flag.
 476   thread->set_is_method_handle_return(false);
 477 
 478 #if INCLUDE_JVMCI
 479   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 480   // and other exception handler continuations do not read it
 481   thread->set_exception_pc(NULL);
 482 #endif // INCLUDE_JVMCI
 483 
 484   // The fastest case first
 485   CodeBlob* blob = CodeCache::find_blob(return_address);
 486   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 487   if (nm != NULL) {
 488     // Set flag if return address is a method handle call site.
 489     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 490     // native nmethods don't have exception handlers
 491     assert(!nm->is_native_method(), "no exception handler");
 492     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 493     if (nm->is_deopt_pc(return_address)) {
 494       // If we come here because of a stack overflow, the stack may be
 495       // unguarded. Reguard the stack otherwise if we return to the
 496       // deopt blob and the stack bang causes a stack overflow we
 497       // crash.
 498       bool guard_pages_enabled = thread->stack_guards_enabled();
 499       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 500       if (thread->reserved_stack_activation() != thread->stack_base()) {
 501         thread->set_reserved_stack_activation(thread->stack_base());
 502       }
 503       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 504       return SharedRuntime::deopt_blob()->unpack_with_exception();
 505     } else {
 506       return nm->exception_begin();
 507     }
 508   }
 509 
 510   // Entry code
 511   if (StubRoutines::returns_to_call_stub(return_address)) {
 512     return StubRoutines::catch_exception_entry();
 513   }
 514   // Interpreted code
 515   if (Interpreter::contains(return_address)) {
 516     return Interpreter::rethrow_exception_entry();
 517   }
 518 
 519   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 520   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 521 
 522 #ifndef PRODUCT
 523   { ResourceMark rm;
 524     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 525     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 526     tty->print_cr("b) other problem");
 527   }
 528 #endif // PRODUCT
 529 
 530   ShouldNotReachHere();
 531   return NULL;
 532 }
 533 
 534 
 535 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 536   return raw_exception_handler_for_return_address(thread, return_address);
 537 JRT_END
 538 
 539 
 540 address SharedRuntime::get_poll_stub(address pc) {
 541   address stub;
 542   // Look up the code blob
 543   CodeBlob *cb = CodeCache::find_blob(pc);
 544 
 545   // Should be an nmethod
 546   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 547 
 548   // Look up the relocation information
 549   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 550     "safepoint polling: type must be poll");
 551 
 552 #ifdef ASSERT
 553   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 554     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 555     Disassembler::decode(cb);
 556     fatal("Only polling locations are used for safepoint");
 557   }
 558 #endif
 559 
 560   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 561   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 562   if (at_poll_return) {
 563     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 564            "polling page return stub not created yet");
 565     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 566   } else if (has_wide_vectors) {
 567     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 568            "polling page vectors safepoint stub not created yet");
 569     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 570   } else {
 571     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 572            "polling page safepoint stub not created yet");
 573     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 574   }
 575   log_debug(safepoint)("... found polling page %s exception at pc = "
 576                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 577                        at_poll_return ? "return" : "loop",
 578                        (intptr_t)pc, (intptr_t)stub);
 579   return stub;
 580 }
 581 
 582 
 583 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 584   assert(caller.is_interpreted_frame(), "");
 585   int args_size = ArgumentSizeComputer(sig).size() + 1;
 586   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 587   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 588   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 589   return result;
 590 }
 591 
 592 
 593 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 594   if (JvmtiExport::can_post_on_exceptions()) {
 595     vframeStream vfst(thread, true);
 596     methodHandle method = methodHandle(thread, vfst.method());
 597     address bcp = method()->bcp_from(vfst.bci());
 598     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 599   }
 600   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 601 }
 602 
 603 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 604   Handle h_exception = Exceptions::new_exception(thread, name, message);
 605   throw_and_post_jvmti_exception(thread, h_exception);
 606 }
 607 
 608 // The interpreter code to call this tracing function is only
 609 // called/generated when UL is on for redefine, class and has the right level
 610 // and tags. Since obsolete methods are never compiled, we don't have
 611 // to modify the compilers to generate calls to this function.
 612 //
 613 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 614     JavaThread* thread, Method* method))
 615   if (method->is_obsolete()) {
 616     // We are calling an obsolete method, but this is not necessarily
 617     // an error. Our method could have been redefined just after we
 618     // fetched the Method* from the constant pool.
 619     ResourceMark rm;
 620     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 621   }
 622   return 0;
 623 JRT_END
 624 
 625 // ret_pc points into caller; we are returning caller's exception handler
 626 // for given exception
 627 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 628                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 629   assert(cm != NULL, "must exist");
 630   ResourceMark rm;
 631 
 632 #if INCLUDE_JVMCI
 633   if (cm->is_compiled_by_jvmci()) {
 634     // lookup exception handler for this pc
 635     int catch_pco = ret_pc - cm->code_begin();
 636     ExceptionHandlerTable table(cm);
 637     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 638     if (t != NULL) {
 639       return cm->code_begin() + t->pco();
 640     } else {
 641       // there is no exception handler for this pc => deoptimize
 642       cm->make_not_entrant();
 643 
 644       // Use Deoptimization::deoptimize for all of its side-effects:
 645       // revoking biases of monitors, gathering traps statistics, logging...
 646       // it also patches the return pc but we do not care about that
 647       // since we return a continuation to the deopt_blob below.
 648       JavaThread* thread = JavaThread::current();
 649       RegisterMap reg_map(thread, UseBiasedLocking);
 650       frame runtime_frame = thread->last_frame();
 651       frame caller_frame = runtime_frame.sender(&reg_map);
 652       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 653 
 654       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 655     }
 656   }
 657 #endif // INCLUDE_JVMCI
 658 
 659   nmethod* nm = cm->as_nmethod();
 660   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 661   // determine handler bci, if any
 662   EXCEPTION_MARK;
 663 
 664   int handler_bci = -1;
 665   int scope_depth = 0;
 666   if (!force_unwind) {
 667     int bci = sd->bci();
 668     bool recursive_exception = false;
 669     do {
 670       bool skip_scope_increment = false;
 671       // exception handler lookup
 672       Klass* ek = exception->klass();
 673       methodHandle mh(THREAD, sd->method());
 674       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 675       if (HAS_PENDING_EXCEPTION) {
 676         recursive_exception = true;
 677         // We threw an exception while trying to find the exception handler.
 678         // Transfer the new exception to the exception handle which will
 679         // be set into thread local storage, and do another lookup for an
 680         // exception handler for this exception, this time starting at the
 681         // BCI of the exception handler which caused the exception to be
 682         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 683         // argument to ensure that the correct exception is thrown (4870175).
 684         recursive_exception_occurred = true;
 685         exception = Handle(THREAD, PENDING_EXCEPTION);
 686         CLEAR_PENDING_EXCEPTION;
 687         if (handler_bci >= 0) {
 688           bci = handler_bci;
 689           handler_bci = -1;
 690           skip_scope_increment = true;
 691         }
 692       }
 693       else {
 694         recursive_exception = false;
 695       }
 696       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 697         sd = sd->sender();
 698         if (sd != NULL) {
 699           bci = sd->bci();
 700         }
 701         ++scope_depth;
 702       }
 703     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 704   }
 705 
 706   // found handling method => lookup exception handler
 707   int catch_pco = ret_pc - nm->code_begin();
 708 
 709   ExceptionHandlerTable table(nm);
 710   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 711   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 712     // Allow abbreviated catch tables.  The idea is to allow a method
 713     // to materialize its exceptions without committing to the exact
 714     // routing of exceptions.  In particular this is needed for adding
 715     // a synthetic handler to unlock monitors when inlining
 716     // synchronized methods since the unlock path isn't represented in
 717     // the bytecodes.
 718     t = table.entry_for(catch_pco, -1, 0);
 719   }
 720 
 721 #ifdef COMPILER1
 722   if (t == NULL && nm->is_compiled_by_c1()) {
 723     assert(nm->unwind_handler_begin() != NULL, "");
 724     return nm->unwind_handler_begin();
 725   }
 726 #endif
 727 
 728   if (t == NULL) {
 729     ttyLocker ttyl;
 730     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 731     tty->print_cr("   Exception:");
 732     exception->print();
 733     tty->cr();
 734     tty->print_cr(" Compiled exception table :");
 735     table.print();
 736     nm->print_code();
 737     guarantee(false, "missing exception handler");
 738     return NULL;
 739   }
 740 
 741   return nm->code_begin() + t->pco();
 742 }
 743 
 744 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 745   // These errors occur only at call sites
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 750   // These errors occur only at call sites
 751   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 752 JRT_END
 753 
 754 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 759   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 763   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 764   // cache sites (when the callee activation is not yet set up) so we are at a call site
 765   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 766 JRT_END
 767 
 768 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 769   throw_StackOverflowError_common(thread, false);
 770 JRT_END
 771 
 772 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 773   throw_StackOverflowError_common(thread, true);
 774 JRT_END
 775 
 776 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 777   // We avoid using the normal exception construction in this case because
 778   // it performs an upcall to Java, and we're already out of stack space.
 779   Thread* THREAD = thread;
 780   Klass* k = SystemDictionary::StackOverflowError_klass();
 781   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 782   if (delayed) {
 783     java_lang_Throwable::set_message(exception_oop,
 784                                      Universe::delayed_stack_overflow_error_message());
 785   }
 786   Handle exception (thread, exception_oop);
 787   if (StackTraceInThrowable) {
 788     java_lang_Throwable::fill_in_stack_trace(exception);
 789   }
 790   // Increment counter for hs_err file reporting
 791   Atomic::inc(&Exceptions::_stack_overflow_errors);
 792   throw_and_post_jvmti_exception(thread, exception);
 793 }
 794 
 795 #if INCLUDE_JVMCI
 796 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 797   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 798   thread->set_jvmci_implicit_exception_pc(pc);
 799   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 800   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 801 }
 802 #endif // INCLUDE_JVMCI
 803 
 804 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 805                                                            address pc,
 806                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 807 {
 808   address target_pc = NULL;
 809 
 810   if (Interpreter::contains(pc)) {
 811 #ifdef CC_INTERP
 812     // C++ interpreter doesn't throw implicit exceptions
 813     ShouldNotReachHere();
 814 #else
 815     switch (exception_kind) {
 816       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 817       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 818       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 819       default:                      ShouldNotReachHere();
 820     }
 821 #endif // !CC_INTERP
 822   } else {
 823     switch (exception_kind) {
 824       case STACK_OVERFLOW: {
 825         // Stack overflow only occurs upon frame setup; the callee is
 826         // going to be unwound. Dispatch to a shared runtime stub
 827         // which will cause the StackOverflowError to be fabricated
 828         // and processed.
 829         // Stack overflow should never occur during deoptimization:
 830         // the compiled method bangs the stack by as much as the
 831         // interpreter would need in case of a deoptimization. The
 832         // deoptimization blob and uncommon trap blob bang the stack
 833         // in a debug VM to verify the correctness of the compiled
 834         // method stack banging.
 835         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 836         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 837         return StubRoutines::throw_StackOverflowError_entry();
 838       }
 839 
 840       case IMPLICIT_NULL: {
 841         if (VtableStubs::contains(pc)) {
 842           // We haven't yet entered the callee frame. Fabricate an
 843           // exception and begin dispatching it in the caller. Since
 844           // the caller was at a call site, it's safe to destroy all
 845           // caller-saved registers, as these entry points do.
 846           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 847 
 848           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 849           if (vt_stub == NULL) return NULL;
 850 
 851           if (vt_stub->is_abstract_method_error(pc)) {
 852             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 853             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 854             return StubRoutines::throw_AbstractMethodError_entry();
 855           } else {
 856             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859         } else {
 860           CodeBlob* cb = CodeCache::find_blob(pc);
 861 
 862           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 863           if (cb == NULL) return NULL;
 864 
 865           // Exception happened in CodeCache. Must be either:
 866           // 1. Inline-cache check in C2I handler blob,
 867           // 2. Inline-cache check in nmethod, or
 868           // 3. Implicit null exception in nmethod
 869 
 870           if (!cb->is_compiled()) {
 871             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 872             if (!is_in_blob) {
 873               // Allow normal crash reporting to handle this
 874               return NULL;
 875             }
 876             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 877             // There is no handler here, so we will simply unwind.
 878             return StubRoutines::throw_NullPointerException_at_call_entry();
 879           }
 880 
 881           // Otherwise, it's a compiled method.  Consult its exception handlers.
 882           CompiledMethod* cm = (CompiledMethod*)cb;
 883           if (cm->inlinecache_check_contains(pc)) {
 884             // exception happened inside inline-cache check code
 885             // => the nmethod is not yet active (i.e., the frame
 886             // is not set up yet) => use return address pushed by
 887             // caller => don't push another return address
 888             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 889             return StubRoutines::throw_NullPointerException_at_call_entry();
 890           }
 891 
 892           if (cm->method()->is_method_handle_intrinsic()) {
 893             // exception happened inside MH dispatch code, similar to a vtable stub
 894             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 895             return StubRoutines::throw_NullPointerException_at_call_entry();
 896           }
 897 
 898 #ifndef PRODUCT
 899           _implicit_null_throws++;
 900 #endif
 901 #if INCLUDE_JVMCI
 902           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 903             // If there's no PcDesc then we'll die way down inside of
 904             // deopt instead of just getting normal error reporting,
 905             // so only go there if it will succeed.
 906             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 907           } else {
 908 #endif // INCLUDE_JVMCI
 909           assert (cm->is_nmethod(), "Expect nmethod");
 910           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 911 #if INCLUDE_JVMCI
 912           }
 913 #endif // INCLUDE_JVMCI
 914           // If there's an unexpected fault, target_pc might be NULL,
 915           // in which case we want to fall through into the normal
 916           // error handling code.
 917         }
 918 
 919         break; // fall through
 920       }
 921 
 922 
 923       case IMPLICIT_DIVIDE_BY_ZERO: {
 924         CompiledMethod* cm = CodeCache::find_compiled(pc);
 925         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 926 #ifndef PRODUCT
 927         _implicit_div0_throws++;
 928 #endif
 929 #if INCLUDE_JVMCI
 930         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 931           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 932         } else {
 933 #endif // INCLUDE_JVMCI
 934         target_pc = cm->continuation_for_implicit_exception(pc);
 935 #if INCLUDE_JVMCI
 936         }
 937 #endif // INCLUDE_JVMCI
 938         // If there's an unexpected fault, target_pc might be NULL,
 939         // in which case we want to fall through into the normal
 940         // error handling code.
 941         break; // fall through
 942       }
 943 
 944       default: ShouldNotReachHere();
 945     }
 946 
 947     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 948 
 949     if (exception_kind == IMPLICIT_NULL) {
 950 #ifndef PRODUCT
 951       // for AbortVMOnException flag
 952       Exceptions::debug_check_abort("java.lang.NullPointerException");
 953 #endif //PRODUCT
 954       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 955     } else {
 956 #ifndef PRODUCT
 957       // for AbortVMOnException flag
 958       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 959 #endif //PRODUCT
 960       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 961     }
 962     return target_pc;
 963   }
 964 
 965   ShouldNotReachHere();
 966   return NULL;
 967 }
 968 
 969 
 970 /**
 971  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 972  * installed in the native function entry of all native Java methods before
 973  * they get linked to their actual native methods.
 974  *
 975  * \note
 976  * This method actually never gets called!  The reason is because
 977  * the interpreter's native entries call NativeLookup::lookup() which
 978  * throws the exception when the lookup fails.  The exception is then
 979  * caught and forwarded on the return from NativeLookup::lookup() call
 980  * before the call to the native function.  This might change in the future.
 981  */
 982 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 983 {
 984   // We return a bad value here to make sure that the exception is
 985   // forwarded before we look at the return value.
 986   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 987 }
 988 JNI_END
 989 
 990 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 991   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 992 }
 993 
 994 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 995 #if INCLUDE_JVMCI
 996   if (!obj->klass()->has_finalizer()) {
 997     return;
 998   }
 999 #endif // INCLUDE_JVMCI
1000   assert(obj->is_oop(), "must be a valid oop");
1001   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1002   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1003 JRT_END
1004 
1005 
1006 jlong SharedRuntime::get_java_tid(Thread* thread) {
1007   if (thread != NULL) {
1008     if (thread->is_Java_thread()) {
1009       oop obj = ((JavaThread*)thread)->threadObj();
1010       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1011     }
1012   }
1013   return 0;
1014 }
1015 
1016 /**
1017  * This function ought to be a void function, but cannot be because
1018  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1019  * 6254741.  Once that is fixed we can remove the dummy return value.
1020  */
1021 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1022   return dtrace_object_alloc_base(Thread::current(), o, size);
1023 }
1024 
1025 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1026   assert(DTraceAllocProbes, "wrong call");
1027   Klass* klass = o->klass();
1028   Symbol* name = klass->name();
1029   HOTSPOT_OBJECT_ALLOC(
1030                    get_java_tid(thread),
1031                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1032   return 0;
1033 }
1034 
1035 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1036     JavaThread* thread, Method* method))
1037   assert(DTraceMethodProbes, "wrong call");
1038   Symbol* kname = method->klass_name();
1039   Symbol* name = method->name();
1040   Symbol* sig = method->signature();
1041   HOTSPOT_METHOD_ENTRY(
1042       get_java_tid(thread),
1043       (char *) kname->bytes(), kname->utf8_length(),
1044       (char *) name->bytes(), name->utf8_length(),
1045       (char *) sig->bytes(), sig->utf8_length());
1046   return 0;
1047 JRT_END
1048 
1049 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1050     JavaThread* thread, Method* method))
1051   assert(DTraceMethodProbes, "wrong call");
1052   Symbol* kname = method->klass_name();
1053   Symbol* name = method->name();
1054   Symbol* sig = method->signature();
1055   HOTSPOT_METHOD_RETURN(
1056       get_java_tid(thread),
1057       (char *) kname->bytes(), kname->utf8_length(),
1058       (char *) name->bytes(), name->utf8_length(),
1059       (char *) sig->bytes(), sig->utf8_length());
1060   return 0;
1061 JRT_END
1062 
1063 
1064 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1065 // for a call current in progress, i.e., arguments has been pushed on stack
1066 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1067 // vtable updates, etc.  Caller frame must be compiled.
1068 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1069   ResourceMark rm(THREAD);
1070 
1071   // last java frame on stack (which includes native call frames)
1072   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1073 
1074   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1075 }
1076 
1077 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1078   CompiledMethod* caller = vfst.nm();
1079 
1080   nmethodLocker caller_lock(caller);
1081 
1082   address pc = vfst.frame_pc();
1083   { // Get call instruction under lock because another thread may be busy patching it.
1084     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1085     return caller->attached_method_before_pc(pc);
1086   }
1087   return NULL;
1088 }
1089 
1090 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1091 // for a call current in progress, i.e., arguments has been pushed on stack
1092 // but callee has not been invoked yet.  Caller frame must be compiled.
1093 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1094                                               vframeStream& vfst,
1095                                               Bytecodes::Code& bc,
1096                                               CallInfo& callinfo, TRAPS) {
1097   Handle receiver;
1098   Handle nullHandle;  //create a handy null handle for exception returns
1099 
1100   assert(!vfst.at_end(), "Java frame must exist");
1101 
1102   // Find caller and bci from vframe
1103   methodHandle caller(THREAD, vfst.method());
1104   int          bci   = vfst.bci();
1105 
1106   Bytecode_invoke bytecode(caller, bci);
1107   int bytecode_index = bytecode.index();
1108 
1109   methodHandle attached_method = extract_attached_method(vfst);
1110   if (attached_method.not_null()) {
1111     methodHandle callee = bytecode.static_target(CHECK_NH);
1112     vmIntrinsics::ID id = callee->intrinsic_id();
1113     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1114     // it attaches statically resolved method to the call site.
1115     if (MethodHandles::is_signature_polymorphic(id) &&
1116         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1117       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1118 
1119       // Adjust invocation mode according to the attached method.
1120       switch (bc) {
1121         case Bytecodes::_invokeinterface:
1122           if (!attached_method->method_holder()->is_interface()) {
1123             bc = Bytecodes::_invokevirtual;
1124           }
1125           break;
1126         case Bytecodes::_invokehandle:
1127           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1128             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1129                                               : Bytecodes::_invokevirtual;
1130           }
1131           break;
1132       }
1133     }
1134   } else {
1135     bc = bytecode.invoke_code();
1136   }
1137 
1138   bool has_receiver = bc != Bytecodes::_invokestatic &&
1139                       bc != Bytecodes::_invokedynamic &&
1140                       bc != Bytecodes::_invokehandle;
1141 
1142   // Find receiver for non-static call
1143   if (has_receiver) {
1144     // This register map must be update since we need to find the receiver for
1145     // compiled frames. The receiver might be in a register.
1146     RegisterMap reg_map2(thread);
1147     frame stubFrame   = thread->last_frame();
1148     // Caller-frame is a compiled frame
1149     frame callerFrame = stubFrame.sender(&reg_map2);
1150 
1151     if (attached_method.is_null()) {
1152       methodHandle callee = bytecode.static_target(CHECK_NH);
1153       if (callee.is_null()) {
1154         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1155       }
1156     }
1157 
1158     // Retrieve from a compiled argument list
1159     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1160 
1161     if (receiver.is_null()) {
1162       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1163     }
1164   }
1165 
1166   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1167 
1168   // Resolve method
1169   if (attached_method.not_null()) {
1170     // Parameterized by attached method.
1171     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1172   } else {
1173     // Parameterized by bytecode.
1174     constantPoolHandle constants(THREAD, caller->constants());
1175     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1176   }
1177 
1178 #ifdef ASSERT
1179   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1180   if (has_receiver) {
1181     assert(receiver.not_null(), "should have thrown exception");
1182     Klass* receiver_klass = receiver->klass();
1183     Klass* rk = NULL;
1184     if (attached_method.not_null()) {
1185       // In case there's resolved method attached, use its holder during the check.
1186       rk = attached_method->method_holder();
1187     } else {
1188       // Klass is already loaded.
1189       constantPoolHandle constants(THREAD, caller->constants());
1190       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1191     }
1192     Klass* static_receiver_klass = rk;
1193     methodHandle callee = callinfo.selected_method();
1194     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1195            "actual receiver must be subclass of static receiver klass");
1196     if (receiver_klass->is_instance_klass()) {
1197       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1198         tty->print_cr("ERROR: Klass not yet initialized!!");
1199         receiver_klass->print();
1200       }
1201       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1202     }
1203   }
1204 #endif
1205 
1206   return receiver;
1207 }
1208 
1209 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1210   ResourceMark rm(THREAD);
1211   // We need first to check if any Java activations (compiled, interpreted)
1212   // exist on the stack since last JavaCall.  If not, we need
1213   // to get the target method from the JavaCall wrapper.
1214   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1215   methodHandle callee_method;
1216   if (vfst.at_end()) {
1217     // No Java frames were found on stack since we did the JavaCall.
1218     // Hence the stack can only contain an entry_frame.  We need to
1219     // find the target method from the stub frame.
1220     RegisterMap reg_map(thread, false);
1221     frame fr = thread->last_frame();
1222     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1223     fr = fr.sender(&reg_map);
1224     assert(fr.is_entry_frame(), "must be");
1225     // fr is now pointing to the entry frame.
1226     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1227   } else {
1228     Bytecodes::Code bc;
1229     CallInfo callinfo;
1230     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1231     callee_method = callinfo.selected_method();
1232   }
1233   assert(callee_method()->is_method(), "must be");
1234   return callee_method;
1235 }
1236 
1237 // Resolves a call.
1238 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1239                                            bool is_virtual,
1240                                            bool is_optimized, TRAPS) {
1241   methodHandle callee_method;
1242   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1243   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1244     int retry_count = 0;
1245     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1246            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1247       // If has a pending exception then there is no need to re-try to
1248       // resolve this method.
1249       // If the method has been redefined, we need to try again.
1250       // Hack: we have no way to update the vtables of arrays, so don't
1251       // require that java.lang.Object has been updated.
1252 
1253       // It is very unlikely that method is redefined more than 100 times
1254       // in the middle of resolve. If it is looping here more than 100 times
1255       // means then there could be a bug here.
1256       guarantee((retry_count++ < 100),
1257                 "Could not resolve to latest version of redefined method");
1258       // method is redefined in the middle of resolve so re-try.
1259       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1260     }
1261   }
1262   return callee_method;
1263 }
1264 
1265 // Resolves a call.  The compilers generate code for calls that go here
1266 // and are patched with the real destination of the call.
1267 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1268                                            bool is_virtual,
1269                                            bool is_optimized, TRAPS) {
1270 
1271   ResourceMark rm(thread);
1272   RegisterMap cbl_map(thread, false);
1273   frame caller_frame = thread->last_frame().sender(&cbl_map);
1274 
1275   CodeBlob* caller_cb = caller_frame.cb();
1276   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1277   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1278 
1279   // make sure caller is not getting deoptimized
1280   // and removed before we are done with it.
1281   // CLEANUP - with lazy deopt shouldn't need this lock
1282   nmethodLocker caller_lock(caller_nm);
1283 
1284   // determine call info & receiver
1285   // note: a) receiver is NULL for static calls
1286   //       b) an exception is thrown if receiver is NULL for non-static calls
1287   CallInfo call_info;
1288   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1289   Handle receiver = find_callee_info(thread, invoke_code,
1290                                      call_info, CHECK_(methodHandle()));
1291   methodHandle callee_method = call_info.selected_method();
1292 
1293   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1294          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1295          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1297          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1298 
1299   assert(caller_nm->is_alive(), "It should be alive");
1300 
1301 #ifndef PRODUCT
1302   // tracing/debugging/statistics
1303   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1304                 (is_virtual) ? (&_resolve_virtual_ctr) :
1305                                (&_resolve_static_ctr);
1306   Atomic::inc(addr);
1307 
1308   if (TraceCallFixup) {
1309     ResourceMark rm(thread);
1310     tty->print("resolving %s%s (%s) call to",
1311       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1312       Bytecodes::name(invoke_code));
1313     callee_method->print_short_name(tty);
1314     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1315                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1316   }
1317 #endif
1318 
1319   // JSR 292 key invariant:
1320   // If the resolved method is a MethodHandle invoke target, the call
1321   // site must be a MethodHandle call site, because the lambda form might tail-call
1322   // leaving the stack in a state unknown to either caller or callee
1323   // TODO detune for now but we might need it again
1324 //  assert(!callee_method->is_compiled_lambda_form() ||
1325 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1326 
1327   // Compute entry points. This might require generation of C2I converter
1328   // frames, so we cannot be holding any locks here. Furthermore, the
1329   // computation of the entry points is independent of patching the call.  We
1330   // always return the entry-point, but we only patch the stub if the call has
1331   // not been deoptimized.  Return values: For a virtual call this is an
1332   // (cached_oop, destination address) pair. For a static call/optimized
1333   // virtual this is just a destination address.
1334 
1335   StaticCallInfo static_call_info;
1336   CompiledICInfo virtual_call_info;
1337 
1338   // Make sure the callee nmethod does not get deoptimized and removed before
1339   // we are done patching the code.
1340   CompiledMethod* callee = callee_method->code();
1341 
1342   if (callee != NULL) {
1343     assert(callee->is_compiled(), "must be nmethod for patching");
1344   }
1345 
1346   if (callee != NULL && !callee->is_in_use()) {
1347     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1348     callee = NULL;
1349   }
1350   nmethodLocker nl_callee(callee);
1351 #ifdef ASSERT
1352   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1353 #endif
1354 
1355   bool is_nmethod = caller_nm->is_nmethod();
1356 
1357   if (is_virtual) {
1358     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1359     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1360     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1361     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1362                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1363                      CHECK_(methodHandle()));
1364   } else {
1365     // static call
1366     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1367   }
1368 
1369   // grab lock, check for deoptimization and potentially patch caller
1370   {
1371     MutexLocker ml_patch(CompiledIC_lock);
1372 
1373     // Lock blocks for safepoint during which both nmethods can change state.
1374 
1375     // Now that we are ready to patch if the Method* was redefined then
1376     // don't update call site and let the caller retry.
1377     // Don't update call site if callee nmethod was unloaded or deoptimized.
1378     // Don't update call site if callee nmethod was replaced by an other nmethod
1379     // which may happen when multiply alive nmethod (tiered compilation)
1380     // will be supported.
1381     if (!callee_method->is_old() &&
1382         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1383 #ifdef ASSERT
1384       // We must not try to patch to jump to an already unloaded method.
1385       if (dest_entry_point != 0) {
1386         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1387         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1388                "should not call unloaded nmethod");
1389       }
1390 #endif
1391       if (is_virtual) {
1392         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1393         if (inline_cache->is_clean()) {
1394           inline_cache->set_to_monomorphic(virtual_call_info);
1395         }
1396       } else {
1397         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1398         if (ssc->is_clean()) ssc->set(static_call_info);
1399       }
1400     }
1401 
1402   } // unlock CompiledIC_lock
1403 
1404   return callee_method;
1405 }
1406 
1407 
1408 // Inline caches exist only in compiled code
1409 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1410 #ifdef ASSERT
1411   RegisterMap reg_map(thread, false);
1412   frame stub_frame = thread->last_frame();
1413   assert(stub_frame.is_runtime_frame(), "sanity check");
1414   frame caller_frame = stub_frame.sender(&reg_map);
1415   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1416 #endif /* ASSERT */
1417 
1418   methodHandle callee_method;
1419   JRT_BLOCK
1420     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1421     // Return Method* through TLS
1422     thread->set_vm_result_2(callee_method());
1423   JRT_BLOCK_END
1424   // return compiled code entry point after potential safepoints
1425   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1426   return callee_method->verified_code_entry();
1427 JRT_END
1428 
1429 
1430 // Handle call site that has been made non-entrant
1431 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1432   // 6243940 We might end up in here if the callee is deoptimized
1433   // as we race to call it.  We don't want to take a safepoint if
1434   // the caller was interpreted because the caller frame will look
1435   // interpreted to the stack walkers and arguments are now
1436   // "compiled" so it is much better to make this transition
1437   // invisible to the stack walking code. The i2c path will
1438   // place the callee method in the callee_target. It is stashed
1439   // there because if we try and find the callee by normal means a
1440   // safepoint is possible and have trouble gc'ing the compiled args.
1441   RegisterMap reg_map(thread, false);
1442   frame stub_frame = thread->last_frame();
1443   assert(stub_frame.is_runtime_frame(), "sanity check");
1444   frame caller_frame = stub_frame.sender(&reg_map);
1445 
1446   if (caller_frame.is_interpreted_frame() ||
1447       caller_frame.is_entry_frame()) {
1448     Method* callee = thread->callee_target();
1449     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1450     thread->set_vm_result_2(callee);
1451     thread->set_callee_target(NULL);
1452     return callee->get_c2i_entry();
1453   }
1454 
1455   // Must be compiled to compiled path which is safe to stackwalk
1456   methodHandle callee_method;
1457   JRT_BLOCK
1458     // Force resolving of caller (if we called from compiled frame)
1459     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1460     thread->set_vm_result_2(callee_method());
1461   JRT_BLOCK_END
1462   // return compiled code entry point after potential safepoints
1463   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1464   return callee_method->verified_code_entry();
1465 JRT_END
1466 
1467 // Handle abstract method call
1468 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1469   return StubRoutines::throw_AbstractMethodError_entry();
1470 JRT_END
1471 
1472 
1473 // resolve a static call and patch code
1474 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1475   methodHandle callee_method;
1476   JRT_BLOCK
1477     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1478     thread->set_vm_result_2(callee_method());
1479   JRT_BLOCK_END
1480   // return compiled code entry point after potential safepoints
1481   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1482   return callee_method->verified_code_entry();
1483 JRT_END
1484 
1485 
1486 // resolve virtual call and update inline cache to monomorphic
1487 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1488   methodHandle callee_method;
1489   JRT_BLOCK
1490     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1491     thread->set_vm_result_2(callee_method());
1492   JRT_BLOCK_END
1493   // return compiled code entry point after potential safepoints
1494   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1495   return callee_method->verified_code_entry();
1496 JRT_END
1497 
1498 
1499 // Resolve a virtual call that can be statically bound (e.g., always
1500 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1501 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1502   methodHandle callee_method;
1503   JRT_BLOCK
1504     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1505     thread->set_vm_result_2(callee_method());
1506   JRT_BLOCK_END
1507   // return compiled code entry point after potential safepoints
1508   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1509   return callee_method->verified_code_entry();
1510 JRT_END
1511 
1512 
1513 
1514 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1515   ResourceMark rm(thread);
1516   CallInfo call_info;
1517   Bytecodes::Code bc;
1518 
1519   // receiver is NULL for static calls. An exception is thrown for NULL
1520   // receivers for non-static calls
1521   Handle receiver = find_callee_info(thread, bc, call_info,
1522                                      CHECK_(methodHandle()));
1523   // Compiler1 can produce virtual call sites that can actually be statically bound
1524   // If we fell thru to below we would think that the site was going megamorphic
1525   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1526   // we'd try and do a vtable dispatch however methods that can be statically bound
1527   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1528   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1529   // plain ic_miss) and the site will be converted to an optimized virtual call site
1530   // never to miss again. I don't believe C2 will produce code like this but if it
1531   // did this would still be the correct thing to do for it too, hence no ifdef.
1532   //
1533   if (call_info.resolved_method()->can_be_statically_bound()) {
1534     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1535     if (TraceCallFixup) {
1536       RegisterMap reg_map(thread, false);
1537       frame caller_frame = thread->last_frame().sender(&reg_map);
1538       ResourceMark rm(thread);
1539       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1540       callee_method->print_short_name(tty);
1541       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1542       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1543     }
1544     return callee_method;
1545   }
1546 
1547   methodHandle callee_method = call_info.selected_method();
1548 
1549   bool should_be_mono = false;
1550 
1551 #ifndef PRODUCT
1552   Atomic::inc(&_ic_miss_ctr);
1553 
1554   // Statistics & Tracing
1555   if (TraceCallFixup) {
1556     ResourceMark rm(thread);
1557     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1558     callee_method->print_short_name(tty);
1559     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1560   }
1561 
1562   if (ICMissHistogram) {
1563     MutexLocker m(VMStatistic_lock);
1564     RegisterMap reg_map(thread, false);
1565     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1566     // produce statistics under the lock
1567     trace_ic_miss(f.pc());
1568   }
1569 #endif
1570 
1571   // install an event collector so that when a vtable stub is created the
1572   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1573   // event can't be posted when the stub is created as locks are held
1574   // - instead the event will be deferred until the event collector goes
1575   // out of scope.
1576   JvmtiDynamicCodeEventCollector event_collector;
1577 
1578   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1579   { MutexLocker ml_patch (CompiledIC_lock);
1580     RegisterMap reg_map(thread, false);
1581     frame caller_frame = thread->last_frame().sender(&reg_map);
1582     CodeBlob* cb = caller_frame.cb();
1583     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1584     if (cb->is_compiled()) {
1585       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1586       bool should_be_mono = false;
1587       if (inline_cache->is_optimized()) {
1588         if (TraceCallFixup) {
1589           ResourceMark rm(thread);
1590           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1591           callee_method->print_short_name(tty);
1592           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1593         }
1594         should_be_mono = true;
1595       } else if (inline_cache->is_icholder_call()) {
1596         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1597         if (ic_oop != NULL) {
1598 
1599           if (receiver()->klass() == ic_oop->holder_klass()) {
1600             // This isn't a real miss. We must have seen that compiled code
1601             // is now available and we want the call site converted to a
1602             // monomorphic compiled call site.
1603             // We can't assert for callee_method->code() != NULL because it
1604             // could have been deoptimized in the meantime
1605             if (TraceCallFixup) {
1606               ResourceMark rm(thread);
1607               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1608               callee_method->print_short_name(tty);
1609               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1610             }
1611             should_be_mono = true;
1612           }
1613         }
1614       }
1615 
1616       if (should_be_mono) {
1617 
1618         // We have a path that was monomorphic but was going interpreted
1619         // and now we have (or had) a compiled entry. We correct the IC
1620         // by using a new icBuffer.
1621         CompiledICInfo info;
1622         Klass* receiver_klass = receiver()->klass();
1623         inline_cache->compute_monomorphic_entry(callee_method,
1624                                                 receiver_klass,
1625                                                 inline_cache->is_optimized(),
1626                                                 false, caller_nm->is_nmethod(),
1627                                                 info, CHECK_(methodHandle()));
1628         inline_cache->set_to_monomorphic(info);
1629       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1630         // Potential change to megamorphic
1631         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1632         if (!successful) {
1633           inline_cache->set_to_clean();
1634         }
1635       } else {
1636         // Either clean or megamorphic
1637       }
1638     } else {
1639       fatal("Unimplemented");
1640     }
1641   } // Release CompiledIC_lock
1642 
1643   return callee_method;
1644 }
1645 
1646 //
1647 // Resets a call-site in compiled code so it will get resolved again.
1648 // This routines handles both virtual call sites, optimized virtual call
1649 // sites, and static call sites. Typically used to change a call sites
1650 // destination from compiled to interpreted.
1651 //
1652 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1653   ResourceMark rm(thread);
1654   RegisterMap reg_map(thread, false);
1655   frame stub_frame = thread->last_frame();
1656   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1657   frame caller = stub_frame.sender(&reg_map);
1658 
1659   // Do nothing if the frame isn't a live compiled frame.
1660   // nmethod could be deoptimized by the time we get here
1661   // so no update to the caller is needed.
1662 
1663   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1664 
1665     address pc = caller.pc();
1666 
1667     // Check for static or virtual call
1668     bool is_static_call = false;
1669     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1670 
1671     // Default call_addr is the location of the "basic" call.
1672     // Determine the address of the call we a reresolving. With
1673     // Inline Caches we will always find a recognizable call.
1674     // With Inline Caches disabled we may or may not find a
1675     // recognizable call. We will always find a call for static
1676     // calls and for optimized virtual calls. For vanilla virtual
1677     // calls it depends on the state of the UseInlineCaches switch.
1678     //
1679     // With Inline Caches disabled we can get here for a virtual call
1680     // for two reasons:
1681     //   1 - calling an abstract method. The vtable for abstract methods
1682     //       will run us thru handle_wrong_method and we will eventually
1683     //       end up in the interpreter to throw the ame.
1684     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1685     //       call and between the time we fetch the entry address and
1686     //       we jump to it the target gets deoptimized. Similar to 1
1687     //       we will wind up in the interprter (thru a c2i with c2).
1688     //
1689     address call_addr = NULL;
1690     {
1691       // Get call instruction under lock because another thread may be
1692       // busy patching it.
1693       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1694       // Location of call instruction
1695       call_addr = caller_nm->call_instruction_address(pc);
1696     }
1697     // Make sure nmethod doesn't get deoptimized and removed until
1698     // this is done with it.
1699     // CLEANUP - with lazy deopt shouldn't need this lock
1700     nmethodLocker nmlock(caller_nm);
1701 
1702     if (call_addr != NULL) {
1703       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1704       int ret = iter.next(); // Get item
1705       if (ret) {
1706         assert(iter.addr() == call_addr, "must find call");
1707         if (iter.type() == relocInfo::static_call_type) {
1708           is_static_call = true;
1709         } else {
1710           assert(iter.type() == relocInfo::virtual_call_type ||
1711                  iter.type() == relocInfo::opt_virtual_call_type
1712                 , "unexpected relocInfo. type");
1713         }
1714       } else {
1715         assert(!UseInlineCaches, "relocation info. must exist for this address");
1716       }
1717 
1718       // Cleaning the inline cache will force a new resolve. This is more robust
1719       // than directly setting it to the new destination, since resolving of calls
1720       // is always done through the same code path. (experience shows that it
1721       // leads to very hard to track down bugs, if an inline cache gets updated
1722       // to a wrong method). It should not be performance critical, since the
1723       // resolve is only done once.
1724 
1725       bool is_nmethod = caller_nm->is_nmethod();
1726       MutexLocker ml(CompiledIC_lock);
1727       if (is_static_call) {
1728         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1729         ssc->set_to_clean();
1730       } else {
1731         // compiled, dispatched call (which used to call an interpreted method)
1732         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1733         inline_cache->set_to_clean();
1734       }
1735     }
1736   }
1737 
1738   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1739 
1740 
1741 #ifndef PRODUCT
1742   Atomic::inc(&_wrong_method_ctr);
1743 
1744   if (TraceCallFixup) {
1745     ResourceMark rm(thread);
1746     tty->print("handle_wrong_method reresolving call to");
1747     callee_method->print_short_name(tty);
1748     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1749   }
1750 #endif
1751 
1752   return callee_method;
1753 }
1754 
1755 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1756   // The faulting unsafe accesses should be changed to throw the error
1757   // synchronously instead. Meanwhile the faulting instruction will be
1758   // skipped over (effectively turning it into a no-op) and an
1759   // asynchronous exception will be raised which the thread will
1760   // handle at a later point. If the instruction is a load it will
1761   // return garbage.
1762 
1763   // Request an async exception.
1764   thread->set_pending_unsafe_access_error();
1765 
1766   // Return address of next instruction to execute.
1767   return next_pc;
1768 }
1769 
1770 #ifdef ASSERT
1771 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1772                                                                 const BasicType* sig_bt,
1773                                                                 const VMRegPair* regs) {
1774   ResourceMark rm;
1775   const int total_args_passed = method->size_of_parameters();
1776   const VMRegPair*    regs_with_member_name = regs;
1777         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1778 
1779   const int member_arg_pos = total_args_passed - 1;
1780   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1781   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1782 
1783   const bool is_outgoing = method->is_method_handle_intrinsic();
1784   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1785 
1786   for (int i = 0; i < member_arg_pos; i++) {
1787     VMReg a =    regs_with_member_name[i].first();
1788     VMReg b = regs_without_member_name[i].first();
1789     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1790   }
1791   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1792 }
1793 #endif
1794 
1795 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1796   if (destination != entry_point) {
1797     CodeBlob* callee = CodeCache::find_blob(destination);
1798     // callee == cb seems weird. It means calling interpreter thru stub.
1799     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1800       // static call or optimized virtual
1801       if (TraceCallFixup) {
1802         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1803         moop->print_short_name(tty);
1804         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1805       }
1806       return true;
1807     } else {
1808       if (TraceCallFixup) {
1809         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1810         moop->print_short_name(tty);
1811         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1812       }
1813       // assert is too strong could also be resolve destinations.
1814       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1815     }
1816   } else {
1817     if (TraceCallFixup) {
1818       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1819       moop->print_short_name(tty);
1820       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1821     }
1822   }
1823   return false;
1824 }
1825 
1826 // ---------------------------------------------------------------------------
1827 // We are calling the interpreter via a c2i. Normally this would mean that
1828 // we were called by a compiled method. However we could have lost a race
1829 // where we went int -> i2c -> c2i and so the caller could in fact be
1830 // interpreted. If the caller is compiled we attempt to patch the caller
1831 // so he no longer calls into the interpreter.
1832 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1833   Method* moop(method);
1834 
1835   address entry_point = moop->from_compiled_entry_no_trampoline();
1836 
1837   // It's possible that deoptimization can occur at a call site which hasn't
1838   // been resolved yet, in which case this function will be called from
1839   // an nmethod that has been patched for deopt and we can ignore the
1840   // request for a fixup.
1841   // Also it is possible that we lost a race in that from_compiled_entry
1842   // is now back to the i2c in that case we don't need to patch and if
1843   // we did we'd leap into space because the callsite needs to use
1844   // "to interpreter" stub in order to load up the Method*. Don't
1845   // ask me how I know this...
1846 
1847   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1848   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1849     return;
1850   }
1851 
1852   // The check above makes sure this is a nmethod.
1853   CompiledMethod* nm = cb->as_compiled_method_or_null();
1854   assert(nm, "must be");
1855 
1856   // Get the return PC for the passed caller PC.
1857   address return_pc = caller_pc + frame::pc_return_offset;
1858 
1859   // There is a benign race here. We could be attempting to patch to a compiled
1860   // entry point at the same time the callee is being deoptimized. If that is
1861   // the case then entry_point may in fact point to a c2i and we'd patch the
1862   // call site with the same old data. clear_code will set code() to NULL
1863   // at the end of it. If we happen to see that NULL then we can skip trying
1864   // to patch. If we hit the window where the callee has a c2i in the
1865   // from_compiled_entry and the NULL isn't present yet then we lose the race
1866   // and patch the code with the same old data. Asi es la vida.
1867 
1868   if (moop->code() == NULL) return;
1869 
1870   if (nm->is_in_use()) {
1871 
1872     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1873     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1874     if (NativeCall::is_call_before(return_pc)) {
1875       ResourceMark mark;
1876       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1877       //
1878       // bug 6281185. We might get here after resolving a call site to a vanilla
1879       // virtual call. Because the resolvee uses the verified entry it may then
1880       // see compiled code and attempt to patch the site by calling us. This would
1881       // then incorrectly convert the call site to optimized and its downhill from
1882       // there. If you're lucky you'll get the assert in the bugid, if not you've
1883       // just made a call site that could be megamorphic into a monomorphic site
1884       // for the rest of its life! Just another racing bug in the life of
1885       // fixup_callers_callsite ...
1886       //
1887       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1888       iter.next();
1889       assert(iter.has_current(), "must have a reloc at java call site");
1890       relocInfo::relocType typ = iter.reloc()->type();
1891       if (typ != relocInfo::static_call_type &&
1892            typ != relocInfo::opt_virtual_call_type &&
1893            typ != relocInfo::static_stub_type) {
1894         return;
1895       }
1896       address destination = call->destination();
1897       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1898         call->set_destination_mt_safe(entry_point);
1899       }
1900     }
1901   }
1902 IRT_END
1903 
1904 
1905 // same as JVM_Arraycopy, but called directly from compiled code
1906 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1907                                                 oopDesc* dest, jint dest_pos,
1908                                                 jint length,
1909                                                 JavaThread* thread)) {
1910 #ifndef PRODUCT
1911   _slow_array_copy_ctr++;
1912 #endif
1913   // Check if we have null pointers
1914   if (src == NULL || dest == NULL) {
1915     THROW(vmSymbols::java_lang_NullPointerException());
1916   }
1917   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1918   // even though the copy_array API also performs dynamic checks to ensure
1919   // that src and dest are truly arrays (and are conformable).
1920   // The copy_array mechanism is awkward and could be removed, but
1921   // the compilers don't call this function except as a last resort,
1922   // so it probably doesn't matter.
1923   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1924                                         (arrayOopDesc*)dest, dest_pos,
1925                                         length, thread);
1926 }
1927 JRT_END
1928 
1929 // The caller of generate_class_cast_message() (or one of its callers)
1930 // must use a ResourceMark in order to correctly free the result.
1931 char* SharedRuntime::generate_class_cast_message(
1932     JavaThread* thread, Klass* caster_klass) {
1933 
1934   // Get target class name from the checkcast instruction
1935   vframeStream vfst(thread, true);
1936   assert(!vfst.at_end(), "Java frame must exist");
1937   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1938   Klass* target_klass = vfst.method()->constants()->klass_at(
1939     cc.index(), thread);
1940   return generate_class_cast_message(caster_klass, target_klass);
1941 }
1942 
1943 // The caller of class_loader_and_module_name() (or one of its callers)
1944 // must use a ResourceMark in order to correctly free the result.
1945 const char* class_loader_and_module_name(Klass* klass) {
1946   const char* delim = "/";
1947   size_t delim_len = strlen(delim);
1948 
1949   const char* fqn = klass->external_name();
1950   // Length of message to return; always include FQN
1951   size_t msglen = strlen(fqn) + 1;
1952 
1953   bool has_cl_name = false;
1954   bool has_mod_name = false;
1955   bool has_version = false;
1956 
1957   // Use class loader name, if exists and not builtin
1958   const char* class_loader_name = "";
1959   ClassLoaderData* cld = klass->class_loader_data();
1960   assert(cld != NULL, "class_loader_data should not be NULL");
1961   if (!cld->is_builtin_class_loader_data()) {
1962     // If not builtin, look for name
1963     oop loader = klass->class_loader();
1964     if (loader != NULL) {
1965       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1966       if (class_loader_name_oop != NULL) {
1967         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1968         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1969           has_cl_name = true;
1970           msglen += strlen(class_loader_name) + delim_len;
1971         }
1972       }
1973     }
1974   }
1975 
1976   const char* module_name = "";
1977   const char* version = "";
1978   Klass* bottom_klass = klass->is_objArray_klass() ?
1979     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1980   if (bottom_klass->is_instance_klass()) {
1981     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1982     // Use module name, if exists
1983     if (module->is_named()) {
1984       has_mod_name = true;
1985       module_name = module->name()->as_C_string();
1986       msglen += strlen(module_name);
1987       // Use version if exists and is not a jdk module
1988       if (module->is_non_jdk_module() && module->version() != NULL) {
1989         has_version = true;
1990         version = module->version()->as_C_string();
1991         msglen += strlen("@") + strlen(version);
1992       }
1993     }
1994   } else {
1995     // klass is an array of primitives, so its module is java.base
1996     module_name = JAVA_BASE_NAME;
1997   }
1998 
1999   if (has_cl_name || has_mod_name) {
2000     msglen += delim_len;
2001   }
2002 
2003   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2004 
2005   // Just return the FQN if error in allocating string
2006   if (message == NULL) {
2007     return fqn;
2008   }
2009 
2010   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2011                class_loader_name,
2012                (has_cl_name) ? delim : "",
2013                (has_mod_name) ? module_name : "",
2014                (has_version) ? "@" : "",
2015                (has_version) ? version : "",
2016                (has_cl_name || has_mod_name) ? delim : "",
2017                fqn);
2018   return message;
2019 }
2020 
2021 char* SharedRuntime::generate_class_cast_message(
2022     Klass* caster_klass, Klass* target_klass) {
2023 
2024   const char* caster_name = class_loader_and_module_name(caster_klass);
2025 
2026   const char* target_name = class_loader_and_module_name(target_klass);
2027 
2028   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2029 
2030   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2031   if (message == NULL) {
2032     // Shouldn't happen, but don't cause even more problems if it does
2033     message = const_cast<char*>(caster_klass->external_name());
2034   } else {
2035     jio_snprintf(message,
2036                  msglen,
2037                  "%s cannot be cast to %s",
2038                  caster_name,
2039                  target_name);
2040   }
2041   return message;
2042 }
2043 
2044 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2045   (void) JavaThread::current()->reguard_stack();
2046 JRT_END
2047 
2048 
2049 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2050 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2051   // Disable ObjectSynchronizer::quick_enter() in default config
2052   // on AARCH64 and ARM until JDK-8153107 is resolved.
2053   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2054       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2055       !SafepointSynchronize::is_synchronizing()) {
2056     // Only try quick_enter() if we're not trying to reach a safepoint
2057     // so that the calling thread reaches the safepoint more quickly.
2058     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2059   }
2060   // NO_ASYNC required because an async exception on the state transition destructor
2061   // would leave you with the lock held and it would never be released.
2062   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2063   // and the model is that an exception implies the method failed.
2064   JRT_BLOCK_NO_ASYNC
2065   oop obj(_obj);
2066   if (PrintBiasedLockingStatistics) {
2067     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2068   }
2069   Handle h_obj(THREAD, obj);
2070   if (UseBiasedLocking) {
2071     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2072     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2073   } else {
2074     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2075   }
2076   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2077   JRT_BLOCK_END
2078 JRT_END
2079 
2080 // Handles the uncommon cases of monitor unlocking in compiled code
2081 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2082    oop obj(_obj);
2083   assert(JavaThread::current() == THREAD, "invariant");
2084   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2085   // testing was unable to ever fire the assert that guarded it so I have removed it.
2086   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2087 #undef MIGHT_HAVE_PENDING
2088 #ifdef MIGHT_HAVE_PENDING
2089   // Save and restore any pending_exception around the exception mark.
2090   // While the slow_exit must not throw an exception, we could come into
2091   // this routine with one set.
2092   oop pending_excep = NULL;
2093   const char* pending_file;
2094   int pending_line;
2095   if (HAS_PENDING_EXCEPTION) {
2096     pending_excep = PENDING_EXCEPTION;
2097     pending_file  = THREAD->exception_file();
2098     pending_line  = THREAD->exception_line();
2099     CLEAR_PENDING_EXCEPTION;
2100   }
2101 #endif /* MIGHT_HAVE_PENDING */
2102 
2103   {
2104     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2105     EXCEPTION_MARK;
2106     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2107   }
2108 
2109 #ifdef MIGHT_HAVE_PENDING
2110   if (pending_excep != NULL) {
2111     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2112   }
2113 #endif /* MIGHT_HAVE_PENDING */
2114 JRT_END
2115 
2116 #ifndef PRODUCT
2117 
2118 void SharedRuntime::print_statistics() {
2119   ttyLocker ttyl;
2120   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2121 
2122   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2123 
2124   SharedRuntime::print_ic_miss_histogram();
2125 
2126   if (CountRemovableExceptions) {
2127     if (_nof_removable_exceptions > 0) {
2128       Unimplemented(); // this counter is not yet incremented
2129       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2130     }
2131   }
2132 
2133   // Dump the JRT_ENTRY counters
2134   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2135   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2136   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2137   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2138   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2139   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2140   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2141 
2142   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2143   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2144   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2145   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2146   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2147 
2148   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2149   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2150   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2151   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2152   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2153   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2154   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2155   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2156   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2157   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2158   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2159   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2160   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2161   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2162   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2163   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2164 
2165   AdapterHandlerLibrary::print_statistics();
2166 
2167   if (xtty != NULL)  xtty->tail("statistics");
2168 }
2169 
2170 inline double percent(int x, int y) {
2171   return 100.0 * x / MAX2(y, 1);
2172 }
2173 
2174 class MethodArityHistogram {
2175  public:
2176   enum { MAX_ARITY = 256 };
2177  private:
2178   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2179   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2180   static int _max_arity;                      // max. arity seen
2181   static int _max_size;                       // max. arg size seen
2182 
2183   static void add_method_to_histogram(nmethod* nm) {
2184     Method* m = nm->method();
2185     ArgumentCount args(m->signature());
2186     int arity   = args.size() + (m->is_static() ? 0 : 1);
2187     int argsize = m->size_of_parameters();
2188     arity   = MIN2(arity, MAX_ARITY-1);
2189     argsize = MIN2(argsize, MAX_ARITY-1);
2190     int count = nm->method()->compiled_invocation_count();
2191     _arity_histogram[arity]  += count;
2192     _size_histogram[argsize] += count;
2193     _max_arity = MAX2(_max_arity, arity);
2194     _max_size  = MAX2(_max_size, argsize);
2195   }
2196 
2197   void print_histogram_helper(int n, int* histo, const char* name) {
2198     const int N = MIN2(5, n);
2199     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2200     double sum = 0;
2201     double weighted_sum = 0;
2202     int i;
2203     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2204     double rest = sum;
2205     double percent = sum / 100;
2206     for (i = 0; i <= N; i++) {
2207       rest -= histo[i];
2208       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2209     }
2210     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2211     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2212   }
2213 
2214   void print_histogram() {
2215     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2216     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2217     tty->print_cr("\nSame for parameter size (in words):");
2218     print_histogram_helper(_max_size, _size_histogram, "size");
2219     tty->cr();
2220   }
2221 
2222  public:
2223   MethodArityHistogram() {
2224     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2225     _max_arity = _max_size = 0;
2226     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2227     CodeCache::nmethods_do(add_method_to_histogram);
2228     print_histogram();
2229   }
2230 };
2231 
2232 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2233 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2234 int MethodArityHistogram::_max_arity;
2235 int MethodArityHistogram::_max_size;
2236 
2237 void SharedRuntime::print_call_statistics(int comp_total) {
2238   tty->print_cr("Calls from compiled code:");
2239   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2240   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2241   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2242   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2243   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2244   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2245   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2247   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2248   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2249   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2250   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2252   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2253   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2254   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2255   tty->cr();
2256   tty->print_cr("Note 1: counter updates are not MT-safe.");
2257   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2258   tty->print_cr("        %% in nested categories are relative to their category");
2259   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2260   tty->cr();
2261 
2262   MethodArityHistogram h;
2263 }
2264 #endif
2265 
2266 
2267 // A simple wrapper class around the calling convention information
2268 // that allows sharing of adapters for the same calling convention.
2269 class AdapterFingerPrint : public CHeapObj<mtCode> {
2270  private:
2271   enum {
2272     _basic_type_bits = 4,
2273     _basic_type_mask = right_n_bits(_basic_type_bits),
2274     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2275     _compact_int_count = 3
2276   };
2277   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2278   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2279 
2280   union {
2281     int  _compact[_compact_int_count];
2282     int* _fingerprint;
2283   } _value;
2284   int _length; // A negative length indicates the fingerprint is in the compact form,
2285                // Otherwise _value._fingerprint is the array.
2286 
2287   // Remap BasicTypes that are handled equivalently by the adapters.
2288   // These are correct for the current system but someday it might be
2289   // necessary to make this mapping platform dependent.
2290   static int adapter_encoding(BasicType in) {
2291     switch (in) {
2292       case T_BOOLEAN:
2293       case T_BYTE:
2294       case T_SHORT:
2295       case T_CHAR:
2296         // There are all promoted to T_INT in the calling convention
2297         return T_INT;
2298 
2299       case T_OBJECT:
2300       case T_ARRAY:
2301         // In other words, we assume that any register good enough for
2302         // an int or long is good enough for a managed pointer.
2303 #ifdef _LP64
2304         return T_LONG;
2305 #else
2306         return T_INT;
2307 #endif
2308 
2309       case T_INT:
2310       case T_LONG:
2311       case T_FLOAT:
2312       case T_DOUBLE:
2313       case T_VOID:
2314         return in;
2315 
2316       default:
2317         ShouldNotReachHere();
2318         return T_CONFLICT;
2319     }
2320   }
2321 
2322  public:
2323   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2324     // The fingerprint is based on the BasicType signature encoded
2325     // into an array of ints with eight entries per int.
2326     int* ptr;
2327     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2328     if (len <= _compact_int_count) {
2329       assert(_compact_int_count == 3, "else change next line");
2330       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2331       // Storing the signature encoded as signed chars hits about 98%
2332       // of the time.
2333       _length = -len;
2334       ptr = _value._compact;
2335     } else {
2336       _length = len;
2337       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2338       ptr = _value._fingerprint;
2339     }
2340 
2341     // Now pack the BasicTypes with 8 per int
2342     int sig_index = 0;
2343     for (int index = 0; index < len; index++) {
2344       int value = 0;
2345       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2346         int bt = ((sig_index < total_args_passed)
2347                   ? adapter_encoding(sig_bt[sig_index++])
2348                   : 0);
2349         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2350         value = (value << _basic_type_bits) | bt;
2351       }
2352       ptr[index] = value;
2353     }
2354   }
2355 
2356   ~AdapterFingerPrint() {
2357     if (_length > 0) {
2358       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2359     }
2360   }
2361 
2362   int value(int index) {
2363     if (_length < 0) {
2364       return _value._compact[index];
2365     }
2366     return _value._fingerprint[index];
2367   }
2368   int length() {
2369     if (_length < 0) return -_length;
2370     return _length;
2371   }
2372 
2373   bool is_compact() {
2374     return _length <= 0;
2375   }
2376 
2377   unsigned int compute_hash() {
2378     int hash = 0;
2379     for (int i = 0; i < length(); i++) {
2380       int v = value(i);
2381       hash = (hash << 8) ^ v ^ (hash >> 5);
2382     }
2383     return (unsigned int)hash;
2384   }
2385 
2386   const char* as_string() {
2387     stringStream st;
2388     st.print("0x");
2389     for (int i = 0; i < length(); i++) {
2390       st.print("%08x", value(i));
2391     }
2392     return st.as_string();
2393   }
2394 
2395   bool equals(AdapterFingerPrint* other) {
2396     if (other->_length != _length) {
2397       return false;
2398     }
2399     if (_length < 0) {
2400       assert(_compact_int_count == 3, "else change next line");
2401       return _value._compact[0] == other->_value._compact[0] &&
2402              _value._compact[1] == other->_value._compact[1] &&
2403              _value._compact[2] == other->_value._compact[2];
2404     } else {
2405       for (int i = 0; i < _length; i++) {
2406         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2407           return false;
2408         }
2409       }
2410     }
2411     return true;
2412   }
2413 };
2414 
2415 
2416 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2417 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2418   friend class AdapterHandlerTableIterator;
2419 
2420  private:
2421 
2422 #ifndef PRODUCT
2423   static int _lookups; // number of calls to lookup
2424   static int _buckets; // number of buckets checked
2425   static int _equals;  // number of buckets checked with matching hash
2426   static int _hits;    // number of successful lookups
2427   static int _compact; // number of equals calls with compact signature
2428 #endif
2429 
2430   AdapterHandlerEntry* bucket(int i) {
2431     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2432   }
2433 
2434  public:
2435   AdapterHandlerTable()
2436     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2437 
2438   // Create a new entry suitable for insertion in the table
2439   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2440     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2441     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2442     if (DumpSharedSpaces) {
2443       ((CDSAdapterHandlerEntry*)entry)->init();
2444     }
2445     return entry;
2446   }
2447 
2448   // Insert an entry into the table
2449   void add(AdapterHandlerEntry* entry) {
2450     int index = hash_to_index(entry->hash());
2451     add_entry(index, entry);
2452   }
2453 
2454   void free_entry(AdapterHandlerEntry* entry) {
2455     entry->deallocate();
2456     BasicHashtable<mtCode>::free_entry(entry);
2457   }
2458 
2459   // Find a entry with the same fingerprint if it exists
2460   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2461     NOT_PRODUCT(_lookups++);
2462     AdapterFingerPrint fp(total_args_passed, sig_bt);
2463     unsigned int hash = fp.compute_hash();
2464     int index = hash_to_index(hash);
2465     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2466       NOT_PRODUCT(_buckets++);
2467       if (e->hash() == hash) {
2468         NOT_PRODUCT(_equals++);
2469         if (fp.equals(e->fingerprint())) {
2470 #ifndef PRODUCT
2471           if (fp.is_compact()) _compact++;
2472           _hits++;
2473 #endif
2474           return e;
2475         }
2476       }
2477     }
2478     return NULL;
2479   }
2480 
2481 #ifndef PRODUCT
2482   void print_statistics() {
2483     ResourceMark rm;
2484     int longest = 0;
2485     int empty = 0;
2486     int total = 0;
2487     int nonempty = 0;
2488     for (int index = 0; index < table_size(); index++) {
2489       int count = 0;
2490       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2491         count++;
2492       }
2493       if (count != 0) nonempty++;
2494       if (count == 0) empty++;
2495       if (count > longest) longest = count;
2496       total += count;
2497     }
2498     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2499                   empty, longest, total, total / (double)nonempty);
2500     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2501                   _lookups, _buckets, _equals, _hits, _compact);
2502   }
2503 #endif
2504 };
2505 
2506 
2507 #ifndef PRODUCT
2508 
2509 int AdapterHandlerTable::_lookups;
2510 int AdapterHandlerTable::_buckets;
2511 int AdapterHandlerTable::_equals;
2512 int AdapterHandlerTable::_hits;
2513 int AdapterHandlerTable::_compact;
2514 
2515 #endif
2516 
2517 class AdapterHandlerTableIterator : public StackObj {
2518  private:
2519   AdapterHandlerTable* _table;
2520   int _index;
2521   AdapterHandlerEntry* _current;
2522 
2523   void scan() {
2524     while (_index < _table->table_size()) {
2525       AdapterHandlerEntry* a = _table->bucket(_index);
2526       _index++;
2527       if (a != NULL) {
2528         _current = a;
2529         return;
2530       }
2531     }
2532   }
2533 
2534  public:
2535   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2536     scan();
2537   }
2538   bool has_next() {
2539     return _current != NULL;
2540   }
2541   AdapterHandlerEntry* next() {
2542     if (_current != NULL) {
2543       AdapterHandlerEntry* result = _current;
2544       _current = _current->next();
2545       if (_current == NULL) scan();
2546       return result;
2547     } else {
2548       return NULL;
2549     }
2550   }
2551 };
2552 
2553 
2554 // ---------------------------------------------------------------------------
2555 // Implementation of AdapterHandlerLibrary
2556 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2557 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2558 const int AdapterHandlerLibrary_size = 16*K;
2559 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2560 
2561 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2562   // Should be called only when AdapterHandlerLibrary_lock is active.
2563   if (_buffer == NULL) // Initialize lazily
2564       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2565   return _buffer;
2566 }
2567 
2568 extern "C" void unexpected_adapter_call() {
2569   ShouldNotCallThis();
2570 }
2571 
2572 void AdapterHandlerLibrary::initialize() {
2573   if (_adapters != NULL) return;
2574   _adapters = new AdapterHandlerTable();
2575 
2576   // Create a special handler for abstract methods.  Abstract methods
2577   // are never compiled so an i2c entry is somewhat meaningless, but
2578   // throw AbstractMethodError just in case.
2579   // Pass wrong_method_abstract for the c2i transitions to return
2580   // AbstractMethodError for invalid invocations.
2581   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2582   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2583                                                               StubRoutines::throw_AbstractMethodError_entry(),
2584                                                               wrong_method_abstract, wrong_method_abstract);
2585 }
2586 
2587 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2588                                                       address i2c_entry,
2589                                                       address c2i_entry,
2590                                                       address c2i_unverified_entry) {
2591   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2592 }
2593 
2594 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2595   AdapterHandlerEntry* entry = get_adapter0(method);
2596   if (method->is_shared()) {
2597     // See comments around Method::link_method()
2598     MutexLocker mu(AdapterHandlerLibrary_lock);
2599     if (method->adapter() == NULL) {
2600       method->update_adapter_trampoline(entry);
2601     }
2602     address trampoline = method->from_compiled_entry();
2603     if (*(int*)trampoline == 0) {
2604       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2605       MacroAssembler _masm(&buffer);
2606       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2607       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2608 
2609       if (PrintInterpreter) {
2610         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2611       }
2612     }
2613   }
2614 
2615   return entry;
2616 }
2617 
2618 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2619   // Use customized signature handler.  Need to lock around updates to
2620   // the AdapterHandlerTable (it is not safe for concurrent readers
2621   // and a single writer: this could be fixed if it becomes a
2622   // problem).
2623 
2624   ResourceMark rm;
2625 
2626   NOT_PRODUCT(int insts_size);
2627   AdapterBlob* new_adapter = NULL;
2628   AdapterHandlerEntry* entry = NULL;
2629   AdapterFingerPrint* fingerprint = NULL;
2630   {
2631     MutexLocker mu(AdapterHandlerLibrary_lock);
2632     // make sure data structure is initialized
2633     initialize();
2634 
2635     if (method->is_abstract()) {
2636       return _abstract_method_handler;
2637     }
2638 
2639     // Fill in the signature array, for the calling-convention call.
2640     int total_args_passed = method->size_of_parameters(); // All args on stack
2641 
2642     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2643     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2644     int i = 0;
2645     if (!method->is_static())  // Pass in receiver first
2646       sig_bt[i++] = T_OBJECT;
2647     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2648       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2649       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2650         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2651     }
2652     assert(i == total_args_passed, "");
2653 
2654     // Lookup method signature's fingerprint
2655     entry = _adapters->lookup(total_args_passed, sig_bt);
2656 
2657 #ifdef ASSERT
2658     AdapterHandlerEntry* shared_entry = NULL;
2659     // Start adapter sharing verification only after the VM is booted.
2660     if (VerifyAdapterSharing && (entry != NULL)) {
2661       shared_entry = entry;
2662       entry = NULL;
2663     }
2664 #endif
2665 
2666     if (entry != NULL) {
2667       return entry;
2668     }
2669 
2670     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2671     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2672 
2673     // Make a C heap allocated version of the fingerprint to store in the adapter
2674     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2675 
2676     // StubRoutines::code2() is initialized after this function can be called. As a result,
2677     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2678     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2679     // stub that ensure that an I2C stub is called from an interpreter frame.
2680     bool contains_all_checks = StubRoutines::code2() != NULL;
2681 
2682     // Create I2C & C2I handlers
2683     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2684     if (buf != NULL) {
2685       CodeBuffer buffer(buf);
2686       short buffer_locs[20];
2687       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2688                                              sizeof(buffer_locs)/sizeof(relocInfo));
2689 
2690       MacroAssembler _masm(&buffer);
2691       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2692                                                      total_args_passed,
2693                                                      comp_args_on_stack,
2694                                                      sig_bt,
2695                                                      regs,
2696                                                      fingerprint);
2697 #ifdef ASSERT
2698       if (VerifyAdapterSharing) {
2699         if (shared_entry != NULL) {
2700           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2701           // Release the one just created and return the original
2702           _adapters->free_entry(entry);
2703           return shared_entry;
2704         } else  {
2705           entry->save_code(buf->code_begin(), buffer.insts_size());
2706         }
2707       }
2708 #endif
2709 
2710       new_adapter = AdapterBlob::create(&buffer);
2711       NOT_PRODUCT(insts_size = buffer.insts_size());
2712     }
2713     if (new_adapter == NULL) {
2714       // CodeCache is full, disable compilation
2715       // Ought to log this but compile log is only per compile thread
2716       // and we're some non descript Java thread.
2717       return NULL; // Out of CodeCache space
2718     }
2719     entry->relocate(new_adapter->content_begin());
2720 #ifndef PRODUCT
2721     // debugging suppport
2722     if (PrintAdapterHandlers || PrintStubCode) {
2723       ttyLocker ttyl;
2724       entry->print_adapter_on(tty);
2725       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2726                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2727                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2728       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2729       if (Verbose || PrintStubCode) {
2730         address first_pc = entry->base_address();
2731         if (first_pc != NULL) {
2732           Disassembler::decode(first_pc, first_pc + insts_size);
2733           tty->cr();
2734         }
2735       }
2736     }
2737 #endif
2738     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2739     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2740     if (contains_all_checks || !VerifyAdapterCalls) {
2741       _adapters->add(entry);
2742     }
2743   }
2744   // Outside of the lock
2745   if (new_adapter != NULL) {
2746     char blob_id[256];
2747     jio_snprintf(blob_id,
2748                  sizeof(blob_id),
2749                  "%s(%s)@" PTR_FORMAT,
2750                  new_adapter->name(),
2751                  fingerprint->as_string(),
2752                  new_adapter->content_begin());
2753     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2754 
2755     if (JvmtiExport::should_post_dynamic_code_generated()) {
2756       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2757     }
2758   }
2759   return entry;
2760 }
2761 
2762 address AdapterHandlerEntry::base_address() {
2763   address base = _i2c_entry;
2764   if (base == NULL)  base = _c2i_entry;
2765   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2766   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2767   return base;
2768 }
2769 
2770 void AdapterHandlerEntry::relocate(address new_base) {
2771   address old_base = base_address();
2772   assert(old_base != NULL, "");
2773   ptrdiff_t delta = new_base - old_base;
2774   if (_i2c_entry != NULL)
2775     _i2c_entry += delta;
2776   if (_c2i_entry != NULL)
2777     _c2i_entry += delta;
2778   if (_c2i_unverified_entry != NULL)
2779     _c2i_unverified_entry += delta;
2780   assert(base_address() == new_base, "");
2781 }
2782 
2783 
2784 void AdapterHandlerEntry::deallocate() {
2785   delete _fingerprint;
2786 #ifdef ASSERT
2787   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2788 #endif
2789 }
2790 
2791 
2792 #ifdef ASSERT
2793 // Capture the code before relocation so that it can be compared
2794 // against other versions.  If the code is captured after relocation
2795 // then relative instructions won't be equivalent.
2796 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2797   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2798   _saved_code_length = length;
2799   memcpy(_saved_code, buffer, length);
2800 }
2801 
2802 
2803 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2804   if (length != _saved_code_length) {
2805     return false;
2806   }
2807 
2808   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2809 }
2810 #endif
2811 
2812 
2813 /**
2814  * Create a native wrapper for this native method.  The wrapper converts the
2815  * Java-compiled calling convention to the native convention, handles
2816  * arguments, and transitions to native.  On return from the native we transition
2817  * back to java blocking if a safepoint is in progress.
2818  */
2819 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2820   ResourceMark rm;
2821   nmethod* nm = NULL;
2822 
2823   assert(method->is_native(), "must be native");
2824   assert(method->is_method_handle_intrinsic() ||
2825          method->has_native_function(), "must have something valid to call!");
2826 
2827   {
2828     // Perform the work while holding the lock, but perform any printing outside the lock
2829     MutexLocker mu(AdapterHandlerLibrary_lock);
2830     // See if somebody beat us to it
2831     if (method->code() != NULL) {
2832       return;
2833     }
2834 
2835     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2836     assert(compile_id > 0, "Must generate native wrapper");
2837 
2838 
2839     ResourceMark rm;
2840     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2841     if (buf != NULL) {
2842       CodeBuffer buffer(buf);
2843       double locs_buf[20];
2844       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2845       MacroAssembler _masm(&buffer);
2846 
2847       // Fill in the signature array, for the calling-convention call.
2848       const int total_args_passed = method->size_of_parameters();
2849 
2850       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2851       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2852       int i=0;
2853       if (!method->is_static())  // Pass in receiver first
2854         sig_bt[i++] = T_OBJECT;
2855       SignatureStream ss(method->signature());
2856       for (; !ss.at_return_type(); ss.next()) {
2857         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2858         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2859           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2860       }
2861       assert(i == total_args_passed, "");
2862       BasicType ret_type = ss.type();
2863 
2864       // Now get the compiled-Java layout as input (or output) arguments.
2865       // NOTE: Stubs for compiled entry points of method handle intrinsics
2866       // are just trampolines so the argument registers must be outgoing ones.
2867       const bool is_outgoing = method->is_method_handle_intrinsic();
2868       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2869 
2870       // Generate the compiled-to-native wrapper code
2871       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2872 
2873       if (nm != NULL) {
2874         method->set_code(method, nm);
2875 
2876         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2877         if (directive->PrintAssemblyOption) {
2878           nm->print_code();
2879         }
2880         DirectivesStack::release(directive);
2881       }
2882     }
2883   } // Unlock AdapterHandlerLibrary_lock
2884 
2885 
2886   // Install the generated code.
2887   if (nm != NULL) {
2888     const char *msg = method->is_static() ? "(static)" : "";
2889     CompileTask::print_ul(nm, msg);
2890     if (PrintCompilation) {
2891       ttyLocker ttyl;
2892       CompileTask::print(tty, nm, msg);
2893     }
2894     nm->post_compiled_method_load_event();
2895   }
2896 }
2897 
2898 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2899   assert(thread == JavaThread::current(), "must be");
2900   // The code is about to enter a JNI lazy critical native method and
2901   // _needs_gc is true, so if this thread is already in a critical
2902   // section then just return, otherwise this thread should block
2903   // until needs_gc has been cleared.
2904   if (thread->in_critical()) {
2905     return;
2906   }
2907   // Lock and unlock a critical section to give the system a chance to block
2908   GCLocker::lock_critical(thread);
2909   GCLocker::unlock_critical(thread);
2910 JRT_END
2911 
2912 // -------------------------------------------------------------------------
2913 // Java-Java calling convention
2914 // (what you use when Java calls Java)
2915 
2916 //------------------------------name_for_receiver----------------------------------
2917 // For a given signature, return the VMReg for parameter 0.
2918 VMReg SharedRuntime::name_for_receiver() {
2919   VMRegPair regs;
2920   BasicType sig_bt = T_OBJECT;
2921   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2922   // Return argument 0 register.  In the LP64 build pointers
2923   // take 2 registers, but the VM wants only the 'main' name.
2924   return regs.first();
2925 }
2926 
2927 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2928   // This method is returning a data structure allocating as a
2929   // ResourceObject, so do not put any ResourceMarks in here.
2930   char *s = sig->as_C_string();
2931   int len = (int)strlen(s);
2932   s++; len--;                   // Skip opening paren
2933 
2934   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2935   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2936   int cnt = 0;
2937   if (has_receiver) {
2938     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2939   }
2940 
2941   while (*s != ')') {          // Find closing right paren
2942     switch (*s++) {            // Switch on signature character
2943     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2944     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2945     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2946     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2947     case 'I': sig_bt[cnt++] = T_INT;     break;
2948     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2949     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2950     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2951     case 'V': sig_bt[cnt++] = T_VOID;    break;
2952     case 'L':                   // Oop
2953       while (*s++ != ';');   // Skip signature
2954       sig_bt[cnt++] = T_OBJECT;
2955       break;
2956     case '[': {                 // Array
2957       do {                      // Skip optional size
2958         while (*s >= '0' && *s <= '9') s++;
2959       } while (*s++ == '[');   // Nested arrays?
2960       // Skip element type
2961       if (s[-1] == 'L')
2962         while (*s++ != ';'); // Skip signature
2963       sig_bt[cnt++] = T_ARRAY;
2964       break;
2965     }
2966     default : ShouldNotReachHere();
2967     }
2968   }
2969 
2970   if (has_appendix) {
2971     sig_bt[cnt++] = T_OBJECT;
2972   }
2973 
2974   assert(cnt < 256, "grow table size");
2975 
2976   int comp_args_on_stack;
2977   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2978 
2979   // the calling convention doesn't count out_preserve_stack_slots so
2980   // we must add that in to get "true" stack offsets.
2981 
2982   if (comp_args_on_stack) {
2983     for (int i = 0; i < cnt; i++) {
2984       VMReg reg1 = regs[i].first();
2985       if (reg1->is_stack()) {
2986         // Yuck
2987         reg1 = reg1->bias(out_preserve_stack_slots());
2988       }
2989       VMReg reg2 = regs[i].second();
2990       if (reg2->is_stack()) {
2991         // Yuck
2992         reg2 = reg2->bias(out_preserve_stack_slots());
2993       }
2994       regs[i].set_pair(reg2, reg1);
2995     }
2996   }
2997 
2998   // results
2999   *arg_size = cnt;
3000   return regs;
3001 }
3002 
3003 // OSR Migration Code
3004 //
3005 // This code is used convert interpreter frames into compiled frames.  It is
3006 // called from very start of a compiled OSR nmethod.  A temp array is
3007 // allocated to hold the interesting bits of the interpreter frame.  All
3008 // active locks are inflated to allow them to move.  The displaced headers and
3009 // active interpreter locals are copied into the temp buffer.  Then we return
3010 // back to the compiled code.  The compiled code then pops the current
3011 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3012 // copies the interpreter locals and displaced headers where it wants.
3013 // Finally it calls back to free the temp buffer.
3014 //
3015 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3016 
3017 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3018 
3019   //
3020   // This code is dependent on the memory layout of the interpreter local
3021   // array and the monitors. On all of our platforms the layout is identical
3022   // so this code is shared. If some platform lays the their arrays out
3023   // differently then this code could move to platform specific code or
3024   // the code here could be modified to copy items one at a time using
3025   // frame accessor methods and be platform independent.
3026 
3027   frame fr = thread->last_frame();
3028   assert(fr.is_interpreted_frame(), "");
3029   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3030 
3031   // Figure out how many monitors are active.
3032   int active_monitor_count = 0;
3033   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3034        kptr < fr.interpreter_frame_monitor_begin();
3035        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3036     if (kptr->obj() != NULL) active_monitor_count++;
3037   }
3038 
3039   // QQQ we could place number of active monitors in the array so that compiled code
3040   // could double check it.
3041 
3042   Method* moop = fr.interpreter_frame_method();
3043   int max_locals = moop->max_locals();
3044   // Allocate temp buffer, 1 word per local & 2 per active monitor
3045   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3046   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3047 
3048   // Copy the locals.  Order is preserved so that loading of longs works.
3049   // Since there's no GC I can copy the oops blindly.
3050   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3051   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3052                        (HeapWord*)&buf[0],
3053                        max_locals);
3054 
3055   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3056   int i = max_locals;
3057   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3058        kptr2 < fr.interpreter_frame_monitor_begin();
3059        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3060     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3061       BasicLock *lock = kptr2->lock();
3062       // Inflate so the displaced header becomes position-independent
3063       if (lock->displaced_header()->is_unlocked())
3064         ObjectSynchronizer::inflate_helper(kptr2->obj());
3065       // Now the displaced header is free to move
3066       buf[i++] = (intptr_t)lock->displaced_header();
3067       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3068     }
3069   }
3070   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3071 
3072   return buf;
3073 JRT_END
3074 
3075 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3076   FREE_C_HEAP_ARRAY(intptr_t, buf);
3077 JRT_END
3078 
3079 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3080   AdapterHandlerTableIterator iter(_adapters);
3081   while (iter.has_next()) {
3082     AdapterHandlerEntry* a = iter.next();
3083     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3084   }
3085   return false;
3086 }
3087 
3088 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3089   AdapterHandlerTableIterator iter(_adapters);
3090   while (iter.has_next()) {
3091     AdapterHandlerEntry* a = iter.next();
3092     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3093       st->print("Adapter for signature: ");
3094       a->print_adapter_on(tty);
3095       return;
3096     }
3097   }
3098   assert(false, "Should have found handler");
3099 }
3100 
3101 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3102   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3103                p2i(this), fingerprint()->as_string(),
3104                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3105 
3106 }
3107 
3108 #if INCLUDE_CDS
3109 
3110 void CDSAdapterHandlerEntry::init() {
3111   assert(DumpSharedSpaces, "used during dump time only");
3112   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3113   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3114 };
3115 
3116 #endif // INCLUDE_CDS
3117 
3118 
3119 #ifndef PRODUCT
3120 
3121 void AdapterHandlerLibrary::print_statistics() {
3122   _adapters->print_statistics();
3123 }
3124 
3125 #endif /* PRODUCT */
3126 
3127 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3128   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3129   thread->enable_stack_reserved_zone();
3130   thread->set_reserved_stack_activation(thread->stack_base());
3131 JRT_END
3132 
3133 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3134   frame activation;
3135   CompiledMethod* nm = NULL;
3136   int count = 1;
3137 
3138   assert(fr.is_java_frame(), "Must start on Java frame");
3139 
3140   while (true) {
3141     Method* method = NULL;
3142     if (fr.is_interpreted_frame()) {
3143       method = fr.interpreter_frame_method();
3144     } else {
3145       CodeBlob* cb = fr.cb();
3146       if (cb != NULL && cb->is_compiled()) {
3147         nm = cb->as_compiled_method();
3148         method = nm->method();
3149       }
3150     }
3151     if ((method != NULL) && method->has_reserved_stack_access()) {
3152       ResourceMark rm(thread);
3153       activation = fr;
3154       warning("Potentially dangerous stack overflow in "
3155               "ReservedStackAccess annotated method %s [%d]",
3156               method->name_and_sig_as_C_string(), count++);
3157       EventReservedStackActivation event;
3158       if (event.should_commit()) {
3159         event.set_method(method);
3160         event.commit();
3161       }
3162     }
3163     if (fr.is_first_java_frame()) {
3164       break;
3165     } else {
3166       fr = fr.java_sender();
3167     }
3168   }
3169   return activation;
3170 }
3171