1 /*
   2  * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1MONITORINGSUPPORT_HPP
  26 #define SHARE_VM_GC_G1_G1MONITORINGSUPPORT_HPP
  27 
  28 #include "gc/shared/collectorCounters.hpp"
  29 #include "gc/shared/generationCounters.hpp"
  30 #include "services/memoryManager.hpp"
  31 #include "services/memoryService.hpp"
  32 #include "runtime/mutex.hpp"
  33 
  34 class CollectorCounters;
  35 class G1CollectedHeap;
  36 class HSpaceCounters;
  37 class MemoryPool;
  38 
  39 // Class for monitoring logical spaces in G1. It provides data for
  40 // both G1's jstat counters as well as G1's memory pools.
  41 //
  42 // G1 splits the heap into heap regions and each heap region belongs
  43 // to one of the following categories:
  44 //
  45 // * eden      : regions that have been allocated since the last GC
  46 // * survivors : regions with objects that survived the last few GCs
  47 // * old       : long-lived non-humongous regions
  48 // * humongous : humongous regions
  49 // * archive   : archive regions
  50 // * free      : free regions
  51 //
  52 // The combination of eden and survivor regions form the equivalent of
  53 // the young generation in the other GCs. The combination of old,
  54 // humongous, and archive regions form the equivalent of the old
  55 // generation in the other GCs. Archive regions are permanently
  56 // allocated during heap initialization, e.g., for CDS. Free regions
  57 // do not have a good equivalent in the other GCs, given that they can
  58 // be allocated as any of the other region types.
  59 //
  60 // The monitoring tools expect the heap to contain one or more
  61 // generations (young, old) and each generation to contain one or
  62 // more spaces (young has eden and survivor, old has old, humongous and
  63 // archive). Given that G1 does not maintain those spaces physically
  64 // (e.g., the set of non-contiguous eden regions can be considered as
  65 // a "logical" space), we provide the illusion that those generations and
  66 // spaces exist. In reality, each generation and space refers to a set
  67 // of heap regions that are potentially non-contiguous.
  68 //
  69 // This class provides interfaces to access the min, current, and max
  70 // capacity and current occupancy for each of G1's logical spaces and
  71 // generations we expose to the monitoring tools. Also provided are
  72 // counters for G1 concurrent collections and stop-the-world full heap
  73 // collections.
  74 //
  75 // Below is a description of how the various sizes are calculated.
  76 //
  77 // * Current Capacity
  78 //
  79 //    - heap_capacity = current heap capacity (e.g., current committed size)
  80 //    - young_gen_capacity = current max young gen target capacity
  81 //          (i.e., young gen target capacity + max allowed expansion capacity)
  82 //    - survivor_capacity = current survivor region capacity
  83 //    - eden_capacity = young_gen_capacity - survivor_capacity
  84 //  In legacy mode:
  85 //    - old_capacity = heap_capacity - young_gen_capacity
  86 //  Otherwise:
  87 //    - humongous_capacity = sum of humongous regions allocated
  88 //    - archive_capacity = sum of archive regions allocated
  89 //    - old_capacity = heap_capacity - young_gen_capacity -
  90 //                     humongous_capacity - archive_capacity
  91 //
  92 //    What we do in the above is to distribute the free regions among
  93 //    eden_capacity and old_capacity.
  94 //
  95 // * Occupancy
  96 //
  97 //    - young_gen_committed = current young region capacity
  98 //    - survivor_used = survivor_capacity
  99 //    - eden_used = young_gen_used - survivor_used
 100 //  In legacy mode:
 101 //    - old_used = overall_used - young_gen_used
 102 //  Otherwise:
 103 //    - humongous_used = sum of humongous regions allocated
 104 //    - archive_used = sum of archive regions allocated
 105 //    - old_used = overall_used - young_gen_used -
 106 //                 humongous_used - archive_used
 107 //
 108 // * Min Capacity
 109 //
 110 //    We set this to 0 for all spaces.
 111 //
 112 // * Max Capacity
 113 //
 114 //    For jstat, we set the max capacity of all spaces to heap_capacity,
 115 //    given that we don't always have a reasonable upper bound on how big
 116 //    each space can grow. For the memory pools, we make the max
 117 //    capacity undefined with the exception of the old memory pool for
 118 //    which we make the max capacity same as the max heap capacity. This
 119 //    allows users to sum memory pool max capacities to get something
 120 //    reasonable.
 121 //
 122 // We update all the above synchronously and we store the results in
 123 // this singleton class so we can just read them out when needed. A subtle
 124 // point is that all the above sizes must be recalculated when the old
 125 // gen changes capacity (after a GC or after a humongous allocation)
 126 // but only the eden occupancy changes when a new eden region is
 127 // allocated. So, in the latter case we have minimal recalculation to
 128 // do, but we don't both special-casing it because doing the full
 129 // recalculation is quite fast.
 130 
 131 class G1MonitoringSupport : public CHeapObj<mtGC> {
 132   friend class VMStructs;
 133   friend class G1MonitoringScope;
 134 
 135   G1CollectedHeap* _g1h;
 136 
 137   // java.lang.management MemoryManager and MemoryPool support
 138 
 139   bool _use_legacy_monitoring; // For vmStructs and hsdb
 140 
 141   GCMemoryManager _full_memory_manager;
 142   // Legacy monitoring
 143   GCMemoryManager _incremental_memory_manager;
 144   // Default monitoring
 145   GCMemoryManager _young_memory_manager;
 146   GCMemoryManager _mixed_memory_manager;
 147   GCMemoryManager _conc_memory_manager;
 148 
 149   MemoryPool* _eden_space_pool;
 150   MemoryPool* _survivor_space_pool;
 151   MemoryPool* _old_space_pool;
 152   MemoryPool* _archive_space_pool;
 153   MemoryPool* _humongous_space_pool;
 154 
 155   // jstat performance counters
 156   //  incremental collections both young and mixed
 157   CollectorCounters*   _incremental_collection_counters;
 158   //  full stop-the-world collections
 159   CollectorCounters*   _full_collection_counters;
 160   //  stop-the-world phases in G1
 161   CollectorCounters*   _conc_collection_counters;
 162   //  young collection set counters.  The _eden_counters,
 163   // _from_counters, and _to_counters are associated with
 164   // this "generational" counter.
 165   GenerationCounters*  _young_gen_counters;
 166   //  old collection set counters. The _old_space_counters
 167   // below are associated with this "generational" counter.
 168   GenerationCounters*  _old_gen_counters;
 169   // Counters for the capacity and used for
 170   //   the whole heap
 171   HSpaceCounters*      _old_space_counters;
 172   //   the young collection
 173   HSpaceCounters*      _eden_space_counters;
 174   //   the survivor collection (only one, _to_counters, is actively used)
 175   HSpaceCounters*      _from_space_counters;
 176   HSpaceCounters*      _to_space_counters;
 177 
 178   // When it's appropriate to recalculate the various sizes (at the
 179   // end of a GC, when a new eden region is allocated, etc.) we store
 180   // them here so that we can easily report them when needed and not
 181   // have to recalculate them every time.
 182 
 183   size_t _overall_committed;
 184   size_t _overall_used;
 185 
 186   size_t _young_gen_committed;
 187 
 188   size_t _eden_space_committed;
 189   size_t _eden_space_used;
 190   size_t _survivor_space_committed;
 191   size_t _survivor_space_used;
 192 
 193   size_t _old_space_committed;
 194   size_t _old_space_used;
 195   size_t _archive_space_committed;
 196   size_t _archive_space_used;
 197 
 198   size_t _humongous_space_committed;
 199   size_t _humongous_space_used;
 200 
 201   // It returns x - y if x > y, 0 otherwise.
 202   // As described in the comment above, some of the inputs to the
 203   // calculations we have to do are obtained concurrently and hence
 204   // may be inconsistent with each other. So, this provides a
 205   // defensive way of performing the subtraction and avoids the value
 206   // going negative (which would mean a very large result, given that
 207   // the parameter are size_t).
 208   static size_t subtract_up_to_zero(size_t x, size_t y) {
 209     if (x > y) {
 210       return x - y;
 211     } else {
 212       return 0;
 213     }
 214   }
 215 
 216   // Recalculate all the space sizes.
 217   void recalculate_sizes();
 218 
 219 public:
 220   G1MonitoringSupport(G1CollectedHeap* g1h);
 221   ~G1MonitoringSupport();
 222 
 223   void initialize_serviceability();
 224 
 225   GrowableArray<GCMemoryManager*> memory_managers();
 226   GrowableArray<MemoryPool*> memory_pools();
 227 
 228   bool use_legacy_monitoring() { return _use_legacy_monitoring; }
 229   GCMemoryManager* conc_memory_manager() { return &_conc_memory_manager; }
 230 
 231   // Unfortunately, the jstat tool assumes that no space has 0
 232   // capacity. In our case, given that each space is logical, it's
 233   // possible that no regions will be allocated to it, hence to have 0
 234   // capacity (e.g., if there are no survivor regions, the survivor
 235   // space has 0 capacity). The way we deal with this is to always pad
 236   // each capacity value we report to jstat by a very small amount to
 237   // make sure that it's never zero. Given that we sometimes have to
 238   // report a capacity of a generation that contains several spaces
 239   // (e.g., young gen includes one eden, two survivor spaces), the
 240   // mult parameter is provided in order to adding the appropriate
 241   // padding multiple times so that the capacities add up correctly.
 242   static size_t pad_capacity(size_t size_bytes, size_t mult = 1) {
 243     return size_bytes + MinObjAlignmentInBytes * mult;
 244   }
 245 
 246   // Recalculate all the space sizes from scratch and update
 247   // all jstat counters accordingly.
 248   void update_sizes();
 249   // Recalculate all the space sizes from scratch, but update
 250   // just the eden size and jstat counters.
 251   void update_eden_size();
 252 
 253   CollectorCounters* conc_collection_counters() {
 254     return _conc_collection_counters;
 255   }
 256 
 257   // Monitoring support used by
 258   //   MemoryService
 259   //   jstat counters
 260   //   Tracing
 261   // Values may not be consistent wrt to each other.
 262 
 263   size_t young_gen_committed()  { return _young_gen_committed; }
 264 
 265   size_t eden_space_used()      { return _eden_space_used; }
 266   size_t survivor_space_used()  { return _survivor_space_used; }
 267 
 268   size_t old_gen_committed();
 269   size_t old_gen_used();
 270 
 271   size_t old_space_committed()  { return _old_space_committed; }
 272   size_t old_space_used()       { return _old_space_used; }
 273   size_t archive_space_used()   { return _archive_space_used; }
 274 
 275   size_t humongous_space_used() { return _humongous_space_used; }
 276 
 277   // Monitoring support for MemoryPools. Values in the returned MemoryUsage are
 278   // guaranteed to be consistent with each other.
 279   MemoryUsage memory_usage();
 280   MemoryUsage eden_space_memory_usage(size_t initial_size, size_t max_size);
 281   MemoryUsage survivor_space_memory_usage(size_t initial_size, size_t max_size);
 282   MemoryUsage old_space_memory_usage(size_t initial_size, size_t max_size);
 283   MemoryUsage archive_space_memory_usage(size_t initial_size, size_t max_size);
 284   MemoryUsage humongous_space_memory_usage(size_t initial_size, size_t max_size);
 285 };
 286 
 287 // TraceMemoryManagerStats for concurrent cycle.
 288 class TraceConcMemoryManagerStats : public TraceMemoryManagerStats {
 289  public:
 290   enum Stage {
 291     CycleStart,
 292     Remark,
 293     Cleanup,
 294     CycleEnd
 295   };
 296   TraceConcMemoryManagerStats(Stage stage, GCCause::Cause cause);
 297 };
 298 
 299 // Scope object for java.lang.management support.
 300 class G1MonitoringScope : public StackObj {
 301   TraceCollectorStats     _tcs;
 302   TraceMemoryManagerStats _tms;             // full, mixed, or young (default)
 303   TraceMemoryManagerStats _tms_incremental; // mixed and young (legacy)
 304 public:
 305   G1MonitoringScope(G1MonitoringSupport* g1mm, bool full_gc, bool mixed_gc);
 306 };
 307 
 308 #endif // SHARE_VM_GC_G1_G1MONITORINGSUPPORT_HPP