/* * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc/g1/g1CollectedHeap.inline.hpp" #include "gc/g1/g1MonitoringSupport.hpp" #include "gc/g1/g1Policy.hpp" #include "gc/g1/g1MemoryPool.hpp" #include "gc/shared/hSpaceCounters.hpp" #include "memory/metaspaceCounters.hpp" #include "services/memoryPool.hpp" class G1GenerationCounters : public GenerationCounters { protected: G1MonitoringSupport* _g1mm; public: G1GenerationCounters(G1MonitoringSupport* g1mm, const char* name, int ordinal, int spaces, size_t min_capacity, size_t max_capacity, size_t curr_capacity) : GenerationCounters(name, ordinal, spaces, min_capacity, max_capacity, curr_capacity), _g1mm(g1mm) { } }; class G1YoungGenerationCounters : public G1GenerationCounters { public: // We pad the capacity three times given that the young generation // contains three spaces (eden and two survivors). G1YoungGenerationCounters(G1MonitoringSupport* g1mm, const char* name, size_t max_size) : G1GenerationCounters(g1mm, name, 0 /* ordinal */, 3 /* spaces */, G1MonitoringSupport::pad_capacity(0, 3) /* min_capacity */, G1MonitoringSupport::pad_capacity(max_size, 3), G1MonitoringSupport::pad_capacity(0, 3) /* curr_capacity */) { if (UsePerfData) { update_all(); } } virtual void update_all() { size_t committed = G1MonitoringSupport::pad_capacity(_g1mm->young_gen_committed(), 3); _current_size->set_value(committed); } }; class G1OldGenerationCounters : public G1GenerationCounters { public: G1OldGenerationCounters(G1MonitoringSupport* g1mm, const char* name, size_t max_size) : G1GenerationCounters(g1mm, name, 1 /* ordinal */, 1 /* spaces */, G1MonitoringSupport::pad_capacity(0) /* min_capacity */, G1MonitoringSupport::pad_capacity(max_size), G1MonitoringSupport::pad_capacity(0) /* curr_capacity */) { if (UsePerfData) { update_all(); } } virtual void update_all() { size_t committed = G1MonitoringSupport::pad_capacity(_g1mm->old_gen_committed()); _current_size->set_value(committed); } }; size_t G1MonitoringSupport::old_gen_committed() { return _old_space_committed + (use_legacy_monitoring() ? 0 : _humongous_space_committed + _archive_space_committed); } size_t G1MonitoringSupport::old_gen_used() { return old_space_used() + (use_legacy_monitoring() ? 0 : humongous_space_used() + archive_space_used()); } G1MonitoringSupport::G1MonitoringSupport(G1CollectedHeap* g1h) : _g1h(g1h), _use_legacy_monitoring(G1UseLegacyMonitoring), _full_memory_manager(G1UseLegacyMonitoring ? "G1 Old Generation" : "G1 Full", "end of major GC"), _incremental_memory_manager("G1 Young Generation", "end of minor GC"), _young_memory_manager("G1 Young", "end of young GC"), _mixed_memory_manager("G1 Mixed", "end of mixed GC"), _conc_memory_manager("G1 Concurrent Cycle", "end of concurrent cycle"), _eden_space_pool(NULL), _survivor_space_pool(NULL), _old_space_pool(NULL), _archive_space_pool(NULL), _humongous_space_pool(NULL), _incremental_collection_counters(NULL), _full_collection_counters(NULL), _conc_collection_counters(NULL), _young_gen_counters(NULL), _old_gen_counters(NULL), _old_space_counters(NULL), _eden_space_counters(NULL), _from_space_counters(NULL), _to_space_counters(NULL), _overall_committed(0), _overall_used(0), _young_gen_committed(0), _eden_space_committed(0), _eden_space_used(0), _survivor_space_committed(0), _survivor_space_used(0), _old_space_committed(0), _old_space_used(0), _archive_space_committed(0), _archive_space_used(0), _humongous_space_committed(0), _humongous_space_used(0) { // Counters for garbage collections. // Compute initial capacities. Somewhat random, as they depend // on what's happened so far during JVM initialization. recalculate_sizes(); // name "collector.0". In a generational collector this would be the // young generation collection. _incremental_collection_counters = new CollectorCounters("G1 incremental collections", 0); // name "collector.1". In a generational collector this would be the // old generation collection. _full_collection_counters = new CollectorCounters("G1 stop-the-world full collections", 1); // name "collector.2". In a generational collector this would be the // STW phases in concurrent collection. _conc_collection_counters = new CollectorCounters("G1 stop-the-world phases", 2); // "Generation" and "Space" counters. // // name "generation.1" This is logically the old generation in // generational GC terms. The "1, 1" parameters are for // the n-th generation (=1) with 1 space. // Counters are created from minCapacity, maxCapacity, and capacity _old_gen_counters = new G1OldGenerationCounters(this, "old", _g1h->max_capacity()); // name "generation.1.space.0" // Counters are created from maxCapacity, capacity, initCapacity, // and used. _old_space_counters = new HSpaceCounters(_old_gen_counters->name_space(), "space", 0 /* ordinal */, pad_capacity(g1h->max_capacity()) /* max_capacity */, pad_capacity(old_gen_committed()) /* init_capacity */); // Young collection set // name "generation.0". This is logically the young generation. // The "0, 3" are parameters for the n-th generation (=0) with 3 spaces. // See _old_collection_counters for additional counters _young_gen_counters = new G1YoungGenerationCounters(this, "young", _g1h->max_capacity()); const char* young_collection_name_space = _young_gen_counters->name_space(); // name "generation.0.space.0" // See _old_space_counters for additional counters _eden_space_counters = new HSpaceCounters(young_collection_name_space, "eden", 0 /* ordinal */, pad_capacity(g1h->max_capacity()) /* max_capacity */, pad_capacity(_eden_space_committed) /* init_capacity */); // name "generation.0.space.1" // See _old_space_counters for additional counters // Set the arguments to indicate that this survivor space is not used. _from_space_counters = new HSpaceCounters(young_collection_name_space, "s0", 1 /* ordinal */, pad_capacity(0) /* max_capacity */, pad_capacity(0) /* init_capacity */); // Given that this survivor space is not used, we update it here // once to reflect that its used space is 0 so that we don't have to // worry about updating it again later. if (UsePerfData) { _from_space_counters->update_used(0); } // name "generation.0.space.2" // See _old_space_counters for additional counters _to_space_counters = new HSpaceCounters(young_collection_name_space, "s1", 2 /* ordinal */, pad_capacity(g1h->max_capacity()) /* max_capacity */, pad_capacity(_survivor_space_committed) /* init_capacity */); } G1MonitoringSupport::~G1MonitoringSupport() { delete _eden_space_pool; delete _survivor_space_pool; delete _old_space_pool; delete _archive_space_pool; delete _humongous_space_pool; } void G1MonitoringSupport::initialize_serviceability() { _eden_space_pool = new G1EdenPool(_g1h, _eden_space_committed); _survivor_space_pool = new G1SurvivorPool(_g1h, _survivor_space_committed); _old_space_pool = new G1OldPool(_g1h, _old_space_committed, _g1h->max_capacity()); _archive_space_pool = new G1ArchivePool(_g1h, _archive_space_committed); _humongous_space_pool = new G1HumongousPool(_g1h, _humongous_space_committed); // Pools must be added to each memory manager in the order specified // below: TestMemoryMXBeansAndPoolsPresence.java expects them so. if (use_legacy_monitoring()) { _incremental_memory_manager.add_pool(_eden_space_pool); _incremental_memory_manager.add_pool(_survivor_space_pool); // Incremental GCs can affect the humongous pool, but legacy behavior ignores it. // _incremental_memory_manager.add_pool(_humongous_space_pool); _incremental_memory_manager.add_pool(_old_space_pool, false /* always_affected_by_gc */); } else { _young_memory_manager.add_pool(_eden_space_pool); _young_memory_manager.add_pool(_survivor_space_pool); _young_memory_manager.add_pool(_humongous_space_pool); _mixed_memory_manager.add_pool(_eden_space_pool); _mixed_memory_manager.add_pool(_survivor_space_pool); _mixed_memory_manager.add_pool(_humongous_space_pool); _mixed_memory_manager.add_pool(_old_space_pool); _conc_memory_manager.add_pool(_humongous_space_pool); _conc_memory_manager.add_pool(_old_space_pool); } _full_memory_manager.add_pool(_eden_space_pool); _full_memory_manager.add_pool(_survivor_space_pool); if (!use_legacy_monitoring()) { _full_memory_manager.add_pool(_humongous_space_pool); _full_memory_manager.add_pool(_archive_space_pool); } _full_memory_manager.add_pool(_old_space_pool); // Update pool and jstat counter content update_sizes(); } GrowableArray G1MonitoringSupport::memory_managers() { GrowableArray memory_managers(4); if (use_legacy_monitoring()) { memory_managers.append(&_incremental_memory_manager); } else { memory_managers.append(&_young_memory_manager); memory_managers.append(&_mixed_memory_manager); memory_managers.append(&_conc_memory_manager); } memory_managers.append(&_full_memory_manager); return memory_managers; } GrowableArray G1MonitoringSupport::memory_pools() { GrowableArray memory_pools(5); memory_pools.append(_eden_space_pool); memory_pools.append(_survivor_space_pool); memory_pools.append(_old_space_pool); if (!use_legacy_monitoring()) { memory_pools.append(_humongous_space_pool); memory_pools.append(_archive_space_pool); } return memory_pools; } void G1MonitoringSupport::recalculate_sizes() { assert_heap_locked_or_at_safepoint(true); MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); // Recalculate all sizes from scratch. uint eden_regions_count = _g1h->eden_regions_count(); uint survivor_regions_count = _g1h->survivor_regions_count(); uint young_regions_count = _g1h->young_regions_count(); assert(young_regions_count == eden_regions_count + survivor_regions_count, "invariant"); uint old_regions_count = _g1h->old_regions_count(); uint archive_regions_count = _g1h->archive_regions_count(); uint humongous_regions_count = _g1h->humongous_regions_count(); // Max length includes any potential extensions to the young gen // we'll do when the GC locker is active. uint young_regions_count_max = _g1h->g1_policy()->young_list_max_length(); assert(young_regions_count_max >= survivor_regions_count, "invariant"); uint eden_regions_count_max = young_regions_count_max - survivor_regions_count; _overall_used = _g1h->used_unlocked(); _eden_space_used = (size_t)eden_regions_count * HeapRegion::GrainBytes; _survivor_space_used = (size_t)survivor_regions_count * HeapRegion::GrainBytes; _archive_space_used = (size_t)archive_regions_count * HeapRegion::GrainBytes; _humongous_space_used = (size_t)humongous_regions_count * HeapRegion::GrainBytes; // We separately keep track of the humongous and archive spaces, no // matter which mode we're in. In legacy mode, the old space is the // sum of the old, humongous and archive spaces, but in default mode // it does not include the humongous and archive spaces. The old // generation as a whole (in contrast to the old space), always // includes the humongous and archive spaces. See the definitions of // old_gen_committed() and old_gen_used(). size_t excess_old = use_legacy_monitoring() ? 0 : _humongous_space_used + _archive_space_used; _old_space_used = subtract_up_to_zero(_overall_used, _eden_space_used + _survivor_space_used + excess_old); // First, calculate the committed sizes that can be calculated independently. _survivor_space_committed = _survivor_space_used; _old_space_committed = HeapRegion::align_up_to_region_byte_size(_old_space_used); _archive_space_committed = _archive_space_used; _humongous_space_committed = _humongous_space_used; // Next, start with the overall committed size. size_t committed = _overall_committed = _g1h->capacity(); // Remove the committed size we have calculated so far (for the // survivor, old, archive, and humongous spaces). assert(committed >= (_survivor_space_committed + _old_space_committed + excess_old), "sanity"); committed -= _survivor_space_committed + _old_space_committed + excess_old; // Next, calculate and remove the committed size for the eden. _eden_space_committed = (size_t)eden_regions_count_max * HeapRegion::GrainBytes; // Somewhat defensive: be robust in case there are inaccuracies in // the calculations _eden_space_committed = MIN2(_eden_space_committed, committed); committed -= _eden_space_committed; // Finally, give the rest to the old space... _old_space_committed += committed; // ..and calculate the young gen committed. _young_gen_committed = _eden_space_committed + _survivor_space_committed; assert(_overall_committed == (_eden_space_committed + _survivor_space_committed + _old_space_committed + excess_old), "the committed sizes should add up"); // Somewhat defensive: cap the eden used size to make sure it // never exceeds the committed size. _eden_space_used = MIN2(_eden_space_used, _eden_space_committed); // _survivor_space_committed and _old_space_committed are calculated in terms of // the corresponding _*_used value, so the next two conditions should hold. assert(_survivor_space_used <= _survivor_space_committed, "post-condition"); assert(_old_space_used <= _old_space_committed, "post-condition"); } void G1MonitoringSupport::update_sizes() { recalculate_sizes(); if (UsePerfData) { _eden_space_counters->update_capacity(pad_capacity(_eden_space_committed)); _eden_space_counters->update_used(eden_space_used()); // only the "to" survivor space is active, so we don't need to // update the counters for the "from" survivor space _to_space_counters->update_capacity(pad_capacity(_survivor_space_committed)); _to_space_counters->update_used(survivor_space_used()); _old_space_counters->update_capacity(pad_capacity(old_gen_committed())); _old_space_counters->update_used(old_gen_used()); _young_gen_counters->update_all(); _old_gen_counters->update_all(); MetaspaceCounters::update_performance_counters(); CompressedClassSpaceCounters::update_performance_counters(); } } void G1MonitoringSupport::update_eden_size() { // Recalculate everything. Should be fast enough and we are sure not to miss anything. recalculate_sizes(); if (UsePerfData) { _eden_space_counters->update_capacity(pad_capacity(_eden_space_committed)); _eden_space_counters->update_used(eden_space_used()); } } MemoryUsage G1MonitoringSupport::memory_usage() { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(InitialHeapSize, _overall_used, _overall_committed, _g1h->max_capacity()); } MemoryUsage G1MonitoringSupport::eden_space_memory_usage(size_t initial_size, size_t max_size) { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(initial_size, eden_space_used(), _eden_space_committed, max_size); } MemoryUsage G1MonitoringSupport::survivor_space_memory_usage(size_t initial_size, size_t max_size) { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(initial_size, survivor_space_used(), _survivor_space_committed, max_size); } MemoryUsage G1MonitoringSupport::old_space_memory_usage(size_t initial_size, size_t max_size) { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(initial_size, old_space_used(), _old_space_committed, max_size); } MemoryUsage G1MonitoringSupport::archive_space_memory_usage(size_t initial_size, size_t max_size) { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(initial_size, archive_space_used(), _archive_space_committed, max_size); } MemoryUsage G1MonitoringSupport::humongous_space_memory_usage(size_t initial_size, size_t max_size) { MutexLockerEx x(MonitoringSupport_lock, Mutex::_no_safepoint_check_flag); return MemoryUsage(initial_size, humongous_space_used(), _humongous_space_committed, max_size); } TraceConcMemoryManagerStats::TraceConcMemoryManagerStats(Stage stage, GCCause::Cause cause) : TraceMemoryManagerStats() { GCMemoryManager* manager = G1CollectedHeap::heap()->g1mm()->conc_memory_manager(); switch (stage) { case CycleStart: initialize(manager /* GC manager */, cause /* cause of the GC */, true /* allMemoryPoolsAffected */, true /* recordGCBeginTime */, true /* recordPreGCUsage */, false /* recordPeakUsage */, false /* recordPostGCusage */, false /* recordAccumulatedGCTime */, false /* recordGCEndTime */, false /* countCollection */ ); break; case Remark: case Cleanup: initialize(manager /* GC manager */, cause /* cause of the GC */, true /* allMemoryPoolsAffected */, false /* recordGCBeginTime */, false /* recordPreGCUsage */, false /* recordPeakUsage */, false /* recordPostGCusage */, true /* recordAccumulatedGCTime */, false /* recordGCEndTime */, false /* countCollection */ ); break; case CycleEnd: initialize(manager /* GC manager */, cause /* cause of the GC */, true /* allMemoryPoolsAffected */, false /* recordGCBeginTime */, false /* recordPreGCUsage */, true /* recordPeakUsage */, true /* recordPostGCusage */, false /* recordAccumulatedGCTime */, true /* recordGCEndTime */, true /* countCollection */ ); break; default: ShouldNotReachHere(); break; } } G1MonitoringScope::G1MonitoringScope(G1MonitoringSupport* g1mm, bool full_gc, bool mixed_gc) : _tcs(full_gc ? g1mm->_full_collection_counters : g1mm->_incremental_collection_counters), _tms(full_gc ? &g1mm->_full_memory_manager : (g1mm->use_legacy_monitoring() ? &g1mm->_incremental_memory_manager : (mixed_gc ? &g1mm->_mixed_memory_manager : /* young */ &g1mm->_young_memory_manager)), g1mm->_g1h->gc_cause(), full_gc || (g1mm->use_legacy_monitoring() ? mixed_gc : true) /* allMemoryPoolsAffected */) { }