1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interp_masm_x86.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "oops/arrayOop.hpp"
  30 #include "oops/markOop.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/method.hpp"
  33 #include "prims/jvmtiExport.hpp"
  34 #include "prims/jvmtiRedefineClassesTrace.hpp"
  35 #include "prims/jvmtiThreadState.hpp"
  36 #include "runtime/basicLock.hpp"
  37 #include "runtime/biasedLocking.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "runtime/thread.inline.hpp"
  40 
  41 
  42 // Implementation of InterpreterMacroAssembler
  43 
  44 #ifdef CC_INTERP
  45 void InterpreterMacroAssembler::get_method(Register reg) {
  46   movptr(reg, Address(rbp, -((int)sizeof(BytecodeInterpreter) + 2 * wordSize)));
  47   movptr(reg, Address(reg, byte_offset_of(BytecodeInterpreter, _method)));
  48 }
  49 #endif // CC_INTERP
  50 
  51 #ifndef CC_INTERP
  52 
  53 void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
  54                                                   int number_of_arguments) {
  55   // interpreter specific
  56   //
  57   // Note: No need to save/restore bcp & locals (r13 & r14) pointer
  58   //       since these are callee saved registers and no blocking/
  59   //       GC can happen in leaf calls.
  60   // Further Note: DO NOT save/restore bcp/locals. If a caller has
  61   // already saved them so that it can use esi/edi as temporaries
  62   // then a save/restore here will DESTROY the copy the caller
  63   // saved! There used to be a save_bcp() that only happened in
  64   // the ASSERT path (no restore_bcp). Which caused bizarre failures
  65   // when jvm built with ASSERTs.
  66 #ifdef ASSERT
  67   {
  68     Label L;
  69     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
  70     jcc(Assembler::equal, L);
  71     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
  72          " last_sp != NULL");
  73     bind(L);
  74   }
  75 #endif
  76   // super call
  77   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
  78   // interpreter specific
  79   // Used to ASSERT that r13/r14 were equal to frame's bcp/locals
  80   // but since they may not have been saved (and we don't want to
  81   // save thme here (see note above) the assert is invalid.
  82 }
  83 
  84 void InterpreterMacroAssembler::call_VM_base(Register oop_result,
  85                                              Register java_thread,
  86                                              Register last_java_sp,
  87                                              address  entry_point,
  88                                              int      number_of_arguments,
  89                                              bool     check_exceptions) {
  90   // interpreter specific
  91   //
  92   // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
  93   //       really make a difference for these runtime calls, since they are
  94   //       slow anyway. Btw., bcp must be saved/restored since it may change
  95   //       due to GC.
  96   // assert(java_thread == noreg , "not expecting a precomputed java thread");
  97   save_bcp();
  98 #ifdef ASSERT
  99   {
 100     Label L;
 101     cmpptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD);
 102     jcc(Assembler::equal, L);
 103     stop("InterpreterMacroAssembler::call_VM_leaf_base:"
 104          " last_sp != NULL");
 105     bind(L);
 106   }
 107 #endif /* ASSERT */
 108   // super call
 109   MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
 110                                entry_point, number_of_arguments,
 111                                check_exceptions);
 112   // interpreter specific
 113   restore_bcp();
 114   restore_locals();
 115 }
 116 
 117 
 118 void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
 119   if (JvmtiExport::can_pop_frame()) {
 120     Label L;
 121     // Initiate popframe handling only if it is not already being
 122     // processed.  If the flag has the popframe_processing bit set, it
 123     // means that this code is called *during* popframe handling - we
 124     // don't want to reenter.
 125     // This method is only called just after the call into the vm in
 126     // call_VM_base, so the arg registers are available.
 127     movl(c_rarg0, Address(r15_thread, JavaThread::popframe_condition_offset()));
 128     testl(c_rarg0, JavaThread::popframe_pending_bit);
 129     jcc(Assembler::zero, L);
 130     testl(c_rarg0, JavaThread::popframe_processing_bit);
 131     jcc(Assembler::notZero, L);
 132     // Call Interpreter::remove_activation_preserving_args_entry() to get the
 133     // address of the same-named entrypoint in the generated interpreter code.
 134     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
 135     jmp(rax);
 136     bind(L);
 137   }
 138 }
 139 
 140 
 141 void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
 142   movptr(rcx, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 143   const Address tos_addr(rcx, JvmtiThreadState::earlyret_tos_offset());
 144   const Address oop_addr(rcx, JvmtiThreadState::earlyret_oop_offset());
 145   const Address val_addr(rcx, JvmtiThreadState::earlyret_value_offset());
 146   switch (state) {
 147     case atos: movptr(rax, oop_addr);
 148                movptr(oop_addr, (int32_t)NULL_WORD);
 149                verify_oop(rax, state);              break;
 150     case ltos: movptr(rax, val_addr);                 break;
 151     case btos:                                   // fall through
 152     case ztos:                                   // fall through
 153     case ctos:                                   // fall through
 154     case stos:                                   // fall through
 155     case itos: movl(rax, val_addr);                 break;
 156     case ftos: movflt(xmm0, val_addr);              break;
 157     case dtos: movdbl(xmm0, val_addr);              break;
 158     case vtos: /* nothing to do */                  break;
 159     default  : ShouldNotReachHere();
 160   }
 161   // Clean up tos value in the thread object
 162   movl(tos_addr,  (int) ilgl);
 163   movl(val_addr,  (int32_t) NULL_WORD);
 164 }
 165 
 166 
 167 void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
 168   if (JvmtiExport::can_force_early_return()) {
 169     Label L;
 170     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 171     testptr(c_rarg0, c_rarg0);
 172     jcc(Assembler::zero, L); // if (thread->jvmti_thread_state() == NULL) exit;
 173 
 174     // Initiate earlyret handling only if it is not already being processed.
 175     // If the flag has the earlyret_processing bit set, it means that this code
 176     // is called *during* earlyret handling - we don't want to reenter.
 177     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_state_offset()));
 178     cmpl(c_rarg0, JvmtiThreadState::earlyret_pending);
 179     jcc(Assembler::notEqual, L);
 180 
 181     // Call Interpreter::remove_activation_early_entry() to get the address of the
 182     // same-named entrypoint in the generated interpreter code.
 183     movptr(c_rarg0, Address(r15_thread, JavaThread::jvmti_thread_state_offset()));
 184     movl(c_rarg0, Address(c_rarg0, JvmtiThreadState::earlyret_tos_offset()));
 185     call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), c_rarg0);
 186     jmp(rax);
 187     bind(L);
 188   }
 189 }
 190 
 191 
 192 void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(
 193   Register reg,
 194   int bcp_offset) {
 195   assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
 196   load_unsigned_short(reg, Address(r13, bcp_offset));
 197   bswapl(reg);
 198   shrl(reg, 16);
 199 }
 200 
 201 
 202 void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
 203                                                        int bcp_offset,
 204                                                        size_t index_size) {
 205   assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
 206   if (index_size == sizeof(u2)) {
 207     load_unsigned_short(index, Address(r13, bcp_offset));
 208   } else if (index_size == sizeof(u4)) {
 209     assert(EnableInvokeDynamic, "giant index used only for JSR 292");
 210     movl(index, Address(r13, bcp_offset));
 211     // Check if the secondary index definition is still ~x, otherwise
 212     // we have to change the following assembler code to calculate the
 213     // plain index.
 214     assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
 215     notl(index);  // convert to plain index
 216   } else if (index_size == sizeof(u1)) {
 217     load_unsigned_byte(index, Address(r13, bcp_offset));
 218   } else {
 219     ShouldNotReachHere();
 220   }
 221 }
 222 
 223 
 224 void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
 225                                                            Register index,
 226                                                            int bcp_offset,
 227                                                            size_t index_size) {
 228   assert_different_registers(cache, index);
 229   get_cache_index_at_bcp(index, bcp_offset, index_size);
 230   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 231   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 232   // convert from field index to ConstantPoolCacheEntry index
 233   assert(exact_log2(in_words(ConstantPoolCacheEntry::size())) == 2, "else change next line");
 234   shll(index, 2);
 235 }
 236 
 237 
 238 void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
 239                                                                         Register index,
 240                                                                         Register bytecode,
 241                                                                         int byte_no,
 242                                                                         int bcp_offset,
 243                                                                         size_t index_size) {
 244   get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
 245   // We use a 32-bit load here since the layout of 64-bit words on
 246   // little-endian machines allow us that.
 247   movl(bytecode, Address(cache, index, Address::times_ptr, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::indices_offset()));
 248   const int shift_count = (1 + byte_no) * BitsPerByte;
 249   assert((byte_no == TemplateTable::f1_byte && shift_count == ConstantPoolCacheEntry::bytecode_1_shift) ||
 250          (byte_no == TemplateTable::f2_byte && shift_count == ConstantPoolCacheEntry::bytecode_2_shift),
 251          "correct shift count");
 252   shrl(bytecode, shift_count);
 253   assert(ConstantPoolCacheEntry::bytecode_1_mask == ConstantPoolCacheEntry::bytecode_2_mask, "common mask");
 254   andl(bytecode, ConstantPoolCacheEntry::bytecode_1_mask);
 255 }
 256 
 257 
 258 void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
 259                                                                Register tmp,
 260                                                                int bcp_offset,
 261                                                                size_t index_size) {
 262   assert(cache != tmp, "must use different register");
 263   get_cache_index_at_bcp(tmp, bcp_offset, index_size);
 264   assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
 265   // convert from field index to ConstantPoolCacheEntry index
 266   // and from word offset to byte offset
 267   assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord, "else change next line");
 268   shll(tmp, 2 + LogBytesPerWord);
 269   movptr(cache, Address(rbp, frame::interpreter_frame_cache_offset * wordSize));
 270   // skip past the header
 271   addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
 272   addptr(cache, tmp);  // construct pointer to cache entry
 273 }
 274 
 275 void InterpreterMacroAssembler::get_method_counters(Register method,
 276                                                     Register mcs, Label& skip) {
 277   Label has_counters;
 278   movptr(mcs, Address(method, Method::method_counters_offset()));
 279   testptr(mcs, mcs);
 280   jcc(Assembler::notZero, has_counters);
 281   call_VM(noreg, CAST_FROM_FN_PTR(address,
 282           InterpreterRuntime::build_method_counters), method);
 283   movptr(mcs, Address(method,Method::method_counters_offset()));
 284   testptr(mcs, mcs);
 285   jcc(Assembler::zero, skip); // No MethodCounters allocated, OutOfMemory
 286   bind(has_counters);
 287 }
 288 
 289 // Load object from cpool->resolved_references(index)
 290 void InterpreterMacroAssembler::load_resolved_reference_at_index(
 291                                            Register result, Register index) {
 292   assert_different_registers(result, index);
 293   // convert from field index to resolved_references() index and from
 294   // word index to byte offset. Since this is a java object, it can be compressed
 295   Register tmp = index;  // reuse
 296   shll(tmp, LogBytesPerHeapOop);
 297 
 298   get_constant_pool(result);
 299   // load pointer for resolved_references[] objArray
 300   movptr(result, Address(result, ConstantPool::resolved_references_offset_in_bytes()));
 301   // JNIHandles::resolve(obj);
 302   movptr(result, Address(result, 0));
 303   // Add in the index
 304   addptr(result, tmp);
 305   load_heap_oop(result, Address(result, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 306 }
 307 
 308 // Generate a subtype check: branch to ok_is_subtype if sub_klass is a
 309 // subtype of super_klass.
 310 //
 311 // Args:
 312 //      rax: superklass
 313 //      Rsub_klass: subklass
 314 //
 315 // Kills:
 316 //      rcx, rdi
 317 void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
 318                                                   Label& ok_is_subtype) {
 319   assert(Rsub_klass != rax, "rax holds superklass");
 320   assert(Rsub_klass != r14, "r14 holds locals");
 321   assert(Rsub_klass != r13, "r13 holds bcp");
 322   assert(Rsub_klass != rcx, "rcx holds 2ndary super array length");
 323   assert(Rsub_klass != rdi, "rdi holds 2ndary super array scan ptr");
 324 
 325   // Profile the not-null value's klass.
 326   profile_typecheck(rcx, Rsub_klass, rdi); // blows rcx, reloads rdi
 327 
 328   // Do the check.
 329   check_klass_subtype(Rsub_klass, rax, rcx, ok_is_subtype); // blows rcx
 330 
 331   // Profile the failure of the check.
 332   profile_typecheck_failed(rcx); // blows rcx
 333 }
 334 
 335 
 336 
 337 // Java Expression Stack
 338 
 339 void InterpreterMacroAssembler::pop_ptr(Register r) {
 340   pop(r);
 341 }
 342 
 343 void InterpreterMacroAssembler::pop_i(Register r) {
 344   // XXX can't use pop currently, upper half non clean
 345   movl(r, Address(rsp, 0));
 346   addptr(rsp, wordSize);
 347 }
 348 
 349 void InterpreterMacroAssembler::pop_l(Register r) {
 350   movq(r, Address(rsp, 0));
 351   addptr(rsp, 2 * Interpreter::stackElementSize);
 352 }
 353 
 354 void InterpreterMacroAssembler::pop_f(XMMRegister r) {
 355   movflt(r, Address(rsp, 0));
 356   addptr(rsp, wordSize);
 357 }
 358 
 359 void InterpreterMacroAssembler::pop_d(XMMRegister r) {
 360   movdbl(r, Address(rsp, 0));
 361   addptr(rsp, 2 * Interpreter::stackElementSize);
 362 }
 363 
 364 void InterpreterMacroAssembler::push_ptr(Register r) {
 365   push(r);
 366 }
 367 
 368 void InterpreterMacroAssembler::push_i(Register r) {
 369   push(r);
 370 }
 371 
 372 void InterpreterMacroAssembler::push_l(Register r) {
 373   subptr(rsp, 2 * wordSize);
 374   movq(Address(rsp, 0), r);
 375 }
 376 
 377 void InterpreterMacroAssembler::push_f(XMMRegister r) {
 378   subptr(rsp, wordSize);
 379   movflt(Address(rsp, 0), r);
 380 }
 381 
 382 void InterpreterMacroAssembler::push_d(XMMRegister r) {
 383   subptr(rsp, 2 * wordSize);
 384   movdbl(Address(rsp, 0), r);
 385 }
 386 
 387 void InterpreterMacroAssembler::pop(TosState state) {
 388   switch (state) {
 389   case atos: pop_ptr();                 break;
 390   case btos:
 391   case ztos:
 392   case ctos:
 393   case stos:
 394   case itos: pop_i();                   break;
 395   case ltos: pop_l();                   break;
 396   case ftos: pop_f();                   break;
 397   case dtos: pop_d();                   break;
 398   case vtos: /* nothing to do */        break;
 399   default:   ShouldNotReachHere();
 400   }
 401   verify_oop(rax, state);
 402 }
 403 
 404 void InterpreterMacroAssembler::push(TosState state) {
 405   verify_oop(rax, state);
 406   switch (state) {
 407   case atos: push_ptr();                break;
 408   case btos:
 409   case ztos:
 410   case ctos:
 411   case stos:
 412   case itos: push_i();                  break;
 413   case ltos: push_l();                  break;
 414   case ftos: push_f();                  break;
 415   case dtos: push_d();                  break;
 416   case vtos: /* nothing to do */        break;
 417   default  : ShouldNotReachHere();
 418   }
 419 }
 420 
 421 
 422 // Helpers for swap and dup
 423 void InterpreterMacroAssembler::load_ptr(int n, Register val) {
 424   movptr(val, Address(rsp, Interpreter::expr_offset_in_bytes(n)));
 425 }
 426 
 427 void InterpreterMacroAssembler::store_ptr(int n, Register val) {
 428   movptr(Address(rsp, Interpreter::expr_offset_in_bytes(n)), val);
 429 }
 430 
 431 
 432 void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
 433   // set sender sp
 434   lea(r13, Address(rsp, wordSize));
 435   // record last_sp
 436   movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), r13);
 437 }
 438 
 439 
 440 // Jump to from_interpreted entry of a call unless single stepping is possible
 441 // in this thread in which case we must call the i2i entry
 442 void InterpreterMacroAssembler::jump_from_interpreted(Register method, Register temp) {
 443   prepare_to_jump_from_interpreted();
 444 
 445   if (JvmtiExport::can_post_interpreter_events()) {
 446     Label run_compiled_code;
 447     // JVMTI events, such as single-stepping, are implemented partly by avoiding running
 448     // compiled code in threads for which the event is enabled.  Check here for
 449     // interp_only_mode if these events CAN be enabled.
 450     // interp_only is an int, on little endian it is sufficient to test the byte only
 451     // Is a cmpl faster?
 452     cmpb(Address(r15_thread, JavaThread::interp_only_mode_offset()), 0);
 453     jccb(Assembler::zero, run_compiled_code);
 454     jmp(Address(method, Method::interpreter_entry_offset()));
 455     bind(run_compiled_code);
 456   }
 457 
 458   jmp(Address(method, Method::from_interpreted_offset()));
 459 
 460 }
 461 
 462 
 463 // The following two routines provide a hook so that an implementation
 464 // can schedule the dispatch in two parts.  amd64 does not do this.
 465 void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
 466   // Nothing amd64 specific to be done here
 467 }
 468 
 469 void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
 470   dispatch_next(state, step);
 471 }
 472 
 473 void InterpreterMacroAssembler::dispatch_base(TosState state,
 474                                               address* table,
 475                                               bool verifyoop) {
 476   verify_FPU(1, state);
 477   if (VerifyActivationFrameSize) {
 478     Label L;
 479     mov(rcx, rbp);
 480     subptr(rcx, rsp);
 481     int32_t min_frame_size =
 482       (frame::link_offset - frame::interpreter_frame_initial_sp_offset) *
 483       wordSize;
 484     cmpptr(rcx, (int32_t)min_frame_size);
 485     jcc(Assembler::greaterEqual, L);
 486     stop("broken stack frame");
 487     bind(L);
 488   }
 489   if (verifyoop) {
 490     verify_oop(rax, state);
 491   }
 492   lea(rscratch1, ExternalAddress((address)table));
 493   jmp(Address(rscratch1, rbx, Address::times_8));
 494 }
 495 
 496 void InterpreterMacroAssembler::dispatch_only(TosState state) {
 497   dispatch_base(state, Interpreter::dispatch_table(state));
 498 }
 499 
 500 void InterpreterMacroAssembler::dispatch_only_normal(TosState state) {
 501   dispatch_base(state, Interpreter::normal_table(state));
 502 }
 503 
 504 void InterpreterMacroAssembler::dispatch_only_noverify(TosState state) {
 505   dispatch_base(state, Interpreter::normal_table(state), false);
 506 }
 507 
 508 
 509 void InterpreterMacroAssembler::dispatch_next(TosState state, int step) {
 510   // load next bytecode (load before advancing r13 to prevent AGI)
 511   load_unsigned_byte(rbx, Address(r13, step));
 512   // advance r13
 513   increment(r13, step);
 514   dispatch_base(state, Interpreter::dispatch_table(state));
 515 }
 516 
 517 void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
 518   // load current bytecode
 519   load_unsigned_byte(rbx, Address(r13, 0));
 520   dispatch_base(state, table);
 521 }
 522 
 523 // remove activation
 524 //
 525 // Unlock the receiver if this is a synchronized method.
 526 // Unlock any Java monitors from syncronized blocks.
 527 // Remove the activation from the stack.
 528 //
 529 // If there are locked Java monitors
 530 //    If throw_monitor_exception
 531 //       throws IllegalMonitorStateException
 532 //    Else if install_monitor_exception
 533 //       installs IllegalMonitorStateException
 534 //    Else
 535 //       no error processing
 536 void InterpreterMacroAssembler::remove_activation(
 537         TosState state,
 538         Register ret_addr,
 539         bool throw_monitor_exception,
 540         bool install_monitor_exception,
 541         bool notify_jvmdi) {
 542   // Note: Registers rdx xmm0 may be in use for the
 543   // result check if synchronized method
 544   Label unlocked, unlock, no_unlock;
 545 
 546   // get the value of _do_not_unlock_if_synchronized into rdx
 547   const Address do_not_unlock_if_synchronized(r15_thread,
 548     in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
 549   movbool(rdx, do_not_unlock_if_synchronized);
 550   movbool(do_not_unlock_if_synchronized, false); // reset the flag
 551 
 552  // get method access flags
 553   movptr(rbx, Address(rbp, frame::interpreter_frame_method_offset * wordSize));
 554   movl(rcx, Address(rbx, Method::access_flags_offset()));
 555   testl(rcx, JVM_ACC_SYNCHRONIZED);
 556   jcc(Assembler::zero, unlocked);
 557 
 558   // Don't unlock anything if the _do_not_unlock_if_synchronized flag
 559   // is set.
 560   testbool(rdx);
 561   jcc(Assembler::notZero, no_unlock);
 562 
 563   // unlock monitor
 564   push(state); // save result
 565 
 566   // BasicObjectLock will be first in list, since this is a
 567   // synchronized method. However, need to check that the object has
 568   // not been unlocked by an explicit monitorexit bytecode.
 569   const Address monitor(rbp, frame::interpreter_frame_initial_sp_offset *
 570                         wordSize - (int) sizeof(BasicObjectLock));
 571   // We use c_rarg1 so that if we go slow path it will be the correct
 572   // register for unlock_object to pass to VM directly
 573   lea(c_rarg1, monitor); // address of first monitor
 574 
 575   movptr(rax, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
 576   testptr(rax, rax);
 577   jcc(Assembler::notZero, unlock);
 578 
 579   pop(state);
 580   if (throw_monitor_exception) {
 581     // Entry already unlocked, need to throw exception
 582     call_VM(noreg, CAST_FROM_FN_PTR(address,
 583                    InterpreterRuntime::throw_illegal_monitor_state_exception));
 584     should_not_reach_here();
 585   } else {
 586     // Monitor already unlocked during a stack unroll. If requested,
 587     // install an illegal_monitor_state_exception.  Continue with
 588     // stack unrolling.
 589     if (install_monitor_exception) {
 590       call_VM(noreg, CAST_FROM_FN_PTR(address,
 591                      InterpreterRuntime::new_illegal_monitor_state_exception));
 592     }
 593     jmp(unlocked);
 594   }
 595 
 596   bind(unlock);
 597   unlock_object(c_rarg1);
 598   pop(state);
 599 
 600   // Check that for block-structured locking (i.e., that all locked
 601   // objects has been unlocked)
 602   bind(unlocked);
 603 
 604   // rax: Might contain return value
 605 
 606   // Check that all monitors are unlocked
 607   {
 608     Label loop, exception, entry, restart;
 609     const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
 610     const Address monitor_block_top(
 611         rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
 612     const Address monitor_block_bot(
 613         rbp, frame::interpreter_frame_initial_sp_offset * wordSize);
 614 
 615     bind(restart);
 616     // We use c_rarg1 so that if we go slow path it will be the correct
 617     // register for unlock_object to pass to VM directly
 618     movptr(c_rarg1, monitor_block_top); // points to current entry, starting
 619                                   // with top-most entry
 620     lea(rbx, monitor_block_bot);  // points to word before bottom of
 621                                   // monitor block
 622     jmp(entry);
 623 
 624     // Entry already locked, need to throw exception
 625     bind(exception);
 626 
 627     if (throw_monitor_exception) {
 628       // Throw exception
 629       MacroAssembler::call_VM(noreg,
 630                               CAST_FROM_FN_PTR(address, InterpreterRuntime::
 631                                    throw_illegal_monitor_state_exception));
 632       should_not_reach_here();
 633     } else {
 634       // Stack unrolling. Unlock object and install illegal_monitor_exception.
 635       // Unlock does not block, so don't have to worry about the frame.
 636       // We don't have to preserve c_rarg1 since we are going to throw an exception.
 637 
 638       push(state);
 639       unlock_object(c_rarg1);
 640       pop(state);
 641 
 642       if (install_monitor_exception) {
 643         call_VM(noreg, CAST_FROM_FN_PTR(address,
 644                                         InterpreterRuntime::
 645                                         new_illegal_monitor_state_exception));
 646       }
 647 
 648       jmp(restart);
 649     }
 650 
 651     bind(loop);
 652     // check if current entry is used
 653     cmpptr(Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()), (int32_t) NULL);
 654     jcc(Assembler::notEqual, exception);
 655 
 656     addptr(c_rarg1, entry_size); // otherwise advance to next entry
 657     bind(entry);
 658     cmpptr(c_rarg1, rbx); // check if bottom reached
 659     jcc(Assembler::notEqual, loop); // if not at bottom then check this entry
 660   }
 661 
 662   bind(no_unlock);
 663 
 664   // jvmti support
 665   if (notify_jvmdi) {
 666     notify_method_exit(state, NotifyJVMTI);    // preserve TOSCA
 667   } else {
 668     notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
 669   }
 670 
 671   // remove activation
 672   // get sender sp
 673   movptr(rbx,
 674          Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize));
 675   leave();                           // remove frame anchor
 676   pop(ret_addr);                     // get return address
 677   mov(rsp, rbx);                     // set sp to sender sp
 678 }
 679 
 680 #endif // C_INTERP
 681 
 682 // Lock object
 683 //
 684 // Args:
 685 //      c_rarg1: BasicObjectLock to be used for locking
 686 //
 687 // Kills:
 688 //      rax
 689 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
 690 //      rscratch1, rscratch2 (scratch regs)
 691 void InterpreterMacroAssembler::lock_object(Register lock_reg) {
 692   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
 693 
 694   if (UseHeavyMonitors) {
 695     call_VM(noreg,
 696             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 697             lock_reg);
 698   } else {
 699     Label done;
 700 
 701     const Register swap_reg = rax; // Must use rax for cmpxchg instruction
 702     const Register obj_reg = c_rarg3; // Will contain the oop
 703 
 704     const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
 705     const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
 706     const int mark_offset = lock_offset +
 707                             BasicLock::displaced_header_offset_in_bytes();
 708 
 709     Label slow_case;
 710 
 711     // Load object pointer into obj_reg %c_rarg3
 712     movptr(obj_reg, Address(lock_reg, obj_offset));
 713 
 714     if (UseBiasedLocking) {
 715       biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, done, &slow_case);
 716     }
 717 
 718     // Load immediate 1 into swap_reg %rax
 719     movl(swap_reg, 1);
 720 
 721     // Load (object->mark() | 1) into swap_reg %rax
 722     orptr(swap_reg, Address(obj_reg, 0));
 723 
 724     // Save (object->mark() | 1) into BasicLock's displaced header
 725     movptr(Address(lock_reg, mark_offset), swap_reg);
 726 
 727     assert(lock_offset == 0,
 728            "displached header must be first word in BasicObjectLock");
 729 
 730     if (os::is_MP()) lock();
 731     cmpxchgptr(lock_reg, Address(obj_reg, 0));
 732     if (PrintBiasedLockingStatistics) {
 733       cond_inc32(Assembler::zero,
 734                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 735     }
 736     jcc(Assembler::zero, done);
 737 
 738     // Test if the oopMark is an obvious stack pointer, i.e.,
 739     //  1) (mark & 7) == 0, and
 740     //  2) rsp <= mark < mark + os::pagesize()
 741     //
 742     // These 3 tests can be done by evaluating the following
 743     // expression: ((mark - rsp) & (7 - os::vm_page_size())),
 744     // assuming both stack pointer and pagesize have their
 745     // least significant 3 bits clear.
 746     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
 747     subptr(swap_reg, rsp);
 748     andptr(swap_reg, 7 - os::vm_page_size());
 749 
 750     // Save the test result, for recursive case, the result is zero
 751     movptr(Address(lock_reg, mark_offset), swap_reg);
 752 
 753     if (PrintBiasedLockingStatistics) {
 754       cond_inc32(Assembler::zero,
 755                  ExternalAddress((address) BiasedLocking::fast_path_entry_count_addr()));
 756     }
 757     jcc(Assembler::zero, done);
 758 
 759     bind(slow_case);
 760 
 761     // Call the runtime routine for slow case
 762     call_VM(noreg,
 763             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
 764             lock_reg);
 765 
 766     bind(done);
 767   }
 768 }
 769 
 770 
 771 // Unlocks an object. Used in monitorexit bytecode and
 772 // remove_activation.  Throws an IllegalMonitorException if object is
 773 // not locked by current thread.
 774 //
 775 // Args:
 776 //      c_rarg1: BasicObjectLock for lock
 777 //
 778 // Kills:
 779 //      rax
 780 //      c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
 781 //      rscratch1, rscratch2 (scratch regs)
 782 void InterpreterMacroAssembler::unlock_object(Register lock_reg) {
 783   assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
 784 
 785   if (UseHeavyMonitors) {
 786     call_VM(noreg,
 787             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 788             lock_reg);
 789   } else {
 790     Label done;
 791 
 792     const Register swap_reg   = rax;  // Must use rax for cmpxchg instruction
 793     const Register header_reg = c_rarg2;  // Will contain the old oopMark
 794     const Register obj_reg    = c_rarg3;  // Will contain the oop
 795 
 796     save_bcp(); // Save in case of exception
 797 
 798     // Convert from BasicObjectLock structure to object and BasicLock
 799     // structure Store the BasicLock address into %rax
 800     lea(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
 801 
 802     // Load oop into obj_reg(%c_rarg3)
 803     movptr(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
 804 
 805     // Free entry
 806     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);
 807 
 808     if (UseBiasedLocking) {
 809       biased_locking_exit(obj_reg, header_reg, done);
 810     }
 811 
 812     // Load the old header from BasicLock structure
 813     movptr(header_reg, Address(swap_reg,
 814                                BasicLock::displaced_header_offset_in_bytes()));
 815 
 816     // Test for recursion
 817     testptr(header_reg, header_reg);
 818 
 819     // zero for recursive case
 820     jcc(Assembler::zero, done);
 821 
 822     // Atomic swap back the old header
 823     if (os::is_MP()) lock();
 824     cmpxchgptr(header_reg, Address(obj_reg, 0));
 825 
 826     // zero for recursive case
 827     jcc(Assembler::zero, done);
 828 
 829     // Call the runtime routine for slow case.
 830     movptr(Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()),
 831          obj_reg); // restore obj
 832     call_VM(noreg,
 833             CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit),
 834             lock_reg);
 835 
 836     bind(done);
 837 
 838     restore_bcp();
 839   }
 840 }
 841 
 842 #ifndef CC_INTERP
 843 
 844 void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
 845                                                          Label& zero_continue) {
 846   assert(ProfileInterpreter, "must be profiling interpreter");
 847   movptr(mdp, Address(rbp, frame::interpreter_frame_mdx_offset * wordSize));
 848   testptr(mdp, mdp);
 849   jcc(Assembler::zero, zero_continue);
 850 }
 851 
 852 
 853 // Set the method data pointer for the current bcp.
 854 void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
 855   assert(ProfileInterpreter, "must be profiling interpreter");
 856   Label set_mdp;
 857   push(rax);
 858   push(rbx);
 859 
 860   get_method(rbx);
 861   // Test MDO to avoid the call if it is NULL.
 862   movptr(rax, Address(rbx, in_bytes(Method::method_data_offset())));
 863   testptr(rax, rax);
 864   jcc(Assembler::zero, set_mdp);
 865   // rbx: method
 866   // r13: bcp
 867   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), rbx, r13);
 868   // rax: mdi
 869   // mdo is guaranteed to be non-zero here, we checked for it before the call.
 870   movptr(rbx, Address(rbx, in_bytes(Method::method_data_offset())));
 871   addptr(rbx, in_bytes(MethodData::data_offset()));
 872   addptr(rax, rbx);
 873   bind(set_mdp);
 874   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), rax);
 875   pop(rbx);
 876   pop(rax);
 877 }
 878 
 879 void InterpreterMacroAssembler::verify_method_data_pointer() {
 880   assert(ProfileInterpreter, "must be profiling interpreter");
 881 #ifdef ASSERT
 882   Label verify_continue;
 883   push(rax);
 884   push(rbx);
 885   push(c_rarg3);
 886   push(c_rarg2);
 887   test_method_data_pointer(c_rarg3, verify_continue); // If mdp is zero, continue
 888   get_method(rbx);
 889 
 890   // If the mdp is valid, it will point to a DataLayout header which is
 891   // consistent with the bcp.  The converse is highly probable also.
 892   load_unsigned_short(c_rarg2,
 893                       Address(c_rarg3, in_bytes(DataLayout::bci_offset())));
 894   addptr(c_rarg2, Address(rbx, Method::const_offset()));
 895   lea(c_rarg2, Address(c_rarg2, ConstMethod::codes_offset()));
 896   cmpptr(c_rarg2, r13);
 897   jcc(Assembler::equal, verify_continue);
 898   // rbx: method
 899   // r13: bcp
 900   // c_rarg3: mdp
 901   call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
 902                rbx, r13, c_rarg3);
 903   bind(verify_continue);
 904   pop(c_rarg2);
 905   pop(c_rarg3);
 906   pop(rbx);
 907   pop(rax);
 908 #endif // ASSERT
 909 }
 910 
 911 
 912 void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
 913                                                 int constant,
 914                                                 Register value) {
 915   assert(ProfileInterpreter, "must be profiling interpreter");
 916   Address data(mdp_in, constant);
 917   movptr(data, value);
 918 }
 919 
 920 
 921 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 922                                                       int constant,
 923                                                       bool decrement) {
 924   // Counter address
 925   Address data(mdp_in, constant);
 926 
 927   increment_mdp_data_at(data, decrement);
 928 }
 929 
 930 void InterpreterMacroAssembler::increment_mdp_data_at(Address data,
 931                                                       bool decrement) {
 932   assert(ProfileInterpreter, "must be profiling interpreter");
 933   // %%% this does 64bit counters at best it is wasting space
 934   // at worst it is a rare bug when counters overflow
 935 
 936   if (decrement) {
 937     // Decrement the register.  Set condition codes.
 938     addptr(data, (int32_t) -DataLayout::counter_increment);
 939     // If the decrement causes the counter to overflow, stay negative
 940     Label L;
 941     jcc(Assembler::negative, L);
 942     addptr(data, (int32_t) DataLayout::counter_increment);
 943     bind(L);
 944   } else {
 945     assert(DataLayout::counter_increment == 1,
 946            "flow-free idiom only works with 1");
 947     // Increment the register.  Set carry flag.
 948     addptr(data, DataLayout::counter_increment);
 949     // If the increment causes the counter to overflow, pull back by 1.
 950     sbbptr(data, (int32_t)0);
 951   }
 952 }
 953 
 954 
 955 void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
 956                                                       Register reg,
 957                                                       int constant,
 958                                                       bool decrement) {
 959   Address data(mdp_in, reg, Address::times_1, constant);
 960 
 961   increment_mdp_data_at(data, decrement);
 962 }
 963 
 964 void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
 965                                                 int flag_byte_constant) {
 966   assert(ProfileInterpreter, "must be profiling interpreter");
 967   int header_offset = in_bytes(DataLayout::header_offset());
 968   int header_bits = DataLayout::flag_mask_to_header_mask(flag_byte_constant);
 969   // Set the flag
 970   orl(Address(mdp_in, header_offset), header_bits);
 971 }
 972 
 973 
 974 
 975 void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
 976                                                  int offset,
 977                                                  Register value,
 978                                                  Register test_value_out,
 979                                                  Label& not_equal_continue) {
 980   assert(ProfileInterpreter, "must be profiling interpreter");
 981   if (test_value_out == noreg) {
 982     cmpptr(value, Address(mdp_in, offset));
 983   } else {
 984     // Put the test value into a register, so caller can use it:
 985     movptr(test_value_out, Address(mdp_in, offset));
 986     cmpptr(test_value_out, value);
 987   }
 988   jcc(Assembler::notEqual, not_equal_continue);
 989 }
 990 
 991 
 992 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
 993                                                      int offset_of_disp) {
 994   assert(ProfileInterpreter, "must be profiling interpreter");
 995   Address disp_address(mdp_in, offset_of_disp);
 996   addptr(mdp_in, disp_address);
 997   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
 998 }
 999 
1000 
1001 void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
1002                                                      Register reg,
1003                                                      int offset_of_disp) {
1004   assert(ProfileInterpreter, "must be profiling interpreter");
1005   Address disp_address(mdp_in, reg, Address::times_1, offset_of_disp);
1006   addptr(mdp_in, disp_address);
1007   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1008 }
1009 
1010 
1011 void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
1012                                                        int constant) {
1013   assert(ProfileInterpreter, "must be profiling interpreter");
1014   addptr(mdp_in, constant);
1015   movptr(Address(rbp, frame::interpreter_frame_mdx_offset * wordSize), mdp_in);
1016 }
1017 
1018 
1019 void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
1020   assert(ProfileInterpreter, "must be profiling interpreter");
1021   push(return_bci); // save/restore across call_VM
1022   call_VM(noreg,
1023           CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
1024           return_bci);
1025   pop(return_bci);
1026 }
1027 
1028 
1029 void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
1030                                                      Register bumped_count) {
1031   if (ProfileInterpreter) {
1032     Label profile_continue;
1033 
1034     // If no method data exists, go to profile_continue.
1035     // Otherwise, assign to mdp
1036     test_method_data_pointer(mdp, profile_continue);
1037 
1038     // We are taking a branch.  Increment the taken count.
1039     // We inline increment_mdp_data_at to return bumped_count in a register
1040     //increment_mdp_data_at(mdp, in_bytes(JumpData::taken_offset()));
1041     Address data(mdp, in_bytes(JumpData::taken_offset()));
1042     movptr(bumped_count, data);
1043     assert(DataLayout::counter_increment == 1,
1044             "flow-free idiom only works with 1");
1045     addptr(bumped_count, DataLayout::counter_increment);
1046     sbbptr(bumped_count, 0);
1047     movptr(data, bumped_count); // Store back out
1048 
1049     // The method data pointer needs to be updated to reflect the new target.
1050     update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
1051     bind(profile_continue);
1052   }
1053 }
1054 
1055 
1056 void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
1057   if (ProfileInterpreter) {
1058     Label profile_continue;
1059 
1060     // If no method data exists, go to profile_continue.
1061     test_method_data_pointer(mdp, profile_continue);
1062 
1063     // We are taking a branch.  Increment the not taken count.
1064     increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
1065 
1066     // The method data pointer needs to be updated to correspond to
1067     // the next bytecode
1068     update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
1069     bind(profile_continue);
1070   }
1071 }
1072 
1073 void InterpreterMacroAssembler::profile_call(Register mdp) {
1074   if (ProfileInterpreter) {
1075     Label profile_continue;
1076 
1077     // If no method data exists, go to profile_continue.
1078     test_method_data_pointer(mdp, profile_continue);
1079 
1080     // We are making a call.  Increment the count.
1081     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1082 
1083     // The method data pointer needs to be updated to reflect the new target.
1084     update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
1085     bind(profile_continue);
1086   }
1087 }
1088 
1089 
1090 void InterpreterMacroAssembler::profile_final_call(Register mdp) {
1091   if (ProfileInterpreter) {
1092     Label profile_continue;
1093 
1094     // If no method data exists, go to profile_continue.
1095     test_method_data_pointer(mdp, profile_continue);
1096 
1097     // We are making a call.  Increment the count.
1098     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1099 
1100     // The method data pointer needs to be updated to reflect the new target.
1101     update_mdp_by_constant(mdp,
1102                            in_bytes(VirtualCallData::
1103                                     virtual_call_data_size()));
1104     bind(profile_continue);
1105   }
1106 }
1107 
1108 
1109 void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
1110                                                      Register mdp,
1111                                                      Register reg2,
1112                                                      bool receiver_can_be_null) {
1113   if (ProfileInterpreter) {
1114     Label profile_continue;
1115 
1116     // If no method data exists, go to profile_continue.
1117     test_method_data_pointer(mdp, profile_continue);
1118 
1119     Label skip_receiver_profile;
1120     if (receiver_can_be_null) {
1121       Label not_null;
1122       testptr(receiver, receiver);
1123       jccb(Assembler::notZero, not_null);
1124       // We are making a call.  Increment the count for null receiver.
1125       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1126       jmp(skip_receiver_profile);
1127       bind(not_null);
1128     }
1129 
1130     // Record the receiver type.
1131     record_klass_in_profile(receiver, mdp, reg2, true);
1132     bind(skip_receiver_profile);
1133 
1134     // The method data pointer needs to be updated to reflect the new target.
1135     update_mdp_by_constant(mdp,
1136                            in_bytes(VirtualCallData::
1137                                     virtual_call_data_size()));
1138     bind(profile_continue);
1139   }
1140 }
1141 
1142 // This routine creates a state machine for updating the multi-row
1143 // type profile at a virtual call site (or other type-sensitive bytecode).
1144 // The machine visits each row (of receiver/count) until the receiver type
1145 // is found, or until it runs out of rows.  At the same time, it remembers
1146 // the location of the first empty row.  (An empty row records null for its
1147 // receiver, and can be allocated for a newly-observed receiver type.)
1148 // Because there are two degrees of freedom in the state, a simple linear
1149 // search will not work; it must be a decision tree.  Hence this helper
1150 // function is recursive, to generate the required tree structured code.
1151 // It's the interpreter, so we are trading off code space for speed.
1152 // See below for example code.
1153 void InterpreterMacroAssembler::record_klass_in_profile_helper(
1154                                         Register receiver, Register mdp,
1155                                         Register reg2, int start_row,
1156                                         Label& done, bool is_virtual_call) {
1157   if (TypeProfileWidth == 0) {
1158     if (is_virtual_call) {
1159       increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1160     }
1161     return;
1162   }
1163 
1164   int last_row = VirtualCallData::row_limit() - 1;
1165   assert(start_row <= last_row, "must be work left to do");
1166   // Test this row for both the receiver and for null.
1167   // Take any of three different outcomes:
1168   //   1. found receiver => increment count and goto done
1169   //   2. found null => keep looking for case 1, maybe allocate this cell
1170   //   3. found something else => keep looking for cases 1 and 2
1171   // Case 3 is handled by a recursive call.
1172   for (int row = start_row; row <= last_row; row++) {
1173     Label next_test;
1174     bool test_for_null_also = (row == start_row);
1175 
1176     // See if the receiver is receiver[n].
1177     int recvr_offset = in_bytes(VirtualCallData::receiver_offset(row));
1178     test_mdp_data_at(mdp, recvr_offset, receiver,
1179                      (test_for_null_also ? reg2 : noreg),
1180                      next_test);
1181     // (Reg2 now contains the receiver from the CallData.)
1182 
1183     // The receiver is receiver[n].  Increment count[n].
1184     int count_offset = in_bytes(VirtualCallData::receiver_count_offset(row));
1185     increment_mdp_data_at(mdp, count_offset);
1186     jmp(done);
1187     bind(next_test);
1188 
1189     if (test_for_null_also) {
1190       Label found_null;
1191       // Failed the equality check on receiver[n]...  Test for null.
1192       testptr(reg2, reg2);
1193       if (start_row == last_row) {
1194         // The only thing left to do is handle the null case.
1195         if (is_virtual_call) {
1196           jccb(Assembler::zero, found_null);
1197           // Receiver did not match any saved receiver and there is no empty row for it.
1198           // Increment total counter to indicate polymorphic case.
1199           increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1200           jmp(done);
1201           bind(found_null);
1202         } else {
1203           jcc(Assembler::notZero, done);
1204         }
1205         break;
1206       }
1207       // Since null is rare, make it be the branch-taken case.
1208       jcc(Assembler::zero, found_null);
1209 
1210       // Put all the "Case 3" tests here.
1211       record_klass_in_profile_helper(receiver, mdp, reg2, start_row + 1, done, is_virtual_call);
1212 
1213       // Found a null.  Keep searching for a matching receiver,
1214       // but remember that this is an empty (unused) slot.
1215       bind(found_null);
1216     }
1217   }
1218 
1219   // In the fall-through case, we found no matching receiver, but we
1220   // observed the receiver[start_row] is NULL.
1221 
1222   // Fill in the receiver field and increment the count.
1223   int recvr_offset = in_bytes(VirtualCallData::receiver_offset(start_row));
1224   set_mdp_data_at(mdp, recvr_offset, receiver);
1225   int count_offset = in_bytes(VirtualCallData::receiver_count_offset(start_row));
1226   movl(reg2, DataLayout::counter_increment);
1227   set_mdp_data_at(mdp, count_offset, reg2);
1228   if (start_row > 0) {
1229     jmp(done);
1230   }
1231 }
1232 
1233 // Example state machine code for three profile rows:
1234 //   // main copy of decision tree, rooted at row[1]
1235 //   if (row[0].rec == rec) { row[0].incr(); goto done; }
1236 //   if (row[0].rec != NULL) {
1237 //     // inner copy of decision tree, rooted at row[1]
1238 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1239 //     if (row[1].rec != NULL) {
1240 //       // degenerate decision tree, rooted at row[2]
1241 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1242 //       if (row[2].rec != NULL) { count.incr(); goto done; } // overflow
1243 //       row[2].init(rec); goto done;
1244 //     } else {
1245 //       // remember row[1] is empty
1246 //       if (row[2].rec == rec) { row[2].incr(); goto done; }
1247 //       row[1].init(rec); goto done;
1248 //     }
1249 //   } else {
1250 //     // remember row[0] is empty
1251 //     if (row[1].rec == rec) { row[1].incr(); goto done; }
1252 //     if (row[2].rec == rec) { row[2].incr(); goto done; }
1253 //     row[0].init(rec); goto done;
1254 //   }
1255 //   done:
1256 
1257 void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
1258                                                         Register mdp, Register reg2,
1259                                                         bool is_virtual_call) {
1260   assert(ProfileInterpreter, "must be profiling");
1261   Label done;
1262 
1263   record_klass_in_profile_helper(receiver, mdp, reg2, 0, done, is_virtual_call);
1264 
1265   bind (done);
1266 }
1267 
1268 void InterpreterMacroAssembler::profile_ret(Register return_bci,
1269                                             Register mdp) {
1270   if (ProfileInterpreter) {
1271     Label profile_continue;
1272     uint row;
1273 
1274     // If no method data exists, go to profile_continue.
1275     test_method_data_pointer(mdp, profile_continue);
1276 
1277     // Update the total ret count.
1278     increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
1279 
1280     for (row = 0; row < RetData::row_limit(); row++) {
1281       Label next_test;
1282 
1283       // See if return_bci is equal to bci[n]:
1284       test_mdp_data_at(mdp,
1285                        in_bytes(RetData::bci_offset(row)),
1286                        return_bci, noreg,
1287                        next_test);
1288 
1289       // return_bci is equal to bci[n].  Increment the count.
1290       increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
1291 
1292       // The method data pointer needs to be updated to reflect the new target.
1293       update_mdp_by_offset(mdp,
1294                            in_bytes(RetData::bci_displacement_offset(row)));
1295       jmp(profile_continue);
1296       bind(next_test);
1297     }
1298 
1299     update_mdp_for_ret(return_bci);
1300 
1301     bind(profile_continue);
1302   }
1303 }
1304 
1305 
1306 void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
1307   if (ProfileInterpreter) {
1308     Label profile_continue;
1309 
1310     // If no method data exists, go to profile_continue.
1311     test_method_data_pointer(mdp, profile_continue);
1312 
1313     set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
1314 
1315     // The method data pointer needs to be updated.
1316     int mdp_delta = in_bytes(BitData::bit_data_size());
1317     if (TypeProfileCasts) {
1318       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1319     }
1320     update_mdp_by_constant(mdp, mdp_delta);
1321 
1322     bind(profile_continue);
1323   }
1324 }
1325 
1326 
1327 void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
1328   if (ProfileInterpreter && TypeProfileCasts) {
1329     Label profile_continue;
1330 
1331     // If no method data exists, go to profile_continue.
1332     test_method_data_pointer(mdp, profile_continue);
1333 
1334     int count_offset = in_bytes(CounterData::count_offset());
1335     // Back up the address, since we have already bumped the mdp.
1336     count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
1337 
1338     // *Decrement* the counter.  We expect to see zero or small negatives.
1339     increment_mdp_data_at(mdp, count_offset, true);
1340 
1341     bind (profile_continue);
1342   }
1343 }
1344 
1345 
1346 void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
1347   if (ProfileInterpreter) {
1348     Label profile_continue;
1349 
1350     // If no method data exists, go to profile_continue.
1351     test_method_data_pointer(mdp, profile_continue);
1352 
1353     // The method data pointer needs to be updated.
1354     int mdp_delta = in_bytes(BitData::bit_data_size());
1355     if (TypeProfileCasts) {
1356       mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
1357 
1358       // Record the object type.
1359       record_klass_in_profile(klass, mdp, reg2, false);
1360     }
1361     update_mdp_by_constant(mdp, mdp_delta);
1362 
1363     bind(profile_continue);
1364   }
1365 }
1366 
1367 
1368 void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
1369   if (ProfileInterpreter) {
1370     Label profile_continue;
1371 
1372     // If no method data exists, go to profile_continue.
1373     test_method_data_pointer(mdp, profile_continue);
1374 
1375     // Update the default case count
1376     increment_mdp_data_at(mdp,
1377                           in_bytes(MultiBranchData::default_count_offset()));
1378 
1379     // The method data pointer needs to be updated.
1380     update_mdp_by_offset(mdp,
1381                          in_bytes(MultiBranchData::
1382                                   default_displacement_offset()));
1383 
1384     bind(profile_continue);
1385   }
1386 }
1387 
1388 
1389 void InterpreterMacroAssembler::profile_switch_case(Register index,
1390                                                     Register mdp,
1391                                                     Register reg2) {
1392   if (ProfileInterpreter) {
1393     Label profile_continue;
1394 
1395     // If no method data exists, go to profile_continue.
1396     test_method_data_pointer(mdp, profile_continue);
1397 
1398     // Build the base (index * per_case_size_in_bytes()) +
1399     // case_array_offset_in_bytes()
1400     movl(reg2, in_bytes(MultiBranchData::per_case_size()));
1401     imulptr(index, reg2); // XXX l ?
1402     addptr(index, in_bytes(MultiBranchData::case_array_offset())); // XXX l ?
1403 
1404     // Update the case count
1405     increment_mdp_data_at(mdp,
1406                           index,
1407                           in_bytes(MultiBranchData::relative_count_offset()));
1408 
1409     // The method data pointer needs to be updated.
1410     update_mdp_by_offset(mdp,
1411                          index,
1412                          in_bytes(MultiBranchData::
1413                                   relative_displacement_offset()));
1414 
1415     bind(profile_continue);
1416   }
1417 }
1418 
1419 
1420 
1421 void InterpreterMacroAssembler::verify_oop(Register reg, TosState state) {
1422   if (state == atos) {
1423     MacroAssembler::verify_oop(reg);
1424   }
1425 }
1426 
1427 void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) {
1428 }
1429 #endif // !CC_INTERP
1430 
1431 
1432 void InterpreterMacroAssembler::notify_method_entry() {
1433   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1434   // track stack depth.  If it is possible to enter interp_only_mode we add
1435   // the code to check if the event should be sent.
1436   if (JvmtiExport::can_post_interpreter_events()) {
1437     Label L;
1438     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1439     testl(rdx, rdx);
1440     jcc(Assembler::zero, L);
1441     call_VM(noreg, CAST_FROM_FN_PTR(address,
1442                                     InterpreterRuntime::post_method_entry));
1443     bind(L);
1444   }
1445 
1446   {
1447     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1448     get_method(c_rarg1);
1449     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
1450                  r15_thread, c_rarg1);
1451   }
1452 
1453   // RedefineClasses() tracing support for obsolete method entry
1454   if (RC_TRACE_IN_RANGE(0x00001000, 0x00002000)) {
1455     get_method(c_rarg1);
1456     call_VM_leaf(
1457       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
1458       r15_thread, c_rarg1);
1459   }
1460 }
1461 
1462 
1463 void InterpreterMacroAssembler::notify_method_exit(
1464     TosState state, NotifyMethodExitMode mode) {
1465   // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
1466   // track stack depth.  If it is possible to enter interp_only_mode we add
1467   // the code to check if the event should be sent.
1468   if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
1469     Label L;
1470     // Note: frame::interpreter_frame_result has a dependency on how the
1471     // method result is saved across the call to post_method_exit. If this
1472     // is changed then the interpreter_frame_result implementation will
1473     // need to be updated too.
1474 
1475     // For c++ interpreter the result is always stored at a known location in the frame
1476     // template interpreter will leave it on the top of the stack.
1477     NOT_CC_INTERP(push(state);)
1478     movl(rdx, Address(r15_thread, JavaThread::interp_only_mode_offset()));
1479     testl(rdx, rdx);
1480     jcc(Assembler::zero, L);
1481     call_VM(noreg,
1482             CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
1483     bind(L);
1484     NOT_CC_INTERP(pop(state));
1485   }
1486 
1487   {
1488     SkipIfEqual skip(this, &DTraceMethodProbes, false);
1489     NOT_CC_INTERP(push(state));
1490     get_method(c_rarg1);
1491     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
1492                  r15_thread, c_rarg1);
1493     NOT_CC_INTERP(pop(state));
1494   }
1495 }
1496 
1497 // Jump if ((*counter_addr += increment) & mask) satisfies the condition.
1498 void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
1499                                                         int increment, int mask,
1500                                                         Register scratch, bool preloaded,
1501                                                         Condition cond, Label* where) {
1502   if (!preloaded) {
1503     movl(scratch, counter_addr);
1504   }
1505   incrementl(scratch, increment);
1506   movl(counter_addr, scratch);
1507   andl(scratch, mask);
1508   if (where != NULL) {
1509     jcc(cond, *where);
1510   }
1511 }