1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "interpreter/interpreter.hpp"
  28 #include "interpreter/interpreterRuntime.hpp"
  29 #include "interpreter/templateTable.hpp"
  30 #include "memory/universe.inline.hpp"
  31 #include "oops/methodData.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "runtime/synchronizer.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifndef CC_INTERP
  41 #define __ _masm->
  42 
  43 //----------------------------------------------------------------------------------------------------
  44 // Platform-dependent initialization
  45 
  46 void TemplateTable::pd_initialize() {
  47   // No i486 specific initialization
  48 }
  49 
  50 //----------------------------------------------------------------------------------------------------
  51 // Address computation
  52 
  53 // local variables
  54 static inline Address iaddress(int n)            {
  55   return Address(rdi, Interpreter::local_offset_in_bytes(n));
  56 }
  57 
  58 static inline Address laddress(int n)            { return iaddress(n + 1); }
  59 static inline Address haddress(int n)            { return iaddress(n + 0); }
  60 static inline Address faddress(int n)            { return iaddress(n); }
  61 static inline Address daddress(int n)            { return laddress(n); }
  62 static inline Address aaddress(int n)            { return iaddress(n); }
  63 
  64 static inline Address iaddress(Register r)       {
  65   return Address(rdi, r, Interpreter::stackElementScale());
  66 }
  67 static inline Address laddress(Register r)       {
  68   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(1));
  69 }
  70 static inline Address haddress(Register r)       {
  71   return Address(rdi, r, Interpreter::stackElementScale(), Interpreter::local_offset_in_bytes(0));
  72 }
  73 
  74 static inline Address faddress(Register r)       { return iaddress(r); }
  75 static inline Address daddress(Register r)       { return laddress(r); }
  76 static inline Address aaddress(Register r)       { return iaddress(r); }
  77 
  78 // expression stack
  79 // (Note: Must not use symmetric equivalents at_rsp_m1/2 since they store
  80 // data beyond the rsp which is potentially unsafe in an MT environment;
  81 // an interrupt may overwrite that data.)
  82 static inline Address at_rsp   () {
  83   return Address(rsp, 0);
  84 }
  85 
  86 // At top of Java expression stack which may be different than rsp().  It
  87 // isn't for category 1 objects.
  88 static inline Address at_tos   () {
  89   Address tos = Address(rsp,  Interpreter::expr_offset_in_bytes(0));
  90   return tos;
  91 }
  92 
  93 static inline Address at_tos_p1() {
  94   return Address(rsp,  Interpreter::expr_offset_in_bytes(1));
  95 }
  96 
  97 static inline Address at_tos_p2() {
  98   return Address(rsp,  Interpreter::expr_offset_in_bytes(2));
  99 }
 100 
 101 // Condition conversion
 102 static Assembler::Condition j_not(TemplateTable::Condition cc) {
 103   switch (cc) {
 104     case TemplateTable::equal        : return Assembler::notEqual;
 105     case TemplateTable::not_equal    : return Assembler::equal;
 106     case TemplateTable::less         : return Assembler::greaterEqual;
 107     case TemplateTable::less_equal   : return Assembler::greater;
 108     case TemplateTable::greater      : return Assembler::lessEqual;
 109     case TemplateTable::greater_equal: return Assembler::less;
 110   }
 111   ShouldNotReachHere();
 112   return Assembler::zero;
 113 }
 114 
 115 
 116 //----------------------------------------------------------------------------------------------------
 117 // Miscelaneous helper routines
 118 
 119 // Store an oop (or NULL) at the address described by obj.
 120 // If val == noreg this means store a NULL
 121 
 122 static void do_oop_store(InterpreterMacroAssembler* _masm,
 123                          Address obj,
 124                          Register val,
 125                          BarrierSet::Name barrier,
 126                          bool precise) {
 127   assert(val == noreg || val == rax, "parameter is just for looks");
 128   switch (barrier) {
 129 #if INCLUDE_ALL_GCS
 130     case BarrierSet::G1SATBCT:
 131     case BarrierSet::G1SATBCTLogging:
 132       {
 133         // flatten object address if needed
 134         // We do it regardless of precise because we need the registers
 135         if (obj.index() == noreg && obj.disp() == 0) {
 136           if (obj.base() != rdx) {
 137             __ movl(rdx, obj.base());
 138           }
 139         } else {
 140           __ leal(rdx, obj);
 141         }
 142         __ get_thread(rcx);
 143         __ save_bcp();
 144         __ g1_write_barrier_pre(rdx /* obj */,
 145                                 rbx /* pre_val */,
 146                                 rcx /* thread */,
 147                                 rsi /* tmp */,
 148                                 val != noreg /* tosca_live */,
 149                                 false /* expand_call */);
 150 
 151         // Do the actual store
 152         // noreg means NULL
 153         if (val == noreg) {
 154           __ movptr(Address(rdx, 0), NULL_WORD);
 155           // No post barrier for NULL
 156         } else {
 157           __ movl(Address(rdx, 0), val);
 158           __ g1_write_barrier_post(rdx /* store_adr */,
 159                                    val /* new_val */,
 160                                    rcx /* thread */,
 161                                    rbx /* tmp */,
 162                                    rsi /* tmp2 */);
 163         }
 164         __ restore_bcp();
 165 
 166       }
 167       break;
 168 #endif // INCLUDE_ALL_GCS
 169     case BarrierSet::CardTableModRef:
 170     case BarrierSet::CardTableExtension:
 171       {
 172         if (val == noreg) {
 173           __ movptr(obj, NULL_WORD);
 174         } else {
 175           __ movl(obj, val);
 176           // flatten object address if needed
 177           if (!precise || (obj.index() == noreg && obj.disp() == 0)) {
 178             __ store_check(obj.base());
 179           } else {
 180             __ leal(rdx, obj);
 181             __ store_check(rdx);
 182           }
 183         }
 184       }
 185       break;
 186     case BarrierSet::ModRef:
 187     case BarrierSet::Other:
 188       if (val == noreg) {
 189         __ movptr(obj, NULL_WORD);
 190       } else {
 191         __ movl(obj, val);
 192       }
 193       break;
 194     default      :
 195       ShouldNotReachHere();
 196 
 197   }
 198 }
 199 
 200 Address TemplateTable::at_bcp(int offset) {
 201   assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
 202   return Address(rsi, offset);
 203 }
 204 
 205 
 206 void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
 207                                    Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
 208                                    int byte_no) {
 209   if (!RewriteBytecodes)  return;
 210   Label L_patch_done;
 211 
 212   switch (bc) {
 213   case Bytecodes::_fast_aputfield:
 214   case Bytecodes::_fast_bputfield:
 215   case Bytecodes::_fast_zputfield:
 216   case Bytecodes::_fast_cputfield:
 217   case Bytecodes::_fast_dputfield:
 218   case Bytecodes::_fast_fputfield:
 219   case Bytecodes::_fast_iputfield:
 220   case Bytecodes::_fast_lputfield:
 221   case Bytecodes::_fast_sputfield:
 222     {
 223       // We skip bytecode quickening for putfield instructions when
 224       // the put_code written to the constant pool cache is zero.
 225       // This is required so that every execution of this instruction
 226       // calls out to InterpreterRuntime::resolve_get_put to do
 227       // additional, required work.
 228       assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
 229       assert(load_bc_into_bc_reg, "we use bc_reg as temp");
 230       __ get_cache_and_index_and_bytecode_at_bcp(bc_reg, temp_reg, temp_reg, byte_no, 1);
 231       __ movl(bc_reg, bc);
 232       __ cmpl(temp_reg, (int) 0);
 233       __ jcc(Assembler::zero, L_patch_done);  // don't patch
 234     }
 235     break;
 236   default:
 237     assert(byte_no == -1, "sanity");
 238     // the pair bytecodes have already done the load.
 239     if (load_bc_into_bc_reg) {
 240       __ movl(bc_reg, bc);
 241     }
 242   }
 243 
 244   if (JvmtiExport::can_post_breakpoint()) {
 245     Label L_fast_patch;
 246     // if a breakpoint is present we can't rewrite the stream directly
 247     __ movzbl(temp_reg, at_bcp(0));
 248     __ cmpl(temp_reg, Bytecodes::_breakpoint);
 249     __ jcc(Assembler::notEqual, L_fast_patch);
 250     __ get_method(temp_reg);
 251     // Let breakpoint table handling rewrite to quicker bytecode
 252     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), temp_reg, rsi, bc_reg);
 253 #ifndef ASSERT
 254     __ jmpb(L_patch_done);
 255 #else
 256     __ jmp(L_patch_done);
 257 #endif
 258     __ bind(L_fast_patch);
 259   }
 260 
 261 #ifdef ASSERT
 262   Label L_okay;
 263   __ load_unsigned_byte(temp_reg, at_bcp(0));
 264   __ cmpl(temp_reg, (int)Bytecodes::java_code(bc));
 265   __ jccb(Assembler::equal, L_okay);
 266   __ cmpl(temp_reg, bc_reg);
 267   __ jcc(Assembler::equal, L_okay);
 268   __ stop("patching the wrong bytecode");
 269   __ bind(L_okay);
 270 #endif
 271 
 272   // patch bytecode
 273   __ movb(at_bcp(0), bc_reg);
 274   __ bind(L_patch_done);
 275 }
 276 
 277 //----------------------------------------------------------------------------------------------------
 278 // Individual instructions
 279 
 280 void TemplateTable::nop() {
 281   transition(vtos, vtos);
 282   // nothing to do
 283 }
 284 
 285 void TemplateTable::shouldnotreachhere() {
 286   transition(vtos, vtos);
 287   __ stop("shouldnotreachhere bytecode");
 288 }
 289 
 290 
 291 
 292 void TemplateTable::aconst_null() {
 293   transition(vtos, atos);
 294   __ xorptr(rax, rax);
 295 }
 296 
 297 
 298 void TemplateTable::iconst(int value) {
 299   transition(vtos, itos);
 300   if (value == 0) {
 301     __ xorptr(rax, rax);
 302   } else {
 303     __ movptr(rax, value);
 304   }
 305 }
 306 
 307 
 308 void TemplateTable::lconst(int value) {
 309   transition(vtos, ltos);
 310   if (value == 0) {
 311     __ xorptr(rax, rax);
 312   } else {
 313     __ movptr(rax, value);
 314   }
 315   assert(value >= 0, "check this code");
 316   __ xorptr(rdx, rdx);
 317 }
 318 
 319 
 320 void TemplateTable::fconst(int value) {
 321   transition(vtos, ftos);
 322          if (value == 0) { __ fldz();
 323   } else if (value == 1) { __ fld1();
 324   } else if (value == 2) { __ fld1(); __ fld1(); __ faddp(); // should do a better solution here
 325   } else                 { ShouldNotReachHere();
 326   }
 327 }
 328 
 329 
 330 void TemplateTable::dconst(int value) {
 331   transition(vtos, dtos);
 332          if (value == 0) { __ fldz();
 333   } else if (value == 1) { __ fld1();
 334   } else                 { ShouldNotReachHere();
 335   }
 336 }
 337 
 338 
 339 void TemplateTable::bipush() {
 340   transition(vtos, itos);
 341   __ load_signed_byte(rax, at_bcp(1));
 342 }
 343 
 344 
 345 void TemplateTable::sipush() {
 346   transition(vtos, itos);
 347   __ load_unsigned_short(rax, at_bcp(1));
 348   __ bswapl(rax);
 349   __ sarl(rax, 16);
 350 }
 351 
 352 void TemplateTable::ldc(bool wide) {
 353   transition(vtos, vtos);
 354   Label call_ldc, notFloat, notClass, Done;
 355 
 356   if (wide) {
 357     __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 358   } else {
 359     __ load_unsigned_byte(rbx, at_bcp(1));
 360   }
 361   __ get_cpool_and_tags(rcx, rax);
 362   const int base_offset = ConstantPool::header_size() * wordSize;
 363   const int tags_offset = Array<u1>::base_offset_in_bytes();
 364 
 365   // get type
 366   __ xorptr(rdx, rdx);
 367   __ movb(rdx, Address(rax, rbx, Address::times_1, tags_offset));
 368 
 369   // unresolved class - get the resolved class
 370   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClass);
 371   __ jccb(Assembler::equal, call_ldc);
 372 
 373   // unresolved class in error (resolution failed) - call into runtime
 374   // so that the same error from first resolution attempt is thrown.
 375   __ cmpl(rdx, JVM_CONSTANT_UnresolvedClassInError);
 376   __ jccb(Assembler::equal, call_ldc);
 377 
 378   // resolved class - need to call vm to get java mirror of the class
 379   __ cmpl(rdx, JVM_CONSTANT_Class);
 380   __ jcc(Assembler::notEqual, notClass);
 381 
 382   __ bind(call_ldc);
 383   __ movl(rcx, wide);
 384   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), rcx);
 385   __ push(atos);
 386   __ jmp(Done);
 387 
 388   __ bind(notClass);
 389   __ cmpl(rdx, JVM_CONSTANT_Float);
 390   __ jccb(Assembler::notEqual, notFloat);
 391   // ftos
 392   __ fld_s(    Address(rcx, rbx, Address::times_ptr, base_offset));
 393   __ push(ftos);
 394   __ jmp(Done);
 395 
 396   __ bind(notFloat);
 397 #ifdef ASSERT
 398   { Label L;
 399     __ cmpl(rdx, JVM_CONSTANT_Integer);
 400     __ jcc(Assembler::equal, L);
 401     // String and Object are rewritten to fast_aldc
 402     __ stop("unexpected tag type in ldc");
 403     __ bind(L);
 404   }
 405 #endif
 406   // itos JVM_CONSTANT_Integer only
 407   __ movl(rax, Address(rcx, rbx, Address::times_ptr, base_offset));
 408   __ push(itos);
 409   __ bind(Done);
 410 }
 411 
 412 // Fast path for caching oop constants.
 413 void TemplateTable::fast_aldc(bool wide) {
 414   transition(vtos, atos);
 415 
 416   Register result = rax;
 417   Register tmp = rdx;
 418   int index_size = wide ? sizeof(u2) : sizeof(u1);
 419 
 420   Label resolved;
 421 
 422   // We are resolved if the resolved reference cache entry contains a
 423   // non-null object (String, MethodType, etc.)
 424   assert_different_registers(result, tmp);
 425   __ get_cache_index_at_bcp(tmp, 1, index_size);
 426   __ load_resolved_reference_at_index(result, tmp);
 427   __ testl(result, result);
 428   __ jcc(Assembler::notZero, resolved);
 429 
 430   address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
 431 
 432   // first time invocation - must resolve first
 433   __ movl(tmp, (int)bytecode());
 434   __ call_VM(result, entry, tmp);
 435 
 436   __ bind(resolved);
 437 
 438   if (VerifyOops) {
 439     __ verify_oop(result);
 440   }
 441 }
 442 
 443 void TemplateTable::ldc2_w() {
 444   transition(vtos, vtos);
 445   Label Long, Done;
 446   __ get_unsigned_2_byte_index_at_bcp(rbx, 1);
 447 
 448   __ get_cpool_and_tags(rcx, rax);
 449   const int base_offset = ConstantPool::header_size() * wordSize;
 450   const int tags_offset = Array<u1>::base_offset_in_bytes();
 451 
 452   // get type
 453   __ cmpb(Address(rax, rbx, Address::times_1, tags_offset), JVM_CONSTANT_Double);
 454   __ jccb(Assembler::notEqual, Long);
 455   // dtos
 456   __ fld_d(    Address(rcx, rbx, Address::times_ptr, base_offset));
 457   __ push(dtos);
 458   __ jmpb(Done);
 459 
 460   __ bind(Long);
 461   // ltos
 462   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, base_offset + 0 * wordSize));
 463   NOT_LP64(__ movptr(rdx, Address(rcx, rbx, Address::times_ptr, base_offset + 1 * wordSize)));
 464 
 465   __ push(ltos);
 466 
 467   __ bind(Done);
 468 }
 469 
 470 
 471 void TemplateTable::locals_index(Register reg, int offset) {
 472   __ load_unsigned_byte(reg, at_bcp(offset));
 473   __ negptr(reg);
 474 }
 475 
 476 
 477 void TemplateTable::iload() {
 478   transition(vtos, itos);
 479   if (RewriteFrequentPairs) {
 480     Label rewrite, done;
 481 
 482     // get next byte
 483     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
 484     // if _iload, wait to rewrite to iload2.  We only want to rewrite the
 485     // last two iloads in a pair.  Comparing against fast_iload means that
 486     // the next bytecode is neither an iload or a caload, and therefore
 487     // an iload pair.
 488     __ cmpl(rbx, Bytecodes::_iload);
 489     __ jcc(Assembler::equal, done);
 490 
 491     __ cmpl(rbx, Bytecodes::_fast_iload);
 492     __ movl(rcx, Bytecodes::_fast_iload2);
 493     __ jccb(Assembler::equal, rewrite);
 494 
 495     // if _caload, rewrite to fast_icaload
 496     __ cmpl(rbx, Bytecodes::_caload);
 497     __ movl(rcx, Bytecodes::_fast_icaload);
 498     __ jccb(Assembler::equal, rewrite);
 499 
 500     // rewrite so iload doesn't check again.
 501     __ movl(rcx, Bytecodes::_fast_iload);
 502 
 503     // rewrite
 504     // rcx: fast bytecode
 505     __ bind(rewrite);
 506     patch_bytecode(Bytecodes::_iload, rcx, rbx, false);
 507     __ bind(done);
 508   }
 509 
 510   // Get the local value into tos
 511   locals_index(rbx);
 512   __ movl(rax, iaddress(rbx));
 513 }
 514 
 515 
 516 void TemplateTable::fast_iload2() {
 517   transition(vtos, itos);
 518   locals_index(rbx);
 519   __ movl(rax, iaddress(rbx));
 520   __ push(itos);
 521   locals_index(rbx, 3);
 522   __ movl(rax, iaddress(rbx));
 523 }
 524 
 525 void TemplateTable::fast_iload() {
 526   transition(vtos, itos);
 527   locals_index(rbx);
 528   __ movl(rax, iaddress(rbx));
 529 }
 530 
 531 
 532 void TemplateTable::lload() {
 533   transition(vtos, ltos);
 534   locals_index(rbx);
 535   __ movptr(rax, laddress(rbx));
 536   NOT_LP64(__ movl(rdx, haddress(rbx)));
 537 }
 538 
 539 
 540 void TemplateTable::fload() {
 541   transition(vtos, ftos);
 542   locals_index(rbx);
 543   __ fld_s(faddress(rbx));
 544 }
 545 
 546 
 547 void TemplateTable::dload() {
 548   transition(vtos, dtos);
 549   locals_index(rbx);
 550   __ fld_d(daddress(rbx));
 551 }
 552 
 553 
 554 void TemplateTable::aload() {
 555   transition(vtos, atos);
 556   locals_index(rbx);
 557   __ movptr(rax, aaddress(rbx));
 558 }
 559 
 560 
 561 void TemplateTable::locals_index_wide(Register reg) {
 562   __ load_unsigned_short(reg, at_bcp(2));
 563   __ bswapl(reg);
 564   __ shrl(reg, 16);
 565   __ negptr(reg);
 566 }
 567 
 568 
 569 void TemplateTable::wide_iload() {
 570   transition(vtos, itos);
 571   locals_index_wide(rbx);
 572   __ movl(rax, iaddress(rbx));
 573 }
 574 
 575 
 576 void TemplateTable::wide_lload() {
 577   transition(vtos, ltos);
 578   locals_index_wide(rbx);
 579   __ movptr(rax, laddress(rbx));
 580   NOT_LP64(__ movl(rdx, haddress(rbx)));
 581 }
 582 
 583 
 584 void TemplateTable::wide_fload() {
 585   transition(vtos, ftos);
 586   locals_index_wide(rbx);
 587   __ fld_s(faddress(rbx));
 588 }
 589 
 590 
 591 void TemplateTable::wide_dload() {
 592   transition(vtos, dtos);
 593   locals_index_wide(rbx);
 594   __ fld_d(daddress(rbx));
 595 }
 596 
 597 
 598 void TemplateTable::wide_aload() {
 599   transition(vtos, atos);
 600   locals_index_wide(rbx);
 601   __ movptr(rax, aaddress(rbx));
 602 }
 603 
 604 void TemplateTable::index_check(Register array, Register index) {
 605   // Pop ptr into array
 606   __ pop_ptr(array);
 607   index_check_without_pop(array, index);
 608 }
 609 
 610 void TemplateTable::index_check_without_pop(Register array, Register index) {
 611   // destroys rbx,
 612   // check array
 613   __ null_check(array, arrayOopDesc::length_offset_in_bytes());
 614   LP64_ONLY(__ movslq(index, index));
 615   // check index
 616   __ cmpl(index, Address(array, arrayOopDesc::length_offset_in_bytes()));
 617   if (index != rbx) {
 618     // ??? convention: move aberrant index into rbx, for exception message
 619     assert(rbx != array, "different registers");
 620     __ mov(rbx, index);
 621   }
 622   __ jump_cc(Assembler::aboveEqual,
 623              ExternalAddress(Interpreter::_throw_ArrayIndexOutOfBoundsException_entry));
 624 }
 625 
 626 
 627 void TemplateTable::iaload() {
 628   transition(itos, itos);
 629   // rdx: array
 630   index_check(rdx, rax);  // kills rbx,
 631   // rax,: index
 632   __ movl(rax, Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)));
 633 }
 634 
 635 
 636 void TemplateTable::laload() {
 637   transition(itos, ltos);
 638   // rax,: index
 639   // rdx: array
 640   index_check(rdx, rax);
 641   __ mov(rbx, rax);
 642   // rbx,: index
 643   __ movptr(rax, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize));
 644   NOT_LP64(__ movl(rdx, Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize)));
 645 }
 646 
 647 
 648 void TemplateTable::faload() {
 649   transition(itos, ftos);
 650   // rdx: array
 651   index_check(rdx, rax);  // kills rbx,
 652   // rax,: index
 653   __ fld_s(Address(rdx, rax, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 654 }
 655 
 656 
 657 void TemplateTable::daload() {
 658   transition(itos, dtos);
 659   // rdx: array
 660   index_check(rdx, rax);  // kills rbx,
 661   // rax,: index
 662   __ fld_d(Address(rdx, rax, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 663 }
 664 
 665 
 666 void TemplateTable::aaload() {
 667   transition(itos, atos);
 668   // rdx: array
 669   index_check(rdx, rax);  // kills rbx,
 670   // rax,: index
 671   __ movptr(rax, Address(rdx, rax, Address::times_ptr, arrayOopDesc::base_offset_in_bytes(T_OBJECT)));
 672 }
 673 
 674 
 675 void TemplateTable::baload() {
 676   transition(itos, itos);
 677   // rdx: array
 678   index_check(rdx, rax);  // kills rbx,
 679   // rax,: index
 680   // can do better code for P5 - fix this at some point
 681   __ load_signed_byte(rbx, Address(rdx, rax, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)));
 682   __ mov(rax, rbx);
 683 }
 684 
 685 
 686 void TemplateTable::caload() {
 687   transition(itos, itos);
 688   // rdx: array
 689   index_check(rdx, rax);  // kills rbx,
 690   // rax,: index
 691   // can do better code for P5 - may want to improve this at some point
 692   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 693   __ mov(rax, rbx);
 694 }
 695 
 696 // iload followed by caload frequent pair
 697 void TemplateTable::fast_icaload() {
 698   transition(vtos, itos);
 699   // load index out of locals
 700   locals_index(rbx);
 701   __ movl(rax, iaddress(rbx));
 702 
 703   // rdx: array
 704   index_check(rdx, rax);
 705   // rax,: index
 706   __ load_unsigned_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 707   __ mov(rax, rbx);
 708 }
 709 
 710 void TemplateTable::saload() {
 711   transition(itos, itos);
 712   // rdx: array
 713   index_check(rdx, rax);  // kills rbx,
 714   // rax,: index
 715   // can do better code for P5 - may want to improve this at some point
 716   __ load_signed_short(rbx, Address(rdx, rax, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_SHORT)));
 717   __ mov(rax, rbx);
 718 }
 719 
 720 
 721 void TemplateTable::iload(int n) {
 722   transition(vtos, itos);
 723   __ movl(rax, iaddress(n));
 724 }
 725 
 726 
 727 void TemplateTable::lload(int n) {
 728   transition(vtos, ltos);
 729   __ movptr(rax, laddress(n));
 730   NOT_LP64(__ movptr(rdx, haddress(n)));
 731 }
 732 
 733 
 734 void TemplateTable::fload(int n) {
 735   transition(vtos, ftos);
 736   __ fld_s(faddress(n));
 737 }
 738 
 739 
 740 void TemplateTable::dload(int n) {
 741   transition(vtos, dtos);
 742   __ fld_d(daddress(n));
 743 }
 744 
 745 
 746 void TemplateTable::aload(int n) {
 747   transition(vtos, atos);
 748   __ movptr(rax, aaddress(n));
 749 }
 750 
 751 
 752 void TemplateTable::aload_0() {
 753   transition(vtos, atos);
 754   // According to bytecode histograms, the pairs:
 755   //
 756   // _aload_0, _fast_igetfield
 757   // _aload_0, _fast_agetfield
 758   // _aload_0, _fast_fgetfield
 759   //
 760   // occur frequently. If RewriteFrequentPairs is set, the (slow) _aload_0
 761   // bytecode checks if the next bytecode is either _fast_igetfield,
 762   // _fast_agetfield or _fast_fgetfield and then rewrites the
 763   // current bytecode into a pair bytecode; otherwise it rewrites the current
 764   // bytecode into _fast_aload_0 that doesn't do the pair check anymore.
 765   //
 766   // Note: If the next bytecode is _getfield, the rewrite must be delayed,
 767   //       otherwise we may miss an opportunity for a pair.
 768   //
 769   // Also rewrite frequent pairs
 770   //   aload_0, aload_1
 771   //   aload_0, iload_1
 772   // These bytecodes with a small amount of code are most profitable to rewrite
 773   if (RewriteFrequentPairs) {
 774     Label rewrite, done;
 775     // get next byte
 776     __ load_unsigned_byte(rbx, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
 777 
 778     // do actual aload_0
 779     aload(0);
 780 
 781     // if _getfield then wait with rewrite
 782     __ cmpl(rbx, Bytecodes::_getfield);
 783     __ jcc(Assembler::equal, done);
 784 
 785     // if _igetfield then reqrite to _fast_iaccess_0
 786     assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 787     __ cmpl(rbx, Bytecodes::_fast_igetfield);
 788     __ movl(rcx, Bytecodes::_fast_iaccess_0);
 789     __ jccb(Assembler::equal, rewrite);
 790 
 791     // if _agetfield then reqrite to _fast_aaccess_0
 792     assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 793     __ cmpl(rbx, Bytecodes::_fast_agetfield);
 794     __ movl(rcx, Bytecodes::_fast_aaccess_0);
 795     __ jccb(Assembler::equal, rewrite);
 796 
 797     // if _fgetfield then reqrite to _fast_faccess_0
 798     assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
 799     __ cmpl(rbx, Bytecodes::_fast_fgetfield);
 800     __ movl(rcx, Bytecodes::_fast_faccess_0);
 801     __ jccb(Assembler::equal, rewrite);
 802 
 803     // else rewrite to _fast_aload0
 804     assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
 805     __ movl(rcx, Bytecodes::_fast_aload_0);
 806 
 807     // rewrite
 808     // rcx: fast bytecode
 809     __ bind(rewrite);
 810     patch_bytecode(Bytecodes::_aload_0, rcx, rbx, false);
 811 
 812     __ bind(done);
 813   } else {
 814     aload(0);
 815   }
 816 }
 817 
 818 void TemplateTable::istore() {
 819   transition(itos, vtos);
 820   locals_index(rbx);
 821   __ movl(iaddress(rbx), rax);
 822 }
 823 
 824 
 825 void TemplateTable::lstore() {
 826   transition(ltos, vtos);
 827   locals_index(rbx);
 828   __ movptr(laddress(rbx), rax);
 829   NOT_LP64(__ movptr(haddress(rbx), rdx));
 830 }
 831 
 832 
 833 void TemplateTable::fstore() {
 834   transition(ftos, vtos);
 835   locals_index(rbx);
 836   __ fstp_s(faddress(rbx));
 837 }
 838 
 839 
 840 void TemplateTable::dstore() {
 841   transition(dtos, vtos);
 842   locals_index(rbx);
 843   __ fstp_d(daddress(rbx));
 844 }
 845 
 846 
 847 void TemplateTable::astore() {
 848   transition(vtos, vtos);
 849   __ pop_ptr(rax);
 850   locals_index(rbx);
 851   __ movptr(aaddress(rbx), rax);
 852 }
 853 
 854 
 855 void TemplateTable::wide_istore() {
 856   transition(vtos, vtos);
 857   __ pop_i(rax);
 858   locals_index_wide(rbx);
 859   __ movl(iaddress(rbx), rax);
 860 }
 861 
 862 
 863 void TemplateTable::wide_lstore() {
 864   transition(vtos, vtos);
 865   __ pop_l(rax, rdx);
 866   locals_index_wide(rbx);
 867   __ movptr(laddress(rbx), rax);
 868   NOT_LP64(__ movl(haddress(rbx), rdx));
 869 }
 870 
 871 
 872 void TemplateTable::wide_fstore() {
 873   wide_istore();
 874 }
 875 
 876 
 877 void TemplateTable::wide_dstore() {
 878   wide_lstore();
 879 }
 880 
 881 
 882 void TemplateTable::wide_astore() {
 883   transition(vtos, vtos);
 884   __ pop_ptr(rax);
 885   locals_index_wide(rbx);
 886   __ movptr(aaddress(rbx), rax);
 887 }
 888 
 889 
 890 void TemplateTable::iastore() {
 891   transition(itos, vtos);
 892   __ pop_i(rbx);
 893   // rax,: value
 894   // rdx: array
 895   index_check(rdx, rbx);  // prefer index in rbx,
 896   // rbx,: index
 897   __ movl(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_INT)), rax);
 898 }
 899 
 900 
 901 void TemplateTable::lastore() {
 902   transition(ltos, vtos);
 903   __ pop_i(rbx);
 904   // rax,: low(value)
 905   // rcx: array
 906   // rdx: high(value)
 907   index_check(rcx, rbx);  // prefer index in rbx,
 908   // rbx,: index
 909   __ movptr(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 0 * wordSize), rax);
 910   NOT_LP64(__ movl(Address(rcx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_LONG) + 1 * wordSize), rdx));
 911 }
 912 
 913 
 914 void TemplateTable::fastore() {
 915   transition(ftos, vtos);
 916   __ pop_i(rbx);
 917   // rdx: array
 918   // st0: value
 919   index_check(rdx, rbx);  // prefer index in rbx,
 920   // rbx,: index
 921   __ fstp_s(Address(rdx, rbx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_FLOAT)));
 922 }
 923 
 924 
 925 void TemplateTable::dastore() {
 926   transition(dtos, vtos);
 927   __ pop_i(rbx);
 928   // rdx: array
 929   // st0: value
 930   index_check(rdx, rbx);  // prefer index in rbx,
 931   // rbx,: index
 932   __ fstp_d(Address(rdx, rbx, Address::times_8, arrayOopDesc::base_offset_in_bytes(T_DOUBLE)));
 933 }
 934 
 935 
 936 void TemplateTable::aastore() {
 937   Label is_null, ok_is_subtype, done;
 938   transition(vtos, vtos);
 939   // stack: ..., array, index, value
 940   __ movptr(rax, at_tos());     // Value
 941   __ movl(rcx, at_tos_p1());  // Index
 942   __ movptr(rdx, at_tos_p2());  // Array
 943 
 944   Address element_address(rdx, rcx, Address::times_4, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
 945   index_check_without_pop(rdx, rcx);      // kills rbx,
 946   // do array store check - check for NULL value first
 947   __ testptr(rax, rax);
 948   __ jcc(Assembler::zero, is_null);
 949 
 950   // Move subklass into EBX
 951   __ load_klass(rbx, rax);
 952   // Move superklass into EAX
 953   __ load_klass(rax, rdx);
 954   __ movptr(rax, Address(rax, ObjArrayKlass::element_klass_offset()));
 955   // Compress array+index*wordSize+12 into a single register.  Frees ECX.
 956   __ lea(rdx, element_address);
 957 
 958   // Generate subtype check.  Blows ECX.  Resets EDI to locals.
 959   // Superklass in EAX.  Subklass in EBX.
 960   __ gen_subtype_check( rbx, ok_is_subtype );
 961 
 962   // Come here on failure
 963   // object is at TOS
 964   __ jump(ExternalAddress(Interpreter::_throw_ArrayStoreException_entry));
 965 
 966   // Come here on success
 967   __ bind(ok_is_subtype);
 968 
 969   // Get the value to store
 970   __ movptr(rax, at_rsp());
 971   // and store it with appropriate barrier
 972   do_oop_store(_masm, Address(rdx, 0), rax, _bs->kind(), true);
 973 
 974   __ jmp(done);
 975 
 976   // Have a NULL in EAX, EDX=array, ECX=index.  Store NULL at ary[idx]
 977   __ bind(is_null);
 978   __ profile_null_seen(rbx);
 979 
 980   // Store NULL, (noreg means NULL to do_oop_store)
 981   do_oop_store(_masm, element_address, noreg, _bs->kind(), true);
 982 
 983   // Pop stack arguments
 984   __ bind(done);
 985   __ addptr(rsp, 3 * Interpreter::stackElementSize);
 986 }
 987 
 988 
 989 void TemplateTable::bastore() {
 990   transition(itos, vtos);
 991   __ pop_i(rbx);
 992   // rax: value
 993   // rbx: index
 994   // rdx: array
 995   index_check(rdx, rbx);  // prefer index in rbx
 996   // Need to check whether array is boolean or byte
 997   // since both types share the bastore bytecode.
 998   __ load_klass(rcx, rdx);
 999   __ movl(rcx, Address(rcx, Klass::layout_helper_offset()));
1000   int diffbit = Klass::layout_helper_boolean_diffbit();
1001   __ testl(rcx, diffbit);
1002   Label L_skip;
1003   __ jccb(Assembler::zero, L_skip);
1004   __ andl(rax, 1);  // if it is a T_BOOLEAN array, mask the stored value to 0/1
1005   __ bind(L_skip);
1006  __ movb(Address(rdx, rbx, Address::times_1, arrayOopDesc::base_offset_in_bytes(T_BYTE)), rax);
1007 }
1008 
1009 
1010 void TemplateTable::castore() {
1011   transition(itos, vtos);
1012   __ pop_i(rbx);
1013   // rax,: value
1014   // rdx: array
1015   index_check(rdx, rbx);  // prefer index in rbx,
1016   // rbx,: index
1017   __ movw(Address(rdx, rbx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)), rax);
1018 }
1019 
1020 
1021 void TemplateTable::sastore() {
1022   castore();
1023 }
1024 
1025 
1026 void TemplateTable::istore(int n) {
1027   transition(itos, vtos);
1028   __ movl(iaddress(n), rax);
1029 }
1030 
1031 
1032 void TemplateTable::lstore(int n) {
1033   transition(ltos, vtos);
1034   __ movptr(laddress(n), rax);
1035   NOT_LP64(__ movptr(haddress(n), rdx));
1036 }
1037 
1038 
1039 void TemplateTable::fstore(int n) {
1040   transition(ftos, vtos);
1041   __ fstp_s(faddress(n));
1042 }
1043 
1044 
1045 void TemplateTable::dstore(int n) {
1046   transition(dtos, vtos);
1047   __ fstp_d(daddress(n));
1048 }
1049 
1050 
1051 void TemplateTable::astore(int n) {
1052   transition(vtos, vtos);
1053   __ pop_ptr(rax);
1054   __ movptr(aaddress(n), rax);
1055 }
1056 
1057 
1058 void TemplateTable::pop() {
1059   transition(vtos, vtos);
1060   __ addptr(rsp, Interpreter::stackElementSize);
1061 }
1062 
1063 
1064 void TemplateTable::pop2() {
1065   transition(vtos, vtos);
1066   __ addptr(rsp, 2*Interpreter::stackElementSize);
1067 }
1068 
1069 
1070 void TemplateTable::dup() {
1071   transition(vtos, vtos);
1072   // stack: ..., a
1073   __ load_ptr(0, rax);
1074   __ push_ptr(rax);
1075   // stack: ..., a, a
1076 }
1077 
1078 
1079 void TemplateTable::dup_x1() {
1080   transition(vtos, vtos);
1081   // stack: ..., a, b
1082   __ load_ptr( 0, rax);  // load b
1083   __ load_ptr( 1, rcx);  // load a
1084   __ store_ptr(1, rax);  // store b
1085   __ store_ptr(0, rcx);  // store a
1086   __ push_ptr(rax);      // push b
1087   // stack: ..., b, a, b
1088 }
1089 
1090 
1091 void TemplateTable::dup_x2() {
1092   transition(vtos, vtos);
1093   // stack: ..., a, b, c
1094   __ load_ptr( 0, rax);  // load c
1095   __ load_ptr( 2, rcx);  // load a
1096   __ store_ptr(2, rax);  // store c in a
1097   __ push_ptr(rax);      // push c
1098   // stack: ..., c, b, c, c
1099   __ load_ptr( 2, rax);  // load b
1100   __ store_ptr(2, rcx);  // store a in b
1101   // stack: ..., c, a, c, c
1102   __ store_ptr(1, rax);  // store b in c
1103   // stack: ..., c, a, b, c
1104 }
1105 
1106 
1107 void TemplateTable::dup2() {
1108   transition(vtos, vtos);
1109   // stack: ..., a, b
1110   __ load_ptr(1, rax);  // load a
1111   __ push_ptr(rax);     // push a
1112   __ load_ptr(1, rax);  // load b
1113   __ push_ptr(rax);     // push b
1114   // stack: ..., a, b, a, b
1115 }
1116 
1117 
1118 void TemplateTable::dup2_x1() {
1119   transition(vtos, vtos);
1120   // stack: ..., a, b, c
1121   __ load_ptr( 0, rcx);  // load c
1122   __ load_ptr( 1, rax);  // load b
1123   __ push_ptr(rax);      // push b
1124   __ push_ptr(rcx);      // push c
1125   // stack: ..., a, b, c, b, c
1126   __ store_ptr(3, rcx);  // store c in b
1127   // stack: ..., a, c, c, b, c
1128   __ load_ptr( 4, rcx);  // load a
1129   __ store_ptr(2, rcx);  // store a in 2nd c
1130   // stack: ..., a, c, a, b, c
1131   __ store_ptr(4, rax);  // store b in a
1132   // stack: ..., b, c, a, b, c
1133   // stack: ..., b, c, a, b, c
1134 }
1135 
1136 
1137 void TemplateTable::dup2_x2() {
1138   transition(vtos, vtos);
1139   // stack: ..., a, b, c, d
1140   __ load_ptr( 0, rcx);  // load d
1141   __ load_ptr( 1, rax);  // load c
1142   __ push_ptr(rax);      // push c
1143   __ push_ptr(rcx);      // push d
1144   // stack: ..., a, b, c, d, c, d
1145   __ load_ptr( 4, rax);  // load b
1146   __ store_ptr(2, rax);  // store b in d
1147   __ store_ptr(4, rcx);  // store d in b
1148   // stack: ..., a, d, c, b, c, d
1149   __ load_ptr( 5, rcx);  // load a
1150   __ load_ptr( 3, rax);  // load c
1151   __ store_ptr(3, rcx);  // store a in c
1152   __ store_ptr(5, rax);  // store c in a
1153   // stack: ..., c, d, a, b, c, d
1154   // stack: ..., c, d, a, b, c, d
1155 }
1156 
1157 
1158 void TemplateTable::swap() {
1159   transition(vtos, vtos);
1160   // stack: ..., a, b
1161   __ load_ptr( 1, rcx);  // load a
1162   __ load_ptr( 0, rax);  // load b
1163   __ store_ptr(0, rcx);  // store a in b
1164   __ store_ptr(1, rax);  // store b in a
1165   // stack: ..., b, a
1166 }
1167 
1168 
1169 void TemplateTable::iop2(Operation op) {
1170   transition(itos, itos);
1171   switch (op) {
1172     case add  :                   __ pop_i(rdx); __ addl (rax, rdx); break;
1173     case sub  : __ mov(rdx, rax); __ pop_i(rax); __ subl (rax, rdx); break;
1174     case mul  :                   __ pop_i(rdx); __ imull(rax, rdx); break;
1175     case _and :                   __ pop_i(rdx); __ andl (rax, rdx); break;
1176     case _or  :                   __ pop_i(rdx); __ orl  (rax, rdx); break;
1177     case _xor :                   __ pop_i(rdx); __ xorl (rax, rdx); break;
1178     case shl  : __ mov(rcx, rax); __ pop_i(rax); __ shll (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1179     case shr  : __ mov(rcx, rax); __ pop_i(rax); __ sarl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1180     case ushr : __ mov(rcx, rax); __ pop_i(rax); __ shrl (rax);      break; // implicit masking of lower 5 bits by Intel shift instr.
1181     default   : ShouldNotReachHere();
1182   }
1183 }
1184 
1185 
1186 void TemplateTable::lop2(Operation op) {
1187   transition(ltos, ltos);
1188   __ pop_l(rbx, rcx);
1189   switch (op) {
1190     case add  : __ addl(rax, rbx); __ adcl(rdx, rcx); break;
1191     case sub  : __ subl(rbx, rax); __ sbbl(rcx, rdx);
1192                 __ mov (rax, rbx); __ mov (rdx, rcx); break;
1193     case _and : __ andl(rax, rbx); __ andl(rdx, rcx); break;
1194     case _or  : __ orl (rax, rbx); __ orl (rdx, rcx); break;
1195     case _xor : __ xorl(rax, rbx); __ xorl(rdx, rcx); break;
1196     default   : ShouldNotReachHere();
1197   }
1198 }
1199 
1200 
1201 void TemplateTable::idiv() {
1202   transition(itos, itos);
1203   __ mov(rcx, rax);
1204   __ pop_i(rax);
1205   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1206   //       they are not equal, one could do a normal division (no correction
1207   //       needed), which may speed up this implementation for the common case.
1208   //       (see also JVM spec., p.243 & p.271)
1209   __ corrected_idivl(rcx);
1210 }
1211 
1212 
1213 void TemplateTable::irem() {
1214   transition(itos, itos);
1215   __ mov(rcx, rax);
1216   __ pop_i(rax);
1217   // Note: could xor rax, and rcx and compare with (-1 ^ min_int). If
1218   //       they are not equal, one could do a normal division (no correction
1219   //       needed), which may speed up this implementation for the common case.
1220   //       (see also JVM spec., p.243 & p.271)
1221   __ corrected_idivl(rcx);
1222   __ mov(rax, rdx);
1223 }
1224 
1225 
1226 void TemplateTable::lmul() {
1227   transition(ltos, ltos);
1228   __ pop_l(rbx, rcx);
1229   __ push(rcx); __ push(rbx);
1230   __ push(rdx); __ push(rax);
1231   __ lmul(2 * wordSize, 0);
1232   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1233 }
1234 
1235 
1236 void TemplateTable::ldiv() {
1237   transition(ltos, ltos);
1238   __ pop_l(rbx, rcx);
1239   __ push(rcx); __ push(rbx);
1240   __ push(rdx); __ push(rax);
1241   // check if y = 0
1242   __ orl(rax, rdx);
1243   __ jump_cc(Assembler::zero,
1244              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1245   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::ldiv));
1246   __ addptr(rsp, 4 * wordSize);  // take off temporaries
1247 }
1248 
1249 
1250 void TemplateTable::lrem() {
1251   transition(ltos, ltos);
1252   __ pop_l(rbx, rcx);
1253   __ push(rcx); __ push(rbx);
1254   __ push(rdx); __ push(rax);
1255   // check if y = 0
1256   __ orl(rax, rdx);
1257   __ jump_cc(Assembler::zero,
1258              ExternalAddress(Interpreter::_throw_ArithmeticException_entry));
1259   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::lrem));
1260   __ addptr(rsp, 4 * wordSize);
1261 }
1262 
1263 
1264 void TemplateTable::lshl() {
1265   transition(itos, ltos);
1266   __ movl(rcx, rax);                             // get shift count
1267   __ pop_l(rax, rdx);                            // get shift value
1268   __ lshl(rdx, rax);
1269 }
1270 
1271 
1272 void TemplateTable::lshr() {
1273   transition(itos, ltos);
1274   __ mov(rcx, rax);                              // get shift count
1275   __ pop_l(rax, rdx);                            // get shift value
1276   __ lshr(rdx, rax, true);
1277 }
1278 
1279 
1280 void TemplateTable::lushr() {
1281   transition(itos, ltos);
1282   __ mov(rcx, rax);                              // get shift count
1283   __ pop_l(rax, rdx);                            // get shift value
1284   __ lshr(rdx, rax);
1285 }
1286 
1287 
1288 void TemplateTable::fop2(Operation op) {
1289   transition(ftos, ftos);
1290   switch (op) {
1291     case add: __ fadd_s (at_rsp());                break;
1292     case sub: __ fsubr_s(at_rsp());                break;
1293     case mul: __ fmul_s (at_rsp());                break;
1294     case div: __ fdivr_s(at_rsp());                break;
1295     case rem: __ fld_s  (at_rsp()); __ fremr(rax); break;
1296     default : ShouldNotReachHere();
1297   }
1298   __ f2ieee();
1299   __ pop(rax);  // pop float thing off
1300 }
1301 
1302 
1303 void TemplateTable::dop2(Operation op) {
1304   transition(dtos, dtos);
1305 
1306   switch (op) {
1307     case add: __ fadd_d (at_rsp());                break;
1308     case sub: __ fsubr_d(at_rsp());                break;
1309     case mul: {
1310       Label L_strict;
1311       Label L_join;
1312       const Address access_flags      (rcx, Method::access_flags_offset());
1313       __ get_method(rcx);
1314       __ movl(rcx, access_flags);
1315       __ testl(rcx, JVM_ACC_STRICT);
1316       __ jccb(Assembler::notZero, L_strict);
1317       __ fmul_d (at_rsp());
1318       __ jmpb(L_join);
1319       __ bind(L_strict);
1320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1321       __ fmulp();
1322       __ fmul_d (at_rsp());
1323       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1324       __ fmulp();
1325       __ bind(L_join);
1326       break;
1327     }
1328     case div: {
1329       Label L_strict;
1330       Label L_join;
1331       const Address access_flags      (rcx, Method::access_flags_offset());
1332       __ get_method(rcx);
1333       __ movl(rcx, access_flags);
1334       __ testl(rcx, JVM_ACC_STRICT);
1335       __ jccb(Assembler::notZero, L_strict);
1336       __ fdivr_d(at_rsp());
1337       __ jmp(L_join);
1338       __ bind(L_strict);
1339       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
1340       __ fmul_d (at_rsp());
1341       __ fdivrp();
1342       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
1343       __ fmulp();
1344       __ bind(L_join);
1345       break;
1346     }
1347     case rem: __ fld_d  (at_rsp()); __ fremr(rax); break;
1348     default : ShouldNotReachHere();
1349   }
1350   __ d2ieee();
1351   // Pop double precision number from rsp.
1352   __ pop(rax);
1353   __ pop(rdx);
1354 }
1355 
1356 
1357 void TemplateTable::ineg() {
1358   transition(itos, itos);
1359   __ negl(rax);
1360 }
1361 
1362 
1363 void TemplateTable::lneg() {
1364   transition(ltos, ltos);
1365   __ lneg(rdx, rax);
1366 }
1367 
1368 
1369 void TemplateTable::fneg() {
1370   transition(ftos, ftos);
1371   __ fchs();
1372 }
1373 
1374 
1375 void TemplateTable::dneg() {
1376   transition(dtos, dtos);
1377   __ fchs();
1378 }
1379 
1380 
1381 void TemplateTable::iinc() {
1382   transition(vtos, vtos);
1383   __ load_signed_byte(rdx, at_bcp(2));           // get constant
1384   locals_index(rbx);
1385   __ addl(iaddress(rbx), rdx);
1386 }
1387 
1388 
1389 void TemplateTable::wide_iinc() {
1390   transition(vtos, vtos);
1391   __ movl(rdx, at_bcp(4));                       // get constant
1392   locals_index_wide(rbx);
1393   __ bswapl(rdx);                                 // swap bytes & sign-extend constant
1394   __ sarl(rdx, 16);
1395   __ addl(iaddress(rbx), rdx);
1396   // Note: should probably use only one movl to get both
1397   //       the index and the constant -> fix this
1398 }
1399 
1400 
1401 void TemplateTable::convert() {
1402   // Checking
1403 #ifdef ASSERT
1404   { TosState tos_in  = ilgl;
1405     TosState tos_out = ilgl;
1406     switch (bytecode()) {
1407       case Bytecodes::_i2l: // fall through
1408       case Bytecodes::_i2f: // fall through
1409       case Bytecodes::_i2d: // fall through
1410       case Bytecodes::_i2b: // fall through
1411       case Bytecodes::_i2c: // fall through
1412       case Bytecodes::_i2s: tos_in = itos; break;
1413       case Bytecodes::_l2i: // fall through
1414       case Bytecodes::_l2f: // fall through
1415       case Bytecodes::_l2d: tos_in = ltos; break;
1416       case Bytecodes::_f2i: // fall through
1417       case Bytecodes::_f2l: // fall through
1418       case Bytecodes::_f2d: tos_in = ftos; break;
1419       case Bytecodes::_d2i: // fall through
1420       case Bytecodes::_d2l: // fall through
1421       case Bytecodes::_d2f: tos_in = dtos; break;
1422       default             : ShouldNotReachHere();
1423     }
1424     switch (bytecode()) {
1425       case Bytecodes::_l2i: // fall through
1426       case Bytecodes::_f2i: // fall through
1427       case Bytecodes::_d2i: // fall through
1428       case Bytecodes::_i2b: // fall through
1429       case Bytecodes::_i2c: // fall through
1430       case Bytecodes::_i2s: tos_out = itos; break;
1431       case Bytecodes::_i2l: // fall through
1432       case Bytecodes::_f2l: // fall through
1433       case Bytecodes::_d2l: tos_out = ltos; break;
1434       case Bytecodes::_i2f: // fall through
1435       case Bytecodes::_l2f: // fall through
1436       case Bytecodes::_d2f: tos_out = ftos; break;
1437       case Bytecodes::_i2d: // fall through
1438       case Bytecodes::_l2d: // fall through
1439       case Bytecodes::_f2d: tos_out = dtos; break;
1440       default             : ShouldNotReachHere();
1441     }
1442     transition(tos_in, tos_out);
1443   }
1444 #endif // ASSERT
1445 
1446   // Conversion
1447   // (Note: use push(rcx)/pop(rcx) for 1/2-word stack-ptr manipulation)
1448   switch (bytecode()) {
1449     case Bytecodes::_i2l:
1450       __ extend_sign(rdx, rax);
1451       break;
1452     case Bytecodes::_i2f:
1453       __ push(rax);          // store int on tos
1454       __ fild_s(at_rsp());   // load int to ST0
1455       __ f2ieee();           // truncate to float size
1456       __ pop(rcx);           // adjust rsp
1457       break;
1458     case Bytecodes::_i2d:
1459       __ push(rax);          // add one slot for d2ieee()
1460       __ push(rax);          // store int on tos
1461       __ fild_s(at_rsp());   // load int to ST0
1462       __ d2ieee();           // truncate to double size
1463       __ pop(rcx);           // adjust rsp
1464       __ pop(rcx);
1465       break;
1466     case Bytecodes::_i2b:
1467       __ shll(rax, 24);      // truncate upper 24 bits
1468       __ sarl(rax, 24);      // and sign-extend byte
1469       LP64_ONLY(__ movsbl(rax, rax));
1470       break;
1471     case Bytecodes::_i2c:
1472       __ andl(rax, 0xFFFF);  // truncate upper 16 bits
1473       LP64_ONLY(__ movzwl(rax, rax));
1474       break;
1475     case Bytecodes::_i2s:
1476       __ shll(rax, 16);      // truncate upper 16 bits
1477       __ sarl(rax, 16);      // and sign-extend short
1478       LP64_ONLY(__ movswl(rax, rax));
1479       break;
1480     case Bytecodes::_l2i:
1481       /* nothing to do */
1482       break;
1483     case Bytecodes::_l2f:
1484       __ push(rdx);          // store long on tos
1485       __ push(rax);
1486       __ fild_d(at_rsp());   // load long to ST0
1487       __ f2ieee();           // truncate to float size
1488       __ pop(rcx);           // adjust rsp
1489       __ pop(rcx);
1490       break;
1491     case Bytecodes::_l2d:
1492       __ push(rdx);          // store long on tos
1493       __ push(rax);
1494       __ fild_d(at_rsp());   // load long to ST0
1495       __ d2ieee();           // truncate to double size
1496       __ pop(rcx);           // adjust rsp
1497       __ pop(rcx);
1498       break;
1499     case Bytecodes::_f2i:
1500       __ push(rcx);          // reserve space for argument
1501       __ fstp_s(at_rsp());   // pass float argument on stack
1502       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2i), 1);
1503       break;
1504     case Bytecodes::_f2l:
1505       __ push(rcx);          // reserve space for argument
1506       __ fstp_s(at_rsp());   // pass float argument on stack
1507       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::f2l), 1);
1508       break;
1509     case Bytecodes::_f2d:
1510       /* nothing to do */
1511       break;
1512     case Bytecodes::_d2i:
1513       __ push(rcx);          // reserve space for argument
1514       __ push(rcx);
1515       __ fstp_d(at_rsp());   // pass double argument on stack
1516       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2i), 2);
1517       break;
1518     case Bytecodes::_d2l:
1519       __ push(rcx);          // reserve space for argument
1520       __ push(rcx);
1521       __ fstp_d(at_rsp());   // pass double argument on stack
1522       __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::d2l), 2);
1523       break;
1524     case Bytecodes::_d2f:
1525       __ push(rcx);          // reserve space for f2ieee()
1526       __ f2ieee();           // truncate to float size
1527       __ pop(rcx);           // adjust rsp
1528       break;
1529     default             :
1530       ShouldNotReachHere();
1531   }
1532 }
1533 
1534 
1535 void TemplateTable::lcmp() {
1536   transition(ltos, itos);
1537   // y = rdx:rax
1538   __ pop_l(rbx, rcx);             // get x = rcx:rbx
1539   __ lcmp2int(rcx, rbx, rdx, rax);// rcx := cmp(x, y)
1540   __ mov(rax, rcx);
1541 }
1542 
1543 
1544 void TemplateTable::float_cmp(bool is_float, int unordered_result) {
1545   if (is_float) {
1546     __ fld_s(at_rsp());
1547   } else {
1548     __ fld_d(at_rsp());
1549     __ pop(rdx);
1550   }
1551   __ pop(rcx);
1552   __ fcmp2int(rax, unordered_result < 0);
1553 }
1554 
1555 
1556 void TemplateTable::branch(bool is_jsr, bool is_wide) {
1557   __ get_method(rcx);           // ECX holds method
1558   __ profile_taken_branch(rax,rbx); // EAX holds updated MDP, EBX holds bumped taken count
1559 
1560   const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
1561                              InvocationCounter::counter_offset();
1562   const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
1563                               InvocationCounter::counter_offset();
1564 
1565   // Load up EDX with the branch displacement
1566   if (is_wide) {
1567     __ movl(rdx, at_bcp(1));
1568   } else {
1569     __ load_signed_short(rdx, at_bcp(1));
1570   }
1571   __ bswapl(rdx);
1572   if (!is_wide) __ sarl(rdx, 16);
1573   LP64_ONLY(__ movslq(rdx, rdx));
1574 
1575 
1576   // Handle all the JSR stuff here, then exit.
1577   // It's much shorter and cleaner than intermingling with the
1578   // non-JSR normal-branch stuff occurring below.
1579   if (is_jsr) {
1580     // Pre-load the next target bytecode into EBX
1581     __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1, 0));
1582 
1583     // compute return address as bci in rax,
1584     __ lea(rax, at_bcp((is_wide ? 5 : 3) - in_bytes(ConstMethod::codes_offset())));
1585     __ subptr(rax, Address(rcx, Method::const_offset()));
1586     // Adjust the bcp in RSI by the displacement in EDX
1587     __ addptr(rsi, rdx);
1588     // Push return address
1589     __ push_i(rax);
1590     // jsr returns vtos
1591     __ dispatch_only_noverify(vtos);
1592     return;
1593   }
1594 
1595   // Normal (non-jsr) branch handling
1596 
1597   // Adjust the bcp in RSI by the displacement in EDX
1598   __ addptr(rsi, rdx);
1599 
1600   assert(UseLoopCounter || !UseOnStackReplacement, "on-stack-replacement requires loop counters");
1601   Label backedge_counter_overflow;
1602   Label profile_method;
1603   Label dispatch;
1604   if (UseLoopCounter) {
1605     // increment backedge counter for backward branches
1606     // rax,: MDO
1607     // rbx,: MDO bumped taken-count
1608     // rcx: method
1609     // rdx: target offset
1610     // rsi: target bcp
1611     // rdi: locals pointer
1612     __ testl(rdx, rdx);             // check if forward or backward branch
1613     __ jcc(Assembler::positive, dispatch); // count only if backward branch
1614 
1615     // check if MethodCounters exists
1616     Label has_counters;
1617     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1618     __ testptr(rax, rax);
1619     __ jcc(Assembler::notZero, has_counters);
1620     __ push(rdx);
1621     __ push(rcx);
1622     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::build_method_counters),
1623                rcx);
1624     __ pop(rcx);
1625     __ pop(rdx);
1626     __ movptr(rax, Address(rcx, Method::method_counters_offset()));
1627     __ testptr(rax, rax);
1628     __ jcc(Assembler::zero, dispatch);
1629     __ bind(has_counters);
1630 
1631     if (TieredCompilation) {
1632       Label no_mdo;
1633       int increment = InvocationCounter::count_increment;
1634       int mask = ((1 << Tier0BackedgeNotifyFreqLog) - 1) << InvocationCounter::count_shift;
1635       if (ProfileInterpreter) {
1636         // Are we profiling?
1637         __ movptr(rbx, Address(rcx, in_bytes(Method::method_data_offset())));
1638         __ testptr(rbx, rbx);
1639         __ jccb(Assembler::zero, no_mdo);
1640         // Increment the MDO backedge counter
1641         const Address mdo_backedge_counter(rbx, in_bytes(MethodData::backedge_counter_offset()) +
1642                                                 in_bytes(InvocationCounter::counter_offset()));
1643         __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
1644                                    rax, false, Assembler::zero, &backedge_counter_overflow);
1645         __ jmp(dispatch);
1646       }
1647       __ bind(no_mdo);
1648       // Increment backedge counter in MethodCounters*
1649       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1650       __ increment_mask_and_jump(Address(rcx, be_offset), increment, mask,
1651                                  rax, false, Assembler::zero, &backedge_counter_overflow);
1652     } else {
1653       // increment counter
1654       __ movptr(rcx, Address(rcx, Method::method_counters_offset()));
1655       __ movl(rax, Address(rcx, be_offset));        // load backedge counter
1656       __ incrementl(rax, InvocationCounter::count_increment); // increment counter
1657       __ movl(Address(rcx, be_offset), rax);        // store counter
1658 
1659       __ movl(rax, Address(rcx, inv_offset));    // load invocation counter
1660 
1661       __ andl(rax, InvocationCounter::count_mask_value);     // and the status bits
1662       __ addl(rax, Address(rcx, be_offset));        // add both counters
1663 
1664       if (ProfileInterpreter) {
1665         // Test to see if we should create a method data oop
1666         __ cmp32(rax,
1667                  ExternalAddress((address) &InvocationCounter::InterpreterProfileLimit));
1668         __ jcc(Assembler::less, dispatch);
1669 
1670         // if no method data exists, go to profile method
1671         __ test_method_data_pointer(rax, profile_method);
1672 
1673         if (UseOnStackReplacement) {
1674           // check for overflow against rbx, which is the MDO taken count
1675           __ cmp32(rbx,
1676                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1677           __ jcc(Assembler::below, dispatch);
1678 
1679           // When ProfileInterpreter is on, the backedge_count comes from the
1680           // MethodData*, which value does not get reset on the call to
1681           // frequency_counter_overflow().  To avoid excessive calls to the overflow
1682           // routine while the method is being compiled, add a second test to make
1683           // sure the overflow function is called only once every overflow_frequency.
1684           const int overflow_frequency = 1024;
1685           __ andptr(rbx, overflow_frequency-1);
1686           __ jcc(Assembler::zero, backedge_counter_overflow);
1687         }
1688       } else {
1689         if (UseOnStackReplacement) {
1690           // check for overflow against rax, which is the sum of the counters
1691           __ cmp32(rax,
1692                    ExternalAddress((address) &InvocationCounter::InterpreterBackwardBranchLimit));
1693           __ jcc(Assembler::aboveEqual, backedge_counter_overflow);
1694 
1695         }
1696       }
1697     }
1698     __ bind(dispatch);
1699   }
1700 
1701   // Pre-load the next target bytecode into EBX
1702   __ load_unsigned_byte(rbx, Address(rsi, 0));
1703 
1704   // continue with the bytecode @ target
1705   // rax,: return bci for jsr's, unused otherwise
1706   // rbx,: target bytecode
1707   // rsi: target bcp
1708   __ dispatch_only(vtos);
1709 
1710   if (UseLoopCounter) {
1711     if (ProfileInterpreter) {
1712       // Out-of-line code to allocate method data oop.
1713       __ bind(profile_method);
1714       __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1715       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1716       __ set_method_data_pointer_for_bcp();
1717       __ jmp(dispatch);
1718     }
1719 
1720     if (UseOnStackReplacement) {
1721 
1722       // invocation counter overflow
1723       __ bind(backedge_counter_overflow);
1724       __ negptr(rdx);
1725       __ addptr(rdx, rsi);        // branch bcp
1726       call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), rdx);
1727       __ load_unsigned_byte(rbx, Address(rsi, 0));  // restore target bytecode
1728 
1729       // rax,: osr nmethod (osr ok) or NULL (osr not possible)
1730       // rbx,: target bytecode
1731       // rdx: scratch
1732       // rdi: locals pointer
1733       // rsi: bcp
1734       __ testptr(rax, rax);                      // test result
1735       __ jcc(Assembler::zero, dispatch);         // no osr if null
1736       // nmethod may have been invalidated (VM may block upon call_VM return)
1737       __ movl(rcx, Address(rax, nmethod::entry_bci_offset()));
1738       __ cmpl(rcx, InvalidOSREntryBci);
1739       __ jcc(Assembler::equal, dispatch);
1740 
1741       // We have the address of an on stack replacement routine in rax,
1742       // We need to prepare to execute the OSR method. First we must
1743       // migrate the locals and monitors off of the stack.
1744 
1745       __ mov(rbx, rax);                             // save the nmethod
1746 
1747       const Register thread = rcx;
1748       __ get_thread(thread);
1749       call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
1750       // rax, is OSR buffer, move it to expected parameter location
1751       __ mov(rcx, rax);
1752 
1753       // pop the interpreter frame
1754       __ movptr(rdx, Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
1755       __ leave();                                // remove frame anchor
1756       __ pop(rdi);                               // get return address
1757       __ mov(rsp, rdx);                          // set sp to sender sp
1758 
1759       // Align stack pointer for compiled code (note that caller is
1760       // responsible for undoing this fixup by remembering the old SP
1761       // in an rbp,-relative location)
1762       __ andptr(rsp, -(StackAlignmentInBytes));
1763 
1764       // push the (possibly adjusted) return address
1765       __ push(rdi);
1766 
1767       // and begin the OSR nmethod
1768       __ jmp(Address(rbx, nmethod::osr_entry_point_offset()));
1769     }
1770   }
1771 }
1772 
1773 
1774 void TemplateTable::if_0cmp(Condition cc) {
1775   transition(itos, vtos);
1776   // assume branch is more often taken than not (loops use backward branches)
1777   Label not_taken;
1778   __ testl(rax, rax);
1779   __ jcc(j_not(cc), not_taken);
1780   branch(false, false);
1781   __ bind(not_taken);
1782   __ profile_not_taken_branch(rax);
1783 }
1784 
1785 
1786 void TemplateTable::if_icmp(Condition cc) {
1787   transition(itos, vtos);
1788   // assume branch is more often taken than not (loops use backward branches)
1789   Label not_taken;
1790   __ pop_i(rdx);
1791   __ cmpl(rdx, rax);
1792   __ jcc(j_not(cc), not_taken);
1793   branch(false, false);
1794   __ bind(not_taken);
1795   __ profile_not_taken_branch(rax);
1796 }
1797 
1798 
1799 void TemplateTable::if_nullcmp(Condition cc) {
1800   transition(atos, vtos);
1801   // assume branch is more often taken than not (loops use backward branches)
1802   Label not_taken;
1803   __ testptr(rax, rax);
1804   __ jcc(j_not(cc), not_taken);
1805   branch(false, false);
1806   __ bind(not_taken);
1807   __ profile_not_taken_branch(rax);
1808 }
1809 
1810 
1811 void TemplateTable::if_acmp(Condition cc) {
1812   transition(atos, vtos);
1813   // assume branch is more often taken than not (loops use backward branches)
1814   Label not_taken;
1815   __ pop_ptr(rdx);
1816   __ cmpptr(rdx, rax);
1817   __ jcc(j_not(cc), not_taken);
1818   branch(false, false);
1819   __ bind(not_taken);
1820   __ profile_not_taken_branch(rax);
1821 }
1822 
1823 
1824 void TemplateTable::ret() {
1825   transition(vtos, vtos);
1826   locals_index(rbx);
1827   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1828   __ profile_ret(rbx, rcx);
1829   __ get_method(rax);
1830   __ movptr(rsi, Address(rax, Method::const_offset()));
1831   __ lea(rsi, Address(rsi, rbx, Address::times_1,
1832                       ConstMethod::codes_offset()));
1833   __ dispatch_next(vtos);
1834 }
1835 
1836 
1837 void TemplateTable::wide_ret() {
1838   transition(vtos, vtos);
1839   locals_index_wide(rbx);
1840   __ movptr(rbx, iaddress(rbx));                   // get return bci, compute return bcp
1841   __ profile_ret(rbx, rcx);
1842   __ get_method(rax);
1843   __ movptr(rsi, Address(rax, Method::const_offset()));
1844   __ lea(rsi, Address(rsi, rbx, Address::times_1, ConstMethod::codes_offset()));
1845   __ dispatch_next(vtos);
1846 }
1847 
1848 
1849 void TemplateTable::tableswitch() {
1850   Label default_case, continue_execution;
1851   transition(itos, vtos);
1852   // align rsi
1853   __ lea(rbx, at_bcp(wordSize));
1854   __ andptr(rbx, -wordSize);
1855   // load lo & hi
1856   __ movl(rcx, Address(rbx, 1 * wordSize));
1857   __ movl(rdx, Address(rbx, 2 * wordSize));
1858   __ bswapl(rcx);
1859   __ bswapl(rdx);
1860   // check against lo & hi
1861   __ cmpl(rax, rcx);
1862   __ jccb(Assembler::less, default_case);
1863   __ cmpl(rax, rdx);
1864   __ jccb(Assembler::greater, default_case);
1865   // lookup dispatch offset
1866   __ subl(rax, rcx);
1867   __ movl(rdx, Address(rbx, rax, Address::times_4, 3 * BytesPerInt));
1868   __ profile_switch_case(rax, rbx, rcx);
1869   // continue execution
1870   __ bind(continue_execution);
1871   __ bswapl(rdx);
1872   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1873   __ addptr(rsi, rdx);
1874   __ dispatch_only(vtos);
1875   // handle default
1876   __ bind(default_case);
1877   __ profile_switch_default(rax);
1878   __ movl(rdx, Address(rbx, 0));
1879   __ jmp(continue_execution);
1880 }
1881 
1882 
1883 void TemplateTable::lookupswitch() {
1884   transition(itos, itos);
1885   __ stop("lookupswitch bytecode should have been rewritten");
1886 }
1887 
1888 
1889 void TemplateTable::fast_linearswitch() {
1890   transition(itos, vtos);
1891   Label loop_entry, loop, found, continue_execution;
1892   // bswapl rax, so we can avoid bswapping the table entries
1893   __ bswapl(rax);
1894   // align rsi
1895   __ lea(rbx, at_bcp(wordSize));                // btw: should be able to get rid of this instruction (change offsets below)
1896   __ andptr(rbx, -wordSize);
1897   // set counter
1898   __ movl(rcx, Address(rbx, wordSize));
1899   __ bswapl(rcx);
1900   __ jmpb(loop_entry);
1901   // table search
1902   __ bind(loop);
1903   __ cmpl(rax, Address(rbx, rcx, Address::times_8, 2 * wordSize));
1904   __ jccb(Assembler::equal, found);
1905   __ bind(loop_entry);
1906   __ decrementl(rcx);
1907   __ jcc(Assembler::greaterEqual, loop);
1908   // default case
1909   __ profile_switch_default(rax);
1910   __ movl(rdx, Address(rbx, 0));
1911   __ jmpb(continue_execution);
1912   // entry found -> get offset
1913   __ bind(found);
1914   __ movl(rdx, Address(rbx, rcx, Address::times_8, 3 * wordSize));
1915   __ profile_switch_case(rcx, rax, rbx);
1916   // continue execution
1917   __ bind(continue_execution);
1918   __ bswapl(rdx);
1919   __ load_unsigned_byte(rbx, Address(rsi, rdx, Address::times_1));
1920   __ addptr(rsi, rdx);
1921   __ dispatch_only(vtos);
1922 }
1923 
1924 
1925 void TemplateTable::fast_binaryswitch() {
1926   transition(itos, vtos);
1927   // Implementation using the following core algorithm:
1928   //
1929   // int binary_search(int key, LookupswitchPair* array, int n) {
1930   //   // Binary search according to "Methodik des Programmierens" by
1931   //   // Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
1932   //   int i = 0;
1933   //   int j = n;
1934   //   while (i+1 < j) {
1935   //     // invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
1936   //     // with      Q: for all i: 0 <= i < n: key < a[i]
1937   //     // where a stands for the array and assuming that the (inexisting)
1938   //     // element a[n] is infinitely big.
1939   //     int h = (i + j) >> 1;
1940   //     // i < h < j
1941   //     if (key < array[h].fast_match()) {
1942   //       j = h;
1943   //     } else {
1944   //       i = h;
1945   //     }
1946   //   }
1947   //   // R: a[i] <= key < a[i+1] or Q
1948   //   // (i.e., if key is within array, i is the correct index)
1949   //   return i;
1950   // }
1951 
1952   // register allocation
1953   const Register key   = rax;                    // already set (tosca)
1954   const Register array = rbx;
1955   const Register i     = rcx;
1956   const Register j     = rdx;
1957   const Register h     = rdi;                    // needs to be restored
1958   const Register temp  = rsi;
1959   // setup array
1960   __ save_bcp();
1961 
1962   __ lea(array, at_bcp(3*wordSize));             // btw: should be able to get rid of this instruction (change offsets below)
1963   __ andptr(array, -wordSize);
1964   // initialize i & j
1965   __ xorl(i, i);                                 // i = 0;
1966   __ movl(j, Address(array, -wordSize));         // j = length(array);
1967   // Convert j into native byteordering
1968   __ bswapl(j);
1969   // and start
1970   Label entry;
1971   __ jmp(entry);
1972 
1973   // binary search loop
1974   { Label loop;
1975     __ bind(loop);
1976     // int h = (i + j) >> 1;
1977     __ leal(h, Address(i, j, Address::times_1)); // h = i + j;
1978     __ sarl(h, 1);                               // h = (i + j) >> 1;
1979     // if (key < array[h].fast_match()) {
1980     //   j = h;
1981     // } else {
1982     //   i = h;
1983     // }
1984     // Convert array[h].match to native byte-ordering before compare
1985     __ movl(temp, Address(array, h, Address::times_8, 0*wordSize));
1986     __ bswapl(temp);
1987     __ cmpl(key, temp);
1988     // j = h if (key <  array[h].fast_match())
1989     __ cmov32(Assembler::less        , j, h);
1990     // i = h if (key >= array[h].fast_match())
1991     __ cmov32(Assembler::greaterEqual, i, h);
1992     // while (i+1 < j)
1993     __ bind(entry);
1994     __ leal(h, Address(i, 1));                   // i+1
1995     __ cmpl(h, j);                               // i+1 < j
1996     __ jcc(Assembler::less, loop);
1997   }
1998 
1999   // end of binary search, result index is i (must check again!)
2000   Label default_case;
2001   // Convert array[i].match to native byte-ordering before compare
2002   __ movl(temp, Address(array, i, Address::times_8, 0*wordSize));
2003   __ bswapl(temp);
2004   __ cmpl(key, temp);
2005   __ jcc(Assembler::notEqual, default_case);
2006 
2007   // entry found -> j = offset
2008   __ movl(j , Address(array, i, Address::times_8, 1*wordSize));
2009   __ profile_switch_case(i, key, array);
2010   __ bswapl(j);
2011   LP64_ONLY(__ movslq(j, j));
2012   __ restore_bcp();
2013   __ restore_locals();                           // restore rdi
2014   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2015 
2016   __ addptr(rsi, j);
2017   __ dispatch_only(vtos);
2018 
2019   // default case -> j = default offset
2020   __ bind(default_case);
2021   __ profile_switch_default(i);
2022   __ movl(j, Address(array, -2*wordSize));
2023   __ bswapl(j);
2024   LP64_ONLY(__ movslq(j, j));
2025   __ restore_bcp();
2026   __ restore_locals();                           // restore rdi
2027   __ load_unsigned_byte(rbx, Address(rsi, j, Address::times_1));
2028   __ addptr(rsi, j);
2029   __ dispatch_only(vtos);
2030 }
2031 
2032 
2033 void TemplateTable::_return(TosState state) {
2034   transition(state, state);
2035   assert(_desc->calls_vm(), "inconsistent calls_vm information"); // call in remove_activation
2036 
2037   if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
2038     assert(state == vtos, "only valid state");
2039     __ movptr(rax, aaddress(0));
2040     __ load_klass(rdi, rax);
2041     __ movl(rdi, Address(rdi, Klass::access_flags_offset()));
2042     __ testl(rdi, JVM_ACC_HAS_FINALIZER);
2043     Label skip_register_finalizer;
2044     __ jcc(Assembler::zero, skip_register_finalizer);
2045 
2046     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), rax);
2047 
2048     __ bind(skip_register_finalizer);
2049   }
2050 
2051   // Narrow result if state is itos but result type is smaller.
2052   // Need to narrow in the return bytecode rather than in generate_return_entry
2053   // since compiled code callers expect the result to already be narrowed.
2054   if (state == itos) {
2055     __ narrow(rax);
2056   }
2057   __ remove_activation(state, rsi);
2058 
2059   __ jmp(rsi);
2060 }
2061 
2062 
2063 // ----------------------------------------------------------------------------
2064 // Volatile variables demand their effects be made known to all CPU's in
2065 // order.  Store buffers on most chips allow reads & writes to reorder; the
2066 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
2067 // memory barrier (i.e., it's not sufficient that the interpreter does not
2068 // reorder volatile references, the hardware also must not reorder them).
2069 //
2070 // According to the new Java Memory Model (JMM):
2071 // (1) All volatiles are serialized wrt to each other.
2072 // ALSO reads & writes act as aquire & release, so:
2073 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
2074 // the read float up to before the read.  It's OK for non-volatile memory refs
2075 // that happen before the volatile read to float down below it.
2076 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
2077 // that happen BEFORE the write float down to after the write.  It's OK for
2078 // non-volatile memory refs that happen after the volatile write to float up
2079 // before it.
2080 //
2081 // We only put in barriers around volatile refs (they are expensive), not
2082 // _between_ memory refs (that would require us to track the flavor of the
2083 // previous memory refs).  Requirements (2) and (3) require some barriers
2084 // before volatile stores and after volatile loads.  These nearly cover
2085 // requirement (1) but miss the volatile-store-volatile-load case.  This final
2086 // case is placed after volatile-stores although it could just as well go
2087 // before volatile-loads.
2088 void TemplateTable::volatile_barrier(Assembler::Membar_mask_bits order_constraint ) {
2089   // Helper function to insert a is-volatile test and memory barrier
2090   if( !os::is_MP() ) return;    // Not needed on single CPU
2091   __ membar(order_constraint);
2092 }
2093 
2094 void TemplateTable::resolve_cache_and_index(int byte_no,
2095                                             Register Rcache,
2096                                             Register index,
2097                                             size_t index_size) {
2098   const Register temp = rbx;
2099   assert_different_registers(Rcache, index, temp);
2100 
2101   Label resolved;
2102     assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
2103     __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
2104     __ cmpl(temp, (int) bytecode());  // have we resolved this bytecode?
2105     __ jcc(Assembler::equal, resolved);
2106 
2107   // resolve first time through
2108   address entry;
2109   switch (bytecode()) {
2110     case Bytecodes::_getstatic      : // fall through
2111     case Bytecodes::_putstatic      : // fall through
2112     case Bytecodes::_getfield       : // fall through
2113     case Bytecodes::_putfield       : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_get_put);        break;
2114     case Bytecodes::_invokevirtual  : // fall through
2115     case Bytecodes::_invokespecial  : // fall through
2116     case Bytecodes::_invokestatic   : // fall through
2117     case Bytecodes::_invokeinterface: entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invoke);         break;
2118     case Bytecodes::_invokehandle   : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokehandle);   break;
2119     case Bytecodes::_invokedynamic  : entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_invokedynamic);  break;
2120     default:
2121       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(bytecode())));
2122       break;
2123   }
2124   __ movl(temp, (int)bytecode());
2125   __ call_VM(noreg, entry, temp);
2126   // Update registers with resolved info
2127   __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
2128   __ bind(resolved);
2129 }
2130 
2131 
2132 // The cache and index registers must be set before call
2133 void TemplateTable::load_field_cp_cache_entry(Register obj,
2134                                               Register cache,
2135                                               Register index,
2136                                               Register off,
2137                                               Register flags,
2138                                               bool is_static = false) {
2139   assert_different_registers(cache, index, flags, off);
2140 
2141   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2142   // Field offset
2143   __ movptr(off, Address(cache, index, Address::times_ptr,
2144                          in_bytes(cp_base_offset + ConstantPoolCacheEntry::f2_offset())));
2145   // Flags
2146   __ movl(flags, Address(cache, index, Address::times_ptr,
2147            in_bytes(cp_base_offset + ConstantPoolCacheEntry::flags_offset())));
2148 
2149   // klass overwrite register
2150   if (is_static) {
2151     __ movptr(obj, Address(cache, index, Address::times_ptr,
2152                            in_bytes(cp_base_offset + ConstantPoolCacheEntry::f1_offset())));
2153     const int mirror_offset = in_bytes(Klass::java_mirror_offset());
2154     __ movptr(obj, Address(obj, mirror_offset));
2155   }
2156 }
2157 
2158 void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
2159                                                Register method,
2160                                                Register itable_index,
2161                                                Register flags,
2162                                                bool is_invokevirtual,
2163                                                bool is_invokevfinal, /*unused*/
2164                                                bool is_invokedynamic) {
2165   // setup registers
2166   const Register cache = rcx;
2167   const Register index = rdx;
2168   assert_different_registers(method, flags);
2169   assert_different_registers(method, cache, index);
2170   assert_different_registers(itable_index, flags);
2171   assert_different_registers(itable_index, cache, index);
2172   // determine constant pool cache field offsets
2173   assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
2174   const int method_offset = in_bytes(
2175     ConstantPoolCache::base_offset() +
2176       ((byte_no == f2_byte)
2177        ? ConstantPoolCacheEntry::f2_offset()
2178        : ConstantPoolCacheEntry::f1_offset()));
2179   const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
2180                                     ConstantPoolCacheEntry::flags_offset());
2181   // access constant pool cache fields
2182   const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
2183                                     ConstantPoolCacheEntry::f2_offset());
2184 
2185   size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
2186   resolve_cache_and_index(byte_no, cache, index, index_size);
2187     __ movptr(method, Address(cache, index, Address::times_ptr, method_offset));
2188 
2189   if (itable_index != noreg) {
2190     __ movptr(itable_index, Address(cache, index, Address::times_ptr, index_offset));
2191   }
2192   __ movl(flags, Address(cache, index, Address::times_ptr, flags_offset));
2193 }
2194 
2195 
2196 // The registers cache and index expected to be set before call.
2197 // Correct values of the cache and index registers are preserved.
2198 void TemplateTable::jvmti_post_field_access(Register cache,
2199                                             Register index,
2200                                             bool is_static,
2201                                             bool has_tos) {
2202   if (JvmtiExport::can_post_field_access()) {
2203     // Check to see if a field access watch has been set before we take
2204     // the time to call into the VM.
2205     Label L1;
2206     assert_different_registers(cache, index, rax);
2207     __ mov32(rax, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2208     __ testl(rax,rax);
2209     __ jcc(Assembler::zero, L1);
2210 
2211     // cache entry pointer
2212     __ addptr(cache, in_bytes(ConstantPoolCache::base_offset()));
2213     __ shll(index, LogBytesPerWord);
2214     __ addptr(cache, index);
2215     if (is_static) {
2216       __ xorptr(rax, rax);      // NULL object reference
2217     } else {
2218       __ pop(atos);         // Get the object
2219       __ verify_oop(rax);
2220       __ push(atos);        // Restore stack state
2221     }
2222     // rax,:   object pointer or NULL
2223     // cache: cache entry pointer
2224     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access),
2225                rax, cache);
2226     __ get_cache_and_index_at_bcp(cache, index, 1);
2227     __ bind(L1);
2228   }
2229 }
2230 
2231 void TemplateTable::pop_and_check_object(Register r) {
2232   __ pop_ptr(r);
2233   __ null_check(r);  // for field access must check obj.
2234   __ verify_oop(r);
2235 }
2236 
2237 void TemplateTable::getfield_or_static(int byte_no, bool is_static) {
2238   transition(vtos, vtos);
2239 
2240   const Register cache = rcx;
2241   const Register index = rdx;
2242   const Register obj   = rcx;
2243   const Register off   = rbx;
2244   const Register flags = rax;
2245 
2246   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2247   jvmti_post_field_access(cache, index, is_static, false);
2248   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2249 
2250   if (!is_static) pop_and_check_object(obj);
2251 
2252   const Address lo(obj, off, Address::times_1, 0*wordSize);
2253   const Address hi(obj, off, Address::times_1, 1*wordSize);
2254 
2255   Label Done, notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2256 
2257   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2258   assert(btos == 0, "change code, btos != 0");
2259   // btos
2260   __ andptr(flags, ConstantPoolCacheEntry::tos_state_mask);
2261   __ jcc(Assembler::notZero, notByte);
2262 
2263   __ load_signed_byte(rax, lo );
2264   __ push(btos);
2265   // Rewrite bytecode to be faster
2266   if (!is_static) {
2267     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2268   }
2269   __ jmp(Done);
2270 
2271   __ bind(notByte);
2272 
2273   __ cmpl(flags, ztos);
2274   __ jcc(Assembler::notEqual, notBool);
2275 
2276   // ztos (same code as btos)
2277   __ load_signed_byte(rax, lo);
2278   __ push(ztos);
2279   // Rewrite bytecode to be faster
2280   if (!is_static) {
2281     // use btos rewriting, no truncating to t/f bit is needed for getfield.
2282     patch_bytecode(Bytecodes::_fast_bgetfield, rcx, rbx);
2283   }
2284   __ jmp(Done);
2285 
2286   __ bind(notBool);
2287 
2288   // itos
2289   __ cmpl(flags, itos );
2290   __ jcc(Assembler::notEqual, notInt);
2291 
2292   __ movl(rax, lo );
2293   __ push(itos);
2294   // Rewrite bytecode to be faster
2295   if (!is_static) {
2296     patch_bytecode(Bytecodes::_fast_igetfield, rcx, rbx);
2297   }
2298   __ jmp(Done);
2299 
2300   __ bind(notInt);
2301   // atos
2302   __ cmpl(flags, atos );
2303   __ jcc(Assembler::notEqual, notObj);
2304 
2305   __ movl(rax, lo );
2306   __ push(atos);
2307   if (!is_static) {
2308     patch_bytecode(Bytecodes::_fast_agetfield, rcx, rbx);
2309   }
2310   __ jmp(Done);
2311 
2312   __ bind(notObj);
2313   // ctos
2314   __ cmpl(flags, ctos );
2315   __ jcc(Assembler::notEqual, notChar);
2316 
2317   __ load_unsigned_short(rax, lo );
2318   __ push(ctos);
2319   if (!is_static) {
2320     patch_bytecode(Bytecodes::_fast_cgetfield, rcx, rbx);
2321   }
2322   __ jmp(Done);
2323 
2324   __ bind(notChar);
2325   // stos
2326   __ cmpl(flags, stos );
2327   __ jcc(Assembler::notEqual, notShort);
2328 
2329   __ load_signed_short(rax, lo );
2330   __ push(stos);
2331   if (!is_static) {
2332     patch_bytecode(Bytecodes::_fast_sgetfield, rcx, rbx);
2333   }
2334   __ jmp(Done);
2335 
2336   __ bind(notShort);
2337   // ltos
2338   __ cmpl(flags, ltos );
2339   __ jcc(Assembler::notEqual, notLong);
2340 
2341   // Generate code as if volatile.  There just aren't enough registers to
2342   // save that information and this code is faster than the test.
2343   __ fild_d(lo);                // Must load atomically
2344   __ subptr(rsp,2*wordSize);    // Make space for store
2345   __ fistp_d(Address(rsp,0));
2346   __ pop(rax);
2347   __ pop(rdx);
2348 
2349   __ push(ltos);
2350   // Don't rewrite to _fast_lgetfield for potential volatile case.
2351   __ jmp(Done);
2352 
2353   __ bind(notLong);
2354   // ftos
2355   __ cmpl(flags, ftos );
2356   __ jcc(Assembler::notEqual, notFloat);
2357 
2358   __ fld_s(lo);
2359   __ push(ftos);
2360   if (!is_static) {
2361     patch_bytecode(Bytecodes::_fast_fgetfield, rcx, rbx);
2362   }
2363   __ jmp(Done);
2364 
2365   __ bind(notFloat);
2366   // dtos
2367   __ cmpl(flags, dtos );
2368   __ jcc(Assembler::notEqual, notDouble);
2369 
2370   __ fld_d(lo);
2371   __ push(dtos);
2372   if (!is_static) {
2373     patch_bytecode(Bytecodes::_fast_dgetfield, rcx, rbx);
2374   }
2375   __ jmpb(Done);
2376 
2377   __ bind(notDouble);
2378 
2379   __ stop("Bad state");
2380 
2381   __ bind(Done);
2382   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2383   // volatile_barrier( );
2384 }
2385 
2386 
2387 void TemplateTable::getfield(int byte_no) {
2388   getfield_or_static(byte_no, false);
2389 }
2390 
2391 
2392 void TemplateTable::getstatic(int byte_no) {
2393   getfield_or_static(byte_no, true);
2394 }
2395 
2396 // The registers cache and index expected to be set before call.
2397 // The function may destroy various registers, just not the cache and index registers.
2398 void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
2399 
2400   ByteSize cp_base_offset = ConstantPoolCache::base_offset();
2401 
2402   if (JvmtiExport::can_post_field_modification()) {
2403     // Check to see if a field modification watch has been set before we take
2404     // the time to call into the VM.
2405     Label L1;
2406     assert_different_registers(cache, index, rax);
2407     __ mov32(rax, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2408     __ testl(rax, rax);
2409     __ jcc(Assembler::zero, L1);
2410 
2411     // The cache and index registers have been already set.
2412     // This allows to eliminate this call but the cache and index
2413     // registers have to be correspondingly used after this line.
2414     __ get_cache_and_index_at_bcp(rax, rdx, 1);
2415 
2416     if (is_static) {
2417       // Life is simple.  Null out the object pointer.
2418       __ xorptr(rbx, rbx);
2419     } else {
2420       // Life is harder. The stack holds the value on top, followed by the object.
2421       // We don't know the size of the value, though; it could be one or two words
2422       // depending on its type. As a result, we must find the type to determine where
2423       // the object is.
2424       Label two_word, valsize_known;
2425       __ movl(rcx, Address(rax, rdx, Address::times_ptr, in_bytes(cp_base_offset +
2426                                    ConstantPoolCacheEntry::flags_offset())));
2427       __ mov(rbx, rsp);
2428       __ shrl(rcx, ConstantPoolCacheEntry::tos_state_shift);
2429       // Make sure we don't need to mask rcx after the above shift
2430       ConstantPoolCacheEntry::verify_tos_state_shift();
2431       __ cmpl(rcx, ltos);
2432       __ jccb(Assembler::equal, two_word);
2433       __ cmpl(rcx, dtos);
2434       __ jccb(Assembler::equal, two_word);
2435       __ addptr(rbx, Interpreter::expr_offset_in_bytes(1)); // one word jvalue (not ltos, dtos)
2436       __ jmpb(valsize_known);
2437 
2438       __ bind(two_word);
2439       __ addptr(rbx, Interpreter::expr_offset_in_bytes(2)); // two words jvalue
2440 
2441       __ bind(valsize_known);
2442       // setup object pointer
2443       __ movptr(rbx, Address(rbx, 0));
2444     }
2445     // cache entry pointer
2446     __ addptr(rax, in_bytes(cp_base_offset));
2447     __ shll(rdx, LogBytesPerWord);
2448     __ addptr(rax, rdx);
2449     // object (tos)
2450     __ mov(rcx, rsp);
2451     // rbx,: object pointer set up above (NULL if static)
2452     // rax,: cache entry pointer
2453     // rcx: jvalue object on the stack
2454     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification),
2455                rbx, rax, rcx);
2456     __ get_cache_and_index_at_bcp(cache, index, 1);
2457     __ bind(L1);
2458   }
2459 }
2460 
2461 
2462 void TemplateTable::putfield_or_static(int byte_no, bool is_static) {
2463   transition(vtos, vtos);
2464 
2465   const Register cache = rcx;
2466   const Register index = rdx;
2467   const Register obj   = rcx;
2468   const Register off   = rbx;
2469   const Register flags = rax;
2470 
2471   resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
2472   jvmti_post_field_mod(cache, index, is_static);
2473   load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
2474 
2475   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2476   // volatile_barrier( );
2477 
2478   Label notVolatile, Done;
2479   __ movl(rdx, flags);
2480   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2481   __ andl(rdx, 0x1);
2482 
2483   // field addresses
2484   const Address lo(obj, off, Address::times_1, 0*wordSize);
2485   const Address hi(obj, off, Address::times_1, 1*wordSize);
2486 
2487   Label notByte, notBool, notInt, notShort, notChar, notLong, notFloat, notObj, notDouble;
2488 
2489   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2490   assert(btos == 0, "change code, btos != 0");
2491   __ andl(flags, ConstantPoolCacheEntry::tos_state_mask);
2492   __ jcc(Assembler::notZero, notByte);
2493 
2494   // btos
2495   {
2496     __ pop(btos);
2497     if (!is_static) pop_and_check_object(obj);
2498     __ movb(lo, rax);
2499     if (!is_static) {
2500       patch_bytecode(Bytecodes::_fast_bputfield, rcx, rbx, true, byte_no);
2501     }
2502     __ jmp(Done);
2503   }
2504 
2505   __ bind(notByte);
2506   __ cmpl(flags, ztos);
2507   __ jcc(Assembler::notEqual, notBool);
2508 
2509   // ztos
2510   {
2511     __ pop(ztos);
2512     if (!is_static) pop_and_check_object(obj);
2513     __ andl(rax, 0x1);
2514     __ movb(lo, rax);
2515     if (!is_static) {
2516       patch_bytecode(Bytecodes::_fast_zputfield, rcx, rbx, true, byte_no);
2517     }
2518     __ jmp(Done);
2519   }
2520 
2521   __ bind(notBool);
2522   __ cmpl(flags, itos);
2523   __ jcc(Assembler::notEqual, notInt);
2524 
2525   // itos
2526   {
2527     __ pop(itos);
2528     if (!is_static) pop_and_check_object(obj);
2529     __ movl(lo, rax);
2530     if (!is_static) {
2531       patch_bytecode(Bytecodes::_fast_iputfield, rcx, rbx, true, byte_no);
2532     }
2533     __ jmp(Done);
2534   }
2535 
2536   __ bind(notInt);
2537   __ cmpl(flags, atos);
2538   __ jcc(Assembler::notEqual, notObj);
2539 
2540   // atos
2541   {
2542     __ pop(atos);
2543     if (!is_static) pop_and_check_object(obj);
2544     do_oop_store(_masm, lo, rax, _bs->kind(), false);
2545     if (!is_static) {
2546       patch_bytecode(Bytecodes::_fast_aputfield, rcx, rbx, true, byte_no);
2547     }
2548     __ jmp(Done);
2549   }
2550 
2551   __ bind(notObj);
2552   __ cmpl(flags, ctos);
2553   __ jcc(Assembler::notEqual, notChar);
2554 
2555   // ctos
2556   {
2557     __ pop(ctos);
2558     if (!is_static) pop_and_check_object(obj);
2559     __ movw(lo, rax);
2560     if (!is_static) {
2561       patch_bytecode(Bytecodes::_fast_cputfield, rcx, rbx, true, byte_no);
2562     }
2563     __ jmp(Done);
2564   }
2565 
2566   __ bind(notChar);
2567   __ cmpl(flags, stos);
2568   __ jcc(Assembler::notEqual, notShort);
2569 
2570   // stos
2571   {
2572     __ pop(stos);
2573     if (!is_static) pop_and_check_object(obj);
2574     __ movw(lo, rax);
2575     if (!is_static) {
2576       patch_bytecode(Bytecodes::_fast_sputfield, rcx, rbx, true, byte_no);
2577     }
2578     __ jmp(Done);
2579   }
2580 
2581   __ bind(notShort);
2582   __ cmpl(flags, ltos);
2583   __ jcc(Assembler::notEqual, notLong);
2584 
2585   // ltos
2586   {
2587     Label notVolatileLong;
2588     __ testl(rdx, rdx);
2589     __ jcc(Assembler::zero, notVolatileLong);
2590 
2591     __ pop(ltos);  // overwrites rdx, do this after testing volatile.
2592     if (!is_static) pop_and_check_object(obj);
2593 
2594     // Replace with real volatile test
2595     __ push(rdx);
2596     __ push(rax);                 // Must update atomically with FIST
2597     __ fild_d(Address(rsp,0));    // So load into FPU register
2598     __ fistp_d(lo);               // and put into memory atomically
2599     __ addptr(rsp, 2*wordSize);
2600     // volatile_barrier();
2601     volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2602                                                  Assembler::StoreStore));
2603     // Don't rewrite volatile version
2604     __ jmp(notVolatile);
2605 
2606     __ bind(notVolatileLong);
2607 
2608     __ pop(ltos);  // overwrites rdx
2609     if (!is_static) pop_and_check_object(obj);
2610     NOT_LP64(__ movptr(hi, rdx));
2611     __ movptr(lo, rax);
2612     if (!is_static) {
2613       patch_bytecode(Bytecodes::_fast_lputfield, rcx, rbx, true, byte_no);
2614     }
2615     __ jmp(notVolatile);
2616   }
2617 
2618   __ bind(notLong);
2619   __ cmpl(flags, ftos);
2620   __ jcc(Assembler::notEqual, notFloat);
2621 
2622   // ftos
2623   {
2624     __ pop(ftos);
2625     if (!is_static) pop_and_check_object(obj);
2626     __ fstp_s(lo);
2627     if (!is_static) {
2628       patch_bytecode(Bytecodes::_fast_fputfield, rcx, rbx, true, byte_no);
2629     }
2630     __ jmp(Done);
2631   }
2632 
2633   __ bind(notFloat);
2634 #ifdef ASSERT
2635   __ cmpl(flags, dtos);
2636   __ jcc(Assembler::notEqual, notDouble);
2637 #endif
2638 
2639   // dtos
2640   {
2641     __ pop(dtos);
2642     if (!is_static) pop_and_check_object(obj);
2643     __ fstp_d(lo);
2644     if (!is_static) {
2645       patch_bytecode(Bytecodes::_fast_dputfield, rcx, rbx, true, byte_no);
2646     }
2647     __ jmp(Done);
2648   }
2649 
2650 #ifdef ASSERT
2651   __ bind(notDouble);
2652   __ stop("Bad state");
2653 #endif
2654 
2655   __ bind(Done);
2656 
2657   // Check for volatile store
2658   __ testl(rdx, rdx);
2659   __ jcc(Assembler::zero, notVolatile);
2660   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2661                                                Assembler::StoreStore));
2662   __ bind(notVolatile);
2663 }
2664 
2665 
2666 void TemplateTable::putfield(int byte_no) {
2667   putfield_or_static(byte_no, false);
2668 }
2669 
2670 
2671 void TemplateTable::putstatic(int byte_no) {
2672   putfield_or_static(byte_no, true);
2673 }
2674 
2675 void TemplateTable::jvmti_post_fast_field_mod() {
2676   if (JvmtiExport::can_post_field_modification()) {
2677     // Check to see if a field modification watch has been set before we take
2678     // the time to call into the VM.
2679     Label L2;
2680      __ mov32(rcx, ExternalAddress((address)JvmtiExport::get_field_modification_count_addr()));
2681      __ testl(rcx,rcx);
2682      __ jcc(Assembler::zero, L2);
2683      __ pop_ptr(rbx);               // copy the object pointer from tos
2684      __ verify_oop(rbx);
2685      __ push_ptr(rbx);              // put the object pointer back on tos
2686 
2687      // Save tos values before call_VM() clobbers them. Since we have
2688      // to do it for every data type, we use the saved values as the
2689      // jvalue object.
2690      switch (bytecode()) {          // load values into the jvalue object
2691      case Bytecodes::_fast_aputfield: __ push_ptr(rax); break;
2692      case Bytecodes::_fast_bputfield: // fall through
2693      case Bytecodes::_fast_zputfield: // fall through
2694      case Bytecodes::_fast_sputfield: // fall through
2695      case Bytecodes::_fast_cputfield: // fall through
2696      case Bytecodes::_fast_iputfield: __ push_i(rax); break;
2697      case Bytecodes::_fast_dputfield: __ push_d(); break;
2698      case Bytecodes::_fast_fputfield: __ push_f(); break;
2699      case Bytecodes::_fast_lputfield: __ push_l(rax); break;
2700 
2701      default:
2702        ShouldNotReachHere();
2703      }
2704      __ mov(rcx, rsp);              // points to jvalue on the stack
2705      // access constant pool cache entry
2706      __ get_cache_entry_pointer_at_bcp(rax, rdx, 1);
2707      __ verify_oop(rbx);
2708      // rbx,: object pointer copied above
2709      // rax,: cache entry pointer
2710      // rcx: jvalue object on the stack
2711      __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_modification), rbx, rax, rcx);
2712 
2713      switch (bytecode()) {             // restore tos values
2714      case Bytecodes::_fast_aputfield: __ pop_ptr(rax); break;
2715      case Bytecodes::_fast_bputfield: // fall through
2716      case Bytecodes::_fast_zputfield: // fall through
2717      case Bytecodes::_fast_sputfield: // fall through
2718      case Bytecodes::_fast_cputfield: // fall through
2719      case Bytecodes::_fast_iputfield: __ pop_i(rax); break;
2720      case Bytecodes::_fast_dputfield: __ pop_d(); break;
2721      case Bytecodes::_fast_fputfield: __ pop_f(); break;
2722      case Bytecodes::_fast_lputfield: __ pop_l(rax); break;
2723      }
2724      __ bind(L2);
2725   }
2726 }
2727 
2728 void TemplateTable::fast_storefield(TosState state) {
2729   transition(state, vtos);
2730 
2731   ByteSize base = ConstantPoolCache::base_offset();
2732 
2733   jvmti_post_fast_field_mod();
2734 
2735   // access constant pool cache
2736   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2737 
2738   // test for volatile with rdx but rdx is tos register for lputfield.
2739   if (bytecode() == Bytecodes::_fast_lputfield) __ push(rdx);
2740   __ movl(rdx, Address(rcx, rbx, Address::times_ptr, in_bytes(base +
2741                        ConstantPoolCacheEntry::flags_offset())));
2742 
2743   // replace index with field offset from cache entry
2744   __ movptr(rbx, Address(rcx, rbx, Address::times_ptr, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
2745 
2746   // Doug Lea believes this is not needed with current Sparcs (TSO) and Intel (PSO).
2747   // volatile_barrier( );
2748 
2749   Label notVolatile, Done;
2750   __ shrl(rdx, ConstantPoolCacheEntry::is_volatile_shift);
2751   __ andl(rdx, 0x1);
2752   // Check for volatile store
2753   __ testl(rdx, rdx);
2754   __ jcc(Assembler::zero, notVolatile);
2755 
2756   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2757 
2758   // Get object from stack
2759   pop_and_check_object(rcx);
2760 
2761   // field addresses
2762   const Address lo(rcx, rbx, Address::times_1, 0*wordSize);
2763   const Address hi(rcx, rbx, Address::times_1, 1*wordSize);
2764 
2765   // access field
2766   switch (bytecode()) {
2767     case Bytecodes::_fast_zputfield: __ andl(rax, 0x1);  // boolean is true if LSB is 1
2768     // fall through to bputfield
2769     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2770     case Bytecodes::_fast_sputfield: // fall through
2771     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2772     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2773     case Bytecodes::_fast_lputfield:
2774       NOT_LP64(__ movptr(hi, rdx));
2775       __ movptr(lo, rax);
2776       break;
2777     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2778     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2779     case Bytecodes::_fast_aputfield: {
2780       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2781       break;
2782     }
2783     default:
2784       ShouldNotReachHere();
2785   }
2786 
2787   Label done;
2788   volatile_barrier(Assembler::Membar_mask_bits(Assembler::StoreLoad |
2789                                                Assembler::StoreStore));
2790   // Barriers are so large that short branch doesn't reach!
2791   __ jmp(done);
2792 
2793   // Same code as above, but don't need rdx to test for volatile.
2794   __ bind(notVolatile);
2795 
2796   if (bytecode() == Bytecodes::_fast_lputfield) __ pop(rdx);
2797 
2798   // Get object from stack
2799   pop_and_check_object(rcx);
2800 
2801   // access field
2802   switch (bytecode()) {
2803     case Bytecodes::_fast_zputfield: __ andl(rax, 0x1);  // boolean is true if LSB is 1
2804     // fall through to bputfield
2805     case Bytecodes::_fast_bputfield: __ movb(lo, rax); break;
2806     case Bytecodes::_fast_sputfield: // fall through
2807     case Bytecodes::_fast_cputfield: __ movw(lo, rax); break;
2808     case Bytecodes::_fast_iputfield: __ movl(lo, rax); break;
2809     case Bytecodes::_fast_lputfield:
2810       NOT_LP64(__ movptr(hi, rdx));
2811       __ movptr(lo, rax);
2812       break;
2813     case Bytecodes::_fast_fputfield: __ fstp_s(lo); break;
2814     case Bytecodes::_fast_dputfield: __ fstp_d(lo); break;
2815     case Bytecodes::_fast_aputfield: {
2816       do_oop_store(_masm, lo, rax, _bs->kind(), false);
2817       break;
2818     }
2819     default:
2820       ShouldNotReachHere();
2821   }
2822   __ bind(done);
2823 }
2824 
2825 
2826 void TemplateTable::fast_accessfield(TosState state) {
2827   transition(atos, state);
2828 
2829   // do the JVMTI work here to avoid disturbing the register state below
2830   if (JvmtiExport::can_post_field_access()) {
2831     // Check to see if a field access watch has been set before we take
2832     // the time to call into the VM.
2833     Label L1;
2834     __ mov32(rcx, ExternalAddress((address) JvmtiExport::get_field_access_count_addr()));
2835     __ testl(rcx,rcx);
2836     __ jcc(Assembler::zero, L1);
2837     // access constant pool cache entry
2838     __ get_cache_entry_pointer_at_bcp(rcx, rdx, 1);
2839     __ push_ptr(rax);  // save object pointer before call_VM() clobbers it
2840     __ verify_oop(rax);
2841     // rax,: object pointer copied above
2842     // rcx: cache entry pointer
2843     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::post_field_access), rax, rcx);
2844     __ pop_ptr(rax);   // restore object pointer
2845     __ bind(L1);
2846   }
2847 
2848   // access constant pool cache
2849   __ get_cache_and_index_at_bcp(rcx, rbx, 1);
2850   // replace index with field offset from cache entry
2851   __ movptr(rbx, Address(rcx,
2852                          rbx,
2853                          Address::times_ptr,
2854                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2855 
2856 
2857   // rax,: object
2858   __ verify_oop(rax);
2859   __ null_check(rax);
2860   // field addresses
2861   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2862   const Address hi = Address(rax, rbx, Address::times_1, 1*wordSize);
2863 
2864   // access field
2865   switch (bytecode()) {
2866     case Bytecodes::_fast_bgetfield: __ movsbl(rax, lo );                 break;
2867     case Bytecodes::_fast_sgetfield: __ load_signed_short(rax, lo );      break;
2868     case Bytecodes::_fast_cgetfield: __ load_unsigned_short(rax, lo );    break;
2869     case Bytecodes::_fast_igetfield: __ movl(rax, lo);                    break;
2870     case Bytecodes::_fast_lgetfield: __ stop("should not be rewritten");  break;
2871     case Bytecodes::_fast_fgetfield: __ fld_s(lo);                        break;
2872     case Bytecodes::_fast_dgetfield: __ fld_d(lo);                        break;
2873     case Bytecodes::_fast_agetfield: __ movptr(rax, lo); __ verify_oop(rax); break;
2874     default:
2875       ShouldNotReachHere();
2876   }
2877 
2878   // Doug Lea believes this is not needed with current Sparcs(TSO) and Intel(PSO)
2879   // volatile_barrier( );
2880 }
2881 
2882 void TemplateTable::fast_xaccess(TosState state) {
2883   transition(vtos, state);
2884   // get receiver
2885   __ movptr(rax, aaddress(0));
2886   // access constant pool cache
2887   __ get_cache_and_index_at_bcp(rcx, rdx, 2);
2888   __ movptr(rbx, Address(rcx,
2889                          rdx,
2890                          Address::times_ptr,
2891                          in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::f2_offset())));
2892   // make sure exception is reported in correct bcp range (getfield is next instruction)
2893   __ increment(rsi);
2894   __ null_check(rax);
2895   const Address lo = Address(rax, rbx, Address::times_1, 0*wordSize);
2896   if (state == itos) {
2897     __ movl(rax, lo);
2898   } else if (state == atos) {
2899     __ movptr(rax, lo);
2900     __ verify_oop(rax);
2901   } else if (state == ftos) {
2902     __ fld_s(lo);
2903   } else {
2904     ShouldNotReachHere();
2905   }
2906   __ decrement(rsi);
2907 }
2908 
2909 
2910 
2911 //----------------------------------------------------------------------------------------------------
2912 // Calls
2913 
2914 void TemplateTable::count_calls(Register method, Register temp) {
2915   // implemented elsewhere
2916   ShouldNotReachHere();
2917 }
2918 
2919 
2920 void TemplateTable::prepare_invoke(int byte_no,
2921                                    Register method,  // linked method (or i-klass)
2922                                    Register index,   // itable index, MethodType, etc.
2923                                    Register recv,    // if caller wants to see it
2924                                    Register flags    // if caller wants to test it
2925                                    ) {
2926   // determine flags
2927   const Bytecodes::Code code = bytecode();
2928   const bool is_invokeinterface  = code == Bytecodes::_invokeinterface;
2929   const bool is_invokedynamic    = code == Bytecodes::_invokedynamic;
2930   const bool is_invokehandle     = code == Bytecodes::_invokehandle;
2931   const bool is_invokevirtual    = code == Bytecodes::_invokevirtual;
2932   const bool is_invokespecial    = code == Bytecodes::_invokespecial;
2933   const bool load_receiver       = (recv  != noreg);
2934   const bool save_flags          = (flags != noreg);
2935   assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
2936   assert(save_flags    == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
2937   assert(flags == noreg || flags == rdx, "");
2938   assert(recv  == noreg || recv  == rcx, "");
2939 
2940   // setup registers & access constant pool cache
2941   if (recv  == noreg)  recv  = rcx;
2942   if (flags == noreg)  flags = rdx;
2943   assert_different_registers(method, index, recv, flags);
2944 
2945   // save 'interpreter return address'
2946   __ save_bcp();
2947 
2948   load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
2949 
2950   // maybe push appendix to arguments (just before return address)
2951   if (is_invokedynamic || is_invokehandle) {
2952     Label L_no_push;
2953     __ testl(flags, (1 << ConstantPoolCacheEntry::has_appendix_shift));
2954     __ jccb(Assembler::zero, L_no_push);
2955     // Push the appendix as a trailing parameter.
2956     // This must be done before we get the receiver,
2957     // since the parameter_size includes it.
2958     __ push(rbx);
2959     __ mov(rbx, index);
2960     assert(ConstantPoolCacheEntry::_indy_resolved_references_appendix_offset == 0, "appendix expected at index+0");
2961     __ load_resolved_reference_at_index(index, rbx);
2962     __ pop(rbx);
2963     __ push(index);  // push appendix (MethodType, CallSite, etc.)
2964     __ bind(L_no_push);
2965   }
2966 
2967   // load receiver if needed (note: no return address pushed yet)
2968   if (load_receiver) {
2969     __ movl(recv, flags);
2970     __ andl(recv, ConstantPoolCacheEntry::parameter_size_mask);
2971     const int no_return_pc_pushed_yet = -1;  // argument slot correction before we push return address
2972     const int receiver_is_at_end      = -1;  // back off one slot to get receiver
2973     Address recv_addr = __ argument_address(recv, no_return_pc_pushed_yet + receiver_is_at_end);
2974     __ movptr(recv, recv_addr);
2975     __ verify_oop(recv);
2976   }
2977 
2978   if (save_flags) {
2979     __ mov(rsi, flags);
2980   }
2981 
2982   // compute return type
2983   __ shrl(flags, ConstantPoolCacheEntry::tos_state_shift);
2984   // Make sure we don't need to mask flags after the above shift
2985   ConstantPoolCacheEntry::verify_tos_state_shift();
2986   // load return address
2987   {
2988     const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
2989     ExternalAddress table(table_addr);
2990     __ movptr(flags, ArrayAddress(table, Address(noreg, flags, Address::times_ptr)));
2991   }
2992 
2993   // push return address
2994   __ push(flags);
2995 
2996   // Restore flags value from the constant pool cache, and restore rsi
2997   // for later null checks.  rsi is the bytecode pointer
2998   if (save_flags) {
2999     __ mov(flags, rsi);
3000     __ restore_bcp();
3001   }
3002 }
3003 
3004 
3005 void TemplateTable::invokevirtual_helper(Register index,
3006                                          Register recv,
3007                                          Register flags) {
3008   // Uses temporary registers rax, rdx
3009   assert_different_registers(index, recv, rax, rdx);
3010   assert(index == rbx, "");
3011   assert(recv  == rcx, "");
3012 
3013   // Test for an invoke of a final method
3014   Label notFinal;
3015   __ movl(rax, flags);
3016   __ andl(rax, (1 << ConstantPoolCacheEntry::is_vfinal_shift));
3017   __ jcc(Assembler::zero, notFinal);
3018 
3019   const Register method = index;  // method must be rbx
3020   assert(method == rbx,
3021          "Method* must be rbx for interpreter calling convention");
3022 
3023   // do the call - the index is actually the method to call
3024   // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
3025 
3026   // It's final, need a null check here!
3027   __ null_check(recv);
3028 
3029   // profile this call
3030   __ profile_final_call(rax);
3031   __ profile_arguments_type(rax, method, rsi, true);
3032 
3033   __ jump_from_interpreted(method, rax);
3034 
3035   __ bind(notFinal);
3036 
3037   // get receiver klass
3038   __ null_check(recv, oopDesc::klass_offset_in_bytes());
3039   __ load_klass(rax, recv);
3040 
3041   // profile this call
3042   __ profile_virtual_call(rax, rdi, rdx);
3043 
3044   // get target Method* & entry point
3045   __ lookup_virtual_method(rax, index, method);
3046   __ profile_arguments_type(rdx, method, rsi, true);
3047   __ jump_from_interpreted(method, rdx);
3048 }
3049 
3050 
3051 void TemplateTable::invokevirtual(int byte_no) {
3052   transition(vtos, vtos);
3053   assert(byte_no == f2_byte, "use this argument");
3054   prepare_invoke(byte_no,
3055                  rbx,    // method or vtable index
3056                  noreg,  // unused itable index
3057                  rcx, rdx); // recv, flags
3058 
3059   // rbx: index
3060   // rcx: receiver
3061   // rdx: flags
3062 
3063   invokevirtual_helper(rbx, rcx, rdx);
3064 }
3065 
3066 
3067 void TemplateTable::invokespecial(int byte_no) {
3068   transition(vtos, vtos);
3069   assert(byte_no == f1_byte, "use this argument");
3070   prepare_invoke(byte_no, rbx, noreg,  // get f1 Method*
3071                  rcx);  // get receiver also for null check
3072   __ verify_oop(rcx);
3073   __ null_check(rcx);
3074   // do the call
3075   __ profile_call(rax);
3076   __ profile_arguments_type(rax, rbx, rsi, false);
3077   __ jump_from_interpreted(rbx, rax);
3078 }
3079 
3080 
3081 void TemplateTable::invokestatic(int byte_no) {
3082   transition(vtos, vtos);
3083   assert(byte_no == f1_byte, "use this argument");
3084   prepare_invoke(byte_no, rbx);  // get f1 Method*
3085   // do the call
3086   __ profile_call(rax);
3087   __ profile_arguments_type(rax, rbx, rsi, false);
3088   __ jump_from_interpreted(rbx, rax);
3089 }
3090 
3091 
3092 void TemplateTable::fast_invokevfinal(int byte_no) {
3093   transition(vtos, vtos);
3094   assert(byte_no == f2_byte, "use this argument");
3095   __ stop("fast_invokevfinal not used on x86");
3096 }
3097 
3098 
3099 void TemplateTable::invokeinterface(int byte_no) {
3100   transition(vtos, vtos);
3101   assert(byte_no == f1_byte, "use this argument");
3102   prepare_invoke(byte_no, rax, rbx,  // get f1 Klass*, f2 Method*
3103                  rcx, rdx); // recv, flags
3104 
3105   // rax: reference klass (from f1)
3106   // rbx: method (from f2)
3107   // rcx: receiver
3108   // rdx: flags
3109 
3110   // Special case of invokeinterface called for virtual method of
3111   // java.lang.Object.  See cpCacheOop.cpp for details.
3112   // This code isn't produced by javac, but could be produced by
3113   // another compliant java compiler.
3114   Label notMethod;
3115   __ movl(rdi, rdx);
3116   __ andl(rdi, (1 << ConstantPoolCacheEntry::is_forced_virtual_shift));
3117   __ jcc(Assembler::zero, notMethod);
3118 
3119   invokevirtual_helper(rbx, rcx, rdx);
3120   __ bind(notMethod);
3121 
3122   // Get receiver klass into rdx - also a null check
3123   __ restore_locals();  // restore rdi
3124   __ null_check(rcx, oopDesc::klass_offset_in_bytes());
3125   __ load_klass(rdx, rcx);
3126 
3127   Label no_such_interface, no_such_method;
3128 
3129   // Receiver subtype check against REFC.
3130   // Superklass in rax. Subklass in rdx. Blows rcx, rdi.
3131   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3132                              rdx, rax, noreg,
3133                              // outputs: scan temp. reg, scan temp. reg
3134                              rsi, rdi,
3135                              no_such_interface,
3136                              /*return_method=*/false);
3137 
3138 
3139   // profile this call
3140   __ restore_bcp(); // rbcp was destroyed by receiver type check
3141   __ profile_virtual_call(rdx, rsi, rdi);
3142 
3143   // Get declaring interface class from method, and itable index
3144   __ movptr(rax, Address(rbx, Method::const_offset()));
3145   __ movptr(rax, Address(rax, ConstMethod::constants_offset()));
3146   __ movptr(rax, Address(rax, ConstantPool::pool_holder_offset_in_bytes()));
3147   __ movl(rbx, Address(rbx, Method::itable_index_offset()));
3148   __ subl(rbx, Method::itable_index_max);
3149   __ negl(rbx);
3150 
3151   __ lookup_interface_method(// inputs: rec. class, interface, itable index
3152                              rdx, rax, rbx,
3153                              // outputs: method, scan temp. reg
3154                              rbx, rsi,
3155                              no_such_interface);
3156 
3157   // rbx: Method* to call
3158   // rcx: receiver
3159   // Check for abstract method error
3160   // Note: This should be done more efficiently via a throw_abstract_method_error
3161   //       interpreter entry point and a conditional jump to it in case of a null
3162   //       method.
3163   __ testptr(rbx, rbx);
3164   __ jcc(Assembler::zero, no_such_method);
3165 
3166   __ profile_arguments_type(rdx, rbx, rsi, true);
3167 
3168   // do the call
3169   // rcx: receiver
3170   // rbx,: Method*
3171   __ jump_from_interpreted(rbx, rdx);
3172   __ should_not_reach_here();
3173 
3174   // exception handling code follows...
3175   // note: must restore interpreter registers to canonical
3176   //       state for exception handling to work correctly!
3177 
3178   __ bind(no_such_method);
3179   // throw exception
3180   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3181   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3182   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3183   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodError));
3184   // the call_VM checks for exception, so we should never return here.
3185   __ should_not_reach_here();
3186 
3187   __ bind(no_such_interface);
3188   // throw exception
3189   __ pop(rbx);           // pop return address (pushed by prepare_invoke)
3190   __ restore_bcp();      // rsi must be correct for exception handler   (was destroyed)
3191   __ restore_locals();   // make sure locals pointer is correct as well (was destroyed)
3192   __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3193                    InterpreterRuntime::throw_IncompatibleClassChangeError));
3194   // the call_VM checks for exception, so we should never return here.
3195   __ should_not_reach_here();
3196 }
3197 
3198 void TemplateTable::invokehandle(int byte_no) {
3199   transition(vtos, vtos);
3200   assert(byte_no == f1_byte, "use this argument");
3201   const Register rbx_method = rbx;
3202   const Register rax_mtype  = rax;
3203   const Register rcx_recv   = rcx;
3204   const Register rdx_flags  = rdx;
3205 
3206   if (!EnableInvokeDynamic) {
3207     // rewriter does not generate this bytecode
3208     __ should_not_reach_here();
3209     return;
3210   }
3211 
3212   prepare_invoke(byte_no, rbx_method, rax_mtype, rcx_recv);
3213   __ verify_method_ptr(rbx_method);
3214   __ verify_oop(rcx_recv);
3215   __ null_check(rcx_recv);
3216 
3217   // rax: MethodType object (from cpool->resolved_references[f1], if necessary)
3218   // rbx: MH.invokeExact_MT method (from f2)
3219 
3220   // Note:  rax_mtype is already pushed (if necessary) by prepare_invoke
3221 
3222   // FIXME: profile the LambdaForm also
3223   __ profile_final_call(rax);
3224   __ profile_arguments_type(rdx, rbx_method, rsi, true);
3225 
3226   __ jump_from_interpreted(rbx_method, rdx);
3227 }
3228 
3229 
3230 void TemplateTable::invokedynamic(int byte_no) {
3231   transition(vtos, vtos);
3232   assert(byte_no == f1_byte, "use this argument");
3233 
3234   if (!EnableInvokeDynamic) {
3235     // We should not encounter this bytecode if !EnableInvokeDynamic.
3236     // The verifier will stop it.  However, if we get past the verifier,
3237     // this will stop the thread in a reasonable way, without crashing the JVM.
3238     __ call_VM(noreg, CAST_FROM_FN_PTR(address,
3239                      InterpreterRuntime::throw_IncompatibleClassChangeError));
3240     // the call_VM checks for exception, so we should never return here.
3241     __ should_not_reach_here();
3242     return;
3243   }
3244 
3245   const Register rbx_method   = rbx;
3246   const Register rax_callsite = rax;
3247 
3248   prepare_invoke(byte_no, rbx_method, rax_callsite);
3249 
3250   // rax: CallSite object (from cpool->resolved_references[f1])
3251   // rbx: MH.linkToCallSite method (from f2)
3252 
3253   // Note:  rax_callsite is already pushed by prepare_invoke
3254 
3255   // %%% should make a type profile for any invokedynamic that takes a ref argument
3256   // profile this call
3257   __ profile_call(rsi);
3258   __ profile_arguments_type(rdx, rbx, rsi, false);
3259 
3260   __ verify_oop(rax_callsite);
3261 
3262   __ jump_from_interpreted(rbx_method, rdx);
3263 }
3264 
3265 //----------------------------------------------------------------------------------------------------
3266 // Allocation
3267 
3268 void TemplateTable::_new() {
3269   transition(vtos, atos);
3270   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3271   Label slow_case;
3272   Label slow_case_no_pop;
3273   Label done;
3274   Label initialize_header;
3275   Label initialize_object;  // including clearing the fields
3276   Label allocate_shared;
3277 
3278   __ get_cpool_and_tags(rcx, rax);
3279 
3280   // Make sure the class we're about to instantiate has been resolved.
3281   // This is done before loading InstanceKlass to be consistent with the order
3282   // how Constant Pool is updated (see ConstantPool::klass_at_put)
3283   const int tags_offset = Array<u1>::base_offset_in_bytes();
3284   __ cmpb(Address(rax, rdx, Address::times_1, tags_offset), JVM_CONSTANT_Class);
3285   __ jcc(Assembler::notEqual, slow_case_no_pop);
3286 
3287   // get InstanceKlass
3288   __ movptr(rcx, Address(rcx, rdx, Address::times_ptr, sizeof(ConstantPool)));
3289   __ push(rcx);  // save the contexts of klass for initializing the header
3290 
3291   // make sure klass is initialized & doesn't have finalizer
3292   // make sure klass is fully initialized
3293   __ cmpb(Address(rcx, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
3294   __ jcc(Assembler::notEqual, slow_case);
3295 
3296   // get instance_size in InstanceKlass (scaled to a count of bytes)
3297   __ movl(rdx, Address(rcx, Klass::layout_helper_offset()));
3298   // test to see if it has a finalizer or is malformed in some way
3299   __ testl(rdx, Klass::_lh_instance_slow_path_bit);
3300   __ jcc(Assembler::notZero, slow_case);
3301 
3302   //
3303   // Allocate the instance
3304   // 1) Try to allocate in the TLAB
3305   // 2) if fail and the object is large allocate in the shared Eden
3306   // 3) if the above fails (or is not applicable), go to a slow case
3307   // (creates a new TLAB, etc.)
3308 
3309   const bool allow_shared_alloc =
3310     Universe::heap()->supports_inline_contig_alloc() && !CMSIncrementalMode;
3311 
3312   const Register thread = rcx;
3313   if (UseTLAB || allow_shared_alloc) {
3314     __ get_thread(thread);
3315   }
3316 
3317   if (UseTLAB) {
3318     __ movptr(rax, Address(thread, in_bytes(JavaThread::tlab_top_offset())));
3319     __ lea(rbx, Address(rax, rdx, Address::times_1));
3320     __ cmpptr(rbx, Address(thread, in_bytes(JavaThread::tlab_end_offset())));
3321     __ jcc(Assembler::above, allow_shared_alloc ? allocate_shared : slow_case);
3322     __ movptr(Address(thread, in_bytes(JavaThread::tlab_top_offset())), rbx);
3323     if (ZeroTLAB) {
3324       // the fields have been already cleared
3325       __ jmp(initialize_header);
3326     } else {
3327       // initialize both the header and fields
3328       __ jmp(initialize_object);
3329     }
3330   }
3331 
3332   // Allocation in the shared Eden, if allowed.
3333   //
3334   // rdx: instance size in bytes
3335   if (allow_shared_alloc) {
3336     __ bind(allocate_shared);
3337 
3338     ExternalAddress heap_top((address)Universe::heap()->top_addr());
3339 
3340     Label retry;
3341     __ bind(retry);
3342     __ movptr(rax, heap_top);
3343     __ lea(rbx, Address(rax, rdx, Address::times_1));
3344     __ cmpptr(rbx, ExternalAddress((address)Universe::heap()->end_addr()));
3345     __ jcc(Assembler::above, slow_case);
3346 
3347     // Compare rax, with the top addr, and if still equal, store the new
3348     // top addr in rbx, at the address of the top addr pointer. Sets ZF if was
3349     // equal, and clears it otherwise. Use lock prefix for atomicity on MPs.
3350     //
3351     // rax,: object begin
3352     // rbx,: object end
3353     // rdx: instance size in bytes
3354     __ locked_cmpxchgptr(rbx, heap_top);
3355 
3356     // if someone beat us on the allocation, try again, otherwise continue
3357     __ jcc(Assembler::notEqual, retry);
3358 
3359     __ incr_allocated_bytes(thread, rdx, 0);
3360   }
3361 
3362   if (UseTLAB || Universe::heap()->supports_inline_contig_alloc()) {
3363     // The object is initialized before the header.  If the object size is
3364     // zero, go directly to the header initialization.
3365     __ bind(initialize_object);
3366     __ decrement(rdx, sizeof(oopDesc));
3367     __ jcc(Assembler::zero, initialize_header);
3368 
3369     // Initialize topmost object field, divide rdx by 8, check if odd and
3370     // test if zero.
3371     __ xorl(rcx, rcx);    // use zero reg to clear memory (shorter code)
3372     __ shrl(rdx, LogBytesPerLong); // divide by 2*oopSize and set carry flag if odd
3373 
3374     // rdx must have been multiple of 8
3375 #ifdef ASSERT
3376     // make sure rdx was multiple of 8
3377     Label L;
3378     // Ignore partial flag stall after shrl() since it is debug VM
3379     __ jccb(Assembler::carryClear, L);
3380     __ stop("object size is not multiple of 2 - adjust this code");
3381     __ bind(L);
3382     // rdx must be > 0, no extra check needed here
3383 #endif
3384 
3385     // initialize remaining object fields: rdx was a multiple of 8
3386     { Label loop;
3387     __ bind(loop);
3388     __ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 1*oopSize), rcx);
3389     NOT_LP64(__ movptr(Address(rax, rdx, Address::times_8, sizeof(oopDesc) - 2*oopSize), rcx));
3390     __ decrement(rdx);
3391     __ jcc(Assembler::notZero, loop);
3392     }
3393 
3394     // initialize object header only.
3395     __ bind(initialize_header);
3396     if (UseBiasedLocking) {
3397       __ pop(rcx);   // get saved klass back in the register.
3398       __ movptr(rbx, Address(rcx, Klass::prototype_header_offset()));
3399       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()), rbx);
3400     } else {
3401       __ movptr(Address(rax, oopDesc::mark_offset_in_bytes ()),
3402                 (int32_t)markOopDesc::prototype()); // header
3403       __ pop(rcx);   // get saved klass back in the register.
3404     }
3405     __ store_klass(rax, rcx);  // klass
3406 
3407     {
3408       SkipIfEqual skip_if(_masm, &DTraceAllocProbes, 0);
3409       // Trigger dtrace event for fastpath
3410       __ push(atos);
3411       __ call_VM_leaf(
3412            CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), rax);
3413       __ pop(atos);
3414     }
3415 
3416     __ jmp(done);
3417   }
3418 
3419   // slow case
3420   __ bind(slow_case);
3421   __ pop(rcx);   // restore stack pointer to what it was when we came in.
3422   __ bind(slow_case_no_pop);
3423   __ get_constant_pool(rax);
3424   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3425   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), rax, rdx);
3426 
3427   // continue
3428   __ bind(done);
3429 }
3430 
3431 
3432 void TemplateTable::newarray() {
3433   transition(itos, atos);
3434   __ push_i(rax);                                 // make sure everything is on the stack
3435   __ load_unsigned_byte(rdx, at_bcp(1));
3436   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray), rdx, rax);
3437   __ pop_i(rdx);                                  // discard size
3438 }
3439 
3440 
3441 void TemplateTable::anewarray() {
3442   transition(itos, atos);
3443   __ get_unsigned_2_byte_index_at_bcp(rdx, 1);
3444   __ get_constant_pool(rcx);
3445   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray), rcx, rdx, rax);
3446 }
3447 
3448 
3449 void TemplateTable::arraylength() {
3450   transition(atos, itos);
3451   __ null_check(rax, arrayOopDesc::length_offset_in_bytes());
3452   __ movl(rax, Address(rax, arrayOopDesc::length_offset_in_bytes()));
3453 }
3454 
3455 
3456 void TemplateTable::checkcast() {
3457   transition(atos, atos);
3458   Label done, is_null, ok_is_subtype, quicked, resolved;
3459   __ testptr(rax, rax);   // Object is in EAX
3460   __ jcc(Assembler::zero, is_null);
3461 
3462   // Get cpool & tags index
3463   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3464   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3465   // See if bytecode has already been quicked
3466   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3467   __ jcc(Assembler::equal, quicked);
3468 
3469   __ push(atos);
3470   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3471   // vm_result_2 has metadata result
3472   // borrow rdi from locals
3473   __ get_thread(rdi);
3474   __ get_vm_result_2(rax, rdi);
3475   __ restore_locals();
3476   __ pop_ptr(rdx);
3477   __ jmpb(resolved);
3478 
3479   // Get superklass in EAX and subklass in EBX
3480   __ bind(quicked);
3481   __ mov(rdx, rax);          // Save object in EDX; EAX needed for subtype check
3482   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3483 
3484   __ bind(resolved);
3485   __ load_klass(rbx, rdx);
3486 
3487   // Generate subtype check.  Blows ECX.  Resets EDI.  Object in EDX.
3488   // Superklass in EAX.  Subklass in EBX.
3489   __ gen_subtype_check( rbx, ok_is_subtype );
3490 
3491   // Come here on failure
3492   __ push(rdx);
3493   // object is at TOS
3494   __ jump(ExternalAddress(Interpreter::_throw_ClassCastException_entry));
3495 
3496   // Come here on success
3497   __ bind(ok_is_subtype);
3498   __ mov(rax,rdx);           // Restore object in EDX
3499 
3500   // Collect counts on whether this check-cast sees NULLs a lot or not.
3501   if (ProfileInterpreter) {
3502     __ jmp(done);
3503     __ bind(is_null);
3504     __ profile_null_seen(rcx);
3505   } else {
3506     __ bind(is_null);   // same as 'done'
3507   }
3508   __ bind(done);
3509 }
3510 
3511 
3512 void TemplateTable::instanceof() {
3513   transition(atos, itos);
3514   Label done, is_null, ok_is_subtype, quicked, resolved;
3515   __ testptr(rax, rax);
3516   __ jcc(Assembler::zero, is_null);
3517 
3518   // Get cpool & tags index
3519   __ get_cpool_and_tags(rcx, rdx); // ECX=cpool, EDX=tags array
3520   __ get_unsigned_2_byte_index_at_bcp(rbx, 1); // EBX=index
3521   // See if bytecode has already been quicked
3522   __ cmpb(Address(rdx, rbx, Address::times_1, Array<u1>::base_offset_in_bytes()), JVM_CONSTANT_Class);
3523   __ jcc(Assembler::equal, quicked);
3524 
3525   __ push(atos);
3526   call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc) );
3527   // vm_result_2 has metadata result
3528   // borrow rdi from locals
3529   __ get_thread(rdi);
3530   __ get_vm_result_2(rax, rdi);
3531   __ restore_locals();
3532   __ pop_ptr(rdx);
3533   __ load_klass(rdx, rdx);
3534   __ jmp(resolved);
3535 
3536   // Get superklass in EAX and subklass in EDX
3537   __ bind(quicked);
3538   __ load_klass(rdx, rax);
3539   __ movptr(rax, Address(rcx, rbx, Address::times_ptr, sizeof(ConstantPool)));
3540 
3541   __ bind(resolved);
3542 
3543   // Generate subtype check.  Blows ECX.  Resets EDI.
3544   // Superklass in EAX.  Subklass in EDX.
3545   __ gen_subtype_check( rdx, ok_is_subtype );
3546 
3547   // Come here on failure
3548   __ xorl(rax,rax);
3549   __ jmpb(done);
3550   // Come here on success
3551   __ bind(ok_is_subtype);
3552   __ movl(rax, 1);
3553 
3554   // Collect counts on whether this test sees NULLs a lot or not.
3555   if (ProfileInterpreter) {
3556     __ jmp(done);
3557     __ bind(is_null);
3558     __ profile_null_seen(rcx);
3559   } else {
3560     __ bind(is_null);   // same as 'done'
3561   }
3562   __ bind(done);
3563   // rax, = 0: obj == NULL or  obj is not an instanceof the specified klass
3564   // rax, = 1: obj != NULL and obj is     an instanceof the specified klass
3565 }
3566 
3567 
3568 //----------------------------------------------------------------------------------------------------
3569 // Breakpoints
3570 void TemplateTable::_breakpoint() {
3571 
3572   // Note: We get here even if we are single stepping..
3573   // jbug inists on setting breakpoints at every bytecode
3574   // even if we are in single step mode.
3575 
3576   transition(vtos, vtos);
3577 
3578   // get the unpatched byte code
3579   __ get_method(rcx);
3580   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::get_original_bytecode_at), rcx, rsi);
3581   __ mov(rbx, rax);
3582 
3583   // post the breakpoint event
3584   __ get_method(rcx);
3585   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint), rcx, rsi);
3586 
3587   // complete the execution of original bytecode
3588   __ dispatch_only_normal(vtos);
3589 }
3590 
3591 
3592 //----------------------------------------------------------------------------------------------------
3593 // Exceptions
3594 
3595 void TemplateTable::athrow() {
3596   transition(atos, vtos);
3597   __ null_check(rax);
3598   __ jump(ExternalAddress(Interpreter::throw_exception_entry()));
3599 }
3600 
3601 
3602 //----------------------------------------------------------------------------------------------------
3603 // Synchronization
3604 //
3605 // Note: monitorenter & exit are symmetric routines; which is reflected
3606 //       in the assembly code structure as well
3607 //
3608 // Stack layout:
3609 //
3610 // [expressions  ] <--- rsp               = expression stack top
3611 // ..
3612 // [expressions  ]
3613 // [monitor entry] <--- monitor block top = expression stack bot
3614 // ..
3615 // [monitor entry]
3616 // [frame data   ] <--- monitor block bot
3617 // ...
3618 // [saved rbp,    ] <--- rbp,
3619 
3620 
3621 void TemplateTable::monitorenter() {
3622   transition(atos, vtos);
3623 
3624   // check for NULL object
3625   __ null_check(rax);
3626 
3627   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3628   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3629   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3630   Label allocated;
3631 
3632   // initialize entry pointer
3633   __ xorl(rdx, rdx);                             // points to free slot or NULL
3634 
3635   // find a free slot in the monitor block (result in rdx)
3636   { Label entry, loop, exit;
3637     __ movptr(rcx, monitor_block_top);           // points to current entry, starting with top-most entry
3638 
3639     __ lea(rbx, monitor_block_bot);              // points to word before bottom of monitor block
3640     __ jmpb(entry);
3641 
3642     __ bind(loop);
3643     __ cmpptr(Address(rcx, BasicObjectLock::obj_offset_in_bytes()), (int32_t)NULL_WORD);  // check if current entry is used
3644     __ cmovptr(Assembler::equal, rdx, rcx);      // if not used then remember entry in rdx
3645     __ cmpptr(rax, Address(rcx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3646     __ jccb(Assembler::equal, exit);             // if same object then stop searching
3647     __ addptr(rcx, entry_size);                  // otherwise advance to next entry
3648     __ bind(entry);
3649     __ cmpptr(rcx, rbx);                         // check if bottom reached
3650     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3651     __ bind(exit);
3652   }
3653 
3654   __ testptr(rdx, rdx);                          // check if a slot has been found
3655   __ jccb(Assembler::notZero, allocated);        // if found, continue with that one
3656 
3657   // allocate one if there's no free slot
3658   { Label entry, loop;
3659     // 1. compute new pointers                   // rsp: old expression stack top
3660     __ movptr(rdx, monitor_block_bot);           // rdx: old expression stack bottom
3661     __ subptr(rsp, entry_size);                  // move expression stack top
3662     __ subptr(rdx, entry_size);                  // move expression stack bottom
3663     __ mov(rcx, rsp);                            // set start value for copy loop
3664     __ movptr(monitor_block_bot, rdx);           // set new monitor block top
3665     __ jmp(entry);
3666     // 2. move expression stack contents
3667     __ bind(loop);
3668     __ movptr(rbx, Address(rcx, entry_size));    // load expression stack word from old location
3669     __ movptr(Address(rcx, 0), rbx);             // and store it at new location
3670     __ addptr(rcx, wordSize);                    // advance to next word
3671     __ bind(entry);
3672     __ cmpptr(rcx, rdx);                         // check if bottom reached
3673     __ jcc(Assembler::notEqual, loop);           // if not at bottom then copy next word
3674   }
3675 
3676   // call run-time routine
3677   // rdx: points to monitor entry
3678   __ bind(allocated);
3679 
3680   // Increment bcp to point to the next bytecode, so exception handling for async. exceptions work correctly.
3681   // The object has already been poped from the stack, so the expression stack looks correct.
3682   __ increment(rsi);
3683 
3684   __ movptr(Address(rdx, BasicObjectLock::obj_offset_in_bytes()), rax);     // store object
3685   __ lock_object(rdx);
3686 
3687   // check to make sure this monitor doesn't cause stack overflow after locking
3688   __ save_bcp();  // in case of exception
3689   __ generate_stack_overflow_check(0);
3690 
3691   // The bcp has already been incremented. Just need to dispatch to next instruction.
3692   __ dispatch_next(vtos);
3693 }
3694 
3695 
3696 void TemplateTable::monitorexit() {
3697   transition(atos, vtos);
3698 
3699   // check for NULL object
3700   __ null_check(rax);
3701 
3702   const Address monitor_block_top(rbp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
3703   const Address monitor_block_bot(rbp, frame::interpreter_frame_initial_sp_offset        * wordSize);
3704   const int entry_size =         (     frame::interpreter_frame_monitor_size()           * wordSize);
3705   Label found;
3706 
3707   // find matching slot
3708   { Label entry, loop;
3709     __ movptr(rdx, monitor_block_top);           // points to current entry, starting with top-most entry
3710     __ lea(rbx, monitor_block_bot);             // points to word before bottom of monitor block
3711     __ jmpb(entry);
3712 
3713     __ bind(loop);
3714     __ cmpptr(rax, Address(rdx, BasicObjectLock::obj_offset_in_bytes()));   // check if current entry is for same object
3715     __ jcc(Assembler::equal, found);             // if same object then stop searching
3716     __ addptr(rdx, entry_size);                  // otherwise advance to next entry
3717     __ bind(entry);
3718     __ cmpptr(rdx, rbx);                         // check if bottom reached
3719     __ jcc(Assembler::notEqual, loop);           // if not at bottom then check this entry
3720   }
3721 
3722   // error handling. Unlocking was not block-structured
3723   Label end;
3724   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_illegal_monitor_state_exception));
3725   __ should_not_reach_here();
3726 
3727   // call run-time routine
3728   // rcx: points to monitor entry
3729   __ bind(found);
3730   __ push_ptr(rax);                                 // make sure object is on stack (contract with oopMaps)
3731   __ unlock_object(rdx);
3732   __ pop_ptr(rax);                                  // discard object
3733   __ bind(end);
3734 }
3735 
3736 
3737 //----------------------------------------------------------------------------------------------------
3738 // Wide instructions
3739 
3740 void TemplateTable::wide() {
3741   transition(vtos, vtos);
3742   __ load_unsigned_byte(rbx, at_bcp(1));
3743   ExternalAddress wtable((address)Interpreter::_wentry_point);
3744   __ jump(ArrayAddress(wtable, Address(noreg, rbx, Address::times_ptr)));
3745   // Note: the rsi increment step is part of the individual wide bytecode implementations
3746 }
3747 
3748 
3749 //----------------------------------------------------------------------------------------------------
3750 // Multi arrays
3751 
3752 void TemplateTable::multianewarray() {
3753   transition(vtos, atos);
3754   __ load_unsigned_byte(rax, at_bcp(3)); // get number of dimensions
3755   // last dim is on top of stack; we want address of first one:
3756   // first_addr = last_addr + (ndims - 1) * stackElementSize - 1*wordsize
3757   // the latter wordSize to point to the beginning of the array.
3758   __ lea(  rax, Address(rsp, rax, Interpreter::stackElementScale(), -wordSize));
3759   call_VM(rax, CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray), rax);     // pass in rax,
3760   __ load_unsigned_byte(rbx, at_bcp(3));
3761   __ lea(rsp, Address(rsp, rbx, Interpreter::stackElementScale()));  // get rid of counts
3762 }
3763 
3764 #endif /* !CC_INTERP */