1 /*
   2  * Copyright (c) 2003, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.math.FloatingDecimal;
  29 import java.util.Arrays;
  30 import java.util.Spliterator;
  31 import java.util.stream.IntStream;
  32 import java.util.stream.StreamSupport;
  33 
  34 import static java.lang.String.COMPACT_STRINGS;
  35 import static java.lang.String.UTF16;
  36 import static java.lang.String.LATIN1;
  37 import static java.lang.String.checkIndex;
  38 import static java.lang.String.checkOffset;
  39 
  40 /**
  41  * A mutable sequence of characters.
  42  * <p>
  43  * Implements a modifiable string. At any point in time it contains some
  44  * particular sequence of characters, but the length and content of the
  45  * sequence can be changed through certain method calls.
  46  *
  47  * <p>Unless otherwise noted, passing a {@code null} argument to a constructor
  48  * or method in this class will cause a {@link NullPointerException} to be
  49  * thrown.
  50  *
  51  * @author      Michael McCloskey
  52  * @author      Martin Buchholz
  53  * @author      Ulf Zibis
  54  * @since       1.5
  55  */
  56 abstract class AbstractStringBuilder implements Appendable, CharSequence {
  57     /**
  58      * The value is used for character storage.
  59      */
  60     byte[] value;
  61 
  62     /**
  63      * The id of the encoding used to encode the bytes in {@code value}.
  64      */
  65     byte coder;
  66 
  67     /**
  68      * The count is the number of characters used.
  69      */
  70     int count;
  71 
  72     /**
  73      * This no-arg constructor is necessary for serialization of subclasses.
  74      */
  75     AbstractStringBuilder() {
  76     }
  77 
  78     /**
  79      * Creates an AbstractStringBuilder of the specified capacity.
  80      */
  81     AbstractStringBuilder(int capacity) {
  82         if (COMPACT_STRINGS) {
  83             value = new byte[capacity];
  84             coder = LATIN1;
  85         } else {
  86             value = StringUTF16.newBytesFor(capacity);
  87             coder = UTF16;
  88         }
  89     }
  90 
  91     /**
  92      * Returns the length (character count).
  93      *
  94      * @return  the length of the sequence of characters currently
  95      *          represented by this object
  96      */
  97     @Override
  98     public int length() {
  99         return count;
 100     }
 101 
 102     /**
 103      * Returns the current capacity. The capacity is the amount of storage
 104      * available for newly inserted characters, beyond which an allocation
 105      * will occur.
 106      *
 107      * @return  the current capacity
 108      */
 109     public int capacity() {
 110         return value.length >> coder;
 111     }
 112 
 113     /**
 114      * Ensures that the capacity is at least equal to the specified minimum.
 115      * If the current capacity is less than the argument, then a new internal
 116      * array is allocated with greater capacity. The new capacity is the
 117      * larger of:
 118      * <ul>
 119      * <li>The {@code minimumCapacity} argument.
 120      * <li>Twice the old capacity, plus {@code 2}.
 121      * </ul>
 122      * If the {@code minimumCapacity} argument is nonpositive, this
 123      * method takes no action and simply returns.
 124      * Note that subsequent operations on this object can reduce the
 125      * actual capacity below that requested here.
 126      *
 127      * @param   minimumCapacity   the minimum desired capacity.
 128      */
 129     public void ensureCapacity(int minimumCapacity) {
 130         if (minimumCapacity > 0) {
 131             ensureCapacityInternal(minimumCapacity);
 132         }
 133     }
 134 
 135     /**
 136      * For positive values of {@code minimumCapacity}, this method
 137      * behaves like {@code ensureCapacity}, however it is never
 138      * synchronized.
 139      * If {@code minimumCapacity} is non positive due to numeric
 140      * overflow, this method throws {@code OutOfMemoryError}.
 141      */
 142     private void ensureCapacityInternal(int minimumCapacity) {
 143         // overflow-conscious code
 144         int oldCapacity = value.length >> coder;
 145         if (minimumCapacity - oldCapacity > 0) {
 146             value = Arrays.copyOf(value,
 147                     newCapacity(minimumCapacity) << coder);
 148         }
 149     }
 150 
 151     /**
 152      * The maximum size of array to allocate (unless necessary).
 153      * Some VMs reserve some header words in an array.
 154      * Attempts to allocate larger arrays may result in
 155      * OutOfMemoryError: Requested array size exceeds VM limit
 156      */
 157     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 158 
 159     /**
 160      * Returns a capacity at least as large as the given minimum capacity.
 161      * Returns the current capacity increased by the same amount + 2 if
 162      * that suffices.
 163      * Will not return a capacity greater than
 164      * {@code (MAX_ARRAY_SIZE >> coder)} unless the given minimum capacity
 165      * is greater than that.
 166      *
 167      * @param  minCapacity the desired minimum capacity
 168      * @throws OutOfMemoryError if minCapacity is less than zero or
 169      *         greater than (Integer.MAX_VALUE >> coder)
 170      */
 171     private int newCapacity(int minCapacity) {
 172         // overflow-conscious code
 173         int oldCapacity = value.length >> coder;
 174         int newCapacity = (oldCapacity << 1) + 2;
 175         if (newCapacity - minCapacity < 0) {
 176             newCapacity = minCapacity;
 177         }
 178         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 179         return (newCapacity <= 0 || SAFE_BOUND - newCapacity < 0)
 180             ? hugeCapacity(minCapacity)
 181             : newCapacity;
 182     }
 183 
 184     private int hugeCapacity(int minCapacity) {
 185         int SAFE_BOUND = MAX_ARRAY_SIZE >> coder;
 186         int UNSAFE_BOUND = Integer.MAX_VALUE >> coder;
 187         if (UNSAFE_BOUND - minCapacity < 0) { // overflow
 188             throw new OutOfMemoryError();
 189         }
 190         return (minCapacity > SAFE_BOUND)
 191             ? minCapacity : SAFE_BOUND;
 192     }
 193 
 194     /**
 195      * If the coder is "isLatin1", this inflates the internal 8-bit storage
 196      * to 16-bit <hi=0, low> pair storage.
 197      */
 198     private void inflate() {
 199         if (!isLatin1()) {
 200             return;
 201         }
 202         byte[] buf = StringUTF16.newBytesFor(value.length);
 203         StringLatin1.inflate(value, 0, buf, 0, count);
 204         this.value = buf;
 205         this.coder = UTF16;
 206     }
 207 
 208     /**
 209      * Attempts to reduce storage used for the character sequence.
 210      * If the buffer is larger than necessary to hold its current sequence of
 211      * characters, then it may be resized to become more space efficient.
 212      * Calling this method may, but is not required to, affect the value
 213      * returned by a subsequent call to the {@link #capacity()} method.
 214      */
 215     public void trimToSize() {
 216         int length = count << coder;
 217         if (length < value.length) {
 218             value = Arrays.copyOf(value, length);
 219         }
 220     }
 221 
 222     /**
 223      * Sets the length of the character sequence.
 224      * The sequence is changed to a new character sequence
 225      * whose length is specified by the argument. For every nonnegative
 226      * index <i>k</i> less than {@code newLength}, the character at
 227      * index <i>k</i> in the new character sequence is the same as the
 228      * character at index <i>k</i> in the old sequence if <i>k</i> is less
 229      * than the length of the old character sequence; otherwise, it is the
 230      * null character {@code '\u005Cu0000'}.
 231      *
 232      * In other words, if the {@code newLength} argument is less than
 233      * the current length, the length is changed to the specified length.
 234      * <p>
 235      * If the {@code newLength} argument is greater than or equal
 236      * to the current length, sufficient null characters
 237      * ({@code '\u005Cu0000'}) are appended so that
 238      * length becomes the {@code newLength} argument.
 239      * <p>
 240      * The {@code newLength} argument must be greater than or equal
 241      * to {@code 0}.
 242      *
 243      * @param      newLength   the new length
 244      * @throws     IndexOutOfBoundsException  if the
 245      *               {@code newLength} argument is negative.
 246      */
 247     public void setLength(int newLength) {
 248         if (newLength < 0) {
 249             throw new StringIndexOutOfBoundsException(newLength);
 250         }
 251         ensureCapacityInternal(newLength);
 252         if (count < newLength) {
 253             if (isLatin1()) {
 254                 StringLatin1.fillNull(value, count, newLength);
 255             } else {
 256                 StringUTF16.fillNull(value, count, newLength);
 257             }
 258         }
 259         count = newLength;
 260     }
 261 
 262     /**
 263      * Returns the {@code char} value in this sequence at the specified index.
 264      * The first {@code char} value is at index {@code 0}, the next at index
 265      * {@code 1}, and so on, as in array indexing.
 266      * <p>
 267      * The index argument must be greater than or equal to
 268      * {@code 0}, and less than the length of this sequence.
 269      *
 270      * <p>If the {@code char} value specified by the index is a
 271      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 272      * value is returned.
 273      *
 274      * @param      index   the index of the desired {@code char} value.
 275      * @return     the {@code char} value at the specified index.
 276      * @throws     IndexOutOfBoundsException  if {@code index} is
 277      *             negative or greater than or equal to {@code length()}.
 278      */
 279     @Override
 280     public char charAt(int index) {
 281         checkIndex(index, count);
 282         if (isLatin1()) {
 283             return (char)(value[index] & 0xff);
 284         }
 285         return StringUTF16.charAt(value, index);
 286     }
 287 
 288     /**
 289      * Returns the character (Unicode code point) at the specified
 290      * index. The index refers to {@code char} values
 291      * (Unicode code units) and ranges from {@code 0} to
 292      * {@link #length()}{@code  - 1}.
 293      *
 294      * <p> If the {@code char} value specified at the given index
 295      * is in the high-surrogate range, the following index is less
 296      * than the length of this sequence, and the
 297      * {@code char} value at the following index is in the
 298      * low-surrogate range, then the supplementary code point
 299      * corresponding to this surrogate pair is returned. Otherwise,
 300      * the {@code char} value at the given index is returned.
 301      *
 302      * @param      index the index to the {@code char} values
 303      * @return     the code point value of the character at the
 304      *             {@code index}
 305      * @exception  IndexOutOfBoundsException  if the {@code index}
 306      *             argument is negative or not less than the length of this
 307      *             sequence.
 308      */
 309     public int codePointAt(int index) {
 310         checkIndex(index, count);
 311         if (isLatin1()) {
 312             return value[index] & 0xff;
 313         }
 314         return StringUTF16.codePointAtSB(value, index, count);
 315     }
 316 
 317     /**
 318      * Returns the character (Unicode code point) before the specified
 319      * index. The index refers to {@code char} values
 320      * (Unicode code units) and ranges from {@code 1} to {@link
 321      * #length()}.
 322      *
 323      * <p> If the {@code char} value at {@code (index - 1)}
 324      * is in the low-surrogate range, {@code (index - 2)} is not
 325      * negative, and the {@code char} value at {@code (index -
 326      * 2)} is in the high-surrogate range, then the
 327      * supplementary code point value of the surrogate pair is
 328      * returned. If the {@code char} value at {@code index -
 329      * 1} is an unpaired low-surrogate or a high-surrogate, the
 330      * surrogate value is returned.
 331      *
 332      * @param     index the index following the code point that should be returned
 333      * @return    the Unicode code point value before the given index.
 334      * @exception IndexOutOfBoundsException if the {@code index}
 335      *            argument is less than 1 or greater than the length
 336      *            of this sequence.
 337      */
 338     public int codePointBefore(int index) {
 339         int i = index - 1;
 340         if (i < 0 || i >= count) {
 341             throw new StringIndexOutOfBoundsException(index);
 342         }
 343         if (isLatin1()) {
 344             return value[i] & 0xff;
 345         }
 346         return StringUTF16.codePointBeforeSB(value, index);
 347     }
 348 
 349     /**
 350      * Returns the number of Unicode code points in the specified text
 351      * range of this sequence. The text range begins at the specified
 352      * {@code beginIndex} and extends to the {@code char} at
 353      * index {@code endIndex - 1}. Thus the length (in
 354      * {@code char}s) of the text range is
 355      * {@code endIndex-beginIndex}. Unpaired surrogates within
 356      * this sequence count as one code point each.
 357      *
 358      * @param beginIndex the index to the first {@code char} of
 359      * the text range.
 360      * @param endIndex the index after the last {@code char} of
 361      * the text range.
 362      * @return the number of Unicode code points in the specified text
 363      * range
 364      * @exception IndexOutOfBoundsException if the
 365      * {@code beginIndex} is negative, or {@code endIndex}
 366      * is larger than the length of this sequence, or
 367      * {@code beginIndex} is larger than {@code endIndex}.
 368      */
 369     public int codePointCount(int beginIndex, int endIndex) {
 370         if (beginIndex < 0 || endIndex > count || beginIndex > endIndex) {
 371             throw new IndexOutOfBoundsException();
 372         }
 373         if (isLatin1()) {
 374             return endIndex - beginIndex;
 375         }
 376         return StringUTF16.codePointCountSB(value, beginIndex, endIndex);
 377     }
 378 
 379     /**
 380      * Returns the index within this sequence that is offset from the
 381      * given {@code index} by {@code codePointOffset} code
 382      * points. Unpaired surrogates within the text range given by
 383      * {@code index} and {@code codePointOffset} count as
 384      * one code point each.
 385      *
 386      * @param index the index to be offset
 387      * @param codePointOffset the offset in code points
 388      * @return the index within this sequence
 389      * @exception IndexOutOfBoundsException if {@code index}
 390      *   is negative or larger then the length of this sequence,
 391      *   or if {@code codePointOffset} is positive and the subsequence
 392      *   starting with {@code index} has fewer than
 393      *   {@code codePointOffset} code points,
 394      *   or if {@code codePointOffset} is negative and the subsequence
 395      *   before {@code index} has fewer than the absolute value of
 396      *   {@code codePointOffset} code points.
 397      */
 398     public int offsetByCodePoints(int index, int codePointOffset) {
 399         if (index < 0 || index > count) {
 400             throw new IndexOutOfBoundsException();
 401         }
 402         return Character.offsetByCodePoints(this,
 403                                             index, codePointOffset);
 404     }
 405 
 406     /**
 407      * Characters are copied from this sequence into the
 408      * destination character array {@code dst}. The first character to
 409      * be copied is at index {@code srcBegin}; the last character to
 410      * be copied is at index {@code srcEnd-1}. The total number of
 411      * characters to be copied is {@code srcEnd-srcBegin}. The
 412      * characters are copied into the subarray of {@code dst} starting
 413      * at index {@code dstBegin} and ending at index:
 414      * <pre>{@code
 415      * dstbegin + (srcEnd-srcBegin) - 1
 416      * }</pre>
 417      *
 418      * @param      srcBegin   start copying at this offset.
 419      * @param      srcEnd     stop copying at this offset.
 420      * @param      dst        the array to copy the data into.
 421      * @param      dstBegin   offset into {@code dst}.
 422      * @throws     IndexOutOfBoundsException  if any of the following is true:
 423      *             <ul>
 424      *             <li>{@code srcBegin} is negative
 425      *             <li>{@code dstBegin} is negative
 426      *             <li>the {@code srcBegin} argument is greater than
 427      *             the {@code srcEnd} argument.
 428      *             <li>{@code srcEnd} is greater than
 429      *             {@code this.length()}.
 430      *             <li>{@code dstBegin+srcEnd-srcBegin} is greater than
 431      *             {@code dst.length}
 432      *             </ul>
 433      */
 434     public void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
 435     {
 436         checkRangeSIOOBE(srcBegin, srcEnd, count);  // compatible to old version
 437         int n = srcEnd - srcBegin;
 438         checkRange(dstBegin, dstBegin + n, dst.length);
 439         if (isLatin1()) {
 440             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 441         } else {
 442             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 443         }
 444     }
 445 
 446     /**
 447      * The character at the specified index is set to {@code ch}. This
 448      * sequence is altered to represent a new character sequence that is
 449      * identical to the old character sequence, except that it contains the
 450      * character {@code ch} at position {@code index}.
 451      * <p>
 452      * The index argument must be greater than or equal to
 453      * {@code 0}, and less than the length of this sequence.
 454      *
 455      * @param      index   the index of the character to modify.
 456      * @param      ch      the new character.
 457      * @throws     IndexOutOfBoundsException  if {@code index} is
 458      *             negative or greater than or equal to {@code length()}.
 459      */
 460     public void setCharAt(int index, char ch) {
 461         checkIndex(index, count);
 462         if (isLatin1() && StringLatin1.canEncode(ch)) {
 463             value[index] = (byte)ch;
 464         } else {
 465             if (isLatin1()) {
 466                 inflate();
 467             }
 468             StringUTF16.putCharSB(value, index, ch);
 469         }
 470     }
 471 
 472     /**
 473      * Appends the string representation of the {@code Object} argument.
 474      * <p>
 475      * The overall effect is exactly as if the argument were converted
 476      * to a string by the method {@link String#valueOf(Object)},
 477      * and the characters of that string were then
 478      * {@link #append(String) appended} to this character sequence.
 479      *
 480      * @param   obj   an {@code Object}.
 481      * @return  a reference to this object.
 482      */
 483     public AbstractStringBuilder append(Object obj) {
 484         return append(String.valueOf(obj));
 485     }
 486 
 487     /**
 488      * Appends the specified string to this character sequence.
 489      * <p>
 490      * The characters of the {@code String} argument are appended, in
 491      * order, increasing the length of this sequence by the length of the
 492      * argument. If {@code str} is {@code null}, then the four
 493      * characters {@code "null"} are appended.
 494      * <p>
 495      * Let <i>n</i> be the length of this character sequence just prior to
 496      * execution of the {@code append} method. Then the character at
 497      * index <i>k</i> in the new character sequence is equal to the character
 498      * at index <i>k</i> in the old character sequence, if <i>k</i> is less
 499      * than <i>n</i>; otherwise, it is equal to the character at index
 500      * <i>k-n</i> in the argument {@code str}.
 501      *
 502      * @param   str   a string.
 503      * @return  a reference to this object.
 504      */
 505     public AbstractStringBuilder append(String str) {
 506         if (str == null) {
 507             return appendNull();
 508         }
 509         int len = str.length();
 510         ensureCapacityInternal(count + len);
 511         putStringAt(count, str);
 512         count += len;
 513         return this;
 514     }
 515 
 516     // Documentation in subclasses because of synchro difference
 517     public AbstractStringBuilder append(StringBuffer sb) {
 518         return this.append((AbstractStringBuilder)sb);
 519     }
 520 
 521     /**
 522      * @since 1.8
 523      */
 524     AbstractStringBuilder append(AbstractStringBuilder asb) {
 525         if (asb == null) {
 526             return appendNull();
 527         }
 528         int len = asb.length();
 529         ensureCapacityInternal(count + len);
 530         if (getCoder() != asb.getCoder()) {
 531             inflate();
 532         }
 533         asb.getBytes(value, count, coder);
 534         count += len;
 535         return this;
 536     }
 537 
 538     // Documentation in subclasses because of synchro difference
 539     @Override
 540     public AbstractStringBuilder append(CharSequence s) {
 541         if (s == null) {
 542             return appendNull();
 543         }
 544         if (s instanceof String) {
 545             return this.append((String)s);
 546         }
 547         if (s instanceof AbstractStringBuilder) {
 548             return this.append((AbstractStringBuilder)s);
 549         }
 550         return this.append(s, 0, s.length());
 551     }
 552 
 553     private AbstractStringBuilder appendNull() {
 554         ensureCapacityInternal(count + 4);
 555         int count = this.count;
 556         byte[] val = this.value;
 557         if (isLatin1()) {
 558             val[count++] = 'n';
 559             val[count++] = 'u';
 560             val[count++] = 'l';
 561             val[count++] = 'l';
 562         } else {
 563             checkOffset(count + 4, val.length >> 1);
 564             StringUTF16.putChar(val, count++, 'n');
 565             StringUTF16.putChar(val, count++, 'u');
 566             StringUTF16.putChar(val, count++, 'l');
 567             StringUTF16.putChar(val, count++, 'l');
 568         }
 569         this.count = count;
 570         return this;
 571     }
 572 
 573     /**
 574      * Appends a subsequence of the specified {@code CharSequence} to this
 575      * sequence.
 576      * <p>
 577      * Characters of the argument {@code s}, starting at
 578      * index {@code start}, are appended, in order, to the contents of
 579      * this sequence up to the (exclusive) index {@code end}. The length
 580      * of this sequence is increased by the value of {@code end - start}.
 581      * <p>
 582      * Let <i>n</i> be the length of this character sequence just prior to
 583      * execution of the {@code append} method. Then the character at
 584      * index <i>k</i> in this character sequence becomes equal to the
 585      * character at index <i>k</i> in this sequence, if <i>k</i> is less than
 586      * <i>n</i>; otherwise, it is equal to the character at index
 587      * <i>k+start-n</i> in the argument {@code s}.
 588      * <p>
 589      * If {@code s} is {@code null}, then this method appends
 590      * characters as if the s parameter was a sequence containing the four
 591      * characters {@code "null"}.
 592      *
 593      * @param   s the sequence to append.
 594      * @param   start   the starting index of the subsequence to be appended.
 595      * @param   end     the end index of the subsequence to be appended.
 596      * @return  a reference to this object.
 597      * @throws     IndexOutOfBoundsException if
 598      *             {@code start} is negative, or
 599      *             {@code start} is greater than {@code end} or
 600      *             {@code end} is greater than {@code s.length()}
 601      */
 602     @Override
 603     public AbstractStringBuilder append(CharSequence s, int start, int end) {
 604         if (s == null) {
 605             s = "null";
 606         }
 607         checkRange(start, end, s.length());
 608         int len = end - start;
 609         ensureCapacityInternal(count + len);
 610         appendChars(s, start, end);
 611         return this;
 612     }
 613 
 614     /**
 615      * Appends the string representation of the {@code char} array
 616      * argument to this sequence.
 617      * <p>
 618      * The characters of the array argument are appended, in order, to
 619      * the contents of this sequence. The length of this sequence
 620      * increases by the length of the argument.
 621      * <p>
 622      * The overall effect is exactly as if the argument were converted
 623      * to a string by the method {@link String#valueOf(char[])},
 624      * and the characters of that string were then
 625      * {@link #append(String) appended} to this character sequence.
 626      *
 627      * @param   str   the characters to be appended.
 628      * @return  a reference to this object.
 629      */
 630     public AbstractStringBuilder append(char[] str) {
 631         int len = str.length;
 632         ensureCapacityInternal(count + len);
 633         appendChars(str, 0, len);
 634         return this;
 635     }
 636 
 637     /**
 638      * Appends the string representation of a subarray of the
 639      * {@code char} array argument to this sequence.
 640      * <p>
 641      * Characters of the {@code char} array {@code str}, starting at
 642      * index {@code offset}, are appended, in order, to the contents
 643      * of this sequence. The length of this sequence increases
 644      * by the value of {@code len}.
 645      * <p>
 646      * The overall effect is exactly as if the arguments were converted
 647      * to a string by the method {@link String#valueOf(char[],int,int)},
 648      * and the characters of that string were then
 649      * {@link #append(String) appended} to this character sequence.
 650      *
 651      * @param   str      the characters to be appended.
 652      * @param   offset   the index of the first {@code char} to append.
 653      * @param   len      the number of {@code char}s to append.
 654      * @return  a reference to this object.
 655      * @throws IndexOutOfBoundsException
 656      *         if {@code offset < 0} or {@code len < 0}
 657      *         or {@code offset+len > str.length}
 658      */
 659     public AbstractStringBuilder append(char str[], int offset, int len) {
 660         int end = offset + len;
 661         checkRange(offset, end, str.length);
 662         ensureCapacityInternal(count + len);
 663         appendChars(str, offset, end);
 664         return this;
 665     }
 666 
 667     /**
 668      * Appends the string representation of the {@code boolean}
 669      * argument to the sequence.
 670      * <p>
 671      * The overall effect is exactly as if the argument were converted
 672      * to a string by the method {@link String#valueOf(boolean)},
 673      * and the characters of that string were then
 674      * {@link #append(String) appended} to this character sequence.
 675      *
 676      * @param   b   a {@code boolean}.
 677      * @return  a reference to this object.
 678      */
 679     public AbstractStringBuilder append(boolean b) {
 680         ensureCapacityInternal(count + (b ? 4 : 5));
 681         int count = this.count;
 682         byte[] val = this.value;
 683         if (isLatin1()) {
 684             if (b) {
 685                 val[count++] = 't';
 686                 val[count++] = 'r';
 687                 val[count++] = 'u';
 688                 val[count++] = 'e';
 689             } else {
 690                 val[count++] = 'f';
 691                 val[count++] = 'a';
 692                 val[count++] = 'l';
 693                 val[count++] = 's';
 694                 val[count++] = 'e';
 695             }
 696         } else {
 697             if (b) {
 698                 checkOffset(count + 4, val.length >> 1);
 699                 StringUTF16.putChar(val, count++, 't');
 700                 StringUTF16.putChar(val, count++, 'r');
 701                 StringUTF16.putChar(val, count++, 'u');
 702                 StringUTF16.putChar(val, count++, 'e');
 703             } else {
 704                 checkOffset(count + 5, val.length >> 1);
 705                 StringUTF16.putChar(val, count++, 'f');
 706                 StringUTF16.putChar(val, count++, 'a');
 707                 StringUTF16.putChar(val, count++, 'l');
 708                 StringUTF16.putChar(val, count++, 's');
 709                 StringUTF16.putChar(val, count++, 'e');
 710             }
 711         }
 712         this.count = count;
 713         return this;
 714     }
 715 
 716     /**
 717      * Appends the string representation of the {@code char}
 718      * argument to this sequence.
 719      * <p>
 720      * The argument is appended to the contents of this sequence.
 721      * The length of this sequence increases by {@code 1}.
 722      * <p>
 723      * The overall effect is exactly as if the argument were converted
 724      * to a string by the method {@link String#valueOf(char)},
 725      * and the character in that string were then
 726      * {@link #append(String) appended} to this character sequence.
 727      *
 728      * @param   c   a {@code char}.
 729      * @return  a reference to this object.
 730      */
 731     @Override
 732     public AbstractStringBuilder append(char c) {
 733         ensureCapacityInternal(count + 1);
 734         if (isLatin1() && StringLatin1.canEncode(c)) {
 735             value[count++] = (byte)c;
 736         } else {
 737             if (isLatin1()) {
 738                 inflate();
 739             }
 740             StringUTF16.putCharSB(value, count++, c);
 741         }
 742         return this;
 743     }
 744 
 745     /**
 746      * Appends the string representation of the {@code int}
 747      * argument to this sequence.
 748      * <p>
 749      * The overall effect is exactly as if the argument were converted
 750      * to a string by the method {@link String#valueOf(int)},
 751      * and the characters of that string were then
 752      * {@link #append(String) appended} to this character sequence.
 753      *
 754      * @param   i   an {@code int}.
 755      * @return  a reference to this object.
 756      */
 757     public AbstractStringBuilder append(int i) {
 758         int spaceNeeded = count + Integer.stringSize(i);
 759         ensureCapacityInternal(spaceNeeded);
 760         if (isLatin1()) {
 761             Integer.getChars(i, spaceNeeded, value);
 762         } else {
 763             byte[] val = this.value;
 764             checkOffset(spaceNeeded, val.length >> 1);
 765             Integer.getCharsUTF16(i, spaceNeeded, val);
 766         }
 767         count = spaceNeeded;
 768         return this;
 769     }
 770 
 771     /**
 772      * Appends the string representation of the {@code long}
 773      * argument to this sequence.
 774      * <p>
 775      * The overall effect is exactly as if the argument were converted
 776      * to a string by the method {@link String#valueOf(long)},
 777      * and the characters of that string were then
 778      * {@link #append(String) appended} to this character sequence.
 779      *
 780      * @param   l   a {@code long}.
 781      * @return  a reference to this object.
 782      */
 783     public AbstractStringBuilder append(long l) {
 784         int spaceNeeded = count + Long.stringSize(l);
 785         ensureCapacityInternal(spaceNeeded);
 786         if (isLatin1()) {
 787             Long.getChars(l, spaceNeeded, value);
 788         } else {
 789             byte[] val = this.value;
 790             checkOffset(spaceNeeded, val.length >> 1);
 791             Long.getCharsUTF16(l, spaceNeeded, val);
 792         }
 793         count = spaceNeeded;
 794         return this;
 795     }
 796 
 797     /**
 798      * Appends the string representation of the {@code float}
 799      * argument to this sequence.
 800      * <p>
 801      * The overall effect is exactly as if the argument were converted
 802      * to a string by the method {@link String#valueOf(float)},
 803      * and the characters of that string were then
 804      * {@link #append(String) appended} to this character sequence.
 805      *
 806      * @param   f   a {@code float}.
 807      * @return  a reference to this object.
 808      */
 809     public AbstractStringBuilder append(float f) {
 810         FloatingDecimal.appendTo(f,this);
 811         return this;
 812     }
 813 
 814     /**
 815      * Appends the string representation of the {@code double}
 816      * argument to this sequence.
 817      * <p>
 818      * The overall effect is exactly as if the argument were converted
 819      * to a string by the method {@link String#valueOf(double)},
 820      * and the characters of that string were then
 821      * {@link #append(String) appended} to this character sequence.
 822      *
 823      * @param   d   a {@code double}.
 824      * @return  a reference to this object.
 825      */
 826     public AbstractStringBuilder append(double d) {
 827         FloatingDecimal.appendTo(d,this);
 828         return this;
 829     }
 830 
 831     /**
 832      * Removes the characters in a substring of this sequence.
 833      * The substring begins at the specified {@code start} and extends to
 834      * the character at index {@code end - 1} or to the end of the
 835      * sequence if no such character exists. If
 836      * {@code start} is equal to {@code end}, no changes are made.
 837      *
 838      * @param      start  The beginning index, inclusive.
 839      * @param      end    The ending index, exclusive.
 840      * @return     This object.
 841      * @throws     StringIndexOutOfBoundsException  if {@code start}
 842      *             is negative, greater than {@code length()}, or
 843      *             greater than {@code end}.
 844      */
 845     public AbstractStringBuilder delete(int start, int end) {
 846         if (end > count) {
 847             end = count;
 848         }
 849         checkRangeSIOOBE(start, end, count);
 850         int len = end - start;
 851         if (len > 0) {
 852             shift(end, -len);
 853             count -= len;
 854         }
 855         return this;
 856     }
 857 
 858     /**
 859      * Appends the string representation of the {@code codePoint}
 860      * argument to this sequence.
 861      *
 862      * <p> The argument is appended to the contents of this sequence.
 863      * The length of this sequence increases by
 864      * {@link Character#charCount(int) Character.charCount(codePoint)}.
 865      *
 866      * <p> The overall effect is exactly as if the argument were
 867      * converted to a {@code char} array by the method
 868      * {@link Character#toChars(int)} and the character in that array
 869      * were then {@link #append(char[]) appended} to this character
 870      * sequence.
 871      *
 872      * @param   codePoint   a Unicode code point
 873      * @return  a reference to this object.
 874      * @exception IllegalArgumentException if the specified
 875      * {@code codePoint} isn't a valid Unicode code point
 876      */
 877     public AbstractStringBuilder appendCodePoint(int codePoint) {
 878         if (Character.isBmpCodePoint(codePoint)) {
 879             return append((char)codePoint);
 880         }
 881         return append(Character.toChars(codePoint));
 882     }
 883 
 884     /**
 885      * Removes the {@code char} at the specified position in this
 886      * sequence. This sequence is shortened by one {@code char}.
 887      *
 888      * <p>Note: If the character at the given index is a supplementary
 889      * character, this method does not remove the entire character. If
 890      * correct handling of supplementary characters is required,
 891      * determine the number of {@code char}s to remove by calling
 892      * {@code Character.charCount(thisSequence.codePointAt(index))},
 893      * where {@code thisSequence} is this sequence.
 894      *
 895      * @param       index  Index of {@code char} to remove
 896      * @return      This object.
 897      * @throws      StringIndexOutOfBoundsException  if the {@code index}
 898      *              is negative or greater than or equal to
 899      *              {@code length()}.
 900      */
 901     public AbstractStringBuilder deleteCharAt(int index) {
 902         checkIndex(index, count);
 903         shift(index + 1, -1);
 904         count--;
 905         return this;
 906     }
 907 
 908     /**
 909      * Replaces the characters in a substring of this sequence
 910      * with characters in the specified {@code String}. The substring
 911      * begins at the specified {@code start} and extends to the character
 912      * at index {@code end - 1} or to the end of the
 913      * sequence if no such character exists. First the
 914      * characters in the substring are removed and then the specified
 915      * {@code String} is inserted at {@code start}. (This
 916      * sequence will be lengthened to accommodate the
 917      * specified String if necessary.)
 918      *
 919      * @param      start    The beginning index, inclusive.
 920      * @param      end      The ending index, exclusive.
 921      * @param      str   String that will replace previous contents.
 922      * @return     This object.
 923      * @throws     StringIndexOutOfBoundsException  if {@code start}
 924      *             is negative, greater than {@code length()}, or
 925      *             greater than {@code end}.
 926      */
 927     public AbstractStringBuilder replace(int start, int end, String str) {
 928         if (end > count) {
 929             end = count;
 930         }
 931         checkRangeSIOOBE(start, end, count);
 932         int len = str.length();
 933         int newCount = count + len - (end - start);
 934         ensureCapacityInternal(newCount);
 935         shift(end, newCount - count);
 936         count = newCount;
 937         putStringAt(start, str);
 938         return this;
 939     }
 940 
 941     /**
 942      * Returns a new {@code String} that contains a subsequence of
 943      * characters currently contained in this character sequence. The
 944      * substring begins at the specified index and extends to the end of
 945      * this sequence.
 946      *
 947      * @param      start    The beginning index, inclusive.
 948      * @return     The new string.
 949      * @throws     StringIndexOutOfBoundsException  if {@code start} is
 950      *             less than zero, or greater than the length of this object.
 951      */
 952     public String substring(int start) {
 953         return substring(start, count);
 954     }
 955 
 956     /**
 957      * Returns a new character sequence that is a subsequence of this sequence.
 958      *
 959      * <p> An invocation of this method of the form
 960      *
 961      * <pre>{@code
 962      * sb.subSequence(begin,&nbsp;end)}</pre>
 963      *
 964      * behaves in exactly the same way as the invocation
 965      *
 966      * <pre>{@code
 967      * sb.substring(begin,&nbsp;end)}</pre>
 968      *
 969      * This method is provided so that this class can
 970      * implement the {@link CharSequence} interface.
 971      *
 972      * @param      start   the start index, inclusive.
 973      * @param      end     the end index, exclusive.
 974      * @return     the specified subsequence.
 975      *
 976      * @throws  IndexOutOfBoundsException
 977      *          if {@code start} or {@code end} are negative,
 978      *          if {@code end} is greater than {@code length()},
 979      *          or if {@code start} is greater than {@code end}
 980      * @spec JSR-51
 981      */
 982     @Override
 983     public CharSequence subSequence(int start, int end) {
 984         return substring(start, end);
 985     }
 986 
 987     /**
 988      * Returns a new {@code String} that contains a subsequence of
 989      * characters currently contained in this sequence. The
 990      * substring begins at the specified {@code start} and
 991      * extends to the character at index {@code end - 1}.
 992      *
 993      * @param      start    The beginning index, inclusive.
 994      * @param      end      The ending index, exclusive.
 995      * @return     The new string.
 996      * @throws     StringIndexOutOfBoundsException  if {@code start}
 997      *             or {@code end} are negative or greater than
 998      *             {@code length()}, or {@code start} is
 999      *             greater than {@code end}.
1000      */
1001     public String substring(int start, int end) {
1002         checkRangeSIOOBE(start, end, count);
1003         if (isLatin1()) {
1004             return StringLatin1.newString(value, start, end - start);
1005         }
1006         return StringUTF16.newString(value, start, end - start);
1007     }
1008 
1009     private void shift(int offset, int n) {
1010         System.arraycopy(value, offset << coder,
1011                          value, (offset + n) << coder, (count - offset) << coder);
1012     }
1013 
1014     /**
1015      * Inserts the string representation of a subarray of the {@code str}
1016      * array argument into this sequence. The subarray begins at the
1017      * specified {@code offset} and extends {@code len} {@code char}s.
1018      * The characters of the subarray are inserted into this sequence at
1019      * the position indicated by {@code index}. The length of this
1020      * sequence increases by {@code len} {@code char}s.
1021      *
1022      * @param      index    position at which to insert subarray.
1023      * @param      str       A {@code char} array.
1024      * @param      offset   the index of the first {@code char} in subarray to
1025      *             be inserted.
1026      * @param      len      the number of {@code char}s in the subarray to
1027      *             be inserted.
1028      * @return     This object
1029      * @throws     StringIndexOutOfBoundsException  if {@code index}
1030      *             is negative or greater than {@code length()}, or
1031      *             {@code offset} or {@code len} are negative, or
1032      *             {@code (offset+len)} is greater than
1033      *             {@code str.length}.
1034      */
1035     public AbstractStringBuilder insert(int index, char[] str, int offset,
1036                                         int len)
1037     {
1038         checkOffset(index, count);
1039         checkRangeSIOOBE(offset, offset + len, str.length);
1040         ensureCapacityInternal(count + len);
1041         shift(index, len);
1042         count += len;
1043         putCharsAt(index, str, offset, offset + len);
1044         return this;
1045     }
1046 
1047     /**
1048      * Inserts the string representation of the {@code Object}
1049      * argument into this character sequence.
1050      * <p>
1051      * The overall effect is exactly as if the second argument were
1052      * converted to a string by the method {@link String#valueOf(Object)},
1053      * and the characters of that string were then
1054      * {@link #insert(int,String) inserted} into this character
1055      * sequence at the indicated offset.
1056      * <p>
1057      * The {@code offset} argument must be greater than or equal to
1058      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1059      * of this sequence.
1060      *
1061      * @param      offset   the offset.
1062      * @param      obj      an {@code Object}.
1063      * @return     a reference to this object.
1064      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1065      */
1066     public AbstractStringBuilder insert(int offset, Object obj) {
1067         return insert(offset, String.valueOf(obj));
1068     }
1069 
1070     /**
1071      * Inserts the string into this character sequence.
1072      * <p>
1073      * The characters of the {@code String} argument are inserted, in
1074      * order, into this sequence at the indicated offset, moving up any
1075      * characters originally above that position and increasing the length
1076      * of this sequence by the length of the argument. If
1077      * {@code str} is {@code null}, then the four characters
1078      * {@code "null"} are inserted into this sequence.
1079      * <p>
1080      * The character at index <i>k</i> in the new character sequence is
1081      * equal to:
1082      * <ul>
1083      * <li>the character at index <i>k</i> in the old character sequence, if
1084      * <i>k</i> is less than {@code offset}
1085      * <li>the character at index <i>k</i>{@code -offset} in the
1086      * argument {@code str}, if <i>k</i> is not less than
1087      * {@code offset} but is less than {@code offset+str.length()}
1088      * <li>the character at index <i>k</i>{@code -str.length()} in the
1089      * old character sequence, if <i>k</i> is not less than
1090      * {@code offset+str.length()}
1091      * </ul><p>
1092      * The {@code offset} argument must be greater than or equal to
1093      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1094      * of this sequence.
1095      *
1096      * @param      offset   the offset.
1097      * @param      str      a string.
1098      * @return     a reference to this object.
1099      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1100      */
1101     public AbstractStringBuilder insert(int offset, String str) {
1102         checkOffset(offset, count);
1103         if (str == null) {
1104             str = "null";
1105         }
1106         int len = str.length();
1107         ensureCapacityInternal(count + len);
1108         shift(offset, len);
1109         count += len;
1110         putStringAt(offset, str);
1111         return this;
1112     }
1113 
1114     /**
1115      * Inserts the string representation of the {@code char} array
1116      * argument into this sequence.
1117      * <p>
1118      * The characters of the array argument are inserted into the
1119      * contents of this sequence at the position indicated by
1120      * {@code offset}. The length of this sequence increases by
1121      * the length of the argument.
1122      * <p>
1123      * The overall effect is exactly as if the second argument were
1124      * converted to a string by the method {@link String#valueOf(char[])},
1125      * and the characters of that string were then
1126      * {@link #insert(int,String) inserted} into this character
1127      * sequence at the indicated offset.
1128      * <p>
1129      * The {@code offset} argument must be greater than or equal to
1130      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1131      * of this sequence.
1132      *
1133      * @param      offset   the offset.
1134      * @param      str      a character array.
1135      * @return     a reference to this object.
1136      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1137      */
1138     public AbstractStringBuilder insert(int offset, char[] str) {
1139         checkOffset(offset, count);
1140         int len = str.length;
1141         ensureCapacityInternal(count + len);
1142         shift(offset, len);
1143         count += len;
1144         putCharsAt(offset, str, 0, len);
1145         return this;
1146     }
1147 
1148     /**
1149      * Inserts the specified {@code CharSequence} into this sequence.
1150      * <p>
1151      * The characters of the {@code CharSequence} argument are inserted,
1152      * in order, into this sequence at the indicated offset, moving up
1153      * any characters originally above that position and increasing the length
1154      * of this sequence by the length of the argument s.
1155      * <p>
1156      * The result of this method is exactly the same as if it were an
1157      * invocation of this object's
1158      * {@link #insert(int,CharSequence,int,int) insert}(dstOffset, s, 0, s.length())
1159      * method.
1160      *
1161      * <p>If {@code s} is {@code null}, then the four characters
1162      * {@code "null"} are inserted into this sequence.
1163      *
1164      * @param      dstOffset   the offset.
1165      * @param      s the sequence to be inserted
1166      * @return     a reference to this object.
1167      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1168      */
1169     public AbstractStringBuilder insert(int dstOffset, CharSequence s) {
1170         if (s == null) {
1171             s = "null";
1172         }
1173         if (s instanceof String) {
1174             return this.insert(dstOffset, (String)s);
1175         }
1176         return this.insert(dstOffset, s, 0, s.length());
1177     }
1178 
1179     /**
1180      * Inserts a subsequence of the specified {@code CharSequence} into
1181      * this sequence.
1182      * <p>
1183      * The subsequence of the argument {@code s} specified by
1184      * {@code start} and {@code end} are inserted,
1185      * in order, into this sequence at the specified destination offset, moving
1186      * up any characters originally above that position. The length of this
1187      * sequence is increased by {@code end - start}.
1188      * <p>
1189      * The character at index <i>k</i> in this sequence becomes equal to:
1190      * <ul>
1191      * <li>the character at index <i>k</i> in this sequence, if
1192      * <i>k</i> is less than {@code dstOffset}
1193      * <li>the character at index <i>k</i>{@code +start-dstOffset} in
1194      * the argument {@code s}, if <i>k</i> is greater than or equal to
1195      * {@code dstOffset} but is less than {@code dstOffset+end-start}
1196      * <li>the character at index <i>k</i>{@code -(end-start)} in this
1197      * sequence, if <i>k</i> is greater than or equal to
1198      * {@code dstOffset+end-start}
1199      * </ul><p>
1200      * The {@code dstOffset} argument must be greater than or equal to
1201      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1202      * of this sequence.
1203      * <p>The start argument must be nonnegative, and not greater than
1204      * {@code end}.
1205      * <p>The end argument must be greater than or equal to
1206      * {@code start}, and less than or equal to the length of s.
1207      *
1208      * <p>If {@code s} is {@code null}, then this method inserts
1209      * characters as if the s parameter was a sequence containing the four
1210      * characters {@code "null"}.
1211      *
1212      * @param      dstOffset   the offset in this sequence.
1213      * @param      s       the sequence to be inserted.
1214      * @param      start   the starting index of the subsequence to be inserted.
1215      * @param      end     the end index of the subsequence to be inserted.
1216      * @return     a reference to this object.
1217      * @throws     IndexOutOfBoundsException  if {@code dstOffset}
1218      *             is negative or greater than {@code this.length()}, or
1219      *              {@code start} or {@code end} are negative, or
1220      *              {@code start} is greater than {@code end} or
1221      *              {@code end} is greater than {@code s.length()}
1222      */
1223     public AbstractStringBuilder insert(int dstOffset, CharSequence s,
1224                                         int start, int end)
1225     {
1226         if (s == null) {
1227             s = "null";
1228         }
1229         checkOffset(dstOffset, count);
1230         checkRange(start, end, s.length());
1231         int len = end - start;
1232         ensureCapacityInternal(count + len);
1233         shift(dstOffset, len);
1234         count += len;
1235         putCharsAt(dstOffset, s, start, end);
1236         return this;
1237     }
1238 
1239     /**
1240      * Inserts the string representation of the {@code boolean}
1241      * argument into this sequence.
1242      * <p>
1243      * The overall effect is exactly as if the second argument were
1244      * converted to a string by the method {@link String#valueOf(boolean)},
1245      * and the characters of that string were then
1246      * {@link #insert(int,String) inserted} into this character
1247      * sequence at the indicated offset.
1248      * <p>
1249      * The {@code offset} argument must be greater than or equal to
1250      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1251      * of this sequence.
1252      *
1253      * @param      offset   the offset.
1254      * @param      b        a {@code boolean}.
1255      * @return     a reference to this object.
1256      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1257      */
1258     public AbstractStringBuilder insert(int offset, boolean b) {
1259         return insert(offset, String.valueOf(b));
1260     }
1261 
1262     /**
1263      * Inserts the string representation of the {@code char}
1264      * argument into this sequence.
1265      * <p>
1266      * The overall effect is exactly as if the second argument were
1267      * converted to a string by the method {@link String#valueOf(char)},
1268      * and the character in that string were then
1269      * {@link #insert(int,String) inserted} into this character
1270      * sequence at the indicated offset.
1271      * <p>
1272      * The {@code offset} argument must be greater than or equal to
1273      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1274      * of this sequence.
1275      *
1276      * @param      offset   the offset.
1277      * @param      c        a {@code char}.
1278      * @return     a reference to this object.
1279      * @throws     IndexOutOfBoundsException  if the offset is invalid.
1280      */
1281     public AbstractStringBuilder insert(int offset, char c) {
1282         checkOffset(offset, count);
1283         ensureCapacityInternal(count + 1);
1284         shift(offset, 1);
1285         count += 1;
1286         if (isLatin1() && StringLatin1.canEncode(c)) {
1287             value[offset] = (byte)c;
1288         } else {
1289             if (isLatin1()) {
1290                 inflate();
1291             }
1292             StringUTF16.putCharSB(value, offset, c);
1293         }
1294         return this;
1295     }
1296 
1297     /**
1298      * Inserts the string representation of the second {@code int}
1299      * argument into this sequence.
1300      * <p>
1301      * The overall effect is exactly as if the second argument were
1302      * converted to a string by the method {@link String#valueOf(int)},
1303      * and the characters of that string were then
1304      * {@link #insert(int,String) inserted} into this character
1305      * sequence at the indicated offset.
1306      * <p>
1307      * The {@code offset} argument must be greater than or equal to
1308      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1309      * of this sequence.
1310      *
1311      * @param      offset   the offset.
1312      * @param      i        an {@code int}.
1313      * @return     a reference to this object.
1314      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1315      */
1316     public AbstractStringBuilder insert(int offset, int i) {
1317         return insert(offset, String.valueOf(i));
1318     }
1319 
1320     /**
1321      * Inserts the string representation of the {@code long}
1322      * argument into this sequence.
1323      * <p>
1324      * The overall effect is exactly as if the second argument were
1325      * converted to a string by the method {@link String#valueOf(long)},
1326      * and the characters of that string were then
1327      * {@link #insert(int,String) inserted} into this character
1328      * sequence at the indicated offset.
1329      * <p>
1330      * The {@code offset} argument must be greater than or equal to
1331      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1332      * of this sequence.
1333      *
1334      * @param      offset   the offset.
1335      * @param      l        a {@code long}.
1336      * @return     a reference to this object.
1337      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1338      */
1339     public AbstractStringBuilder insert(int offset, long l) {
1340         return insert(offset, String.valueOf(l));
1341     }
1342 
1343     /**
1344      * Inserts the string representation of the {@code float}
1345      * argument into this sequence.
1346      * <p>
1347      * The overall effect is exactly as if the second argument were
1348      * converted to a string by the method {@link String#valueOf(float)},
1349      * and the characters of that string were then
1350      * {@link #insert(int,String) inserted} into this character
1351      * sequence at the indicated offset.
1352      * <p>
1353      * The {@code offset} argument must be greater than or equal to
1354      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1355      * of this sequence.
1356      *
1357      * @param      offset   the offset.
1358      * @param      f        a {@code float}.
1359      * @return     a reference to this object.
1360      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1361      */
1362     public AbstractStringBuilder insert(int offset, float f) {
1363         return insert(offset, String.valueOf(f));
1364     }
1365 
1366     /**
1367      * Inserts the string representation of the {@code double}
1368      * argument into this sequence.
1369      * <p>
1370      * The overall effect is exactly as if the second argument were
1371      * converted to a string by the method {@link String#valueOf(double)},
1372      * and the characters of that string were then
1373      * {@link #insert(int,String) inserted} into this character
1374      * sequence at the indicated offset.
1375      * <p>
1376      * The {@code offset} argument must be greater than or equal to
1377      * {@code 0}, and less than or equal to the {@linkplain #length() length}
1378      * of this sequence.
1379      *
1380      * @param      offset   the offset.
1381      * @param      d        a {@code double}.
1382      * @return     a reference to this object.
1383      * @throws     StringIndexOutOfBoundsException  if the offset is invalid.
1384      */
1385     public AbstractStringBuilder insert(int offset, double d) {
1386         return insert(offset, String.valueOf(d));
1387     }
1388 
1389     /**
1390      * Returns the index within this string of the first occurrence of the
1391      * specified substring.
1392      *
1393      * <p>The returned index is the smallest value {@code k} for which:
1394      * <pre>{@code
1395      * this.toString().startsWith(str, k)
1396      * }</pre>
1397      * If no such value of {@code k} exists, then {@code -1} is returned.
1398      *
1399      * @param   str   the substring to search for.
1400      * @return  the index of the first occurrence of the specified substring,
1401      *          or {@code -1} if there is no such occurrence.
1402      */
1403     public int indexOf(String str) {
1404         return indexOf(str, 0);
1405     }
1406 
1407     /**
1408      * Returns the index within this string of the first occurrence of the
1409      * specified substring, starting at the specified index.
1410      *
1411      * <p>The returned index is the smallest value {@code k} for which:
1412      * <pre>{@code
1413      *     k >= Math.min(fromIndex, this.length()) &&
1414      *                   this.toString().startsWith(str, k)
1415      * }</pre>
1416      * If no such value of {@code k} exists, then {@code -1} is returned.
1417      *
1418      * @param   str         the substring to search for.
1419      * @param   fromIndex   the index from which to start the search.
1420      * @return  the index of the first occurrence of the specified substring,
1421      *          starting at the specified index,
1422      *          or {@code -1} if there is no such occurrence.
1423      */
1424     public int indexOf(String str, int fromIndex) {
1425         return String.indexOf(value, coder, count, str, fromIndex);
1426     }
1427 
1428     /**
1429      * Returns the index within this string of the last occurrence of the
1430      * specified substring.  The last occurrence of the empty string "" is
1431      * considered to occur at the index value {@code this.length()}.
1432      *
1433      * <p>The returned index is the largest value {@code k} for which:
1434      * <pre>{@code
1435      * this.toString().startsWith(str, k)
1436      * }</pre>
1437      * If no such value of {@code k} exists, then {@code -1} is returned.
1438      *
1439      * @param   str   the substring to search for.
1440      * @return  the index of the last occurrence of the specified substring,
1441      *          or {@code -1} if there is no such occurrence.
1442      */
1443     public int lastIndexOf(String str) {
1444         return lastIndexOf(str, count);
1445     }
1446 
1447     /**
1448      * Returns the index within this string of the last occurrence of the
1449      * specified substring, searching backward starting at the specified index.
1450      *
1451      * <p>The returned index is the largest value {@code k} for which:
1452      * <pre>{@code
1453      *     k <= Math.min(fromIndex, this.length()) &&
1454      *                   this.toString().startsWith(str, k)
1455      * }</pre>
1456      * If no such value of {@code k} exists, then {@code -1} is returned.
1457      *
1458      * @param   str         the substring to search for.
1459      * @param   fromIndex   the index to start the search from.
1460      * @return  the index of the last occurrence of the specified substring,
1461      *          searching backward from the specified index,
1462      *          or {@code -1} if there is no such occurrence.
1463      */
1464     public int lastIndexOf(String str, int fromIndex) {
1465         return String.lastIndexOf(value, coder, count, str, fromIndex);
1466     }
1467 
1468     /**
1469      * Causes this character sequence to be replaced by the reverse of
1470      * the sequence. If there are any surrogate pairs included in the
1471      * sequence, these are treated as single characters for the
1472      * reverse operation. Thus, the order of the high-low surrogates
1473      * is never reversed.
1474      *
1475      * Let <i>n</i> be the character length of this character sequence
1476      * (not the length in {@code char} values) just prior to
1477      * execution of the {@code reverse} method. Then the
1478      * character at index <i>k</i> in the new character sequence is
1479      * equal to the character at index <i>n-k-1</i> in the old
1480      * character sequence.
1481      *
1482      * <p>Note that the reverse operation may result in producing
1483      * surrogate pairs that were unpaired low-surrogates and
1484      * high-surrogates before the operation. For example, reversing
1485      * "\u005CuDC00\u005CuD800" produces "\u005CuD800\u005CuDC00" which is
1486      * a valid surrogate pair.
1487      *
1488      * @return  a reference to this object.
1489      */
1490     public AbstractStringBuilder reverse() {
1491         byte[] val = this.value;
1492         int count = this.count;
1493         int coder = this.coder;
1494         int n = count - 1;
1495         if (COMPACT_STRINGS && coder == LATIN1) {
1496             for (int j = (n-1) >> 1; j >= 0; j--) {
1497                 int k = n - j;
1498                 byte cj = val[j];
1499                 val[j] = val[k];
1500                 val[k] = cj;
1501             }
1502         } else {
1503             checkOffset(count, val.length >> 1);
1504             boolean hasSurrogates = false;
1505             for (int j = (n-1) >> 1; j >= 0; j--) {
1506                 int k = n - j;
1507                 char cj = StringUTF16.getChar(val, j);
1508                 char ck = StringUTF16.getChar(val, k);
1509                 StringUTF16.putChar(val, j, ck);
1510                 StringUTF16.putChar(val, k, cj);
1511                 if (Character.isSurrogate(cj) ||
1512                     Character.isSurrogate(ck)) {
1513                     hasSurrogates = true;
1514                 }
1515             }
1516             if (hasSurrogates) {
1517                 reverseAllValidSurrogatePairs(val, count);
1518             }
1519         }
1520         return this;
1521     }
1522 
1523     /** Outlined helper method for reverse() */
1524     private void reverseAllValidSurrogatePairs(byte[] val, int count) {
1525         for (int i = 0; i < count - 1; i++) {
1526             char c2 = StringUTF16.getChar(val, i);
1527             if (Character.isLowSurrogate(c2)) {
1528                 char c1 = StringUTF16.getChar(val, i + 1);
1529                 if (Character.isHighSurrogate(c1)) {
1530                     StringUTF16.putChar(val, i++, c1);
1531                     StringUTF16.putChar(val, i, c2);
1532                 }
1533             }
1534         }
1535     }
1536 
1537     /**
1538      * Returns a string representing the data in this sequence.
1539      * A new {@code String} object is allocated and initialized to
1540      * contain the character sequence currently represented by this
1541      * object. This {@code String} is then returned. Subsequent
1542      * changes to this sequence do not affect the contents of the
1543      * {@code String}.
1544      *
1545      * @return  a string representation of this sequence of characters.
1546      */
1547     @Override
1548     public abstract String toString();
1549 
1550     /**
1551      * {@inheritDoc}
1552      * @since 9
1553      */
1554     @Override
1555     public IntStream chars() {
1556         // Reuse String-based spliterator. This requires a supplier to
1557         // capture the value and count when the terminal operation is executed
1558         return StreamSupport.intStream(
1559                 () -> {
1560                     // The combined set of field reads are not atomic and thread
1561                     // safe but bounds checks will ensure no unsafe reads from
1562                     // the byte array
1563                     byte[] val = this.value;
1564                     int count = this.count;
1565                     byte coder = this.coder;
1566                     return coder == LATIN1
1567                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1568                            : new StringUTF16.CharsSpliterator(val, 0, count, 0);
1569                 },
1570                 Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED,
1571                 false);
1572     }
1573 
1574     /**
1575      * {@inheritDoc}
1576      * @since 9
1577      */
1578     @Override
1579     public IntStream codePoints() {
1580         // Reuse String-based spliterator. This requires a supplier to
1581         // capture the value and count when the terminal operation is executed
1582         return StreamSupport.intStream(
1583                 () -> {
1584                     // The combined set of field reads are not atomic and thread
1585                     // safe but bounds checks will ensure no unsafe reads from
1586                     // the byte array
1587                     byte[] val = this.value;
1588                     int count = this.count;
1589                     byte coder = this.coder;
1590                     return coder == LATIN1
1591                            ? new StringLatin1.CharsSpliterator(val, 0, count, 0)
1592                            : new StringUTF16.CodePointsSpliterator(val, 0, count, 0);
1593                 },
1594                 Spliterator.ORDERED,
1595                 false);
1596     }
1597 
1598     /**
1599      * Needed by {@code String} for the contentEquals method.
1600      */
1601     final byte[] getValue() {
1602         return value;
1603     }
1604 
1605     /*
1606      * Invoker guarantees it is in UTF16 (inflate itself for asb), if two
1607      * coders are different and the dstBegin has enough space
1608      *
1609      * @param dstBegin  the char index, not offset of byte[]
1610      * @param coder     the coder of dst[]
1611      */
1612     void getBytes(byte dst[], int dstBegin, byte coder) {
1613         if (this.coder == coder) {
1614             System.arraycopy(value, 0, dst, dstBegin << coder, count << coder);
1615         } else {        // this.coder == LATIN && coder == UTF16
1616             StringLatin1.inflate(value, 0, dst, dstBegin, count);
1617         }
1618     }
1619 
1620     /* for readObject() */
1621     void initBytes(char[] value, int off, int len) {
1622         if (String.COMPACT_STRINGS) {
1623             this.value = StringUTF16.compress(value, off, len);
1624             if (this.value != null) {
1625                 this.coder = LATIN1;
1626                 return;
1627             }
1628         }
1629         this.coder = UTF16;
1630         this.value = StringUTF16.toBytes(value, off, len);
1631     }
1632 
1633     final byte getCoder() {
1634         return COMPACT_STRINGS ? coder : UTF16;
1635     }
1636 
1637     final boolean isLatin1() {
1638         return COMPACT_STRINGS && coder == LATIN1;
1639     }
1640 
1641     private final void putCharsAt(int index, char[] s, int off, int end) {
1642         if (isLatin1()) {
1643             byte[] val = this.value;
1644             for (int i = off, j = index; i < end; i++) {
1645                 char c = s[i];
1646                 if (StringLatin1.canEncode(c)) {
1647                     val[j++] = (byte)c;
1648                 } else {
1649                     inflate();
1650                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1651                     return;
1652                 }
1653             }
1654         } else {
1655             StringUTF16.putCharsSB(this.value, index, s, off, end);
1656         }
1657     }
1658 
1659     private final void putCharsAt(int index, CharSequence s, int off, int end) {
1660         if (isLatin1()) {
1661             byte[] val = this.value;
1662             for (int i = off, j = index; i < end; i++) {
1663                 char c = s.charAt(i);
1664                 if (StringLatin1.canEncode(c)) {
1665                     val[j++] = (byte)c;
1666                 } else {
1667                     inflate();
1668                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1669                     return;
1670                 }
1671             }
1672         } else {
1673             StringUTF16.putCharsSB(this.value, index, s, off, end);
1674         }
1675     }
1676 
1677     private final void putStringAt(int index, String str) {
1678         if (getCoder() != str.coder()) {
1679             inflate();
1680         }
1681         str.getBytes(value, index, coder);
1682     }
1683 
1684     private final void appendChars(char[] s, int off, int end) {
1685         if (isLatin1()) {
1686             byte[] val = this.value;
1687             for (int i = off, j = count; i < end; i++) {
1688                 char c = s[i];
1689                 if (StringLatin1.canEncode(c)) {
1690                     val[j++] = (byte)c;
1691                 } else {
1692                     count = j;
1693                     inflate();
1694                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1695                     count += end - i;
1696                     return;
1697                 }
1698             }
1699         } else {
1700             StringUTF16.putCharsSB(this.value, count, s, off, end);
1701         }
1702         count += end - off;
1703     }
1704 
1705     private final void appendChars(CharSequence s, int off, int end) {
1706         if (isLatin1()) {
1707             byte[] val = this.value;
1708             for (int i = off, j = count; i < end; i++) {
1709                 char c = s.charAt(i);
1710                 if (StringLatin1.canEncode(c)) {
1711                     val[j++] = (byte)c;
1712                 } else {
1713                     count = j;
1714                     inflate();
1715                     StringUTF16.putCharsSB(this.value, j, s, i, end);
1716                     count += end - i;
1717                     return;
1718                 }
1719             }
1720         } else {
1721             StringUTF16.putCharsSB(this.value, count, s, off, end);
1722         }
1723         count += end - off;
1724     }
1725 
1726     /* IndexOutOfBoundsException, if out of bounds */
1727     private static void checkRange(int start, int end, int len) {
1728         if (start < 0 || start > end || end > len) {
1729             throw new IndexOutOfBoundsException(
1730                 "start " + start + ", end " + end + ", length " + len);
1731         }
1732     }
1733 
1734     /* StringIndexOutOfBoundsException, if out of bounds */
1735     private static void checkRangeSIOOBE(int start, int end, int len) {
1736         if (start < 0 || start > end || end > len) {
1737             throw new StringIndexOutOfBoundsException(
1738                 "start " + start + ", end " + end + ", length " + len);
1739         }
1740     }
1741 }