1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.ref.WeakReference;
  32 import java.lang.reflect.ParameterizedType;
  33 import java.lang.reflect.Type;
  34 import java.util.function.BiConsumer;
  35 import java.util.function.BiFunction;
  36 import java.util.function.Consumer;
  37 import java.util.function.Function;
  38 
  39 /**
  40  * Hash table based implementation of the <tt>Map</tt> interface.  This
  41  * implementation provides all of the optional map operations, and permits
  42  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  43  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  44  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  45  * the order of the map; in particular, it does not guarantee that the order
  46  * will remain constant over time.
  47  *
  48  * <p>This implementation provides constant-time performance for the basic
  49  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  50  * disperses the elements properly among the buckets.  Iteration over
  51  * collection views requires time proportional to the "capacity" of the
  52  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  53  * of key-value mappings).  Thus, it's very important not to set the initial
  54  * capacity too high (or the load factor too low) if iteration performance is
  55  * important.
  56  *
  57  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  58  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  59  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  60  * capacity is simply the capacity at the time the hash table is created.  The
  61  * <i>load factor</i> is a measure of how full the hash table is allowed to
  62  * get before its capacity is automatically increased.  When the number of
  63  * entries in the hash table exceeds the product of the load factor and the
  64  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  65  * structures are rebuilt) so that the hash table has approximately twice the
  66  * number of buckets.
  67  *
  68  * <p>As a general rule, the default load factor (.75) offers a good
  69  * tradeoff between time and space costs.  Higher values decrease the
  70  * space overhead but increase the lookup cost (reflected in most of
  71  * the operations of the <tt>HashMap</tt> class, including
  72  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
  73  * the map and its load factor should be taken into account when
  74  * setting its initial capacity, so as to minimize the number of
  75  * rehash operations.  If the initial capacity is greater than the
  76  * maximum number of entries divided by the load factor, no rehash
  77  * operations will ever occur.
  78  *
  79  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
  80  * instance, creating it with a sufficiently large capacity will allow
  81  * the mappings to be stored more efficiently than letting it perform
  82  * automatic rehashing as needed to grow the table.  Note that using
  83  * many keys with the same {@code hashCode()} is a sure way to slow
  84  * down performance of any hash table. To ameliorate impact, when keys
  85  * are {@link Comparable}, this class may use comparison order among
  86  * keys to help break ties.
  87  *
  88  * <p><strong>Note that this implementation is not synchronized.</strong>
  89  * If multiple threads access a hash map concurrently, and at least one of
  90  * the threads modifies the map structurally, it <i>must</i> be
  91  * synchronized externally.  (A structural modification is any operation
  92  * that adds or deletes one or more mappings; merely changing the value
  93  * associated with a key that an instance already contains is not a
  94  * structural modification.)  This is typically accomplished by
  95  * synchronizing on some object that naturally encapsulates the map.
  96  *
  97  * If no such object exists, the map should be "wrapped" using the
  98  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  99  * method.  This is best done at creation time, to prevent accidental
 100  * unsynchronized access to the map:<pre>
 101  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 102  *
 103  * <p>The iterators returned by all of this class's "collection view methods"
 104  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 105  * the iterator is created, in any way except through the iterator's own
 106  * <tt>remove</tt> method, the iterator will throw a
 107  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 108  * modification, the iterator fails quickly and cleanly, rather than risking
 109  * arbitrary, non-deterministic behavior at an undetermined time in the
 110  * future.
 111  *
 112  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 113  * as it is, generally speaking, impossible to make any hard guarantees in the
 114  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 115  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 116  * Therefore, it would be wrong to write a program that depended on this
 117  * exception for its correctness: <i>the fail-fast behavior of iterators
 118  * should be used only to detect bugs.</i>
 119  *
 120  * <p>This class is a member of the
 121  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 122  * Java Collections Framework</a>.
 123  *
 124  * @param <K> the type of keys maintained by this map
 125  * @param <V> the type of mapped values
 126  *
 127  * @author  Doug Lea
 128  * @author  Josh Bloch
 129  * @author  Arthur van Hoff
 130  * @author  Neal Gafter
 131  * @see     Object#hashCode()
 132  * @see     Collection
 133  * @see     Map
 134  * @see     TreeMap
 135  * @see     Hashtable
 136  * @since   1.2
 137  */
 138 public class HashMap<K,V> extends AbstractMap<K,V>
 139     implements Map<K,V>, Cloneable, Serializable {
 140 
 141     private static final long serialVersionUID = 362498820763181265L;
 142 
 143     /*
 144      * Implementation notes.
 145      *
 146      * This map usually acts as a binned (bucketed) hash table, but
 147      * when bins get too large, they are transformed into bins of
 148      * TreeNodes, each structured similarly to those in
 149      * java.util.TreeMap. Most methods try to use normal bins, but
 150      * relay to TreeNode methods when applicable (simply by checking
 151      * instanceof a node).  Bins of TreeNodes may be traversed and
 152      * used like any others, but additionally support faster lookup
 153      * when overpopulated. However, since the vast majority of bins in
 154      * normal use are not overpopulated, checking for existence of
 155      * tree bins may be delayed in the course of table methods.
 156      *
 157      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 158      * ordered primarily by hashCode, but in the case of ties, if two
 159      * elements are of the same "class C implements Comparable<C>",
 160      * type then their compareTo method is used for ordering. (We
 161      * conservatively check generic types via reflection to validate
 162      * this -- see method comparableClassFor).  The added complexity
 163      * of tree bins is worthwhile in providing worst-case O(log n)
 164      * operations when keys either have distinct hashes or are
 165      * orderable, Thus, performance degrades gracefully under
 166      * accidental or malicious usages in which hashCode() methods
 167      * return values that are poorly distributed, as well as those in
 168      * which many keys share a hashCode, so long as they are also
 169      * Comparable. (If neither of these apply, we may waste about a
 170      * factor of two in time and space compared to taking no
 171      * precautions. But the only known cases stem from poor user
 172      * programming practices that are already so slow that this makes
 173      * little difference.)
 174      *
 175      * Because TreeNodes are about twice the size of regular nodes, we
 176      * use them only when bins contain enough nodes to warrant use
 177      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 178      * removal or resizing) they are converted back to plain bins.  In
 179      * usages with well-distributed user hashCodes, tree bins are
 180      * rarely used.  Ideally, under random hashCodes, the frequency of
 181      * nodes in bins follows a Poisson distribution
 182      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 183      * parameter of about 0.5 on average for the default resizing
 184      * threshold of 0.75, although with a large variance because of
 185      * resizing granularity. Ignoring variance, the expected
 186      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 187      * factorial(k)). The first values are:
 188      *
 189      * 0:    0.60653066
 190      * 1:    0.30326533
 191      * 2:    0.07581633
 192      * 3:    0.01263606
 193      * 4:    0.00157952
 194      * 5:    0.00015795
 195      * 6:    0.00001316
 196      * 7:    0.00000094
 197      * 8:    0.00000006
 198      * more: less than 1 in ten million
 199      *
 200      * The root of a tree bin is normally its first node.  However,
 201      * sometimes (currently only upon Iterator.remove), the root might
 202      * be elsewhere, but can be recovered following parent links
 203      * (method TreeNode.root()).
 204      *
 205      * All applicable internal methods accept a hash code as an
 206      * argument (as normally supplied from a public method), allowing
 207      * them to call each other without recomputing user hashCodes.
 208      * Most internal methods also accept a "tab" argument, that is
 209      * normally the current table, but may be a new or old one when
 210      * resizing or converting.
 211      *
 212      * When bin lists are treeified, split, or untreeified, we keep
 213      * them in the same relative access/traversal order (i.e., field
 214      * Node.next) to better preserve locality, and to slightly
 215      * simplify handling of splits and traversals that invoke
 216      * iterator.remove. When using comparators on insertion, to keep a
 217      * total ordering (or as close as is required here) across
 218      * rebalancings, we compare classes and identityHashCodes as
 219      * tie-breakers.
 220      *
 221      * The use and transitions among plain vs tree modes is
 222      * complicated by the existence of subclass LinkedHashMap. See
 223      * below for hook methods defined to be invoked upon insertion,
 224      * removal and access that allow LinkedHashMap internals to
 225      * otherwise remain independent of these mechanics. (This also
 226      * requires that a map instance be passed to some utility methods
 227      * that may create new nodes.)
 228      *
 229      * The concurrent-programming-like SSA-based coding style helps
 230      * avoid aliasing errors amid all of the twisty pointer operations.
 231      */
 232 
 233     /**
 234      * The default initial capacity - MUST be a power of two.
 235      */
 236     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 237 
 238     /**
 239      * The maximum capacity, used if a higher value is implicitly specified
 240      * by either of the constructors with arguments.
 241      * MUST be a power of two <= 1<<30.
 242      */
 243     static final int MAXIMUM_CAPACITY = 1 << 30;
 244 
 245     /**
 246      * The load factor used when none specified in constructor.
 247      */
 248     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 249 
 250     /**
 251      * The bin count threshold for using a tree rather than list for a
 252      * bin.  Bins are converted to trees when adding an element to a
 253      * bin with at least this many nodes. The value must be greater
 254      * than 2 and should be at least 8 to mesh with assumptions in
 255      * tree removal about conversion back to plain bins upon
 256      * shrinkage.
 257      */
 258     static final int TREEIFY_THRESHOLD = 8;
 259 
 260     /**
 261      * The bin count threshold for untreeifying a (split) bin during a
 262      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 263      * most 6 to mesh with shrinkage detection under removal.
 264      */
 265     static final int UNTREEIFY_THRESHOLD = 6;
 266 
 267     /**
 268      * The smallest table capacity for which bins may be treeified.
 269      * (Otherwise the table is resized if too many nodes in a bin.)
 270      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 271      * between resizing and treeification thresholds.
 272      */
 273     static final int MIN_TREEIFY_CAPACITY = 64;
 274 
 275     /**
 276      * Basic hash bin node, used for most entries.  (See below for
 277      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 278      */
 279     static class Node<K,V> implements Map.Entry<K,V> {
 280         final int hash;
 281         final K key;
 282         V value;
 283         Node<K,V> next;
 284 
 285         Node(int hash, K key, V value, Node<K,V> next) {
 286             this.hash = hash;
 287             this.key = key;
 288             this.value = value;
 289             this.next = next;
 290         }
 291 
 292         public final K getKey()        { return key; }
 293         public final V getValue()      { return value; }
 294         public final String toString() { return key + "=" + value; }
 295 
 296         public final int hashCode() {
 297             return Objects.hashCode(key) ^ Objects.hashCode(value);
 298         }
 299 
 300         public final V setValue(V newValue) {
 301             V oldValue = value;
 302             value = newValue;
 303             return oldValue;
 304         }
 305 
 306         public final boolean equals(Object o) {
 307             if (o == this)
 308                 return true;
 309             if (o instanceof Map.Entry) {
 310                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 311                 if (Objects.equals(key, e.getKey()) &&
 312                     Objects.equals(value, e.getValue()))
 313                     return true;
 314             }
 315             return false;
 316         }
 317     }
 318 
 319     /* ---------------- Static utilities -------------- */
 320 
 321     /**
 322      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 323      * to lower.  Because the table uses power-of-two masking, sets of
 324      * hashes that vary only in bits above the current mask will
 325      * always collide. (Among known examples are sets of Float keys
 326      * holding consecutive whole numbers in small tables.)  So we
 327      * apply a transform that spreads the impact of higher bits
 328      * downward. There is a tradeoff between speed, utility, and
 329      * quality of bit-spreading. Because many common sets of hashes
 330      * are already reasonably distributed (so don't benefit from
 331      * spreading), and because we use trees to handle large sets of
 332      * collisions in bins, we just XOR some shifted bits in the
 333      * cheapest possible way to reduce systematic lossage, as well as
 334      * to incorporate impact of the highest bits that would otherwise
 335      * never be used in index calculations because of table bounds.
 336      */
 337     static final int hash(Object key) {
 338         int h;
 339         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 340     }
 341 
 342     /** Cache of 1st encountered Class implementing Comparable */
 343     private static final class ClassRef extends WeakReference<Class<?>> {
 344         final boolean selfComparable;
 345 
 346         ClassRef(Class<?> cc, boolean selfComparable) {
 347             super(cc);
 348             this.selfComparable = selfComparable;
 349         }
 350     }
 351 
 352     private transient ClassRef comparableClassRef;
 353 
 354     /**
 355      * Returns x's Class if it is of the form "class C implements
 356      * Comparable<C>", else null.
 357      */
 358     Class<?> comparableClassFor(Object x) {
 359         if (x instanceof Comparable) {
 360             Class<?> c, cc = null;
 361             Type[] ts, as;
 362             ParameterizedType p;
 363             ClassRef ccRef;
 364             if ((c = x.getClass()) == String.class) { // bypass checks
 365                 return c;
 366             }
 367             if ((ccRef = comparableClassRef) != null &&
 368                 (cc = ccRef.get()) == c) {  // cached
 369                 return ccRef.selfComparable ? c : null;
 370             }
 371             if ((ts = c.getGenericInterfaces()) != null) {
 372                 for (Type t : ts) {
 373                     if ((t instanceof ParameterizedType) &&
 374                         ((p = (ParameterizedType) t).getRawType() ==
 375                             Comparable.class) &&
 376                         (as = p.getActualTypeArguments()) != null &&
 377                         as.length == 1 && as[0] == c) { // type arg is c
 378                         if (cc == null) {
 379                             // not yet cached or already cleared
 380                             comparableClassRef = new ClassRef(c, true);
 381                         }
 382                         return c;
 383                     }
 384                 }
 385             }
 386             if (cc == null) {
 387                 // not yet cached or already cleared
 388                 comparableClassRef = new ClassRef(c, false);
 389             }
 390         }
 391         return null;
 392     }
 393 
 394     /**
 395      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 396      * class), else 0.
 397      */
 398     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 399     static int compareComparables(Class<?> kc, Object k, Object x) {
 400         return (x == null || x.getClass() != kc ? 0 :
 401                 ((Comparable)k).compareTo(x));
 402     }
 403 
 404     /**
 405      * Returns a power of two size for the given target capacity.
 406      */
 407     static final int tableSizeFor(int cap) {
 408         int n = cap - 1;
 409         n |= n >>> 1;
 410         n |= n >>> 2;
 411         n |= n >>> 4;
 412         n |= n >>> 8;
 413         n |= n >>> 16;
 414         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 415     }
 416 
 417     /* ---------------- Fields -------------- */
 418 
 419     /**
 420      * The table, initialized on first use, and resized as
 421      * necessary. When allocated, length is always a power of two.
 422      * (We also tolerate length zero in some operations to allow
 423      * bootstrapping mechanics that are currently not needed.)
 424      */
 425     transient Node<K,V>[] table;
 426 
 427     /**
 428      * Holds cached entrySet(). Note that AbstractMap fields are used
 429      * for keySet() and values().
 430      */
 431     transient Set<Map.Entry<K,V>> entrySet;
 432 
 433     /**
 434      * The number of key-value mappings contained in this map.
 435      */
 436     transient int size;
 437 
 438     /**
 439      * The number of times this HashMap has been structurally modified
 440      * Structural modifications are those that change the number of mappings in
 441      * the HashMap or otherwise modify its internal structure (e.g.,
 442      * rehash).  This field is used to make iterators on Collection-views of
 443      * the HashMap fail-fast.  (See ConcurrentModificationException).
 444      */
 445     transient int modCount;
 446 
 447     /**
 448      * The next size value at which to resize (capacity * load factor).
 449      *
 450      * @serial
 451      */
 452     // (The javadoc description is true upon serialization.
 453     // Additionally, if the table array has not been allocated, this
 454     // field holds the initial array capacity, or zero signifying
 455     // DEFAULT_INITIAL_CAPACITY.)
 456     int threshold;
 457 
 458     /**
 459      * The load factor for the hash table.
 460      *
 461      * @serial
 462      */
 463     final float loadFactor;
 464 
 465     /* ---------------- Public operations -------------- */
 466 
 467     /**
 468      * Constructs an empty <tt>HashMap</tt> with the specified initial
 469      * capacity and load factor.
 470      *
 471      * @param  initialCapacity the initial capacity
 472      * @param  loadFactor      the load factor
 473      * @throws IllegalArgumentException if the initial capacity is negative
 474      *         or the load factor is nonpositive
 475      */
 476     public HashMap(int initialCapacity, float loadFactor) {
 477         if (initialCapacity < 0)
 478             throw new IllegalArgumentException("Illegal initial capacity: " +
 479                                                initialCapacity);
 480         if (initialCapacity > MAXIMUM_CAPACITY)
 481             initialCapacity = MAXIMUM_CAPACITY;
 482         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 483             throw new IllegalArgumentException("Illegal load factor: " +
 484                                                loadFactor);
 485         this.loadFactor = loadFactor;
 486         this.threshold = tableSizeFor(initialCapacity);
 487     }
 488 
 489     /**
 490      * Constructs an empty <tt>HashMap</tt> with the specified initial
 491      * capacity and the default load factor (0.75).
 492      *
 493      * @param  initialCapacity the initial capacity.
 494      * @throws IllegalArgumentException if the initial capacity is negative.
 495      */
 496     public HashMap(int initialCapacity) {
 497         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 498     }
 499 
 500     /**
 501      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 502      * (16) and the default load factor (0.75).
 503      */
 504     public HashMap() {
 505         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 506     }
 507 
 508     /**
 509      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 510      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 511      * default load factor (0.75) and an initial capacity sufficient to
 512      * hold the mappings in the specified <tt>Map</tt>.
 513      *
 514      * @param   m the map whose mappings are to be placed in this map
 515      * @throws  NullPointerException if the specified map is null
 516      */
 517     public HashMap(Map<? extends K, ? extends V> m) {
 518         this.loadFactor = DEFAULT_LOAD_FACTOR;
 519         putMapEntries(m, false);
 520     }
 521 
 522     /**
 523      * Implements Map.putAll and Map constructor
 524      *
 525      * @param m the map
 526      * @param evict false when initially constructing this map, else
 527      * true (relayed to method afterNodeInsertion).
 528      */
 529     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 530         int s = m.size();
 531         if (s > 0) {
 532             if (table == null) { // pre-size
 533                 float ft = ((float)s / loadFactor) + 1.0F;
 534                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 535                          (int)ft : MAXIMUM_CAPACITY);
 536                 if (t > threshold)
 537                     threshold = tableSizeFor(t);
 538             }
 539             else if (s > threshold)
 540                 resize();
 541             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 542                 K key = e.getKey();
 543                 V value = e.getValue();
 544                 putVal(hash(key), key, value, false, evict);
 545             }
 546         }
 547     }
 548 
 549     /**
 550      * Returns the number of key-value mappings in this map.
 551      *
 552      * @return the number of key-value mappings in this map
 553      */
 554     public int size() {
 555         return size;
 556     }
 557 
 558     /**
 559      * Returns <tt>true</tt> if this map contains no key-value mappings.
 560      *
 561      * @return <tt>true</tt> if this map contains no key-value mappings
 562      */
 563     public boolean isEmpty() {
 564         return size == 0;
 565     }
 566 
 567     /**
 568      * Returns the value to which the specified key is mapped,
 569      * or {@code null} if this map contains no mapping for the key.
 570      *
 571      * <p>More formally, if this map contains a mapping from a key
 572      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 573      * key.equals(k))}, then this method returns {@code v}; otherwise
 574      * it returns {@code null}.  (There can be at most one such mapping.)
 575      *
 576      * <p>A return value of {@code null} does not <i>necessarily</i>
 577      * indicate that the map contains no mapping for the key; it's also
 578      * possible that the map explicitly maps the key to {@code null}.
 579      * The {@link #containsKey containsKey} operation may be used to
 580      * distinguish these two cases.
 581      *
 582      * @see #put(Object, Object)
 583      */
 584     public V get(Object key) {
 585         Node<K,V> e;
 586         return (e = getNode(hash(key), key)) == null ? null : e.value;
 587     }
 588 
 589     /**
 590      * Implements Map.get and related methods
 591      *
 592      * @param hash hash for key
 593      * @param key the key
 594      * @return the node, or null if none
 595      */
 596     final Node<K,V> getNode(int hash, Object key) {
 597         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 598         if ((tab = table) != null && (n = tab.length) > 0 &&
 599             (first = tab[(n - 1) & hash]) != null) {
 600             if (first.hash == hash && // always check first node
 601                 ((k = first.key) == key || (key != null && key.equals(k))))
 602                 return first;
 603             if ((e = first.next) != null) {
 604                 if (first instanceof TreeNode)
 605                     return ((TreeNode<K,V>)first).getTreeNode(this, hash, key);
 606                 do {
 607                     if (e.hash == hash &&
 608                         ((k = e.key) == key || (key != null && key.equals(k))))
 609                         return e;
 610                 } while ((e = e.next) != null);
 611             }
 612         }
 613         return null;
 614     }
 615 
 616     /**
 617      * Returns <tt>true</tt> if this map contains a mapping for the
 618      * specified key.
 619      *
 620      * @param   key   The key whose presence in this map is to be tested
 621      * @return <tt>true</tt> if this map contains a mapping for the specified
 622      * key.
 623      */
 624     public boolean containsKey(Object key) {
 625         return getNode(hash(key), key) != null;
 626     }
 627 
 628     /**
 629      * Associates the specified value with the specified key in this map.
 630      * If the map previously contained a mapping for the key, the old
 631      * value is replaced.
 632      *
 633      * @param key key with which the specified value is to be associated
 634      * @param value value to be associated with the specified key
 635      * @return the previous value associated with <tt>key</tt>, or
 636      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 637      *         (A <tt>null</tt> return can also indicate that the map
 638      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 639      */
 640     public V put(K key, V value) {
 641         return putVal(hash(key), key, value, false, true);
 642     }
 643 
 644     /**
 645      * Implements Map.put and related methods
 646      *
 647      * @param hash hash for key
 648      * @param key the key
 649      * @param value the value to put
 650      * @param onlyIfAbsent if true, don't change existing value
 651      * @param evict if false, the table is in creation mode.
 652      * @return previous value, or null if none
 653      */
 654     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 655                    boolean evict) {
 656         Node<K,V>[] tab; Node<K,V> p; int n, i;
 657         if ((tab = table) == null || (n = tab.length) == 0)
 658             n = (tab = resize()).length;
 659         if ((p = tab[i = (n - 1) & hash]) == null)
 660             tab[i] = newNode(hash, key, value, null);
 661         else {
 662             Node<K,V> e; K k;
 663             if (p.hash == hash &&
 664                 ((k = p.key) == key || (key != null && key.equals(k))))
 665                 e = p;
 666             else if (p instanceof TreeNode)
 667                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 668             else {
 669                 for (int binCount = 0; ; ++binCount) {
 670                     if ((e = p.next) == null) {
 671                         p.next = newNode(hash, key, value, null);
 672                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 673                             treeifyBin(tab, hash);
 674                         break;
 675                     }
 676                     if (e.hash == hash &&
 677                         ((k = e.key) == key || (key != null && key.equals(k))))
 678                         break;
 679                     p = e;
 680                 }
 681             }
 682             if (e != null) { // existing mapping for key
 683                 V oldValue = e.value;
 684                 if (!onlyIfAbsent || oldValue == null)
 685                     e.value = value;
 686                 afterNodeAccess(e);
 687                 return oldValue;
 688             }
 689         }
 690         ++modCount;
 691         if (++size > threshold)
 692             resize();
 693         afterNodeInsertion(evict);
 694         return null;
 695     }
 696 
 697     /**
 698      * Initializes or doubles table size.  If null, allocates in
 699      * accord with initial capacity target held in field threshold.
 700      * Otherwise, because we are using power-of-two expansion, the
 701      * elements from each bin must either stay at same index, or move
 702      * with a power of two offset in the new table.
 703      *
 704      * @return the table
 705      */
 706     final Node<K,V>[] resize() {
 707         Node<K,V>[] oldTab = table;
 708         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 709         int oldThr = threshold;
 710         int newCap, newThr = 0;
 711         if (oldCap > 0) {
 712             if (oldCap >= MAXIMUM_CAPACITY) {
 713                 threshold = Integer.MAX_VALUE;
 714                 return oldTab;
 715             }
 716             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 717                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 718                 newThr = oldThr << 1; // double threshold
 719         }
 720         else if (oldThr > 0) // initial capacity was placed in threshold
 721             newCap = oldThr;
 722         else {               // zero initial threshold signifies using defaults
 723             newCap = DEFAULT_INITIAL_CAPACITY;
 724             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 725         }
 726         if (newThr == 0) {
 727             float ft = (float)newCap * loadFactor;
 728             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 729                       (int)ft : Integer.MAX_VALUE);
 730         }
 731         threshold = newThr;
 732         @SuppressWarnings({"rawtypes","unchecked"})
 733             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 734         table = newTab;
 735         if (oldTab != null) {
 736             for (int j = 0; j < oldCap; ++j) {
 737                 Node<K,V> e;
 738                 if ((e = oldTab[j]) != null) {
 739                     oldTab[j] = null;
 740                     if (e.next == null)
 741                         newTab[e.hash & (newCap - 1)] = e;
 742                     else if (e instanceof TreeNode)
 743                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 744                     else { // preserve order
 745                         Node<K,V> loHead = null, loTail = null;
 746                         Node<K,V> hiHead = null, hiTail = null;
 747                         Node<K,V> next;
 748                         do {
 749                             next = e.next;
 750                             if ((e.hash & oldCap) == 0) {
 751                                 if (loTail == null)
 752                                     loHead = e;
 753                                 else
 754                                     loTail.next = e;
 755                                 loTail = e;
 756                             }
 757                             else {
 758                                 if (hiTail == null)
 759                                     hiHead = e;
 760                                 else
 761                                     hiTail.next = e;
 762                                 hiTail = e;
 763                             }
 764                         } while ((e = next) != null);
 765                         if (loTail != null) {
 766                             loTail.next = null;
 767                             newTab[j] = loHead;
 768                         }
 769                         if (hiTail != null) {
 770                             hiTail.next = null;
 771                             newTab[j + oldCap] = hiHead;
 772                         }
 773                     }
 774                 }
 775             }
 776         }
 777         return newTab;
 778     }
 779 
 780     /**
 781      * Replaces all linked nodes in bin at index for given hash unless
 782      * table is too small, in which case resizes instead.
 783      */
 784     final void treeifyBin(Node<K,V>[] tab, int hash) {
 785         int n, index; Node<K,V> e;
 786         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 787             resize();
 788         else if ((e = tab[index = (n - 1) & hash]) != null) {
 789             TreeNode<K,V> hd = null, tl = null;
 790             do {
 791                 TreeNode<K,V> p = replacementTreeNode(e, null);
 792                 if (tl == null)
 793                     hd = p;
 794                 else {
 795                     p.prev = tl;
 796                     tl.next = p;
 797                 }
 798                 tl = p;
 799             } while ((e = e.next) != null);
 800             if ((tab[index] = hd) != null)
 801                 hd.treeify(this, tab);
 802         }
 803     }
 804 
 805     /**
 806      * Copies all of the mappings from the specified map to this map.
 807      * These mappings will replace any mappings that this map had for
 808      * any of the keys currently in the specified map.
 809      *
 810      * @param m mappings to be stored in this map
 811      * @throws NullPointerException if the specified map is null
 812      */
 813     public void putAll(Map<? extends K, ? extends V> m) {
 814         putMapEntries(m, true);
 815     }
 816 
 817     /**
 818      * Removes the mapping for the specified key from this map if present.
 819      *
 820      * @param  key key whose mapping is to be removed from the map
 821      * @return the previous value associated with <tt>key</tt>, or
 822      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 823      *         (A <tt>null</tt> return can also indicate that the map
 824      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 825      */
 826     public V remove(Object key) {
 827         Node<K,V> e;
 828         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 829             null : e.value;
 830     }
 831 
 832     /**
 833      * Implements Map.remove and related methods
 834      *
 835      * @param hash hash for key
 836      * @param key the key
 837      * @param value the value to match if matchValue, else ignored
 838      * @param matchValue if true only remove if value is equal
 839      * @param movable if false do not move other nodes while removing
 840      * @return the node, or null if none
 841      */
 842     final Node<K,V> removeNode(int hash, Object key, Object value,
 843                                boolean matchValue, boolean movable) {
 844         Node<K,V>[] tab; Node<K,V> p; int n, index;
 845         if ((tab = table) != null && (n = tab.length) > 0 &&
 846             (p = tab[index = (n - 1) & hash]) != null) {
 847             Node<K,V> node = null, e; K k; V v;
 848             if (p.hash == hash &&
 849                 ((k = p.key) == key || (key != null && key.equals(k))))
 850                 node = p;
 851             else if ((e = p.next) != null) {
 852                 if (p instanceof TreeNode)
 853                     node = ((TreeNode<K,V>)p).getTreeNode(this, hash, key);
 854                 else {
 855                     do {
 856                         if (e.hash == hash &&
 857                             ((k = e.key) == key ||
 858                              (key != null && key.equals(k)))) {
 859                             node = e;
 860                             break;
 861                         }
 862                         p = e;
 863                     } while ((e = e.next) != null);
 864                 }
 865             }
 866             if (node != null && (!matchValue || (v = node.value) == value ||
 867                                  (value != null && value.equals(v)))) {
 868                 if (node instanceof TreeNode)
 869                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 870                 else if (node == p)
 871                     tab[index] = node.next;
 872                 else
 873                     p.next = node.next;
 874                 ++modCount;
 875                 --size;
 876                 afterNodeRemoval(node);
 877                 return node;
 878             }
 879         }
 880         return null;
 881     }
 882 
 883     /**
 884      * Removes all of the mappings from this map.
 885      * The map will be empty after this call returns.
 886      */
 887     public void clear() {
 888         Node<K,V>[] tab;
 889         modCount++;
 890         if ((tab = table) != null && size > 0) {
 891             size = 0;
 892             for (int i = 0; i < tab.length; ++i)
 893                 tab[i] = null;
 894         }
 895     }
 896 
 897     /**
 898      * Returns <tt>true</tt> if this map maps one or more keys to the
 899      * specified value.
 900      *
 901      * @param value value whose presence in this map is to be tested
 902      * @return <tt>true</tt> if this map maps one or more keys to the
 903      *         specified value
 904      */
 905     public boolean containsValue(Object value) {
 906         Node<K,V>[] tab; V v;
 907         if ((tab = table) != null && size > 0) {
 908             for (Node<K, V> e : tab) {
 909                 for (; e != null; e = e.next) {
 910                     if ((v = e.value) == value ||
 911                         (value != null && value.equals(v)))
 912                         return true;
 913                 }
 914             }
 915         }
 916         return false;
 917     }
 918 
 919     /**
 920      * Returns a {@link Set} view of the keys contained in this map.
 921      * The set is backed by the map, so changes to the map are
 922      * reflected in the set, and vice-versa.  If the map is modified
 923      * while an iteration over the set is in progress (except through
 924      * the iterator's own <tt>remove</tt> operation), the results of
 925      * the iteration are undefined.  The set supports element removal,
 926      * which removes the corresponding mapping from the map, via the
 927      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 928      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 929      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 930      * operations.
 931      *
 932      * @return a set view of the keys contained in this map
 933      */
 934     public Set<K> keySet() {
 935         Set<K> ks;
 936         return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
 937     }
 938 
 939     final class KeySet extends AbstractSet<K> {
 940         public final int size()                 { return size; }
 941         public final void clear()               { HashMap.this.clear(); }
 942         public final Iterator<K> iterator()     { return new KeyIterator(); }
 943         public final boolean contains(Object o) { return containsKey(o); }
 944         public final boolean remove(Object key) {
 945             return removeNode(hash(key), key, null, false, true) != null;
 946         }
 947         public final Spliterator<K> spliterator() {
 948             return new KeySpliterator<>(HashMap.this, 0, -1, 0, 0);
 949         }
 950         public final void forEach(Consumer<? super K> action) {
 951             Node<K,V>[] tab;
 952             if (action == null)
 953                 throw new NullPointerException();
 954             if (size > 0 && (tab = table) != null) {
 955                 int mc = modCount;
 956                 for (Node<K, V> e : tab) {
 957                     for (; e != null; e = e.next)
 958                         action.accept(e.key);
 959                 }
 960                 if (modCount != mc)
 961                     throw new ConcurrentModificationException();
 962             }
 963         }
 964     }
 965 
 966     /**
 967      * Returns a {@link Collection} view of the values contained in this map.
 968      * The collection is backed by the map, so changes to the map are
 969      * reflected in the collection, and vice-versa.  If the map is
 970      * modified while an iteration over the collection is in progress
 971      * (except through the iterator's own <tt>remove</tt> operation),
 972      * the results of the iteration are undefined.  The collection
 973      * supports element removal, which removes the corresponding
 974      * mapping from the map, via the <tt>Iterator.remove</tt>,
 975      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 976      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 977      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 978      *
 979      * @return a view of the values contained in this map
 980      */
 981     public Collection<V> values() {
 982         Collection<V> vs;
 983         return (vs = values) == null ? (values = new Values()) : vs;
 984     }
 985 
 986     final class Values extends AbstractCollection<V> {
 987         public final int size()                 { return size; }
 988         public final void clear()               { HashMap.this.clear(); }
 989         public final Iterator<V> iterator()     { return new ValueIterator(); }
 990         public final boolean contains(Object o) { return containsValue(o); }
 991         public final Spliterator<V> spliterator() {
 992             return new ValueSpliterator<>(HashMap.this, 0, -1, 0, 0);
 993         }
 994         public final void forEach(Consumer<? super V> action) {
 995             Node<K,V>[] tab;
 996             if (action == null)
 997                 throw new NullPointerException();
 998             if (size > 0 && (tab = table) != null) {
 999                 int mc = modCount;
1000                 for (Node<K, V> e : tab) {
1001                     for (; e != null; e = e.next)
1002                         action.accept(e.value);
1003                 }
1004                 if (modCount != mc)
1005                     throw new ConcurrentModificationException();
1006             }
1007         }
1008     }
1009 
1010     /**
1011      * Returns a {@link Set} view of the mappings contained in this map.
1012      * The set is backed by the map, so changes to the map are
1013      * reflected in the set, and vice-versa.  If the map is modified
1014      * while an iteration over the set is in progress (except through
1015      * the iterator's own <tt>remove</tt> operation, or through the
1016      * <tt>setValue</tt> operation on a map entry returned by the
1017      * iterator) the results of the iteration are undefined.  The set
1018      * supports element removal, which removes the corresponding
1019      * mapping from the map, via the <tt>Iterator.remove</tt>,
1020      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
1021      * <tt>clear</tt> operations.  It does not support the
1022      * <tt>add</tt> or <tt>addAll</tt> operations.
1023      *
1024      * @return a set view of the mappings contained in this map
1025      */
1026     public Set<Map.Entry<K,V>> entrySet() {
1027         Set<Map.Entry<K,V>> es;
1028         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
1029     }
1030 
1031     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1032         public final int size()                 { return size; }
1033         public final void clear()               { HashMap.this.clear(); }
1034         public final Iterator<Map.Entry<K,V>> iterator() {
1035             return new EntryIterator();
1036         }
1037         public final boolean contains(Object o) {
1038             if (!(o instanceof Map.Entry))
1039                 return false;
1040             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1041             Object key = e.getKey();
1042             Node<K,V> candidate = getNode(hash(key), key);
1043             return candidate != null && candidate.equals(e);
1044         }
1045         public final boolean remove(Object o) {
1046             if (o instanceof Map.Entry) {
1047                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1048                 Object key = e.getKey();
1049                 Object value = e.getValue();
1050                 return removeNode(hash(key), key, value, true, true) != null;
1051             }
1052             return false;
1053         }
1054         public final Spliterator<Map.Entry<K,V>> spliterator() {
1055             return new EntrySpliterator<>(HashMap.this, 0, -1, 0, 0);
1056         }
1057         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1058             Node<K,V>[] tab;
1059             if (action == null)
1060                 throw new NullPointerException();
1061             if (size > 0 && (tab = table) != null) {
1062                 int mc = modCount;
1063                 for (Node<K, V> e : tab) {
1064                     for (; e != null; e = e.next)
1065                         action.accept(e);
1066                 }
1067                 if (modCount != mc)
1068                     throw new ConcurrentModificationException();
1069             }
1070         }
1071     }
1072 
1073     // Overrides of JDK8 Map extension methods
1074 
1075     @Override
1076     public V getOrDefault(Object key, V defaultValue) {
1077         Node<K,V> e;
1078         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1079     }
1080 
1081     @Override
1082     public V putIfAbsent(K key, V value) {
1083         return putVal(hash(key), key, value, true, true);
1084     }
1085 
1086     @Override
1087     public boolean remove(Object key, Object value) {
1088         return removeNode(hash(key), key, value, true, true) != null;
1089     }
1090 
1091     @Override
1092     public boolean replace(K key, V oldValue, V newValue) {
1093         Node<K,V> e; V v;
1094         if ((e = getNode(hash(key), key)) != null &&
1095             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1096             e.value = newValue;
1097             afterNodeAccess(e);
1098             return true;
1099         }
1100         return false;
1101     }
1102 
1103     @Override
1104     public V replace(K key, V value) {
1105         Node<K,V> e;
1106         if ((e = getNode(hash(key), key)) != null) {
1107             V oldValue = e.value;
1108             e.value = value;
1109             afterNodeAccess(e);
1110             return oldValue;
1111         }
1112         return null;
1113     }
1114 
1115     @Override
1116     public V computeIfAbsent(K key,
1117                              Function<? super K, ? extends V> mappingFunction) {
1118         if (mappingFunction == null)
1119             throw new NullPointerException();
1120         int hash = hash(key);
1121         Node<K,V>[] tab; Node<K,V> first; int n, i;
1122         int binCount = 0;
1123         TreeNode<K,V> t = null;
1124         Node<K,V> old = null;
1125         if (size > threshold || (tab = table) == null ||
1126             (n = tab.length) == 0)
1127             n = (tab = resize()).length;
1128         if ((first = tab[i = (n - 1) & hash]) != null) {
1129             if (first instanceof TreeNode)
1130                 old = (t = (TreeNode<K,V>)first).getTreeNode(this, hash, key);
1131             else {
1132                 Node<K,V> e = first; K k;
1133                 do {
1134                     if (e.hash == hash &&
1135                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1136                         old = e;
1137                         break;
1138                     }
1139                     ++binCount;
1140                 } while ((e = e.next) != null);
1141             }
1142             V oldValue;
1143             if (old != null && (oldValue = old.value) != null) {
1144                 afterNodeAccess(old);
1145                 return oldValue;
1146             }
1147         }
1148         V v = mappingFunction.apply(key);
1149         if (v == null) {
1150             return null;
1151         } else if (old != null) {
1152             old.value = v;
1153             afterNodeAccess(old);
1154             return v;
1155         }
1156         else if (t != null)
1157             t.putTreeVal(this, tab, hash, key, v);
1158         else {
1159             tab[i] = newNode(hash, key, v, first);
1160             if (binCount >= TREEIFY_THRESHOLD - 1)
1161                 treeifyBin(tab, hash);
1162         }
1163         ++modCount;
1164         ++size;
1165         afterNodeInsertion(true);
1166         return v;
1167     }
1168 
1169     public V computeIfPresent(K key,
1170                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1171         if (remappingFunction == null)
1172             throw new NullPointerException();
1173         Node<K,V> e; V oldValue;
1174         int hash = hash(key);
1175         if ((e = getNode(hash, key)) != null &&
1176             (oldValue = e.value) != null) {
1177             V v = remappingFunction.apply(key, oldValue);
1178             if (v != null) {
1179                 e.value = v;
1180                 afterNodeAccess(e);
1181                 return v;
1182             }
1183             else
1184                 removeNode(hash, key, null, false, true);
1185         }
1186         return null;
1187     }
1188 
1189     @Override
1190     public V compute(K key,
1191                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1192         if (remappingFunction == null)
1193             throw new NullPointerException();
1194         int hash = hash(key);
1195         Node<K,V>[] tab; Node<K,V> first; int n, i;
1196         int binCount = 0;
1197         TreeNode<K,V> t = null;
1198         Node<K,V> old = null;
1199         if (size > threshold || (tab = table) == null ||
1200             (n = tab.length) == 0)
1201             n = (tab = resize()).length;
1202         if ((first = tab[i = (n - 1) & hash]) != null) {
1203             if (first instanceof TreeNode)
1204                 old = (t = (TreeNode<K,V>)first).getTreeNode(this, hash, key);
1205             else {
1206                 Node<K,V> e = first; K k;
1207                 do {
1208                     if (e.hash == hash &&
1209                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1210                         old = e;
1211                         break;
1212                     }
1213                     ++binCount;
1214                 } while ((e = e.next) != null);
1215             }
1216         }
1217         V oldValue = (old == null) ? null : old.value;
1218         V v = remappingFunction.apply(key, oldValue);
1219         if (old != null) {
1220             if (v != null) {
1221                 old.value = v;
1222                 afterNodeAccess(old);
1223             }
1224             else
1225                 removeNode(hash, key, null, false, true);
1226         }
1227         else if (v != null) {
1228             if (t != null)
1229                 t.putTreeVal(this, tab, hash, key, v);
1230             else {
1231                 tab[i] = newNode(hash, key, v, first);
1232                 if (binCount >= TREEIFY_THRESHOLD - 1)
1233                     treeifyBin(tab, hash);
1234             }
1235             ++modCount;
1236             ++size;
1237             afterNodeInsertion(true);
1238         }
1239         return v;
1240     }
1241 
1242     @Override
1243     public V merge(K key, V value,
1244                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1245         if (value == null)
1246             throw new NullPointerException();
1247         if (remappingFunction == null)
1248             throw new NullPointerException();
1249         int hash = hash(key);
1250         Node<K,V>[] tab; Node<K,V> first; int n, i;
1251         int binCount = 0;
1252         TreeNode<K,V> t = null;
1253         Node<K,V> old = null;
1254         if (size > threshold || (tab = table) == null ||
1255             (n = tab.length) == 0)
1256             n = (tab = resize()).length;
1257         if ((first = tab[i = (n - 1) & hash]) != null) {
1258             if (first instanceof TreeNode)
1259                 old = (t = (TreeNode<K,V>)first).getTreeNode(this, hash, key);
1260             else {
1261                 Node<K,V> e = first; K k;
1262                 do {
1263                     if (e.hash == hash &&
1264                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1265                         old = e;
1266                         break;
1267                     }
1268                     ++binCount;
1269                 } while ((e = e.next) != null);
1270             }
1271         }
1272         if (old != null) {
1273             V v;
1274             if (old.value != null)
1275                 v = remappingFunction.apply(old.value, value);
1276             else
1277                 v = value;
1278             if (v != null) {
1279                 old.value = v;
1280                 afterNodeAccess(old);
1281             }
1282             else
1283                 removeNode(hash, key, null, false, true);
1284             return v;
1285         }
1286         if (value != null) {
1287             if (t != null)
1288                 t.putTreeVal(this, tab, hash, key, value);
1289             else {
1290                 tab[i] = newNode(hash, key, value, first);
1291                 if (binCount >= TREEIFY_THRESHOLD - 1)
1292                     treeifyBin(tab, hash);
1293             }
1294             ++modCount;
1295             ++size;
1296             afterNodeInsertion(true);
1297         }
1298         return value;
1299     }
1300 
1301     @Override
1302     public void forEach(BiConsumer<? super K, ? super V> action) {
1303         Node<K,V>[] tab;
1304         if (action == null)
1305             throw new NullPointerException();
1306         if (size > 0 && (tab = table) != null) {
1307             int mc = modCount;
1308             for (Node<K, V> e : tab) {
1309                 for (; e != null; e = e.next)
1310                     action.accept(e.key, e.value);
1311             }
1312             if (modCount != mc)
1313                 throw new ConcurrentModificationException();
1314         }
1315     }
1316 
1317     @Override
1318     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1319         Node<K,V>[] tab;
1320         if (function == null)
1321             throw new NullPointerException();
1322         if (size > 0 && (tab = table) != null) {
1323             int mc = modCount;
1324             for (Node<K, V> e : tab) {
1325                 for (; e != null; e = e.next) {
1326                     e.value = function.apply(e.key, e.value);
1327                 }
1328             }
1329             if (modCount != mc)
1330                 throw new ConcurrentModificationException();
1331         }
1332     }
1333 
1334     /* ------------------------------------------------------------ */
1335     // Cloning and serialization
1336 
1337     /**
1338      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
1339      * values themselves are not cloned.
1340      *
1341      * @return a shallow copy of this map
1342      */
1343     @SuppressWarnings("unchecked")
1344     @Override
1345     public Object clone() {
1346         HashMap<K,V> result;
1347         try {
1348             result = (HashMap<K,V>)super.clone();
1349         } catch (CloneNotSupportedException e) {
1350             // this shouldn't happen, since we are Cloneable
1351             throw new InternalError(e);
1352         }
1353         result.reinitialize();
1354         result.putMapEntries(this, false);
1355         return result;
1356     }
1357 
1358     // These methods are also used when serializing HashSets
1359     final float loadFactor() { return loadFactor; }
1360     final int capacity() {
1361         return (table != null) ? table.length :
1362             (threshold > 0) ? threshold :
1363             DEFAULT_INITIAL_CAPACITY;
1364     }
1365 
1366     /**
1367      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
1368      * serialize it).
1369      *
1370      * @serialData The <i>capacity</i> of the HashMap (the length of the
1371      *             bucket array) is emitted (int), followed by the
1372      *             <i>size</i> (an int, the number of key-value
1373      *             mappings), followed by the key (Object) and value (Object)
1374      *             for each key-value mapping.  The key-value mappings are
1375      *             emitted in no particular order.
1376      */
1377     private void writeObject(java.io.ObjectOutputStream s)
1378         throws IOException {
1379         int buckets = capacity();
1380         // Write out the threshold, loadfactor, and any hidden stuff
1381         s.defaultWriteObject();
1382         s.writeInt(buckets);
1383         s.writeInt(size);
1384         internalWriteEntries(s);
1385     }
1386 
1387     /**
1388      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
1389      * deserialize it).
1390      */
1391     private void readObject(java.io.ObjectInputStream s)
1392         throws IOException, ClassNotFoundException {
1393         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1394         s.defaultReadObject();
1395         reinitialize();
1396         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1397             throw new InvalidObjectException("Illegal load factor: " +
1398                                              loadFactor);
1399         s.readInt();                // Read and ignore number of buckets
1400         int mappings = s.readInt(); // Read number of mappings (size)
1401         if (mappings < 0)
1402             throw new InvalidObjectException("Illegal mappings count: " +
1403                                              mappings);
1404         else if (mappings > 0) { // (if zero, use defaults)
1405             // Size the table using given load factor only if within
1406             // range of 0.25...4.0
1407             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1408             float fc = (float)mappings / lf + 1.0f;
1409             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1410                        DEFAULT_INITIAL_CAPACITY :
1411                        (fc >= MAXIMUM_CAPACITY) ?
1412                        MAXIMUM_CAPACITY :
1413                        tableSizeFor((int)fc));
1414             float ft = (float)cap * lf;
1415             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1416                          (int)ft : Integer.MAX_VALUE);
1417             @SuppressWarnings({"rawtypes","unchecked"})
1418                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1419             table = tab;
1420 
1421             // Read the keys and values, and put the mappings in the HashMap
1422             for (int i = 0; i < mappings; i++) {
1423                 @SuppressWarnings("unchecked")
1424                     K key = (K) s.readObject();
1425                 @SuppressWarnings("unchecked")
1426                     V value = (V) s.readObject();
1427                 putVal(hash(key), key, value, false, false);
1428             }
1429         }
1430     }
1431 
1432     /* ------------------------------------------------------------ */
1433     // iterators
1434 
1435     abstract class HashIterator {
1436         Node<K,V> next;        // next entry to return
1437         Node<K,V> current;     // current entry
1438         int expectedModCount;  // for fast-fail
1439         int index;             // current slot
1440 
1441         HashIterator() {
1442             expectedModCount = modCount;
1443             Node<K,V>[] t = table;
1444             current = next = null;
1445             index = 0;
1446             if (t != null && size > 0) { // advance to first entry
1447                 do {} while (index < t.length && (next = t[index++]) == null);
1448             }
1449         }
1450 
1451         public final boolean hasNext() {
1452             return next != null;
1453         }
1454 
1455         final Node<K,V> nextNode() {
1456             Node<K,V>[] t;
1457             Node<K,V> e = next;
1458             if (modCount != expectedModCount)
1459                 throw new ConcurrentModificationException();
1460             if (e == null)
1461                 throw new NoSuchElementException();
1462             if ((next = (current = e).next) == null && (t = table) != null) {
1463                 do {} while (index < t.length && (next = t[index++]) == null);
1464             }
1465             return e;
1466         }
1467 
1468         public final void remove() {
1469             Node<K,V> p = current;
1470             if (p == null)
1471                 throw new IllegalStateException();
1472             if (modCount != expectedModCount)
1473                 throw new ConcurrentModificationException();
1474             current = null;
1475             K key = p.key;
1476             removeNode(hash(key), key, null, false, false);
1477             expectedModCount = modCount;
1478         }
1479     }
1480 
1481     final class KeyIterator extends HashIterator
1482         implements Iterator<K> {
1483         public final K next() { return nextNode().key; }
1484     }
1485 
1486     final class ValueIterator extends HashIterator
1487         implements Iterator<V> {
1488         public final V next() { return nextNode().value; }
1489     }
1490 
1491     final class EntryIterator extends HashIterator
1492         implements Iterator<Map.Entry<K,V>> {
1493         public final Map.Entry<K,V> next() { return nextNode(); }
1494     }
1495 
1496     /* ------------------------------------------------------------ */
1497     // spliterators
1498 
1499     static class HashMapSpliterator<K,V> {
1500         final HashMap<K,V> map;
1501         Node<K,V> current;          // current node
1502         int index;                  // current index, modified on advance/split
1503         int fence;                  // one past last index
1504         int est;                    // size estimate
1505         int expectedModCount;       // for comodification checks
1506 
1507         HashMapSpliterator(HashMap<K,V> m, int origin,
1508                            int fence, int est,
1509                            int expectedModCount) {
1510             this.map = m;
1511             this.index = origin;
1512             this.fence = fence;
1513             this.est = est;
1514             this.expectedModCount = expectedModCount;
1515         }
1516 
1517         final int getFence() { // initialize fence and size on first use
1518             int hi;
1519             if ((hi = fence) < 0) {
1520                 HashMap<K,V> m = map;
1521                 est = m.size;
1522                 expectedModCount = m.modCount;
1523                 Node<K,V>[] tab = m.table;
1524                 hi = fence = (tab == null) ? 0 : tab.length;
1525             }
1526             return hi;
1527         }
1528 
1529         public final long estimateSize() {
1530             getFence(); // force init
1531             return (long) est;
1532         }
1533     }
1534 
1535     static final class KeySpliterator<K,V>
1536         extends HashMapSpliterator<K,V>
1537         implements Spliterator<K> {
1538         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1539                        int expectedModCount) {
1540             super(m, origin, fence, est, expectedModCount);
1541         }
1542 
1543         public KeySpliterator<K,V> trySplit() {
1544             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1545             return (lo >= mid || current != null) ? null :
1546                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1547                                         expectedModCount);
1548         }
1549 
1550         public void forEachRemaining(Consumer<? super K> action) {
1551             int i, hi, mc;
1552             if (action == null)
1553                 throw new NullPointerException();
1554             HashMap<K,V> m = map;
1555             Node<K,V>[] tab = m.table;
1556             if ((hi = fence) < 0) {
1557                 mc = expectedModCount = m.modCount;
1558                 hi = fence = (tab == null) ? 0 : tab.length;
1559             }
1560             else
1561                 mc = expectedModCount;
1562             if (tab != null && tab.length >= hi &&
1563                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1564                 Node<K,V> p = current;
1565                 current = null;
1566                 do {
1567                     if (p == null)
1568                         p = tab[i++];
1569                     else {
1570                         action.accept(p.key);
1571                         p = p.next;
1572                     }
1573                 } while (p != null || i < hi);
1574                 if (m.modCount != mc)
1575                     throw new ConcurrentModificationException();
1576             }
1577         }
1578 
1579         public boolean tryAdvance(Consumer<? super K> action) {
1580             int hi;
1581             if (action == null)
1582                 throw new NullPointerException();
1583             Node<K,V>[] tab = map.table;
1584             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1585                 while (current != null || index < hi) {
1586                     if (current == null)
1587                         current = tab[index++];
1588                     else {
1589                         K k = current.key;
1590                         current = current.next;
1591                         action.accept(k);
1592                         if (map.modCount != expectedModCount)
1593                             throw new ConcurrentModificationException();
1594                         return true;
1595                     }
1596                 }
1597             }
1598             return false;
1599         }
1600 
1601         public int characteristics() {
1602             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1603                 Spliterator.DISTINCT;
1604         }
1605     }
1606 
1607     static final class ValueSpliterator<K,V>
1608         extends HashMapSpliterator<K,V>
1609         implements Spliterator<V> {
1610         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1611                          int expectedModCount) {
1612             super(m, origin, fence, est, expectedModCount);
1613         }
1614 
1615         public ValueSpliterator<K,V> trySplit() {
1616             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1617             return (lo >= mid || current != null) ? null :
1618                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1619                                           expectedModCount);
1620         }
1621 
1622         public void forEachRemaining(Consumer<? super V> action) {
1623             int i, hi, mc;
1624             if (action == null)
1625                 throw new NullPointerException();
1626             HashMap<K,V> m = map;
1627             Node<K,V>[] tab = m.table;
1628             if ((hi = fence) < 0) {
1629                 mc = expectedModCount = m.modCount;
1630                 hi = fence = (tab == null) ? 0 : tab.length;
1631             }
1632             else
1633                 mc = expectedModCount;
1634             if (tab != null && tab.length >= hi &&
1635                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1636                 Node<K,V> p = current;
1637                 current = null;
1638                 do {
1639                     if (p == null)
1640                         p = tab[i++];
1641                     else {
1642                         action.accept(p.value);
1643                         p = p.next;
1644                     }
1645                 } while (p != null || i < hi);
1646                 if (m.modCount != mc)
1647                     throw new ConcurrentModificationException();
1648             }
1649         }
1650 
1651         public boolean tryAdvance(Consumer<? super V> action) {
1652             int hi;
1653             if (action == null)
1654                 throw new NullPointerException();
1655             Node<K,V>[] tab = map.table;
1656             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1657                 while (current != null || index < hi) {
1658                     if (current == null)
1659                         current = tab[index++];
1660                     else {
1661                         V v = current.value;
1662                         current = current.next;
1663                         action.accept(v);
1664                         if (map.modCount != expectedModCount)
1665                             throw new ConcurrentModificationException();
1666                         return true;
1667                     }
1668                 }
1669             }
1670             return false;
1671         }
1672 
1673         public int characteristics() {
1674             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1675         }
1676     }
1677 
1678     static final class EntrySpliterator<K,V>
1679         extends HashMapSpliterator<K,V>
1680         implements Spliterator<Map.Entry<K,V>> {
1681         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1682                          int expectedModCount) {
1683             super(m, origin, fence, est, expectedModCount);
1684         }
1685 
1686         public EntrySpliterator<K,V> trySplit() {
1687             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1688             return (lo >= mid || current != null) ? null :
1689                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1690                                           expectedModCount);
1691         }
1692 
1693         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1694             int i, hi, mc;
1695             if (action == null)
1696                 throw new NullPointerException();
1697             HashMap<K,V> m = map;
1698             Node<K,V>[] tab = m.table;
1699             if ((hi = fence) < 0) {
1700                 mc = expectedModCount = m.modCount;
1701                 hi = fence = (tab == null) ? 0 : tab.length;
1702             }
1703             else
1704                 mc = expectedModCount;
1705             if (tab != null && tab.length >= hi &&
1706                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1707                 Node<K,V> p = current;
1708                 current = null;
1709                 do {
1710                     if (p == null)
1711                         p = tab[i++];
1712                     else {
1713                         action.accept(p);
1714                         p = p.next;
1715                     }
1716                 } while (p != null || i < hi);
1717                 if (m.modCount != mc)
1718                     throw new ConcurrentModificationException();
1719             }
1720         }
1721 
1722         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1723             int hi;
1724             if (action == null)
1725                 throw new NullPointerException();
1726             Node<K,V>[] tab = map.table;
1727             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1728                 while (current != null || index < hi) {
1729                     if (current == null)
1730                         current = tab[index++];
1731                     else {
1732                         Node<K,V> e = current;
1733                         current = current.next;
1734                         action.accept(e);
1735                         if (map.modCount != expectedModCount)
1736                             throw new ConcurrentModificationException();
1737                         return true;
1738                     }
1739                 }
1740             }
1741             return false;
1742         }
1743 
1744         public int characteristics() {
1745             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1746                 Spliterator.DISTINCT;
1747         }
1748     }
1749 
1750     /* ------------------------------------------------------------ */
1751     // LinkedHashMap support
1752 
1753 
1754     /*
1755      * The following package-protected methods are designed to be
1756      * overridden by LinkedHashMap, but not by any other subclass.
1757      * Nearly all other internal methods are also package-protected
1758      * but are declared final, so can be used by LinkedHashMap, view
1759      * classes, and HashSet.
1760      */
1761 
1762     // Create a regular (non-tree) node
1763     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1764         return new Node<>(hash, key, value, next);
1765     }
1766 
1767     // For conversion from TreeNodes to plain nodes
1768     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1769         return new Node<>(p.hash, p.key, p.value, next);
1770     }
1771 
1772     // Create a tree bin node
1773     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1774         return new TreeNode<>(hash, key, value, next);
1775     }
1776 
1777     // For treeifyBin
1778     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1779         return new TreeNode<>(p.hash, p.key, p.value, next);
1780     }
1781 
1782     /**
1783      * Reset to initial default state.  Called by clone and readObject.
1784      */
1785     void reinitialize() {
1786         table = null;
1787         entrySet = null;
1788         keySet = null;
1789         values = null;
1790         modCount = 0;
1791         threshold = 0;
1792         size = 0;
1793     }
1794 
1795     // Callbacks to allow LinkedHashMap post-actions
1796     void afterNodeAccess(Node<K,V> p) { }
1797     void afterNodeInsertion(boolean evict) { }
1798     void afterNodeRemoval(Node<K,V> p) { }
1799 
1800     // Called only from writeObject, to ensure compatible ordering.
1801     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1802         Node<K,V>[] tab;
1803         if (size > 0 && (tab = table) != null) {
1804             for (Node<K, V> e : tab) {
1805                 for (; e != null; e = e.next) {
1806                     s.writeObject(e.key);
1807                     s.writeObject(e.value);
1808                 }
1809             }
1810         }
1811     }
1812 
1813     /* ------------------------------------------------------------ */
1814     // Tree bins
1815 
1816     /**
1817      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1818      * extends Node) so can be used as extension of either regular or
1819      * linked node.
1820      */
1821     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1822         TreeNode<K,V> parent;  // red-black tree links
1823         TreeNode<K,V> left;
1824         TreeNode<K,V> right;
1825         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1826         boolean red;
1827         TreeNode(int hash, K key, V val, Node<K,V> next) {
1828             super(hash, key, val, next);
1829         }
1830 
1831         /**
1832          * Returns root of tree containing this node.
1833          */
1834         final TreeNode<K,V> root() {
1835             for (TreeNode<K,V> r = this, p;;) {
1836                 if ((p = r.parent) == null)
1837                     return r;
1838                 r = p;
1839             }
1840         }
1841 
1842         /**
1843          * Ensures that the given root is the first node of its bin.
1844          */
1845         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1846             int n;
1847             if (root != null && tab != null && (n = tab.length) > 0) {
1848                 int index = (n - 1) & root.hash;
1849                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1850                 if (root != first) {
1851                     Node<K,V> rn;
1852                     tab[index] = root;
1853                     TreeNode<K,V> rp = root.prev;
1854                     if ((rn = root.next) != null)
1855                         ((TreeNode<K,V>)rn).prev = rp;
1856                     if (rp != null)
1857                         rp.next = rn;
1858                     if (first != null)
1859                         first.prev = root;
1860                     root.next = first;
1861                     root.prev = null;
1862                 }
1863                 assert checkInvariants(root);
1864             }
1865         }
1866 
1867         /**
1868          * Finds the node starting at root p with the given hash and key.
1869          * The kc argument caches comparableClassFor(key) upon first use
1870          * comparing keys.
1871          */
1872         final TreeNode<K,V> find(HashMap<K,V> map, int h, Object k, Class<?> kc) {
1873             TreeNode<K,V> p = this;
1874             do {
1875                 int ph, dir; K pk;
1876                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1877                 if ((ph = p.hash) > h)
1878                     p = pl;
1879                 else if (ph < h)
1880                     p = pr;
1881                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1882                     return p;
1883                 else if (pl == null)
1884                     p = pr;
1885                 else if (pr == null)
1886                     p = pl;
1887                 else if ((kc != null ||
1888                           (kc = map.comparableClassFor(k)) != null) &&
1889                          (dir = compareComparables(kc, k, pk)) != 0)
1890                     p = (dir < 0) ? pl : pr;
1891                 else if ((q = pr.find(map, h, k, kc)) != null)
1892                     return q;
1893                 else
1894                     p = pl;
1895             } while (p != null);
1896             return null;
1897         }
1898 
1899         /**
1900          * Calls find for root node.
1901          */
1902         final TreeNode<K,V> getTreeNode(HashMap<K,V> map, int h, Object k) {
1903             return ((parent != null) ? root() : this).find(map, h, k, null);
1904         }
1905 
1906         /**
1907          * Tie-breaking utility for ordering insertions when equal
1908          * hashCodes and non-comparable. We don't require a total
1909          * order, just a consistent insertion rule to maintain
1910          * equivalence across rebalancings. Tie-breaking further than
1911          * necessary simplifies testing a bit.
1912          */
1913         static int tieBreakOrder(Object a, Object b) {
1914             int d;
1915             if (a == null || b == null ||
1916                 (d = a.getClass().getName().
1917                  compareTo(b.getClass().getName())) == 0)
1918                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1919                      -1 : 1);
1920             return d;
1921         }
1922 
1923         /**
1924          * Forms tree of the nodes linked from this node.
1925          * @return root of tree
1926          */
1927         final void treeify(HashMap<K,V> map, Node<K,V>[] tab) {
1928             TreeNode<K,V> root = null;
1929             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1930                 next = (TreeNode<K,V>)x.next;
1931                 x.left = x.right = null;
1932                 if (root == null) {
1933                     x.parent = null;
1934                     x.red = false;
1935                     root = x;
1936                 }
1937                 else {
1938                     K k = x.key;
1939                     int h = x.hash;
1940                     Class<?> kc = null;
1941                     for (TreeNode<K,V> p = root;;) {
1942                         int dir, ph;
1943                         K pk = p.key;
1944                         if ((ph = p.hash) > h)
1945                             dir = -1;
1946                         else if (ph < h)
1947                             dir = 1;
1948                         else if ((kc == null &&
1949                                   (kc = map.comparableClassFor(k)) == null) ||
1950                                  (dir = compareComparables(kc, k, pk)) == 0)
1951                             dir = tieBreakOrder(k, pk);
1952 
1953                         TreeNode<K,V> xp = p;
1954                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1955                             x.parent = xp;
1956                             if (dir <= 0)
1957                                 xp.left = x;
1958                             else
1959                                 xp.right = x;
1960                             root = balanceInsertion(root, x);
1961                             break;
1962                         }
1963                     }
1964                 }
1965             }
1966             moveRootToFront(tab, root);
1967         }
1968 
1969         /**
1970          * Returns a list of non-TreeNodes replacing those linked from
1971          * this node.
1972          */
1973         final Node<K,V> untreeify(HashMap<K,V> map) {
1974             Node<K,V> hd = null, tl = null;
1975             for (Node<K,V> q = this; q != null; q = q.next) {
1976                 Node<K,V> p = map.replacementNode(q, null);
1977                 if (tl == null)
1978                     hd = p;
1979                 else
1980                     tl.next = p;
1981                 tl = p;
1982             }
1983             return hd;
1984         }
1985 
1986         /**
1987          * Tree version of putVal.
1988          */
1989         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
1990                                        int h, K k, V v) {
1991             Class<?> kc = null;
1992             boolean searched = false;
1993             TreeNode<K,V> root = (parent != null) ? root() : this;
1994             for (TreeNode<K,V> p = root;;) {
1995                 int dir, ph; K pk;
1996                 if ((ph = p.hash) > h)
1997                     dir = -1;
1998                 else if (ph < h)
1999                     dir = 1;
2000                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
2001                     return p;
2002                 else if ((kc == null &&
2003                           (kc = map.comparableClassFor(k)) == null) ||
2004                          (dir = compareComparables(kc, k, pk)) == 0) {
2005                     if (!searched) {
2006                         TreeNode<K,V> q, ch;
2007                         searched = true;
2008                         if (((ch = p.left) != null &&
2009                              (q = ch.find(map, h, k, kc)) != null) ||
2010                             ((ch = p.right) != null &&
2011                              (q = ch.find(map, h, k, kc)) != null))
2012                             return q;
2013                     }
2014                     dir = tieBreakOrder(k, pk);
2015                 }
2016 
2017                 TreeNode<K,V> xp = p;
2018                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
2019                     Node<K,V> xpn = xp.next;
2020                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
2021                     if (dir <= 0)
2022                         xp.left = x;
2023                     else
2024                         xp.right = x;
2025                     xp.next = x;
2026                     x.parent = x.prev = xp;
2027                     if (xpn != null)
2028                         ((TreeNode<K,V>)xpn).prev = x;
2029                     moveRootToFront(tab, balanceInsertion(root, x));
2030                     return null;
2031                 }
2032             }
2033         }
2034 
2035         /**
2036          * Removes the given node, that must be present before this call.
2037          * This is messier than typical red-black deletion code because we
2038          * cannot swap the contents of an interior node with a leaf
2039          * successor that is pinned by "next" pointers that are accessible
2040          * independently during traversal. So instead we swap the tree
2041          * linkages. If the current tree appears to have too few nodes,
2042          * the bin is converted back to a plain bin. (The test triggers
2043          * somewhere between 2 and 6 nodes, depending on tree structure).
2044          */
2045         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2046                                   boolean movable) {
2047             int n;
2048             if (tab == null || (n = tab.length) == 0)
2049                 return;
2050             int index = (n - 1) & hash;
2051             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2052             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2053             if (pred == null)
2054                 tab[index] = first = succ;
2055             else
2056                 pred.next = succ;
2057             if (succ != null)
2058                 succ.prev = pred;
2059             if (first == null)
2060                 return;
2061             if (root.parent != null)
2062                 root = root.root();
2063             if (root == null || root.right == null ||
2064                 (rl = root.left) == null || rl.left == null) {
2065                 tab[index] = first.untreeify(map);  // too small
2066                 return;
2067             }
2068             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2069             if (pl != null && pr != null) {
2070                 TreeNode<K,V> s = pr, sl;
2071                 while ((sl = s.left) != null) // find successor
2072                     s = sl;
2073                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2074                 TreeNode<K,V> sr = s.right;
2075                 TreeNode<K,V> pp = p.parent;
2076                 if (s == pr) { // p was s's direct parent
2077                     p.parent = s;
2078                     s.right = p;
2079                 }
2080                 else {
2081                     TreeNode<K,V> sp = s.parent;
2082                     if ((p.parent = sp) != null) {
2083                         if (s == sp.left)
2084                             sp.left = p;
2085                         else
2086                             sp.right = p;
2087                     }
2088                     if ((s.right = pr) != null)
2089                         pr.parent = s;
2090                 }
2091                 p.left = null;
2092                 if ((p.right = sr) != null)
2093                     sr.parent = p;
2094                 if ((s.left = pl) != null)
2095                     pl.parent = s;
2096                 if ((s.parent = pp) == null)
2097                     root = s;
2098                 else if (p == pp.left)
2099                     pp.left = s;
2100                 else
2101                     pp.right = s;
2102                 if (sr != null)
2103                     replacement = sr;
2104                 else
2105                     replacement = p;
2106             }
2107             else if (pl != null)
2108                 replacement = pl;
2109             else if (pr != null)
2110                 replacement = pr;
2111             else
2112                 replacement = p;
2113             if (replacement != p) {
2114                 TreeNode<K,V> pp = replacement.parent = p.parent;
2115                 if (pp == null)
2116                     root = replacement;
2117                 else if (p == pp.left)
2118                     pp.left = replacement;
2119                 else
2120                     pp.right = replacement;
2121                 p.left = p.right = p.parent = null;
2122             }
2123 
2124             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2125 
2126             if (replacement == p) {  // detach
2127                 TreeNode<K,V> pp = p.parent;
2128                 p.parent = null;
2129                 if (pp != null) {
2130                     if (p == pp.left)
2131                         pp.left = null;
2132                     else if (p == pp.right)
2133                         pp.right = null;
2134                 }
2135             }
2136             if (movable)
2137                 moveRootToFront(tab, r);
2138         }
2139 
2140         /**
2141          * Splits nodes in a tree bin into lower and upper tree bins,
2142          * or untreeifies if now too small. Called only from resize;
2143          * see above discussion about split bits and indices.
2144          *
2145          * @param map the map
2146          * @param tab the table for recording bin heads
2147          * @param index the index of the table being split
2148          * @param bit the bit of hash to split on
2149          */
2150         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2151             TreeNode<K,V> b = this;
2152             // Relink into lo and hi lists, preserving order
2153             TreeNode<K,V> loHead = null, loTail = null;
2154             TreeNode<K,V> hiHead = null, hiTail = null;
2155             int lc = 0, hc = 0;
2156             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2157                 next = (TreeNode<K,V>)e.next;
2158                 e.next = null;
2159                 if ((e.hash & bit) == 0) {
2160                     if ((e.prev = loTail) == null)
2161                         loHead = e;
2162                     else
2163                         loTail.next = e;
2164                     loTail = e;
2165                     ++lc;
2166                 }
2167                 else {
2168                     if ((e.prev = hiTail) == null)
2169                         hiHead = e;
2170                     else
2171                         hiTail.next = e;
2172                     hiTail = e;
2173                     ++hc;
2174                 }
2175             }
2176 
2177             if (loHead != null) {
2178                 if (lc <= UNTREEIFY_THRESHOLD)
2179                     tab[index] = loHead.untreeify(map);
2180                 else {
2181                     tab[index] = loHead;
2182                     if (hiHead != null) // (else is already treeified)
2183                         loHead.treeify(map, tab);
2184                 }
2185             }
2186             if (hiHead != null) {
2187                 if (hc <= UNTREEIFY_THRESHOLD)
2188                     tab[index + bit] = hiHead.untreeify(map);
2189                 else {
2190                     tab[index + bit] = hiHead;
2191                     if (loHead != null)
2192                         hiHead.treeify(map, tab);
2193                 }
2194             }
2195         }
2196 
2197         /* ------------------------------------------------------------ */
2198         // Red-black tree methods, all adapted from CLR
2199 
2200         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2201                                               TreeNode<K,V> p) {
2202             TreeNode<K,V> r, pp, rl;
2203             if (p != null && (r = p.right) != null) {
2204                 if ((rl = p.right = r.left) != null)
2205                     rl.parent = p;
2206                 if ((pp = r.parent = p.parent) == null)
2207                     (root = r).red = false;
2208                 else if (pp.left == p)
2209                     pp.left = r;
2210                 else
2211                     pp.right = r;
2212                 r.left = p;
2213                 p.parent = r;
2214             }
2215             return root;
2216         }
2217 
2218         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2219                                                TreeNode<K,V> p) {
2220             TreeNode<K,V> l, pp, lr;
2221             if (p != null && (l = p.left) != null) {
2222                 if ((lr = p.left = l.right) != null)
2223                     lr.parent = p;
2224                 if ((pp = l.parent = p.parent) == null)
2225                     (root = l).red = false;
2226                 else if (pp.right == p)
2227                     pp.right = l;
2228                 else
2229                     pp.left = l;
2230                 l.right = p;
2231                 p.parent = l;
2232             }
2233             return root;
2234         }
2235 
2236         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2237                                                     TreeNode<K,V> x) {
2238             x.red = true;
2239             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2240                 if ((xp = x.parent) == null) {
2241                     x.red = false;
2242                     return x;
2243                 }
2244                 else if (!xp.red || (xpp = xp.parent) == null)
2245                     return root;
2246                 if (xp == (xppl = xpp.left)) {
2247                     if ((xppr = xpp.right) != null && xppr.red) {
2248                         xppr.red = false;
2249                         xp.red = false;
2250                         xpp.red = true;
2251                         x = xpp;
2252                     }
2253                     else {
2254                         if (x == xp.right) {
2255                             root = rotateLeft(root, x = xp);
2256                             xpp = (xp = x.parent) == null ? null : xp.parent;
2257                         }
2258                         if (xp != null) {
2259                             xp.red = false;
2260                             if (xpp != null) {
2261                                 xpp.red = true;
2262                                 root = rotateRight(root, xpp);
2263                             }
2264                         }
2265                     }
2266                 }
2267                 else {
2268                     if (xppl != null && xppl.red) {
2269                         xppl.red = false;
2270                         xp.red = false;
2271                         xpp.red = true;
2272                         x = xpp;
2273                     }
2274                     else {
2275                         if (x == xp.left) {
2276                             root = rotateRight(root, x = xp);
2277                             xpp = (xp = x.parent) == null ? null : xp.parent;
2278                         }
2279                         if (xp != null) {
2280                             xp.red = false;
2281                             if (xpp != null) {
2282                                 xpp.red = true;
2283                                 root = rotateLeft(root, xpp);
2284                             }
2285                         }
2286                     }
2287                 }
2288             }
2289         }
2290 
2291         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2292                                                    TreeNode<K,V> x) {
2293             for (TreeNode<K,V> xp, xpl, xpr;;)  {
2294                 if (x == null || x == root)
2295                     return root;
2296                 else if ((xp = x.parent) == null) {
2297                     x.red = false;
2298                     return x;
2299                 }
2300                 else if (x.red) {
2301                     x.red = false;
2302                     return root;
2303                 }
2304                 else if ((xpl = xp.left) == x) {
2305                     if ((xpr = xp.right) != null && xpr.red) {
2306                         xpr.red = false;
2307                         xp.red = true;
2308                         root = rotateLeft(root, xp);
2309                         xpr = (xp = x.parent) == null ? null : xp.right;
2310                     }
2311                     if (xpr == null)
2312                         x = xp;
2313                     else {
2314                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2315                         if ((sr == null || !sr.red) &&
2316                             (sl == null || !sl.red)) {
2317                             xpr.red = true;
2318                             x = xp;
2319                         }
2320                         else {
2321                             if (sr == null || !sr.red) {
2322                                 if (sl != null)
2323                                     sl.red = false;
2324                                 xpr.red = true;
2325                                 root = rotateRight(root, xpr);
2326                                 xpr = (xp = x.parent) == null ?
2327                                     null : xp.right;
2328                             }
2329                             if (xpr != null) {
2330                                 xpr.red = (xp == null) ? false : xp.red;
2331                                 if ((sr = xpr.right) != null)
2332                                     sr.red = false;
2333                             }
2334                             if (xp != null) {
2335                                 xp.red = false;
2336                                 root = rotateLeft(root, xp);
2337                             }
2338                             x = root;
2339                         }
2340                     }
2341                 }
2342                 else { // symmetric
2343                     if (xpl != null && xpl.red) {
2344                         xpl.red = false;
2345                         xp.red = true;
2346                         root = rotateRight(root, xp);
2347                         xpl = (xp = x.parent) == null ? null : xp.left;
2348                     }
2349                     if (xpl == null)
2350                         x = xp;
2351                     else {
2352                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2353                         if ((sl == null || !sl.red) &&
2354                             (sr == null || !sr.red)) {
2355                             xpl.red = true;
2356                             x = xp;
2357                         }
2358                         else {
2359                             if (sl == null || !sl.red) {
2360                                 if (sr != null)
2361                                     sr.red = false;
2362                                 xpl.red = true;
2363                                 root = rotateLeft(root, xpl);
2364                                 xpl = (xp = x.parent) == null ?
2365                                     null : xp.left;
2366                             }
2367                             if (xpl != null) {
2368                                 xpl.red = (xp == null) ? false : xp.red;
2369                                 if ((sl = xpl.left) != null)
2370                                     sl.red = false;
2371                             }
2372                             if (xp != null) {
2373                                 xp.red = false;
2374                                 root = rotateRight(root, xp);
2375                             }
2376                             x = root;
2377                         }
2378                     }
2379                 }
2380             }
2381         }
2382 
2383         /**
2384          * Recursive invariant check
2385          */
2386         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2387             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2388                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2389             if (tb != null && tb.next != t)
2390                 return false;
2391             if (tn != null && tn.prev != t)
2392                 return false;
2393             if (tp != null && t != tp.left && t != tp.right)
2394                 return false;
2395             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2396                 return false;
2397             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2398                 return false;
2399             if (t.red && tl != null && tl.red && tr != null && tr.red)
2400                 return false;
2401             if (tl != null && !checkInvariants(tl))
2402                 return false;
2403             if (tr != null && !checkInvariants(tr))
2404                 return false;
2405             return true;
2406         }
2407     }
2408 
2409 }