1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Doug Lea with assistance from members of JCP JSR-166
  32  * Expert Group and released to the public domain, as explained at
  33  * http://creativecommons.org/publicdomain/zero/1.0/
  34  */
  35 
  36 package java.util.concurrent;
  37 
  38 import java.io.ObjectStreamField;
  39 import java.net.NetworkInterface;
  40 import java.util.Enumeration;
  41 import java.util.Random;
  42 import java.util.Spliterator;
  43 import java.util.concurrent.atomic.AtomicInteger;
  44 import java.util.concurrent.atomic.AtomicLong;
  45 import java.util.function.DoubleConsumer;
  46 import java.util.function.IntConsumer;
  47 import java.util.function.LongConsumer;
  48 import java.util.stream.DoubleStream;
  49 import java.util.stream.IntStream;
  50 import java.util.stream.LongStream;
  51 import java.util.stream.StreamSupport;
  52 
  53 /**
  54  * A random number generator isolated to the current thread.  Like the
  55  * global {@link java.util.Random} generator used by the {@link
  56  * java.lang.Math} class, a {@code ThreadLocalRandom} is initialized
  57  * with an internally generated seed that may not otherwise be
  58  * modified. When applicable, use of {@code ThreadLocalRandom} rather
  59  * than shared {@code Random} objects in concurrent programs will
  60  * typically encounter much less overhead and contention.  Use of
  61  * {@code ThreadLocalRandom} is particularly appropriate when multiple
  62  * tasks (for example, each a {@link ForkJoinTask}) use random numbers
  63  * in parallel in thread pools.
  64  *
  65  * <p>Usages of this class should typically be of the form:
  66  * {@code ThreadLocalRandom.current().nextX(...)} (where
  67  * {@code X} is {@code Int}, {@code Long}, etc).
  68  * When all usages are of this form, it is never possible to
  69  * accidently share a {@code ThreadLocalRandom} across multiple threads.
  70  *
  71  * <p>This class also provides additional commonly used bounded random
  72  * generation methods.
  73  *
  74  * <p>Instances of {@code ThreadLocalRandom} are not cryptographically
  75  * secure.  Consider instead using {@link java.security.SecureRandom}
  76  * in security-sensitive applications. Additionally,
  77  * default-constructed instances do not use a cryptographically random
  78  * seed unless the {@linkplain System#getProperty system property}
  79  * {@code java.util.secureRandomSeed} is set to {@code true}.
  80  *
  81  * @since 1.7
  82  * @author Doug Lea
  83  */
  84 public class ThreadLocalRandom extends Random {
  85     /*
  86      * This class implements the java.util.Random API (and subclasses
  87      * Random) using a single static instance that accesses random
  88      * number state held in class Thread (primarily, field
  89      * threadLocalRandomSeed). In doing so, it also provides a home
  90      * for managing package-private utilities that rely on exactly the
  91      * same state as needed to maintain the ThreadLocalRandom
  92      * instances. We leverage the need for an initialization flag
  93      * field to also use it as a "probe" -- a self-adjusting thread
  94      * hash used for contention avoidance, as well as a secondary
  95      * simpler (xorShift) random seed that is conservatively used to
  96      * avoid otherwise surprising users by hijacking the
  97      * ThreadLocalRandom sequence.  The dual use is a marriage of
  98      * convenience, but is a simple and efficient way of reducing
  99      * application-level overhead and footprint of most concurrent
 100      * programs.
 101      *
 102      * Even though this class subclasses java.util.Random, it uses the
 103      * same basic algorithm as java.util.SplittableRandom.  (See its
 104      * internal documentation for explanations, which are not repeated
 105      * here.)  Because ThreadLocalRandoms are not splittable
 106      * though, we use only a single 64bit gamma.
 107      *
 108      * Because this class is in a different package than class Thread,
 109      * field access methods use Unsafe to bypass access control rules.
 110      * To conform to the requirements of the Random superclass
 111      * constructor, the common static ThreadLocalRandom maintains an
 112      * "initialized" field for the sake of rejecting user calls to
 113      * setSeed while still allowing a call from constructor.  Note
 114      * that serialization is completely unnecessary because there is
 115      * only a static singleton.  But we generate a serial form
 116      * containing "rnd" and "initialized" fields to ensure
 117      * compatibility across versions.
 118      *
 119      * Implementations of non-core methods are mostly the same as in
 120      * SplittableRandom, that were in part derived from a previous
 121      * version of this class.
 122      *
 123      * The nextLocalGaussian ThreadLocal supports the very rarely used
 124      * nextGaussian method by providing a holder for the second of a
 125      * pair of them. As is true for the base class version of this
 126      * method, this time/space tradeoff is probably never worthwhile,
 127      * but we provide identical statistical properties.
 128      */
 129 
 130     /** Generates per-thread initialization/probe field */
 131     private static final AtomicInteger probeGenerator =
 132         new AtomicInteger();
 133 
 134     /**
 135      * The next seed for default constructors.
 136      */
 137     private static final AtomicLong seeder = new AtomicLong(initialSeed());
 138 
 139     private static long initialSeed() {
 140         String pp = java.security.AccessController.doPrivileged(
 141                 new sun.security.action.GetPropertyAction(
 142                         "java.util.secureRandomSeed"));
 143         if (pp != null && pp.equalsIgnoreCase("true")) {
 144             byte[] seedBytes = java.security.SecureRandom.getSeed(8);
 145             long s = (long)(seedBytes[0]) & 0xffL;
 146             for (int i = 1; i < 8; ++i)
 147                 s = (s << 8) | ((long)(seedBytes[i]) & 0xffL);
 148             return s;
 149         }
 150         long h = 0L;
 151         try {
 152             Enumeration<NetworkInterface> ifcs =
 153                     NetworkInterface.getNetworkInterfaces();
 154             boolean retry = false; // retry once if getHardwareAddress is null
 155             while (ifcs.hasMoreElements()) {
 156                 NetworkInterface ifc = ifcs.nextElement();
 157                 if (!ifc.isVirtual()) { // skip fake addresses
 158                     byte[] bs = ifc.getHardwareAddress();
 159                     if (bs != null) {
 160                         int n = bs.length;
 161                         int m = Math.min(n >>> 1, 4);
 162                         for (int i = 0; i < m; ++i)
 163                             h = (h << 16) ^ (bs[i] << 8) ^ bs[n-1-i];
 164                         if (m < 4)
 165                             h = (h << 8) ^ bs[n-1-m];
 166                         h = mix64(h);
 167                         break;
 168                     }
 169                     else if (!retry)
 170                         retry = true;
 171                     else
 172                         break;
 173                 }
 174             }
 175         } catch (Exception ignore) {
 176         }
 177         return (h ^ mix64(System.currentTimeMillis()) ^
 178                 mix64(System.nanoTime()));
 179     }
 180 
 181     /**
 182      * The seed increment
 183      */
 184     private static final long GAMMA = 0x9e3779b97f4a7c15L;
 185 
 186     /**
 187      * The increment for generating probe values
 188      */
 189     private static final int PROBE_INCREMENT = 0x9e3779b9;
 190 
 191     /**
 192      * The increment of seeder per new instance
 193      */
 194     private static final long SEEDER_INCREMENT = 0xbb67ae8584caa73bL;
 195 
 196     // Constants from SplittableRandom
 197     private static final double DOUBLE_UNIT = 0x1.0p-53;  // 1.0  / (1L << 53)
 198     private static final float  FLOAT_UNIT  = 0x1.0p-24f; // 1.0f / (1 << 24)
 199 
 200     /** Rarely-used holder for the second of a pair of Gaussians */
 201     private static final ThreadLocal<Double> nextLocalGaussian =
 202         new ThreadLocal<Double>();
 203 
 204     private static long mix64(long z) {
 205         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
 206         z = (z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L;
 207         return z ^ (z >>> 33);
 208     }
 209 
 210     private static int mix32(long z) {
 211         z = (z ^ (z >>> 33)) * 0xff51afd7ed558ccdL;
 212         return (int)(((z ^ (z >>> 33)) * 0xc4ceb9fe1a85ec53L) >>> 32);
 213     }
 214 
 215     /**
 216      * Field used only during singleton initialization.
 217      * True when constructor completes.
 218      */
 219     boolean initialized;
 220 
 221     /** Constructor used only for static singleton */
 222     private ThreadLocalRandom() {
 223         initialized = true; // false during super() call
 224     }
 225 
 226     /** The common ThreadLocalRandom */
 227     static final ThreadLocalRandom instance = new ThreadLocalRandom();
 228 
 229     /**
 230      * Initialize Thread fields for the current thread.  Called only
 231      * when Thread.threadLocalRandomProbe is zero, indicating that a
 232      * thread local seed value needs to be generated. Note that even
 233      * though the initialization is purely thread-local, we need to
 234      * rely on (static) atomic generators to initialize the values.
 235      */
 236     static final void localInit() {
 237         int p = probeGenerator.addAndGet(PROBE_INCREMENT);
 238         int probe = (p == 0) ? 1 : p; // skip 0
 239         long seed = mix64(seeder.getAndAdd(SEEDER_INCREMENT));
 240         Thread t = Thread.currentThread();
 241         UNSAFE.putLong(t, SEED, seed);
 242         UNSAFE.putInt(t, PROBE, probe);
 243     }
 244 
 245     /**
 246      * Returns the current thread's {@code ThreadLocalRandom}.
 247      *
 248      * @return the current thread's {@code ThreadLocalRandom}
 249      */
 250     public static ThreadLocalRandom current() {
 251         if (UNSAFE.getInt(Thread.currentThread(), PROBE) == 0)
 252             localInit();
 253         return instance;
 254     }
 255 
 256     /**
 257      * Throws {@code UnsupportedOperationException}.  Setting seeds in
 258      * this generator is not supported.
 259      *
 260      * @throws UnsupportedOperationException always
 261      */
 262     public void setSeed(long seed) {
 263         // only allow call from super() constructor
 264         if (initialized)
 265             throw new UnsupportedOperationException();
 266     }
 267 
 268     final long nextSeed() {
 269         Thread t; long r; // read and update per-thread seed
 270         UNSAFE.putLong(t = Thread.currentThread(), SEED,
 271                        r = UNSAFE.getLong(t, SEED) + GAMMA);
 272         return r;
 273     }
 274 
 275     // We must define this, but never use it.
 276     protected int next(int bits) {
 277         return (int)(mix64(nextSeed()) >>> (64 - bits));
 278     }
 279 
 280     // IllegalArgumentException messages
 281     static final String BadBound = "bound must be positive";
 282     static final String BadRange = "bound must be greater than origin";
 283     static final String BadSize  = "size must be non-negative";
 284 
 285     /**
 286      * The form of nextLong used by LongStream Spliterators.  If
 287      * origin is greater than bound, acts as unbounded form of
 288      * nextLong, else as bounded form.
 289      *
 290      * @param origin the least value, unless greater than bound
 291      * @param bound the upper bound (exclusive), must not equal origin
 292      * @return a pseudorandom value
 293      */
 294     final long internalNextLong(long origin, long bound) {
 295         long r = mix64(nextSeed());
 296         if (origin < bound) {
 297             long n = bound - origin, m = n - 1;
 298             if ((n & m) == 0L)  // power of two
 299                 r = (r & m) + origin;
 300             else if (n > 0L) {  // reject over-represented candidates
 301                 for (long u = r >>> 1;            // ensure nonnegative
 302                      u + m - (r = u % n) < 0L;    // rejection check
 303                      u = mix64(nextSeed()) >>> 1) // retry
 304                     ;
 305                 r += origin;
 306             }
 307             else {              // range not representable as long
 308                 while (r < origin || r >= bound)
 309                     r = mix64(nextSeed());
 310             }
 311         }
 312         return r;
 313     }
 314 
 315     /**
 316      * The form of nextInt used by IntStream Spliterators.
 317      * Exactly the same as long version, except for types.
 318      *
 319      * @param origin the least value, unless greater than bound
 320      * @param bound the upper bound (exclusive), must not equal origin
 321      * @return a pseudorandom value
 322      */
 323     final int internalNextInt(int origin, int bound) {
 324         int r = mix32(nextSeed());
 325         if (origin < bound) {
 326             int n = bound - origin, m = n - 1;
 327             if ((n & m) == 0)
 328                 r = (r & m) + origin;
 329             else if (n > 0) {
 330                 for (int u = r >>> 1;
 331                      u + m - (r = u % n) < 0;
 332                      u = mix32(nextSeed()) >>> 1)
 333                     ;
 334                 r += origin;
 335             }
 336             else {
 337                 while (r < origin || r >= bound)
 338                     r = mix32(nextSeed());
 339             }
 340         }
 341         return r;
 342     }
 343 
 344     /**
 345      * The form of nextDouble used by DoubleStream Spliterators.
 346      *
 347      * @param origin the least value, unless greater than bound
 348      * @param bound the upper bound (exclusive), must not equal origin
 349      * @return a pseudorandom value
 350      */
 351     final double internalNextDouble(double origin, double bound) {
 352         double r = (nextLong() >>> 11) * DOUBLE_UNIT;
 353         if (origin < bound) {
 354             r = r * (bound - origin) + origin;
 355             if (r >= bound) // correct for rounding
 356                 r = Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
 357         }
 358         return r;
 359     }
 360 
 361     /**
 362      * Returns a pseudorandom {@code int} value.
 363      *
 364      * @return a pseudorandom {@code int} value
 365      */
 366     public int nextInt() {
 367         return mix32(nextSeed());
 368     }
 369 
 370     /**
 371      * Returns a pseudorandom {@code int} value between zero (inclusive)
 372      * and the specified bound (exclusive).
 373      *
 374      * @param bound the upper bound (exclusive).  Must be positive.
 375      * @return a pseudorandom {@code int} value between zero
 376      *         (inclusive) and the bound (exclusive)
 377      * @throws IllegalArgumentException if {@code bound} is not positive
 378      */
 379     public int nextInt(int bound) {
 380         if (bound <= 0)
 381             throw new IllegalArgumentException(BadBound);
 382         int r = mix32(nextSeed());
 383         int m = bound - 1;
 384         if ((bound & m) == 0) // power of two
 385             r &= m;
 386         else { // reject over-represented candidates
 387             for (int u = r >>> 1;
 388                  u + m - (r = u % bound) < 0;
 389                  u = mix32(nextSeed()) >>> 1)
 390                 ;
 391         }
 392         return r;
 393     }
 394 
 395     /**
 396      * Returns a pseudorandom {@code int} value between the specified
 397      * origin (inclusive) and the specified bound (exclusive).
 398      *
 399      * @param origin the least value returned
 400      * @param bound the upper bound (exclusive)
 401      * @return a pseudorandom {@code int} value between the origin
 402      *         (inclusive) and the bound (exclusive)
 403      * @throws IllegalArgumentException if {@code origin} is greater than
 404      *         or equal to {@code bound}
 405      */
 406     public int nextInt(int origin, int bound) {
 407         if (origin >= bound)
 408             throw new IllegalArgumentException(BadRange);
 409         return internalNextInt(origin, bound);
 410     }
 411 
 412     /**
 413      * Returns a pseudorandom {@code long} value.
 414      *
 415      * @return a pseudorandom {@code long} value
 416      */
 417     public long nextLong() {
 418         return mix64(nextSeed());
 419     }
 420 
 421     /**
 422      * Returns a pseudorandom {@code long} value between zero (inclusive)
 423      * and the specified bound (exclusive).
 424      *
 425      * @param bound the upper bound (exclusive).  Must be positive.
 426      * @return a pseudorandom {@code long} value between zero
 427      *         (inclusive) and the bound (exclusive)
 428      * @throws IllegalArgumentException if {@code bound} is not positive
 429      */
 430     public long nextLong(long bound) {
 431         if (bound <= 0)
 432             throw new IllegalArgumentException(BadBound);
 433         long r = mix64(nextSeed());
 434         long m = bound - 1;
 435         if ((bound & m) == 0L) // power of two
 436             r &= m;
 437         else { // reject over-represented candidates
 438             for (long u = r >>> 1;
 439                  u + m - (r = u % bound) < 0L;
 440                  u = mix64(nextSeed()) >>> 1)
 441                 ;
 442         }
 443         return r;
 444     }
 445 
 446     /**
 447      * Returns a pseudorandom {@code long} value between the specified
 448      * origin (inclusive) and the specified bound (exclusive).
 449      *
 450      * @param origin the least value returned
 451      * @param bound the upper bound (exclusive)
 452      * @return a pseudorandom {@code long} value between the origin
 453      *         (inclusive) and the bound (exclusive)
 454      * @throws IllegalArgumentException if {@code origin} is greater than
 455      *         or equal to {@code bound}
 456      */
 457     public long nextLong(long origin, long bound) {
 458         if (origin >= bound)
 459             throw new IllegalArgumentException(BadRange);
 460         return internalNextLong(origin, bound);
 461     }
 462 
 463     /**
 464      * Returns a pseudorandom {@code double} value between zero
 465      * (inclusive) and one (exclusive).
 466      *
 467      * @return a pseudorandom {@code double} value between zero
 468      *         (inclusive) and one (exclusive)
 469      */
 470     public double nextDouble() {
 471         return (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT;
 472     }
 473 
 474     /**
 475      * Returns a pseudorandom {@code double} value between 0.0
 476      * (inclusive) and the specified bound (exclusive).
 477      *
 478      * @param bound the upper bound (exclusive).  Must be positive.
 479      * @return a pseudorandom {@code double} value between zero
 480      *         (inclusive) and the bound (exclusive)
 481      * @throws IllegalArgumentException if {@code bound} is not positive
 482      */
 483     public double nextDouble(double bound) {
 484         if (!(bound > 0.0))
 485             throw new IllegalArgumentException(BadBound);
 486         double result = (mix64(nextSeed()) >>> 11) * DOUBLE_UNIT * bound;
 487         return (result < bound) ?  result : // correct for rounding
 488             Double.longBitsToDouble(Double.doubleToLongBits(bound) - 1);
 489     }
 490 
 491     /**
 492      * Returns a pseudorandom {@code double} value between the specified
 493      * origin (inclusive) and bound (exclusive).
 494      *
 495      * @param origin the least value returned
 496      * @param bound the upper bound (exclusive)
 497      * @return a pseudorandom {@code double} value between the origin
 498      *         (inclusive) and the bound (exclusive)
 499      * @throws IllegalArgumentException if {@code origin} is greater than
 500      *         or equal to {@code bound}
 501      */
 502     public double nextDouble(double origin, double bound) {
 503         if (!(origin < bound))
 504             throw new IllegalArgumentException(BadRange);
 505         return internalNextDouble(origin, bound);
 506     }
 507 
 508     /**
 509      * Returns a pseudorandom {@code boolean} value.
 510      *
 511      * @return a pseudorandom {@code boolean} value
 512      */
 513     public boolean nextBoolean() {
 514         return mix32(nextSeed()) < 0;
 515     }
 516 
 517     /**
 518      * Returns a pseudorandom {@code float} value between zero
 519      * (inclusive) and one (exclusive).
 520      *
 521      * @return a pseudorandom {@code float} value between zero
 522      *         (inclusive) and one (exclusive)
 523      */
 524     public float nextFloat() {
 525         return (mix32(nextSeed()) >>> 8) * FLOAT_UNIT;
 526     }
 527 
 528     public double nextGaussian() {
 529         // Use nextLocalGaussian instead of nextGaussian field
 530         Double d = nextLocalGaussian.get();
 531         if (d != null) {
 532             nextLocalGaussian.set(null);
 533             return d.doubleValue();
 534         }
 535         double v1, v2, s;
 536         do {
 537             v1 = 2 * nextDouble() - 1; // between -1 and 1
 538             v2 = 2 * nextDouble() - 1; // between -1 and 1
 539             s = v1 * v1 + v2 * v2;
 540         } while (s >= 1 || s == 0);
 541         double multiplier = StrictMath.sqrt(-2 * StrictMath.log(s)/s);
 542         nextLocalGaussian.set(new Double(v2 * multiplier));
 543         return v1 * multiplier;
 544     }
 545 
 546     // stream methods, coded in a way intended to better isolate for
 547     // maintenance purposes the small differences across forms.
 548 
 549     /**
 550      * Returns a stream producing the given {@code streamSize} number of
 551      * pseudorandom {@code int} values.
 552      *
 553      * @param streamSize the number of values to generate
 554      * @return a stream of pseudorandom {@code int} values
 555      * @throws IllegalArgumentException if {@code streamSize} is
 556      *         less than zero
 557      * @since 1.8
 558      */
 559     public IntStream ints(long streamSize) {
 560         if (streamSize < 0L)
 561             throw new IllegalArgumentException(BadSize);
 562         return StreamSupport.intStream
 563             (new RandomIntsSpliterator
 564              (0L, streamSize, Integer.MAX_VALUE, 0),
 565              false);
 566     }
 567 
 568     /**
 569      * Returns an effectively unlimited stream of pseudorandom {@code int}
 570      * values.
 571      *
 572      * @implNote This method is implemented to be equivalent to {@code
 573      * ints(Long.MAX_VALUE)}.
 574      *
 575      * @return a stream of pseudorandom {@code int} values
 576      * @since 1.8
 577      */
 578     public IntStream ints() {
 579         return StreamSupport.intStream
 580             (new RandomIntsSpliterator
 581              (0L, Long.MAX_VALUE, Integer.MAX_VALUE, 0),
 582              false);
 583     }
 584 
 585     /**
 586      * Returns a stream producing the given {@code streamSize} number
 587      * of pseudorandom {@code int} values, each conforming to the given
 588      * origin (inclusive) and bound (exclusive).
 589      *
 590      * @param streamSize the number of values to generate
 591      * @param randomNumberOrigin the origin (inclusive) of each random value
 592      * @param randomNumberBound the bound (exclusive) of each random value
 593      * @return a stream of pseudorandom {@code int} values,
 594      *         each with the given origin (inclusive) and bound (exclusive)
 595      * @throws IllegalArgumentException if {@code streamSize} is
 596      *         less than zero, or {@code randomNumberOrigin}
 597      *         is greater than or equal to {@code randomNumberBound}
 598      * @since 1.8
 599      */
 600     public IntStream ints(long streamSize, int randomNumberOrigin,
 601                           int randomNumberBound) {
 602         if (streamSize < 0L)
 603             throw new IllegalArgumentException(BadSize);
 604         if (randomNumberOrigin >= randomNumberBound)
 605             throw new IllegalArgumentException(BadRange);
 606         return StreamSupport.intStream
 607             (new RandomIntsSpliterator
 608              (0L, streamSize, randomNumberOrigin, randomNumberBound),
 609              false);
 610     }
 611 
 612     /**
 613      * Returns an effectively unlimited stream of pseudorandom {@code
 614      * int} values, each conforming to the given origin (inclusive) and bound
 615      * (exclusive).
 616      *
 617      * @implNote This method is implemented to be equivalent to {@code
 618      * ints(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
 619      *
 620      * @param randomNumberOrigin the origin (inclusive) of each random value
 621      * @param randomNumberBound the bound (exclusive) of each random value
 622      * @return a stream of pseudorandom {@code int} values,
 623      *         each with the given origin (inclusive) and bound (exclusive)
 624      * @throws IllegalArgumentException if {@code randomNumberOrigin}
 625      *         is greater than or equal to {@code randomNumberBound}
 626      * @since 1.8
 627      */
 628     public IntStream ints(int randomNumberOrigin, int randomNumberBound) {
 629         if (randomNumberOrigin >= randomNumberBound)
 630             throw new IllegalArgumentException(BadRange);
 631         return StreamSupport.intStream
 632             (new RandomIntsSpliterator
 633              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
 634              false);
 635     }
 636 
 637     /**
 638      * Returns a stream producing the given {@code streamSize} number of
 639      * pseudorandom {@code long} values.
 640      *
 641      * @param streamSize the number of values to generate
 642      * @return a stream of pseudorandom {@code long} values
 643      * @throws IllegalArgumentException if {@code streamSize} is
 644      *         less than zero
 645      * @since 1.8
 646      */
 647     public LongStream longs(long streamSize) {
 648         if (streamSize < 0L)
 649             throw new IllegalArgumentException(BadSize);
 650         return StreamSupport.longStream
 651             (new RandomLongsSpliterator
 652              (0L, streamSize, Long.MAX_VALUE, 0L),
 653              false);
 654     }
 655 
 656     /**
 657      * Returns an effectively unlimited stream of pseudorandom {@code long}
 658      * values.
 659      *
 660      * @implNote This method is implemented to be equivalent to {@code
 661      * longs(Long.MAX_VALUE)}.
 662      *
 663      * @return a stream of pseudorandom {@code long} values
 664      * @since 1.8
 665      */
 666     public LongStream longs() {
 667         return StreamSupport.longStream
 668             (new RandomLongsSpliterator
 669              (0L, Long.MAX_VALUE, Long.MAX_VALUE, 0L),
 670              false);
 671     }
 672 
 673     /**
 674      * Returns a stream producing the given {@code streamSize} number of
 675      * pseudorandom {@code long}, each conforming to the given origin
 676      * (inclusive) and bound (exclusive).
 677      *
 678      * @param streamSize the number of values to generate
 679      * @param randomNumberOrigin the origin (inclusive) of each random value
 680      * @param randomNumberBound the bound (exclusive) of each random value
 681      * @return a stream of pseudorandom {@code long} values,
 682      *         each with the given origin (inclusive) and bound (exclusive)
 683      * @throws IllegalArgumentException if {@code streamSize} is
 684      *         less than zero, or {@code randomNumberOrigin}
 685      *         is greater than or equal to {@code randomNumberBound}
 686      * @since 1.8
 687      */
 688     public LongStream longs(long streamSize, long randomNumberOrigin,
 689                             long randomNumberBound) {
 690         if (streamSize < 0L)
 691             throw new IllegalArgumentException(BadSize);
 692         if (randomNumberOrigin >= randomNumberBound)
 693             throw new IllegalArgumentException(BadRange);
 694         return StreamSupport.longStream
 695             (new RandomLongsSpliterator
 696              (0L, streamSize, randomNumberOrigin, randomNumberBound),
 697              false);
 698     }
 699 
 700     /**
 701      * Returns an effectively unlimited stream of pseudorandom {@code
 702      * long} values, each conforming to the given origin (inclusive) and bound
 703      * (exclusive).
 704      *
 705      * @implNote This method is implemented to be equivalent to {@code
 706      * longs(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
 707      *
 708      * @param randomNumberOrigin the origin (inclusive) of each random value
 709      * @param randomNumberBound the bound (exclusive) of each random value
 710      * @return a stream of pseudorandom {@code long} values,
 711      *         each with the given origin (inclusive) and bound (exclusive)
 712      * @throws IllegalArgumentException if {@code randomNumberOrigin}
 713      *         is greater than or equal to {@code randomNumberBound}
 714      * @since 1.8
 715      */
 716     public LongStream longs(long randomNumberOrigin, long randomNumberBound) {
 717         if (randomNumberOrigin >= randomNumberBound)
 718             throw new IllegalArgumentException(BadRange);
 719         return StreamSupport.longStream
 720             (new RandomLongsSpliterator
 721              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
 722              false);
 723     }
 724 
 725     /**
 726      * Returns a stream producing the given {@code streamSize} number of
 727      * pseudorandom {@code double} values, each between zero
 728      * (inclusive) and one (exclusive).
 729      *
 730      * @param streamSize the number of values to generate
 731      * @return a stream of {@code double} values
 732      * @throws IllegalArgumentException if {@code streamSize} is
 733      *         less than zero
 734      * @since 1.8
 735      */
 736     public DoubleStream doubles(long streamSize) {
 737         if (streamSize < 0L)
 738             throw new IllegalArgumentException(BadSize);
 739         return StreamSupport.doubleStream
 740             (new RandomDoublesSpliterator
 741              (0L, streamSize, Double.MAX_VALUE, 0.0),
 742              false);
 743     }
 744 
 745     /**
 746      * Returns an effectively unlimited stream of pseudorandom {@code
 747      * double} values, each between zero (inclusive) and one
 748      * (exclusive).
 749      *
 750      * @implNote This method is implemented to be equivalent to {@code
 751      * doubles(Long.MAX_VALUE)}.
 752      *
 753      * @return a stream of pseudorandom {@code double} values
 754      * @since 1.8
 755      */
 756     public DoubleStream doubles() {
 757         return StreamSupport.doubleStream
 758             (new RandomDoublesSpliterator
 759              (0L, Long.MAX_VALUE, Double.MAX_VALUE, 0.0),
 760              false);
 761     }
 762 
 763     /**
 764      * Returns a stream producing the given {@code streamSize} number of
 765      * pseudorandom {@code double} values, each conforming to the given origin
 766      * (inclusive) and bound (exclusive).
 767      *
 768      * @param streamSize the number of values to generate
 769      * @param randomNumberOrigin the origin (inclusive) of each random value
 770      * @param randomNumberBound the bound (exclusive) of each random value
 771      * @return a stream of pseudorandom {@code double} values,
 772      *         each with the given origin (inclusive) and bound (exclusive)
 773      * @throws IllegalArgumentException if {@code streamSize} is
 774      *         less than zero
 775      * @throws IllegalArgumentException if {@code randomNumberOrigin}
 776      *         is greater than or equal to {@code randomNumberBound}
 777      * @since 1.8
 778      */
 779     public DoubleStream doubles(long streamSize, double randomNumberOrigin,
 780                                 double randomNumberBound) {
 781         if (streamSize < 0L)
 782             throw new IllegalArgumentException(BadSize);
 783         if (!(randomNumberOrigin < randomNumberBound))
 784             throw new IllegalArgumentException(BadRange);
 785         return StreamSupport.doubleStream
 786             (new RandomDoublesSpliterator
 787              (0L, streamSize, randomNumberOrigin, randomNumberBound),
 788              false);
 789     }
 790 
 791     /**
 792      * Returns an effectively unlimited stream of pseudorandom {@code
 793      * double} values, each conforming to the given origin (inclusive) and bound
 794      * (exclusive).
 795      *
 796      * @implNote This method is implemented to be equivalent to {@code
 797      * doubles(Long.MAX_VALUE, randomNumberOrigin, randomNumberBound)}.
 798      *
 799      * @param randomNumberOrigin the origin (inclusive) of each random value
 800      * @param randomNumberBound the bound (exclusive) of each random value
 801      * @return a stream of pseudorandom {@code double} values,
 802      *         each with the given origin (inclusive) and bound (exclusive)
 803      * @throws IllegalArgumentException if {@code randomNumberOrigin}
 804      *         is greater than or equal to {@code randomNumberBound}
 805      * @since 1.8
 806      */
 807     public DoubleStream doubles(double randomNumberOrigin, double randomNumberBound) {
 808         if (!(randomNumberOrigin < randomNumberBound))
 809             throw new IllegalArgumentException(BadRange);
 810         return StreamSupport.doubleStream
 811             (new RandomDoublesSpliterator
 812              (0L, Long.MAX_VALUE, randomNumberOrigin, randomNumberBound),
 813              false);
 814     }
 815 
 816     /**
 817      * Spliterator for int streams.  We multiplex the four int
 818      * versions into one class by treating a bound less than origin as
 819      * unbounded, and also by treating "infinite" as equivalent to
 820      * Long.MAX_VALUE. For splits, it uses the standard divide-by-two
 821      * approach. The long and double versions of this class are
 822      * identical except for types.
 823      */
 824     static final class RandomIntsSpliterator implements Spliterator.OfInt {
 825         long index;
 826         final long fence;
 827         final int origin;
 828         final int bound;
 829         RandomIntsSpliterator(long index, long fence,
 830                               int origin, int bound) {
 831             this.index = index; this.fence = fence;
 832             this.origin = origin; this.bound = bound;
 833         }
 834 
 835         public RandomIntsSpliterator trySplit() {
 836             long i = index, m = (i + fence) >>> 1;
 837             return (m <= i) ? null :
 838                 new RandomIntsSpliterator(i, index = m, origin, bound);
 839         }
 840 
 841         public long estimateSize() {
 842             return fence - index;
 843         }
 844 
 845         public int characteristics() {
 846             return (Spliterator.SIZED | Spliterator.SUBSIZED |
 847                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
 848         }
 849 
 850         public boolean tryAdvance(IntConsumer consumer) {
 851             if (consumer == null) throw new NullPointerException();
 852             long i = index, f = fence;
 853             if (i < f) {
 854                 consumer.accept(ThreadLocalRandom.current().internalNextInt(origin, bound));
 855                 index = i + 1;
 856                 return true;
 857             }
 858             return false;
 859         }
 860 
 861         public void forEachRemaining(IntConsumer consumer) {
 862             if (consumer == null) throw new NullPointerException();
 863             long i = index, f = fence;
 864             if (i < f) {
 865                 index = f;
 866                 int o = origin, b = bound;
 867                 ThreadLocalRandom rng = ThreadLocalRandom.current();
 868                 do {
 869                     consumer.accept(rng.internalNextInt(o, b));
 870                 } while (++i < f);
 871             }
 872         }
 873     }
 874 
 875     /**
 876      * Spliterator for long streams.
 877      */
 878     static final class RandomLongsSpliterator implements Spliterator.OfLong {
 879         long index;
 880         final long fence;
 881         final long origin;
 882         final long bound;
 883         RandomLongsSpliterator(long index, long fence,
 884                                long origin, long bound) {
 885             this.index = index; this.fence = fence;
 886             this.origin = origin; this.bound = bound;
 887         }
 888 
 889         public RandomLongsSpliterator trySplit() {
 890             long i = index, m = (i + fence) >>> 1;
 891             return (m <= i) ? null :
 892                 new RandomLongsSpliterator(i, index = m, origin, bound);
 893         }
 894 
 895         public long estimateSize() {
 896             return fence - index;
 897         }
 898 
 899         public int characteristics() {
 900             return (Spliterator.SIZED | Spliterator.SUBSIZED |
 901                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
 902         }
 903 
 904         public boolean tryAdvance(LongConsumer consumer) {
 905             if (consumer == null) throw new NullPointerException();
 906             long i = index, f = fence;
 907             if (i < f) {
 908                 consumer.accept(ThreadLocalRandom.current().internalNextLong(origin, bound));
 909                 index = i + 1;
 910                 return true;
 911             }
 912             return false;
 913         }
 914 
 915         public void forEachRemaining(LongConsumer consumer) {
 916             if (consumer == null) throw new NullPointerException();
 917             long i = index, f = fence;
 918             if (i < f) {
 919                 index = f;
 920                 long o = origin, b = bound;
 921                 ThreadLocalRandom rng = ThreadLocalRandom.current();
 922                 do {
 923                     consumer.accept(rng.internalNextLong(o, b));
 924                 } while (++i < f);
 925             }
 926         }
 927 
 928     }
 929 
 930     /**
 931      * Spliterator for double streams.
 932      */
 933     static final class RandomDoublesSpliterator implements Spliterator.OfDouble {
 934         long index;
 935         final long fence;
 936         final double origin;
 937         final double bound;
 938         RandomDoublesSpliterator(long index, long fence,
 939                                  double origin, double bound) {
 940             this.index = index; this.fence = fence;
 941             this.origin = origin; this.bound = bound;
 942         }
 943 
 944         public RandomDoublesSpliterator trySplit() {
 945             long i = index, m = (i + fence) >>> 1;
 946             return (m <= i) ? null :
 947                 new RandomDoublesSpliterator(i, index = m, origin, bound);
 948         }
 949 
 950         public long estimateSize() {
 951             return fence - index;
 952         }
 953 
 954         public int characteristics() {
 955             return (Spliterator.SIZED | Spliterator.SUBSIZED |
 956                     Spliterator.NONNULL | Spliterator.IMMUTABLE);
 957         }
 958 
 959         public boolean tryAdvance(DoubleConsumer consumer) {
 960             if (consumer == null) throw new NullPointerException();
 961             long i = index, f = fence;
 962             if (i < f) {
 963                 consumer.accept(ThreadLocalRandom.current().internalNextDouble(origin, bound));
 964                 index = i + 1;
 965                 return true;
 966             }
 967             return false;
 968         }
 969 
 970         public void forEachRemaining(DoubleConsumer consumer) {
 971             if (consumer == null) throw new NullPointerException();
 972             long i = index, f = fence;
 973             if (i < f) {
 974                 index = f;
 975                 double o = origin, b = bound;
 976                 ThreadLocalRandom rng = ThreadLocalRandom.current();
 977                 do {
 978                     consumer.accept(rng.internalNextDouble(o, b));
 979                 } while (++i < f);
 980             }
 981         }
 982     }
 983 
 984 
 985     // Within-package utilities
 986 
 987     /*
 988      * Descriptions of the usages of the methods below can be found in
 989      * the classes that use them. Briefly, a thread's "probe" value is
 990      * a non-zero hash code that (probably) does not collide with
 991      * other existing threads with respect to any power of two
 992      * collision space. When it does collide, it is pseudo-randomly
 993      * adjusted (using a Marsaglia XorShift). The nextSecondarySeed
 994      * method is used in the same contexts as ThreadLocalRandom, but
 995      * only for transient usages such as random adaptive spin/block
 996      * sequences for which a cheap RNG suffices and for which it could
 997      * in principle disrupt user-visible statistical properties of the
 998      * main ThreadLocalRandom if we were to use it.
 999      *
1000      * Note: Because of package-protection issues, versions of some
1001      * these methods also appear in some subpackage classes.
1002      */
1003 
1004     /**
1005      * Returns the probe value for the current thread without forcing
1006      * initialization. Note that invoking ThreadLocalRandom.current()
1007      * can be used to force initialization on zero return.
1008      */
1009     static final int getProbe() {
1010         return UNSAFE.getInt(Thread.currentThread(), PROBE);
1011     }
1012 
1013     /**
1014      * Pseudo-randomly advances and records the given probe value for the
1015      * given thread.
1016      */
1017     static final int advanceProbe(int probe) {
1018         probe ^= probe << 13;   // xorshift
1019         probe ^= probe >>> 17;
1020         probe ^= probe << 5;
1021         UNSAFE.putInt(Thread.currentThread(), PROBE, probe);
1022         return probe;
1023     }
1024 
1025     /**
1026      * Returns the pseudo-randomly initialized or updated secondary seed.
1027      */
1028     static final int nextSecondarySeed() {
1029         int r;
1030         Thread t = Thread.currentThread();
1031         if ((r = UNSAFE.getInt(t, SECONDARY)) != 0) {
1032             r ^= r << 13;   // xorshift
1033             r ^= r >>> 17;
1034             r ^= r << 5;
1035         }
1036         else {
1037             localInit();
1038             if ((r = (int)UNSAFE.getLong(t, SEED)) == 0)
1039                 r = 1; // avoid zero
1040         }
1041         UNSAFE.putInt(t, SECONDARY, r);
1042         return r;
1043     }
1044 
1045     // Serialization support
1046 
1047     private static final long serialVersionUID = -5851777807851030925L;
1048 
1049     /**
1050      * @serialField rnd long
1051      *              seed for random computations
1052      * @serialField initialized boolean
1053      *              always true
1054      */
1055     private static final ObjectStreamField[] serialPersistentFields = {
1056             new ObjectStreamField("rnd", long.class),
1057             new ObjectStreamField("initialized", boolean.class),
1058     };
1059 
1060     /**
1061      * Saves the {@code ThreadLocalRandom} to a stream (that is, serializes it).
1062      * @param s the stream
1063      * @throws java.io.IOException if an I/O error occurs
1064      */
1065     private void writeObject(java.io.ObjectOutputStream s)
1066         throws java.io.IOException {
1067 
1068         java.io.ObjectOutputStream.PutField fields = s.putFields();
1069         fields.put("rnd", UNSAFE.getLong(Thread.currentThread(), SEED));
1070         fields.put("initialized", true);
1071         s.writeFields();
1072     }
1073 
1074     /**
1075      * Returns the {@link #current() current} thread's {@code ThreadLocalRandom}.
1076      * @return the {@link #current() current} thread's {@code ThreadLocalRandom}
1077      */
1078     private Object readResolve() {
1079         return current();
1080     }
1081 
1082     // Unsafe mechanics
1083     private static final sun.misc.Unsafe UNSAFE;
1084     private static final long SEED;
1085     private static final long PROBE;
1086     private static final long SECONDARY;
1087     static {
1088         try {
1089             UNSAFE = sun.misc.Unsafe.getUnsafe();
1090             Class<?> tk = Thread.class;
1091             SEED = UNSAFE.objectFieldOffset
1092                 (tk.getDeclaredField("threadLocalRandomSeed"));
1093             PROBE = UNSAFE.objectFieldOffset
1094                 (tk.getDeclaredField("threadLocalRandomProbe"));
1095             SECONDARY = UNSAFE.objectFieldOffset
1096                 (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
1097         } catch (Exception e) {
1098             throw new Error(e);
1099         }
1100     }
1101 }