1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import jdk.internal.misc.Unsafe;
  29 import jdk.internal.vm.annotation.ForceInline;
  30 import jdk.internal.vm.annotation.Stable;
  31 
  32 import java.lang.ref.PhantomReference;
  33 import java.lang.ref.ReferenceQueue;
  34 import java.lang.ref.WeakReference;
  35 import java.util.concurrent.atomic.AtomicBoolean;
  36 import java.util.concurrent.atomic.AtomicInteger;
  37 import java.util.concurrent.atomic.AtomicReference;
  38 
  39 /**
  40  * Lazily associate a computed value with (potentially) every type.
  41  * For example, if a dynamic language needs to construct a message dispatch
  42  * table for each class encountered at a message send call site,
  43  * it can use a {@code ClassValue} to cache information needed to
  44  * perform the message send quickly, for each class encountered.
  45  * @author John Rose, JSR 292 EG
  46  * @since 1.7
  47  */
  48 public abstract class ClassValue<T> {
  49     /**
  50      * Sole constructor.  (For invocation by subclass constructors, typically
  51      * implicit.)
  52      */
  53     protected ClassValue() {
  54     }
  55 
  56     /**
  57      * Computes the given class's derived value for this {@code ClassValue}.
  58      * <p>
  59      * This method will be invoked within the first thread that accesses
  60      * the value with the {@link #get get} method.
  61      * <p>
  62      * Normally, this method is invoked at most once per class,
  63      * but it may be invoked again if there has been a call to
  64      * {@link #remove remove}.
  65      * <p>
  66      * If this method throws an exception, the corresponding call to {@code get}
  67      * will terminate abnormally with that exception, and no class value will be recorded.
  68      *
  69      * @param type the type whose class value must be computed
  70      * @return the newly computed value associated with this {@code ClassValue}, for the given class or interface
  71      * @see #get
  72      * @see #remove
  73      */
  74     protected abstract T computeValue(Class<?> type);
  75 
  76     /**
  77      * Returns the value for the given class.
  78      * If no value has yet been computed, it is obtained by
  79      * an invocation of the {@link #computeValue computeValue} method.
  80      * <p>
  81      * The actual installation of the value on the class
  82      * is performed atomically.
  83      * At that point, if several racing threads have
  84      * computed values, one is chosen, and returned to
  85      * all the racing threads.
  86      * <p>
  87      * The {@code type} parameter is typically a class, but it may be any type,
  88      * such as an interface, a primitive type (like {@code int.class}), or {@code void.class}.
  89      * <p>
  90      * In the absence of {@code remove} calls, a class value has a simple
  91      * state diagram:  uninitialized and initialized.
  92      * When {@code remove} calls are made,
  93      * the rules for value observation are more complex.
  94      * See the documentation for {@link #remove remove} for more information.
  95      *
  96      * @param type the type whose class value must be computed or retrieved
  97      * @return the current value associated with this {@code ClassValue}, for the given class or interface
  98      * @throws NullPointerException if the argument is null
  99      * @see #remove
 100      * @see #computeValue
 101      */
 102     @SuppressWarnings("unchecked")
 103     @ForceInline
 104     public T get(Class<?> type) {
 105         ClassValueMap map = type.classValueMap;
 106         Object value;
 107         if (map != null) {
 108             value = map.get(key);
 109             if (value != null && !(value instanceof Removed)) {
 110                 return (value == NULL_MASK) ? null : (T) value;
 111             }
 112         } else {
 113             value = null;
 114         }
 115         return getSlow(type, value);
 116     }
 117     // ...the rest in separate method
 118     @SuppressWarnings("unchecked")
 119     private T getSlow(Class<?> type, Object oldValue) {
 120         ClassValueMap.expungeStaleEntries();
 121         ClassValueMap map = getMap(type);
 122         while (true) {
 123             // assert oldValue == null || oldValue instanceof Removed;
 124             T newValue = computeValue(type);
 125             if (oldValue == null) {
 126                 oldValue = map.putIfAbsent(key, (newValue == null) ? NULL_MASK : newValue);
 127                 if (oldValue == null) {
 128                     return newValue;
 129                 } else {
 130                     // another thread has beaten us
 131                     if (!(oldValue instanceof Removed)) {
 132                         return (oldValue == NULL_MASK) ? null : (T) oldValue;
 133                     }
 134                 }
 135             } else {
 136                 // assert oldValue instanceof Removed;
 137                 if (map.replace(key, oldValue, (newValue == null) ? NULL_MASK : newValue)) {
 138                     // this only succeeds if oldValue is still the same instance of
 139                     // Removed as observed before computeValue invocation
 140                     return newValue;
 141                 } else {
 142                     // another thread has beaten us
 143                     oldValue = map.get(key);
 144                     if (oldValue != null && !(oldValue instanceof Removed)) {
 145                         return (oldValue == NULL_MASK) ? null : (T) oldValue;
 146                     }
 147                 }
 148             }
 149             // retry compute since we observed another version of Removed
 150             // as was current before compute which means that there was
 151             // at least one value present in between time which means
 152             // that the result of our compute is stale.
 153         }
 154     }
 155 
 156     /**
 157      * Removes the associated value for the given class.
 158      * If this value is subsequently {@linkplain #get read} for the same class,
 159      * its value will be reinitialized by invoking its {@link #computeValue computeValue} method.
 160      * This may result in an additional invocation of the
 161      * {@code computeValue} method for the given class.
 162      * <p>
 163      * In order to explain the interaction between {@code get} and {@code remove} calls,
 164      * we must model the state transitions of a class value to take into account
 165      * the alternation between uninitialized and initialized states.
 166      * To do this, number these states sequentially from zero, and note that
 167      * uninitialized (or removed) states are numbered with even numbers,
 168      * while initialized (or re-initialized) states have odd numbers.
 169      * <p>
 170      * When a thread {@code T} removes a class value in state {@code 2N},
 171      * nothing happens, since the class value is already uninitialized.
 172      * Otherwise, the state is advanced atomically to {@code 2N+1}.
 173      * <p>
 174      * When a thread {@code T} queries a class value in state {@code 2N},
 175      * the thread first attempts to initialize the class value to state {@code 2N+1}
 176      * by invoking {@code computeValue} and installing the resulting value.
 177      * <p>
 178      * When {@code T} attempts to install the newly computed value,
 179      * if the state is still at {@code 2N}, the class value will be initialized
 180      * with the computed value, advancing it to state {@code 2N+1}.
 181      * <p>
 182      * Otherwise, whether the new state is even or odd,
 183      * {@code T} will discard the newly computed value
 184      * and retry the {@code get} operation.
 185      * <p>
 186      * Discarding and retrying is an important proviso,
 187      * since otherwise {@code T} could potentially install
 188      * a disastrously stale value.  For example:
 189      * <ul>
 190      * <li>{@code T} calls {@code CV.get(C)} and sees state {@code 2N}
 191      * <li>{@code T} quickly computes a time-dependent value {@code V0} and gets ready to install it
 192      * <li>{@code T} is hit by an unlucky paging or scheduling event, and goes to sleep for a long time
 193      * <li>...meanwhile, {@code T2} also calls {@code CV.get(C)} and sees state {@code 2N}
 194      * <li>{@code T2} quickly computes a similar time-dependent value {@code V1} and installs it on {@code CV.get(C)}
 195      * <li>{@code T2} (or a third thread) then calls {@code CV.remove(C)}, undoing {@code T2}'s work
 196      * <li> the previous actions of {@code T2} are repeated several times
 197      * <li> also, the relevant computed values change over time: {@code V1}, {@code V2}, ...
 198      * <li>...meanwhile, {@code T} wakes up and attempts to install {@code V0}; <em>this must fail</em>
 199      * </ul>
 200      * We can assume in the above scenario that {@code CV.computeValue} uses locks to properly
 201      * observe the time-dependent states as it computes {@code V1}, etc.
 202      * This does not remove the threat of a stale value, since there is a window of time
 203      * between the return of {@code computeValue} in {@code T} and the installation
 204      * of the new value.  No user synchronization is possible during this time.
 205      *
 206      * @param type the type whose class value must be removed
 207      * @throws NullPointerException if the argument is null
 208      */
 209     public void remove(Class<?> type) {
 210         ClassValueMap.expungeStaleEntries();
 211         ClassValueMap map = type.classValueMap;
 212         if (map != null) {
 213             Object value, removed = null;
 214             do {
 215                 value = map.get(key);
 216                 if (value == null || value instanceof Removed) {
 217                     // non-existence is treated as Removed(V0)
 218                     // invoking remove() when state is Removed(VN) does not
 219                     // change it to Removed(VN+1)
 220                     break;
 221                 }
 222                 if (removed == null) {
 223                     removed = new Removed();
 224                 }
 225             } while (!map.replace(key, value, removed));
 226         }
 227     }
 228 
 229     // Possible functionality for JSR 292 MR 1
 230     /*public*/ void put(Class<?> type, T value) {
 231         ClassValueMap.expungeStaleEntries();
 232         ClassValueMap map = getMap(type);
 233         map.put(key, (value == null) ? NULL_MASK : value);
 234     }
 235 
 236     /// --------
 237     /// Implementation...
 238     /// --------
 239 
 240     /**
 241      * The key used in ClassValueMap for this ClassValue.
 242      * Since ClassValue(s) are usually assigned to static final fields, it makes
 243      * sense to promote the key to constant too.
 244      */
 245     @Stable
 246     private final Key key = new Key(this);
 247 
 248     /**
 249      * Key of a ClassValue and a tracker of the ClassValue at the same time.
 250      */
 251     private static final class Key extends PhantomReference<ClassValue<?>> {
 252 
 253         /** Value stream for hash. See similar structure in ThreadLocal. */
 254         private static final AtomicInteger nextHash = new AtomicInteger();
 255 
 256         /** Good for power-of-two tables. See similar structure in ThreadLocal. */
 257         private static final int HASH_INCREMENT = 0x61c88647;
 258 
 259         /** Single global queue for all stale keys to be enqueued */
 260         static final ReferenceQueue<ClassValue<?>> queue = new ReferenceQueue<>();
 261 
 262         @Stable
 263         private final int hash;
 264 
 265         Key(ClassValue<?> cv) {
 266             super(cv, queue);
 267             hash = nextHash.getAndAdd(HASH_INCREMENT);
 268         }
 269 
 270         @Override
 271         public int hashCode() {
 272             return hash;
 273         }
 274 
 275         // equals is identity
 276     }
 277 
 278     /** A masked null value. */
 279     private static final Object NULL_MASK = new Object();
 280 
 281     /** Removed value(s) */
 282     private static final class Removed {}
 283 
 284     /** Return the backing map associated with this type, possibly constructing it. */
 285     private static ClassValueMap getMap(Class<?> type) {
 286         ClassValueMap map = type.classValueMap;
 287         return (map != null) ? map : initializeMap(type);
 288     }
 289 
 290     private static ClassValueMap initializeMap(Class<?> type) {
 291         ClassValueMap map = ClassValueMap.create();
 292         return U.compareAndSwapObject(type, CLASS_VALUE_MAP_OFFSET, null, map)
 293                ? map
 294                : (ClassValueMap) U.getObjectVolatile(type, CLASS_VALUE_MAP_OFFSET);
 295     }
 296 
 297     /** A backing map for all ClassValues in a particular Class.
 298      */
 299     static final class ClassValueMap extends LinearProbeHashtable<Key, Object> {
 300         // eh, needed to silent the gods
 301         private static final long serialVersionUID = 1L;
 302 
 303         // a node in a linked list of WeakReference(s) to ClassValueMap(s)
 304         private static final class WeakNode extends WeakReference<ClassValueMap> {
 305             WeakNode next;
 306             WeakNode(ClassValueMap map) { super(map); }
 307         }
 308 
 309         // the head of the linked list of WeakReference(s) to ClassValueMap(s)
 310         private static final AtomicReference<WeakNode> mapsList = new AtomicReference<>();
 311 
 312         // the lock used to guard expunging logic
 313         private static final AtomicBoolean expungeInProgress = new AtomicBoolean();
 314 
 315         private ClassValueMap() {
 316             super(1);
 317         }
 318 
 319         static ClassValueMap create() {
 320             ClassValueMap map = new ClassValueMap();
 321             WeakNode node = new WeakNode(map);
 322             // register the weakly referenced map into the list
 323             do {
 324                 node.next = mapsList.get();
 325             } while (!mapsList.compareAndSet(node.next, node));
 326             return map;
 327         }
 328 
 329         static void expungeStaleEntries() {
 330             // make sure only one thread at a time is expunging stale entries;
 331             // this is important for correctness so that no stale enqueued key
 332             // is missed from being removed from any map that might possibly
 333             // hold it.
 334             if (!expungeInProgress.get() &&
 335                 expungeInProgress.compareAndSet(false, true)) try {
 336                 expungeStaleEntriesImpl();
 337             } finally {
 338                 expungeInProgress.set(false);
 339             }
 340         }
 341 
 342         private static void expungeStaleEntriesImpl() {
 343             // start with an empty private list
 344             WeakNode first = null, last = null;
 345             // iterate Key(s) of GCed ClassValue(s)
 346             Key key;
 347             while ((key = (Key) Key.queue.poll()) != null) {
 348                 // steal any (newly) registered map(s) from the shared 'mapsList'
 349                 // as they might already be holding the stale 'key' that has just
 350                 // been removed from the queue. The following guarantees that
 351                 // no (stale-key, live-map) combination is missed:
 352                 // - a map is 1st registered into the mapsList and then non-stale
 353                 //   keys are inserted into it
 354                 // - a non-stale key becomes stale when a ClassValue that it
 355                 //   phantomly references is GCed; the key is then enqueued
 356                 // - a stale key is 1st removed from the queue and then mapsList
 357                 //   is checked for any (newly) registered map(s)
 358                 if (mapsList.get() != null) {
 359                     WeakNode stolen = mapsList.getAndSet(null);
 360                     // add them to the end of current private list
 361                     if (last != null) {
 362                         last.next = stolen;
 363                     } else {
 364                         // assert first == null;
 365                         first = stolen;
 366                     }
 367                 }
 368                 // iterate the accumulated private list of maps
 369                 last = null;
 370                 for (WeakNode node = first; node != null; ) {
 371                     ClassValueMap map = node.get();
 372                     if (map == null) {
 373                         // Class and its ClassValueMap have already been GCed
 374                         // -> remove the node from the list
 375                         if (last == null) {
 376                             first = node = node.next;
 377                         } else {
 378                             last.next = node = node.next;
 379                         }
 380                     } else {
 381                         // ClassValueMap is still alive
 382                         // -> attempt to remove the key from it
 383                         map.remove(key);
 384                         // navigate to next in list
 385                         last = node;
 386                         node = node.next;
 387                     }
 388                 }
 389                 // at this time, 'last' points to the last WeakNode in the private
 390                 // list (if any) and the following always holds:
 391                 // assert (first == null) == (last == null);
 392             }
 393             // re-insert the stolen and expunged list of map(s) back into shared
 394             // mapsList
 395             if (last != null) {
 396                 do {
 397                     last.next = mapsList.get();
 398                 } while (!mapsList.compareAndSet(last.next, first));
 399             }
 400         }
 401     }
 402 
 403     /** We need to cas */
 404     private static final Unsafe U = Unsafe.getUnsafe();
 405     private static final long CLASS_VALUE_MAP_OFFSET;
 406 
 407     static {
 408         try {
 409             CLASS_VALUE_MAP_OFFSET = U.objectFieldOffset(
 410                 Class.class.getDeclaredField("classValueMap"));
 411         } catch (Exception e) {
 412             throw new Error(e);
 413         }
 414     }
 415 }