< prev index next >

src/java.base/share/classes/java/lang/ref/FinalizerList.java

Print this page

        

@@ -31,222 +31,17 @@
  * Written by Doug Lea and Martin Buchholz with assistance from members of
  * JCP JSR-166 Expert Group and released to the public domain, as explained
  * at http://creativecommons.org/publicdomain/zero/1.0/
  */
 
-package java.util.concurrent;
-
-import java.util.AbstractCollection;
-import java.util.ArrayList;
-import java.util.Collection;
-import java.util.Deque;
-import java.util.Iterator;
-import java.util.NoSuchElementException;
-import java.util.Queue;
-import java.util.Spliterator;
-import java.util.Spliterators;
-import java.util.function.Consumer;
+package java.lang.ref;
 
 /**
- * An unbounded concurrent {@linkplain Deque deque} based on linked nodes.
- * Concurrent insertion, removal, and access operations execute safely
- * across multiple threads.
- * A {@code ConcurrentLinkedDeque} is an appropriate choice when
- * many threads will share access to a common collection.
- * Like most other concurrent collection implementations, this class
- * does not permit the use of {@code null} elements.
- *
- * <p>Iterators and spliterators are
- * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
- *
- * <p>Beware that, unlike in most collections, the {@code size} method
- * is <em>NOT</em> a constant-time operation. Because of the
- * asynchronous nature of these deques, determining the current number
- * of elements requires a traversal of the elements, and so may report
- * inaccurate results if this collection is modified during traversal.
- * Additionally, the bulk operations {@code addAll},
- * {@code removeAll}, {@code retainAll}, {@code containsAll},
- * {@code equals}, and {@code toArray} are <em>not</em> guaranteed
- * to be performed atomically. For example, an iterator operating
- * concurrently with an {@code addAll} operation might view only some
- * of the added elements.
- *
- * <p>This class and its iterator implement all of the <em>optional</em>
- * methods of the {@link Deque} and {@link Iterator} interfaces.
- *
- * <p>Memory consistency effects: As with other concurrent collections,
- * actions in a thread prior to placing an object into a
- * {@code ConcurrentLinkedDeque}
- * <a href="package-summary.html#MemoryVisibility"><i>happen-before</i></a>
- * actions subsequent to the access or removal of that element from
- * the {@code ConcurrentLinkedDeque} in another thread.
- *
- * <p>This class is a member of the
- * <a href="{@docRoot}/../technotes/guides/collections/index.html">
- * Java Collections Framework</a>.
- *
- * @since 1.7
- * @author Doug Lea
- * @author Martin Buchholz
- * @param <E> the type of elements held in this collection
- */
-public class ConcurrentLinkedDeque<E>
-    extends AbstractCollection<E>
-    implements Deque<E>, java.io.Serializable {
-
-    /*
-     * This is an implementation of a concurrent lock-free deque
-     * supporting interior removes but not interior insertions, as
-     * required to support the entire Deque interface.
-     *
-     * We extend the techniques developed for ConcurrentLinkedQueue and
-     * LinkedTransferQueue (see the internal docs for those classes).
-     * Understanding the ConcurrentLinkedQueue implementation is a
-     * prerequisite for understanding the implementation of this class.
-     *
-     * The data structure is a symmetrical doubly-linked "GC-robust"
-     * linked list of nodes.  We minimize the number of volatile writes
-     * using two techniques: advancing multiple hops with a single CAS
-     * and mixing volatile and non-volatile writes of the same memory
-     * locations.
-     *
-     * A node contains the expected E ("item") and links to predecessor
-     * ("prev") and successor ("next") nodes:
-     *
-     * class Node<E> { volatile Node<E> prev, next; volatile E item; }
-     *
-     * A node p is considered "live" if it contains a non-null item
-     * (p.item != null).  When an item is CASed to null, the item is
-     * atomically logically deleted from the collection.
-     *
-     * At any time, there is precisely one "first" node with a null
-     * prev reference that terminates any chain of prev references
-     * starting at a live node.  Similarly there is precisely one
-     * "last" node terminating any chain of next references starting at
-     * a live node.  The "first" and "last" nodes may or may not be live.
-     * The "first" and "last" nodes are always mutually reachable.
-     *
-     * A new element is added atomically by CASing the null prev or
-     * next reference in the first or last node to a fresh node
-     * containing the element.  The element's node atomically becomes
-     * "live" at that point.
-     *
-     * A node is considered "active" if it is a live node, or the
-     * first or last node.  Active nodes cannot be unlinked.
-     *
-     * A "self-link" is a next or prev reference that is the same node:
-     *   p.prev == p  or  p.next == p
-     * Self-links are used in the node unlinking process.  Active nodes
-     * never have self-links.
-     *
-     * A node p is active if and only if:
-     *
-     * p.item != null ||
-     * (p.prev == null && p.next != p) ||
-     * (p.next == null && p.prev != p)
-     *
-     * The deque object has two node references, "head" and "tail".
-     * The head and tail are only approximations to the first and last
-     * nodes of the deque.  The first node can always be found by
-     * following prev pointers from head; likewise for tail.  However,
-     * it is permissible for head and tail to be referring to deleted
-     * nodes that have been unlinked and so may not be reachable from
-     * any live node.
-     *
-     * There are 3 stages of node deletion;
-     * "logical deletion", "unlinking", and "gc-unlinking".
-     *
-     * 1. "logical deletion" by CASing item to null atomically removes
-     * the element from the collection, and makes the containing node
-     * eligible for unlinking.
-     *
-     * 2. "unlinking" makes a deleted node unreachable from active
-     * nodes, and thus eventually reclaimable by GC.  Unlinked nodes
-     * may remain reachable indefinitely from an iterator.
-     *
-     * Physical node unlinking is merely an optimization (albeit a
-     * critical one), and so can be performed at our convenience.  At
-     * any time, the set of live nodes maintained by prev and next
-     * links are identical, that is, the live nodes found via next
-     * links from the first node is equal to the elements found via
-     * prev links from the last node.  However, this is not true for
-     * nodes that have already been logically deleted - such nodes may
-     * be reachable in one direction only.
-     *
-     * 3. "gc-unlinking" takes unlinking further by making active
-     * nodes unreachable from deleted nodes, making it easier for the
-     * GC to reclaim future deleted nodes.  This step makes the data
-     * structure "gc-robust", as first described in detail by Boehm
-     * (http://portal.acm.org/citation.cfm?doid=503272.503282).
-     *
-     * GC-unlinked nodes may remain reachable indefinitely from an
-     * iterator, but unlike unlinked nodes, are never reachable from
-     * head or tail.
-     *
-     * Making the data structure GC-robust will eliminate the risk of
-     * unbounded memory retention with conservative GCs and is likely
-     * to improve performance with generational GCs.
-     *
-     * When a node is dequeued at either end, e.g. via poll(), we would
-     * like to break any references from the node to active nodes.  We
-     * develop further the use of self-links that was very effective in
-     * other concurrent collection classes.  The idea is to replace
-     * prev and next pointers with special values that are interpreted
-     * to mean off-the-list-at-one-end.  These are approximations, but
-     * good enough to preserve the properties we want in our
-     * traversals, e.g. we guarantee that a traversal will never visit
-     * the same element twice, but we don't guarantee whether a
-     * traversal that runs out of elements will be able to see more
-     * elements later after enqueues at that end.  Doing gc-unlinking
-     * safely is particularly tricky, since any node can be in use
-     * indefinitely (for example by an iterator).  We must ensure that
-     * the nodes pointed at by head/tail never get gc-unlinked, since
-     * head/tail are needed to get "back on track" by other nodes that
-     * are gc-unlinked.  gc-unlinking accounts for much of the
-     * implementation complexity.
-     *
-     * Since neither unlinking nor gc-unlinking are necessary for
-     * correctness, there are many implementation choices regarding
-     * frequency (eagerness) of these operations.  Since volatile
-     * reads are likely to be much cheaper than CASes, saving CASes by
-     * unlinking multiple adjacent nodes at a time may be a win.
-     * gc-unlinking can be performed rarely and still be effective,
-     * since it is most important that long chains of deleted nodes
-     * are occasionally broken.
-     *
-     * The actual representation we use is that p.next == p means to
-     * goto the first node (which in turn is reached by following prev
-     * pointers from head), and p.next == null && p.prev == p means
-     * that the iteration is at an end and that p is a (static final)
-     * dummy node, NEXT_TERMINATOR, and not the last active node.
-     * Finishing the iteration when encountering such a TERMINATOR is
-     * good enough for read-only traversals, so such traversals can use
-     * p.next == null as the termination condition.  When we need to
-     * find the last (active) node, for enqueueing a new node, we need
-     * to check whether we have reached a TERMINATOR node; if so,
-     * restart traversal from tail.
-     *
-     * The implementation is completely directionally symmetrical,
-     * except that most public methods that iterate through the list
-     * follow next pointers ("forward" direction).
-     *
-     * We believe (without full proof) that all single-element deque
-     * operations (e.g., addFirst, peekLast, pollLast) are linearizable
-     * (see Herlihy and Shavit's book).  However, some combinations of
-     * operations are known not to be linearizable.  In particular,
-     * when an addFirst(A) is racing with pollFirst() removing B, it is
-     * possible for an observer iterating over the elements to observe
-     * A B C and subsequently observe A C, even though no interior
-     * removes are ever performed.  Nevertheless, iterators behave
-     * reasonably, providing the "weakly consistent" guarantees.
-     *
-     * Empirically, microbenchmarks suggest that this class adds about
-     * 40% overhead relative to ConcurrentLinkedQueue, which feels as
-     * good as we can hope for.
+ * A concurrent doubly-linked list of {@link java.lang.ref.Finalizer} nodes
+ * modeled by {@link java.util.concurrent.ConcurrentLinkedDeque}.
      */
-
-    private static final long serialVersionUID = 876323262645176354L;
+final class FinalizerList {
 
     /**
      * A node from which the first node on list (that is, the unique node p
      * with p.prev == null && p.next != p) can be reached in O(1) time.
      * Invariants:

@@ -257,11 +52,11 @@
      * - head is never gc-unlinked (but may be unlinked)
      * Non-invariants:
      * - head.item may or may not be null
      * - head may not be reachable from the first or last node, or from tail
      */
-    private transient volatile Node<E> head;
+    private volatile Finalizer head;
 
     /**
      * A node from which the last node on list (that is, the unique node p
      * with p.next == null && p.prev != p) can be reached in O(1) time.
      * Invariants:

@@ -271,142 +66,81 @@
      * - tail is never gc-unlinked (but may be unlinked)
      * Non-invariants:
      * - tail.item may or may not be null
      * - tail may not be reachable from the first or last node, or from head
      */
-    private transient volatile Node<E> tail;
+    private volatile Finalizer tail;
 
-    private static final Node<Object> PREV_TERMINATOR, NEXT_TERMINATOR;
-
-    @SuppressWarnings("unchecked")
-    Node<E> prevTerminator() {
-        return (Node<E>) PREV_TERMINATOR;
-    }
-
-    @SuppressWarnings("unchecked")
-    Node<E> nextTerminator() {
-        return (Node<E>) NEXT_TERMINATOR;
-    }
-
-    static final class Node<E> {
-        volatile Node<E> prev;
-        volatile E item;
-        volatile Node<E> next;
-
-        Node() {  // default constructor for NEXT_TERMINATOR, PREV_TERMINATOR
-        }
+    private static final Finalizer PREV_TERMINATOR, NEXT_TERMINATOR;
 
         /**
-         * Constructs a new node.  Uses relaxed write because item can
-         * only be seen after publication via casNext or casPrev.
+     * Links newFinalizer as first or last element, depending on
+     * specified boolean flag.
          */
-        Node(E item) {
-            UNSAFE.putObject(this, itemOffset, item);
-        }
-
-        boolean casItem(E cmp, E val) {
-            return UNSAFE.compareAndSwapObject(this, itemOffset, cmp, val);
-        }
-
-        void lazySetNext(Node<E> val) {
-            UNSAFE.putOrderedObject(this, nextOffset, val);
-        }
-
-        boolean casNext(Node<E> cmp, Node<E> val) {
-            return UNSAFE.compareAndSwapObject(this, nextOffset, cmp, val);
-        }
-
-        void lazySetPrev(Node<E> val) {
-            UNSAFE.putOrderedObject(this, prevOffset, val);
-        }
-
-        boolean casPrev(Node<E> cmp, Node<E> val) {
-            return UNSAFE.compareAndSwapObject(this, prevOffset, cmp, val);
-        }
-
-        // Unsafe mechanics
-
-        private static final sun.misc.Unsafe UNSAFE;
-        private static final long prevOffset;
-        private static final long itemOffset;
-        private static final long nextOffset;
-
-        static {
-            try {
-                UNSAFE = sun.misc.Unsafe.getUnsafe();
-                Class<?> k = Node.class;
-                prevOffset = UNSAFE.objectFieldOffset
-                    (k.getDeclaredField("prev"));
-                itemOffset = UNSAFE.objectFieldOffset
-                    (k.getDeclaredField("item"));
-                nextOffset = UNSAFE.objectFieldOffset
-                    (k.getDeclaredField("next"));
-            } catch (Exception e) {
-                throw new Error(e);
-            }
+    void link(Finalizer newFinalizer, boolean first) {
+        if (first) {
+            linkFirst(newFinalizer);
+        } else {
+            linkLast(newFinalizer);
         }
     }
 
     /**
-     * Links e as first element.
+     * Links newFinalizer as first element.
      */
-    private void linkFirst(E e) {
-        checkNotNull(e);
-        final Node<E> newNode = new Node<E>(e);
+    private void linkFirst(Finalizer newFinalizer) {
 
         restartFromHead:
         for (;;)
-            for (Node<E> h = head, p = h, q;;) {
+            for (Finalizer h = head, p = h, q;;) {
                 if ((q = p.prev) != null &&
                     (q = (p = q).prev) != null)
                     // Check for head updates every other hop.
                     // If p == q, we are sure to follow head instead.
                     p = (h != (h = head)) ? h : q;
                 else if (p.next == p) // PREV_TERMINATOR
                     continue restartFromHead;
                 else {
                     // p is first node
-                    newNode.lazySetNext(p); // CAS piggyback
-                    if (p.casPrev(null, newNode)) {
+                    newFinalizer.lazySetNext(p); // CAS piggyback
+                    if (p.casPrev(null, newFinalizer)) {
                         // Successful CAS is the linearization point
                         // for e to become an element of this deque,
                         // and for newNode to become "live".
                         if (p != h) // hop two nodes at a time
-                            casHead(h, newNode);  // Failure is OK.
+                            casHead(h, newFinalizer);  // Failure is OK.
                         return;
                     }
                     // Lost CAS race to another thread; re-read prev
                 }
             }
     }
 
     /**
-     * Links e as last element.
+     * Links newNode as last element.
      */
-    private void linkLast(E e) {
-        checkNotNull(e);
-        final Node<E> newNode = new Node<E>(e);
+    private void linkLast(Finalizer newFinalizer) {
 
         restartFromTail:
         for (;;)
-            for (Node<E> t = tail, p = t, q;;) {
+            for (Finalizer t = tail, p = t, q;;) {
                 if ((q = p.next) != null &&
                     (q = (p = q).next) != null)
                     // Check for tail updates every other hop.
                     // If p == q, we are sure to follow tail instead.
                     p = (t != (t = tail)) ? t : q;
                 else if (p.prev == p) // NEXT_TERMINATOR
                     continue restartFromTail;
                 else {
                     // p is last node
-                    newNode.lazySetPrev(p); // CAS piggyback
-                    if (p.casNext(null, newNode)) {
+                    newFinalizer.lazySetPrev(p); // CAS piggyback
+                    if (p.casNext(null, newFinalizer)) {
                         // Successful CAS is the linearization point
                         // for e to become an element of this deque,
                         // and for newNode to become "live".
                         if (p != t) // hop two nodes at a time
-                            casTail(t, newNode);  // Failure is OK.
+                            casTail(t, newFinalizer);  // Failure is OK.
                         return;
                     }
                     // Lost CAS race to another thread; re-read next
                 }
             }

@@ -415,18 +149,18 @@
     private static final int HOPS = 2;
 
     /**
      * Unlinks non-null node x.
      */
-    void unlink(Node<E> x) {
+    void unlink(Finalizer x) {
         // assert x != null;
         // assert x.item == null;
         // assert x != PREV_TERMINATOR;
         // assert x != NEXT_TERMINATOR;
 
-        final Node<E> prev = x.prev;
-        final Node<E> next = x.next;
+        final Finalizer prev = x.prev;
+        final Finalizer next = x.next;
         if (prev == null) {
             unlinkFirst(x, next);
         } else if (next == null) {
             unlinkLast(x, prev);
         } else {

@@ -447,22 +181,22 @@
             // leaving active nodes unreachable from x, by rechecking
             // that the status of predecessor and successor are
             // unchanged and ensuring that x is not reachable from
             // tail/head, before setting x's prev/next links to their
             // logical approximate replacements, self/TERMINATOR.
-            Node<E> activePred, activeSucc;
+            Finalizer activePred, activeSucc;
             boolean isFirst, isLast;
             int hops = 1;
 
             // Find active predecessor
-            for (Node<E> p = prev; ; ++hops) {
-                if (p.item != null) {
+            for (Finalizer p = prev; ; ++hops) {
+                if (p.isAlive()) {
                     activePred = p;
                     isFirst = false;
                     break;
                 }
-                Node<E> q = p.prev;
+                Finalizer q = p.prev;
                 if (q == null) {
                     if (p.next == p)
                         return;
                     activePred = p;
                     isFirst = true;

@@ -473,17 +207,17 @@
                 else
                     p = q;
             }
 
             // Find active successor
-            for (Node<E> p = next; ; ++hops) {
-                if (p.item != null) {
+            for (Finalizer p = next; ; ++hops) {
+                if (p.isAlive()) {
                     activeSucc = p;
                     isLast = false;
                     break;
                 }
-                Node<E> q = p.next;
+                Finalizer q = p.next;
                 if (q == null) {
                     if (p.prev == p)
                         return;
                     activeSucc = p;
                     isLast = true;

@@ -510,44 +244,44 @@
             if ((isFirst | isLast) &&
 
                 // Recheck expected state of predecessor and successor
                 (activePred.next == activeSucc) &&
                 (activeSucc.prev == activePred) &&
-                (isFirst ? activePred.prev == null : activePred.item != null) &&
-                (isLast  ? activeSucc.next == null : activeSucc.item != null)) {
+                (isFirst ? activePred.prev == null : activePred.isAlive()) &&
+                (isLast  ? activeSucc.next == null : activeSucc.isAlive())) {
 
                 updateHead(); // Ensure x is not reachable from head
                 updateTail(); // Ensure x is not reachable from tail
 
                 // Finally, actually gc-unlink
-                x.lazySetPrev(isFirst ? prevTerminator() : x);
-                x.lazySetNext(isLast  ? nextTerminator() : x);
+                x.lazySetPrev(isFirst ? PREV_TERMINATOR : x);
+                x.lazySetNext(isLast  ? NEXT_TERMINATOR : x);
             }
         }
     }
 
     /**
      * Unlinks non-null first node.
      */
-    private void unlinkFirst(Node<E> first, Node<E> next) {
+    private void unlinkFirst(Finalizer first, Finalizer next) {
         // assert first != null;
         // assert next != null;
         // assert first.item == null;
-        for (Node<E> o = null, p = next, q;;) {
-            if (p.item != null || (q = p.next) == null) {
+        for (Finalizer o = null, p = next, q;;) {
+            if (p.isAlive() || (q = p.next) == null) {
                 if (o != null && p.prev != p && first.casNext(next, p)) {
                     skipDeletedPredecessors(p);
                     if (first.prev == null &&
-                        (p.next == null || p.item != null) &&
+                        (p.next == null || p.isAlive()) &&
                         p.prev == first) {
 
                         updateHead(); // Ensure o is not reachable from head
                         updateTail(); // Ensure o is not reachable from tail
 
                         // Finally, actually gc-unlink
                         o.lazySetNext(o);
-                        o.lazySetPrev(prevTerminator());
+                        o.lazySetPrev(PREV_TERMINATOR);
                     }
                 }
                 return;
             }
             else if (p == q)

@@ -560,28 +294,28 @@
     }
 
     /**
      * Unlinks non-null last node.
      */
-    private void unlinkLast(Node<E> last, Node<E> prev) {
+    private void unlinkLast(Finalizer last, Finalizer prev) {
         // assert last != null;
         // assert prev != null;
         // assert last.item == null;
-        for (Node<E> o = null, p = prev, q;;) {
-            if (p.item != null || (q = p.prev) == null) {
+        for (Finalizer o = null, p = prev, q;;) {
+            if (p.isAlive() || (q = p.prev) == null) {
                 if (o != null && p.next != p && last.casPrev(prev, p)) {
                     skipDeletedSuccessors(p);
                     if (last.next == null &&
-                        (p.prev == null || p.item != null) &&
+                        (p.prev == null || p.isAlive()) &&
                         p.next == last) {
 
                         updateHead(); // Ensure o is not reachable from head
                         updateTail(); // Ensure o is not reachable from tail
 
                         // Finally, actually gc-unlink
                         o.lazySetPrev(o);
-                        o.lazySetNext(nextTerminator());
+                        o.lazySetNext(NEXT_TERMINATOR);
                     }
                 }
                 return;
             }
             else if (p == q)

@@ -597,16 +331,16 @@
      * Guarantees that any node which was unlinked before a call to
      * this method will be unreachable from head after it returns.
      * Does not guarantee to eliminate slack, only that head will
      * point to a node that was active while this method was running.
      */
-    private final void updateHead() {
+    private void updateHead() {
         // Either head already points to an active node, or we keep
         // trying to cas it to the first node until it does.
-        Node<E> h, p, q;
+        Finalizer h, p, q;
         restartFromHead:
-        while ((h = head).item == null && (p = h.prev) != null) {
+        while ((h = head).isDeleted() && (p = h.prev) != null) {
             for (;;) {
                 if ((q = p.prev) == null ||
                     (q = (p = q).prev) == null) {
                     // It is possible that p is PREV_TERMINATOR,
                     // but if so, the CAS is guaranteed to fail.

@@ -627,16 +361,16 @@
      * Guarantees that any node which was unlinked before a call to
      * this method will be unreachable from tail after it returns.
      * Does not guarantee to eliminate slack, only that tail will
      * point to a node that was active while this method was running.
      */
-    private final void updateTail() {
+    private void updateTail() {
         // Either tail already points to an active node, or we keep
         // trying to cas it to the last node until it does.
-        Node<E> t, p, q;
+        Finalizer t, p, q;
         restartFromTail:
-        while ((t = tail).item == null && (p = t.next) != null) {
+        while ((t = tail).isDeleted() && (p = t.next) != null) {
             for (;;) {
                 if ((q = p.next) == null ||
                     (q = (p = q).next) == null) {
                     // It is possible that p is NEXT_TERMINATOR,
                     // but if so, the CAS is guaranteed to fail.

@@ -651,23 +385,23 @@
                     p = q;
             }
         }
     }
 
-    private void skipDeletedPredecessors(Node<E> x) {
+    private void skipDeletedPredecessors(Finalizer x) {
         whileActive:
         do {
-            Node<E> prev = x.prev;
+            Finalizer prev = x.prev;
             // assert prev != null;
             // assert x != NEXT_TERMINATOR;
             // assert x != PREV_TERMINATOR;
-            Node<E> p = prev;
+            Finalizer p = prev;
             findActive:
             for (;;) {
-                if (p.item != null)
+                if (p.isAlive())
                     break findActive;
-                Node<E> q = p.prev;
+                Finalizer q = p.prev;
                 if (q == null) {
                     if (p.next == p)
                         continue whileActive;
                     break findActive;
                 }

@@ -679,26 +413,26 @@
 
             // found active CAS target
             if (prev == p || x.casPrev(prev, p))
                 return;
 
-        } while (x.item != null || x.next == null);
+        } while (x.isAlive() || x.next == null);
     }
 
-    private void skipDeletedSuccessors(Node<E> x) {
+    private void skipDeletedSuccessors(Finalizer x) {
         whileActive:
         do {
-            Node<E> next = x.next;
+            Finalizer next = x.next;
             // assert next != null;
             // assert x != NEXT_TERMINATOR;
             // assert x != PREV_TERMINATOR;
-            Node<E> p = next;
+            Finalizer p = next;
             findActive:
             for (;;) {
-                if (p.item != null)
+                if (p.isAlive())
                     break findActive;
-                Node<E> q = p.next;
+                Finalizer q = p.next;
                 if (q == null) {
                     if (p.prev == p)
                         continue whileActive;
                     break findActive;
                 }

@@ -710,44 +444,44 @@
 
             // found active CAS target
             if (next == p || x.casNext(next, p))
                 return;
 
-        } while (x.item != null || x.prev == null);
+        } while (x.isAlive() || x.prev == null);
     }
 
     /**
      * Returns the successor of p, or the first node if p.next has been
      * linked to self, which will only be true if traversing with a
      * stale pointer that is now off the list.
      */
-    final Node<E> succ(Node<E> p) {
+    Finalizer succ(Finalizer p) {
         // TODO: should we skip deleted nodes here?
-        Node<E> q = p.next;
+        Finalizer q = p.next;
         return (p == q) ? first() : q;
     }
 
     /**
      * Returns the predecessor of p, or the last node if p.prev has been
      * linked to self, which will only be true if traversing with a
      * stale pointer that is now off the list.
      */
-    final Node<E> pred(Node<E> p) {
-        Node<E> q = p.prev;
+    Finalizer pred(Finalizer p) {
+        Finalizer q = p.prev;
         return (p == q) ? last() : q;
     }
 
     /**
      * Returns the first node, the unique node p for which:
      *     p.prev == null && p.next != p
      * The returned node may or may not be logically deleted.
      * Guarantees that head is set to the returned node.
      */
-    Node<E> first() {
+    Finalizer first() {
         restartFromHead:
         for (;;)
-            for (Node<E> h = head, p = h, q;;) {
+            for (Finalizer h = head, p = h, q;;) {
                 if ((q = p.prev) != null &&
                     (q = (p = q).prev) != null)
                     // Check for head updates every other hop.
                     // If p == q, we are sure to follow head instead.
                     p = (h != (h = head)) ? h : q;

@@ -765,14 +499,14 @@
      * Returns the last node, the unique node p for which:
      *     p.next == null && p.prev != p
      * The returned node may or may not be logically deleted.
      * Guarantees that tail is set to the returned node.
      */
-    Node<E> last() {
+    Finalizer last() {
         restartFromTail:
         for (;;)
-            for (Node<E> t = tail, p = t, q;;) {
+            for (Finalizer t = tail, p = t, q;;) {
                 if ((q = p.next) != null &&
                     (q = (p = q).next) != null)
                     // Check for tail updates every other hop.
                     // If p == q, we are sure to follow tail instead.
                     p = (t != (t = tail)) ? t : q;

@@ -784,803 +518,42 @@
                 else
                     continue restartFromTail;
             }
     }
 
-    // Minor convenience utilities
-
-    /**
-     * Throws NullPointerException if argument is null.
-     *
-     * @param v the element
-     */
-    private static void checkNotNull(Object v) {
-        if (v == null)
-            throw new NullPointerException();
-    }
-
-    /**
-     * Returns element unless it is null, in which case throws
-     * NoSuchElementException.
-     *
-     * @param v the element
-     * @return the element
-     */
-    private E screenNullResult(E v) {
-        if (v == null)
-            throw new NoSuchElementException();
-        return v;
-    }
-
-    /**
-     * Creates an array list and fills it with elements of this list.
-     * Used by toArray.
-     *
-     * @return the array list
-     */
-    private ArrayList<E> toArrayList() {
-        ArrayList<E> list = new ArrayList<E>();
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null)
-                list.add(item);
-        }
-        return list;
-    }
-
-    /**
-     * Constructs an empty deque.
-     */
-    public ConcurrentLinkedDeque() {
-        head = tail = new Node<E>(null);
-    }
-
     /**
-     * Constructs a deque initially containing the elements of
-     * the given collection, added in traversal order of the
-     * collection's iterator.
-     *
-     * @param c the collection of elements to initially contain
-     * @throws NullPointerException if the specified collection or any
-     *         of its elements are null
+     * Constructs an empty list.
      */
-    public ConcurrentLinkedDeque(Collection<? extends E> c) {
-        // Copy c into a private chain of Nodes
-        Node<E> h = null, t = null;
-        for (E e : c) {
-            checkNotNull(e);
-            Node<E> newNode = new Node<E>(e);
-            if (h == null)
-                h = t = newNode;
-            else {
-                t.lazySetNext(newNode);
-                newNode.lazySetPrev(t);
-                t = newNode;
-            }
-        }
-        initHeadTail(h, t);
-    }
-
-    /**
-     * Initializes head and tail, ensuring invariants hold.
-     */
-    private void initHeadTail(Node<E> h, Node<E> t) {
-        if (h == t) {
-            if (h == null)
-                h = t = new Node<E>(null);
-            else {
-                // Avoid edge case of a single Node with non-null item.
-                Node<E> newNode = new Node<E>(null);
-                t.lazySetNext(newNode);
-                newNode.lazySetPrev(t);
-                t = newNode;
-            }
-        }
-        head = h;
-        tail = t;
-    }
-
-    /**
-     * Inserts the specified element at the front of this deque.
-     * As the deque is unbounded, this method will never throw
-     * {@link IllegalStateException}.
-     *
-     * @throws NullPointerException if the specified element is null
-     */
-    public void addFirst(E e) {
-        linkFirst(e);
-    }
-
-    /**
-     * Inserts the specified element at the end of this deque.
-     * As the deque is unbounded, this method will never throw
-     * {@link IllegalStateException}.
-     *
-     * <p>This method is equivalent to {@link #add}.
-     *
-     * @throws NullPointerException if the specified element is null
-     */
-    public void addLast(E e) {
-        linkLast(e);
-    }
-
-    /**
-     * Inserts the specified element at the front of this deque.
-     * As the deque is unbounded, this method will never return {@code false}.
-     *
-     * @return {@code true} (as specified by {@link Deque#offerFirst})
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean offerFirst(E e) {
-        linkFirst(e);
-        return true;
-    }
-
-    /**
-     * Inserts the specified element at the end of this deque.
-     * As the deque is unbounded, this method will never return {@code false}.
-     *
-     * <p>This method is equivalent to {@link #add}.
-     *
-     * @return {@code true} (as specified by {@link Deque#offerLast})
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean offerLast(E e) {
-        linkLast(e);
-        return true;
-    }
-
-    public E peekFirst() {
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null)
-                return item;
-        }
-        return null;
-    }
-
-    public E peekLast() {
-        for (Node<E> p = last(); p != null; p = pred(p)) {
-            E item = p.item;
-            if (item != null)
-                return item;
-        }
-        return null;
-    }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E getFirst() {
-        return screenNullResult(peekFirst());
-    }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E getLast() {
-        return screenNullResult(peekLast());
-    }
-
-    public E pollFirst() {
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null && p.casItem(item, null)) {
-                unlink(p);
-                return item;
-            }
-        }
-        return null;
-    }
-
-    public E pollLast() {
-        for (Node<E> p = last(); p != null; p = pred(p)) {
-            E item = p.item;
-            if (item != null && p.casItem(item, null)) {
-                unlink(p);
-                return item;
-            }
-        }
-        return null;
-    }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E removeFirst() {
-        return screenNullResult(pollFirst());
-    }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E removeLast() {
-        return screenNullResult(pollLast());
-    }
-
-    // *** Queue and stack methods ***
-
-    /**
-     * Inserts the specified element at the tail of this deque.
-     * As the deque is unbounded, this method will never return {@code false}.
-     *
-     * @return {@code true} (as specified by {@link Queue#offer})
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean offer(E e) {
-        return offerLast(e);
-    }
-
-    /**
-     * Inserts the specified element at the tail of this deque.
-     * As the deque is unbounded, this method will never throw
-     * {@link IllegalStateException} or return {@code false}.
-     *
-     * @return {@code true} (as specified by {@link Collection#add})
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean add(E e) {
-        return offerLast(e);
-    }
-
-    public E poll()           { return pollFirst(); }
-    public E peek()           { return peekFirst(); }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E remove()         { return removeFirst(); }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E pop()            { return removeFirst(); }
-
-    /**
-     * @throws NoSuchElementException {@inheritDoc}
-     */
-    public E element()        { return getFirst(); }
-
-    /**
-     * @throws NullPointerException {@inheritDoc}
-     */
-    public void push(E e)     { addFirst(e); }
-
-    /**
-     * Removes the first element {@code e} such that
-     * {@code o.equals(e)}, if such an element exists in this deque.
-     * If the deque does not contain the element, it is unchanged.
-     *
-     * @param o element to be removed from this deque, if present
-     * @return {@code true} if the deque contained the specified element
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean removeFirstOccurrence(Object o) {
-        checkNotNull(o);
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null && o.equals(item) && p.casItem(item, null)) {
-                unlink(p);
-                return true;
-            }
-        }
-        return false;
+    FinalizerList() {
+        head = tail = new Finalizer();
     }
 
-    /**
-     * Removes the last element {@code e} such that
-     * {@code o.equals(e)}, if such an element exists in this deque.
-     * If the deque does not contain the element, it is unchanged.
-     *
-     * @param o element to be removed from this deque, if present
-     * @return {@code true} if the deque contained the specified element
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean removeLastOccurrence(Object o) {
-        checkNotNull(o);
-        for (Node<E> p = last(); p != null; p = pred(p)) {
-            E item = p.item;
-            if (item != null && o.equals(item) && p.casItem(item, null)) {
-                unlink(p);
-                return true;
-            }
-        }
-        return false;
-    }
-
-    /**
-     * Returns {@code true} if this deque contains at least one
-     * element {@code e} such that {@code o.equals(e)}.
-     *
-     * @param o element whose presence in this deque is to be tested
-     * @return {@code true} if this deque contains the specified element
-     */
-    public boolean contains(Object o) {
-        if (o == null) return false;
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null && o.equals(item))
-                return true;
-        }
-        return false;
-    }
-
-    /**
-     * Returns {@code true} if this collection contains no elements.
-     *
-     * @return {@code true} if this collection contains no elements
-     */
-    public boolean isEmpty() {
-        return peekFirst() == null;
-    }
-
-    /**
-     * Returns the number of elements in this deque.  If this deque
-     * contains more than {@code Integer.MAX_VALUE} elements, it
-     * returns {@code Integer.MAX_VALUE}.
-     *
-     * <p>Beware that, unlike in most collections, this method is
-     * <em>NOT</em> a constant-time operation. Because of the
-     * asynchronous nature of these deques, determining the current
-     * number of elements requires traversing them all to count them.
-     * Additionally, it is possible for the size to change during
-     * execution of this method, in which case the returned result
-     * will be inaccurate. Thus, this method is typically not very
-     * useful in concurrent applications.
-     *
-     * @return the number of elements in this deque
-     */
-    public int size() {
-        int count = 0;
-        for (Node<E> p = first(); p != null; p = succ(p))
-            if (p.item != null)
-                // Collection.size() spec says to max out
-                if (++count == Integer.MAX_VALUE)
-                    break;
-        return count;
-    }
-
-    /**
-     * Removes the first element {@code e} such that
-     * {@code o.equals(e)}, if such an element exists in this deque.
-     * If the deque does not contain the element, it is unchanged.
-     *
-     * @param o element to be removed from this deque, if present
-     * @return {@code true} if the deque contained the specified element
-     * @throws NullPointerException if the specified element is null
-     */
-    public boolean remove(Object o) {
-        return removeFirstOccurrence(o);
-    }
-
-    /**
-     * Appends all of the elements in the specified collection to the end of
-     * this deque, in the order that they are returned by the specified
-     * collection's iterator.  Attempts to {@code addAll} of a deque to
-     * itself result in {@code IllegalArgumentException}.
-     *
-     * @param c the elements to be inserted into this deque
-     * @return {@code true} if this deque changed as a result of the call
-     * @throws NullPointerException if the specified collection or any
-     *         of its elements are null
-     * @throws IllegalArgumentException if the collection is this deque
-     */
-    public boolean addAll(Collection<? extends E> c) {
-        if (c == this)
-            // As historically specified in AbstractQueue#addAll
-            throw new IllegalArgumentException();
-
-        // Copy c into a private chain of Nodes
-        Node<E> beginningOfTheEnd = null, last = null;
-        for (E e : c) {
-            checkNotNull(e);
-            Node<E> newNode = new Node<E>(e);
-            if (beginningOfTheEnd == null)
-                beginningOfTheEnd = last = newNode;
-            else {
-                last.lazySetNext(newNode);
-                newNode.lazySetPrev(last);
-                last = newNode;
-            }
-        }
-        if (beginningOfTheEnd == null)
-            return false;
-
-        // Atomically append the chain at the tail of this collection
-        restartFromTail:
-        for (;;)
-            for (Node<E> t = tail, p = t, q;;) {
-                if ((q = p.next) != null &&
-                    (q = (p = q).next) != null)
-                    // Check for tail updates every other hop.
-                    // If p == q, we are sure to follow tail instead.
-                    p = (t != (t = tail)) ? t : q;
-                else if (p.prev == p) // NEXT_TERMINATOR
-                    continue restartFromTail;
-                else {
-                    // p is last node
-                    beginningOfTheEnd.lazySetPrev(p); // CAS piggyback
-                    if (p.casNext(null, beginningOfTheEnd)) {
-                        // Successful CAS is the linearization point
-                        // for all elements to be added to this deque.
-                        if (!casTail(t, last)) {
-                            // Try a little harder to update tail,
-                            // since we may be adding many elements.
-                            t = tail;
-                            if (last.next == null)
-                                casTail(t, last);
-                        }
-                        return true;
-                    }
-                    // Lost CAS race to another thread; re-read next
-                }
-            }
-    }
-
-    /**
-     * Removes all of the elements from this deque.
-     */
-    public void clear() {
-        while (pollFirst() != null)
-            ;
-    }
-
-    /**
-     * Returns an array containing all of the elements in this deque, in
-     * proper sequence (from first to last element).
-     *
-     * <p>The returned array will be "safe" in that no references to it are
-     * maintained by this deque.  (In other words, this method must allocate
-     * a new array).  The caller is thus free to modify the returned array.
-     *
-     * <p>This method acts as bridge between array-based and collection-based
-     * APIs.
-     *
-     * @return an array containing all of the elements in this deque
-     */
-    public Object[] toArray() {
-        return toArrayList().toArray();
-    }
-
-    /**
-     * Returns an array containing all of the elements in this deque,
-     * in proper sequence (from first to last element); the runtime
-     * type of the returned array is that of the specified array.  If
-     * the deque fits in the specified array, it is returned therein.
-     * Otherwise, a new array is allocated with the runtime type of
-     * the specified array and the size of this deque.
-     *
-     * <p>If this deque fits in the specified array with room to spare
-     * (i.e., the array has more elements than this deque), the element in
-     * the array immediately following the end of the deque is set to
-     * {@code null}.
-     *
-     * <p>Like the {@link #toArray()} method, this method acts as
-     * bridge between array-based and collection-based APIs.  Further,
-     * this method allows precise control over the runtime type of the
-     * output array, and may, under certain circumstances, be used to
-     * save allocation costs.
-     *
-     * <p>Suppose {@code x} is a deque known to contain only strings.
-     * The following code can be used to dump the deque into a newly
-     * allocated array of {@code String}:
-     *
-     *  <pre> {@code String[] y = x.toArray(new String[0]);}</pre>
-     *
-     * Note that {@code toArray(new Object[0])} is identical in function to
-     * {@code toArray()}.
-     *
-     * @param a the array into which the elements of the deque are to
-     *          be stored, if it is big enough; otherwise, a new array of the
-     *          same runtime type is allocated for this purpose
-     * @return an array containing all of the elements in this deque
-     * @throws ArrayStoreException if the runtime type of the specified array
-     *         is not a supertype of the runtime type of every element in
-     *         this deque
-     * @throws NullPointerException if the specified array is null
-     */
-    public <T> T[] toArray(T[] a) {
-        return toArrayList().toArray(a);
-    }
-
-    /**
-     * Returns an iterator over the elements in this deque in proper sequence.
-     * The elements will be returned in order from first (head) to last (tail).
-     *
-     * <p>The returned iterator is
-     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
-     *
-     * @return an iterator over the elements in this deque in proper sequence
-     */
-    public Iterator<E> iterator() {
-        return new Itr();
-    }
-
-    /**
-     * Returns an iterator over the elements in this deque in reverse
-     * sequential order.  The elements will be returned in order from
-     * last (tail) to first (head).
-     *
-     * <p>The returned iterator is
-     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
-     *
-     * @return an iterator over the elements in this deque in reverse order
-     */
-    public Iterator<E> descendingIterator() {
-        return new DescendingItr();
-    }
-
-    private abstract class AbstractItr implements Iterator<E> {
-        /**
-         * Next node to return item for.
-         */
-        private Node<E> nextNode;
-
-        /**
-         * nextItem holds on to item fields because once we claim
-         * that an element exists in hasNext(), we must return it in
-         * the following next() call even if it was in the process of
-         * being removed when hasNext() was called.
-         */
-        private E nextItem;
-
-        /**
-         * Node returned by most recent call to next. Needed by remove.
-         * Reset to null if this element is deleted by a call to remove.
-         */
-        private Node<E> lastRet;
-
-        abstract Node<E> startNode();
-        abstract Node<E> nextNode(Node<E> p);
-
-        AbstractItr() {
-            advance();
-        }
-
-        /**
-         * Sets nextNode and nextItem to next valid node, or to null
-         * if no such.
-         */
-        private void advance() {
-            lastRet = nextNode;
-
-            Node<E> p = (nextNode == null) ? startNode() : nextNode(nextNode);
-            for (;; p = nextNode(p)) {
-                if (p == null) {
-                    // p might be active end or TERMINATOR node; both are OK
-                    nextNode = null;
-                    nextItem = null;
-                    break;
-                }
-                E item = p.item;
-                if (item != null) {
-                    nextNode = p;
-                    nextItem = item;
-                    break;
-                }
-            }
-        }
-
-        public boolean hasNext() {
-            return nextItem != null;
-        }
-
-        public E next() {
-            E item = nextItem;
-            if (item == null) throw new NoSuchElementException();
-            advance();
-            return item;
-        }
-
-        public void remove() {
-            Node<E> l = lastRet;
-            if (l == null) throw new IllegalStateException();
-            l.item = null;
-            unlink(l);
-            lastRet = null;
-        }
-    }
-
-    /** Forward iterator */
-    private class Itr extends AbstractItr {
-        Node<E> startNode() { return first(); }
-        Node<E> nextNode(Node<E> p) { return succ(p); }
-    }
-
-    /** Descending iterator */
-    private class DescendingItr extends AbstractItr {
-        Node<E> startNode() { return last(); }
-        Node<E> nextNode(Node<E> p) { return pred(p); }
-    }
-
-    /** A customized variant of Spliterators.IteratorSpliterator */
-    static final class CLDSpliterator<E> implements Spliterator<E> {
-        static final int MAX_BATCH = 1 << 25;  // max batch array size;
-        final ConcurrentLinkedDeque<E> queue;
-        Node<E> current;    // current node; null until initialized
-        int batch;          // batch size for splits
-        boolean exhausted;  // true when no more nodes
-        CLDSpliterator(ConcurrentLinkedDeque<E> queue) {
-            this.queue = queue;
-        }
-
-        public Spliterator<E> trySplit() {
-            Node<E> p;
-            final ConcurrentLinkedDeque<E> q = this.queue;
-            int b = batch;
-            int n = (b <= 0) ? 1 : (b >= MAX_BATCH) ? MAX_BATCH : b + 1;
-            if (!exhausted &&
-                ((p = current) != null || (p = q.first()) != null)) {
-                if (p.item == null && p == (p = p.next))
-                    current = p = q.first();
-                if (p != null && p.next != null) {
-                    Object[] a = new Object[n];
-                    int i = 0;
-                    do {
-                        if ((a[i] = p.item) != null)
-                            ++i;
-                        if (p == (p = p.next))
-                            p = q.first();
-                    } while (p != null && i < n);
-                    if ((current = p) == null)
-                        exhausted = true;
-                    if (i > 0) {
-                        batch = i;
-                        return Spliterators.spliterator
-                            (a, 0, i, Spliterator.ORDERED | Spliterator.NONNULL |
-                             Spliterator.CONCURRENT);
-                    }
-                }
-            }
-            return null;
-        }
-
-        public void forEachRemaining(Consumer<? super E> action) {
-            Node<E> p;
-            if (action == null) throw new NullPointerException();
-            final ConcurrentLinkedDeque<E> q = this.queue;
-            if (!exhausted &&
-                ((p = current) != null || (p = q.first()) != null)) {
-                exhausted = true;
-                do {
-                    E e = p.item;
-                    if (p == (p = p.next))
-                        p = q.first();
-                    if (e != null)
-                        action.accept(e);
-                } while (p != null);
-            }
-        }
-
-        public boolean tryAdvance(Consumer<? super E> action) {
-            Node<E> p;
-            if (action == null) throw new NullPointerException();
-            final ConcurrentLinkedDeque<E> q = this.queue;
-            if (!exhausted &&
-                ((p = current) != null || (p = q.first()) != null)) {
-                E e;
-                do {
-                    e = p.item;
-                    if (p == (p = p.next))
-                        p = q.first();
-                } while (e == null && p != null);
-                if ((current = p) == null)
-                    exhausted = true;
-                if (e != null) {
-                    action.accept(e);
-                    return true;
-                }
-            }
-            return false;
-        }
-
-        public long estimateSize() { return Long.MAX_VALUE; }
-
-        public int characteristics() {
-            return Spliterator.ORDERED | Spliterator.NONNULL |
-                Spliterator.CONCURRENT;
-        }
-    }
-
-    /**
-     * Returns a {@link Spliterator} over the elements in this deque.
-     *
-     * <p>The returned spliterator is
-     * <a href="package-summary.html#Weakly"><i>weakly consistent</i></a>.
-     *
-     * <p>The {@code Spliterator} reports {@link Spliterator#CONCURRENT},
-     * {@link Spliterator#ORDERED}, and {@link Spliterator#NONNULL}.
-     *
-     * @implNote
-     * The {@code Spliterator} implements {@code trySplit} to permit limited
-     * parallelism.
-     *
-     * @return a {@code Spliterator} over the elements in this deque
-     * @since 1.8
-     */
-    public Spliterator<E> spliterator() {
-        return new CLDSpliterator<E>(this);
-    }
-
-    /**
-     * Saves this deque to a stream (that is, serializes it).
-     *
-     * @param s the stream
-     * @throws java.io.IOException if an I/O error occurs
-     * @serialData All of the elements (each an {@code E}) in
-     * the proper order, followed by a null
-     */
-    private void writeObject(java.io.ObjectOutputStream s)
-        throws java.io.IOException {
-
-        // Write out any hidden stuff
-        s.defaultWriteObject();
-
-        // Write out all elements in the proper order.
-        for (Node<E> p = first(); p != null; p = succ(p)) {
-            E item = p.item;
-            if (item != null)
-                s.writeObject(item);
-        }
-
-        // Use trailing null as sentinel
-        s.writeObject(null);
-    }
-
-    /**
-     * Reconstitutes this deque from a stream (that is, deserializes it).
-     * @param s the stream
-     * @throws ClassNotFoundException if the class of a serialized object
-     *         could not be found
-     * @throws java.io.IOException if an I/O error occurs
-     */
-    private void readObject(java.io.ObjectInputStream s)
-        throws java.io.IOException, ClassNotFoundException {
-        s.defaultReadObject();
-
-        // Read in elements until trailing null sentinel found
-        Node<E> h = null, t = null;
-        Object item;
-        while ((item = s.readObject()) != null) {
-            @SuppressWarnings("unchecked")
-            Node<E> newNode = new Node<E>((E) item);
-            if (h == null)
-                h = t = newNode;
-            else {
-                t.lazySetNext(newNode);
-                newNode.lazySetPrev(t);
-                t = newNode;
-            }
-        }
-        initHeadTail(h, t);
-    }
+    // Unsafe mechanics
 
-    private boolean casHead(Node<E> cmp, Node<E> val) {
-        return UNSAFE.compareAndSwapObject(this, headOffset, cmp, val);
+    private boolean casHead(Finalizer cmp, Finalizer val) {
+        return UNSAFE.compareAndSwapObject(this, HEAD, cmp, val);
     }
 
-    private boolean casTail(Node<E> cmp, Node<E> val) {
-        return UNSAFE.compareAndSwapObject(this, tailOffset, cmp, val);
+    private boolean casTail(Finalizer cmp, Finalizer val) {
+        return UNSAFE.compareAndSwapObject(this, TAIL, cmp, val);
     }
 
-    // Unsafe mechanics
-
     private static final sun.misc.Unsafe UNSAFE;
-    private static final long headOffset;
-    private static final long tailOffset;
+    private static final long HEAD;
+    private static final long TAIL;
     static {
-        PREV_TERMINATOR = new Node<Object>();
+        PREV_TERMINATOR = new Finalizer();
         PREV_TERMINATOR.next = PREV_TERMINATOR;
-        NEXT_TERMINATOR = new Node<Object>();
+        NEXT_TERMINATOR = new Finalizer();
         NEXT_TERMINATOR.prev = NEXT_TERMINATOR;
         try {
             UNSAFE = sun.misc.Unsafe.getUnsafe();
-            Class<?> k = ConcurrentLinkedDeque.class;
-            headOffset = UNSAFE.objectFieldOffset
-                (k.getDeclaredField("head"));
-            tailOffset = UNSAFE.objectFieldOffset
-                (k.getDeclaredField("tail"));
+            Class<?> flc = FinalizerList.class;
+            HEAD = UNSAFE.objectFieldOffset
+                (flc.getDeclaredField("head"));
+            TAIL = UNSAFE.objectFieldOffset
+                (flc.getDeclaredField("tail"));
         } catch (Exception e) {
             throw new Error(e);
         }
     }
 }
< prev index next >