1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "libadt/dict.hpp"
  32 #include "memory/oopFactory.hpp"
  33 #include "memory/resourceArea.hpp"
  34 #include "oops/instanceKlass.hpp"
  35 #include "oops/instanceMirrorKlass.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "oops/typeArrayKlass.hpp"
  38 #include "opto/matcher.hpp"
  39 #include "opto/node.hpp"
  40 #include "opto/opcodes.hpp"
  41 #include "opto/type.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 // Dictionary of types shared among compilations.
  48 Dict* Type::_shared_type_dict = NULL;
  49 
  50 // Array which maps compiler types to Basic Types
  51 const Type::TypeInfo Type::_type_info[Type::lastype] = {
  52   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  53   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  54   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  55   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  56   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  57   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  58   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  59   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  60   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  61   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  62 
  63 #ifdef SPARC
  64   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  65   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  66   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  67   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  68   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  69 #elif defined(PPC64)
  70   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  71   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  72   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  73   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  74   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  75 #elif defined(S390)
  76   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  77   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  78   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  79   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  80   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
  81 #else // all other
  82   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  83   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  84   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  85   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  86   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
  87 #endif
  88   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  89   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  90   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  91   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  92   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  93   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  94   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  95   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  96   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  97   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  98   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  99   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 100   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 101   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 102   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 103   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 104   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 105   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 106 };
 107 
 108 // Map ideal registers (machine types) to ideal types
 109 const Type *Type::mreg2type[_last_machine_leaf];
 110 
 111 // Map basic types to canonical Type* pointers.
 112 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 113 
 114 // Map basic types to constant-zero Types.
 115 const Type* Type::            _zero_type[T_CONFLICT+1];
 116 
 117 // Map basic types to array-body alias types.
 118 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 119 
 120 //=============================================================================
 121 // Convenience common pre-built types.
 122 const Type *Type::ABIO;         // State-of-machine only
 123 const Type *Type::BOTTOM;       // All values
 124 const Type *Type::CONTROL;      // Control only
 125 const Type *Type::DOUBLE;       // All doubles
 126 const Type *Type::FLOAT;        // All floats
 127 const Type *Type::HALF;         // Placeholder half of doublewide type
 128 const Type *Type::MEMORY;       // Abstract store only
 129 const Type *Type::RETURN_ADDRESS;
 130 const Type *Type::TOP;          // No values in set
 131 
 132 //------------------------------get_const_type---------------------------
 133 const Type* Type::get_const_type(ciType* type) {
 134   if (type == NULL) {
 135     return NULL;
 136   } else if (type->is_primitive_type()) {
 137     return get_const_basic_type(type->basic_type());
 138   } else {
 139     return TypeOopPtr::make_from_klass(type->as_klass());
 140   }
 141 }
 142 
 143 //---------------------------array_element_basic_type---------------------------------
 144 // Mapping to the array element's basic type.
 145 BasicType Type::array_element_basic_type() const {
 146   BasicType bt = basic_type();
 147   if (bt == T_INT) {
 148     if (this == TypeInt::INT)   return T_INT;
 149     if (this == TypeInt::CHAR)  return T_CHAR;
 150     if (this == TypeInt::BYTE)  return T_BYTE;
 151     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 152     if (this == TypeInt::SHORT) return T_SHORT;
 153     return T_VOID;
 154   }
 155   return bt;
 156 }
 157 
 158 // For two instance arrays of same dimension, return the base element types.
 159 // Otherwise or if the arrays have different dimensions, return NULL.
 160 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 161                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 162 
 163   if (e1) *e1 = NULL;
 164   if (e2) *e2 = NULL;
 165   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 166   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 167 
 168   if (a1tap != NULL && a2tap != NULL) {
 169     // Handle multidimensional arrays
 170     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 171     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 172     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 173       a1tap = a1tp->is_aryptr();
 174       a2tap = a2tp->is_aryptr();
 175       a1tp = a1tap->elem()->make_ptr();
 176       a2tp = a2tap->elem()->make_ptr();
 177     }
 178     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 179       if (e1) *e1 = a1tp->is_instptr();
 180       if (e2) *e2 = a2tp->is_instptr();
 181     }
 182   }
 183 }
 184 
 185 //---------------------------get_typeflow_type---------------------------------
 186 // Import a type produced by ciTypeFlow.
 187 const Type* Type::get_typeflow_type(ciType* type) {
 188   switch (type->basic_type()) {
 189 
 190   case ciTypeFlow::StateVector::T_BOTTOM:
 191     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 192     return Type::BOTTOM;
 193 
 194   case ciTypeFlow::StateVector::T_TOP:
 195     assert(type == ciTypeFlow::StateVector::top_type(), "");
 196     return Type::TOP;
 197 
 198   case ciTypeFlow::StateVector::T_NULL:
 199     assert(type == ciTypeFlow::StateVector::null_type(), "");
 200     return TypePtr::NULL_PTR;
 201 
 202   case ciTypeFlow::StateVector::T_LONG2:
 203     // The ciTypeFlow pass pushes a long, then the half.
 204     // We do the same.
 205     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 206     return TypeInt::TOP;
 207 
 208   case ciTypeFlow::StateVector::T_DOUBLE2:
 209     // The ciTypeFlow pass pushes double, then the half.
 210     // Our convention is the same.
 211     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 212     return Type::TOP;
 213 
 214   case T_ADDRESS:
 215     assert(type->is_return_address(), "");
 216     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 217 
 218   default:
 219     // make sure we did not mix up the cases:
 220     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 221     assert(type != ciTypeFlow::StateVector::top_type(), "");
 222     assert(type != ciTypeFlow::StateVector::null_type(), "");
 223     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 224     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 225     assert(!type->is_return_address(), "");
 226 
 227     return Type::get_const_type(type);
 228   }
 229 }
 230 
 231 
 232 //-----------------------make_from_constant------------------------------------
 233 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 234                                      int stable_dimension, bool is_narrow_oop,
 235                                      bool is_autobox_cache) {
 236   switch (constant.basic_type()) {
 237     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 238     case T_CHAR:     return TypeInt::make(constant.as_char());
 239     case T_BYTE:     return TypeInt::make(constant.as_byte());
 240     case T_SHORT:    return TypeInt::make(constant.as_short());
 241     case T_INT:      return TypeInt::make(constant.as_int());
 242     case T_LONG:     return TypeLong::make(constant.as_long());
 243     case T_FLOAT:    return TypeF::make(constant.as_float());
 244     case T_DOUBLE:   return TypeD::make(constant.as_double());
 245     case T_ARRAY:
 246     case T_OBJECT: {
 247         // cases:
 248         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 249         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 250         // An oop is not scavengable if it is in the perm gen.
 251         const Type* con_type = NULL;
 252         ciObject* oop_constant = constant.as_object();
 253         if (oop_constant->is_null_object()) {
 254           con_type = Type::get_zero_type(T_OBJECT);
 255         } else {
 256           guarantee(require_constant || oop_constant->should_be_constant(), "con_type must get computed");
 257           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 258           if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 259             con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 260           }
 261           if (stable_dimension > 0) {
 262             assert(FoldStableValues, "sanity");
 263             assert(!con_type->is_zero_type(), "default value for stable field");
 264             con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 265           }
 266         }
 267         if (is_narrow_oop) {
 268           con_type = con_type->make_narrowoop();
 269         }
 270         return con_type;
 271       }
 272     case T_ILLEGAL:
 273       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 274       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 275       return NULL;
 276     default:
 277       // Fall through to failure
 278       return NULL;
 279   }
 280 }
 281 
 282 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 283   BasicType conbt = con.basic_type();
 284   switch (conbt) {
 285     case T_BOOLEAN: conbt = T_BYTE;   break;
 286     case T_ARRAY:   conbt = T_OBJECT; break;
 287     default:                          break;
 288   }
 289   switch (loadbt) {
 290     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 291     case T_NARROWOOP: loadbt = T_OBJECT; break;
 292     case T_ARRAY:     loadbt = T_OBJECT; break;
 293     case T_ADDRESS:   loadbt = T_OBJECT; break;
 294     default:                             break;
 295   }
 296   if (conbt == loadbt) {
 297     if (is_unsigned && conbt == T_BYTE) {
 298       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 299       return ciConstant(T_INT, con.as_int() & 0xFF);
 300     } else {
 301       return con;
 302     }
 303   }
 304   if (conbt == T_SHORT && loadbt == T_CHAR) {
 305     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 306     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 307   }
 308   return ciConstant(); // T_ILLEGAL
 309 }
 310 
 311 // Try to constant-fold a stable array element.
 312 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 313                                                    BasicType loadbt, bool is_unsigned_load) {
 314   // Decode the results of GraphKit::array_element_address.
 315   ciConstant element_value = array->element_value_by_offset(off);
 316   if (element_value.basic_type() == T_ILLEGAL) {
 317     return NULL; // wrong offset
 318   }
 319   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 320 
 321   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 322          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 323 
 324   if (con.is_valid() &&          // not a mismatched access
 325       !con.is_null_or_zero()) {  // not a default value
 326     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 327     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 328   }
 329   return NULL;
 330 }
 331 
 332 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 333   ciField* field;
 334   ciType* type = holder->java_mirror_type();
 335   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 336     // Static field
 337     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 338   } else {
 339     // Instance field
 340     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 341   }
 342   if (field == NULL) {
 343     return NULL; // Wrong offset
 344   }
 345   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 346 }
 347 
 348 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 349                                            BasicType loadbt, bool is_unsigned_load) {
 350   if (!field->is_constant()) {
 351     return NULL; // Non-constant field
 352   }
 353   ciConstant field_value;
 354   if (field->is_static()) {
 355     // final static field
 356     field_value = field->constant_value();
 357   } else if (holder != NULL) {
 358     // final or stable non-static field
 359     // Treat final non-static fields of trusted classes (classes in
 360     // java.lang.invoke and sun.invoke packages and subpackages) as
 361     // compile time constants.
 362     field_value = field->constant_value_of(holder);
 363   }
 364   if (!field_value.is_valid()) {
 365     return NULL; // Not a constant
 366   }
 367 
 368   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 369 
 370   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 371          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 372 
 373   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 374   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 375   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 376 
 377   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 378                                             stable_dimension, is_narrow_oop,
 379                                             field->is_autobox_cache());
 380   if (con_type != NULL && field->is_call_site_target()) {
 381     ciCallSite* call_site = holder->as_call_site();
 382     if (!call_site->is_constant_call_site()) {
 383       ciMethodHandle* target = con.as_object()->as_method_handle();
 384       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 385     }
 386   }
 387   return con_type;
 388 }
 389 
 390 //------------------------------make-------------------------------------------
 391 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 392 // and look for an existing copy in the type dictionary.
 393 const Type *Type::make( enum TYPES t ) {
 394   return (new Type(t))->hashcons();
 395 }
 396 
 397 //------------------------------cmp--------------------------------------------
 398 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 399   if( t1->_base != t2->_base )
 400     return 1;                   // Missed badly
 401   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 402   return !t1->eq(t2);           // Return ZERO if equal
 403 }
 404 
 405 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 406   if (!include_speculative) {
 407     return remove_speculative();
 408   }
 409   return this;
 410 }
 411 
 412 //------------------------------hash-------------------------------------------
 413 int Type::uhash( const Type *const t ) {
 414   return t->hash();
 415 }
 416 
 417 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 418 
 419 //--------------------------Initialize_shared----------------------------------
 420 void Type::Initialize_shared(Compile* current) {
 421   // This method does not need to be locked because the first system
 422   // compilations (stub compilations) occur serially.  If they are
 423   // changed to proceed in parallel, then this section will need
 424   // locking.
 425 
 426   Arena* save = current->type_arena();
 427   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 428 
 429   current->set_type_arena(shared_type_arena);
 430   _shared_type_dict =
 431     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 432                                   shared_type_arena, 128 );
 433   current->set_type_dict(_shared_type_dict);
 434 
 435   // Make shared pre-built types.
 436   CONTROL = make(Control);      // Control only
 437   TOP     = make(Top);          // No values in set
 438   MEMORY  = make(Memory);       // Abstract store only
 439   ABIO    = make(Abio);         // State-of-machine only
 440   RETURN_ADDRESS=make(Return_Address);
 441   FLOAT   = make(FloatBot);     // All floats
 442   DOUBLE  = make(DoubleBot);    // All doubles
 443   BOTTOM  = make(Bottom);       // Everything
 444   HALF    = make(Half);         // Placeholder half of doublewide type
 445 
 446   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 447   TypeF::ONE  = TypeF::make(1.0); // Float 1
 448   TypeF::POS_INF = TypeF::make(1.0f/0.0f);  // Float positive infinity
 449   TypeF::NEG_INF = TypeF::make(-1.0f/0.0f); // Float negative infinity
 450 
 451   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 452   TypeD::ONE  = TypeD::make(1.0); // Double 1
 453   TypeD::POS_INF = TypeD::make(1.0d/0.0d);  // Double positive infinity
 454   TypeD::NEG_INF = TypeD::make(-1.0d/0.0d); // Double negative infinity
 455 
 456   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 457   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 458   TypeInt::ONE     = TypeInt::make( 1);  //  1
 459   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 460   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 461   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 462   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 463   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 464   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 465   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 466   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 467   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 468   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 469   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 470   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 471   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 472   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 473   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 474   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 475   // CmpL is overloaded both as the bytecode computation returning
 476   // a trinary (-1,0,+1) integer result AND as an efficient long
 477   // compare returning optimizer ideal-type flags.
 478   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 479   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 480   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 481   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 482   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 483 
 484   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 485   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 486   TypeLong::ONE     = TypeLong::make( 1);        //  1
 487   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 488   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 489   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 490   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 491   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 492 
 493   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 494   fboth[0] = Type::CONTROL;
 495   fboth[1] = Type::CONTROL;
 496   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 497 
 498   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 499   ffalse[0] = Type::CONTROL;
 500   ffalse[1] = Type::TOP;
 501   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 502 
 503   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 504   fneither[0] = Type::TOP;
 505   fneither[1] = Type::TOP;
 506   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 507 
 508   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 509   ftrue[0] = Type::TOP;
 510   ftrue[1] = Type::CONTROL;
 511   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 512 
 513   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 514   floop[0] = Type::CONTROL;
 515   floop[1] = TypeInt::INT;
 516   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 517 
 518   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 519   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 520   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 521 
 522   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 523   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 524 
 525   const Type **fmembar = TypeTuple::fields(0);
 526   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 527 
 528   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 529   fsc[0] = TypeInt::CC;
 530   fsc[1] = Type::MEMORY;
 531   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 532 
 533   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 534   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 535   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 536   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 537                                            false, 0, oopDesc::mark_offset_in_bytes());
 538   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 539                                            false, 0, oopDesc::klass_offset_in_bytes());
 540   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 541 
 542   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 543 
 544   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 545   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 546 
 547   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 548 
 549   mreg2type[Op_Node] = Type::BOTTOM;
 550   mreg2type[Op_Set ] = 0;
 551   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 552   mreg2type[Op_RegI] = TypeInt::INT;
 553   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 554   mreg2type[Op_RegF] = Type::FLOAT;
 555   mreg2type[Op_RegD] = Type::DOUBLE;
 556   mreg2type[Op_RegL] = TypeLong::LONG;
 557   mreg2type[Op_RegFlags] = TypeInt::CC;
 558 
 559   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 560 
 561   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 562 
 563 #ifdef _LP64
 564   if (UseCompressedOops) {
 565     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 566     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 567   } else
 568 #endif
 569   {
 570     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 571     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 572   }
 573   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 574   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 575   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 576   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 577   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 578   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 579   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 580 
 581   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 582   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 583   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 584   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 585   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 586   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 587   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 588   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 589   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 590   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 591   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 592   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 593 
 594   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 595   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 596 
 597   const Type **fi2c = TypeTuple::fields(2);
 598   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 599   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 600   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 601 
 602   const Type **intpair = TypeTuple::fields(2);
 603   intpair[0] = TypeInt::INT;
 604   intpair[1] = TypeInt::INT;
 605   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 606 
 607   const Type **longpair = TypeTuple::fields(2);
 608   longpair[0] = TypeLong::LONG;
 609   longpair[1] = TypeLong::LONG;
 610   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 611 
 612   const Type **intccpair = TypeTuple::fields(2);
 613   intccpair[0] = TypeInt::INT;
 614   intccpair[1] = TypeInt::CC;
 615   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 616 
 617   const Type **longccpair = TypeTuple::fields(2);
 618   longccpair[0] = TypeLong::LONG;
 619   longccpair[1] = TypeInt::CC;
 620   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 621 
 622   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 623   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 624   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 625   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 626   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 627   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 628   _const_basic_type[T_INT]         = TypeInt::INT;
 629   _const_basic_type[T_LONG]        = TypeLong::LONG;
 630   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 631   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 632   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 633   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 634   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 635   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 636   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 637 
 638   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 639   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 640   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 641   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 642   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 643   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 644   _zero_type[T_INT]         = TypeInt::ZERO;
 645   _zero_type[T_LONG]        = TypeLong::ZERO;
 646   _zero_type[T_FLOAT]       = TypeF::ZERO;
 647   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 648   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 649   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 650   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 651   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 652 
 653   // get_zero_type() should not happen for T_CONFLICT
 654   _zero_type[T_CONFLICT]= NULL;
 655 
 656   // Vector predefined types, it needs initialized _const_basic_type[].
 657   if (Matcher::vector_size_supported(T_BYTE,4)) {
 658     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 659   }
 660   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 661     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 662   }
 663   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 664     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 665   }
 666   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 667     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 668   }
 669   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 670     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 671   }
 672   mreg2type[Op_VecS] = TypeVect::VECTS;
 673   mreg2type[Op_VecD] = TypeVect::VECTD;
 674   mreg2type[Op_VecX] = TypeVect::VECTX;
 675   mreg2type[Op_VecY] = TypeVect::VECTY;
 676   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 677 
 678   // Restore working type arena.
 679   current->set_type_arena(save);
 680   current->set_type_dict(NULL);
 681 }
 682 
 683 //------------------------------Initialize-------------------------------------
 684 void Type::Initialize(Compile* current) {
 685   assert(current->type_arena() != NULL, "must have created type arena");
 686 
 687   if (_shared_type_dict == NULL) {
 688     Initialize_shared(current);
 689   }
 690 
 691   Arena* type_arena = current->type_arena();
 692 
 693   // Create the hash-cons'ing dictionary with top-level storage allocation
 694   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 695   current->set_type_dict(tdic);
 696 
 697   // Transfer the shared types.
 698   DictI i(_shared_type_dict);
 699   for( ; i.test(); ++i ) {
 700     Type* t = (Type*)i._value;
 701     tdic->Insert(t,t);  // New Type, insert into Type table
 702   }
 703 }
 704 
 705 //------------------------------hashcons---------------------------------------
 706 // Do the hash-cons trick.  If the Type already exists in the type table,
 707 // delete the current Type and return the existing Type.  Otherwise stick the
 708 // current Type in the Type table.
 709 const Type *Type::hashcons(void) {
 710   debug_only(base());           // Check the assertion in Type::base().
 711   // Look up the Type in the Type dictionary
 712   Dict *tdic = type_dict();
 713   Type* old = (Type*)(tdic->Insert(this, this, false));
 714   if( old ) {                   // Pre-existing Type?
 715     if( old != this )           // Yes, this guy is not the pre-existing?
 716       delete this;              // Yes, Nuke this guy
 717     assert( old->_dual, "" );
 718     return old;                 // Return pre-existing
 719   }
 720 
 721   // Every type has a dual (to make my lattice symmetric).
 722   // Since we just discovered a new Type, compute its dual right now.
 723   assert( !_dual, "" );         // No dual yet
 724   _dual = xdual();              // Compute the dual
 725   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 726     _dual = this;
 727     return this;
 728   }
 729   assert( !_dual->_dual, "" );  // No reverse dual yet
 730   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 731   // New Type, insert into Type table
 732   tdic->Insert((void*)_dual,(void*)_dual);
 733   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 734 #ifdef ASSERT
 735   Type *dual_dual = (Type*)_dual->xdual();
 736   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 737   delete dual_dual;
 738 #endif
 739   return this;                  // Return new Type
 740 }
 741 
 742 //------------------------------eq---------------------------------------------
 743 // Structural equality check for Type representations
 744 bool Type::eq( const Type * ) const {
 745   return true;                  // Nothing else can go wrong
 746 }
 747 
 748 //------------------------------hash-------------------------------------------
 749 // Type-specific hashing function.
 750 int Type::hash(void) const {
 751   return _base;
 752 }
 753 
 754 //------------------------------is_finite--------------------------------------
 755 // Has a finite value
 756 bool Type::is_finite() const {
 757   return false;
 758 }
 759 
 760 //------------------------------is_nan-----------------------------------------
 761 // Is not a number (NaN)
 762 bool Type::is_nan()    const {
 763   return false;
 764 }
 765 
 766 //----------------------interface_vs_oop---------------------------------------
 767 #ifdef ASSERT
 768 bool Type::interface_vs_oop_helper(const Type *t) const {
 769   bool result = false;
 770 
 771   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 772   const TypePtr*    t_ptr =    t->make_ptr();
 773   if( this_ptr == NULL || t_ptr == NULL )
 774     return result;
 775 
 776   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 777   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 778   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 779     bool this_interface = this_inst->klass()->is_interface();
 780     bool    t_interface =    t_inst->klass()->is_interface();
 781     result = this_interface ^ t_interface;
 782   }
 783 
 784   return result;
 785 }
 786 
 787 bool Type::interface_vs_oop(const Type *t) const {
 788   if (interface_vs_oop_helper(t)) {
 789     return true;
 790   }
 791   // Now check the speculative parts as well
 792   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 793   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 794   if (this_spec != NULL && t_spec != NULL) {
 795     if (this_spec->interface_vs_oop_helper(t_spec)) {
 796       return true;
 797     }
 798     return false;
 799   }
 800   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 801     return true;
 802   }
 803   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 804     return true;
 805   }
 806   return false;
 807 }
 808 
 809 #endif
 810 
 811 //------------------------------meet-------------------------------------------
 812 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 813 // commutative and the lattice is symmetric.
 814 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 815   if (isa_narrowoop() && t->isa_narrowoop()) {
 816     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 817     return result->make_narrowoop();
 818   }
 819   if (isa_narrowklass() && t->isa_narrowklass()) {
 820     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 821     return result->make_narrowklass();
 822   }
 823 
 824   const Type *this_t = maybe_remove_speculative(include_speculative);
 825   t = t->maybe_remove_speculative(include_speculative);
 826 
 827   const Type *mt = this_t->xmeet(t);
 828   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 829   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 830 #ifdef ASSERT
 831   assert(mt == t->xmeet(this_t), "meet not commutative");
 832   const Type* dual_join = mt->_dual;
 833   const Type *t2t    = dual_join->xmeet(t->_dual);
 834   const Type *t2this = dual_join->xmeet(this_t->_dual);
 835 
 836   // Interface meet Oop is Not Symmetric:
 837   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 838   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 839 
 840   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 841     tty->print_cr("=== Meet Not Symmetric ===");
 842     tty->print("t   =                   ");              t->dump(); tty->cr();
 843     tty->print("this=                   ");         this_t->dump(); tty->cr();
 844     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 845 
 846     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 847     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 848     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 849 
 850     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 851     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 852 
 853     fatal("meet not symmetric" );
 854   }
 855 #endif
 856   return mt;
 857 }
 858 
 859 //------------------------------xmeet------------------------------------------
 860 // Compute the MEET of two types.  It returns a new Type object.
 861 const Type *Type::xmeet( const Type *t ) const {
 862   // Perform a fast test for common case; meeting the same types together.
 863   if( this == t ) return this;  // Meeting same type-rep?
 864 
 865   // Meeting TOP with anything?
 866   if( _base == Top ) return t;
 867 
 868   // Meeting BOTTOM with anything?
 869   if( _base == Bottom ) return BOTTOM;
 870 
 871   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 872   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 873   switch (t->base()) {  // Switch on original type
 874 
 875   // Cut in half the number of cases I must handle.  Only need cases for when
 876   // the given enum "t->type" is less than or equal to the local enum "type".
 877   case FloatCon:
 878   case DoubleCon:
 879   case Int:
 880   case Long:
 881     return t->xmeet(this);
 882 
 883   case OopPtr:
 884     return t->xmeet(this);
 885 
 886   case InstPtr:
 887     return t->xmeet(this);
 888 
 889   case MetadataPtr:
 890   case KlassPtr:
 891     return t->xmeet(this);
 892 
 893   case AryPtr:
 894     return t->xmeet(this);
 895 
 896   case NarrowOop:
 897     return t->xmeet(this);
 898 
 899   case NarrowKlass:
 900     return t->xmeet(this);
 901 
 902   case Bad:                     // Type check
 903   default:                      // Bogus type not in lattice
 904     typerr(t);
 905     return Type::BOTTOM;
 906 
 907   case Bottom:                  // Ye Olde Default
 908     return t;
 909 
 910   case FloatTop:
 911     if( _base == FloatTop ) return this;
 912   case FloatBot:                // Float
 913     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 914     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 915     typerr(t);
 916     return Type::BOTTOM;
 917 
 918   case DoubleTop:
 919     if( _base == DoubleTop ) return this;
 920   case DoubleBot:               // Double
 921     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 922     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 923     typerr(t);
 924     return Type::BOTTOM;
 925 
 926   // These next few cases must match exactly or it is a compile-time error.
 927   case Control:                 // Control of code
 928   case Abio:                    // State of world outside of program
 929   case Memory:
 930     if( _base == t->_base )  return this;
 931     typerr(t);
 932     return Type::BOTTOM;
 933 
 934   case Top:                     // Top of the lattice
 935     return this;
 936   }
 937 
 938   // The type is unchanged
 939   return this;
 940 }
 941 
 942 //-----------------------------filter------------------------------------------
 943 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 944   const Type* ft = join_helper(kills, include_speculative);
 945   if (ft->empty())
 946     return Type::TOP;           // Canonical empty value
 947   return ft;
 948 }
 949 
 950 //------------------------------xdual------------------------------------------
 951 // Compute dual right now.
 952 const Type::TYPES Type::dual_type[Type::lastype] = {
 953   Bad,          // Bad
 954   Control,      // Control
 955   Bottom,       // Top
 956   Bad,          // Int - handled in v-call
 957   Bad,          // Long - handled in v-call
 958   Half,         // Half
 959   Bad,          // NarrowOop - handled in v-call
 960   Bad,          // NarrowKlass - handled in v-call
 961 
 962   Bad,          // Tuple - handled in v-call
 963   Bad,          // Array - handled in v-call
 964   Bad,          // VectorS - handled in v-call
 965   Bad,          // VectorD - handled in v-call
 966   Bad,          // VectorX - handled in v-call
 967   Bad,          // VectorY - handled in v-call
 968   Bad,          // VectorZ - handled in v-call
 969 
 970   Bad,          // AnyPtr - handled in v-call
 971   Bad,          // RawPtr - handled in v-call
 972   Bad,          // OopPtr - handled in v-call
 973   Bad,          // InstPtr - handled in v-call
 974   Bad,          // AryPtr - handled in v-call
 975 
 976   Bad,          //  MetadataPtr - handled in v-call
 977   Bad,          // KlassPtr - handled in v-call
 978 
 979   Bad,          // Function - handled in v-call
 980   Abio,         // Abio
 981   Return_Address,// Return_Address
 982   Memory,       // Memory
 983   FloatBot,     // FloatTop
 984   FloatCon,     // FloatCon
 985   FloatTop,     // FloatBot
 986   DoubleBot,    // DoubleTop
 987   DoubleCon,    // DoubleCon
 988   DoubleTop,    // DoubleBot
 989   Top           // Bottom
 990 };
 991 
 992 const Type *Type::xdual() const {
 993   // Note: the base() accessor asserts the sanity of _base.
 994   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 995   return new Type(_type_info[_base].dual_type);
 996 }
 997 
 998 //------------------------------has_memory-------------------------------------
 999 bool Type::has_memory() const {
1000   Type::TYPES tx = base();
1001   if (tx == Memory) return true;
1002   if (tx == Tuple) {
1003     const TypeTuple *t = is_tuple();
1004     for (uint i=0; i < t->cnt(); i++) {
1005       tx = t->field_at(i)->base();
1006       if (tx == Memory)  return true;
1007     }
1008   }
1009   return false;
1010 }
1011 
1012 #ifndef PRODUCT
1013 //------------------------------dump2------------------------------------------
1014 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1015   st->print("%s", _type_info[_base].msg);
1016 }
1017 
1018 //------------------------------dump-------------------------------------------
1019 void Type::dump_on(outputStream *st) const {
1020   ResourceMark rm;
1021   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1022   dump2(d,1, st);
1023   if (is_ptr_to_narrowoop()) {
1024     st->print(" [narrow]");
1025   } else if (is_ptr_to_narrowklass()) {
1026     st->print(" [narrowklass]");
1027   }
1028 }
1029 
1030 //-----------------------------------------------------------------------------
1031 const char* Type::str(const Type* t) {
1032   stringStream ss;
1033   t->dump_on(&ss);
1034   return ss.as_string();
1035 }
1036 #endif
1037 
1038 //------------------------------singleton--------------------------------------
1039 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1040 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1041 bool Type::singleton(void) const {
1042   return _base == Top || _base == Half;
1043 }
1044 
1045 //------------------------------empty------------------------------------------
1046 // TRUE if Type is a type with no values, FALSE otherwise.
1047 bool Type::empty(void) const {
1048   switch (_base) {
1049   case DoubleTop:
1050   case FloatTop:
1051   case Top:
1052     return true;
1053 
1054   case Half:
1055   case Abio:
1056   case Return_Address:
1057   case Memory:
1058   case Bottom:
1059   case FloatBot:
1060   case DoubleBot:
1061     return false;  // never a singleton, therefore never empty
1062 
1063   default:
1064     ShouldNotReachHere();
1065     return false;
1066   }
1067 }
1068 
1069 //------------------------------dump_stats-------------------------------------
1070 // Dump collected statistics to stderr
1071 #ifndef PRODUCT
1072 void Type::dump_stats() {
1073   tty->print("Types made: %d\n", type_dict()->Size());
1074 }
1075 #endif
1076 
1077 //------------------------------typerr-----------------------------------------
1078 void Type::typerr( const Type *t ) const {
1079 #ifndef PRODUCT
1080   tty->print("\nError mixing types: ");
1081   dump();
1082   tty->print(" and ");
1083   t->dump();
1084   tty->print("\n");
1085 #endif
1086   ShouldNotReachHere();
1087 }
1088 
1089 
1090 //=============================================================================
1091 // Convenience common pre-built types.
1092 const TypeF *TypeF::ZERO;       // Floating point zero
1093 const TypeF *TypeF::ONE;        // Floating point one
1094 const TypeF *TypeF::POS_INF;    // Floating point positive infinity
1095 const TypeF *TypeF::NEG_INF;    // Floating point negative infinity
1096 
1097 //------------------------------make-------------------------------------------
1098 // Create a float constant
1099 const TypeF *TypeF::make(float f) {
1100   return (TypeF*)(new TypeF(f))->hashcons();
1101 }
1102 
1103 //------------------------------meet-------------------------------------------
1104 // Compute the MEET of two types.  It returns a new Type object.
1105 const Type *TypeF::xmeet( const Type *t ) const {
1106   // Perform a fast test for common case; meeting the same types together.
1107   if( this == t ) return this;  // Meeting same type-rep?
1108 
1109   // Current "this->_base" is FloatCon
1110   switch (t->base()) {          // Switch on original type
1111   case AnyPtr:                  // Mixing with oops happens when javac
1112   case RawPtr:                  // reuses local variables
1113   case OopPtr:
1114   case InstPtr:
1115   case AryPtr:
1116   case MetadataPtr:
1117   case KlassPtr:
1118   case NarrowOop:
1119   case NarrowKlass:
1120   case Int:
1121   case Long:
1122   case DoubleTop:
1123   case DoubleCon:
1124   case DoubleBot:
1125   case Bottom:                  // Ye Olde Default
1126     return Type::BOTTOM;
1127 
1128   case FloatBot:
1129     return t;
1130 
1131   default:                      // All else is a mistake
1132     typerr(t);
1133 
1134   case FloatCon:                // Float-constant vs Float-constant?
1135     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1136                                 // must compare bitwise as positive zero, negative zero and NaN have
1137                                 // all the same representation in C++
1138       return FLOAT;             // Return generic float
1139                                 // Equal constants
1140   case Top:
1141   case FloatTop:
1142     break;                      // Return the float constant
1143   }
1144   return this;                  // Return the float constant
1145 }
1146 
1147 //------------------------------xdual------------------------------------------
1148 // Dual: symmetric
1149 const Type *TypeF::xdual() const {
1150   return this;
1151 }
1152 
1153 //------------------------------eq---------------------------------------------
1154 // Structural equality check for Type representations
1155 bool TypeF::eq(const Type *t) const {
1156   // Bitwise comparison to distinguish between +/-0. These values must be treated
1157   // as different to be consistent with C1 and the interpreter.
1158   return (jint_cast(_f) == jint_cast(t->getf()));
1159 }
1160 
1161 //------------------------------hash-------------------------------------------
1162 // Type-specific hashing function.
1163 int TypeF::hash(void) const {
1164   return *(int*)(&_f);
1165 }
1166 
1167 //------------------------------is_finite--------------------------------------
1168 // Has a finite value
1169 bool TypeF::is_finite() const {
1170   return g_isfinite(getf()) != 0;
1171 }
1172 
1173 //------------------------------is_nan-----------------------------------------
1174 // Is not a number (NaN)
1175 bool TypeF::is_nan()    const {
1176   return g_isnan(getf()) != 0;
1177 }
1178 
1179 //------------------------------dump2------------------------------------------
1180 // Dump float constant Type
1181 #ifndef PRODUCT
1182 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1183   Type::dump2(d,depth, st);
1184   st->print("%f", _f);
1185 }
1186 #endif
1187 
1188 //------------------------------singleton--------------------------------------
1189 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1190 // constants (Ldi nodes).  Singletons are integer, float or double constants
1191 // or a single symbol.
1192 bool TypeF::singleton(void) const {
1193   return true;                  // Always a singleton
1194 }
1195 
1196 bool TypeF::empty(void) const {
1197   return false;                 // always exactly a singleton
1198 }
1199 
1200 //=============================================================================
1201 // Convenience common pre-built types.
1202 const TypeD *TypeD::ZERO;       // Floating point zero
1203 const TypeD *TypeD::ONE;        // Floating point one
1204 const TypeD *TypeD::POS_INF;    // Floating point positive infinity
1205 const TypeD *TypeD::NEG_INF;    // Floating point negative infinity
1206 
1207 //------------------------------make-------------------------------------------
1208 const TypeD *TypeD::make(double d) {
1209   return (TypeD*)(new TypeD(d))->hashcons();
1210 }
1211 
1212 //------------------------------meet-------------------------------------------
1213 // Compute the MEET of two types.  It returns a new Type object.
1214 const Type *TypeD::xmeet( const Type *t ) const {
1215   // Perform a fast test for common case; meeting the same types together.
1216   if( this == t ) return this;  // Meeting same type-rep?
1217 
1218   // Current "this->_base" is DoubleCon
1219   switch (t->base()) {          // Switch on original type
1220   case AnyPtr:                  // Mixing with oops happens when javac
1221   case RawPtr:                  // reuses local variables
1222   case OopPtr:
1223   case InstPtr:
1224   case AryPtr:
1225   case MetadataPtr:
1226   case KlassPtr:
1227   case NarrowOop:
1228   case NarrowKlass:
1229   case Int:
1230   case Long:
1231   case FloatTop:
1232   case FloatCon:
1233   case FloatBot:
1234   case Bottom:                  // Ye Olde Default
1235     return Type::BOTTOM;
1236 
1237   case DoubleBot:
1238     return t;
1239 
1240   default:                      // All else is a mistake
1241     typerr(t);
1242 
1243   case DoubleCon:               // Double-constant vs Double-constant?
1244     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1245       return DOUBLE;            // Return generic double
1246   case Top:
1247   case DoubleTop:
1248     break;
1249   }
1250   return this;                  // Return the double constant
1251 }
1252 
1253 //------------------------------xdual------------------------------------------
1254 // Dual: symmetric
1255 const Type *TypeD::xdual() const {
1256   return this;
1257 }
1258 
1259 //------------------------------eq---------------------------------------------
1260 // Structural equality check for Type representations
1261 bool TypeD::eq(const Type *t) const {
1262   // Bitwise comparison to distinguish between +/-0. These values must be treated
1263   // as different to be consistent with C1 and the interpreter.
1264   return (jlong_cast(_d) == jlong_cast(t->getd()));
1265 }
1266 
1267 //------------------------------hash-------------------------------------------
1268 // Type-specific hashing function.
1269 int TypeD::hash(void) const {
1270   return *(int*)(&_d);
1271 }
1272 
1273 //------------------------------is_finite--------------------------------------
1274 // Has a finite value
1275 bool TypeD::is_finite() const {
1276   return g_isfinite(getd()) != 0;
1277 }
1278 
1279 //------------------------------is_nan-----------------------------------------
1280 // Is not a number (NaN)
1281 bool TypeD::is_nan()    const {
1282   return g_isnan(getd()) != 0;
1283 }
1284 
1285 //------------------------------dump2------------------------------------------
1286 // Dump double constant Type
1287 #ifndef PRODUCT
1288 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1289   Type::dump2(d,depth,st);
1290   st->print("%f", _d);
1291 }
1292 #endif
1293 
1294 //------------------------------singleton--------------------------------------
1295 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1296 // constants (Ldi nodes).  Singletons are integer, float or double constants
1297 // or a single symbol.
1298 bool TypeD::singleton(void) const {
1299   return true;                  // Always a singleton
1300 }
1301 
1302 bool TypeD::empty(void) const {
1303   return false;                 // always exactly a singleton
1304 }
1305 
1306 //=============================================================================
1307 // Convience common pre-built types.
1308 const TypeInt *TypeInt::MINUS_1;// -1
1309 const TypeInt *TypeInt::ZERO;   // 0
1310 const TypeInt *TypeInt::ONE;    // 1
1311 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1312 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1313 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1314 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1315 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1316 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1317 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1318 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1319 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1320 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1321 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1322 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1323 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1324 const TypeInt *TypeInt::INT;    // 32-bit integers
1325 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1326 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1327 
1328 //------------------------------TypeInt----------------------------------------
1329 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1330 }
1331 
1332 //------------------------------make-------------------------------------------
1333 const TypeInt *TypeInt::make( jint lo ) {
1334   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1335 }
1336 
1337 static int normalize_int_widen( jint lo, jint hi, int w ) {
1338   // Certain normalizations keep us sane when comparing types.
1339   // The 'SMALLINT' covers constants and also CC and its relatives.
1340   if (lo <= hi) {
1341     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1342     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1343   } else {
1344     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1345     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1346   }
1347   return w;
1348 }
1349 
1350 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1351   w = normalize_int_widen(lo, hi, w);
1352   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1353 }
1354 
1355 //------------------------------meet-------------------------------------------
1356 // Compute the MEET of two types.  It returns a new Type representation object
1357 // with reference count equal to the number of Types pointing at it.
1358 // Caller should wrap a Types around it.
1359 const Type *TypeInt::xmeet( const Type *t ) const {
1360   // Perform a fast test for common case; meeting the same types together.
1361   if( this == t ) return this;  // Meeting same type?
1362 
1363   // Currently "this->_base" is a TypeInt
1364   switch (t->base()) {          // Switch on original type
1365   case AnyPtr:                  // Mixing with oops happens when javac
1366   case RawPtr:                  // reuses local variables
1367   case OopPtr:
1368   case InstPtr:
1369   case AryPtr:
1370   case MetadataPtr:
1371   case KlassPtr:
1372   case NarrowOop:
1373   case NarrowKlass:
1374   case Long:
1375   case FloatTop:
1376   case FloatCon:
1377   case FloatBot:
1378   case DoubleTop:
1379   case DoubleCon:
1380   case DoubleBot:
1381   case Bottom:                  // Ye Olde Default
1382     return Type::BOTTOM;
1383   default:                      // All else is a mistake
1384     typerr(t);
1385   case Top:                     // No change
1386     return this;
1387   case Int:                     // Int vs Int?
1388     break;
1389   }
1390 
1391   // Expand covered set
1392   const TypeInt *r = t->is_int();
1393   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1394 }
1395 
1396 //------------------------------xdual------------------------------------------
1397 // Dual: reverse hi & lo; flip widen
1398 const Type *TypeInt::xdual() const {
1399   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1400   return new TypeInt(_hi,_lo,w);
1401 }
1402 
1403 //------------------------------widen------------------------------------------
1404 // Only happens for optimistic top-down optimizations.
1405 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1406   // Coming from TOP or such; no widening
1407   if( old->base() != Int ) return this;
1408   const TypeInt *ot = old->is_int();
1409 
1410   // If new guy is equal to old guy, no widening
1411   if( _lo == ot->_lo && _hi == ot->_hi )
1412     return old;
1413 
1414   // If new guy contains old, then we widened
1415   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1416     // New contains old
1417     // If new guy is already wider than old, no widening
1418     if( _widen > ot->_widen ) return this;
1419     // If old guy was a constant, do not bother
1420     if (ot->_lo == ot->_hi)  return this;
1421     // Now widen new guy.
1422     // Check for widening too far
1423     if (_widen == WidenMax) {
1424       int max = max_jint;
1425       int min = min_jint;
1426       if (limit->isa_int()) {
1427         max = limit->is_int()->_hi;
1428         min = limit->is_int()->_lo;
1429       }
1430       if (min < _lo && _hi < max) {
1431         // If neither endpoint is extremal yet, push out the endpoint
1432         // which is closer to its respective limit.
1433         if (_lo >= 0 ||                 // easy common case
1434             (juint)(_lo - min) >= (juint)(max - _hi)) {
1435           // Try to widen to an unsigned range type of 31 bits:
1436           return make(_lo, max, WidenMax);
1437         } else {
1438           return make(min, _hi, WidenMax);
1439         }
1440       }
1441       return TypeInt::INT;
1442     }
1443     // Returned widened new guy
1444     return make(_lo,_hi,_widen+1);
1445   }
1446 
1447   // If old guy contains new, then we probably widened too far & dropped to
1448   // bottom.  Return the wider fellow.
1449   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1450     return old;
1451 
1452   //fatal("Integer value range is not subset");
1453   //return this;
1454   return TypeInt::INT;
1455 }
1456 
1457 //------------------------------narrow---------------------------------------
1458 // Only happens for pessimistic optimizations.
1459 const Type *TypeInt::narrow( const Type *old ) const {
1460   if (_lo >= _hi)  return this;   // already narrow enough
1461   if (old == NULL)  return this;
1462   const TypeInt* ot = old->isa_int();
1463   if (ot == NULL)  return this;
1464   jint olo = ot->_lo;
1465   jint ohi = ot->_hi;
1466 
1467   // If new guy is equal to old guy, no narrowing
1468   if (_lo == olo && _hi == ohi)  return old;
1469 
1470   // If old guy was maximum range, allow the narrowing
1471   if (olo == min_jint && ohi == max_jint)  return this;
1472 
1473   if (_lo < olo || _hi > ohi)
1474     return this;                // doesn't narrow; pretty wierd
1475 
1476   // The new type narrows the old type, so look for a "death march".
1477   // See comments on PhaseTransform::saturate.
1478   juint nrange = (juint)_hi - _lo;
1479   juint orange = (juint)ohi - olo;
1480   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1481     // Use the new type only if the range shrinks a lot.
1482     // We do not want the optimizer computing 2^31 point by point.
1483     return old;
1484   }
1485 
1486   return this;
1487 }
1488 
1489 //-----------------------------filter------------------------------------------
1490 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1491   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1492   if (ft == NULL || ft->empty())
1493     return Type::TOP;           // Canonical empty value
1494   if (ft->_widen < this->_widen) {
1495     // Do not allow the value of kill->_widen to affect the outcome.
1496     // The widen bits must be allowed to run freely through the graph.
1497     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1498   }
1499   return ft;
1500 }
1501 
1502 //------------------------------eq---------------------------------------------
1503 // Structural equality check for Type representations
1504 bool TypeInt::eq( const Type *t ) const {
1505   const TypeInt *r = t->is_int(); // Handy access
1506   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1507 }
1508 
1509 //------------------------------hash-------------------------------------------
1510 // Type-specific hashing function.
1511 int TypeInt::hash(void) const {
1512   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1513 }
1514 
1515 //------------------------------is_finite--------------------------------------
1516 // Has a finite value
1517 bool TypeInt::is_finite() const {
1518   return true;
1519 }
1520 
1521 //------------------------------dump2------------------------------------------
1522 // Dump TypeInt
1523 #ifndef PRODUCT
1524 static const char* intname(char* buf, jint n) {
1525   if (n == min_jint)
1526     return "min";
1527   else if (n < min_jint + 10000)
1528     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1529   else if (n == max_jint)
1530     return "max";
1531   else if (n > max_jint - 10000)
1532     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1533   else
1534     sprintf(buf, INT32_FORMAT, n);
1535   return buf;
1536 }
1537 
1538 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1539   char buf[40], buf2[40];
1540   if (_lo == min_jint && _hi == max_jint)
1541     st->print("int");
1542   else if (is_con())
1543     st->print("int:%s", intname(buf, get_con()));
1544   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1545     st->print("bool");
1546   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1547     st->print("byte");
1548   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1549     st->print("char");
1550   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1551     st->print("short");
1552   else if (_hi == max_jint)
1553     st->print("int:>=%s", intname(buf, _lo));
1554   else if (_lo == min_jint)
1555     st->print("int:<=%s", intname(buf, _hi));
1556   else
1557     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1558 
1559   if (_widen != 0 && this != TypeInt::INT)
1560     st->print(":%.*s", _widen, "wwww");
1561 }
1562 #endif
1563 
1564 //------------------------------singleton--------------------------------------
1565 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1566 // constants.
1567 bool TypeInt::singleton(void) const {
1568   return _lo >= _hi;
1569 }
1570 
1571 bool TypeInt::empty(void) const {
1572   return _lo > _hi;
1573 }
1574 
1575 //=============================================================================
1576 // Convenience common pre-built types.
1577 const TypeLong *TypeLong::MINUS_1;// -1
1578 const TypeLong *TypeLong::ZERO; // 0
1579 const TypeLong *TypeLong::ONE;  // 1
1580 const TypeLong *TypeLong::POS;  // >=0
1581 const TypeLong *TypeLong::LONG; // 64-bit integers
1582 const TypeLong *TypeLong::INT;  // 32-bit subrange
1583 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1584 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1585 
1586 //------------------------------TypeLong---------------------------------------
1587 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1588 }
1589 
1590 //------------------------------make-------------------------------------------
1591 const TypeLong *TypeLong::make( jlong lo ) {
1592   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1593 }
1594 
1595 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1596   // Certain normalizations keep us sane when comparing types.
1597   // The 'SMALLINT' covers constants.
1598   if (lo <= hi) {
1599     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1600     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1601   } else {
1602     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1603     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1604   }
1605   return w;
1606 }
1607 
1608 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1609   w = normalize_long_widen(lo, hi, w);
1610   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1611 }
1612 
1613 
1614 //------------------------------meet-------------------------------------------
1615 // Compute the MEET of two types.  It returns a new Type representation object
1616 // with reference count equal to the number of Types pointing at it.
1617 // Caller should wrap a Types around it.
1618 const Type *TypeLong::xmeet( const Type *t ) const {
1619   // Perform a fast test for common case; meeting the same types together.
1620   if( this == t ) return this;  // Meeting same type?
1621 
1622   // Currently "this->_base" is a TypeLong
1623   switch (t->base()) {          // Switch on original type
1624   case AnyPtr:                  // Mixing with oops happens when javac
1625   case RawPtr:                  // reuses local variables
1626   case OopPtr:
1627   case InstPtr:
1628   case AryPtr:
1629   case MetadataPtr:
1630   case KlassPtr:
1631   case NarrowOop:
1632   case NarrowKlass:
1633   case Int:
1634   case FloatTop:
1635   case FloatCon:
1636   case FloatBot:
1637   case DoubleTop:
1638   case DoubleCon:
1639   case DoubleBot:
1640   case Bottom:                  // Ye Olde Default
1641     return Type::BOTTOM;
1642   default:                      // All else is a mistake
1643     typerr(t);
1644   case Top:                     // No change
1645     return this;
1646   case Long:                    // Long vs Long?
1647     break;
1648   }
1649 
1650   // Expand covered set
1651   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1652   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1653 }
1654 
1655 //------------------------------xdual------------------------------------------
1656 // Dual: reverse hi & lo; flip widen
1657 const Type *TypeLong::xdual() const {
1658   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1659   return new TypeLong(_hi,_lo,w);
1660 }
1661 
1662 //------------------------------widen------------------------------------------
1663 // Only happens for optimistic top-down optimizations.
1664 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1665   // Coming from TOP or such; no widening
1666   if( old->base() != Long ) return this;
1667   const TypeLong *ot = old->is_long();
1668 
1669   // If new guy is equal to old guy, no widening
1670   if( _lo == ot->_lo && _hi == ot->_hi )
1671     return old;
1672 
1673   // If new guy contains old, then we widened
1674   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1675     // New contains old
1676     // If new guy is already wider than old, no widening
1677     if( _widen > ot->_widen ) return this;
1678     // If old guy was a constant, do not bother
1679     if (ot->_lo == ot->_hi)  return this;
1680     // Now widen new guy.
1681     // Check for widening too far
1682     if (_widen == WidenMax) {
1683       jlong max = max_jlong;
1684       jlong min = min_jlong;
1685       if (limit->isa_long()) {
1686         max = limit->is_long()->_hi;
1687         min = limit->is_long()->_lo;
1688       }
1689       if (min < _lo && _hi < max) {
1690         // If neither endpoint is extremal yet, push out the endpoint
1691         // which is closer to its respective limit.
1692         if (_lo >= 0 ||                 // easy common case
1693             ((julong)_lo - min) >= ((julong)max - _hi)) {
1694           // Try to widen to an unsigned range type of 32/63 bits:
1695           if (max >= max_juint && _hi < max_juint)
1696             return make(_lo, max_juint, WidenMax);
1697           else
1698             return make(_lo, max, WidenMax);
1699         } else {
1700           return make(min, _hi, WidenMax);
1701         }
1702       }
1703       return TypeLong::LONG;
1704     }
1705     // Returned widened new guy
1706     return make(_lo,_hi,_widen+1);
1707   }
1708 
1709   // If old guy contains new, then we probably widened too far & dropped to
1710   // bottom.  Return the wider fellow.
1711   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1712     return old;
1713 
1714   //  fatal("Long value range is not subset");
1715   // return this;
1716   return TypeLong::LONG;
1717 }
1718 
1719 //------------------------------narrow----------------------------------------
1720 // Only happens for pessimistic optimizations.
1721 const Type *TypeLong::narrow( const Type *old ) const {
1722   if (_lo >= _hi)  return this;   // already narrow enough
1723   if (old == NULL)  return this;
1724   const TypeLong* ot = old->isa_long();
1725   if (ot == NULL)  return this;
1726   jlong olo = ot->_lo;
1727   jlong ohi = ot->_hi;
1728 
1729   // If new guy is equal to old guy, no narrowing
1730   if (_lo == olo && _hi == ohi)  return old;
1731 
1732   // If old guy was maximum range, allow the narrowing
1733   if (olo == min_jlong && ohi == max_jlong)  return this;
1734 
1735   if (_lo < olo || _hi > ohi)
1736     return this;                // doesn't narrow; pretty wierd
1737 
1738   // The new type narrows the old type, so look for a "death march".
1739   // See comments on PhaseTransform::saturate.
1740   julong nrange = _hi - _lo;
1741   julong orange = ohi - olo;
1742   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1743     // Use the new type only if the range shrinks a lot.
1744     // We do not want the optimizer computing 2^31 point by point.
1745     return old;
1746   }
1747 
1748   return this;
1749 }
1750 
1751 //-----------------------------filter------------------------------------------
1752 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1753   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1754   if (ft == NULL || ft->empty())
1755     return Type::TOP;           // Canonical empty value
1756   if (ft->_widen < this->_widen) {
1757     // Do not allow the value of kill->_widen to affect the outcome.
1758     // The widen bits must be allowed to run freely through the graph.
1759     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1760   }
1761   return ft;
1762 }
1763 
1764 //------------------------------eq---------------------------------------------
1765 // Structural equality check for Type representations
1766 bool TypeLong::eq( const Type *t ) const {
1767   const TypeLong *r = t->is_long(); // Handy access
1768   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1769 }
1770 
1771 //------------------------------hash-------------------------------------------
1772 // Type-specific hashing function.
1773 int TypeLong::hash(void) const {
1774   return (int)(_lo+_hi+_widen+(int)Type::Long);
1775 }
1776 
1777 //------------------------------is_finite--------------------------------------
1778 // Has a finite value
1779 bool TypeLong::is_finite() const {
1780   return true;
1781 }
1782 
1783 //------------------------------dump2------------------------------------------
1784 // Dump TypeLong
1785 #ifndef PRODUCT
1786 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1787   if (n > x) {
1788     if (n >= x + 10000)  return NULL;
1789     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1790   } else if (n < x) {
1791     if (n <= x - 10000)  return NULL;
1792     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1793   } else {
1794     return xname;
1795   }
1796   return buf;
1797 }
1798 
1799 static const char* longname(char* buf, jlong n) {
1800   const char* str;
1801   if (n == min_jlong)
1802     return "min";
1803   else if (n < min_jlong + 10000)
1804     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1805   else if (n == max_jlong)
1806     return "max";
1807   else if (n > max_jlong - 10000)
1808     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1809   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1810     return str;
1811   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1812     return str;
1813   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1814     return str;
1815   else
1816     sprintf(buf, JLONG_FORMAT, n);
1817   return buf;
1818 }
1819 
1820 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1821   char buf[80], buf2[80];
1822   if (_lo == min_jlong && _hi == max_jlong)
1823     st->print("long");
1824   else if (is_con())
1825     st->print("long:%s", longname(buf, get_con()));
1826   else if (_hi == max_jlong)
1827     st->print("long:>=%s", longname(buf, _lo));
1828   else if (_lo == min_jlong)
1829     st->print("long:<=%s", longname(buf, _hi));
1830   else
1831     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1832 
1833   if (_widen != 0 && this != TypeLong::LONG)
1834     st->print(":%.*s", _widen, "wwww");
1835 }
1836 #endif
1837 
1838 //------------------------------singleton--------------------------------------
1839 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1840 // constants
1841 bool TypeLong::singleton(void) const {
1842   return _lo >= _hi;
1843 }
1844 
1845 bool TypeLong::empty(void) const {
1846   return _lo > _hi;
1847 }
1848 
1849 //=============================================================================
1850 // Convenience common pre-built types.
1851 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1852 const TypeTuple *TypeTuple::IFFALSE;
1853 const TypeTuple *TypeTuple::IFTRUE;
1854 const TypeTuple *TypeTuple::IFNEITHER;
1855 const TypeTuple *TypeTuple::LOOPBODY;
1856 const TypeTuple *TypeTuple::MEMBAR;
1857 const TypeTuple *TypeTuple::STORECONDITIONAL;
1858 const TypeTuple *TypeTuple::START_I2C;
1859 const TypeTuple *TypeTuple::INT_PAIR;
1860 const TypeTuple *TypeTuple::LONG_PAIR;
1861 const TypeTuple *TypeTuple::INT_CC_PAIR;
1862 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1863 
1864 
1865 //------------------------------make-------------------------------------------
1866 // Make a TypeTuple from the range of a method signature
1867 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1868   ciType* return_type = sig->return_type();
1869   uint arg_cnt = return_type->size();
1870   const Type **field_array = fields(arg_cnt);
1871   switch (return_type->basic_type()) {
1872   case T_LONG:
1873     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1874     field_array[TypeFunc::Parms+1] = Type::HALF;
1875     break;
1876   case T_DOUBLE:
1877     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1878     field_array[TypeFunc::Parms+1] = Type::HALF;
1879     break;
1880   case T_OBJECT:
1881   case T_ARRAY:
1882   case T_BOOLEAN:
1883   case T_CHAR:
1884   case T_FLOAT:
1885   case T_BYTE:
1886   case T_SHORT:
1887   case T_INT:
1888     field_array[TypeFunc::Parms] = get_const_type(return_type);
1889     break;
1890   case T_VOID:
1891     break;
1892   default:
1893     ShouldNotReachHere();
1894   }
1895   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1896 }
1897 
1898 // Make a TypeTuple from the domain of a method signature
1899 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1900   uint arg_cnt = sig->size();
1901 
1902   uint pos = TypeFunc::Parms;
1903   const Type **field_array;
1904   if (recv != NULL) {
1905     arg_cnt++;
1906     field_array = fields(arg_cnt);
1907     // Use get_const_type here because it respects UseUniqueSubclasses:
1908     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1909   } else {
1910     field_array = fields(arg_cnt);
1911   }
1912 
1913   int i = 0;
1914   while (pos < TypeFunc::Parms + arg_cnt) {
1915     ciType* type = sig->type_at(i);
1916 
1917     switch (type->basic_type()) {
1918     case T_LONG:
1919       field_array[pos++] = TypeLong::LONG;
1920       field_array[pos++] = Type::HALF;
1921       break;
1922     case T_DOUBLE:
1923       field_array[pos++] = Type::DOUBLE;
1924       field_array[pos++] = Type::HALF;
1925       break;
1926     case T_OBJECT:
1927     case T_ARRAY:
1928     case T_FLOAT:
1929     case T_INT:
1930       field_array[pos++] = get_const_type(type);
1931       break;
1932     case T_BOOLEAN:
1933     case T_CHAR:
1934     case T_BYTE:
1935     case T_SHORT:
1936       field_array[pos++] = TypeInt::INT;
1937       break;
1938     default:
1939       ShouldNotReachHere();
1940     }
1941     i++;
1942   }
1943 
1944   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1945 }
1946 
1947 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1948   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1949 }
1950 
1951 //------------------------------fields-----------------------------------------
1952 // Subroutine call type with space allocated for argument types
1953 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1954 const Type **TypeTuple::fields( uint arg_cnt ) {
1955   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1956   flds[TypeFunc::Control  ] = Type::CONTROL;
1957   flds[TypeFunc::I_O      ] = Type::ABIO;
1958   flds[TypeFunc::Memory   ] = Type::MEMORY;
1959   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1960   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1961 
1962   return flds;
1963 }
1964 
1965 //------------------------------meet-------------------------------------------
1966 // Compute the MEET of two types.  It returns a new Type object.
1967 const Type *TypeTuple::xmeet( const Type *t ) const {
1968   // Perform a fast test for common case; meeting the same types together.
1969   if( this == t ) return this;  // Meeting same type-rep?
1970 
1971   // Current "this->_base" is Tuple
1972   switch (t->base()) {          // switch on original type
1973 
1974   case Bottom:                  // Ye Olde Default
1975     return t;
1976 
1977   default:                      // All else is a mistake
1978     typerr(t);
1979 
1980   case Tuple: {                 // Meeting 2 signatures?
1981     const TypeTuple *x = t->is_tuple();
1982     assert( _cnt == x->_cnt, "" );
1983     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1984     for( uint i=0; i<_cnt; i++ )
1985       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1986     return TypeTuple::make(_cnt,fields);
1987   }
1988   case Top:
1989     break;
1990   }
1991   return this;                  // Return the double constant
1992 }
1993 
1994 //------------------------------xdual------------------------------------------
1995 // Dual: compute field-by-field dual
1996 const Type *TypeTuple::xdual() const {
1997   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1998   for( uint i=0; i<_cnt; i++ )
1999     fields[i] = _fields[i]->dual();
2000   return new TypeTuple(_cnt,fields);
2001 }
2002 
2003 //------------------------------eq---------------------------------------------
2004 // Structural equality check for Type representations
2005 bool TypeTuple::eq( const Type *t ) const {
2006   const TypeTuple *s = (const TypeTuple *)t;
2007   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2008   for (uint i = 0; i < _cnt; i++)
2009     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2010       return false;             // Missed
2011   return true;
2012 }
2013 
2014 //------------------------------hash-------------------------------------------
2015 // Type-specific hashing function.
2016 int TypeTuple::hash(void) const {
2017   intptr_t sum = _cnt;
2018   for( uint i=0; i<_cnt; i++ )
2019     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2020   return sum;
2021 }
2022 
2023 //------------------------------dump2------------------------------------------
2024 // Dump signature Type
2025 #ifndef PRODUCT
2026 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2027   st->print("{");
2028   if( !depth || d[this] ) {     // Check for recursive print
2029     st->print("...}");
2030     return;
2031   }
2032   d.Insert((void*)this, (void*)this);   // Stop recursion
2033   if( _cnt ) {
2034     uint i;
2035     for( i=0; i<_cnt-1; i++ ) {
2036       st->print("%d:", i);
2037       _fields[i]->dump2(d, depth-1, st);
2038       st->print(", ");
2039     }
2040     st->print("%d:", i);
2041     _fields[i]->dump2(d, depth-1, st);
2042   }
2043   st->print("}");
2044 }
2045 #endif
2046 
2047 //------------------------------singleton--------------------------------------
2048 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2049 // constants (Ldi nodes).  Singletons are integer, float or double constants
2050 // or a single symbol.
2051 bool TypeTuple::singleton(void) const {
2052   return false;                 // Never a singleton
2053 }
2054 
2055 bool TypeTuple::empty(void) const {
2056   for( uint i=0; i<_cnt; i++ ) {
2057     if (_fields[i]->empty())  return true;
2058   }
2059   return false;
2060 }
2061 
2062 //=============================================================================
2063 // Convenience common pre-built types.
2064 
2065 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2066   // Certain normalizations keep us sane when comparing types.
2067   // We do not want arrayOop variables to differ only by the wideness
2068   // of their index types.  Pick minimum wideness, since that is the
2069   // forced wideness of small ranges anyway.
2070   if (size->_widen != Type::WidenMin)
2071     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2072   else
2073     return size;
2074 }
2075 
2076 //------------------------------make-------------------------------------------
2077 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2078   if (UseCompressedOops && elem->isa_oopptr()) {
2079     elem = elem->make_narrowoop();
2080   }
2081   size = normalize_array_size(size);
2082   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2083 }
2084 
2085 //------------------------------meet-------------------------------------------
2086 // Compute the MEET of two types.  It returns a new Type object.
2087 const Type *TypeAry::xmeet( const Type *t ) const {
2088   // Perform a fast test for common case; meeting the same types together.
2089   if( this == t ) return this;  // Meeting same type-rep?
2090 
2091   // Current "this->_base" is Ary
2092   switch (t->base()) {          // switch on original type
2093 
2094   case Bottom:                  // Ye Olde Default
2095     return t;
2096 
2097   default:                      // All else is a mistake
2098     typerr(t);
2099 
2100   case Array: {                 // Meeting 2 arrays?
2101     const TypeAry *a = t->is_ary();
2102     return TypeAry::make(_elem->meet_speculative(a->_elem),
2103                          _size->xmeet(a->_size)->is_int(),
2104                          _stable & a->_stable);
2105   }
2106   case Top:
2107     break;
2108   }
2109   return this;                  // Return the double constant
2110 }
2111 
2112 //------------------------------xdual------------------------------------------
2113 // Dual: compute field-by-field dual
2114 const Type *TypeAry::xdual() const {
2115   const TypeInt* size_dual = _size->dual()->is_int();
2116   size_dual = normalize_array_size(size_dual);
2117   return new TypeAry(_elem->dual(), size_dual, !_stable);
2118 }
2119 
2120 //------------------------------eq---------------------------------------------
2121 // Structural equality check for Type representations
2122 bool TypeAry::eq( const Type *t ) const {
2123   const TypeAry *a = (const TypeAry*)t;
2124   return _elem == a->_elem &&
2125     _stable == a->_stable &&
2126     _size == a->_size;
2127 }
2128 
2129 //------------------------------hash-------------------------------------------
2130 // Type-specific hashing function.
2131 int TypeAry::hash(void) const {
2132   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2133 }
2134 
2135 /**
2136  * Return same type without a speculative part in the element
2137  */
2138 const Type* TypeAry::remove_speculative() const {
2139   return make(_elem->remove_speculative(), _size, _stable);
2140 }
2141 
2142 /**
2143  * Return same type with cleaned up speculative part of element
2144  */
2145 const Type* TypeAry::cleanup_speculative() const {
2146   return make(_elem->cleanup_speculative(), _size, _stable);
2147 }
2148 
2149 /**
2150  * Return same type but with a different inline depth (used for speculation)
2151  *
2152  * @param depth  depth to meet with
2153  */
2154 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2155   if (!UseInlineDepthForSpeculativeTypes) {
2156     return this;
2157   }
2158   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2159 }
2160 
2161 //----------------------interface_vs_oop---------------------------------------
2162 #ifdef ASSERT
2163 bool TypeAry::interface_vs_oop(const Type *t) const {
2164   const TypeAry* t_ary = t->is_ary();
2165   if (t_ary) {
2166     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2167     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2168     if(this_ptr != NULL && t_ptr != NULL) {
2169       return this_ptr->interface_vs_oop(t_ptr);
2170     }
2171   }
2172   return false;
2173 }
2174 #endif
2175 
2176 //------------------------------dump2------------------------------------------
2177 #ifndef PRODUCT
2178 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2179   if (_stable)  st->print("stable:");
2180   _elem->dump2(d, depth, st);
2181   st->print("[");
2182   _size->dump2(d, depth, st);
2183   st->print("]");
2184 }
2185 #endif
2186 
2187 //------------------------------singleton--------------------------------------
2188 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2189 // constants (Ldi nodes).  Singletons are integer, float or double constants
2190 // or a single symbol.
2191 bool TypeAry::singleton(void) const {
2192   return false;                 // Never a singleton
2193 }
2194 
2195 bool TypeAry::empty(void) const {
2196   return _elem->empty() || _size->empty();
2197 }
2198 
2199 //--------------------------ary_must_be_exact----------------------------------
2200 bool TypeAry::ary_must_be_exact() const {
2201   if (!UseExactTypes)       return false;
2202   // This logic looks at the element type of an array, and returns true
2203   // if the element type is either a primitive or a final instance class.
2204   // In such cases, an array built on this ary must have no subclasses.
2205   if (_elem == BOTTOM)      return false;  // general array not exact
2206   if (_elem == TOP   )      return false;  // inverted general array not exact
2207   const TypeOopPtr*  toop = NULL;
2208   if (UseCompressedOops && _elem->isa_narrowoop()) {
2209     toop = _elem->make_ptr()->isa_oopptr();
2210   } else {
2211     toop = _elem->isa_oopptr();
2212   }
2213   if (!toop)                return true;   // a primitive type, like int
2214   ciKlass* tklass = toop->klass();
2215   if (tklass == NULL)       return false;  // unloaded class
2216   if (!tklass->is_loaded()) return false;  // unloaded class
2217   const TypeInstPtr* tinst;
2218   if (_elem->isa_narrowoop())
2219     tinst = _elem->make_ptr()->isa_instptr();
2220   else
2221     tinst = _elem->isa_instptr();
2222   if (tinst)
2223     return tklass->as_instance_klass()->is_final();
2224   const TypeAryPtr*  tap;
2225   if (_elem->isa_narrowoop())
2226     tap = _elem->make_ptr()->isa_aryptr();
2227   else
2228     tap = _elem->isa_aryptr();
2229   if (tap)
2230     return tap->ary()->ary_must_be_exact();
2231   return false;
2232 }
2233 
2234 //==============================TypeVect=======================================
2235 // Convenience common pre-built types.
2236 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2237 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2238 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2239 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2240 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2241 
2242 //------------------------------make-------------------------------------------
2243 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2244   BasicType elem_bt = elem->array_element_basic_type();
2245   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2246   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2247   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2248   int size = length * type2aelembytes(elem_bt);
2249   switch (Matcher::vector_ideal_reg(size)) {
2250   case Op_VecS:
2251     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2252   case Op_RegL:
2253   case Op_VecD:
2254   case Op_RegD:
2255     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2256   case Op_VecX:
2257     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2258   case Op_VecY:
2259     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2260   case Op_VecZ:
2261     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2262   }
2263  ShouldNotReachHere();
2264   return NULL;
2265 }
2266 
2267 //------------------------------meet-------------------------------------------
2268 // Compute the MEET of two types.  It returns a new Type object.
2269 const Type *TypeVect::xmeet( const Type *t ) const {
2270   // Perform a fast test for common case; meeting the same types together.
2271   if( this == t ) return this;  // Meeting same type-rep?
2272 
2273   // Current "this->_base" is Vector
2274   switch (t->base()) {          // switch on original type
2275 
2276   case Bottom:                  // Ye Olde Default
2277     return t;
2278 
2279   default:                      // All else is a mistake
2280     typerr(t);
2281 
2282   case VectorS:
2283   case VectorD:
2284   case VectorX:
2285   case VectorY:
2286   case VectorZ: {                // Meeting 2 vectors?
2287     const TypeVect* v = t->is_vect();
2288     assert(  base() == v->base(), "");
2289     assert(length() == v->length(), "");
2290     assert(element_basic_type() == v->element_basic_type(), "");
2291     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2292   }
2293   case Top:
2294     break;
2295   }
2296   return this;
2297 }
2298 
2299 //------------------------------xdual------------------------------------------
2300 // Dual: compute field-by-field dual
2301 const Type *TypeVect::xdual() const {
2302   return new TypeVect(base(), _elem->dual(), _length);
2303 }
2304 
2305 //------------------------------eq---------------------------------------------
2306 // Structural equality check for Type representations
2307 bool TypeVect::eq(const Type *t) const {
2308   const TypeVect *v = t->is_vect();
2309   return (_elem == v->_elem) && (_length == v->_length);
2310 }
2311 
2312 //------------------------------hash-------------------------------------------
2313 // Type-specific hashing function.
2314 int TypeVect::hash(void) const {
2315   return (intptr_t)_elem + (intptr_t)_length;
2316 }
2317 
2318 //------------------------------singleton--------------------------------------
2319 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2320 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2321 // constant value (when vector is created with Replicate code).
2322 bool TypeVect::singleton(void) const {
2323 // There is no Con node for vectors yet.
2324 //  return _elem->singleton();
2325   return false;
2326 }
2327 
2328 bool TypeVect::empty(void) const {
2329   return _elem->empty();
2330 }
2331 
2332 //------------------------------dump2------------------------------------------
2333 #ifndef PRODUCT
2334 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2335   switch (base()) {
2336   case VectorS:
2337     st->print("vectors["); break;
2338   case VectorD:
2339     st->print("vectord["); break;
2340   case VectorX:
2341     st->print("vectorx["); break;
2342   case VectorY:
2343     st->print("vectory["); break;
2344   case VectorZ:
2345     st->print("vectorz["); break;
2346   default:
2347     ShouldNotReachHere();
2348   }
2349   st->print("%d]:{", _length);
2350   _elem->dump2(d, depth, st);
2351   st->print("}");
2352 }
2353 #endif
2354 
2355 
2356 //=============================================================================
2357 // Convenience common pre-built types.
2358 const TypePtr *TypePtr::NULL_PTR;
2359 const TypePtr *TypePtr::NOTNULL;
2360 const TypePtr *TypePtr::BOTTOM;
2361 
2362 //------------------------------meet-------------------------------------------
2363 // Meet over the PTR enum
2364 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2365   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2366   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2367   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2368   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2369   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2370   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2371   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2372 };
2373 
2374 //------------------------------make-------------------------------------------
2375 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2376   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2377 }
2378 
2379 //------------------------------cast_to_ptr_type-------------------------------
2380 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2381   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2382   if( ptr == _ptr ) return this;
2383   return make(_base, ptr, _offset, _speculative, _inline_depth);
2384 }
2385 
2386 //------------------------------get_con----------------------------------------
2387 intptr_t TypePtr::get_con() const {
2388   assert( _ptr == Null, "" );
2389   return _offset;
2390 }
2391 
2392 //------------------------------meet-------------------------------------------
2393 // Compute the MEET of two types.  It returns a new Type object.
2394 const Type *TypePtr::xmeet(const Type *t) const {
2395   const Type* res = xmeet_helper(t);
2396   if (res->isa_ptr() == NULL) {
2397     return res;
2398   }
2399 
2400   const TypePtr* res_ptr = res->is_ptr();
2401   if (res_ptr->speculative() != NULL) {
2402     // type->speculative() == NULL means that speculation is no better
2403     // than type, i.e. type->speculative() == type. So there are 2
2404     // ways to represent the fact that we have no useful speculative
2405     // data and we should use a single one to be able to test for
2406     // equality between types. Check whether type->speculative() ==
2407     // type and set speculative to NULL if it is the case.
2408     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2409       return res_ptr->remove_speculative();
2410     }
2411   }
2412 
2413   return res;
2414 }
2415 
2416 const Type *TypePtr::xmeet_helper(const Type *t) const {
2417   // Perform a fast test for common case; meeting the same types together.
2418   if( this == t ) return this;  // Meeting same type-rep?
2419 
2420   // Current "this->_base" is AnyPtr
2421   switch (t->base()) {          // switch on original type
2422   case Int:                     // Mixing ints & oops happens when javac
2423   case Long:                    // reuses local variables
2424   case FloatTop:
2425   case FloatCon:
2426   case FloatBot:
2427   case DoubleTop:
2428   case DoubleCon:
2429   case DoubleBot:
2430   case NarrowOop:
2431   case NarrowKlass:
2432   case Bottom:                  // Ye Olde Default
2433     return Type::BOTTOM;
2434   case Top:
2435     return this;
2436 
2437   case AnyPtr: {                // Meeting to AnyPtrs
2438     const TypePtr *tp = t->is_ptr();
2439     const TypePtr* speculative = xmeet_speculative(tp);
2440     int depth = meet_inline_depth(tp->inline_depth());
2441     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2442   }
2443   case RawPtr:                  // For these, flip the call around to cut down
2444   case OopPtr:
2445   case InstPtr:                 // on the cases I have to handle.
2446   case AryPtr:
2447   case MetadataPtr:
2448   case KlassPtr:
2449     return t->xmeet(this);      // Call in reverse direction
2450   default:                      // All else is a mistake
2451     typerr(t);
2452 
2453   }
2454   return this;
2455 }
2456 
2457 //------------------------------meet_offset------------------------------------
2458 int TypePtr::meet_offset( int offset ) const {
2459   // Either is 'TOP' offset?  Return the other offset!
2460   if( _offset == OffsetTop ) return offset;
2461   if( offset == OffsetTop ) return _offset;
2462   // If either is different, return 'BOTTOM' offset
2463   if( _offset != offset ) return OffsetBot;
2464   return _offset;
2465 }
2466 
2467 //------------------------------dual_offset------------------------------------
2468 int TypePtr::dual_offset( ) const {
2469   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2470   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2471   return _offset;               // Map everything else into self
2472 }
2473 
2474 //------------------------------xdual------------------------------------------
2475 // Dual: compute field-by-field dual
2476 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2477   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2478 };
2479 const Type *TypePtr::xdual() const {
2480   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2481 }
2482 
2483 //------------------------------xadd_offset------------------------------------
2484 int TypePtr::xadd_offset( intptr_t offset ) const {
2485   // Adding to 'TOP' offset?  Return 'TOP'!
2486   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2487   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2488   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2489   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2490   offset += (intptr_t)_offset;
2491   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2492 
2493   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2494   // It is possible to construct a negative offset during PhaseCCP
2495 
2496   return (int)offset;        // Sum valid offsets
2497 }
2498 
2499 //------------------------------add_offset-------------------------------------
2500 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2501   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2502 }
2503 
2504 //------------------------------eq---------------------------------------------
2505 // Structural equality check for Type representations
2506 bool TypePtr::eq( const Type *t ) const {
2507   const TypePtr *a = (const TypePtr*)t;
2508   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2509 }
2510 
2511 //------------------------------hash-------------------------------------------
2512 // Type-specific hashing function.
2513 int TypePtr::hash(void) const {
2514   return java_add(java_add((jint)_ptr, (jint)_offset), java_add((jint)hash_speculative(), (jint)_inline_depth));
2515 ;
2516 }
2517 
2518 /**
2519  * Return same type without a speculative part
2520  */
2521 const Type* TypePtr::remove_speculative() const {
2522   if (_speculative == NULL) {
2523     return this;
2524   }
2525   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2526   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2527 }
2528 
2529 /**
2530  * Return same type but drop speculative part if we know we won't use
2531  * it
2532  */
2533 const Type* TypePtr::cleanup_speculative() const {
2534   if (speculative() == NULL) {
2535     return this;
2536   }
2537   const Type* no_spec = remove_speculative();
2538   // If this is NULL_PTR then we don't need the speculative type
2539   // (with_inline_depth in case the current type inline depth is
2540   // InlineDepthTop)
2541   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2542     return no_spec;
2543   }
2544   if (above_centerline(speculative()->ptr())) {
2545     return no_spec;
2546   }
2547   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2548   // If the speculative may be null and is an inexact klass then it
2549   // doesn't help
2550   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2551       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2552     return no_spec;
2553   }
2554   return this;
2555 }
2556 
2557 /**
2558  * dual of the speculative part of the type
2559  */
2560 const TypePtr* TypePtr::dual_speculative() const {
2561   if (_speculative == NULL) {
2562     return NULL;
2563   }
2564   return _speculative->dual()->is_ptr();
2565 }
2566 
2567 /**
2568  * meet of the speculative parts of 2 types
2569  *
2570  * @param other  type to meet with
2571  */
2572 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2573   bool this_has_spec = (_speculative != NULL);
2574   bool other_has_spec = (other->speculative() != NULL);
2575 
2576   if (!this_has_spec && !other_has_spec) {
2577     return NULL;
2578   }
2579 
2580   // If we are at a point where control flow meets and one branch has
2581   // a speculative type and the other has not, we meet the speculative
2582   // type of one branch with the actual type of the other. If the
2583   // actual type is exact and the speculative is as well, then the
2584   // result is a speculative type which is exact and we can continue
2585   // speculation further.
2586   const TypePtr* this_spec = _speculative;
2587   const TypePtr* other_spec = other->speculative();
2588 
2589   if (!this_has_spec) {
2590     this_spec = this;
2591   }
2592 
2593   if (!other_has_spec) {
2594     other_spec = other;
2595   }
2596 
2597   return this_spec->meet(other_spec)->is_ptr();
2598 }
2599 
2600 /**
2601  * dual of the inline depth for this type (used for speculation)
2602  */
2603 int TypePtr::dual_inline_depth() const {
2604   return -inline_depth();
2605 }
2606 
2607 /**
2608  * meet of 2 inline depths (used for speculation)
2609  *
2610  * @param depth  depth to meet with
2611  */
2612 int TypePtr::meet_inline_depth(int depth) const {
2613   return MAX2(inline_depth(), depth);
2614 }
2615 
2616 /**
2617  * Are the speculative parts of 2 types equal?
2618  *
2619  * @param other  type to compare this one to
2620  */
2621 bool TypePtr::eq_speculative(const TypePtr* other) const {
2622   if (_speculative == NULL || other->speculative() == NULL) {
2623     return _speculative == other->speculative();
2624   }
2625 
2626   if (_speculative->base() != other->speculative()->base()) {
2627     return false;
2628   }
2629 
2630   return _speculative->eq(other->speculative());
2631 }
2632 
2633 /**
2634  * Hash of the speculative part of the type
2635  */
2636 int TypePtr::hash_speculative() const {
2637   if (_speculative == NULL) {
2638     return 0;
2639   }
2640 
2641   return _speculative->hash();
2642 }
2643 
2644 /**
2645  * add offset to the speculative part of the type
2646  *
2647  * @param offset  offset to add
2648  */
2649 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2650   if (_speculative == NULL) {
2651     return NULL;
2652   }
2653   return _speculative->add_offset(offset)->is_ptr();
2654 }
2655 
2656 /**
2657  * return exact klass from the speculative type if there's one
2658  */
2659 ciKlass* TypePtr::speculative_type() const {
2660   if (_speculative != NULL && _speculative->isa_oopptr()) {
2661     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2662     if (speculative->klass_is_exact()) {
2663       return speculative->klass();
2664     }
2665   }
2666   return NULL;
2667 }
2668 
2669 /**
2670  * return true if speculative type may be null
2671  */
2672 bool TypePtr::speculative_maybe_null() const {
2673   if (_speculative != NULL) {
2674     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2675     return speculative->maybe_null();
2676   }
2677   return true;
2678 }
2679 
2680 bool TypePtr::speculative_always_null() const {
2681   if (_speculative != NULL) {
2682     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2683     return speculative == TypePtr::NULL_PTR;
2684   }
2685   return false;
2686 }
2687 
2688 /**
2689  * Same as TypePtr::speculative_type() but return the klass only if
2690  * the speculative tells us is not null
2691  */
2692 ciKlass* TypePtr::speculative_type_not_null() const {
2693   if (speculative_maybe_null()) {
2694     return NULL;
2695   }
2696   return speculative_type();
2697 }
2698 
2699 /**
2700  * Check whether new profiling would improve speculative type
2701  *
2702  * @param   exact_kls    class from profiling
2703  * @param   inline_depth inlining depth of profile point
2704  *
2705  * @return  true if type profile is valuable
2706  */
2707 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2708   // no profiling?
2709   if (exact_kls == NULL) {
2710     return false;
2711   }
2712   if (speculative() == TypePtr::NULL_PTR) {
2713     return false;
2714   }
2715   // no speculative type or non exact speculative type?
2716   if (speculative_type() == NULL) {
2717     return true;
2718   }
2719   // If the node already has an exact speculative type keep it,
2720   // unless it was provided by profiling that is at a deeper
2721   // inlining level. Profiling at a higher inlining depth is
2722   // expected to be less accurate.
2723   if (_speculative->inline_depth() == InlineDepthBottom) {
2724     return false;
2725   }
2726   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2727   return inline_depth < _speculative->inline_depth();
2728 }
2729 
2730 /**
2731  * Check whether new profiling would improve ptr (= tells us it is non
2732  * null)
2733  *
2734  * @param   ptr_kind always null or not null?
2735  *
2736  * @return  true if ptr profile is valuable
2737  */
2738 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2739   // profiling doesn't tell us anything useful
2740   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2741     return false;
2742   }
2743   // We already know this is not null
2744   if (!this->maybe_null()) {
2745     return false;
2746   }
2747   // We already know the speculative type cannot be null
2748   if (!speculative_maybe_null()) {
2749     return false;
2750   }
2751   // We already know this is always null
2752   if (this == TypePtr::NULL_PTR) {
2753     return false;
2754   }
2755   // We already know the speculative type is always null
2756   if (speculative_always_null()) {
2757     return false;
2758   }
2759   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
2760     return false;
2761   }
2762   return true;
2763 }
2764 
2765 //------------------------------dump2------------------------------------------
2766 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2767   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2768 };
2769 
2770 #ifndef PRODUCT
2771 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2772   if( _ptr == Null ) st->print("NULL");
2773   else st->print("%s *", ptr_msg[_ptr]);
2774   if( _offset == OffsetTop ) st->print("+top");
2775   else if( _offset == OffsetBot ) st->print("+bot");
2776   else if( _offset ) st->print("+%d", _offset);
2777   dump_inline_depth(st);
2778   dump_speculative(st);
2779 }
2780 
2781 /**
2782  *dump the speculative part of the type
2783  */
2784 void TypePtr::dump_speculative(outputStream *st) const {
2785   if (_speculative != NULL) {
2786     st->print(" (speculative=");
2787     _speculative->dump_on(st);
2788     st->print(")");
2789   }
2790 }
2791 
2792 /**
2793  *dump the inline depth of the type
2794  */
2795 void TypePtr::dump_inline_depth(outputStream *st) const {
2796   if (_inline_depth != InlineDepthBottom) {
2797     if (_inline_depth == InlineDepthTop) {
2798       st->print(" (inline_depth=InlineDepthTop)");
2799     } else {
2800       st->print(" (inline_depth=%d)", _inline_depth);
2801     }
2802   }
2803 }
2804 #endif
2805 
2806 //------------------------------singleton--------------------------------------
2807 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2808 // constants
2809 bool TypePtr::singleton(void) const {
2810   // TopPTR, Null, AnyNull, Constant are all singletons
2811   return (_offset != OffsetBot) && !below_centerline(_ptr);
2812 }
2813 
2814 bool TypePtr::empty(void) const {
2815   return (_offset == OffsetTop) || above_centerline(_ptr);
2816 }
2817 
2818 //=============================================================================
2819 // Convenience common pre-built types.
2820 const TypeRawPtr *TypeRawPtr::BOTTOM;
2821 const TypeRawPtr *TypeRawPtr::NOTNULL;
2822 
2823 //------------------------------make-------------------------------------------
2824 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2825   assert( ptr != Constant, "what is the constant?" );
2826   assert( ptr != Null, "Use TypePtr for NULL" );
2827   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2828 }
2829 
2830 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2831   assert( bits, "Use TypePtr for NULL" );
2832   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2833 }
2834 
2835 //------------------------------cast_to_ptr_type-------------------------------
2836 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2837   assert( ptr != Constant, "what is the constant?" );
2838   assert( ptr != Null, "Use TypePtr for NULL" );
2839   assert( _bits==0, "Why cast a constant address?");
2840   if( ptr == _ptr ) return this;
2841   return make(ptr);
2842 }
2843 
2844 //------------------------------get_con----------------------------------------
2845 intptr_t TypeRawPtr::get_con() const {
2846   assert( _ptr == Null || _ptr == Constant, "" );
2847   return (intptr_t)_bits;
2848 }
2849 
2850 //------------------------------meet-------------------------------------------
2851 // Compute the MEET of two types.  It returns a new Type object.
2852 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2853   // Perform a fast test for common case; meeting the same types together.
2854   if( this == t ) return this;  // Meeting same type-rep?
2855 
2856   // Current "this->_base" is RawPtr
2857   switch( t->base() ) {         // switch on original type
2858   case Bottom:                  // Ye Olde Default
2859     return t;
2860   case Top:
2861     return this;
2862   case AnyPtr:                  // Meeting to AnyPtrs
2863     break;
2864   case RawPtr: {                // might be top, bot, any/not or constant
2865     enum PTR tptr = t->is_ptr()->ptr();
2866     enum PTR ptr = meet_ptr( tptr );
2867     if( ptr == Constant ) {     // Cannot be equal constants, so...
2868       if( tptr == Constant && _ptr != Constant)  return t;
2869       if( _ptr == Constant && tptr != Constant)  return this;
2870       ptr = NotNull;            // Fall down in lattice
2871     }
2872     return make( ptr );
2873   }
2874 
2875   case OopPtr:
2876   case InstPtr:
2877   case AryPtr:
2878   case MetadataPtr:
2879   case KlassPtr:
2880     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2881   default:                      // All else is a mistake
2882     typerr(t);
2883   }
2884 
2885   // Found an AnyPtr type vs self-RawPtr type
2886   const TypePtr *tp = t->is_ptr();
2887   switch (tp->ptr()) {
2888   case TypePtr::TopPTR:  return this;
2889   case TypePtr::BotPTR:  return t;
2890   case TypePtr::Null:
2891     if( _ptr == TypePtr::TopPTR ) return t;
2892     return TypeRawPtr::BOTTOM;
2893   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2894   case TypePtr::AnyNull:
2895     if( _ptr == TypePtr::Constant) return this;
2896     return make( meet_ptr(TypePtr::AnyNull) );
2897   default: ShouldNotReachHere();
2898   }
2899   return this;
2900 }
2901 
2902 //------------------------------xdual------------------------------------------
2903 // Dual: compute field-by-field dual
2904 const Type *TypeRawPtr::xdual() const {
2905   return new TypeRawPtr( dual_ptr(), _bits );
2906 }
2907 
2908 //------------------------------add_offset-------------------------------------
2909 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2910   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2911   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2912   if( offset == 0 ) return this; // No change
2913   switch (_ptr) {
2914   case TypePtr::TopPTR:
2915   case TypePtr::BotPTR:
2916   case TypePtr::NotNull:
2917     return this;
2918   case TypePtr::Null:
2919   case TypePtr::Constant: {
2920     address bits = _bits+offset;
2921     if ( bits == 0 ) return TypePtr::NULL_PTR;
2922     return make( bits );
2923   }
2924   default:  ShouldNotReachHere();
2925   }
2926   return NULL;                  // Lint noise
2927 }
2928 
2929 //------------------------------eq---------------------------------------------
2930 // Structural equality check for Type representations
2931 bool TypeRawPtr::eq( const Type *t ) const {
2932   const TypeRawPtr *a = (const TypeRawPtr*)t;
2933   return _bits == a->_bits && TypePtr::eq(t);
2934 }
2935 
2936 //------------------------------hash-------------------------------------------
2937 // Type-specific hashing function.
2938 int TypeRawPtr::hash(void) const {
2939   return (intptr_t)_bits + TypePtr::hash();
2940 }
2941 
2942 //------------------------------dump2------------------------------------------
2943 #ifndef PRODUCT
2944 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2945   if( _ptr == Constant )
2946     st->print(INTPTR_FORMAT, p2i(_bits));
2947   else
2948     st->print("rawptr:%s", ptr_msg[_ptr]);
2949 }
2950 #endif
2951 
2952 //=============================================================================
2953 // Convenience common pre-built type.
2954 const TypeOopPtr *TypeOopPtr::BOTTOM;
2955 
2956 //------------------------------TypeOopPtr-------------------------------------
2957 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2958                        int instance_id, const TypePtr* speculative, int inline_depth)
2959   : TypePtr(t, ptr, offset, speculative, inline_depth),
2960     _const_oop(o), _klass(k),
2961     _klass_is_exact(xk),
2962     _is_ptr_to_narrowoop(false),
2963     _is_ptr_to_narrowklass(false),
2964     _is_ptr_to_boxed_value(false),
2965     _instance_id(instance_id) {
2966   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2967       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2968     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2969   }
2970 #ifdef _LP64
2971   if (_offset > 0 || _offset == Type::OffsetTop || _offset == Type::OffsetBot) {
2972     if (_offset == oopDesc::klass_offset_in_bytes()) {
2973       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2974     } else if (klass() == NULL) {
2975       // Array with unknown body type
2976       assert(this->isa_aryptr(), "only arrays without klass");
2977       _is_ptr_to_narrowoop = UseCompressedOops;
2978     } else if (this->isa_aryptr()) {
2979       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2980                              _offset != arrayOopDesc::length_offset_in_bytes());
2981     } else if (klass()->is_instance_klass()) {
2982       ciInstanceKlass* ik = klass()->as_instance_klass();
2983       ciField* field = NULL;
2984       if (this->isa_klassptr()) {
2985         // Perm objects don't use compressed references
2986       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2987         // unsafe access
2988         _is_ptr_to_narrowoop = UseCompressedOops;
2989       } else { // exclude unsafe ops
2990         assert(this->isa_instptr(), "must be an instance ptr.");
2991 
2992         if (klass() == ciEnv::current()->Class_klass() &&
2993             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2994              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2995           // Special hidden fields from the Class.
2996           assert(this->isa_instptr(), "must be an instance ptr.");
2997           _is_ptr_to_narrowoop = false;
2998         } else if (klass() == ciEnv::current()->Class_klass() &&
2999                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
3000           // Static fields
3001           assert(o != NULL, "must be constant");
3002           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3003           ciField* field = k->get_field_by_offset(_offset, true);
3004           assert(field != NULL, "missing field");
3005           BasicType basic_elem_type = field->layout_type();
3006           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3007                                                        basic_elem_type == T_ARRAY);
3008         } else {
3009           // Instance fields which contains a compressed oop references.
3010           field = ik->get_field_by_offset(_offset, false);
3011           if (field != NULL) {
3012             BasicType basic_elem_type = field->layout_type();
3013             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3014                                                          basic_elem_type == T_ARRAY);
3015           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3016             // Compile::find_alias_type() cast exactness on all types to verify
3017             // that it does not affect alias type.
3018             _is_ptr_to_narrowoop = UseCompressedOops;
3019           } else {
3020             // Type for the copy start in LibraryCallKit::inline_native_clone().
3021             _is_ptr_to_narrowoop = UseCompressedOops;
3022           }
3023         }
3024       }
3025     }
3026   }
3027 #endif
3028 }
3029 
3030 //------------------------------make-------------------------------------------
3031 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
3032                                      const TypePtr* speculative, int inline_depth) {
3033   assert(ptr != Constant, "no constant generic pointers");
3034   ciKlass*  k = Compile::current()->env()->Object_klass();
3035   bool      xk = false;
3036   ciObject* o = NULL;
3037   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3038 }
3039 
3040 
3041 //------------------------------cast_to_ptr_type-------------------------------
3042 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3043   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3044   if( ptr == _ptr ) return this;
3045   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3046 }
3047 
3048 //-----------------------------cast_to_instance_id----------------------------
3049 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3050   // There are no instances of a general oop.
3051   // Return self unchanged.
3052   return this;
3053 }
3054 
3055 const TypeOopPtr *TypeOopPtr::cast_to_nonconst() const {
3056   return this;
3057 }
3058 
3059 //-----------------------------cast_to_exactness-------------------------------
3060 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3061   // There is no such thing as an exact general oop.
3062   // Return self unchanged.
3063   return this;
3064 }
3065 
3066 
3067 //------------------------------as_klass_type----------------------------------
3068 // Return the klass type corresponding to this instance or array type.
3069 // It is the type that is loaded from an object of this type.
3070 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3071   ciKlass* k = klass();
3072   bool    xk = klass_is_exact();
3073   if (k == NULL)
3074     return TypeKlassPtr::OBJECT;
3075   else
3076     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
3077 }
3078 
3079 //------------------------------meet-------------------------------------------
3080 // Compute the MEET of two types.  It returns a new Type object.
3081 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3082   // Perform a fast test for common case; meeting the same types together.
3083   if( this == t ) return this;  // Meeting same type-rep?
3084 
3085   // Current "this->_base" is OopPtr
3086   switch (t->base()) {          // switch on original type
3087 
3088   case Int:                     // Mixing ints & oops happens when javac
3089   case Long:                    // reuses local variables
3090   case FloatTop:
3091   case FloatCon:
3092   case FloatBot:
3093   case DoubleTop:
3094   case DoubleCon:
3095   case DoubleBot:
3096   case NarrowOop:
3097   case NarrowKlass:
3098   case Bottom:                  // Ye Olde Default
3099     return Type::BOTTOM;
3100   case Top:
3101     return this;
3102 
3103   default:                      // All else is a mistake
3104     typerr(t);
3105 
3106   case RawPtr:
3107   case MetadataPtr:
3108   case KlassPtr:
3109     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3110 
3111   case AnyPtr: {
3112     // Found an AnyPtr type vs self-OopPtr type
3113     const TypePtr *tp = t->is_ptr();
3114     int offset = meet_offset(tp->offset());
3115     PTR ptr = meet_ptr(tp->ptr());
3116     const TypePtr* speculative = xmeet_speculative(tp);
3117     int depth = meet_inline_depth(tp->inline_depth());
3118     switch (tp->ptr()) {
3119     case Null:
3120       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3121       // else fall through:
3122     case TopPTR:
3123     case AnyNull: {
3124       int instance_id = meet_instance_id(InstanceTop);
3125       return make(ptr, offset, instance_id, speculative, depth);
3126     }
3127     case BotPTR:
3128     case NotNull:
3129       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3130     default: typerr(t);
3131     }
3132   }
3133 
3134   case OopPtr: {                 // Meeting to other OopPtrs
3135     const TypeOopPtr *tp = t->is_oopptr();
3136     int instance_id = meet_instance_id(tp->instance_id());
3137     const TypePtr* speculative = xmeet_speculative(tp);
3138     int depth = meet_inline_depth(tp->inline_depth());
3139     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3140   }
3141 
3142   case InstPtr:                  // For these, flip the call around to cut down
3143   case AryPtr:
3144     return t->xmeet(this);      // Call in reverse direction
3145 
3146   } // End of switch
3147   return this;                  // Return the double constant
3148 }
3149 
3150 
3151 //------------------------------xdual------------------------------------------
3152 // Dual of a pure heap pointer.  No relevant klass or oop information.
3153 const Type *TypeOopPtr::xdual() const {
3154   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3155   assert(const_oop() == NULL,             "no constants here");
3156   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3157 }
3158 
3159 //--------------------------make_from_klass_common-----------------------------
3160 // Computes the element-type given a klass.
3161 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3162   if (klass->is_instance_klass()) {
3163     Compile* C = Compile::current();
3164     Dependencies* deps = C->dependencies();
3165     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3166     // Element is an instance
3167     bool klass_is_exact = false;
3168     if (klass->is_loaded()) {
3169       // Try to set klass_is_exact.
3170       ciInstanceKlass* ik = klass->as_instance_klass();
3171       klass_is_exact = ik->is_final();
3172       if (!klass_is_exact && klass_change
3173           && deps != NULL && UseUniqueSubclasses) {
3174         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3175         if (sub != NULL) {
3176           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3177           klass = ik = sub;
3178           klass_is_exact = sub->is_final();
3179         }
3180       }
3181       if (!klass_is_exact && try_for_exact
3182           && deps != NULL && UseExactTypes) {
3183         if (!ik->is_interface() && !ik->has_subklass()) {
3184           // Add a dependence; if concrete subclass added we need to recompile
3185           deps->assert_leaf_type(ik);
3186           klass_is_exact = true;
3187         }
3188       }
3189     }
3190     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
3191   } else if (klass->is_obj_array_klass()) {
3192     // Element is an object array. Recursively call ourself.
3193     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
3194     bool xk = etype->klass_is_exact();
3195     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3196     // We used to pass NotNull in here, asserting that the sub-arrays
3197     // are all not-null.  This is not true in generally, as code can
3198     // slam NULLs down in the subarrays.
3199     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
3200     return arr;
3201   } else if (klass->is_type_array_klass()) {
3202     // Element is an typeArray
3203     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3204     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3205     // We used to pass NotNull in here, asserting that the array pointer
3206     // is not-null. That was not true in general.
3207     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
3208     return arr;
3209   } else {
3210     ShouldNotReachHere();
3211     return NULL;
3212   }
3213 }
3214 
3215 //------------------------------make_from_constant-----------------------------
3216 // Make a java pointer from an oop constant
3217 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3218   assert(!o->is_null_object(), "null object not yet handled here.");
3219   ciKlass* klass = o->klass();
3220   if (klass->is_instance_klass()) {
3221     // Element is an instance
3222     if (require_constant) {
3223       if (!o->can_be_constant())  return NULL;
3224     } else if (!o->should_be_constant()) {
3225       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3226     }
3227     return TypeInstPtr::make(o);
3228   } else if (klass->is_obj_array_klass()) {
3229     // Element is an object array. Recursively call ourself.
3230     const TypeOopPtr *etype =
3231       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3232     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3233     // We used to pass NotNull in here, asserting that the sub-arrays
3234     // are all not-null.  This is not true in generally, as code can
3235     // slam NULLs down in the subarrays.
3236     if (require_constant) {
3237       if (!o->can_be_constant())  return NULL;
3238     } else if (!o->should_be_constant()) {
3239       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3240     }
3241     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3242     return arr;
3243   } else if (klass->is_type_array_klass()) {
3244     // Element is an typeArray
3245     const Type* etype =
3246       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3247     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3248     // We used to pass NotNull in here, asserting that the array pointer
3249     // is not-null. That was not true in general.
3250     if (require_constant) {
3251       if (!o->can_be_constant())  return NULL;
3252     } else if (!o->should_be_constant()) {
3253       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3254     }
3255     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3256     return arr;
3257   }
3258 
3259   fatal("unhandled object type");
3260   return NULL;
3261 }
3262 
3263 //------------------------------get_con----------------------------------------
3264 intptr_t TypeOopPtr::get_con() const {
3265   assert( _ptr == Null || _ptr == Constant, "" );
3266   assert( _offset >= 0, "" );
3267 
3268   if (_offset != 0) {
3269     // After being ported to the compiler interface, the compiler no longer
3270     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3271     // to a handle at compile time.  This handle is embedded in the generated
3272     // code and dereferenced at the time the nmethod is made.  Until that time,
3273     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3274     // have access to the addresses!).  This does not seem to currently happen,
3275     // but this assertion here is to help prevent its occurence.
3276     tty->print_cr("Found oop constant with non-zero offset");
3277     ShouldNotReachHere();
3278   }
3279 
3280   return (intptr_t)const_oop()->constant_encoding();
3281 }
3282 
3283 
3284 //-----------------------------filter------------------------------------------
3285 // Do not allow interface-vs.-noninterface joins to collapse to top.
3286 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3287 
3288   const Type* ft = join_helper(kills, include_speculative);
3289   const TypeInstPtr* ftip = ft->isa_instptr();
3290   const TypeInstPtr* ktip = kills->isa_instptr();
3291 
3292   if (ft->empty()) {
3293     // Check for evil case of 'this' being a class and 'kills' expecting an
3294     // interface.  This can happen because the bytecodes do not contain
3295     // enough type info to distinguish a Java-level interface variable
3296     // from a Java-level object variable.  If we meet 2 classes which
3297     // both implement interface I, but their meet is at 'j/l/O' which
3298     // doesn't implement I, we have no way to tell if the result should
3299     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3300     // into a Phi which "knows" it's an Interface type we'll have to
3301     // uplift the type.
3302     if (!empty()) {
3303       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3304         return kills;           // Uplift to interface
3305       }
3306       // Also check for evil cases of 'this' being a class array
3307       // and 'kills' expecting an array of interfaces.
3308       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3309       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3310         return kills;           // Uplift to array of interface
3311       }
3312     }
3313 
3314     return Type::TOP;           // Canonical empty value
3315   }
3316 
3317   // If we have an interface-typed Phi or cast and we narrow to a class type,
3318   // the join should report back the class.  However, if we have a J/L/Object
3319   // class-typed Phi and an interface flows in, it's possible that the meet &
3320   // join report an interface back out.  This isn't possible but happens
3321   // because the type system doesn't interact well with interfaces.
3322   if (ftip != NULL && ktip != NULL &&
3323       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3324       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3325     assert(!ftip->klass_is_exact(), "interface could not be exact");
3326     return ktip->cast_to_ptr_type(ftip->ptr());
3327   }
3328 
3329   return ft;
3330 }
3331 
3332 //------------------------------eq---------------------------------------------
3333 // Structural equality check for Type representations
3334 bool TypeOopPtr::eq( const Type *t ) const {
3335   const TypeOopPtr *a = (const TypeOopPtr*)t;
3336   if (_klass_is_exact != a->_klass_is_exact ||
3337       _instance_id != a->_instance_id)  return false;
3338   ciObject* one = const_oop();
3339   ciObject* two = a->const_oop();
3340   if (one == NULL || two == NULL) {
3341     return (one == two) && TypePtr::eq(t);
3342   } else {
3343     return one->equals(two) && TypePtr::eq(t);
3344   }
3345 }
3346 
3347 //------------------------------hash-------------------------------------------
3348 // Type-specific hashing function.
3349 int TypeOopPtr::hash(void) const {
3350   return
3351     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3352              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3353 }
3354 
3355 //------------------------------dump2------------------------------------------
3356 #ifndef PRODUCT
3357 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3358   st->print("oopptr:%s", ptr_msg[_ptr]);
3359   if( _klass_is_exact ) st->print(":exact");
3360   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3361   switch( _offset ) {
3362   case OffsetTop: st->print("+top"); break;
3363   case OffsetBot: st->print("+any"); break;
3364   case         0: break;
3365   default:        st->print("+%d",_offset); break;
3366   }
3367   if (_instance_id == InstanceTop)
3368     st->print(",iid=top");
3369   else if (_instance_id != InstanceBot)
3370     st->print(",iid=%d",_instance_id);
3371 
3372   dump_inline_depth(st);
3373   dump_speculative(st);
3374 }
3375 #endif
3376 
3377 //------------------------------singleton--------------------------------------
3378 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3379 // constants
3380 bool TypeOopPtr::singleton(void) const {
3381   // detune optimizer to not generate constant oop + constant offset as a constant!
3382   // TopPTR, Null, AnyNull, Constant are all singletons
3383   return (_offset == 0) && !below_centerline(_ptr);
3384 }
3385 
3386 //------------------------------add_offset-------------------------------------
3387 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3388   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3389 }
3390 
3391 /**
3392  * Return same type without a speculative part
3393  */
3394 const Type* TypeOopPtr::remove_speculative() const {
3395   if (_speculative == NULL) {
3396     return this;
3397   }
3398   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3399   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3400 }
3401 
3402 /**
3403  * Return same type but drop speculative part if we know we won't use
3404  * it
3405  */
3406 const Type* TypeOopPtr::cleanup_speculative() const {
3407   // If the klass is exact and the ptr is not null then there's
3408   // nothing that the speculative type can help us with
3409   if (klass_is_exact() && !maybe_null()) {
3410     return remove_speculative();
3411   }
3412   return TypePtr::cleanup_speculative();
3413 }
3414 
3415 /**
3416  * Return same type but with a different inline depth (used for speculation)
3417  *
3418  * @param depth  depth to meet with
3419  */
3420 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3421   if (!UseInlineDepthForSpeculativeTypes) {
3422     return this;
3423   }
3424   return make(_ptr, _offset, _instance_id, _speculative, depth);
3425 }
3426 
3427 //------------------------------meet_instance_id--------------------------------
3428 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3429   // Either is 'TOP' instance?  Return the other instance!
3430   if( _instance_id == InstanceTop ) return  instance_id;
3431   if(  instance_id == InstanceTop ) return _instance_id;
3432   // If either is different, return 'BOTTOM' instance
3433   if( _instance_id != instance_id ) return InstanceBot;
3434   return _instance_id;
3435 }
3436 
3437 //------------------------------dual_instance_id--------------------------------
3438 int TypeOopPtr::dual_instance_id( ) const {
3439   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3440   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3441   return _instance_id;              // Map everything else into self
3442 }
3443 
3444 /**
3445  * Check whether new profiling would improve speculative type
3446  *
3447  * @param   exact_kls    class from profiling
3448  * @param   inline_depth inlining depth of profile point
3449  *
3450  * @return  true if type profile is valuable
3451  */
3452 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3453   // no way to improve an already exact type
3454   if (klass_is_exact()) {
3455     return false;
3456   }
3457   return TypePtr::would_improve_type(exact_kls, inline_depth);
3458 }
3459 
3460 //=============================================================================
3461 // Convenience common pre-built types.
3462 const TypeInstPtr *TypeInstPtr::NOTNULL;
3463 const TypeInstPtr *TypeInstPtr::BOTTOM;
3464 const TypeInstPtr *TypeInstPtr::MIRROR;
3465 const TypeInstPtr *TypeInstPtr::MARK;
3466 const TypeInstPtr *TypeInstPtr::KLASS;
3467 
3468 //------------------------------TypeInstPtr-------------------------------------
3469 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3470                          int instance_id, const TypePtr* speculative, int inline_depth)
3471   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3472     _name(k->name()) {
3473    assert(k != NULL &&
3474           (k->is_loaded() || o == NULL),
3475           "cannot have constants with non-loaded klass");
3476 };
3477 
3478 //------------------------------make-------------------------------------------
3479 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3480                                      ciKlass* k,
3481                                      bool xk,
3482                                      ciObject* o,
3483                                      int offset,
3484                                      int instance_id,
3485                                      const TypePtr* speculative,
3486                                      int inline_depth) {
3487   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3488   // Either const_oop() is NULL or else ptr is Constant
3489   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3490           "constant pointers must have a value supplied" );
3491   // Ptr is never Null
3492   assert( ptr != Null, "NULL pointers are not typed" );
3493 
3494   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3495   if (!UseExactTypes)  xk = false;
3496   if (ptr == Constant) {
3497     // Note:  This case includes meta-object constants, such as methods.
3498     xk = true;
3499   } else if (k->is_loaded()) {
3500     ciInstanceKlass* ik = k->as_instance_klass();
3501     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3502     if (xk && ik->is_interface())  xk = false;  // no exact interface
3503   }
3504 
3505   // Now hash this baby
3506   TypeInstPtr *result =
3507     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3508 
3509   return result;
3510 }
3511 
3512 /**
3513  *  Create constant type for a constant boxed value
3514  */
3515 const Type* TypeInstPtr::get_const_boxed_value() const {
3516   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3517   assert((const_oop() != NULL), "should be called only for constant object");
3518   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3519   BasicType bt = constant.basic_type();
3520   switch (bt) {
3521     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3522     case T_INT:      return TypeInt::make(constant.as_int());
3523     case T_CHAR:     return TypeInt::make(constant.as_char());
3524     case T_BYTE:     return TypeInt::make(constant.as_byte());
3525     case T_SHORT:    return TypeInt::make(constant.as_short());
3526     case T_FLOAT:    return TypeF::make(constant.as_float());
3527     case T_DOUBLE:   return TypeD::make(constant.as_double());
3528     case T_LONG:     return TypeLong::make(constant.as_long());
3529     default:         break;
3530   }
3531   fatal("Invalid boxed value type '%s'", type2name(bt));
3532   return NULL;
3533 }
3534 
3535 //------------------------------cast_to_ptr_type-------------------------------
3536 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3537   if( ptr == _ptr ) return this;
3538   // Reconstruct _sig info here since not a problem with later lazy
3539   // construction, _sig will show up on demand.
3540   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3541 }
3542 
3543 
3544 //-----------------------------cast_to_exactness-------------------------------
3545 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3546   if( klass_is_exact == _klass_is_exact ) return this;
3547   if (!UseExactTypes)  return this;
3548   if (!_klass->is_loaded())  return this;
3549   ciInstanceKlass* ik = _klass->as_instance_klass();
3550   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3551   if( ik->is_interface() )              return this;  // cannot set xk
3552   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3553 }
3554 
3555 //-----------------------------cast_to_instance_id----------------------------
3556 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3557   if( instance_id == _instance_id ) return this;
3558   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3559 }
3560 
3561 const TypeOopPtr *TypeInstPtr::cast_to_nonconst() const {
3562   if (const_oop() == NULL) return this;
3563   return make(NotNull, klass(), _klass_is_exact, NULL, _offset, _instance_id, _speculative, _inline_depth);
3564 }
3565 
3566 //------------------------------xmeet_unloaded---------------------------------
3567 // Compute the MEET of two InstPtrs when at least one is unloaded.
3568 // Assume classes are different since called after check for same name/class-loader
3569 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3570     int off = meet_offset(tinst->offset());
3571     PTR ptr = meet_ptr(tinst->ptr());
3572     int instance_id = meet_instance_id(tinst->instance_id());
3573     const TypePtr* speculative = xmeet_speculative(tinst);
3574     int depth = meet_inline_depth(tinst->inline_depth());
3575 
3576     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3577     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3578     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3579       //
3580       // Meet unloaded class with java/lang/Object
3581       //
3582       // Meet
3583       //          |                     Unloaded Class
3584       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3585       //  ===================================================================
3586       //   TOP    | ..........................Unloaded......................|
3587       //  AnyNull |  U-AN    |................Unloaded......................|
3588       // Constant | ... O-NN .................................. |   O-BOT   |
3589       //  NotNull | ... O-NN .................................. |   O-BOT   |
3590       //  BOTTOM  | ........................Object-BOTTOM ..................|
3591       //
3592       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3593       //
3594       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3595       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3596       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3597       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3598         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3599         else                                      { return TypeInstPtr::NOTNULL; }
3600       }
3601       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3602 
3603       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3604     }
3605 
3606     // Both are unloaded, not the same class, not Object
3607     // Or meet unloaded with a different loaded class, not java/lang/Object
3608     if( ptr != TypePtr::BotPTR ) {
3609       return TypeInstPtr::NOTNULL;
3610     }
3611     return TypeInstPtr::BOTTOM;
3612 }
3613 
3614 
3615 //------------------------------meet-------------------------------------------
3616 // Compute the MEET of two types.  It returns a new Type object.
3617 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3618   // Perform a fast test for common case; meeting the same types together.
3619   if( this == t ) return this;  // Meeting same type-rep?
3620 
3621   // Current "this->_base" is Pointer
3622   switch (t->base()) {          // switch on original type
3623 
3624   case Int:                     // Mixing ints & oops happens when javac
3625   case Long:                    // reuses local variables
3626   case FloatTop:
3627   case FloatCon:
3628   case FloatBot:
3629   case DoubleTop:
3630   case DoubleCon:
3631   case DoubleBot:
3632   case NarrowOop:
3633   case NarrowKlass:
3634   case Bottom:                  // Ye Olde Default
3635     return Type::BOTTOM;
3636   case Top:
3637     return this;
3638 
3639   default:                      // All else is a mistake
3640     typerr(t);
3641 
3642   case MetadataPtr:
3643   case KlassPtr:
3644   case RawPtr: return TypePtr::BOTTOM;
3645 
3646   case AryPtr: {                // All arrays inherit from Object class
3647     const TypeAryPtr *tp = t->is_aryptr();
3648     int offset = meet_offset(tp->offset());
3649     PTR ptr = meet_ptr(tp->ptr());
3650     int instance_id = meet_instance_id(tp->instance_id());
3651     const TypePtr* speculative = xmeet_speculative(tp);
3652     int depth = meet_inline_depth(tp->inline_depth());
3653     switch (ptr) {
3654     case TopPTR:
3655     case AnyNull:                // Fall 'down' to dual of object klass
3656       // For instances when a subclass meets a superclass we fall
3657       // below the centerline when the superclass is exact. We need to
3658       // do the same here.
3659       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3660         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3661       } else {
3662         // cannot subclass, so the meet has to fall badly below the centerline
3663         ptr = NotNull;
3664         instance_id = InstanceBot;
3665         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3666       }
3667     case Constant:
3668     case NotNull:
3669     case BotPTR:                // Fall down to object klass
3670       // LCA is object_klass, but if we subclass from the top we can do better
3671       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3672         // If 'this' (InstPtr) is above the centerline and it is Object class
3673         // then we can subclass in the Java class hierarchy.
3674         // For instances when a subclass meets a superclass we fall
3675         // below the centerline when the superclass is exact. We need
3676         // to do the same here.
3677         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3678           // that is, tp's array type is a subtype of my klass
3679           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3680                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3681         }
3682       }
3683       // The other case cannot happen, since I cannot be a subtype of an array.
3684       // The meet falls down to Object class below centerline.
3685       if( ptr == Constant )
3686          ptr = NotNull;
3687       instance_id = InstanceBot;
3688       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3689     default: typerr(t);
3690     }
3691   }
3692 
3693   case OopPtr: {                // Meeting to OopPtrs
3694     // Found a OopPtr type vs self-InstPtr type
3695     const TypeOopPtr *tp = t->is_oopptr();
3696     int offset = meet_offset(tp->offset());
3697     PTR ptr = meet_ptr(tp->ptr());
3698     switch (tp->ptr()) {
3699     case TopPTR:
3700     case AnyNull: {
3701       int instance_id = meet_instance_id(InstanceTop);
3702       const TypePtr* speculative = xmeet_speculative(tp);
3703       int depth = meet_inline_depth(tp->inline_depth());
3704       return make(ptr, klass(), klass_is_exact(),
3705                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3706     }
3707     case NotNull:
3708     case BotPTR: {
3709       int instance_id = meet_instance_id(tp->instance_id());
3710       const TypePtr* speculative = xmeet_speculative(tp);
3711       int depth = meet_inline_depth(tp->inline_depth());
3712       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3713     }
3714     default: typerr(t);
3715     }
3716   }
3717 
3718   case AnyPtr: {                // Meeting to AnyPtrs
3719     // Found an AnyPtr type vs self-InstPtr type
3720     const TypePtr *tp = t->is_ptr();
3721     int offset = meet_offset(tp->offset());
3722     PTR ptr = meet_ptr(tp->ptr());
3723     int instance_id = meet_instance_id(InstanceTop);
3724     const TypePtr* speculative = xmeet_speculative(tp);
3725     int depth = meet_inline_depth(tp->inline_depth());
3726     switch (tp->ptr()) {
3727     case Null:
3728       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3729       // else fall through to AnyNull
3730     case TopPTR:
3731     case AnyNull: {
3732       return make(ptr, klass(), klass_is_exact(),
3733                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3734     }
3735     case NotNull:
3736     case BotPTR:
3737       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3738     default: typerr(t);
3739     }
3740   }
3741 
3742   /*
3743                  A-top         }
3744                /   |   \       }  Tops
3745            B-top A-any C-top   }
3746               | /  |  \ |      }  Any-nulls
3747            B-any   |   C-any   }
3748               |    |    |
3749            B-con A-con C-con   } constants; not comparable across classes
3750               |    |    |
3751            B-not   |   C-not   }
3752               | \  |  / |      }  not-nulls
3753            B-bot A-not C-bot   }
3754                \   |   /       }  Bottoms
3755                  A-bot         }
3756   */
3757 
3758   case InstPtr: {                // Meeting 2 Oops?
3759     // Found an InstPtr sub-type vs self-InstPtr type
3760     const TypeInstPtr *tinst = t->is_instptr();
3761     int off = meet_offset( tinst->offset() );
3762     PTR ptr = meet_ptr( tinst->ptr() );
3763     int instance_id = meet_instance_id(tinst->instance_id());
3764     const TypePtr* speculative = xmeet_speculative(tinst);
3765     int depth = meet_inline_depth(tinst->inline_depth());
3766 
3767     // Check for easy case; klasses are equal (and perhaps not loaded!)
3768     // If we have constants, then we created oops so classes are loaded
3769     // and we can handle the constants further down.  This case handles
3770     // both-not-loaded or both-loaded classes
3771     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3772       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3773     }
3774 
3775     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3776     ciKlass* tinst_klass = tinst->klass();
3777     ciKlass* this_klass  = this->klass();
3778     bool tinst_xk = tinst->klass_is_exact();
3779     bool this_xk  = this->klass_is_exact();
3780     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3781       // One of these classes has not been loaded
3782       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3783 #ifndef PRODUCT
3784       if( PrintOpto && Verbose ) {
3785         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3786         tty->print("  this == "); this->dump(); tty->cr();
3787         tty->print(" tinst == "); tinst->dump(); tty->cr();
3788       }
3789 #endif
3790       return unloaded_meet;
3791     }
3792 
3793     // Handle mixing oops and interfaces first.
3794     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3795                                         tinst_klass == ciEnv::current()->Object_klass())) {
3796       ciKlass *tmp = tinst_klass; // Swap interface around
3797       tinst_klass = this_klass;
3798       this_klass = tmp;
3799       bool tmp2 = tinst_xk;
3800       tinst_xk = this_xk;
3801       this_xk = tmp2;
3802     }
3803     if (tinst_klass->is_interface() &&
3804         !(this_klass->is_interface() ||
3805           // Treat java/lang/Object as an honorary interface,
3806           // because we need a bottom for the interface hierarchy.
3807           this_klass == ciEnv::current()->Object_klass())) {
3808       // Oop meets interface!
3809 
3810       // See if the oop subtypes (implements) interface.
3811       ciKlass *k;
3812       bool xk;
3813       if( this_klass->is_subtype_of( tinst_klass ) ) {
3814         // Oop indeed subtypes.  Now keep oop or interface depending
3815         // on whether we are both above the centerline or either is
3816         // below the centerline.  If we are on the centerline
3817         // (e.g., Constant vs. AnyNull interface), use the constant.
3818         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3819         // If we are keeping this_klass, keep its exactness too.
3820         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3821       } else {                  // Does not implement, fall to Object
3822         // Oop does not implement interface, so mixing falls to Object
3823         // just like the verifier does (if both are above the
3824         // centerline fall to interface)
3825         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3826         xk = above_centerline(ptr) ? tinst_xk : false;
3827         // Watch out for Constant vs. AnyNull interface.
3828         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3829         instance_id = InstanceBot;
3830       }
3831       ciObject* o = NULL;  // the Constant value, if any
3832       if (ptr == Constant) {
3833         // Find out which constant.
3834         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3835       }
3836       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3837     }
3838 
3839     // Either oop vs oop or interface vs interface or interface vs Object
3840 
3841     // !!! Here's how the symmetry requirement breaks down into invariants:
3842     // If we split one up & one down AND they subtype, take the down man.
3843     // If we split one up & one down AND they do NOT subtype, "fall hard".
3844     // If both are up and they subtype, take the subtype class.
3845     // If both are up and they do NOT subtype, "fall hard".
3846     // If both are down and they subtype, take the supertype class.
3847     // If both are down and they do NOT subtype, "fall hard".
3848     // Constants treated as down.
3849 
3850     // Now, reorder the above list; observe that both-down+subtype is also
3851     // "fall hard"; "fall hard" becomes the default case:
3852     // If we split one up & one down AND they subtype, take the down man.
3853     // If both are up and they subtype, take the subtype class.
3854 
3855     // If both are down and they subtype, "fall hard".
3856     // If both are down and they do NOT subtype, "fall hard".
3857     // If both are up and they do NOT subtype, "fall hard".
3858     // If we split one up & one down AND they do NOT subtype, "fall hard".
3859 
3860     // If a proper subtype is exact, and we return it, we return it exactly.
3861     // If a proper supertype is exact, there can be no subtyping relationship!
3862     // If both types are equal to the subtype, exactness is and-ed below the
3863     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3864 
3865     // Check for subtyping:
3866     ciKlass *subtype = NULL;
3867     bool subtype_exact = false;
3868     if( tinst_klass->equals(this_klass) ) {
3869       subtype = this_klass;
3870       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3871     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3872       subtype = this_klass;     // Pick subtyping class
3873       subtype_exact = this_xk;
3874     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3875       subtype = tinst_klass;    // Pick subtyping class
3876       subtype_exact = tinst_xk;
3877     }
3878 
3879     if( subtype ) {
3880       if( above_centerline(ptr) ) { // both are up?
3881         this_klass = tinst_klass = subtype;
3882         this_xk = tinst_xk = subtype_exact;
3883       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3884         this_klass = tinst_klass; // tinst is down; keep down man
3885         this_xk = tinst_xk;
3886       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3887         tinst_klass = this_klass; // this is down; keep down man
3888         tinst_xk = this_xk;
3889       } else {
3890         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3891       }
3892     }
3893 
3894     // Check for classes now being equal
3895     if (tinst_klass->equals(this_klass)) {
3896       // If the klasses are equal, the constants may still differ.  Fall to
3897       // NotNull if they do (neither constant is NULL; that is a special case
3898       // handled elsewhere).
3899       ciObject* o = NULL;             // Assume not constant when done
3900       ciObject* this_oop  = const_oop();
3901       ciObject* tinst_oop = tinst->const_oop();
3902       if( ptr == Constant ) {
3903         if (this_oop != NULL && tinst_oop != NULL &&
3904             this_oop->equals(tinst_oop) )
3905           o = this_oop;
3906         else if (above_centerline(this ->_ptr))
3907           o = tinst_oop;
3908         else if (above_centerline(tinst ->_ptr))
3909           o = this_oop;
3910         else
3911           ptr = NotNull;
3912       }
3913       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3914     } // Else classes are not equal
3915 
3916     // Since klasses are different, we require a LCA in the Java
3917     // class hierarchy - which means we have to fall to at least NotNull.
3918     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3919       ptr = NotNull;
3920 
3921     instance_id = InstanceBot;
3922 
3923     // Now we find the LCA of Java classes
3924     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3925     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3926   } // End of case InstPtr
3927 
3928   } // End of switch
3929   return this;                  // Return the double constant
3930 }
3931 
3932 
3933 //------------------------java_mirror_type--------------------------------------
3934 ciType* TypeInstPtr::java_mirror_type() const {
3935   // must be a singleton type
3936   if( const_oop() == NULL )  return NULL;
3937 
3938   // must be of type java.lang.Class
3939   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3940 
3941   return const_oop()->as_instance()->java_mirror_type();
3942 }
3943 
3944 
3945 //------------------------------xdual------------------------------------------
3946 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3947 // inheritance mechanism.
3948 const Type *TypeInstPtr::xdual() const {
3949   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3950 }
3951 
3952 //------------------------------eq---------------------------------------------
3953 // Structural equality check for Type representations
3954 bool TypeInstPtr::eq( const Type *t ) const {
3955   const TypeInstPtr *p = t->is_instptr();
3956   return
3957     klass()->equals(p->klass()) &&
3958     TypeOopPtr::eq(p);          // Check sub-type stuff
3959 }
3960 
3961 //------------------------------hash-------------------------------------------
3962 // Type-specific hashing function.
3963 int TypeInstPtr::hash(void) const {
3964   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
3965   return hash;
3966 }
3967 
3968 //------------------------------dump2------------------------------------------
3969 // Dump oop Type
3970 #ifndef PRODUCT
3971 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3972   // Print the name of the klass.
3973   klass()->print_name_on(st);
3974 
3975   switch( _ptr ) {
3976   case Constant:
3977     // TO DO: Make CI print the hex address of the underlying oop.
3978     if (WizardMode || Verbose) {
3979       const_oop()->print_oop(st);
3980     }
3981   case BotPTR:
3982     if (!WizardMode && !Verbose) {
3983       if( _klass_is_exact ) st->print(":exact");
3984       break;
3985     }
3986   case TopPTR:
3987   case AnyNull:
3988   case NotNull:
3989     st->print(":%s", ptr_msg[_ptr]);
3990     if( _klass_is_exact ) st->print(":exact");
3991     break;
3992   default:
3993     break;
3994   }
3995 
3996   if( _offset ) {               // Dump offset, if any
3997     if( _offset == OffsetBot )      st->print("+any");
3998     else if( _offset == OffsetTop ) st->print("+unknown");
3999     else st->print("+%d", _offset);
4000   }
4001 
4002   st->print(" *");
4003   if (_instance_id == InstanceTop)
4004     st->print(",iid=top");
4005   else if (_instance_id != InstanceBot)
4006     st->print(",iid=%d",_instance_id);
4007 
4008   dump_inline_depth(st);
4009   dump_speculative(st);
4010 }
4011 #endif
4012 
4013 //------------------------------add_offset-------------------------------------
4014 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4015   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4016               _instance_id, add_offset_speculative(offset), _inline_depth);
4017 }
4018 
4019 const Type *TypeInstPtr::remove_speculative() const {
4020   if (_speculative == NULL) {
4021     return this;
4022   }
4023   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4024   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4025               _instance_id, NULL, _inline_depth);
4026 }
4027 
4028 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4029   if (!UseInlineDepthForSpeculativeTypes) {
4030     return this;
4031   }
4032   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4033 }
4034 
4035 //=============================================================================
4036 // Convenience common pre-built types.
4037 const TypeAryPtr *TypeAryPtr::RANGE;
4038 const TypeAryPtr *TypeAryPtr::OOPS;
4039 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4040 const TypeAryPtr *TypeAryPtr::BYTES;
4041 const TypeAryPtr *TypeAryPtr::SHORTS;
4042 const TypeAryPtr *TypeAryPtr::CHARS;
4043 const TypeAryPtr *TypeAryPtr::INTS;
4044 const TypeAryPtr *TypeAryPtr::LONGS;
4045 const TypeAryPtr *TypeAryPtr::FLOATS;
4046 const TypeAryPtr *TypeAryPtr::DOUBLES;
4047 
4048 //------------------------------make-------------------------------------------
4049 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4050                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4051   assert(!(k == NULL && ary->_elem->isa_int()),
4052          "integral arrays must be pre-equipped with a class");
4053   if (!xk)  xk = ary->ary_must_be_exact();
4054   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4055   if (!UseExactTypes)  xk = (ptr == Constant);
4056   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
4057 }
4058 
4059 //------------------------------make-------------------------------------------
4060 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
4061                                    int instance_id, const TypePtr* speculative, int inline_depth,
4062                                    bool is_autobox_cache) {
4063   assert(!(k == NULL && ary->_elem->isa_int()),
4064          "integral arrays must be pre-equipped with a class");
4065   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4066   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4067   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4068   if (!UseExactTypes)  xk = (ptr == Constant);
4069   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4070 }
4071 
4072 //------------------------------cast_to_ptr_type-------------------------------
4073 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4074   if( ptr == _ptr ) return this;
4075   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4076 }
4077 
4078 
4079 //-----------------------------cast_to_exactness-------------------------------
4080 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4081   if( klass_is_exact == _klass_is_exact ) return this;
4082   if (!UseExactTypes)  return this;
4083   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4084   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4085 }
4086 
4087 //-----------------------------cast_to_instance_id----------------------------
4088 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4089   if( instance_id == _instance_id ) return this;
4090   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
4091 }
4092 
4093 const TypeOopPtr *TypeAryPtr::cast_to_nonconst() const {
4094   if (const_oop() == NULL) return this;
4095   return make(NotNull, NULL, _ary, klass(), _klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
4096 }
4097 
4098 
4099 //-----------------------------narrow_size_type-------------------------------
4100 // Local cache for arrayOopDesc::max_array_length(etype),
4101 // which is kind of slow (and cached elsewhere by other users).
4102 static jint max_array_length_cache[T_CONFLICT+1];
4103 static jint max_array_length(BasicType etype) {
4104   jint& cache = max_array_length_cache[etype];
4105   jint res = cache;
4106   if (res == 0) {
4107     switch (etype) {
4108     case T_NARROWOOP:
4109       etype = T_OBJECT;
4110       break;
4111     case T_NARROWKLASS:
4112     case T_CONFLICT:
4113     case T_ILLEGAL:
4114     case T_VOID:
4115       etype = T_BYTE;           // will produce conservatively high value
4116       break;
4117     default:
4118       break;
4119     }
4120     cache = res = arrayOopDesc::max_array_length(etype);
4121   }
4122   return res;
4123 }
4124 
4125 // Narrow the given size type to the index range for the given array base type.
4126 // Return NULL if the resulting int type becomes empty.
4127 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4128   jint hi = size->_hi;
4129   jint lo = size->_lo;
4130   jint min_lo = 0;
4131   jint max_hi = max_array_length(elem()->basic_type());
4132   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4133   bool chg = false;
4134   if (lo < min_lo) {
4135     lo = min_lo;
4136     if (size->is_con()) {
4137       hi = lo;
4138     }
4139     chg = true;
4140   }
4141   if (hi > max_hi) {
4142     hi = max_hi;
4143     if (size->is_con()) {
4144       lo = hi;
4145     }
4146     chg = true;
4147   }
4148   // Negative length arrays will produce weird intermediate dead fast-path code
4149   if (lo > hi)
4150     return TypeInt::ZERO;
4151   if (!chg)
4152     return size;
4153   return TypeInt::make(lo, hi, Type::WidenMin);
4154 }
4155 
4156 //-------------------------------cast_to_size----------------------------------
4157 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4158   assert(new_size != NULL, "");
4159   new_size = narrow_size_type(new_size);
4160   if (new_size == size())  return this;
4161   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4162   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4163 }
4164 
4165 //------------------------------cast_to_stable---------------------------------
4166 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4167   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4168     return this;
4169 
4170   const Type* elem = this->elem();
4171   const TypePtr* elem_ptr = elem->make_ptr();
4172 
4173   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4174     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4175     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4176   }
4177 
4178   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4179 
4180   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
4181 }
4182 
4183 //-----------------------------stable_dimension--------------------------------
4184 int TypeAryPtr::stable_dimension() const {
4185   if (!is_stable())  return 0;
4186   int dim = 1;
4187   const TypePtr* elem_ptr = elem()->make_ptr();
4188   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4189     dim += elem_ptr->is_aryptr()->stable_dimension();
4190   return dim;
4191 }
4192 
4193 //----------------------cast_to_autobox_cache-----------------------------------
4194 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4195   if (is_autobox_cache() == cache)  return this;
4196   const TypeOopPtr* etype = elem()->make_oopptr();
4197   if (etype == NULL)  return this;
4198   // The pointers in the autobox arrays are always non-null.
4199   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4200   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4201   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4202   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth, cache);
4203 }
4204 
4205 //------------------------------eq---------------------------------------------
4206 // Structural equality check for Type representations
4207 bool TypeAryPtr::eq( const Type *t ) const {
4208   const TypeAryPtr *p = t->is_aryptr();
4209   return
4210     _ary == p->_ary &&  // Check array
4211     TypeOopPtr::eq(p);  // Check sub-parts
4212 }
4213 
4214 //------------------------------hash-------------------------------------------
4215 // Type-specific hashing function.
4216 int TypeAryPtr::hash(void) const {
4217   return (intptr_t)_ary + TypeOopPtr::hash();
4218 }
4219 
4220 //------------------------------meet-------------------------------------------
4221 // Compute the MEET of two types.  It returns a new Type object.
4222 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4223   // Perform a fast test for common case; meeting the same types together.
4224   if( this == t ) return this;  // Meeting same type-rep?
4225   // Current "this->_base" is Pointer
4226   switch (t->base()) {          // switch on original type
4227 
4228   // Mixing ints & oops happens when javac reuses local variables
4229   case Int:
4230   case Long:
4231   case FloatTop:
4232   case FloatCon:
4233   case FloatBot:
4234   case DoubleTop:
4235   case DoubleCon:
4236   case DoubleBot:
4237   case NarrowOop:
4238   case NarrowKlass:
4239   case Bottom:                  // Ye Olde Default
4240     return Type::BOTTOM;
4241   case Top:
4242     return this;
4243 
4244   default:                      // All else is a mistake
4245     typerr(t);
4246 
4247   case OopPtr: {                // Meeting to OopPtrs
4248     // Found a OopPtr type vs self-AryPtr type
4249     const TypeOopPtr *tp = t->is_oopptr();
4250     int offset = meet_offset(tp->offset());
4251     PTR ptr = meet_ptr(tp->ptr());
4252     int depth = meet_inline_depth(tp->inline_depth());
4253     const TypePtr* speculative = xmeet_speculative(tp);
4254     switch (tp->ptr()) {
4255     case TopPTR:
4256     case AnyNull: {
4257       int instance_id = meet_instance_id(InstanceTop);
4258       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4259                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4260     }
4261     case BotPTR:
4262     case NotNull: {
4263       int instance_id = meet_instance_id(tp->instance_id());
4264       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4265     }
4266     default: ShouldNotReachHere();
4267     }
4268   }
4269 
4270   case AnyPtr: {                // Meeting two AnyPtrs
4271     // Found an AnyPtr type vs self-AryPtr type
4272     const TypePtr *tp = t->is_ptr();
4273     int offset = meet_offset(tp->offset());
4274     PTR ptr = meet_ptr(tp->ptr());
4275     const TypePtr* speculative = xmeet_speculative(tp);
4276     int depth = meet_inline_depth(tp->inline_depth());
4277     switch (tp->ptr()) {
4278     case TopPTR:
4279       return this;
4280     case BotPTR:
4281     case NotNull:
4282       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4283     case Null:
4284       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4285       // else fall through to AnyNull
4286     case AnyNull: {
4287       int instance_id = meet_instance_id(InstanceTop);
4288       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4289                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4290     }
4291     default: ShouldNotReachHere();
4292     }
4293   }
4294 
4295   case MetadataPtr:
4296   case KlassPtr:
4297   case RawPtr: return TypePtr::BOTTOM;
4298 
4299   case AryPtr: {                // Meeting 2 references?
4300     const TypeAryPtr *tap = t->is_aryptr();
4301     int off = meet_offset(tap->offset());
4302     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4303     PTR ptr = meet_ptr(tap->ptr());
4304     int instance_id = meet_instance_id(tap->instance_id());
4305     const TypePtr* speculative = xmeet_speculative(tap);
4306     int depth = meet_inline_depth(tap->inline_depth());
4307     ciKlass* lazy_klass = NULL;
4308     if (tary->_elem->isa_int()) {
4309       // Integral array element types have irrelevant lattice relations.
4310       // It is the klass that determines array layout, not the element type.
4311       if (_klass == NULL)
4312         lazy_klass = tap->_klass;
4313       else if (tap->_klass == NULL || tap->_klass == _klass) {
4314         lazy_klass = _klass;
4315       } else {
4316         // Something like byte[int+] meets char[int+].
4317         // This must fall to bottom, not (int[-128..65535])[int+].
4318         instance_id = InstanceBot;
4319         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4320       }
4321     } else // Non integral arrays.
4322       // Must fall to bottom if exact klasses in upper lattice
4323       // are not equal or super klass is exact.
4324       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4325           // meet with top[] and bottom[] are processed further down:
4326           tap->_klass != NULL  && this->_klass != NULL   &&
4327           // both are exact and not equal:
4328           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4329            // 'tap'  is exact and super or unrelated:
4330            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4331            // 'this' is exact and super or unrelated:
4332            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4333       if (above_centerline(ptr)) {
4334         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4335       }
4336       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4337     }
4338 
4339     bool xk = false;
4340     switch (tap->ptr()) {
4341     case AnyNull:
4342     case TopPTR:
4343       // Compute new klass on demand, do not use tap->_klass
4344       if (below_centerline(this->_ptr)) {
4345         xk = this->_klass_is_exact;
4346       } else {
4347         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4348       }
4349       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4350     case Constant: {
4351       ciObject* o = const_oop();
4352       if( _ptr == Constant ) {
4353         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4354           xk = (klass() == tap->klass());
4355           ptr = NotNull;
4356           o = NULL;
4357           instance_id = InstanceBot;
4358         } else {
4359           xk = true;
4360         }
4361       } else if(above_centerline(_ptr)) {
4362         o = tap->const_oop();
4363         xk = true;
4364       } else {
4365         // Only precise for identical arrays
4366         xk = this->_klass_is_exact && (klass() == tap->klass());
4367       }
4368       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4369     }
4370     case NotNull:
4371     case BotPTR:
4372       // Compute new klass on demand, do not use tap->_klass
4373       if (above_centerline(this->_ptr))
4374             xk = tap->_klass_is_exact;
4375       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4376               (klass() == tap->klass()); // Only precise for identical arrays
4377       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4378     default: ShouldNotReachHere();
4379     }
4380   }
4381 
4382   // All arrays inherit from Object class
4383   case InstPtr: {
4384     const TypeInstPtr *tp = t->is_instptr();
4385     int offset = meet_offset(tp->offset());
4386     PTR ptr = meet_ptr(tp->ptr());
4387     int instance_id = meet_instance_id(tp->instance_id());
4388     const TypePtr* speculative = xmeet_speculative(tp);
4389     int depth = meet_inline_depth(tp->inline_depth());
4390     switch (ptr) {
4391     case TopPTR:
4392     case AnyNull:                // Fall 'down' to dual of object klass
4393       // For instances when a subclass meets a superclass we fall
4394       // below the centerline when the superclass is exact. We need to
4395       // do the same here.
4396       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4397         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4398       } else {
4399         // cannot subclass, so the meet has to fall badly below the centerline
4400         ptr = NotNull;
4401         instance_id = InstanceBot;
4402         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4403       }
4404     case Constant:
4405     case NotNull:
4406     case BotPTR:                // Fall down to object klass
4407       // LCA is object_klass, but if we subclass from the top we can do better
4408       if (above_centerline(tp->ptr())) {
4409         // If 'tp'  is above the centerline and it is Object class
4410         // then we can subclass in the Java class hierarchy.
4411         // For instances when a subclass meets a superclass we fall
4412         // below the centerline when the superclass is exact. We need
4413         // to do the same here.
4414         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4415           // that is, my array type is a subtype of 'tp' klass
4416           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4417                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4418         }
4419       }
4420       // The other case cannot happen, since t cannot be a subtype of an array.
4421       // The meet falls down to Object class below centerline.
4422       if( ptr == Constant )
4423          ptr = NotNull;
4424       instance_id = InstanceBot;
4425       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4426     default: typerr(t);
4427     }
4428   }
4429   }
4430   return this;                  // Lint noise
4431 }
4432 
4433 //------------------------------xdual------------------------------------------
4434 // Dual: compute field-by-field dual
4435 const Type *TypeAryPtr::xdual() const {
4436   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4437 }
4438 
4439 //----------------------interface_vs_oop---------------------------------------
4440 #ifdef ASSERT
4441 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4442   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4443   if (t_aryptr) {
4444     return _ary->interface_vs_oop(t_aryptr->_ary);
4445   }
4446   return false;
4447 }
4448 #endif
4449 
4450 //------------------------------dump2------------------------------------------
4451 #ifndef PRODUCT
4452 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4453   _ary->dump2(d,depth,st);
4454   switch( _ptr ) {
4455   case Constant:
4456     const_oop()->print(st);
4457     break;
4458   case BotPTR:
4459     if (!WizardMode && !Verbose) {
4460       if( _klass_is_exact ) st->print(":exact");
4461       break;
4462     }
4463   case TopPTR:
4464   case AnyNull:
4465   case NotNull:
4466     st->print(":%s", ptr_msg[_ptr]);
4467     if( _klass_is_exact ) st->print(":exact");
4468     break;
4469   default:
4470     break;
4471   }
4472 
4473   if( _offset != 0 ) {
4474     int header_size = objArrayOopDesc::header_size() * wordSize;
4475     if( _offset == OffsetTop )       st->print("+undefined");
4476     else if( _offset == OffsetBot )  st->print("+any");
4477     else if( _offset < header_size ) st->print("+%d", _offset);
4478     else {
4479       BasicType basic_elem_type = elem()->basic_type();
4480       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4481       int elem_size = type2aelembytes(basic_elem_type);
4482       st->print("[%d]", (_offset - array_base)/elem_size);
4483     }
4484   }
4485   st->print(" *");
4486   if (_instance_id == InstanceTop)
4487     st->print(",iid=top");
4488   else if (_instance_id != InstanceBot)
4489     st->print(",iid=%d",_instance_id);
4490 
4491   dump_inline_depth(st);
4492   dump_speculative(st);
4493 }
4494 #endif
4495 
4496 bool TypeAryPtr::empty(void) const {
4497   if (_ary->empty())       return true;
4498   return TypeOopPtr::empty();
4499 }
4500 
4501 //------------------------------add_offset-------------------------------------
4502 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4503   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4504 }
4505 
4506 const Type *TypeAryPtr::remove_speculative() const {
4507   if (_speculative == NULL) {
4508     return this;
4509   }
4510   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4511   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4512 }
4513 
4514 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4515   if (!UseInlineDepthForSpeculativeTypes) {
4516     return this;
4517   }
4518   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4519 }
4520 
4521 //=============================================================================
4522 
4523 //------------------------------hash-------------------------------------------
4524 // Type-specific hashing function.
4525 int TypeNarrowPtr::hash(void) const {
4526   return _ptrtype->hash() + 7;
4527 }
4528 
4529 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4530   return _ptrtype->singleton();
4531 }
4532 
4533 bool TypeNarrowPtr::empty(void) const {
4534   return _ptrtype->empty();
4535 }
4536 
4537 intptr_t TypeNarrowPtr::get_con() const {
4538   return _ptrtype->get_con();
4539 }
4540 
4541 bool TypeNarrowPtr::eq( const Type *t ) const {
4542   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4543   if (tc != NULL) {
4544     if (_ptrtype->base() != tc->_ptrtype->base()) {
4545       return false;
4546     }
4547     return tc->_ptrtype->eq(_ptrtype);
4548   }
4549   return false;
4550 }
4551 
4552 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4553   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4554   return make_same_narrowptr(odual);
4555 }
4556 
4557 
4558 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4559   if (isa_same_narrowptr(kills)) {
4560     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4561     if (ft->empty())
4562       return Type::TOP;           // Canonical empty value
4563     if (ft->isa_ptr()) {
4564       return make_hash_same_narrowptr(ft->isa_ptr());
4565     }
4566     return ft;
4567   } else if (kills->isa_ptr()) {
4568     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4569     if (ft->empty())
4570       return Type::TOP;           // Canonical empty value
4571     return ft;
4572   } else {
4573     return Type::TOP;
4574   }
4575 }
4576 
4577 //------------------------------xmeet------------------------------------------
4578 // Compute the MEET of two types.  It returns a new Type object.
4579 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4580   // Perform a fast test for common case; meeting the same types together.
4581   if( this == t ) return this;  // Meeting same type-rep?
4582 
4583   if (t->base() == base()) {
4584     const Type* result = _ptrtype->xmeet(t->make_ptr());
4585     if (result->isa_ptr()) {
4586       return make_hash_same_narrowptr(result->is_ptr());
4587     }
4588     return result;
4589   }
4590 
4591   // Current "this->_base" is NarrowKlass or NarrowOop
4592   switch (t->base()) {          // switch on original type
4593 
4594   case Int:                     // Mixing ints & oops happens when javac
4595   case Long:                    // reuses local variables
4596   case FloatTop:
4597   case FloatCon:
4598   case FloatBot:
4599   case DoubleTop:
4600   case DoubleCon:
4601   case DoubleBot:
4602   case AnyPtr:
4603   case RawPtr:
4604   case OopPtr:
4605   case InstPtr:
4606   case AryPtr:
4607   case MetadataPtr:
4608   case KlassPtr:
4609   case NarrowOop:
4610   case NarrowKlass:
4611 
4612   case Bottom:                  // Ye Olde Default
4613     return Type::BOTTOM;
4614   case Top:
4615     return this;
4616 
4617   default:                      // All else is a mistake
4618     typerr(t);
4619 
4620   } // End of switch
4621 
4622   return this;
4623 }
4624 
4625 #ifndef PRODUCT
4626 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4627   _ptrtype->dump2(d, depth, st);
4628 }
4629 #endif
4630 
4631 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4632 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4633 
4634 
4635 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4636   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4637 }
4638 
4639 const Type* TypeNarrowOop::remove_speculative() const {
4640   return make(_ptrtype->remove_speculative()->is_ptr());
4641 }
4642 
4643 const Type* TypeNarrowOop::cleanup_speculative() const {
4644   return make(_ptrtype->cleanup_speculative()->is_ptr());
4645 }
4646 
4647 #ifndef PRODUCT
4648 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4649   st->print("narrowoop: ");
4650   TypeNarrowPtr::dump2(d, depth, st);
4651 }
4652 #endif
4653 
4654 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4655 
4656 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4657   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4658 }
4659 
4660 #ifndef PRODUCT
4661 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4662   st->print("narrowklass: ");
4663   TypeNarrowPtr::dump2(d, depth, st);
4664 }
4665 #endif
4666 
4667 
4668 //------------------------------eq---------------------------------------------
4669 // Structural equality check for Type representations
4670 bool TypeMetadataPtr::eq( const Type *t ) const {
4671   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4672   ciMetadata* one = metadata();
4673   ciMetadata* two = a->metadata();
4674   if (one == NULL || two == NULL) {
4675     return (one == two) && TypePtr::eq(t);
4676   } else {
4677     return one->equals(two) && TypePtr::eq(t);
4678   }
4679 }
4680 
4681 //------------------------------hash-------------------------------------------
4682 // Type-specific hashing function.
4683 int TypeMetadataPtr::hash(void) const {
4684   return
4685     (metadata() ? metadata()->hash() : 0) +
4686     TypePtr::hash();
4687 }
4688 
4689 //------------------------------singleton--------------------------------------
4690 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4691 // constants
4692 bool TypeMetadataPtr::singleton(void) const {
4693   // detune optimizer to not generate constant metadata + constant offset as a constant!
4694   // TopPTR, Null, AnyNull, Constant are all singletons
4695   return (_offset == 0) && !below_centerline(_ptr);
4696 }
4697 
4698 //------------------------------add_offset-------------------------------------
4699 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4700   return make( _ptr, _metadata, xadd_offset(offset));
4701 }
4702 
4703 //-----------------------------filter------------------------------------------
4704 // Do not allow interface-vs.-noninterface joins to collapse to top.
4705 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4706   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4707   if (ft == NULL || ft->empty())
4708     return Type::TOP;           // Canonical empty value
4709   return ft;
4710 }
4711 
4712  //------------------------------get_con----------------------------------------
4713 intptr_t TypeMetadataPtr::get_con() const {
4714   assert( _ptr == Null || _ptr == Constant, "" );
4715   assert( _offset >= 0, "" );
4716 
4717   if (_offset != 0) {
4718     // After being ported to the compiler interface, the compiler no longer
4719     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4720     // to a handle at compile time.  This handle is embedded in the generated
4721     // code and dereferenced at the time the nmethod is made.  Until that time,
4722     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4723     // have access to the addresses!).  This does not seem to currently happen,
4724     // but this assertion here is to help prevent its occurence.
4725     tty->print_cr("Found oop constant with non-zero offset");
4726     ShouldNotReachHere();
4727   }
4728 
4729   return (intptr_t)metadata()->constant_encoding();
4730 }
4731 
4732 //------------------------------cast_to_ptr_type-------------------------------
4733 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4734   if( ptr == _ptr ) return this;
4735   return make(ptr, metadata(), _offset);
4736 }
4737 
4738 //------------------------------meet-------------------------------------------
4739 // Compute the MEET of two types.  It returns a new Type object.
4740 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4741   // Perform a fast test for common case; meeting the same types together.
4742   if( this == t ) return this;  // Meeting same type-rep?
4743 
4744   // Current "this->_base" is OopPtr
4745   switch (t->base()) {          // switch on original type
4746 
4747   case Int:                     // Mixing ints & oops happens when javac
4748   case Long:                    // reuses local variables
4749   case FloatTop:
4750   case FloatCon:
4751   case FloatBot:
4752   case DoubleTop:
4753   case DoubleCon:
4754   case DoubleBot:
4755   case NarrowOop:
4756   case NarrowKlass:
4757   case Bottom:                  // Ye Olde Default
4758     return Type::BOTTOM;
4759   case Top:
4760     return this;
4761 
4762   default:                      // All else is a mistake
4763     typerr(t);
4764 
4765   case AnyPtr: {
4766     // Found an AnyPtr type vs self-OopPtr type
4767     const TypePtr *tp = t->is_ptr();
4768     int offset = meet_offset(tp->offset());
4769     PTR ptr = meet_ptr(tp->ptr());
4770     switch (tp->ptr()) {
4771     case Null:
4772       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4773       // else fall through:
4774     case TopPTR:
4775     case AnyNull: {
4776       return make(ptr, _metadata, offset);
4777     }
4778     case BotPTR:
4779     case NotNull:
4780       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4781     default: typerr(t);
4782     }
4783   }
4784 
4785   case RawPtr:
4786   case KlassPtr:
4787   case OopPtr:
4788   case InstPtr:
4789   case AryPtr:
4790     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4791 
4792   case MetadataPtr: {
4793     const TypeMetadataPtr *tp = t->is_metadataptr();
4794     int offset = meet_offset(tp->offset());
4795     PTR tptr = tp->ptr();
4796     PTR ptr = meet_ptr(tptr);
4797     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4798     if (tptr == TopPTR || _ptr == TopPTR ||
4799         metadata()->equals(tp->metadata())) {
4800       return make(ptr, md, offset);
4801     }
4802     // metadata is different
4803     if( ptr == Constant ) {  // Cannot be equal constants, so...
4804       if( tptr == Constant && _ptr != Constant)  return t;
4805       if( _ptr == Constant && tptr != Constant)  return this;
4806       ptr = NotNull;            // Fall down in lattice
4807     }
4808     return make(ptr, NULL, offset);
4809     break;
4810   }
4811   } // End of switch
4812   return this;                  // Return the double constant
4813 }
4814 
4815 
4816 //------------------------------xdual------------------------------------------
4817 // Dual of a pure metadata pointer.
4818 const Type *TypeMetadataPtr::xdual() const {
4819   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4820 }
4821 
4822 //------------------------------dump2------------------------------------------
4823 #ifndef PRODUCT
4824 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4825   st->print("metadataptr:%s", ptr_msg[_ptr]);
4826   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
4827   switch( _offset ) {
4828   case OffsetTop: st->print("+top"); break;
4829   case OffsetBot: st->print("+any"); break;
4830   case         0: break;
4831   default:        st->print("+%d",_offset); break;
4832   }
4833 }
4834 #endif
4835 
4836 
4837 //=============================================================================
4838 // Convenience common pre-built type.
4839 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4840 
4841 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4842   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4843 }
4844 
4845 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4846   return make(Constant, m, 0);
4847 }
4848 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4849   return make(Constant, m, 0);
4850 }
4851 
4852 //------------------------------make-------------------------------------------
4853 // Create a meta data constant
4854 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4855   assert(m == NULL || !m->is_klass(), "wrong type");
4856   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4857 }
4858 
4859 
4860 //=============================================================================
4861 // Convenience common pre-built types.
4862 
4863 // Not-null object klass or below
4864 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4865 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4866 
4867 //------------------------------TypeKlassPtr-----------------------------------
4868 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4869   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4870 }
4871 
4872 //------------------------------make-------------------------------------------
4873 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4874 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4875   assert( k != NULL, "Expect a non-NULL klass");
4876   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4877   TypeKlassPtr *r =
4878     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4879 
4880   return r;
4881 }
4882 
4883 //------------------------------eq---------------------------------------------
4884 // Structural equality check for Type representations
4885 bool TypeKlassPtr::eq( const Type *t ) const {
4886   const TypeKlassPtr *p = t->is_klassptr();
4887   return
4888     klass()->equals(p->klass()) &&
4889     TypePtr::eq(p);
4890 }
4891 
4892 //------------------------------hash-------------------------------------------
4893 // Type-specific hashing function.
4894 int TypeKlassPtr::hash(void) const {
4895   return java_add((jint)klass()->hash(), (jint)TypePtr::hash());
4896 }
4897 
4898 //------------------------------singleton--------------------------------------
4899 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4900 // constants
4901 bool TypeKlassPtr::singleton(void) const {
4902   // detune optimizer to not generate constant klass + constant offset as a constant!
4903   // TopPTR, Null, AnyNull, Constant are all singletons
4904   return (_offset == 0) && !below_centerline(_ptr);
4905 }
4906 
4907 // Do not allow interface-vs.-noninterface joins to collapse to top.
4908 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4909   // logic here mirrors the one from TypeOopPtr::filter. See comments
4910   // there.
4911   const Type* ft = join_helper(kills, include_speculative);
4912   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4913   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4914 
4915   if (ft->empty()) {
4916     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4917       return kills;             // Uplift to interface
4918 
4919     return Type::TOP;           // Canonical empty value
4920   }
4921 
4922   // Interface klass type could be exact in opposite to interface type,
4923   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4924   if (ftkp != NULL && ktkp != NULL &&
4925       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4926       !ftkp->klass_is_exact() && // Keep exact interface klass
4927       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4928     return ktkp->cast_to_ptr_type(ftkp->ptr());
4929   }
4930 
4931   return ft;
4932 }
4933 
4934 //----------------------compute_klass------------------------------------------
4935 // Compute the defining klass for this class
4936 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4937   // Compute _klass based on element type.
4938   ciKlass* k_ary = NULL;
4939   const TypeInstPtr *tinst;
4940   const TypeAryPtr *tary;
4941   const Type* el = elem();
4942   if (el->isa_narrowoop()) {
4943     el = el->make_ptr();
4944   }
4945 
4946   // Get element klass
4947   if ((tinst = el->isa_instptr()) != NULL) {
4948     // Compute array klass from element klass
4949     k_ary = ciObjArrayKlass::make(tinst->klass());
4950   } else if ((tary = el->isa_aryptr()) != NULL) {
4951     // Compute array klass from element klass
4952     ciKlass* k_elem = tary->klass();
4953     // If element type is something like bottom[], k_elem will be null.
4954     if (k_elem != NULL)
4955       k_ary = ciObjArrayKlass::make(k_elem);
4956   } else if ((el->base() == Type::Top) ||
4957              (el->base() == Type::Bottom)) {
4958     // element type of Bottom occurs from meet of basic type
4959     // and object; Top occurs when doing join on Bottom.
4960     // Leave k_ary at NULL.
4961   } else {
4962     // Cannot compute array klass directly from basic type,
4963     // since subtypes of TypeInt all have basic type T_INT.
4964 #ifdef ASSERT
4965     if (verify && el->isa_int()) {
4966       // Check simple cases when verifying klass.
4967       BasicType bt = T_ILLEGAL;
4968       if (el == TypeInt::BYTE) {
4969         bt = T_BYTE;
4970       } else if (el == TypeInt::SHORT) {
4971         bt = T_SHORT;
4972       } else if (el == TypeInt::CHAR) {
4973         bt = T_CHAR;
4974       } else if (el == TypeInt::INT) {
4975         bt = T_INT;
4976       } else {
4977         return _klass; // just return specified klass
4978       }
4979       return ciTypeArrayKlass::make(bt);
4980     }
4981 #endif
4982     assert(!el->isa_int(),
4983            "integral arrays must be pre-equipped with a class");
4984     // Compute array klass directly from basic type
4985     k_ary = ciTypeArrayKlass::make(el->basic_type());
4986   }
4987   return k_ary;
4988 }
4989 
4990 //------------------------------klass------------------------------------------
4991 // Return the defining klass for this class
4992 ciKlass* TypeAryPtr::klass() const {
4993   if( _klass ) return _klass;   // Return cached value, if possible
4994 
4995   // Oops, need to compute _klass and cache it
4996   ciKlass* k_ary = compute_klass();
4997 
4998   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4999     // The _klass field acts as a cache of the underlying
5000     // ciKlass for this array type.  In order to set the field,
5001     // we need to cast away const-ness.
5002     //
5003     // IMPORTANT NOTE: we *never* set the _klass field for the
5004     // type TypeAryPtr::OOPS.  This Type is shared between all
5005     // active compilations.  However, the ciKlass which represents
5006     // this Type is *not* shared between compilations, so caching
5007     // this value would result in fetching a dangling pointer.
5008     //
5009     // Recomputing the underlying ciKlass for each request is
5010     // a bit less efficient than caching, but calls to
5011     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5012     ((TypeAryPtr*)this)->_klass = k_ary;
5013     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5014         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
5015       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5016     }
5017   }
5018   return k_ary;
5019 }
5020 
5021 
5022 //------------------------------add_offset-------------------------------------
5023 // Access internals of klass object
5024 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5025   return make( _ptr, klass(), xadd_offset(offset) );
5026 }
5027 
5028 //------------------------------cast_to_ptr_type-------------------------------
5029 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5030   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5031   if( ptr == _ptr ) return this;
5032   return make(ptr, _klass, _offset);
5033 }
5034 
5035 
5036 //-----------------------------cast_to_exactness-------------------------------
5037 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5038   if( klass_is_exact == _klass_is_exact ) return this;
5039   if (!UseExactTypes)  return this;
5040   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5041 }
5042 
5043 
5044 //-----------------------------as_instance_type--------------------------------
5045 // Corresponding type for an instance of the given class.
5046 // It will be NotNull, and exact if and only if the klass type is exact.
5047 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5048   ciKlass* k = klass();
5049   bool    xk = klass_is_exact();
5050   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5051   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5052   guarantee(toop != NULL, "need type for given klass");
5053   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5054   return toop->cast_to_exactness(xk)->is_oopptr();
5055 }
5056 
5057 
5058 //------------------------------xmeet------------------------------------------
5059 // Compute the MEET of two types, return a new Type object.
5060 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5061   // Perform a fast test for common case; meeting the same types together.
5062   if( this == t ) return this;  // Meeting same type-rep?
5063 
5064   // Current "this->_base" is Pointer
5065   switch (t->base()) {          // switch on original type
5066 
5067   case Int:                     // Mixing ints & oops happens when javac
5068   case Long:                    // reuses local variables
5069   case FloatTop:
5070   case FloatCon:
5071   case FloatBot:
5072   case DoubleTop:
5073   case DoubleCon:
5074   case DoubleBot:
5075   case NarrowOop:
5076   case NarrowKlass:
5077   case Bottom:                  // Ye Olde Default
5078     return Type::BOTTOM;
5079   case Top:
5080     return this;
5081 
5082   default:                      // All else is a mistake
5083     typerr(t);
5084 
5085   case AnyPtr: {                // Meeting to AnyPtrs
5086     // Found an AnyPtr type vs self-KlassPtr type
5087     const TypePtr *tp = t->is_ptr();
5088     int offset = meet_offset(tp->offset());
5089     PTR ptr = meet_ptr(tp->ptr());
5090     switch (tp->ptr()) {
5091     case TopPTR:
5092       return this;
5093     case Null:
5094       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5095     case AnyNull:
5096       return make( ptr, klass(), offset );
5097     case BotPTR:
5098     case NotNull:
5099       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5100     default: typerr(t);
5101     }
5102   }
5103 
5104   case RawPtr:
5105   case MetadataPtr:
5106   case OopPtr:
5107   case AryPtr:                  // Meet with AryPtr
5108   case InstPtr:                 // Meet with InstPtr
5109     return TypePtr::BOTTOM;
5110 
5111   //
5112   //             A-top         }
5113   //           /   |   \       }  Tops
5114   //       B-top A-any C-top   }
5115   //          | /  |  \ |      }  Any-nulls
5116   //       B-any   |   C-any   }
5117   //          |    |    |
5118   //       B-con A-con C-con   } constants; not comparable across classes
5119   //          |    |    |
5120   //       B-not   |   C-not   }
5121   //          | \  |  / |      }  not-nulls
5122   //       B-bot A-not C-bot   }
5123   //           \   |   /       }  Bottoms
5124   //             A-bot         }
5125   //
5126 
5127   case KlassPtr: {  // Meet two KlassPtr types
5128     const TypeKlassPtr *tkls = t->is_klassptr();
5129     int  off     = meet_offset(tkls->offset());
5130     PTR  ptr     = meet_ptr(tkls->ptr());
5131 
5132     // Check for easy case; klasses are equal (and perhaps not loaded!)
5133     // If we have constants, then we created oops so classes are loaded
5134     // and we can handle the constants further down.  This case handles
5135     // not-loaded classes
5136     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5137       return make( ptr, klass(), off );
5138     }
5139 
5140     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5141     ciKlass* tkls_klass = tkls->klass();
5142     ciKlass* this_klass = this->klass();
5143     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5144     assert( this_klass->is_loaded(), "This class should have been loaded.");
5145 
5146     // If 'this' type is above the centerline and is a superclass of the
5147     // other, we can treat 'this' as having the same type as the other.
5148     if ((above_centerline(this->ptr())) &&
5149         tkls_klass->is_subtype_of(this_klass)) {
5150       this_klass = tkls_klass;
5151     }
5152     // If 'tinst' type is above the centerline and is a superclass of the
5153     // other, we can treat 'tinst' as having the same type as the other.
5154     if ((above_centerline(tkls->ptr())) &&
5155         this_klass->is_subtype_of(tkls_klass)) {
5156       tkls_klass = this_klass;
5157     }
5158 
5159     // Check for classes now being equal
5160     if (tkls_klass->equals(this_klass)) {
5161       // If the klasses are equal, the constants may still differ.  Fall to
5162       // NotNull if they do (neither constant is NULL; that is a special case
5163       // handled elsewhere).
5164       if( ptr == Constant ) {
5165         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5166             this->klass()->equals(tkls->klass()));
5167         else if (above_centerline(this->ptr()));
5168         else if (above_centerline(tkls->ptr()));
5169         else
5170           ptr = NotNull;
5171       }
5172       return make( ptr, this_klass, off );
5173     } // Else classes are not equal
5174 
5175     // Since klasses are different, we require the LCA in the Java
5176     // class hierarchy - which means we have to fall to at least NotNull.
5177     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5178       ptr = NotNull;
5179     // Now we find the LCA of Java classes
5180     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5181     return   make( ptr, k, off );
5182   } // End of case KlassPtr
5183 
5184   } // End of switch
5185   return this;                  // Return the double constant
5186 }
5187 
5188 //------------------------------xdual------------------------------------------
5189 // Dual: compute field-by-field dual
5190 const Type    *TypeKlassPtr::xdual() const {
5191   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5192 }
5193 
5194 //------------------------------get_con----------------------------------------
5195 intptr_t TypeKlassPtr::get_con() const {
5196   assert( _ptr == Null || _ptr == Constant, "" );
5197   assert( _offset >= 0, "" );
5198 
5199   if (_offset != 0) {
5200     // After being ported to the compiler interface, the compiler no longer
5201     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5202     // to a handle at compile time.  This handle is embedded in the generated
5203     // code and dereferenced at the time the nmethod is made.  Until that time,
5204     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5205     // have access to the addresses!).  This does not seem to currently happen,
5206     // but this assertion here is to help prevent its occurence.
5207     tty->print_cr("Found oop constant with non-zero offset");
5208     ShouldNotReachHere();
5209   }
5210 
5211   return (intptr_t)klass()->constant_encoding();
5212 }
5213 //------------------------------dump2------------------------------------------
5214 // Dump Klass Type
5215 #ifndef PRODUCT
5216 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5217   switch( _ptr ) {
5218   case Constant:
5219     st->print("precise ");
5220   case NotNull:
5221     {
5222       const char *name = klass()->name()->as_utf8();
5223       if( name ) {
5224         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5225       } else {
5226         ShouldNotReachHere();
5227       }
5228     }
5229   case BotPTR:
5230     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5231   case TopPTR:
5232   case AnyNull:
5233     st->print(":%s", ptr_msg[_ptr]);
5234     if( _klass_is_exact ) st->print(":exact");
5235     break;
5236   default:
5237     break;
5238   }
5239 
5240   if( _offset ) {               // Dump offset, if any
5241     if( _offset == OffsetBot )      { st->print("+any"); }
5242     else if( _offset == OffsetTop ) { st->print("+unknown"); }
5243     else                            { st->print("+%d", _offset); }
5244   }
5245 
5246   st->print(" *");
5247 }
5248 #endif
5249 
5250 
5251 
5252 //=============================================================================
5253 // Convenience common pre-built types.
5254 
5255 //------------------------------make-------------------------------------------
5256 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5257   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5258 }
5259 
5260 //------------------------------make-------------------------------------------
5261 const TypeFunc *TypeFunc::make(ciMethod* method) {
5262   Compile* C = Compile::current();
5263   const TypeFunc* tf = C->last_tf(method); // check cache
5264   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5265   const TypeTuple *domain;
5266   if (method->is_static()) {
5267     domain = TypeTuple::make_domain(NULL, method->signature());
5268   } else {
5269     domain = TypeTuple::make_domain(method->holder(), method->signature());
5270   }
5271   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5272   tf = TypeFunc::make(domain, range);
5273   C->set_last_tf(method, tf);  // fill cache
5274   return tf;
5275 }
5276 
5277 //------------------------------meet-------------------------------------------
5278 // Compute the MEET of two types.  It returns a new Type object.
5279 const Type *TypeFunc::xmeet( const Type *t ) const {
5280   // Perform a fast test for common case; meeting the same types together.
5281   if( this == t ) return this;  // Meeting same type-rep?
5282 
5283   // Current "this->_base" is Func
5284   switch (t->base()) {          // switch on original type
5285 
5286   case Bottom:                  // Ye Olde Default
5287     return t;
5288 
5289   default:                      // All else is a mistake
5290     typerr(t);
5291 
5292   case Top:
5293     break;
5294   }
5295   return this;                  // Return the double constant
5296 }
5297 
5298 //------------------------------xdual------------------------------------------
5299 // Dual: compute field-by-field dual
5300 const Type *TypeFunc::xdual() const {
5301   return this;
5302 }
5303 
5304 //------------------------------eq---------------------------------------------
5305 // Structural equality check for Type representations
5306 bool TypeFunc::eq( const Type *t ) const {
5307   const TypeFunc *a = (const TypeFunc*)t;
5308   return _domain == a->_domain &&
5309     _range == a->_range;
5310 }
5311 
5312 //------------------------------hash-------------------------------------------
5313 // Type-specific hashing function.
5314 int TypeFunc::hash(void) const {
5315   return (intptr_t)_domain + (intptr_t)_range;
5316 }
5317 
5318 //------------------------------dump2------------------------------------------
5319 // Dump Function Type
5320 #ifndef PRODUCT
5321 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5322   if( _range->cnt() <= Parms )
5323     st->print("void");
5324   else {
5325     uint i;
5326     for (i = Parms; i < _range->cnt()-1; i++) {
5327       _range->field_at(i)->dump2(d,depth,st);
5328       st->print("/");
5329     }
5330     _range->field_at(i)->dump2(d,depth,st);
5331   }
5332   st->print(" ");
5333   st->print("( ");
5334   if( !depth || d[this] ) {     // Check for recursive dump
5335     st->print("...)");
5336     return;
5337   }
5338   d.Insert((void*)this,(void*)this);    // Stop recursion
5339   if (Parms < _domain->cnt())
5340     _domain->field_at(Parms)->dump2(d,depth-1,st);
5341   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5342     st->print(", ");
5343     _domain->field_at(i)->dump2(d,depth-1,st);
5344   }
5345   st->print(" )");
5346 }
5347 #endif
5348 
5349 //------------------------------singleton--------------------------------------
5350 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5351 // constants (Ldi nodes).  Singletons are integer, float or double constants
5352 // or a single symbol.
5353 bool TypeFunc::singleton(void) const {
5354   return false;                 // Never a singleton
5355 }
5356 
5357 bool TypeFunc::empty(void) const {
5358   return false;                 // Never empty
5359 }
5360 
5361 
5362 BasicType TypeFunc::return_type() const{
5363   if (range()->cnt() == TypeFunc::Parms) {
5364     return T_VOID;
5365   }
5366   return range()->field_at(TypeFunc::Parms)->basic_type();
5367 }