1 /*
   2  * Copyright (c) 2007, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 
  24 #include "precompiled.hpp"
  25 #include "memory/allocation.inline.hpp"
  26 #include "opto/connode.hpp"
  27 #include "opto/vectornode.hpp"
  28 
  29 //------------------------------VectorNode--------------------------------------
  30 
  31 // Return the vector operator for the specified scalar operation
  32 // and vector length.
  33 int VectorNode::opcode(int sopc, BasicType bt) {
  34   switch (sopc) {
  35   case Op_AddI:
  36     switch (bt) {
  37     case T_BOOLEAN:
  38     case T_BYTE:      return Op_AddVB;
  39     case T_CHAR:
  40     case T_SHORT:     return Op_AddVS;
  41     case T_INT:       return Op_AddVI;
  42     default:          ShouldNotReachHere(); return 0;
  43     }
  44   case Op_AddL:
  45     assert(bt == T_LONG, "must be");
  46     return Op_AddVL;
  47   case Op_AddF:
  48     assert(bt == T_FLOAT, "must be");
  49     return Op_AddVF;
  50   case Op_AddD:
  51     assert(bt == T_DOUBLE, "must be");
  52     return Op_AddVD;
  53   case Op_SubI:
  54     switch (bt) {
  55     case T_BOOLEAN:
  56     case T_BYTE:   return Op_SubVB;
  57     case T_CHAR:
  58     case T_SHORT:  return Op_SubVS;
  59     case T_INT:    return Op_SubVI;
  60     default:       ShouldNotReachHere(); return 0;
  61     }
  62   case Op_SubL:
  63     assert(bt == T_LONG, "must be");
  64     return Op_SubVL;
  65   case Op_SubF:
  66     assert(bt == T_FLOAT, "must be");
  67     return Op_SubVF;
  68   case Op_SubD:
  69     assert(bt == T_DOUBLE, "must be");
  70     return Op_SubVD;
  71   case Op_MulI:
  72     switch (bt) {
  73     case T_BOOLEAN:
  74     case T_BYTE:   return 0;   // Unimplemented
  75     case T_CHAR:
  76     case T_SHORT:  return Op_MulVS;
  77     case T_INT:    return Op_MulVI;
  78     default:       ShouldNotReachHere(); return 0;
  79     }
  80   case Op_MulL:
  81     assert(bt == T_LONG, "must be");
  82     return Op_MulVL;
  83   case Op_MulF:
  84     assert(bt == T_FLOAT, "must be");
  85     return Op_MulVF;
  86   case Op_MulD:
  87     assert(bt == T_DOUBLE, "must be");
  88     return Op_MulVD;
  89   case Op_FmaD:
  90     assert(bt == T_DOUBLE, "must be");
  91     return Op_FmaVD;
  92   case Op_FmaF:
  93     assert(bt == T_FLOAT, "must be");
  94     return Op_FmaVF;
  95   case Op_CMoveF:
  96     assert(bt == T_FLOAT, "must be");
  97     return Op_CMoveVF;
  98   case Op_CMoveD:
  99     assert(bt == T_DOUBLE, "must be");
 100     return Op_CMoveVD;
 101   case Op_DivF:
 102     assert(bt == T_FLOAT, "must be");
 103     return Op_DivVF;
 104   case Op_DivD:
 105     assert(bt == T_DOUBLE, "must be");
 106     return Op_DivVD;
 107   case Op_AbsF:
 108     assert(bt == T_FLOAT, "must be");
 109     return Op_AbsVF;
 110   case Op_AbsD:
 111     assert(bt == T_DOUBLE, "must be");
 112     return Op_AbsVD;
 113   case Op_NegF:
 114     assert(bt == T_FLOAT, "must be");
 115     return Op_NegVF;
 116   case Op_NegD:
 117     assert(bt == T_DOUBLE, "must be");
 118     return Op_NegVD;
 119   case Op_SqrtF:
 120     assert(bt == T_FLOAT, "must be");
 121     return Op_SqrtVF;
 122   case Op_SqrtD:
 123     assert(bt == T_DOUBLE, "must be");
 124     return Op_SqrtVD;
 125   case Op_PopCountI:
 126     if (bt == T_INT) {
 127       return Op_PopCountVI;
 128     }
 129     // Unimplemented for subword types since bit count changes
 130     // depending on size of lane (and sign bit).
 131     return 0;
 132   case Op_LShiftI:
 133     switch (bt) {
 134     case T_BOOLEAN:
 135     case T_BYTE:   return Op_LShiftVB;
 136     case T_CHAR:
 137     case T_SHORT:  return Op_LShiftVS;
 138     case T_INT:    return Op_LShiftVI;
 139       default:       ShouldNotReachHere(); return 0;
 140     }
 141   case Op_LShiftL:
 142     assert(bt == T_LONG, "must be");
 143     return Op_LShiftVL;
 144   case Op_RShiftI:
 145     switch (bt) {
 146     case T_BOOLEAN:return Op_URShiftVB; // boolean is unsigned value
 147     case T_CHAR:   return Op_URShiftVS; // char is unsigned value
 148     case T_BYTE:   return Op_RShiftVB;
 149     case T_SHORT:  return Op_RShiftVS;
 150     case T_INT:    return Op_RShiftVI;
 151     default:       ShouldNotReachHere(); return 0;
 152     }
 153   case Op_RShiftL:
 154     assert(bt == T_LONG, "must be");
 155     return Op_RShiftVL;
 156   case Op_URShiftI:
 157     switch (bt) {
 158     case T_BOOLEAN:return Op_URShiftVB;
 159     case T_CHAR:   return Op_URShiftVS;
 160     case T_BYTE:
 161     case T_SHORT:  return 0; // Vector logical right shift for signed short
 162                              // values produces incorrect Java result for
 163                              // negative data because java code should convert
 164                              // a short value into int value with sign
 165                              // extension before a shift.
 166     case T_INT:    return Op_URShiftVI;
 167     default:       ShouldNotReachHere(); return 0;
 168     }
 169   case Op_URShiftL:
 170     assert(bt == T_LONG, "must be");
 171     return Op_URShiftVL;
 172   case Op_AndI:
 173   case Op_AndL:
 174     return Op_AndV;
 175   case Op_OrI:
 176   case Op_OrL:
 177     return Op_OrV;
 178   case Op_XorI:
 179   case Op_XorL:
 180     return Op_XorV;
 181   case Op_MinF:
 182     assert(bt == T_FLOAT, "must be");
 183     return Op_MinV;
 184   case Op_MinD:
 185     assert(bt == T_DOUBLE, "must be");
 186     return Op_MinV;
 187   case Op_MaxF:
 188     assert(bt == T_FLOAT, "must be");
 189     return Op_MaxV;
 190   case Op_MaxD:
 191     assert(bt == T_DOUBLE, "must be");
 192     return Op_MaxV;
 193 
 194   case Op_LoadB:
 195   case Op_LoadUB:
 196   case Op_LoadUS:
 197   case Op_LoadS:
 198   case Op_LoadI:
 199   case Op_LoadL:
 200   case Op_LoadF:
 201   case Op_LoadD:
 202     return Op_LoadVector;
 203 
 204   case Op_StoreB:
 205   case Op_StoreC:
 206   case Op_StoreI:
 207   case Op_StoreL:
 208   case Op_StoreF:
 209   case Op_StoreD:
 210     return Op_StoreVector;
 211   case Op_MulAddS2I:
 212     return Op_MulAddVS2VI;
 213 
 214   default:
 215     return 0; // Unimplemented
 216   }
 217 }
 218 
 219 // Also used to check if the code generator
 220 // supports the vector operation.
 221 bool VectorNode::implemented(int opc, uint vlen, BasicType bt) {
 222   if (is_java_primitive(bt) &&
 223       (vlen > 1) && is_power_of_2(vlen) &&
 224       Matcher::vector_size_supported(bt, vlen)) {
 225     int vopc = VectorNode::opcode(opc, bt);
 226     return vopc > 0 && Matcher::match_rule_supported_vector(vopc, vlen);
 227   }
 228   return false;
 229 }
 230 
 231 bool VectorNode::is_type_transition_short_to_int(Node* n) {
 232   switch (n->Opcode()) {
 233   case Op_MulAddS2I:
 234     return true;
 235   }
 236   return false;
 237 }
 238 
 239 bool VectorNode::is_type_transition_to_int(Node* n) {
 240   return is_type_transition_short_to_int(n);
 241 }
 242 
 243 bool VectorNode::is_muladds2i(Node* n) {
 244   if (n->Opcode() == Op_MulAddS2I) {
 245     return true;
 246   }
 247   return false;
 248 }
 249 
 250 bool VectorNode::is_shift(Node* n) {
 251   switch (n->Opcode()) {
 252   case Op_LShiftI:
 253   case Op_LShiftL:
 254   case Op_RShiftI:
 255   case Op_RShiftL:
 256   case Op_URShiftI:
 257   case Op_URShiftL:
 258     return true;
 259   default:
 260     return false;
 261   }
 262 }
 263 
 264 // Check if input is loop invariant vector.
 265 bool VectorNode::is_invariant_vector(Node* n) {
 266   // Only Replicate vector nodes are loop invariant for now.
 267   switch (n->Opcode()) {
 268   case Op_ReplicateB:
 269   case Op_ReplicateS:
 270   case Op_ReplicateI:
 271   case Op_ReplicateL:
 272   case Op_ReplicateF:
 273   case Op_ReplicateD:
 274     return true;
 275   default:
 276     return false;
 277   }
 278 }
 279 
 280 // [Start, end) half-open range defining which operands are vectors
 281 void VectorNode::vector_operands(Node* n, uint* start, uint* end) {
 282   switch (n->Opcode()) {
 283   case Op_LoadB:   case Op_LoadUB:
 284   case Op_LoadS:   case Op_LoadUS:
 285   case Op_LoadI:   case Op_LoadL:
 286   case Op_LoadF:   case Op_LoadD:
 287   case Op_LoadP:   case Op_LoadN:
 288   case Op_LoadBarrierSlowReg:
 289   case Op_LoadBarrierWeakSlowReg:
 290     *start = 0;
 291     *end   = 0; // no vector operands
 292     break;
 293   case Op_StoreB:  case Op_StoreC:
 294   case Op_StoreI:  case Op_StoreL:
 295   case Op_StoreF:  case Op_StoreD:
 296   case Op_StoreP:  case Op_StoreN:
 297     *start = MemNode::ValueIn;
 298     *end   = MemNode::ValueIn + 1; // 1 vector operand
 299     break;
 300   case Op_LShiftI:  case Op_LShiftL:
 301   case Op_RShiftI:  case Op_RShiftL:
 302   case Op_URShiftI: case Op_URShiftL:
 303     *start = 1;
 304     *end   = 2; // 1 vector operand
 305     break;
 306   case Op_AddI: case Op_AddL: case Op_AddF: case Op_AddD:
 307   case Op_SubI: case Op_SubL: case Op_SubF: case Op_SubD:
 308   case Op_MulI: case Op_MulL: case Op_MulF: case Op_MulD:
 309   case Op_DivF: case Op_DivD:
 310   case Op_AndI: case Op_AndL:
 311   case Op_OrI:  case Op_OrL:
 312   case Op_XorI: case Op_XorL:
 313   case Op_MulAddS2I:
 314     *start = 1;
 315     *end   = 3; // 2 vector operands
 316     break;
 317   case Op_CMoveI:  case Op_CMoveL:  case Op_CMoveF:  case Op_CMoveD:
 318     *start = 2;
 319     *end   = n->req();
 320     break;
 321   case Op_FmaD:
 322   case Op_FmaF:
 323     *start = 1;
 324     *end   = 4; // 3 vector operands
 325     break;
 326   default:
 327     *start = 1;
 328     *end   = n->req(); // default is all operands
 329   }
 330 }
 331 
 332 // Return the vector version of a scalar operation node.
 333 VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, uint vlen, BasicType bt) {
 334   const TypeVect* vt = TypeVect::make(bt, vlen);
 335   int vopc = VectorNode::opcode(opc, bt);
 336   // This method should not be called for unimplemented vectors.
 337   guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 338   switch (vopc) {
 339   case Op_AddVB: return new AddVBNode(n1, n2, vt);
 340   case Op_AddVS: return new AddVSNode(n1, n2, vt);
 341   case Op_AddVI: return new AddVINode(n1, n2, vt);
 342   case Op_AddVL: return new AddVLNode(n1, n2, vt);
 343   case Op_AddVF: return new AddVFNode(n1, n2, vt);
 344   case Op_AddVD: return new AddVDNode(n1, n2, vt);
 345 
 346   case Op_SubVB: return new SubVBNode(n1, n2, vt);
 347   case Op_SubVS: return new SubVSNode(n1, n2, vt);
 348   case Op_SubVI: return new SubVINode(n1, n2, vt);
 349   case Op_SubVL: return new SubVLNode(n1, n2, vt);
 350   case Op_SubVF: return new SubVFNode(n1, n2, vt);
 351   case Op_SubVD: return new SubVDNode(n1, n2, vt);
 352 
 353   case Op_MulVS: return new MulVSNode(n1, n2, vt);
 354   case Op_MulVI: return new MulVINode(n1, n2, vt);
 355   case Op_MulVL: return new MulVLNode(n1, n2, vt);
 356   case Op_MulVF: return new MulVFNode(n1, n2, vt);
 357   case Op_MulVD: return new MulVDNode(n1, n2, vt);
 358 
 359   case Op_DivVF: return new DivVFNode(n1, n2, vt);
 360   case Op_DivVD: return new DivVDNode(n1, n2, vt);
 361 
 362   case Op_AbsVF: return new AbsVFNode(n1, vt);
 363   case Op_AbsVD: return new AbsVDNode(n1, vt);
 364 
 365   case Op_NegVF: return new NegVFNode(n1, vt);
 366   case Op_NegVD: return new NegVDNode(n1, vt);
 367 
 368   case Op_SqrtVF: return new SqrtVFNode(n1, vt);
 369   case Op_SqrtVD: return new SqrtVDNode(n1, vt);
 370 
 371   case Op_PopCountVI: return new PopCountVINode(n1, vt);
 372 
 373   case Op_LShiftVB: return new LShiftVBNode(n1, n2, vt);
 374   case Op_LShiftVS: return new LShiftVSNode(n1, n2, vt);
 375   case Op_LShiftVI: return new LShiftVINode(n1, n2, vt);
 376   case Op_LShiftVL: return new LShiftVLNode(n1, n2, vt);
 377 
 378   case Op_RShiftVB: return new RShiftVBNode(n1, n2, vt);
 379   case Op_RShiftVS: return new RShiftVSNode(n1, n2, vt);
 380   case Op_RShiftVI: return new RShiftVINode(n1, n2, vt);
 381   case Op_RShiftVL: return new RShiftVLNode(n1, n2, vt);
 382 
 383   case Op_URShiftVB: return new URShiftVBNode(n1, n2, vt);
 384   case Op_URShiftVS: return new URShiftVSNode(n1, n2, vt);
 385   case Op_URShiftVI: return new URShiftVINode(n1, n2, vt);
 386   case Op_URShiftVL: return new URShiftVLNode(n1, n2, vt);
 387 
 388   case Op_AndV: return new AndVNode(n1, n2, vt);
 389   case Op_OrV:  return new OrVNode (n1, n2, vt);
 390   case Op_XorV: return new XorVNode(n1, n2, vt);
 391 
 392   case Op_MinV: return new MinVNode(n1, n2, vt);
 393   case Op_MaxV: return new MaxVNode(n1, n2, vt);
 394 
 395   case Op_MulAddVS2VI: return new MulAddVS2VINode(n1, n2, vt);
 396   default:
 397     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 398     return NULL;
 399   }
 400 }
 401 
 402 VectorNode* VectorNode::make(int opc, Node* n1, Node* n2, Node* n3, uint vlen, BasicType bt) {
 403   const TypeVect* vt = TypeVect::make(bt, vlen);
 404   int vopc = VectorNode::opcode(opc, bt);
 405   // This method should not be called for unimplemented vectors.
 406   guarantee(vopc > 0, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 407   switch (vopc) {
 408   case Op_FmaVD: return new FmaVDNode(n1, n2, n3, vt);
 409   case Op_FmaVF: return new FmaVFNode(n1, n2, n3, vt);
 410   default:
 411     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 412     return NULL;
 413   }
 414 }
 415 
 416 // Scalar promotion
 417 VectorNode* VectorNode::scalar2vector(Node* s, uint vlen, const Type* opd_t) {
 418   BasicType bt = opd_t->array_element_basic_type();
 419   const TypeVect* vt = opd_t->singleton() ? TypeVect::make(opd_t, vlen)
 420                                           : TypeVect::make(bt, vlen);
 421   switch (bt) {
 422   case T_BOOLEAN:
 423   case T_BYTE:
 424     return new ReplicateBNode(s, vt);
 425   case T_CHAR:
 426   case T_SHORT:
 427     return new ReplicateSNode(s, vt);
 428   case T_INT:
 429     return new ReplicateINode(s, vt);
 430   case T_LONG:
 431     return new ReplicateLNode(s, vt);
 432   case T_FLOAT:
 433     return new ReplicateFNode(s, vt);
 434   case T_DOUBLE:
 435     return new ReplicateDNode(s, vt);
 436   default:
 437     fatal("Type '%s' is not supported for vectors", type2name(bt));
 438     return NULL;
 439   }
 440 }
 441 
 442 VectorNode* VectorNode::shift_count(Node* shift, Node* cnt, uint vlen, BasicType bt) {
 443   assert(VectorNode::is_shift(shift) && !cnt->is_Con(), "only variable shift count");
 444   // Match shift count type with shift vector type.
 445   const TypeVect* vt = TypeVect::make(bt, vlen);
 446   switch (shift->Opcode()) {
 447   case Op_LShiftI:
 448   case Op_LShiftL:
 449     return new LShiftCntVNode(cnt, vt);
 450   case Op_RShiftI:
 451   case Op_RShiftL:
 452   case Op_URShiftI:
 453   case Op_URShiftL:
 454     return new RShiftCntVNode(cnt, vt);
 455   default:
 456     fatal("Missed vector creation for '%s'", NodeClassNames[shift->Opcode()]);
 457     return NULL;
 458   }
 459 }
 460 
 461 // Return initial Pack node. Additional operands added with add_opd() calls.
 462 PackNode* PackNode::make(Node* s, uint vlen, BasicType bt) {
 463   const TypeVect* vt = TypeVect::make(bt, vlen);
 464   switch (bt) {
 465   case T_BOOLEAN:
 466   case T_BYTE:
 467     return new PackBNode(s, vt);
 468   case T_CHAR:
 469   case T_SHORT:
 470     return new PackSNode(s, vt);
 471   case T_INT:
 472     return new PackINode(s, vt);
 473   case T_LONG:
 474     return new PackLNode(s, vt);
 475   case T_FLOAT:
 476     return new PackFNode(s, vt);
 477   case T_DOUBLE:
 478     return new PackDNode(s, vt);
 479   default:
 480     fatal("Type '%s' is not supported for vectors", type2name(bt));
 481     return NULL;
 482   }
 483 }
 484 
 485 // Create a binary tree form for Packs. [lo, hi) (half-open) range
 486 PackNode* PackNode::binary_tree_pack(int lo, int hi) {
 487   int ct = hi - lo;
 488   assert(is_power_of_2(ct), "power of 2");
 489   if (ct == 2) {
 490     PackNode* pk = PackNode::make(in(lo), 2, vect_type()->element_basic_type());
 491     pk->add_opd(in(lo+1));
 492     return pk;
 493   } else {
 494     int mid = lo + ct/2;
 495     PackNode* n1 = binary_tree_pack(lo,  mid);
 496     PackNode* n2 = binary_tree_pack(mid, hi );
 497 
 498     BasicType bt = n1->vect_type()->element_basic_type();
 499     assert(bt == n2->vect_type()->element_basic_type(), "should be the same");
 500     switch (bt) {
 501     case T_BOOLEAN:
 502     case T_BYTE:
 503       return new PackSNode(n1, n2, TypeVect::make(T_SHORT, 2));
 504     case T_CHAR:
 505     case T_SHORT:
 506       return new PackINode(n1, n2, TypeVect::make(T_INT, 2));
 507     case T_INT:
 508       return new PackLNode(n1, n2, TypeVect::make(T_LONG, 2));
 509     case T_LONG:
 510       return new Pack2LNode(n1, n2, TypeVect::make(T_LONG, 2));
 511     case T_FLOAT:
 512       return new PackDNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 513     case T_DOUBLE:
 514       return new Pack2DNode(n1, n2, TypeVect::make(T_DOUBLE, 2));
 515     default:
 516       fatal("Type '%s' is not supported for vectors", type2name(bt));
 517       return NULL;
 518     }
 519   }
 520 }
 521 
 522 // Return the vector version of a scalar load node.
 523 LoadVectorNode* LoadVectorNode::make(int opc, Node* ctl, Node* mem,
 524                                      Node* adr, const TypePtr* atyp,
 525                                      uint vlen, BasicType bt,
 526                                      ControlDependency control_dependency) {
 527   const TypeVect* vt = TypeVect::make(bt, vlen);
 528   return new LoadVectorNode(ctl, mem, adr, atyp, vt, control_dependency);
 529 }
 530 
 531 // Return the vector version of a scalar store node.
 532 StoreVectorNode* StoreVectorNode::make(int opc, Node* ctl, Node* mem,
 533                                        Node* adr, const TypePtr* atyp, Node* val,
 534                                        uint vlen) {
 535   return new StoreVectorNode(ctl, mem, adr, atyp, val);
 536 }
 537 
 538 // Extract a scalar element of vector.
 539 Node* ExtractNode::make(Node* v, uint position, BasicType bt) {
 540   assert((int)position < Matcher::max_vector_size(bt), "pos in range");
 541   ConINode* pos = ConINode::make((int)position);
 542   switch (bt) {
 543   case T_BOOLEAN:
 544     return new ExtractUBNode(v, pos);
 545   case T_BYTE:
 546     return new ExtractBNode(v, pos);
 547   case T_CHAR:
 548     return new ExtractCNode(v, pos);
 549   case T_SHORT:
 550     return new ExtractSNode(v, pos);
 551   case T_INT:
 552     return new ExtractINode(v, pos);
 553   case T_LONG:
 554     return new ExtractLNode(v, pos);
 555   case T_FLOAT:
 556     return new ExtractFNode(v, pos);
 557   case T_DOUBLE:
 558     return new ExtractDNode(v, pos);
 559   default:
 560     fatal("Type '%s' is not supported for vectors", type2name(bt));
 561     return NULL;
 562   }
 563 }
 564 
 565 int ReductionNode::opcode(int opc, BasicType bt) {
 566   int vopc = opc;
 567   switch (opc) {
 568     case Op_AddI:
 569       assert(bt == T_INT, "must be");
 570       vopc = Op_AddReductionVI;
 571       break;
 572     case Op_AddL:
 573       assert(bt == T_LONG, "must be");
 574       vopc = Op_AddReductionVL;
 575       break;
 576     case Op_AddF:
 577       assert(bt == T_FLOAT, "must be");
 578       vopc = Op_AddReductionVF;
 579       break;
 580     case Op_AddD:
 581       assert(bt == T_DOUBLE, "must be");
 582       vopc = Op_AddReductionVD;
 583       break;
 584     case Op_MulI:
 585       assert(bt == T_INT, "must be");
 586       vopc = Op_MulReductionVI;
 587       break;
 588     case Op_MulL:
 589       assert(bt == T_LONG, "must be");
 590       vopc = Op_MulReductionVL;
 591       break;
 592     case Op_MulF:
 593       assert(bt == T_FLOAT, "must be");
 594       vopc = Op_MulReductionVF;
 595       break;
 596     case Op_MulD:
 597       assert(bt == T_DOUBLE, "must be");
 598       vopc = Op_MulReductionVD;
 599       break;
 600     case Op_MinF:
 601       assert(bt == T_FLOAT, "must be");
 602       vopc = Op_MinReductionV;
 603       break;
 604     case Op_MinD:
 605       assert(bt == T_DOUBLE, "must be");
 606       vopc = Op_MaxReductionV;
 607       break;
 608     case Op_MaxF:
 609       assert(bt == T_FLOAT, "must be");
 610       vopc = Op_MinReductionV;
 611       break;
 612     case Op_MaxD:
 613       assert(bt == T_DOUBLE, "must be");
 614       vopc = Op_MaxReductionV;
 615       break;
 616     // TODO: add MulL for targets that support it
 617     default:
 618       break;
 619   }
 620   return vopc;
 621 }
 622 
 623 // Return the appropriate reduction node.
 624 ReductionNode* ReductionNode::make(int opc, Node *ctrl, Node* n1, Node* n2, BasicType bt) {
 625 
 626   int vopc = opcode(opc, bt);
 627 
 628   // This method should not be called for unimplemented vectors.
 629   guarantee(vopc != opc, "Vector for '%s' is not implemented", NodeClassNames[opc]);
 630 
 631   switch (vopc) {
 632   case Op_AddReductionVI: return new AddReductionVINode(ctrl, n1, n2);
 633   case Op_AddReductionVL: return new AddReductionVLNode(ctrl, n1, n2);
 634   case Op_AddReductionVF: return new AddReductionVFNode(ctrl, n1, n2);
 635   case Op_AddReductionVD: return new AddReductionVDNode(ctrl, n1, n2);
 636   case Op_MulReductionVI: return new MulReductionVINode(ctrl, n1, n2);
 637   case Op_MulReductionVL: return new MulReductionVLNode(ctrl, n1, n2);
 638   case Op_MulReductionVF: return new MulReductionVFNode(ctrl, n1, n2);
 639   case Op_MulReductionVD: return new MulReductionVDNode(ctrl, n1, n2);
 640   case Op_MinReductionV: return new MinReductionVNode(ctrl, n1, n2);
 641   case Op_MaxReductionV: return new MaxReductionVNode(ctrl, n1, n2);
 642   default:
 643     fatal("Missed vector creation for '%s'", NodeClassNames[vopc]);
 644     return NULL;
 645   }
 646 }
 647 
 648 bool ReductionNode::implemented(int opc, uint vlen, BasicType bt) {
 649   if (is_java_primitive(bt) &&
 650       (vlen > 1) && is_power_of_2(vlen) &&
 651       Matcher::vector_size_supported(bt, vlen)) {
 652     int vopc = ReductionNode::opcode(opc, bt);
 653     return vopc != opc && Matcher::match_rule_supported(vopc);
 654   }
 655   return false;
 656 }