1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  34 #include "gc_implementation/g1/g1RemSet.hpp"
  35 #include "gc_implementation/g1/heapRegion.inline.hpp"
  36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  38 #include "gc_implementation/g1/stringDedup.hpp"
  39 #include "gc_implementation/shared/vmGCOperations.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "memory/genOopClosures.inline.hpp"
  44 #include "memory/referencePolicy.hpp"
  45 #include "memory/resourceArea.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/java.hpp"
  49 #include "services/memTracker.hpp"
  50 
  51 // Concurrent marking bit map wrapper
  52 
  53 CMBitMapRO::CMBitMapRO(int shifter) :
  54   _bm(),
  55   _shifter(shifter) {
  56   _bmStartWord = 0;
  57   _bmWordSize = 0;
  58 }
  59 
  60 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  61                                                HeapWord* limit) const {
  62   // First we must round addr *up* to a possible object boundary.
  63   addr = (HeapWord*)align_size_up((intptr_t)addr,
  64                                   HeapWordSize << _shifter);
  65   size_t addrOffset = heapWordToOffset(addr);
  66   if (limit == NULL) {
  67     limit = _bmStartWord + _bmWordSize;
  68   }
  69   size_t limitOffset = heapWordToOffset(limit);
  70   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  71   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  72   assert(nextAddr >= addr, "get_next_one postcondition");
  73   assert(nextAddr == limit || isMarked(nextAddr),
  74          "get_next_one postcondition");
  75   return nextAddr;
  76 }
  77 
  78 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  79                                                  HeapWord* limit) const {
  80   size_t addrOffset = heapWordToOffset(addr);
  81   if (limit == NULL) {
  82     limit = _bmStartWord + _bmWordSize;
  83   }
  84   size_t limitOffset = heapWordToOffset(limit);
  85   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  86   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  87   assert(nextAddr >= addr, "get_next_one postcondition");
  88   assert(nextAddr == limit || !isMarked(nextAddr),
  89          "get_next_one postcondition");
  90   return nextAddr;
  91 }
  92 
  93 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  94   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  95   return (int) (diff >> _shifter);
  96 }
  97 
  98 #ifndef PRODUCT
  99 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
 100   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 101   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 102          "size inconsistency");
 103   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 104          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 105 }
 106 #endif
 107 
 108 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 109   _bm.print_on_error(st, prefix);
 110 }
 111 
 112 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 113   _bmStartWord = (HeapWord*)(heap_rs.base());
 114   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 115   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 116                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 117   if (!brs.is_reserved()) {
 118     warning("ConcurrentMark marking bit map allocation failure");
 119     return false;
 120   }
 121   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 122   // For now we'll just commit all of the bit map up front.
 123   // Later on we'll try to be more parsimonious with swap.
 124   if (!_virtual_space.initialize(brs, brs.size())) {
 125     warning("ConcurrentMark marking bit map backing store failure");
 126     return false;
 127   }
 128   assert(_virtual_space.committed_size() == brs.size(),
 129          "didn't reserve backing store for all of concurrent marking bit map?");
 130   _bm.set_map((uintptr_t*)_virtual_space.low());
 131   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 132          _bmWordSize, "inconsistency in bit map sizing");
 133   _bm.set_size(_bmWordSize >> _shifter);
 134   return true;
 135 }
 136 
 137 void CMBitMap::clearAll() {
 138   _bm.clear();
 139   return;
 140 }
 141 
 142 void CMBitMap::markRange(MemRegion mr) {
 143   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 144   assert(!mr.is_empty(), "unexpected empty region");
 145   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 146           ((HeapWord *) mr.end())),
 147          "markRange memory region end is not card aligned");
 148   // convert address range into offset range
 149   _bm.at_put_range(heapWordToOffset(mr.start()),
 150                    heapWordToOffset(mr.end()), true);
 151 }
 152 
 153 void CMBitMap::clearRange(MemRegion mr) {
 154   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 155   assert(!mr.is_empty(), "unexpected empty region");
 156   // convert address range into offset range
 157   _bm.at_put_range(heapWordToOffset(mr.start()),
 158                    heapWordToOffset(mr.end()), false);
 159 }
 160 
 161 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 162                                             HeapWord* end_addr) {
 163   HeapWord* start = getNextMarkedWordAddress(addr);
 164   start = MIN2(start, end_addr);
 165   HeapWord* end   = getNextUnmarkedWordAddress(start);
 166   end = MIN2(end, end_addr);
 167   assert(start <= end, "Consistency check");
 168   MemRegion mr(start, end);
 169   if (!mr.is_empty()) {
 170     clearRange(mr);
 171   }
 172   return mr;
 173 }
 174 
 175 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 176   _base(NULL), _cm(cm)
 177 #ifdef ASSERT
 178   , _drain_in_progress(false)
 179   , _drain_in_progress_yields(false)
 180 #endif
 181 {}
 182 
 183 bool CMMarkStack::allocate(size_t capacity) {
 184   // allocate a stack of the requisite depth
 185   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 186   if (!rs.is_reserved()) {
 187     warning("ConcurrentMark MarkStack allocation failure");
 188     return false;
 189   }
 190   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 191   if (!_virtual_space.initialize(rs, rs.size())) {
 192     warning("ConcurrentMark MarkStack backing store failure");
 193     // Release the virtual memory reserved for the marking stack
 194     rs.release();
 195     return false;
 196   }
 197   assert(_virtual_space.committed_size() == rs.size(),
 198          "Didn't reserve backing store for all of ConcurrentMark stack?");
 199   _base = (oop*) _virtual_space.low();
 200   setEmpty();
 201   _capacity = (jint) capacity;
 202   _saved_index = -1;
 203   _should_expand = false;
 204   NOT_PRODUCT(_max_depth = 0);
 205   return true;
 206 }
 207 
 208 void CMMarkStack::expand() {
 209   // Called, during remark, if we've overflown the marking stack during marking.
 210   assert(isEmpty(), "stack should been emptied while handling overflow");
 211   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 212   // Clear expansion flag
 213   _should_expand = false;
 214   if (_capacity == (jint) MarkStackSizeMax) {
 215     if (PrintGCDetails && Verbose) {
 216       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 217     }
 218     return;
 219   }
 220   // Double capacity if possible
 221   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 222   // Do not give up existing stack until we have managed to
 223   // get the double capacity that we desired.
 224   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 225                                                            sizeof(oop)));
 226   if (rs.is_reserved()) {
 227     // Release the backing store associated with old stack
 228     _virtual_space.release();
 229     // Reinitialize virtual space for new stack
 230     if (!_virtual_space.initialize(rs, rs.size())) {
 231       fatal("Not enough swap for expanded marking stack capacity");
 232     }
 233     _base = (oop*)(_virtual_space.low());
 234     _index = 0;
 235     _capacity = new_capacity;
 236   } else {
 237     if (PrintGCDetails && Verbose) {
 238       // Failed to double capacity, continue;
 239       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 240                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 241                           _capacity / K, new_capacity / K);
 242     }
 243   }
 244 }
 245 
 246 void CMMarkStack::set_should_expand() {
 247   // If we're resetting the marking state because of an
 248   // marking stack overflow, record that we should, if
 249   // possible, expand the stack.
 250   _should_expand = _cm->has_overflown();
 251 }
 252 
 253 CMMarkStack::~CMMarkStack() {
 254   if (_base != NULL) {
 255     _base = NULL;
 256     _virtual_space.release();
 257   }
 258 }
 259 
 260 void CMMarkStack::par_push(oop ptr) {
 261   while (true) {
 262     if (isFull()) {
 263       _overflow = true;
 264       return;
 265     }
 266     // Otherwise...
 267     jint index = _index;
 268     jint next_index = index+1;
 269     jint res = Atomic::cmpxchg(next_index, &_index, index);
 270     if (res == index) {
 271       _base[index] = ptr;
 272       // Note that we don't maintain this atomically.  We could, but it
 273       // doesn't seem necessary.
 274       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 275       return;
 276     }
 277     // Otherwise, we need to try again.
 278   }
 279 }
 280 
 281 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 282   while (true) {
 283     if (isFull()) {
 284       _overflow = true;
 285       return;
 286     }
 287     // Otherwise...
 288     jint index = _index;
 289     jint next_index = index + n;
 290     if (next_index > _capacity) {
 291       _overflow = true;
 292       return;
 293     }
 294     jint res = Atomic::cmpxchg(next_index, &_index, index);
 295     if (res == index) {
 296       for (int i = 0; i < n; i++) {
 297         int  ind = index + i;
 298         assert(ind < _capacity, "By overflow test above.");
 299         _base[ind] = ptr_arr[i];
 300       }
 301       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 302       return;
 303     }
 304     // Otherwise, we need to try again.
 305   }
 306 }
 307 
 308 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 309   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 310   jint start = _index;
 311   jint next_index = start + n;
 312   if (next_index > _capacity) {
 313     _overflow = true;
 314     return;
 315   }
 316   // Otherwise.
 317   _index = next_index;
 318   for (int i = 0; i < n; i++) {
 319     int ind = start + i;
 320     assert(ind < _capacity, "By overflow test above.");
 321     _base[ind] = ptr_arr[i];
 322   }
 323   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 324 }
 325 
 326 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 327   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 328   jint index = _index;
 329   if (index == 0) {
 330     *n = 0;
 331     return false;
 332   } else {
 333     int k = MIN2(max, index);
 334     jint  new_ind = index - k;
 335     for (int j = 0; j < k; j++) {
 336       ptr_arr[j] = _base[new_ind + j];
 337     }
 338     _index = new_ind;
 339     *n = k;
 340     return true;
 341   }
 342 }
 343 
 344 template<class OopClosureClass>
 345 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 346   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 347          || SafepointSynchronize::is_at_safepoint(),
 348          "Drain recursion must be yield-safe.");
 349   bool res = true;
 350   debug_only(_drain_in_progress = true);
 351   debug_only(_drain_in_progress_yields = yield_after);
 352   while (!isEmpty()) {
 353     oop newOop = pop();
 354     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 355     assert(newOop->is_oop(), "Expected an oop");
 356     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 357            "only grey objects on this stack");
 358     newOop->oop_iterate(cl);
 359     if (yield_after && _cm->do_yield_check()) {
 360       res = false;
 361       break;
 362     }
 363   }
 364   debug_only(_drain_in_progress = false);
 365   return res;
 366 }
 367 
 368 void CMMarkStack::note_start_of_gc() {
 369   assert(_saved_index == -1,
 370          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 371   _saved_index = _index;
 372 }
 373 
 374 void CMMarkStack::note_end_of_gc() {
 375   // This is intentionally a guarantee, instead of an assert. If we
 376   // accidentally add something to the mark stack during GC, it
 377   // will be a correctness issue so it's better if we crash. we'll
 378   // only check this once per GC anyway, so it won't be a performance
 379   // issue in any way.
 380   guarantee(_saved_index == _index,
 381             err_msg("saved index: %d index: %d", _saved_index, _index));
 382   _saved_index = -1;
 383 }
 384 
 385 void CMMarkStack::oops_do(OopClosure* f) {
 386   assert(_saved_index == _index,
 387          err_msg("saved index: %d index: %d", _saved_index, _index));
 388   for (int i = 0; i < _index; i += 1) {
 389     f->do_oop(&_base[i]);
 390   }
 391 }
 392 
 393 bool ConcurrentMark::not_yet_marked(oop obj) const {
 394   return _g1h->is_obj_ill(obj);
 395 }
 396 
 397 CMRootRegions::CMRootRegions() :
 398   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 399   _should_abort(false),  _next_survivor(NULL) { }
 400 
 401 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 402   _young_list = g1h->young_list();
 403   _cm = cm;
 404 }
 405 
 406 void CMRootRegions::prepare_for_scan() {
 407   assert(!scan_in_progress(), "pre-condition");
 408 
 409   // Currently, only survivors can be root regions.
 410   assert(_next_survivor == NULL, "pre-condition");
 411   _next_survivor = _young_list->first_survivor_region();
 412   _scan_in_progress = (_next_survivor != NULL);
 413   _should_abort = false;
 414 }
 415 
 416 HeapRegion* CMRootRegions::claim_next() {
 417   if (_should_abort) {
 418     // If someone has set the should_abort flag, we return NULL to
 419     // force the caller to bail out of their loop.
 420     return NULL;
 421   }
 422 
 423   // Currently, only survivors can be root regions.
 424   HeapRegion* res = _next_survivor;
 425   if (res != NULL) {
 426     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 427     // Read it again in case it changed while we were waiting for the lock.
 428     res = _next_survivor;
 429     if (res != NULL) {
 430       if (res == _young_list->last_survivor_region()) {
 431         // We just claimed the last survivor so store NULL to indicate
 432         // that we're done.
 433         _next_survivor = NULL;
 434       } else {
 435         _next_survivor = res->get_next_young_region();
 436       }
 437     } else {
 438       // Someone else claimed the last survivor while we were trying
 439       // to take the lock so nothing else to do.
 440     }
 441   }
 442   assert(res == NULL || res->is_survivor(), "post-condition");
 443 
 444   return res;
 445 }
 446 
 447 void CMRootRegions::scan_finished() {
 448   assert(scan_in_progress(), "pre-condition");
 449 
 450   // Currently, only survivors can be root regions.
 451   if (!_should_abort) {
 452     assert(_next_survivor == NULL, "we should have claimed all survivors");
 453   }
 454   _next_survivor = NULL;
 455 
 456   {
 457     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 458     _scan_in_progress = false;
 459     RootRegionScan_lock->notify_all();
 460   }
 461 }
 462 
 463 bool CMRootRegions::wait_until_scan_finished() {
 464   if (!scan_in_progress()) return false;
 465 
 466   {
 467     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 468     while (scan_in_progress()) {
 469       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 470     }
 471   }
 472   return true;
 473 }
 474 
 475 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 476 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 477 #endif // _MSC_VER
 478 
 479 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 480   return MAX2((n_par_threads + 2) / 4, 1U);
 481 }
 482 
 483 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 484   _g1h(g1h),
 485   _markBitMap1(log2_intptr(MinObjAlignment)),
 486   _markBitMap2(log2_intptr(MinObjAlignment)),
 487   _parallel_marking_threads(0),
 488   _max_parallel_marking_threads(0),
 489   _sleep_factor(0.0),
 490   _marking_task_overhead(1.0),
 491   _cleanup_sleep_factor(0.0),
 492   _cleanup_task_overhead(1.0),
 493   _cleanup_list("Cleanup List"),
 494   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 495   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 496             CardTableModRefBS::card_shift,
 497             false /* in_resource_area*/),
 498 
 499   _prevMarkBitMap(&_markBitMap1),
 500   _nextMarkBitMap(&_markBitMap2),
 501 
 502   _markStack(this),
 503   // _finger set in set_non_marking_state
 504 
 505   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 506   // _active_tasks set in set_non_marking_state
 507   // _tasks set inside the constructor
 508   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 509   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 510 
 511   _has_overflown(false),
 512   _concurrent(false),
 513   _has_aborted(false),
 514   _restart_for_overflow(false),
 515   _concurrent_marking_in_progress(false),
 516 
 517   // _verbose_level set below
 518 
 519   _init_times(),
 520   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 521   _cleanup_times(),
 522   _total_counting_time(0.0),
 523   _total_rs_scrub_time(0.0),
 524 
 525   _parallel_workers(NULL),
 526 
 527   _count_card_bitmaps(NULL),
 528   _count_marked_bytes(NULL),
 529   _completed_initialization(false) {
 530   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 531   if (verbose_level < no_verbose) {
 532     verbose_level = no_verbose;
 533   }
 534   if (verbose_level > high_verbose) {
 535     verbose_level = high_verbose;
 536   }
 537   _verbose_level = verbose_level;
 538 
 539   if (verbose_low()) {
 540     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 541                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 542   }
 543 
 544   if (!_markBitMap1.allocate(heap_rs)) {
 545     warning("Failed to allocate first CM bit map");
 546     return;
 547   }
 548   if (!_markBitMap2.allocate(heap_rs)) {
 549     warning("Failed to allocate second CM bit map");
 550     return;
 551   }
 552 
 553   // Create & start a ConcurrentMark thread.
 554   _cmThread = new ConcurrentMarkThread(this);
 555   assert(cmThread() != NULL, "CM Thread should have been created");
 556   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 557   if (_cmThread->osthread() == NULL) {
 558       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 559   }
 560 
 561   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 562   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 563   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 564 
 565   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 566   satb_qs.set_buffer_size(G1SATBBufferSize);
 567 
 568   _root_regions.init(_g1h, this);
 569 
 570   if (ConcGCThreads > ParallelGCThreads) {
 571     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
 572             "than ParallelGCThreads (" UINT32_FORMAT ").",
 573             ConcGCThreads, ParallelGCThreads);
 574     return;
 575   }
 576   if (ParallelGCThreads == 0) {
 577     // if we are not running with any parallel GC threads we will not
 578     // spawn any marking threads either
 579     _parallel_marking_threads =       0;
 580     _max_parallel_marking_threads =   0;
 581     _sleep_factor             =     0.0;
 582     _marking_task_overhead    =     1.0;
 583   } else {
 584     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 585       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 586       // if both are set
 587       _sleep_factor             = 0.0;
 588       _marking_task_overhead    = 1.0;
 589     } else if (G1MarkingOverheadPercent > 0) {
 590       // We will calculate the number of parallel marking threads based
 591       // on a target overhead with respect to the soft real-time goal
 592       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 593       double overall_cm_overhead =
 594         (double) MaxGCPauseMillis * marking_overhead /
 595         (double) GCPauseIntervalMillis;
 596       double cpu_ratio = 1.0 / (double) os::processor_count();
 597       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 598       double marking_task_overhead =
 599         overall_cm_overhead / marking_thread_num *
 600                                                 (double) os::processor_count();
 601       double sleep_factor =
 602                          (1.0 - marking_task_overhead) / marking_task_overhead;
 603 
 604       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 605       _sleep_factor             = sleep_factor;
 606       _marking_task_overhead    = marking_task_overhead;
 607     } else {
 608       // Calculate the number of parallel marking threads by scaling
 609       // the number of parallel GC threads.
 610       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 611       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 612       _sleep_factor             = 0.0;
 613       _marking_task_overhead    = 1.0;
 614     }
 615 
 616     assert(ConcGCThreads > 0, "Should have been set");
 617     _parallel_marking_threads = (uint) ConcGCThreads;
 618     _max_parallel_marking_threads = _parallel_marking_threads;
 619 
 620     if (parallel_marking_threads() > 1) {
 621       _cleanup_task_overhead = 1.0;
 622     } else {
 623       _cleanup_task_overhead = marking_task_overhead();
 624     }
 625     _cleanup_sleep_factor =
 626                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 627 
 628 #if 0
 629     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 630     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 631     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 632     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 633     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 634 #endif
 635 
 636     guarantee(parallel_marking_threads() > 0, "peace of mind");
 637     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 638          _max_parallel_marking_threads, false, true);
 639     if (_parallel_workers == NULL) {
 640       vm_exit_during_initialization("Failed necessary allocation.");
 641     } else {
 642       _parallel_workers->initialize_workers();
 643     }
 644   }
 645 
 646   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 647     uintx mark_stack_size =
 648       MIN2(MarkStackSizeMax,
 649           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 650     // Verify that the calculated value for MarkStackSize is in range.
 651     // It would be nice to use the private utility routine from Arguments.
 652     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 653       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 654               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 655               mark_stack_size, 1, MarkStackSizeMax);
 656       return;
 657     }
 658     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 659   } else {
 660     // Verify MarkStackSize is in range.
 661     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 662       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 663         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 664           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 665                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 666                   MarkStackSize, 1, MarkStackSizeMax);
 667           return;
 668         }
 669       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 670         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 671           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 672                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 673                   MarkStackSize, MarkStackSizeMax);
 674           return;
 675         }
 676       }
 677     }
 678   }
 679 
 680   if (!_markStack.allocate(MarkStackSize)) {
 681     warning("Failed to allocate CM marking stack");
 682     return;
 683   }
 684 
 685   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 686   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 687 
 688   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 689   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 690 
 691   BitMap::idx_t card_bm_size = _card_bm.size();
 692 
 693   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 694   _active_tasks = _max_worker_id;
 695 
 696   size_t max_regions = (size_t) _g1h->max_regions();
 697   for (uint i = 0; i < _max_worker_id; ++i) {
 698     CMTaskQueue* task_queue = new CMTaskQueue();
 699     task_queue->initialize();
 700     _task_queues->register_queue(i, task_queue);
 701 
 702     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 703     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 704 
 705     _tasks[i] = new CMTask(i, this,
 706                            _count_marked_bytes[i],
 707                            &_count_card_bitmaps[i],
 708                            task_queue, _task_queues);
 709 
 710     _accum_task_vtime[i] = 0.0;
 711   }
 712 
 713   // Calculate the card number for the bottom of the heap. Used
 714   // in biasing indexes into the accounting card bitmaps.
 715   _heap_bottom_card_num =
 716     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 717                                 CardTableModRefBS::card_shift);
 718 
 719   // Clear all the liveness counting data
 720   clear_all_count_data();
 721 
 722   // so that the call below can read a sensible value
 723   _heap_start = (HeapWord*) heap_rs.base();
 724   set_non_marking_state();
 725   _completed_initialization = true;
 726 }
 727 
 728 void ConcurrentMark::update_g1_committed(bool force) {
 729   // If concurrent marking is not in progress, then we do not need to
 730   // update _heap_end.
 731   if (!concurrent_marking_in_progress() && !force) return;
 732 
 733   MemRegion committed = _g1h->g1_committed();
 734   assert(committed.start() == _heap_start, "start shouldn't change");
 735   HeapWord* new_end = committed.end();
 736   if (new_end > _heap_end) {
 737     // The heap has been expanded.
 738 
 739     _heap_end = new_end;
 740   }
 741   // Notice that the heap can also shrink. However, this only happens
 742   // during a Full GC (at least currently) and the entire marking
 743   // phase will bail out and the task will not be restarted. So, let's
 744   // do nothing.
 745 }
 746 
 747 void ConcurrentMark::reset() {
 748   // Starting values for these two. This should be called in a STW
 749   // phase. CM will be notified of any future g1_committed expansions
 750   // will be at the end of evacuation pauses, when tasks are
 751   // inactive.
 752   MemRegion committed = _g1h->g1_committed();
 753   _heap_start = committed.start();
 754   _heap_end   = committed.end();
 755 
 756   // Separated the asserts so that we know which one fires.
 757   assert(_heap_start != NULL, "heap bounds should look ok");
 758   assert(_heap_end != NULL, "heap bounds should look ok");
 759   assert(_heap_start < _heap_end, "heap bounds should look ok");
 760 
 761   // Reset all the marking data structures and any necessary flags
 762   reset_marking_state();
 763 
 764   if (verbose_low()) {
 765     gclog_or_tty->print_cr("[global] resetting");
 766   }
 767 
 768   // We do reset all of them, since different phases will use
 769   // different number of active threads. So, it's easiest to have all
 770   // of them ready.
 771   for (uint i = 0; i < _max_worker_id; ++i) {
 772     _tasks[i]->reset(_nextMarkBitMap);
 773   }
 774 
 775   // we need this to make sure that the flag is on during the evac
 776   // pause with initial mark piggy-backed
 777   set_concurrent_marking_in_progress();
 778 }
 779 
 780 
 781 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 782   _markStack.set_should_expand();
 783   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 784   if (clear_overflow) {
 785     clear_has_overflown();
 786   } else {
 787     assert(has_overflown(), "pre-condition");
 788   }
 789   _finger = _heap_start;
 790 
 791   for (uint i = 0; i < _max_worker_id; ++i) {
 792     CMTaskQueue* queue = _task_queues->queue(i);
 793     queue->set_empty();
 794   }
 795 }
 796 
 797 void ConcurrentMark::set_concurrency(uint active_tasks) {
 798   assert(active_tasks <= _max_worker_id, "we should not have more");
 799 
 800   _active_tasks = active_tasks;
 801   // Need to update the three data structures below according to the
 802   // number of active threads for this phase.
 803   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 804   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 805   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 806 }
 807 
 808 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 809   set_concurrency(active_tasks);
 810 
 811   _concurrent = concurrent;
 812   // We propagate this to all tasks, not just the active ones.
 813   for (uint i = 0; i < _max_worker_id; ++i)
 814     _tasks[i]->set_concurrent(concurrent);
 815 
 816   if (concurrent) {
 817     set_concurrent_marking_in_progress();
 818   } else {
 819     // We currently assume that the concurrent flag has been set to
 820     // false before we start remark. At this point we should also be
 821     // in a STW phase.
 822     assert(!concurrent_marking_in_progress(), "invariant");
 823     assert(_finger == _heap_end,
 824            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 825                    _finger, _heap_end));
 826     update_g1_committed(true);
 827   }
 828 }
 829 
 830 void ConcurrentMark::set_non_marking_state() {
 831   // We set the global marking state to some default values when we're
 832   // not doing marking.
 833   reset_marking_state();
 834   _active_tasks = 0;
 835   clear_concurrent_marking_in_progress();
 836 }
 837 
 838 ConcurrentMark::~ConcurrentMark() {
 839   // The ConcurrentMark instance is never freed.
 840   ShouldNotReachHere();
 841 }
 842 
 843 void ConcurrentMark::clearNextBitmap() {
 844   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 845   G1CollectorPolicy* g1p = g1h->g1_policy();
 846 
 847   // Make sure that the concurrent mark thread looks to still be in
 848   // the current cycle.
 849   guarantee(cmThread()->during_cycle(), "invariant");
 850 
 851   // We are finishing up the current cycle by clearing the next
 852   // marking bitmap and getting it ready for the next cycle. During
 853   // this time no other cycle can start. So, let's make sure that this
 854   // is the case.
 855   guarantee(!g1h->mark_in_progress(), "invariant");
 856 
 857   // clear the mark bitmap (no grey objects to start with).
 858   // We need to do this in chunks and offer to yield in between
 859   // each chunk.
 860   HeapWord* start  = _nextMarkBitMap->startWord();
 861   HeapWord* end    = _nextMarkBitMap->endWord();
 862   HeapWord* cur    = start;
 863   size_t chunkSize = M;
 864   while (cur < end) {
 865     HeapWord* next = cur + chunkSize;
 866     if (next > end) {
 867       next = end;
 868     }
 869     MemRegion mr(cur,next);
 870     _nextMarkBitMap->clearRange(mr);
 871     cur = next;
 872     do_yield_check();
 873 
 874     // Repeat the asserts from above. We'll do them as asserts here to
 875     // minimize their overhead on the product. However, we'll have
 876     // them as guarantees at the beginning / end of the bitmap
 877     // clearing to get some checking in the product.
 878     assert(cmThread()->during_cycle(), "invariant");
 879     assert(!g1h->mark_in_progress(), "invariant");
 880   }
 881 
 882   // Clear the liveness counting data
 883   clear_all_count_data();
 884 
 885   // Repeat the asserts from above.
 886   guarantee(cmThread()->during_cycle(), "invariant");
 887   guarantee(!g1h->mark_in_progress(), "invariant");
 888 }
 889 
 890 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 891 public:
 892   bool doHeapRegion(HeapRegion* r) {
 893     if (!r->continuesHumongous()) {
 894       r->note_start_of_marking();
 895     }
 896     return false;
 897   }
 898 };
 899 
 900 void ConcurrentMark::checkpointRootsInitialPre() {
 901   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 902   G1CollectorPolicy* g1p = g1h->g1_policy();
 903 
 904   _has_aborted = false;
 905 
 906 #ifndef PRODUCT
 907   if (G1PrintReachableAtInitialMark) {
 908     print_reachable("at-cycle-start",
 909                     VerifyOption_G1UsePrevMarking, true /* all */);
 910   }
 911 #endif
 912 
 913   // Initialize marking structures. This has to be done in a STW phase.
 914   reset();
 915 
 916   // For each region note start of marking.
 917   NoteStartOfMarkHRClosure startcl;
 918   g1h->heap_region_iterate(&startcl);
 919 }
 920 
 921 
 922 void ConcurrentMark::checkpointRootsInitialPost() {
 923   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 924 
 925   // If we force an overflow during remark, the remark operation will
 926   // actually abort and we'll restart concurrent marking. If we always
 927   // force an overflow during remark we'll never actually complete the
 928   // marking phase. So, we initialize this here, at the start of the
 929   // cycle, so that at the remaining overflow number will decrease at
 930   // every remark and we'll eventually not need to cause one.
 931   force_overflow_stw()->init();
 932 
 933   // Start Concurrent Marking weak-reference discovery.
 934   ReferenceProcessor* rp = g1h->ref_processor_cm();
 935   // enable ("weak") refs discovery
 936   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 937   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 938 
 939   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 940   // This is the start of  the marking cycle, we're expected all
 941   // threads to have SATB queues with active set to false.
 942   satb_mq_set.set_active_all_threads(true, /* new active value */
 943                                      false /* expected_active */);
 944 
 945   _root_regions.prepare_for_scan();
 946 
 947   // update_g1_committed() will be called at the end of an evac pause
 948   // when marking is on. So, it's also called at the end of the
 949   // initial-mark pause to update the heap end, if the heap expands
 950   // during it. No need to call it here.
 951 }
 952 
 953 /*
 954  * Notice that in the next two methods, we actually leave the STS
 955  * during the barrier sync and join it immediately afterwards. If we
 956  * do not do this, the following deadlock can occur: one thread could
 957  * be in the barrier sync code, waiting for the other thread to also
 958  * sync up, whereas another one could be trying to yield, while also
 959  * waiting for the other threads to sync up too.
 960  *
 961  * Note, however, that this code is also used during remark and in
 962  * this case we should not attempt to leave / enter the STS, otherwise
 963  * we'll either hit an assert (debug / fastdebug) or deadlock
 964  * (product). So we should only leave / enter the STS if we are
 965  * operating concurrently.
 966  *
 967  * Because the thread that does the sync barrier has left the STS, it
 968  * is possible to be suspended for a Full GC or an evacuation pause
 969  * could occur. This is actually safe, since the entering the sync
 970  * barrier is one of the last things do_marking_step() does, and it
 971  * doesn't manipulate any data structures afterwards.
 972  */
 973 
 974 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 975   if (verbose_low()) {
 976     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 977   }
 978 
 979   if (concurrent()) {
 980     ConcurrentGCThread::stsLeave();
 981   }
 982   _first_overflow_barrier_sync.enter();
 983   if (concurrent()) {
 984     ConcurrentGCThread::stsJoin();
 985   }
 986   // at this point everyone should have synced up and not be doing any
 987   // more work
 988 
 989   if (verbose_low()) {
 990     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 991   }
 992 
 993   // If we're executing the concurrent phase of marking, reset the marking
 994   // state; otherwise the marking state is reset after reference processing,
 995   // during the remark pause.
 996   // If we reset here as a result of an overflow during the remark we will
 997   // see assertion failures from any subsequent set_concurrency_and_phase()
 998   // calls.
 999   if (concurrent()) {
1000     // let the task associated with with worker 0 do this
1001     if (worker_id == 0) {
1002       // task 0 is responsible for clearing the global data structures
1003       // We should be here because of an overflow. During STW we should
1004       // not clear the overflow flag since we rely on it being true when
1005       // we exit this method to abort the pause and restart concurrent
1006       // marking.
1007       reset_marking_state(true /* clear_overflow */);
1008       force_overflow()->update();
1009 
1010       if (G1Log::fine()) {
1011         gclog_or_tty->date_stamp(PrintGCDateStamps);
1012         gclog_or_tty->stamp(PrintGCTimeStamps);
1013         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1014       }
1015     }
1016   }
1017 
1018   // after this, each task should reset its own data structures then
1019   // then go into the second barrier
1020 }
1021 
1022 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1023   if (verbose_low()) {
1024     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1025   }
1026 
1027   if (concurrent()) {
1028     ConcurrentGCThread::stsLeave();
1029   }
1030   _second_overflow_barrier_sync.enter();
1031   if (concurrent()) {
1032     ConcurrentGCThread::stsJoin();
1033   }
1034   // at this point everything should be re-initialized and ready to go
1035 
1036   if (verbose_low()) {
1037     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1038   }
1039 }
1040 
1041 #ifndef PRODUCT
1042 void ForceOverflowSettings::init() {
1043   _num_remaining = G1ConcMarkForceOverflow;
1044   _force = false;
1045   update();
1046 }
1047 
1048 void ForceOverflowSettings::update() {
1049   if (_num_remaining > 0) {
1050     _num_remaining -= 1;
1051     _force = true;
1052   } else {
1053     _force = false;
1054   }
1055 }
1056 
1057 bool ForceOverflowSettings::should_force() {
1058   if (_force) {
1059     _force = false;
1060     return true;
1061   } else {
1062     return false;
1063   }
1064 }
1065 #endif // !PRODUCT
1066 
1067 class CMConcurrentMarkingTask: public AbstractGangTask {
1068 private:
1069   ConcurrentMark*       _cm;
1070   ConcurrentMarkThread* _cmt;
1071 
1072 public:
1073   void work(uint worker_id) {
1074     assert(Thread::current()->is_ConcurrentGC_thread(),
1075            "this should only be done by a conc GC thread");
1076     ResourceMark rm;
1077 
1078     double start_vtime = os::elapsedVTime();
1079 
1080     ConcurrentGCThread::stsJoin();
1081 
1082     assert(worker_id < _cm->active_tasks(), "invariant");
1083     CMTask* the_task = _cm->task(worker_id);
1084     the_task->record_start_time();
1085     if (!_cm->has_aborted()) {
1086       do {
1087         double start_vtime_sec = os::elapsedVTime();
1088         double start_time_sec = os::elapsedTime();
1089         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1090 
1091         the_task->do_marking_step(mark_step_duration_ms,
1092                                   true  /* do_termination */,
1093                                   false /* is_serial*/);
1094 
1095         double end_time_sec = os::elapsedTime();
1096         double end_vtime_sec = os::elapsedVTime();
1097         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1098         double elapsed_time_sec = end_time_sec - start_time_sec;
1099         _cm->clear_has_overflown();
1100 
1101         bool ret = _cm->do_yield_check(worker_id);
1102 
1103         jlong sleep_time_ms;
1104         if (!_cm->has_aborted() && the_task->has_aborted()) {
1105           sleep_time_ms =
1106             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1107           ConcurrentGCThread::stsLeave();
1108           os::sleep(Thread::current(), sleep_time_ms, false);
1109           ConcurrentGCThread::stsJoin();
1110         }
1111         double end_time2_sec = os::elapsedTime();
1112         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1113 
1114 #if 0
1115           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1116                                  "overhead %1.4lf",
1117                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1118                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1119           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1120                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1121 #endif
1122       } while (!_cm->has_aborted() && the_task->has_aborted());
1123     }
1124     the_task->record_end_time();
1125     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1126 
1127     ConcurrentGCThread::stsLeave();
1128 
1129     double end_vtime = os::elapsedVTime();
1130     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1131   }
1132 
1133   CMConcurrentMarkingTask(ConcurrentMark* cm,
1134                           ConcurrentMarkThread* cmt) :
1135       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1136 
1137   ~CMConcurrentMarkingTask() { }
1138 };
1139 
1140 // Calculates the number of active workers for a concurrent
1141 // phase.
1142 uint ConcurrentMark::calc_parallel_marking_threads() {
1143   if (G1CollectedHeap::use_parallel_gc_threads()) {
1144     uint n_conc_workers = 0;
1145     if (!UseDynamicNumberOfGCThreads ||
1146         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1147          !ForceDynamicNumberOfGCThreads)) {
1148       n_conc_workers = max_parallel_marking_threads();
1149     } else {
1150       n_conc_workers =
1151         AdaptiveSizePolicy::calc_default_active_workers(
1152                                      max_parallel_marking_threads(),
1153                                      1, /* Minimum workers */
1154                                      parallel_marking_threads(),
1155                                      Threads::number_of_non_daemon_threads());
1156       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1157       // that scaling has already gone into "_max_parallel_marking_threads".
1158     }
1159     assert(n_conc_workers > 0, "Always need at least 1");
1160     return n_conc_workers;
1161   }
1162   // If we are not running with any parallel GC threads we will not
1163   // have spawned any marking threads either. Hence the number of
1164   // concurrent workers should be 0.
1165   return 0;
1166 }
1167 
1168 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1169   // Currently, only survivors can be root regions.
1170   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1171   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1172 
1173   const uintx interval = PrefetchScanIntervalInBytes;
1174   HeapWord* curr = hr->bottom();
1175   const HeapWord* end = hr->top();
1176   while (curr < end) {
1177     Prefetch::read(curr, interval);
1178     oop obj = oop(curr);
1179     int size = obj->oop_iterate(&cl);
1180     assert(size == obj->size(), "sanity");
1181     curr += size;
1182   }
1183 }
1184 
1185 class CMRootRegionScanTask : public AbstractGangTask {
1186 private:
1187   ConcurrentMark* _cm;
1188 
1189 public:
1190   CMRootRegionScanTask(ConcurrentMark* cm) :
1191     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1192 
1193   void work(uint worker_id) {
1194     assert(Thread::current()->is_ConcurrentGC_thread(),
1195            "this should only be done by a conc GC thread");
1196 
1197     CMRootRegions* root_regions = _cm->root_regions();
1198     HeapRegion* hr = root_regions->claim_next();
1199     while (hr != NULL) {
1200       _cm->scanRootRegion(hr, worker_id);
1201       hr = root_regions->claim_next();
1202     }
1203   }
1204 };
1205 
1206 void ConcurrentMark::scanRootRegions() {
1207   // scan_in_progress() will have been set to true only if there was
1208   // at least one root region to scan. So, if it's false, we
1209   // should not attempt to do any further work.
1210   if (root_regions()->scan_in_progress()) {
1211     _parallel_marking_threads = calc_parallel_marking_threads();
1212     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1213            "Maximum number of marking threads exceeded");
1214     uint active_workers = MAX2(1U, parallel_marking_threads());
1215 
1216     CMRootRegionScanTask task(this);
1217     if (use_parallel_marking_threads()) {
1218       _parallel_workers->set_active_workers((int) active_workers);
1219       _parallel_workers->run_task(&task);
1220     } else {
1221       task.work(0);
1222     }
1223 
1224     // It's possible that has_aborted() is true here without actually
1225     // aborting the survivor scan earlier. This is OK as it's
1226     // mainly used for sanity checking.
1227     root_regions()->scan_finished();
1228   }
1229 }
1230 
1231 void ConcurrentMark::markFromRoots() {
1232   // we might be tempted to assert that:
1233   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1234   //        "inconsistent argument?");
1235   // However that wouldn't be right, because it's possible that
1236   // a safepoint is indeed in progress as a younger generation
1237   // stop-the-world GC happens even as we mark in this generation.
1238 
1239   _restart_for_overflow = false;
1240   force_overflow_conc()->init();
1241 
1242   // _g1h has _n_par_threads
1243   _parallel_marking_threads = calc_parallel_marking_threads();
1244   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1245     "Maximum number of marking threads exceeded");
1246 
1247   uint active_workers = MAX2(1U, parallel_marking_threads());
1248 
1249   // Parallel task terminator is set in "set_concurrency_and_phase()"
1250   set_concurrency_and_phase(active_workers, true /* concurrent */);
1251 
1252   CMConcurrentMarkingTask markingTask(this, cmThread());
1253   if (use_parallel_marking_threads()) {
1254     _parallel_workers->set_active_workers((int)active_workers);
1255     // Don't set _n_par_threads because it affects MT in process_strong_roots()
1256     // and the decisions on that MT processing is made elsewhere.
1257     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1258     _parallel_workers->run_task(&markingTask);
1259   } else {
1260     markingTask.work(0);
1261   }
1262   print_stats();
1263 }
1264 
1265 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1266   // world is stopped at this checkpoint
1267   assert(SafepointSynchronize::is_at_safepoint(),
1268          "world should be stopped");
1269 
1270   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1271 
1272   // If a full collection has happened, we shouldn't do this.
1273   if (has_aborted()) {
1274     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1275     return;
1276   }
1277 
1278   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1279 
1280   if (VerifyDuringGC) {
1281     HandleMark hm;  // handle scope
1282     Universe::heap()->prepare_for_verify();
1283     Universe::verify(VerifyOption_G1UsePrevMarking,
1284                      " VerifyDuringGC:(before)");
1285   }
1286 
1287   G1CollectorPolicy* g1p = g1h->g1_policy();
1288   g1p->record_concurrent_mark_remark_start();
1289 
1290   double start = os::elapsedTime();
1291 
1292   checkpointRootsFinalWork();
1293 
1294   double mark_work_end = os::elapsedTime();
1295 
1296   weakRefsWork(clear_all_soft_refs);
1297 
1298   if (has_overflown()) {
1299     // Oops.  We overflowed.  Restart concurrent marking.
1300     _restart_for_overflow = true;
1301     if (G1TraceMarkStackOverflow) {
1302       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1303     }
1304 
1305     // Verify the heap w.r.t. the previous marking bitmap.
1306     if (VerifyDuringGC) {
1307       HandleMark hm;  // handle scope
1308       Universe::heap()->prepare_for_verify();
1309       Universe::verify(VerifyOption_G1UsePrevMarking,
1310                        " VerifyDuringGC:(overflow)");
1311     }
1312 
1313     // Clear the marking state because we will be restarting
1314     // marking due to overflowing the global mark stack.
1315     reset_marking_state();
1316   } else {
1317     // Aggregate the per-task counting data that we have accumulated
1318     // while marking.
1319     aggregate_count_data();
1320 
1321     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1322     // We're done with marking.
1323     // This is the end of  the marking cycle, we're expected all
1324     // threads to have SATB queues with active set to true.
1325     satb_mq_set.set_active_all_threads(false, /* new active value */
1326                                        true /* expected_active */);
1327 
1328     if (VerifyDuringGC) {
1329       HandleMark hm;  // handle scope
1330       Universe::heap()->prepare_for_verify();
1331       Universe::verify(VerifyOption_G1UseNextMarking,
1332                        " VerifyDuringGC:(after)");
1333     }
1334     assert(!restart_for_overflow(), "sanity");
1335     // Completely reset the marking state since marking completed
1336     set_non_marking_state();
1337   }
1338 
1339   // Expand the marking stack, if we have to and if we can.
1340   if (_markStack.should_expand()) {
1341     _markStack.expand();
1342   }
1343 
1344   // Statistics
1345   double now = os::elapsedTime();
1346   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1347   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1348   _remark_times.add((now - start) * 1000.0);
1349 
1350   g1p->record_concurrent_mark_remark_end();
1351 
1352   G1CMIsAliveClosure is_alive(g1h);
1353   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1354 }
1355 
1356 // Base class of the closures that finalize and verify the
1357 // liveness counting data.
1358 class CMCountDataClosureBase: public HeapRegionClosure {
1359 protected:
1360   G1CollectedHeap* _g1h;
1361   ConcurrentMark* _cm;
1362   CardTableModRefBS* _ct_bs;
1363 
1364   BitMap* _region_bm;
1365   BitMap* _card_bm;
1366 
1367   // Takes a region that's not empty (i.e., it has at least one
1368   // live object in it and sets its corresponding bit on the region
1369   // bitmap to 1. If the region is "starts humongous" it will also set
1370   // to 1 the bits on the region bitmap that correspond to its
1371   // associated "continues humongous" regions.
1372   void set_bit_for_region(HeapRegion* hr) {
1373     assert(!hr->continuesHumongous(), "should have filtered those out");
1374 
1375     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1376     if (!hr->startsHumongous()) {
1377       // Normal (non-humongous) case: just set the bit.
1378       _region_bm->par_at_put(index, true);
1379     } else {
1380       // Starts humongous case: calculate how many regions are part of
1381       // this humongous region and then set the bit range.
1382       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1383       _region_bm->par_at_put_range(index, end_index, true);
1384     }
1385   }
1386 
1387 public:
1388   CMCountDataClosureBase(G1CollectedHeap* g1h,
1389                          BitMap* region_bm, BitMap* card_bm):
1390     _g1h(g1h), _cm(g1h->concurrent_mark()),
1391     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1392     _region_bm(region_bm), _card_bm(card_bm) { }
1393 };
1394 
1395 // Closure that calculates the # live objects per region. Used
1396 // for verification purposes during the cleanup pause.
1397 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1398   CMBitMapRO* _bm;
1399   size_t _region_marked_bytes;
1400 
1401 public:
1402   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1403                          BitMap* region_bm, BitMap* card_bm) :
1404     CMCountDataClosureBase(g1h, region_bm, card_bm),
1405     _bm(bm), _region_marked_bytes(0) { }
1406 
1407   bool doHeapRegion(HeapRegion* hr) {
1408 
1409     if (hr->continuesHumongous()) {
1410       // We will ignore these here and process them when their
1411       // associated "starts humongous" region is processed (see
1412       // set_bit_for_heap_region()). Note that we cannot rely on their
1413       // associated "starts humongous" region to have their bit set to
1414       // 1 since, due to the region chunking in the parallel region
1415       // iteration, a "continues humongous" region might be visited
1416       // before its associated "starts humongous".
1417       return false;
1418     }
1419 
1420     HeapWord* ntams = hr->next_top_at_mark_start();
1421     HeapWord* start = hr->bottom();
1422 
1423     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1424            err_msg("Preconditions not met - "
1425                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1426                    start, ntams, hr->end()));
1427 
1428     // Find the first marked object at or after "start".
1429     start = _bm->getNextMarkedWordAddress(start, ntams);
1430 
1431     size_t marked_bytes = 0;
1432 
1433     while (start < ntams) {
1434       oop obj = oop(start);
1435       int obj_sz = obj->size();
1436       HeapWord* obj_end = start + obj_sz;
1437 
1438       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1439       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1440 
1441       // Note: if we're looking at the last region in heap - obj_end
1442       // could be actually just beyond the end of the heap; end_idx
1443       // will then correspond to a (non-existent) card that is also
1444       // just beyond the heap.
1445       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1446         // end of object is not card aligned - increment to cover
1447         // all the cards spanned by the object
1448         end_idx += 1;
1449       }
1450 
1451       // Set the bits in the card BM for the cards spanned by this object.
1452       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1453 
1454       // Add the size of this object to the number of marked bytes.
1455       marked_bytes += (size_t)obj_sz * HeapWordSize;
1456 
1457       // Find the next marked object after this one.
1458       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1459     }
1460 
1461     // Mark the allocated-since-marking portion...
1462     HeapWord* top = hr->top();
1463     if (ntams < top) {
1464       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1465       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1466 
1467       // Note: if we're looking at the last region in heap - top
1468       // could be actually just beyond the end of the heap; end_idx
1469       // will then correspond to a (non-existent) card that is also
1470       // just beyond the heap.
1471       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1472         // end of object is not card aligned - increment to cover
1473         // all the cards spanned by the object
1474         end_idx += 1;
1475       }
1476       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1477 
1478       // This definitely means the region has live objects.
1479       set_bit_for_region(hr);
1480     }
1481 
1482     // Update the live region bitmap.
1483     if (marked_bytes > 0) {
1484       set_bit_for_region(hr);
1485     }
1486 
1487     // Set the marked bytes for the current region so that
1488     // it can be queried by a calling verification routine
1489     _region_marked_bytes = marked_bytes;
1490 
1491     return false;
1492   }
1493 
1494   size_t region_marked_bytes() const { return _region_marked_bytes; }
1495 };
1496 
1497 // Heap region closure used for verifying the counting data
1498 // that was accumulated concurrently and aggregated during
1499 // the remark pause. This closure is applied to the heap
1500 // regions during the STW cleanup pause.
1501 
1502 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1503   G1CollectedHeap* _g1h;
1504   ConcurrentMark* _cm;
1505   CalcLiveObjectsClosure _calc_cl;
1506   BitMap* _region_bm;   // Region BM to be verified
1507   BitMap* _card_bm;     // Card BM to be verified
1508   bool _verbose;        // verbose output?
1509 
1510   BitMap* _exp_region_bm; // Expected Region BM values
1511   BitMap* _exp_card_bm;   // Expected card BM values
1512 
1513   int _failures;
1514 
1515 public:
1516   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1517                                 BitMap* region_bm,
1518                                 BitMap* card_bm,
1519                                 BitMap* exp_region_bm,
1520                                 BitMap* exp_card_bm,
1521                                 bool verbose) :
1522     _g1h(g1h), _cm(g1h->concurrent_mark()),
1523     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1524     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1525     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1526     _failures(0) { }
1527 
1528   int failures() const { return _failures; }
1529 
1530   bool doHeapRegion(HeapRegion* hr) {
1531     if (hr->continuesHumongous()) {
1532       // We will ignore these here and process them when their
1533       // associated "starts humongous" region is processed (see
1534       // set_bit_for_heap_region()). Note that we cannot rely on their
1535       // associated "starts humongous" region to have their bit set to
1536       // 1 since, due to the region chunking in the parallel region
1537       // iteration, a "continues humongous" region might be visited
1538       // before its associated "starts humongous".
1539       return false;
1540     }
1541 
1542     int failures = 0;
1543 
1544     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1545     // this region and set the corresponding bits in the expected region
1546     // and card bitmaps.
1547     bool res = _calc_cl.doHeapRegion(hr);
1548     assert(res == false, "should be continuing");
1549 
1550     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1551                     Mutex::_no_safepoint_check_flag);
1552 
1553     // Verify the marked bytes for this region.
1554     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1555     size_t act_marked_bytes = hr->next_marked_bytes();
1556 
1557     // We're not OK if expected marked bytes > actual marked bytes. It means
1558     // we have missed accounting some objects during the actual marking.
1559     if (exp_marked_bytes > act_marked_bytes) {
1560       if (_verbose) {
1561         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1562                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1563                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1564       }
1565       failures += 1;
1566     }
1567 
1568     // Verify the bit, for this region, in the actual and expected
1569     // (which was just calculated) region bit maps.
1570     // We're not OK if the bit in the calculated expected region
1571     // bitmap is set and the bit in the actual region bitmap is not.
1572     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1573 
1574     bool expected = _exp_region_bm->at(index);
1575     bool actual = _region_bm->at(index);
1576     if (expected && !actual) {
1577       if (_verbose) {
1578         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1579                                "expected: %s, actual: %s",
1580                                hr->hrs_index(),
1581                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1582       }
1583       failures += 1;
1584     }
1585 
1586     // Verify that the card bit maps for the cards spanned by the current
1587     // region match. We have an error if we have a set bit in the expected
1588     // bit map and the corresponding bit in the actual bitmap is not set.
1589 
1590     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1591     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1592 
1593     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1594       expected = _exp_card_bm->at(i);
1595       actual = _card_bm->at(i);
1596 
1597       if (expected && !actual) {
1598         if (_verbose) {
1599           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1600                                  "expected: %s, actual: %s",
1601                                  hr->hrs_index(), i,
1602                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1603         }
1604         failures += 1;
1605       }
1606     }
1607 
1608     if (failures > 0 && _verbose)  {
1609       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1610                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1611                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
1612                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1613     }
1614 
1615     _failures += failures;
1616 
1617     // We could stop iteration over the heap when we
1618     // find the first violating region by returning true.
1619     return false;
1620   }
1621 };
1622 
1623 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1624 protected:
1625   G1CollectedHeap* _g1h;
1626   ConcurrentMark* _cm;
1627   BitMap* _actual_region_bm;
1628   BitMap* _actual_card_bm;
1629 
1630   uint    _n_workers;
1631 
1632   BitMap* _expected_region_bm;
1633   BitMap* _expected_card_bm;
1634 
1635   int  _failures;
1636   bool _verbose;
1637 
1638 public:
1639   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1640                             BitMap* region_bm, BitMap* card_bm,
1641                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1642     : AbstractGangTask("G1 verify final counting"),
1643       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1644       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1645       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1646       _failures(0), _verbose(false),
1647       _n_workers(0) {
1648     assert(VerifyDuringGC, "don't call this otherwise");
1649 
1650     // Use the value already set as the number of active threads
1651     // in the call to run_task().
1652     if (G1CollectedHeap::use_parallel_gc_threads()) {
1653       assert( _g1h->workers()->active_workers() > 0,
1654         "Should have been previously set");
1655       _n_workers = _g1h->workers()->active_workers();
1656     } else {
1657       _n_workers = 1;
1658     }
1659 
1660     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1661     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1662 
1663     _verbose = _cm->verbose_medium();
1664   }
1665 
1666   void work(uint worker_id) {
1667     assert(worker_id < _n_workers, "invariant");
1668 
1669     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1670                                             _actual_region_bm, _actual_card_bm,
1671                                             _expected_region_bm,
1672                                             _expected_card_bm,
1673                                             _verbose);
1674 
1675     if (G1CollectedHeap::use_parallel_gc_threads()) {
1676       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1677                                             worker_id,
1678                                             _n_workers,
1679                                             HeapRegion::VerifyCountClaimValue);
1680     } else {
1681       _g1h->heap_region_iterate(&verify_cl);
1682     }
1683 
1684     Atomic::add(verify_cl.failures(), &_failures);
1685   }
1686 
1687   int failures() const { return _failures; }
1688 };
1689 
1690 // Closure that finalizes the liveness counting data.
1691 // Used during the cleanup pause.
1692 // Sets the bits corresponding to the interval [NTAMS, top]
1693 // (which contains the implicitly live objects) in the
1694 // card liveness bitmap. Also sets the bit for each region,
1695 // containing live data, in the region liveness bitmap.
1696 
1697 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1698  public:
1699   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1700                               BitMap* region_bm,
1701                               BitMap* card_bm) :
1702     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1703 
1704   bool doHeapRegion(HeapRegion* hr) {
1705 
1706     if (hr->continuesHumongous()) {
1707       // We will ignore these here and process them when their
1708       // associated "starts humongous" region is processed (see
1709       // set_bit_for_heap_region()). Note that we cannot rely on their
1710       // associated "starts humongous" region to have their bit set to
1711       // 1 since, due to the region chunking in the parallel region
1712       // iteration, a "continues humongous" region might be visited
1713       // before its associated "starts humongous".
1714       return false;
1715     }
1716 
1717     HeapWord* ntams = hr->next_top_at_mark_start();
1718     HeapWord* top   = hr->top();
1719 
1720     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1721 
1722     // Mark the allocated-since-marking portion...
1723     if (ntams < top) {
1724       // This definitely means the region has live objects.
1725       set_bit_for_region(hr);
1726 
1727       // Now set the bits in the card bitmap for [ntams, top)
1728       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1729       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1730 
1731       // Note: if we're looking at the last region in heap - top
1732       // could be actually just beyond the end of the heap; end_idx
1733       // will then correspond to a (non-existent) card that is also
1734       // just beyond the heap.
1735       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1736         // end of object is not card aligned - increment to cover
1737         // all the cards spanned by the object
1738         end_idx += 1;
1739       }
1740 
1741       assert(end_idx <= _card_bm->size(),
1742              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1743                      end_idx, _card_bm->size()));
1744       assert(start_idx < _card_bm->size(),
1745              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1746                      start_idx, _card_bm->size()));
1747 
1748       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1749     }
1750 
1751     // Set the bit for the region if it contains live data
1752     if (hr->next_marked_bytes() > 0) {
1753       set_bit_for_region(hr);
1754     }
1755 
1756     return false;
1757   }
1758 };
1759 
1760 class G1ParFinalCountTask: public AbstractGangTask {
1761 protected:
1762   G1CollectedHeap* _g1h;
1763   ConcurrentMark* _cm;
1764   BitMap* _actual_region_bm;
1765   BitMap* _actual_card_bm;
1766 
1767   uint    _n_workers;
1768 
1769 public:
1770   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1771     : AbstractGangTask("G1 final counting"),
1772       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1773       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1774       _n_workers(0) {
1775     // Use the value already set as the number of active threads
1776     // in the call to run_task().
1777     if (G1CollectedHeap::use_parallel_gc_threads()) {
1778       assert( _g1h->workers()->active_workers() > 0,
1779         "Should have been previously set");
1780       _n_workers = _g1h->workers()->active_workers();
1781     } else {
1782       _n_workers = 1;
1783     }
1784   }
1785 
1786   void work(uint worker_id) {
1787     assert(worker_id < _n_workers, "invariant");
1788 
1789     FinalCountDataUpdateClosure final_update_cl(_g1h,
1790                                                 _actual_region_bm,
1791                                                 _actual_card_bm);
1792 
1793     if (G1CollectedHeap::use_parallel_gc_threads()) {
1794       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1795                                             worker_id,
1796                                             _n_workers,
1797                                             HeapRegion::FinalCountClaimValue);
1798     } else {
1799       _g1h->heap_region_iterate(&final_update_cl);
1800     }
1801   }
1802 };
1803 
1804 class G1ParNoteEndTask;
1805 
1806 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1807   G1CollectedHeap* _g1;
1808   int _worker_num;
1809   size_t _max_live_bytes;
1810   uint _regions_claimed;
1811   size_t _freed_bytes;
1812   FreeRegionList* _local_cleanup_list;
1813   OldRegionSet* _old_proxy_set;
1814   HumongousRegionSet* _humongous_proxy_set;
1815   HRRSCleanupTask* _hrrs_cleanup_task;
1816   double _claimed_region_time;
1817   double _max_region_time;
1818 
1819 public:
1820   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1821                              int worker_num,
1822                              FreeRegionList* local_cleanup_list,
1823                              OldRegionSet* old_proxy_set,
1824                              HumongousRegionSet* humongous_proxy_set,
1825                              HRRSCleanupTask* hrrs_cleanup_task) :
1826     _g1(g1), _worker_num(worker_num),
1827     _max_live_bytes(0), _regions_claimed(0),
1828     _freed_bytes(0),
1829     _claimed_region_time(0.0), _max_region_time(0.0),
1830     _local_cleanup_list(local_cleanup_list),
1831     _old_proxy_set(old_proxy_set),
1832     _humongous_proxy_set(humongous_proxy_set),
1833     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1834 
1835   size_t freed_bytes() { return _freed_bytes; }
1836 
1837   bool doHeapRegion(HeapRegion *hr) {
1838     if (hr->continuesHumongous()) {
1839       return false;
1840     }
1841     // We use a claim value of zero here because all regions
1842     // were claimed with value 1 in the FinalCount task.
1843     _g1->reset_gc_time_stamps(hr);
1844     double start = os::elapsedTime();
1845     _regions_claimed++;
1846     hr->note_end_of_marking();
1847     _max_live_bytes += hr->max_live_bytes();
1848     _g1->free_region_if_empty(hr,
1849                               &_freed_bytes,
1850                               _local_cleanup_list,
1851                               _old_proxy_set,
1852                               _humongous_proxy_set,
1853                               _hrrs_cleanup_task,
1854                               true /* par */);
1855     double region_time = (os::elapsedTime() - start);
1856     _claimed_region_time += region_time;
1857     if (region_time > _max_region_time) {
1858       _max_region_time = region_time;
1859     }
1860     return false;
1861   }
1862 
1863   size_t max_live_bytes() { return _max_live_bytes; }
1864   uint regions_claimed() { return _regions_claimed; }
1865   double claimed_region_time_sec() { return _claimed_region_time; }
1866   double max_region_time_sec() { return _max_region_time; }
1867 };
1868 
1869 class G1ParNoteEndTask: public AbstractGangTask {
1870   friend class G1NoteEndOfConcMarkClosure;
1871 
1872 protected:
1873   G1CollectedHeap* _g1h;
1874   size_t _max_live_bytes;
1875   size_t _freed_bytes;
1876   FreeRegionList* _cleanup_list;
1877 
1878 public:
1879   G1ParNoteEndTask(G1CollectedHeap* g1h,
1880                    FreeRegionList* cleanup_list) :
1881     AbstractGangTask("G1 note end"), _g1h(g1h),
1882     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1883 
1884   void work(uint worker_id) {
1885     double start = os::elapsedTime();
1886     FreeRegionList local_cleanup_list("Local Cleanup List");
1887     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
1888     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
1889     HRRSCleanupTask hrrs_cleanup_task;
1890     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
1891                                            &old_proxy_set,
1892                                            &humongous_proxy_set,
1893                                            &hrrs_cleanup_task);
1894     if (G1CollectedHeap::use_parallel_gc_threads()) {
1895       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1896                                             _g1h->workers()->active_workers(),
1897                                             HeapRegion::NoteEndClaimValue);
1898     } else {
1899       _g1h->heap_region_iterate(&g1_note_end);
1900     }
1901     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1902 
1903     // Now update the lists
1904     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
1905                                             NULL /* free_list */,
1906                                             &old_proxy_set,
1907                                             &humongous_proxy_set,
1908                                             true /* par */);
1909     {
1910       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1911       _max_live_bytes += g1_note_end.max_live_bytes();
1912       _freed_bytes += g1_note_end.freed_bytes();
1913 
1914       // If we iterate over the global cleanup list at the end of
1915       // cleanup to do this printing we will not guarantee to only
1916       // generate output for the newly-reclaimed regions (the list
1917       // might not be empty at the beginning of cleanup; we might
1918       // still be working on its previous contents). So we do the
1919       // printing here, before we append the new regions to the global
1920       // cleanup list.
1921 
1922       G1HRPrinter* hr_printer = _g1h->hr_printer();
1923       if (hr_printer->is_active()) {
1924         HeapRegionLinkedListIterator iter(&local_cleanup_list);
1925         while (iter.more_available()) {
1926           HeapRegion* hr = iter.get_next();
1927           hr_printer->cleanup(hr);
1928         }
1929       }
1930 
1931       _cleanup_list->add_as_tail(&local_cleanup_list);
1932       assert(local_cleanup_list.is_empty(), "post-condition");
1933 
1934       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1935     }
1936   }
1937   size_t max_live_bytes() { return _max_live_bytes; }
1938   size_t freed_bytes() { return _freed_bytes; }
1939 };
1940 
1941 class G1ParScrubRemSetTask: public AbstractGangTask {
1942 protected:
1943   G1RemSet* _g1rs;
1944   BitMap* _region_bm;
1945   BitMap* _card_bm;
1946 public:
1947   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1948                        BitMap* region_bm, BitMap* card_bm) :
1949     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1950     _region_bm(region_bm), _card_bm(card_bm) { }
1951 
1952   void work(uint worker_id) {
1953     if (G1CollectedHeap::use_parallel_gc_threads()) {
1954       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1955                        HeapRegion::ScrubRemSetClaimValue);
1956     } else {
1957       _g1rs->scrub(_region_bm, _card_bm);
1958     }
1959   }
1960 
1961 };
1962 
1963 void ConcurrentMark::cleanup() {
1964   // world is stopped at this checkpoint
1965   assert(SafepointSynchronize::is_at_safepoint(),
1966          "world should be stopped");
1967   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1968 
1969   // If a full collection has happened, we shouldn't do this.
1970   if (has_aborted()) {
1971     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1972     return;
1973   }
1974 
1975   HRSPhaseSetter x(HRSPhaseCleanup);
1976   g1h->verify_region_sets_optional();
1977 
1978   if (VerifyDuringGC) {
1979     HandleMark hm;  // handle scope
1980     Universe::heap()->prepare_for_verify();
1981     Universe::verify(VerifyOption_G1UsePrevMarking,
1982                      " VerifyDuringGC:(before)");
1983   }
1984 
1985   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1986   g1p->record_concurrent_mark_cleanup_start();
1987 
1988   double start = os::elapsedTime();
1989 
1990   HeapRegionRemSet::reset_for_cleanup_tasks();
1991 
1992   uint n_workers;
1993 
1994   // Do counting once more with the world stopped for good measure.
1995   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1996 
1997   if (G1CollectedHeap::use_parallel_gc_threads()) {
1998    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1999            "sanity check");
2000 
2001     g1h->set_par_threads();
2002     n_workers = g1h->n_par_threads();
2003     assert(g1h->n_par_threads() == n_workers,
2004            "Should not have been reset");
2005     g1h->workers()->run_task(&g1_par_count_task);
2006     // Done with the parallel phase so reset to 0.
2007     g1h->set_par_threads(0);
2008 
2009     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2010            "sanity check");
2011   } else {
2012     n_workers = 1;
2013     g1_par_count_task.work(0);
2014   }
2015 
2016   if (VerifyDuringGC) {
2017     // Verify that the counting data accumulated during marking matches
2018     // that calculated by walking the marking bitmap.
2019 
2020     // Bitmaps to hold expected values
2021     BitMap expected_region_bm(_region_bm.size(), false);
2022     BitMap expected_card_bm(_card_bm.size(), false);
2023 
2024     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2025                                                  &_region_bm,
2026                                                  &_card_bm,
2027                                                  &expected_region_bm,
2028                                                  &expected_card_bm);
2029 
2030     if (G1CollectedHeap::use_parallel_gc_threads()) {
2031       g1h->set_par_threads((int)n_workers);
2032       g1h->workers()->run_task(&g1_par_verify_task);
2033       // Done with the parallel phase so reset to 0.
2034       g1h->set_par_threads(0);
2035 
2036       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2037              "sanity check");
2038     } else {
2039       g1_par_verify_task.work(0);
2040     }
2041 
2042     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2043   }
2044 
2045   size_t start_used_bytes = g1h->used();
2046   g1h->set_marking_complete();
2047 
2048   double count_end = os::elapsedTime();
2049   double this_final_counting_time = (count_end - start);
2050   _total_counting_time += this_final_counting_time;
2051 
2052   if (G1PrintRegionLivenessInfo) {
2053     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2054     _g1h->heap_region_iterate(&cl);
2055   }
2056 
2057   // Install newly created mark bitMap as "prev".
2058   swapMarkBitMaps();
2059 
2060   g1h->reset_gc_time_stamp();
2061 
2062   // Note end of marking in all heap regions.
2063   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2064   if (G1CollectedHeap::use_parallel_gc_threads()) {
2065     g1h->set_par_threads((int)n_workers);
2066     g1h->workers()->run_task(&g1_par_note_end_task);
2067     g1h->set_par_threads(0);
2068 
2069     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2070            "sanity check");
2071   } else {
2072     g1_par_note_end_task.work(0);
2073   }
2074   g1h->check_gc_time_stamps();
2075 
2076   if (!cleanup_list_is_empty()) {
2077     // The cleanup list is not empty, so we'll have to process it
2078     // concurrently. Notify anyone else that might be wanting free
2079     // regions that there will be more free regions coming soon.
2080     g1h->set_free_regions_coming();
2081   }
2082 
2083   // call below, since it affects the metric by which we sort the heap
2084   // regions.
2085   if (G1ScrubRemSets) {
2086     double rs_scrub_start = os::elapsedTime();
2087     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2088     if (G1CollectedHeap::use_parallel_gc_threads()) {
2089       g1h->set_par_threads((int)n_workers);
2090       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2091       g1h->set_par_threads(0);
2092 
2093       assert(g1h->check_heap_region_claim_values(
2094                                             HeapRegion::ScrubRemSetClaimValue),
2095              "sanity check");
2096     } else {
2097       g1_par_scrub_rs_task.work(0);
2098     }
2099 
2100     double rs_scrub_end = os::elapsedTime();
2101     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2102     _total_rs_scrub_time += this_rs_scrub_time;
2103   }
2104 
2105   // this will also free any regions totally full of garbage objects,
2106   // and sort the regions.
2107   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2108 
2109   // Statistics.
2110   double end = os::elapsedTime();
2111   _cleanup_times.add((end - start) * 1000.0);
2112 
2113   if (G1Log::fine()) {
2114     g1h->print_size_transition(gclog_or_tty,
2115                                start_used_bytes,
2116                                g1h->used(),
2117                                g1h->capacity());
2118   }
2119 
2120   // Clean up will have freed any regions completely full of garbage.
2121   // Update the soft reference policy with the new heap occupancy.
2122   Universe::update_heap_info_at_gc();
2123 
2124   // We need to make this be a "collection" so any collection pause that
2125   // races with it goes around and waits for completeCleanup to finish.
2126   g1h->increment_total_collections();
2127 
2128   // We reclaimed old regions so we should calculate the sizes to make
2129   // sure we update the old gen/space data.
2130   g1h->g1mm()->update_sizes();
2131 
2132   if (VerifyDuringGC) {
2133     HandleMark hm;  // handle scope
2134     Universe::heap()->prepare_for_verify();
2135     Universe::verify(VerifyOption_G1UsePrevMarking,
2136                      " VerifyDuringGC:(after)");
2137   }
2138 
2139   g1h->verify_region_sets_optional();
2140   g1h->trace_heap_after_concurrent_cycle();
2141 }
2142 
2143 void ConcurrentMark::completeCleanup() {
2144   if (has_aborted()) return;
2145 
2146   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2147 
2148   _cleanup_list.verify_optional();
2149   FreeRegionList tmp_free_list("Tmp Free List");
2150 
2151   if (G1ConcRegionFreeingVerbose) {
2152     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2153                            "cleanup list has %u entries",
2154                            _cleanup_list.length());
2155   }
2156 
2157   // Noone else should be accessing the _cleanup_list at this point,
2158   // so it's not necessary to take any locks
2159   while (!_cleanup_list.is_empty()) {
2160     HeapRegion* hr = _cleanup_list.remove_head();
2161     assert(hr != NULL, "the list was not empty");
2162     hr->par_clear();
2163     tmp_free_list.add_as_tail(hr);
2164 
2165     // Instead of adding one region at a time to the secondary_free_list,
2166     // we accumulate them in the local list and move them a few at a
2167     // time. This also cuts down on the number of notify_all() calls
2168     // we do during this process. We'll also append the local list when
2169     // _cleanup_list is empty (which means we just removed the last
2170     // region from the _cleanup_list).
2171     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2172         _cleanup_list.is_empty()) {
2173       if (G1ConcRegionFreeingVerbose) {
2174         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2175                                "appending %u entries to the secondary_free_list, "
2176                                "cleanup list still has %u entries",
2177                                tmp_free_list.length(),
2178                                _cleanup_list.length());
2179       }
2180 
2181       {
2182         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2183         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2184         SecondaryFreeList_lock->notify_all();
2185       }
2186 
2187       if (G1StressConcRegionFreeing) {
2188         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2189           os::sleep(Thread::current(), (jlong) 1, false);
2190         }
2191       }
2192     }
2193   }
2194   assert(tmp_free_list.is_empty(), "post-condition");
2195 }
2196 
2197 // Supporting Object and Oop closures for reference discovery
2198 // and processing in during marking
2199 
2200 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2201   HeapWord* addr = (HeapWord*)obj;
2202   return addr != NULL &&
2203          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2204 }
2205 
2206 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2207 // Uses the CMTask associated with a worker thread (for serial reference
2208 // processing the CMTask for worker 0 is used) to preserve (mark) and
2209 // trace referent objects.
2210 //
2211 // Using the CMTask and embedded local queues avoids having the worker
2212 // threads operating on the global mark stack. This reduces the risk
2213 // of overflowing the stack - which we would rather avoid at this late
2214 // state. Also using the tasks' local queues removes the potential
2215 // of the workers interfering with each other that could occur if
2216 // operating on the global stack.
2217 
2218 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2219   ConcurrentMark* _cm;
2220   CMTask*         _task;
2221   int             _ref_counter_limit;
2222   int             _ref_counter;
2223   bool            _is_serial;
2224  public:
2225   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2226     _cm(cm), _task(task), _is_serial(is_serial),
2227     _ref_counter_limit(G1RefProcDrainInterval) {
2228     assert(_ref_counter_limit > 0, "sanity");
2229     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2230     _ref_counter = _ref_counter_limit;
2231   }
2232 
2233   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2234   virtual void do_oop(      oop* p) { do_oop_work(p); }
2235 
2236   template <class T> void do_oop_work(T* p) {
2237     if (!_cm->has_overflown()) {
2238       oop obj = oopDesc::load_decode_heap_oop(p);
2239       if (_cm->verbose_high()) {
2240         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2241                                "*"PTR_FORMAT" = "PTR_FORMAT,
2242                                _task->worker_id(), p, (void*) obj);
2243       }
2244 
2245       _task->deal_with_reference(obj);
2246       _ref_counter--;
2247 
2248       if (_ref_counter == 0) {
2249         // We have dealt with _ref_counter_limit references, pushing them
2250         // and objects reachable from them on to the local stack (and
2251         // possibly the global stack). Call CMTask::do_marking_step() to
2252         // process these entries.
2253         //
2254         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2255         // there's nothing more to do (i.e. we're done with the entries that
2256         // were pushed as a result of the CMTask::deal_with_reference() calls
2257         // above) or we overflow.
2258         //
2259         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2260         // flag while there may still be some work to do. (See the comment at
2261         // the beginning of CMTask::do_marking_step() for those conditions -
2262         // one of which is reaching the specified time target.) It is only
2263         // when CMTask::do_marking_step() returns without setting the
2264         // has_aborted() flag that the marking step has completed.
2265         do {
2266           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2267           _task->do_marking_step(mark_step_duration_ms,
2268                                  false      /* do_termination */,
2269                                  _is_serial);
2270         } while (_task->has_aborted() && !_cm->has_overflown());
2271         _ref_counter = _ref_counter_limit;
2272       }
2273     } else {
2274       if (_cm->verbose_high()) {
2275          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2276       }
2277     }
2278   }
2279 };
2280 
2281 // 'Drain' oop closure used by both serial and parallel reference processing.
2282 // Uses the CMTask associated with a given worker thread (for serial
2283 // reference processing the CMtask for worker 0 is used). Calls the
2284 // do_marking_step routine, with an unbelievably large timeout value,
2285 // to drain the marking data structures of the remaining entries
2286 // added by the 'keep alive' oop closure above.
2287 
2288 class G1CMDrainMarkingStackClosure: public VoidClosure {
2289   ConcurrentMark* _cm;
2290   CMTask*         _task;
2291   bool            _is_serial;
2292  public:
2293   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2294     _cm(cm), _task(task), _is_serial(is_serial) {
2295     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2296   }
2297 
2298   void do_void() {
2299     do {
2300       if (_cm->verbose_high()) {
2301         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2302                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2303       }
2304 
2305       // We call CMTask::do_marking_step() to completely drain the local
2306       // and global marking stacks of entries pushed by the 'keep alive'
2307       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2308       //
2309       // CMTask::do_marking_step() is called in a loop, which we'll exit
2310       // if there's nothing more to do (i.e. we've completely drained the
2311       // entries that were pushed as a a result of applying the 'keep alive'
2312       // closure to the entries on the discovered ref lists) or we overflow
2313       // the global marking stack.
2314       //
2315       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2316       // flag while there may still be some work to do. (See the comment at
2317       // the beginning of CMTask::do_marking_step() for those conditions -
2318       // one of which is reaching the specified time target.) It is only
2319       // when CMTask::do_marking_step() returns without setting the
2320       // has_aborted() flag that the marking step has completed.
2321 
2322       _task->do_marking_step(1000000000.0 /* something very large */,
2323                              true         /* do_termination */,
2324                              _is_serial);
2325     } while (_task->has_aborted() && !_cm->has_overflown());
2326   }
2327 };
2328 
2329 // Implementation of AbstractRefProcTaskExecutor for parallel
2330 // reference processing at the end of G1 concurrent marking
2331 
2332 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2333 private:
2334   G1CollectedHeap* _g1h;
2335   ConcurrentMark*  _cm;
2336   WorkGang*        _workers;
2337   int              _active_workers;
2338 
2339 public:
2340   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2341                         ConcurrentMark* cm,
2342                         WorkGang* workers,
2343                         int n_workers) :
2344     _g1h(g1h), _cm(cm),
2345     _workers(workers), _active_workers(n_workers) { }
2346 
2347   // Executes the given task using concurrent marking worker threads.
2348   virtual void execute(ProcessTask& task);
2349   virtual void execute(EnqueueTask& task);
2350 };
2351 
2352 class G1CMRefProcTaskProxy: public AbstractGangTask {
2353   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2354   ProcessTask&     _proc_task;
2355   G1CollectedHeap* _g1h;
2356   ConcurrentMark*  _cm;
2357 
2358 public:
2359   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2360                      G1CollectedHeap* g1h,
2361                      ConcurrentMark* cm) :
2362     AbstractGangTask("Process reference objects in parallel"),
2363     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2364     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2365     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2366   }
2367 
2368   virtual void work(uint worker_id) {
2369     CMTask* task = _cm->task(worker_id);
2370     G1CMIsAliveClosure g1_is_alive(_g1h);
2371     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2372     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2373 
2374     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2375   }
2376 };
2377 
2378 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2379   assert(_workers != NULL, "Need parallel worker threads.");
2380   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2381 
2382   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2383 
2384   // We need to reset the concurrency level before each
2385   // proxy task execution, so that the termination protocol
2386   // and overflow handling in CMTask::do_marking_step() knows
2387   // how many workers to wait for.
2388   _cm->set_concurrency(_active_workers);
2389   _g1h->set_par_threads(_active_workers);
2390   _workers->run_task(&proc_task_proxy);
2391   _g1h->set_par_threads(0);
2392 }
2393 
2394 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2395   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2396   EnqueueTask& _enq_task;
2397 
2398 public:
2399   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2400     AbstractGangTask("Enqueue reference objects in parallel"),
2401     _enq_task(enq_task) { }
2402 
2403   virtual void work(uint worker_id) {
2404     _enq_task.work(worker_id);
2405   }
2406 };
2407 
2408 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2409   assert(_workers != NULL, "Need parallel worker threads.");
2410   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2411 
2412   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2413 
2414   // Not strictly necessary but...
2415   //
2416   // We need to reset the concurrency level before each
2417   // proxy task execution, so that the termination protocol
2418   // and overflow handling in CMTask::do_marking_step() knows
2419   // how many workers to wait for.
2420   _cm->set_concurrency(_active_workers);
2421   _g1h->set_par_threads(_active_workers);
2422   _workers->run_task(&enq_task_proxy);
2423   _g1h->set_par_threads(0);
2424 }
2425 
2426 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2427   if (has_overflown()) {
2428     // Skip processing the discovered references if we have
2429     // overflown the global marking stack. Reference objects
2430     // only get discovered once so it is OK to not
2431     // de-populate the discovered reference lists. We could have,
2432     // but the only benefit would be that, when marking restarts,
2433     // less reference objects are discovered.
2434     return;
2435   }
2436 
2437   ResourceMark rm;
2438   HandleMark   hm;
2439 
2440   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2441 
2442   // Is alive closure.
2443   G1CMIsAliveClosure g1_is_alive(g1h);
2444 
2445   // Inner scope to exclude the cleaning of the string and symbol
2446   // tables from the displayed time.
2447   {
2448     if (G1Log::finer()) {
2449       gclog_or_tty->put(' ');
2450     }
2451     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
2452 
2453     ReferenceProcessor* rp = g1h->ref_processor_cm();
2454 
2455     // See the comment in G1CollectedHeap::ref_processing_init()
2456     // about how reference processing currently works in G1.
2457 
2458     // Set the soft reference policy
2459     rp->setup_policy(clear_all_soft_refs);
2460     assert(_markStack.isEmpty(), "mark stack should be empty");
2461 
2462     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2463     // in serial reference processing. Note these closures are also
2464     // used for serially processing (by the the current thread) the
2465     // JNI references during parallel reference processing.
2466     //
2467     // These closures do not need to synchronize with the worker
2468     // threads involved in parallel reference processing as these
2469     // instances are executed serially by the current thread (e.g.
2470     // reference processing is not multi-threaded and is thus
2471     // performed by the current thread instead of a gang worker).
2472     //
2473     // The gang tasks involved in parallel reference processing create
2474     // their own instances of these closures, which do their own
2475     // synchronization among themselves.
2476     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2477     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2478 
2479     // We need at least one active thread. If reference processing
2480     // is not multi-threaded we use the current (VMThread) thread,
2481     // otherwise we use the work gang from the G1CollectedHeap and
2482     // we utilize all the worker threads we can.
2483     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2484     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2485     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2486 
2487     // Parallel processing task executor.
2488     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2489                                               g1h->workers(), active_workers);
2490     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2491 
2492     // Set the concurrency level. The phase was already set prior to
2493     // executing the remark task.
2494     set_concurrency(active_workers);
2495 
2496     // Set the degree of MT processing here.  If the discovery was done MT,
2497     // the number of threads involved during discovery could differ from
2498     // the number of active workers.  This is OK as long as the discovered
2499     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2500     rp->set_active_mt_degree(active_workers);
2501 
2502     // Process the weak references.
2503     const ReferenceProcessorStats& stats =
2504         rp->process_discovered_references(&g1_is_alive,
2505                                           &g1_keep_alive,
2506                                           &g1_drain_mark_stack,
2507                                           executor,
2508                                           g1h->gc_timer_cm());
2509     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2510 
2511     // The do_oop work routines of the keep_alive and drain_marking_stack
2512     // oop closures will set the has_overflown flag if we overflow the
2513     // global marking stack.
2514 
2515     assert(_markStack.overflow() || _markStack.isEmpty(),
2516             "mark stack should be empty (unless it overflowed)");
2517 
2518     if (_markStack.overflow()) {
2519       // This should have been done already when we tried to push an
2520       // entry on to the global mark stack. But let's do it again.
2521       set_has_overflown();
2522     }
2523 
2524     assert(rp->num_q() == active_workers, "why not");
2525 
2526     rp->enqueue_discovered_references(executor);
2527 
2528     rp->verify_no_references_recorded();
2529     assert(!rp->discovery_enabled(), "Post condition");
2530   }
2531 
2532   if (has_overflown()) {
2533     // We can not trust g1_is_alive if the marking stack overflowed
2534     return;
2535   }
2536 
2537   // Unlink stale oops in string deduplication queue/table
2538   StringDedup::unlink(&g1_is_alive);
2539 
2540   g1h->unlink_string_and_symbol_table(&g1_is_alive,
2541                                       /* process_strings */ false, // currently strings are always roots
2542                                       /* process_symbols */ true);
2543 }
2544 
2545 void ConcurrentMark::swapMarkBitMaps() {
2546   CMBitMapRO* temp = _prevMarkBitMap;
2547   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2548   _nextMarkBitMap  = (CMBitMap*)  temp;
2549 }
2550 
2551 class CMRemarkTask: public AbstractGangTask {
2552 private:
2553   ConcurrentMark* _cm;
2554   bool            _is_serial;
2555 public:
2556   void work(uint worker_id) {
2557     // Since all available tasks are actually started, we should
2558     // only proceed if we're supposed to be active.
2559     if (worker_id < _cm->active_tasks()) {
2560       CMTask* task = _cm->task(worker_id);
2561       task->record_start_time();
2562       do {
2563         task->do_marking_step(1000000000.0 /* something very large */,
2564                               true         /* do_termination       */,
2565                               _is_serial);
2566       } while (task->has_aborted() && !_cm->has_overflown());
2567       // If we overflow, then we do not want to restart. We instead
2568       // want to abort remark and do concurrent marking again.
2569       task->record_end_time();
2570     }
2571   }
2572 
2573   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2574     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2575     _cm->terminator()->reset_for_reuse(active_workers);
2576   }
2577 };
2578 
2579 void ConcurrentMark::checkpointRootsFinalWork() {
2580   ResourceMark rm;
2581   HandleMark   hm;
2582   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2583 
2584   g1h->ensure_parsability(false);
2585 
2586   if (G1CollectedHeap::use_parallel_gc_threads()) {
2587     G1CollectedHeap::StrongRootsScope srs(g1h);
2588     // this is remark, so we'll use up all active threads
2589     uint active_workers = g1h->workers()->active_workers();
2590     if (active_workers == 0) {
2591       assert(active_workers > 0, "Should have been set earlier");
2592       active_workers = (uint) ParallelGCThreads;
2593       g1h->workers()->set_active_workers(active_workers);
2594     }
2595     set_concurrency_and_phase(active_workers, false /* concurrent */);
2596     // Leave _parallel_marking_threads at it's
2597     // value originally calculated in the ConcurrentMark
2598     // constructor and pass values of the active workers
2599     // through the gang in the task.
2600 
2601     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2602     // We will start all available threads, even if we decide that the
2603     // active_workers will be fewer. The extra ones will just bail out
2604     // immediately.
2605     g1h->set_par_threads(active_workers);
2606     g1h->workers()->run_task(&remarkTask);
2607     g1h->set_par_threads(0);
2608   } else {
2609     G1CollectedHeap::StrongRootsScope srs(g1h);
2610     uint active_workers = 1;
2611     set_concurrency_and_phase(active_workers, false /* concurrent */);
2612 
2613     // Note - if there's no work gang then the VMThread will be
2614     // the thread to execute the remark - serially. We have
2615     // to pass true for the is_serial parameter so that
2616     // CMTask::do_marking_step() doesn't enter the sync
2617     // barriers in the event of an overflow. Doing so will
2618     // cause an assert that the current thread is not a
2619     // concurrent GC thread.
2620     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2621     remarkTask.work(0);
2622   }
2623   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2624   guarantee(has_overflown() ||
2625             satb_mq_set.completed_buffers_num() == 0,
2626             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2627                     BOOL_TO_STR(has_overflown()),
2628                     satb_mq_set.completed_buffers_num()));
2629 
2630   print_stats();
2631 }
2632 
2633 #ifndef PRODUCT
2634 
2635 class PrintReachableOopClosure: public OopClosure {
2636 private:
2637   G1CollectedHeap* _g1h;
2638   outputStream*    _out;
2639   VerifyOption     _vo;
2640   bool             _all;
2641 
2642 public:
2643   PrintReachableOopClosure(outputStream* out,
2644                            VerifyOption  vo,
2645                            bool          all) :
2646     _g1h(G1CollectedHeap::heap()),
2647     _out(out), _vo(vo), _all(all) { }
2648 
2649   void do_oop(narrowOop* p) { do_oop_work(p); }
2650   void do_oop(      oop* p) { do_oop_work(p); }
2651 
2652   template <class T> void do_oop_work(T* p) {
2653     oop         obj = oopDesc::load_decode_heap_oop(p);
2654     const char* str = NULL;
2655     const char* str2 = "";
2656 
2657     if (obj == NULL) {
2658       str = "";
2659     } else if (!_g1h->is_in_g1_reserved(obj)) {
2660       str = " O";
2661     } else {
2662       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2663       guarantee(hr != NULL, "invariant");
2664       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2665       bool marked = _g1h->is_marked(obj, _vo);
2666 
2667       if (over_tams) {
2668         str = " >";
2669         if (marked) {
2670           str2 = " AND MARKED";
2671         }
2672       } else if (marked) {
2673         str = " M";
2674       } else {
2675         str = " NOT";
2676       }
2677     }
2678 
2679     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2680                    p, (void*) obj, str, str2);
2681   }
2682 };
2683 
2684 class PrintReachableObjectClosure : public ObjectClosure {
2685 private:
2686   G1CollectedHeap* _g1h;
2687   outputStream*    _out;
2688   VerifyOption     _vo;
2689   bool             _all;
2690   HeapRegion*      _hr;
2691 
2692 public:
2693   PrintReachableObjectClosure(outputStream* out,
2694                               VerifyOption  vo,
2695                               bool          all,
2696                               HeapRegion*   hr) :
2697     _g1h(G1CollectedHeap::heap()),
2698     _out(out), _vo(vo), _all(all), _hr(hr) { }
2699 
2700   void do_object(oop o) {
2701     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2702     bool marked = _g1h->is_marked(o, _vo);
2703     bool print_it = _all || over_tams || marked;
2704 
2705     if (print_it) {
2706       _out->print_cr(" "PTR_FORMAT"%s",
2707                      (void *)o, (over_tams) ? " >" : (marked) ? " M" : "");
2708       PrintReachableOopClosure oopCl(_out, _vo, _all);
2709       o->oop_iterate_no_header(&oopCl);
2710     }
2711   }
2712 };
2713 
2714 class PrintReachableRegionClosure : public HeapRegionClosure {
2715 private:
2716   G1CollectedHeap* _g1h;
2717   outputStream*    _out;
2718   VerifyOption     _vo;
2719   bool             _all;
2720 
2721 public:
2722   bool doHeapRegion(HeapRegion* hr) {
2723     HeapWord* b = hr->bottom();
2724     HeapWord* e = hr->end();
2725     HeapWord* t = hr->top();
2726     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2727     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2728                    "TAMS: "PTR_FORMAT, b, e, t, p);
2729     _out->cr();
2730 
2731     HeapWord* from = b;
2732     HeapWord* to   = t;
2733 
2734     if (to > from) {
2735       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2736       _out->cr();
2737       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2738       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2739       _out->cr();
2740     }
2741 
2742     return false;
2743   }
2744 
2745   PrintReachableRegionClosure(outputStream* out,
2746                               VerifyOption  vo,
2747                               bool          all) :
2748     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2749 };
2750 
2751 void ConcurrentMark::print_reachable(const char* str,
2752                                      VerifyOption vo,
2753                                      bool all) {
2754   gclog_or_tty->cr();
2755   gclog_or_tty->print_cr("== Doing heap dump... ");
2756 
2757   if (G1PrintReachableBaseFile == NULL) {
2758     gclog_or_tty->print_cr("  #### error: no base file defined");
2759     return;
2760   }
2761 
2762   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2763       (JVM_MAXPATHLEN - 1)) {
2764     gclog_or_tty->print_cr("  #### error: file name too long");
2765     return;
2766   }
2767 
2768   char file_name[JVM_MAXPATHLEN];
2769   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2770   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2771 
2772   fileStream fout(file_name);
2773   if (!fout.is_open()) {
2774     gclog_or_tty->print_cr("  #### error: could not open file");
2775     return;
2776   }
2777 
2778   outputStream* out = &fout;
2779   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2780   out->cr();
2781 
2782   out->print_cr("--- ITERATING OVER REGIONS");
2783   out->cr();
2784   PrintReachableRegionClosure rcl(out, vo, all);
2785   _g1h->heap_region_iterate(&rcl);
2786   out->cr();
2787 
2788   gclog_or_tty->print_cr("  done");
2789   gclog_or_tty->flush();
2790 }
2791 
2792 #endif // PRODUCT
2793 
2794 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2795   // Note we are overriding the read-only view of the prev map here, via
2796   // the cast.
2797   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2798 }
2799 
2800 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2801   _nextMarkBitMap->clearRange(mr);
2802 }
2803 
2804 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2805   clearRangePrevBitmap(mr);
2806   clearRangeNextBitmap(mr);
2807 }
2808 
2809 HeapRegion*
2810 ConcurrentMark::claim_region(uint worker_id) {
2811   // "checkpoint" the finger
2812   HeapWord* finger = _finger;
2813 
2814   // _heap_end will not change underneath our feet; it only changes at
2815   // yield points.
2816   while (finger < _heap_end) {
2817     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2818 
2819     // Note on how this code handles humongous regions. In the
2820     // normal case the finger will reach the start of a "starts
2821     // humongous" (SH) region. Its end will either be the end of the
2822     // last "continues humongous" (CH) region in the sequence, or the
2823     // standard end of the SH region (if the SH is the only region in
2824     // the sequence). That way claim_region() will skip over the CH
2825     // regions. However, there is a subtle race between a CM thread
2826     // executing this method and a mutator thread doing a humongous
2827     // object allocation. The two are not mutually exclusive as the CM
2828     // thread does not need to hold the Heap_lock when it gets
2829     // here. So there is a chance that claim_region() will come across
2830     // a free region that's in the progress of becoming a SH or a CH
2831     // region. In the former case, it will either
2832     //   a) Miss the update to the region's end, in which case it will
2833     //      visit every subsequent CH region, will find their bitmaps
2834     //      empty, and do nothing, or
2835     //   b) Will observe the update of the region's end (in which case
2836     //      it will skip the subsequent CH regions).
2837     // If it comes across a region that suddenly becomes CH, the
2838     // scenario will be similar to b). So, the race between
2839     // claim_region() and a humongous object allocation might force us
2840     // to do a bit of unnecessary work (due to some unnecessary bitmap
2841     // iterations) but it should not introduce and correctness issues.
2842     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2843     HeapWord*   bottom        = curr_region->bottom();
2844     HeapWord*   end           = curr_region->end();
2845     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2846 
2847     if (verbose_low()) {
2848       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2849                              "["PTR_FORMAT", "PTR_FORMAT"), "
2850                              "limit = "PTR_FORMAT,
2851                              worker_id, curr_region, bottom, end, limit);
2852     }
2853 
2854     // Is the gap between reading the finger and doing the CAS too long?
2855     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2856     if (res == finger) {
2857       // we succeeded
2858 
2859       // notice that _finger == end cannot be guaranteed here since,
2860       // someone else might have moved the finger even further
2861       assert(_finger >= end, "the finger should have moved forward");
2862 
2863       if (verbose_low()) {
2864         gclog_or_tty->print_cr("[%u] we were successful with region = "
2865                                PTR_FORMAT, worker_id, curr_region);
2866       }
2867 
2868       if (limit > bottom) {
2869         if (verbose_low()) {
2870           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2871                                  "returning it ", worker_id, curr_region);
2872         }
2873         return curr_region;
2874       } else {
2875         assert(limit == bottom,
2876                "the region limit should be at bottom");
2877         if (verbose_low()) {
2878           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2879                                  "returning NULL", worker_id, curr_region);
2880         }
2881         // we return NULL and the caller should try calling
2882         // claim_region() again.
2883         return NULL;
2884       }
2885     } else {
2886       assert(_finger > finger, "the finger should have moved forward");
2887       if (verbose_low()) {
2888         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2889                                "global finger = "PTR_FORMAT", "
2890                                "our finger = "PTR_FORMAT,
2891                                worker_id, _finger, finger);
2892       }
2893 
2894       // read it again
2895       finger = _finger;
2896     }
2897   }
2898 
2899   return NULL;
2900 }
2901 
2902 #ifndef PRODUCT
2903 enum VerifyNoCSetOopsPhase {
2904   VerifyNoCSetOopsStack,
2905   VerifyNoCSetOopsQueues,
2906   VerifyNoCSetOopsSATBCompleted,
2907   VerifyNoCSetOopsSATBThread
2908 };
2909 
2910 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2911 private:
2912   G1CollectedHeap* _g1h;
2913   VerifyNoCSetOopsPhase _phase;
2914   int _info;
2915 
2916   const char* phase_str() {
2917     switch (_phase) {
2918     case VerifyNoCSetOopsStack:         return "Stack";
2919     case VerifyNoCSetOopsQueues:        return "Queue";
2920     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2921     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2922     default:                            ShouldNotReachHere();
2923     }
2924     return NULL;
2925   }
2926 
2927   void do_object_work(oop obj) {
2928     guarantee(!_g1h->obj_in_cs(obj),
2929               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2930                       (void*) obj, phase_str(), _info));
2931   }
2932 
2933 public:
2934   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2935 
2936   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2937     _phase = phase;
2938     _info = info;
2939   }
2940 
2941   virtual void do_oop(oop* p) {
2942     oop obj = oopDesc::load_decode_heap_oop(p);
2943     do_object_work(obj);
2944   }
2945 
2946   virtual void do_oop(narrowOop* p) {
2947     // We should not come across narrow oops while scanning marking
2948     // stacks and SATB buffers.
2949     ShouldNotReachHere();
2950   }
2951 
2952   virtual void do_object(oop obj) {
2953     do_object_work(obj);
2954   }
2955 };
2956 
2957 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2958                                          bool verify_enqueued_buffers,
2959                                          bool verify_thread_buffers,
2960                                          bool verify_fingers) {
2961   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2962   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2963     return;
2964   }
2965 
2966   VerifyNoCSetOopsClosure cl;
2967 
2968   if (verify_stacks) {
2969     // Verify entries on the global mark stack
2970     cl.set_phase(VerifyNoCSetOopsStack);
2971     _markStack.oops_do(&cl);
2972 
2973     // Verify entries on the task queues
2974     for (uint i = 0; i < _max_worker_id; i += 1) {
2975       cl.set_phase(VerifyNoCSetOopsQueues, i);
2976       CMTaskQueue* queue = _task_queues->queue(i);
2977       queue->oops_do(&cl);
2978     }
2979   }
2980 
2981   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2982 
2983   // Verify entries on the enqueued SATB buffers
2984   if (verify_enqueued_buffers) {
2985     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2986     satb_qs.iterate_completed_buffers_read_only(&cl);
2987   }
2988 
2989   // Verify entries on the per-thread SATB buffers
2990   if (verify_thread_buffers) {
2991     cl.set_phase(VerifyNoCSetOopsSATBThread);
2992     satb_qs.iterate_thread_buffers_read_only(&cl);
2993   }
2994 
2995   if (verify_fingers) {
2996     // Verify the global finger
2997     HeapWord* global_finger = finger();
2998     if (global_finger != NULL && global_finger < _heap_end) {
2999       // The global finger always points to a heap region boundary. We
3000       // use heap_region_containing_raw() to get the containing region
3001       // given that the global finger could be pointing to a free region
3002       // which subsequently becomes continues humongous. If that
3003       // happens, heap_region_containing() will return the bottom of the
3004       // corresponding starts humongous region and the check below will
3005       // not hold any more.
3006       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
3007       guarantee(global_finger == global_hr->bottom(),
3008                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3009                         global_finger, HR_FORMAT_PARAMS(global_hr)));
3010     }
3011 
3012     // Verify the task fingers
3013     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3014     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3015       CMTask* task = _tasks[i];
3016       HeapWord* task_finger = task->finger();
3017       if (task_finger != NULL && task_finger < _heap_end) {
3018         // See above note on the global finger verification.
3019         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3020         guarantee(task_finger == task_hr->bottom() ||
3021                   !task_hr->in_collection_set(),
3022                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3023                           task_finger, HR_FORMAT_PARAMS(task_hr)));
3024       }
3025     }
3026   }
3027 }
3028 #endif // PRODUCT
3029 
3030 // Aggregate the counting data that was constructed concurrently
3031 // with marking.
3032 class AggregateCountDataHRClosure: public HeapRegionClosure {
3033   G1CollectedHeap* _g1h;
3034   ConcurrentMark* _cm;
3035   CardTableModRefBS* _ct_bs;
3036   BitMap* _cm_card_bm;
3037   uint _max_worker_id;
3038 
3039  public:
3040   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3041                               BitMap* cm_card_bm,
3042                               uint max_worker_id) :
3043     _g1h(g1h), _cm(g1h->concurrent_mark()),
3044     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3045     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3046 
3047   bool doHeapRegion(HeapRegion* hr) {
3048     if (hr->continuesHumongous()) {
3049       // We will ignore these here and process them when their
3050       // associated "starts humongous" region is processed.
3051       // Note that we cannot rely on their associated
3052       // "starts humongous" region to have their bit set to 1
3053       // since, due to the region chunking in the parallel region
3054       // iteration, a "continues humongous" region might be visited
3055       // before its associated "starts humongous".
3056       return false;
3057     }
3058 
3059     HeapWord* start = hr->bottom();
3060     HeapWord* limit = hr->next_top_at_mark_start();
3061     HeapWord* end = hr->end();
3062 
3063     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3064            err_msg("Preconditions not met - "
3065                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3066                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3067                    start, limit, hr->top(), hr->end()));
3068 
3069     assert(hr->next_marked_bytes() == 0, "Precondition");
3070 
3071     if (start == limit) {
3072       // NTAMS of this region has not been set so nothing to do.
3073       return false;
3074     }
3075 
3076     // 'start' should be in the heap.
3077     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3078     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3079     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3080 
3081     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3082     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3083     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3084 
3085     // If ntams is not card aligned then we bump card bitmap index
3086     // for limit so that we get the all the cards spanned by
3087     // the object ending at ntams.
3088     // Note: if this is the last region in the heap then ntams
3089     // could be actually just beyond the end of the the heap;
3090     // limit_idx will then  correspond to a (non-existent) card
3091     // that is also outside the heap.
3092     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3093       limit_idx += 1;
3094     }
3095 
3096     assert(limit_idx <= end_idx, "or else use atomics");
3097 
3098     // Aggregate the "stripe" in the count data associated with hr.
3099     uint hrs_index = hr->hrs_index();
3100     size_t marked_bytes = 0;
3101 
3102     for (uint i = 0; i < _max_worker_id; i += 1) {
3103       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3104       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3105 
3106       // Fetch the marked_bytes in this region for task i and
3107       // add it to the running total for this region.
3108       marked_bytes += marked_bytes_array[hrs_index];
3109 
3110       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3111       // into the global card bitmap.
3112       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3113 
3114       while (scan_idx < limit_idx) {
3115         assert(task_card_bm->at(scan_idx) == true, "should be");
3116         _cm_card_bm->set_bit(scan_idx);
3117         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3118 
3119         // BitMap::get_next_one_offset() can handle the case when
3120         // its left_offset parameter is greater than its right_offset
3121         // parameter. It does, however, have an early exit if
3122         // left_offset == right_offset. So let's limit the value
3123         // passed in for left offset here.
3124         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3125         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3126       }
3127     }
3128 
3129     // Update the marked bytes for this region.
3130     hr->add_to_marked_bytes(marked_bytes);
3131 
3132     // Next heap region
3133     return false;
3134   }
3135 };
3136 
3137 class G1AggregateCountDataTask: public AbstractGangTask {
3138 protected:
3139   G1CollectedHeap* _g1h;
3140   ConcurrentMark* _cm;
3141   BitMap* _cm_card_bm;
3142   uint _max_worker_id;
3143   int _active_workers;
3144 
3145 public:
3146   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3147                            ConcurrentMark* cm,
3148                            BitMap* cm_card_bm,
3149                            uint max_worker_id,
3150                            int n_workers) :
3151     AbstractGangTask("Count Aggregation"),
3152     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3153     _max_worker_id(max_worker_id),
3154     _active_workers(n_workers) { }
3155 
3156   void work(uint worker_id) {
3157     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3158 
3159     if (G1CollectedHeap::use_parallel_gc_threads()) {
3160       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3161                                             _active_workers,
3162                                             HeapRegion::AggregateCountClaimValue);
3163     } else {
3164       _g1h->heap_region_iterate(&cl);
3165     }
3166   }
3167 };
3168 
3169 
3170 void ConcurrentMark::aggregate_count_data() {
3171   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3172                         _g1h->workers()->active_workers() :
3173                         1);
3174 
3175   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3176                                            _max_worker_id, n_workers);
3177 
3178   if (G1CollectedHeap::use_parallel_gc_threads()) {
3179     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3180            "sanity check");
3181     _g1h->set_par_threads(n_workers);
3182     _g1h->workers()->run_task(&g1_par_agg_task);
3183     _g1h->set_par_threads(0);
3184 
3185     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3186            "sanity check");
3187     _g1h->reset_heap_region_claim_values();
3188   } else {
3189     g1_par_agg_task.work(0);
3190   }
3191 }
3192 
3193 // Clear the per-worker arrays used to store the per-region counting data
3194 void ConcurrentMark::clear_all_count_data() {
3195   // Clear the global card bitmap - it will be filled during
3196   // liveness count aggregation (during remark) and the
3197   // final counting task.
3198   _card_bm.clear();
3199 
3200   // Clear the global region bitmap - it will be filled as part
3201   // of the final counting task.
3202   _region_bm.clear();
3203 
3204   uint max_regions = _g1h->max_regions();
3205   assert(_max_worker_id > 0, "uninitialized");
3206 
3207   for (uint i = 0; i < _max_worker_id; i += 1) {
3208     BitMap* task_card_bm = count_card_bitmap_for(i);
3209     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3210 
3211     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3212     assert(marked_bytes_array != NULL, "uninitialized");
3213 
3214     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3215     task_card_bm->clear();
3216   }
3217 }
3218 
3219 void ConcurrentMark::print_stats() {
3220   if (verbose_stats()) {
3221     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3222     for (size_t i = 0; i < _active_tasks; ++i) {
3223       _tasks[i]->print_stats();
3224       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3225     }
3226   }
3227 }
3228 
3229 // abandon current marking iteration due to a Full GC
3230 void ConcurrentMark::abort() {
3231   // Clear all marks to force marking thread to do nothing
3232   _nextMarkBitMap->clearAll();
3233   // Clear the liveness counting data
3234   clear_all_count_data();
3235   // Empty mark stack
3236   reset_marking_state();
3237   for (uint i = 0; i < _max_worker_id; ++i) {
3238     _tasks[i]->clear_region_fields();
3239   }
3240   _has_aborted = true;
3241 
3242   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3243   satb_mq_set.abandon_partial_marking();
3244   // This can be called either during or outside marking, we'll read
3245   // the expected_active value from the SATB queue set.
3246   satb_mq_set.set_active_all_threads(
3247                                  false, /* new active value */
3248                                  satb_mq_set.is_active() /* expected_active */);
3249 
3250   _g1h->trace_heap_after_concurrent_cycle();
3251   _g1h->register_concurrent_cycle_end();
3252 }
3253 
3254 static void print_ms_time_info(const char* prefix, const char* name,
3255                                NumberSeq& ns) {
3256   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3257                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3258   if (ns.num() > 0) {
3259     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3260                            prefix, ns.sd(), ns.maximum());
3261   }
3262 }
3263 
3264 void ConcurrentMark::print_summary_info() {
3265   gclog_or_tty->print_cr(" Concurrent marking:");
3266   print_ms_time_info("  ", "init marks", _init_times);
3267   print_ms_time_info("  ", "remarks", _remark_times);
3268   {
3269     print_ms_time_info("     ", "final marks", _remark_mark_times);
3270     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3271 
3272   }
3273   print_ms_time_info("  ", "cleanups", _cleanup_times);
3274   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3275                          _total_counting_time,
3276                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3277                           (double)_cleanup_times.num()
3278                          : 0.0));
3279   if (G1ScrubRemSets) {
3280     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3281                            _total_rs_scrub_time,
3282                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3283                             (double)_cleanup_times.num()
3284                            : 0.0));
3285   }
3286   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3287                          (_init_times.sum() + _remark_times.sum() +
3288                           _cleanup_times.sum())/1000.0);
3289   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3290                 "(%8.2f s marking).",
3291                 cmThread()->vtime_accum(),
3292                 cmThread()->vtime_mark_accum());
3293 }
3294 
3295 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3296   if (use_parallel_marking_threads()) {
3297     _parallel_workers->print_worker_threads_on(st);
3298   }
3299 }
3300 
3301 void ConcurrentMark::print_on_error(outputStream* st) const {
3302   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3303       _prevMarkBitMap, _nextMarkBitMap);
3304   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3305   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3306 }
3307 
3308 // We take a break if someone is trying to stop the world.
3309 bool ConcurrentMark::do_yield_check(uint worker_id) {
3310   if (should_yield()) {
3311     if (worker_id == 0) {
3312       _g1h->g1_policy()->record_concurrent_pause();
3313     }
3314     cmThread()->yield();
3315     return true;
3316   } else {
3317     return false;
3318   }
3319 }
3320 
3321 bool ConcurrentMark::should_yield() {
3322   return cmThread()->should_yield();
3323 }
3324 
3325 bool ConcurrentMark::containing_card_is_marked(void* p) {
3326   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3327   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3328 }
3329 
3330 bool ConcurrentMark::containing_cards_are_marked(void* start,
3331                                                  void* last) {
3332   return containing_card_is_marked(start) &&
3333          containing_card_is_marked(last);
3334 }
3335 
3336 #ifndef PRODUCT
3337 // for debugging purposes
3338 void ConcurrentMark::print_finger() {
3339   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3340                          _heap_start, _heap_end, _finger);
3341   for (uint i = 0; i < _max_worker_id; ++i) {
3342     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3343   }
3344   gclog_or_tty->print_cr("");
3345 }
3346 #endif
3347 
3348 void CMTask::scan_object(oop obj) {
3349   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3350 
3351   if (_cm->verbose_high()) {
3352     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3353                            _worker_id, (void*) obj);
3354   }
3355 
3356   size_t obj_size = obj->size();
3357   _words_scanned += obj_size;
3358 
3359   obj->oop_iterate(_cm_oop_closure);
3360   statsOnly( ++_objs_scanned );
3361   check_limits();
3362 }
3363 
3364 // Closure for iteration over bitmaps
3365 class CMBitMapClosure : public BitMapClosure {
3366 private:
3367   // the bitmap that is being iterated over
3368   CMBitMap*                   _nextMarkBitMap;
3369   ConcurrentMark*             _cm;
3370   CMTask*                     _task;
3371 
3372 public:
3373   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3374     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3375 
3376   bool do_bit(size_t offset) {
3377     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3378     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3379     assert( addr < _cm->finger(), "invariant");
3380 
3381     statsOnly( _task->increase_objs_found_on_bitmap() );
3382     assert(addr >= _task->finger(), "invariant");
3383 
3384     // We move that task's local finger along.
3385     _task->move_finger_to(addr);
3386 
3387     _task->scan_object(oop(addr));
3388     // we only partially drain the local queue and global stack
3389     _task->drain_local_queue(true);
3390     _task->drain_global_stack(true);
3391 
3392     // if the has_aborted flag has been raised, we need to bail out of
3393     // the iteration
3394     return !_task->has_aborted();
3395   }
3396 };
3397 
3398 // Closure for iterating over objects, currently only used for
3399 // processing SATB buffers.
3400 class CMObjectClosure : public ObjectClosure {
3401 private:
3402   CMTask* _task;
3403 
3404 public:
3405   void do_object(oop obj) {
3406     _task->deal_with_reference(obj);
3407   }
3408 
3409   CMObjectClosure(CMTask* task) : _task(task) { }
3410 };
3411 
3412 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3413                                ConcurrentMark* cm,
3414                                CMTask* task)
3415   : _g1h(g1h), _cm(cm), _task(task) {
3416   assert(_ref_processor == NULL, "should be initialized to NULL");
3417 
3418   if (G1UseConcMarkReferenceProcessing) {
3419     _ref_processor = g1h->ref_processor_cm();
3420     assert(_ref_processor != NULL, "should not be NULL");
3421   }
3422 }
3423 
3424 void CMTask::setup_for_region(HeapRegion* hr) {
3425   // Separated the asserts so that we know which one fires.
3426   assert(hr != NULL,
3427         "claim_region() should have filtered out continues humongous regions");
3428   assert(!hr->continuesHumongous(),
3429         "claim_region() should have filtered out continues humongous regions");
3430 
3431   if (_cm->verbose_low()) {
3432     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3433                            _worker_id, hr);
3434   }
3435 
3436   _curr_region  = hr;
3437   _finger       = hr->bottom();
3438   update_region_limit();
3439 }
3440 
3441 void CMTask::update_region_limit() {
3442   HeapRegion* hr            = _curr_region;
3443   HeapWord* bottom          = hr->bottom();
3444   HeapWord* limit           = hr->next_top_at_mark_start();
3445 
3446   if (limit == bottom) {
3447     if (_cm->verbose_low()) {
3448       gclog_or_tty->print_cr("[%u] found an empty region "
3449                              "["PTR_FORMAT", "PTR_FORMAT")",
3450                              _worker_id, bottom, limit);
3451     }
3452     // The region was collected underneath our feet.
3453     // We set the finger to bottom to ensure that the bitmap
3454     // iteration that will follow this will not do anything.
3455     // (this is not a condition that holds when we set the region up,
3456     // as the region is not supposed to be empty in the first place)
3457     _finger = bottom;
3458   } else if (limit >= _region_limit) {
3459     assert(limit >= _finger, "peace of mind");
3460   } else {
3461     assert(limit < _region_limit, "only way to get here");
3462     // This can happen under some pretty unusual circumstances.  An
3463     // evacuation pause empties the region underneath our feet (NTAMS
3464     // at bottom). We then do some allocation in the region (NTAMS
3465     // stays at bottom), followed by the region being used as a GC
3466     // alloc region (NTAMS will move to top() and the objects
3467     // originally below it will be grayed). All objects now marked in
3468     // the region are explicitly grayed, if below the global finger,
3469     // and we do not need in fact to scan anything else. So, we simply
3470     // set _finger to be limit to ensure that the bitmap iteration
3471     // doesn't do anything.
3472     _finger = limit;
3473   }
3474 
3475   _region_limit = limit;
3476 }
3477 
3478 void CMTask::giveup_current_region() {
3479   assert(_curr_region != NULL, "invariant");
3480   if (_cm->verbose_low()) {
3481     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3482                            _worker_id, _curr_region);
3483   }
3484   clear_region_fields();
3485 }
3486 
3487 void CMTask::clear_region_fields() {
3488   // Values for these three fields that indicate that we're not
3489   // holding on to a region.
3490   _curr_region   = NULL;
3491   _finger        = NULL;
3492   _region_limit  = NULL;
3493 }
3494 
3495 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3496   if (cm_oop_closure == NULL) {
3497     assert(_cm_oop_closure != NULL, "invariant");
3498   } else {
3499     assert(_cm_oop_closure == NULL, "invariant");
3500   }
3501   _cm_oop_closure = cm_oop_closure;
3502 }
3503 
3504 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3505   guarantee(nextMarkBitMap != NULL, "invariant");
3506 
3507   if (_cm->verbose_low()) {
3508     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3509   }
3510 
3511   _nextMarkBitMap                = nextMarkBitMap;
3512   clear_region_fields();
3513 
3514   _calls                         = 0;
3515   _elapsed_time_ms               = 0.0;
3516   _termination_time_ms           = 0.0;
3517   _termination_start_time_ms     = 0.0;
3518 
3519 #if _MARKING_STATS_
3520   _local_pushes                  = 0;
3521   _local_pops                    = 0;
3522   _local_max_size                = 0;
3523   _objs_scanned                  = 0;
3524   _global_pushes                 = 0;
3525   _global_pops                   = 0;
3526   _global_max_size               = 0;
3527   _global_transfers_to           = 0;
3528   _global_transfers_from         = 0;
3529   _regions_claimed               = 0;
3530   _objs_found_on_bitmap          = 0;
3531   _satb_buffers_processed        = 0;
3532   _steal_attempts                = 0;
3533   _steals                        = 0;
3534   _aborted                       = 0;
3535   _aborted_overflow              = 0;
3536   _aborted_cm_aborted            = 0;
3537   _aborted_yield                 = 0;
3538   _aborted_timed_out             = 0;
3539   _aborted_satb                  = 0;
3540   _aborted_termination           = 0;
3541 #endif // _MARKING_STATS_
3542 }
3543 
3544 bool CMTask::should_exit_termination() {
3545   regular_clock_call();
3546   // This is called when we are in the termination protocol. We should
3547   // quit if, for some reason, this task wants to abort or the global
3548   // stack is not empty (this means that we can get work from it).
3549   return !_cm->mark_stack_empty() || has_aborted();
3550 }
3551 
3552 void CMTask::reached_limit() {
3553   assert(_words_scanned >= _words_scanned_limit ||
3554          _refs_reached >= _refs_reached_limit ,
3555          "shouldn't have been called otherwise");
3556   regular_clock_call();
3557 }
3558 
3559 void CMTask::regular_clock_call() {
3560   if (has_aborted()) return;
3561 
3562   // First, we need to recalculate the words scanned and refs reached
3563   // limits for the next clock call.
3564   recalculate_limits();
3565 
3566   // During the regular clock call we do the following
3567 
3568   // (1) If an overflow has been flagged, then we abort.
3569   if (_cm->has_overflown()) {
3570     set_has_aborted();
3571     return;
3572   }
3573 
3574   // If we are not concurrent (i.e. we're doing remark) we don't need
3575   // to check anything else. The other steps are only needed during
3576   // the concurrent marking phase.
3577   if (!concurrent()) return;
3578 
3579   // (2) If marking has been aborted for Full GC, then we also abort.
3580   if (_cm->has_aborted()) {
3581     set_has_aborted();
3582     statsOnly( ++_aborted_cm_aborted );
3583     return;
3584   }
3585 
3586   double curr_time_ms = os::elapsedVTime() * 1000.0;
3587 
3588   // (3) If marking stats are enabled, then we update the step history.
3589 #if _MARKING_STATS_
3590   if (_words_scanned >= _words_scanned_limit) {
3591     ++_clock_due_to_scanning;
3592   }
3593   if (_refs_reached >= _refs_reached_limit) {
3594     ++_clock_due_to_marking;
3595   }
3596 
3597   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3598   _interval_start_time_ms = curr_time_ms;
3599   _all_clock_intervals_ms.add(last_interval_ms);
3600 
3601   if (_cm->verbose_medium()) {
3602       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3603                         "scanned = %d%s, refs reached = %d%s",
3604                         _worker_id, last_interval_ms,
3605                         _words_scanned,
3606                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3607                         _refs_reached,
3608                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3609   }
3610 #endif // _MARKING_STATS_
3611 
3612   // (4) We check whether we should yield. If we have to, then we abort.
3613   if (_cm->should_yield()) {
3614     // We should yield. To do this we abort the task. The caller is
3615     // responsible for yielding.
3616     set_has_aborted();
3617     statsOnly( ++_aborted_yield );
3618     return;
3619   }
3620 
3621   // (5) We check whether we've reached our time quota. If we have,
3622   // then we abort.
3623   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3624   if (elapsed_time_ms > _time_target_ms) {
3625     set_has_aborted();
3626     _has_timed_out = true;
3627     statsOnly( ++_aborted_timed_out );
3628     return;
3629   }
3630 
3631   // (6) Finally, we check whether there are enough completed STAB
3632   // buffers available for processing. If there are, we abort.
3633   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3634   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3635     if (_cm->verbose_low()) {
3636       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3637                              _worker_id);
3638     }
3639     // we do need to process SATB buffers, we'll abort and restart
3640     // the marking task to do so
3641     set_has_aborted();
3642     statsOnly( ++_aborted_satb );
3643     return;
3644   }
3645 }
3646 
3647 void CMTask::recalculate_limits() {
3648   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3649   _words_scanned_limit      = _real_words_scanned_limit;
3650 
3651   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3652   _refs_reached_limit       = _real_refs_reached_limit;
3653 }
3654 
3655 void CMTask::decrease_limits() {
3656   // This is called when we believe that we're going to do an infrequent
3657   // operation which will increase the per byte scanned cost (i.e. move
3658   // entries to/from the global stack). It basically tries to decrease the
3659   // scanning limit so that the clock is called earlier.
3660 
3661   if (_cm->verbose_medium()) {
3662     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3663   }
3664 
3665   _words_scanned_limit = _real_words_scanned_limit -
3666     3 * words_scanned_period / 4;
3667   _refs_reached_limit  = _real_refs_reached_limit -
3668     3 * refs_reached_period / 4;
3669 }
3670 
3671 void CMTask::move_entries_to_global_stack() {
3672   // local array where we'll store the entries that will be popped
3673   // from the local queue
3674   oop buffer[global_stack_transfer_size];
3675 
3676   int n = 0;
3677   oop obj;
3678   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3679     buffer[n] = obj;
3680     ++n;
3681   }
3682 
3683   if (n > 0) {
3684     // we popped at least one entry from the local queue
3685 
3686     statsOnly( ++_global_transfers_to; _local_pops += n );
3687 
3688     if (!_cm->mark_stack_push(buffer, n)) {
3689       if (_cm->verbose_low()) {
3690         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3691                                _worker_id);
3692       }
3693       set_has_aborted();
3694     } else {
3695       // the transfer was successful
3696 
3697       if (_cm->verbose_medium()) {
3698         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3699                                _worker_id, n);
3700       }
3701       statsOnly( int tmp_size = _cm->mark_stack_size();
3702                  if (tmp_size > _global_max_size) {
3703                    _global_max_size = tmp_size;
3704                  }
3705                  _global_pushes += n );
3706     }
3707   }
3708 
3709   // this operation was quite expensive, so decrease the limits
3710   decrease_limits();
3711 }
3712 
3713 void CMTask::get_entries_from_global_stack() {
3714   // local array where we'll store the entries that will be popped
3715   // from the global stack.
3716   oop buffer[global_stack_transfer_size];
3717   int n;
3718   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3719   assert(n <= global_stack_transfer_size,
3720          "we should not pop more than the given limit");
3721   if (n > 0) {
3722     // yes, we did actually pop at least one entry
3723 
3724     statsOnly( ++_global_transfers_from; _global_pops += n );
3725     if (_cm->verbose_medium()) {
3726       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3727                              _worker_id, n);
3728     }
3729     for (int i = 0; i < n; ++i) {
3730       bool success = _task_queue->push(buffer[i]);
3731       // We only call this when the local queue is empty or under a
3732       // given target limit. So, we do not expect this push to fail.
3733       assert(success, "invariant");
3734     }
3735 
3736     statsOnly( int tmp_size = _task_queue->size();
3737                if (tmp_size > _local_max_size) {
3738                  _local_max_size = tmp_size;
3739                }
3740                _local_pushes += n );
3741   }
3742 
3743   // this operation was quite expensive, so decrease the limits
3744   decrease_limits();
3745 }
3746 
3747 void CMTask::drain_local_queue(bool partially) {
3748   if (has_aborted()) return;
3749 
3750   // Decide what the target size is, depending whether we're going to
3751   // drain it partially (so that other tasks can steal if they run out
3752   // of things to do) or totally (at the very end).
3753   size_t target_size;
3754   if (partially) {
3755     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3756   } else {
3757     target_size = 0;
3758   }
3759 
3760   if (_task_queue->size() > target_size) {
3761     if (_cm->verbose_high()) {
3762       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
3763                              _worker_id, target_size);
3764     }
3765 
3766     oop obj;
3767     bool ret = _task_queue->pop_local(obj);
3768     while (ret) {
3769       statsOnly( ++_local_pops );
3770 
3771       if (_cm->verbose_high()) {
3772         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3773                                (void*) obj);
3774       }
3775 
3776       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3777       assert(!_g1h->is_on_master_free_list(
3778                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3779 
3780       scan_object(obj);
3781 
3782       if (_task_queue->size() <= target_size || has_aborted()) {
3783         ret = false;
3784       } else {
3785         ret = _task_queue->pop_local(obj);
3786       }
3787     }
3788 
3789     if (_cm->verbose_high()) {
3790       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3791                              _worker_id, _task_queue->size());
3792     }
3793   }
3794 }
3795 
3796 void CMTask::drain_global_stack(bool partially) {
3797   if (has_aborted()) return;
3798 
3799   // We have a policy to drain the local queue before we attempt to
3800   // drain the global stack.
3801   assert(partially || _task_queue->size() == 0, "invariant");
3802 
3803   // Decide what the target size is, depending whether we're going to
3804   // drain it partially (so that other tasks can steal if they run out
3805   // of things to do) or totally (at the very end).  Notice that,
3806   // because we move entries from the global stack in chunks or
3807   // because another task might be doing the same, we might in fact
3808   // drop below the target. But, this is not a problem.
3809   size_t target_size;
3810   if (partially) {
3811     target_size = _cm->partial_mark_stack_size_target();
3812   } else {
3813     target_size = 0;
3814   }
3815 
3816   if (_cm->mark_stack_size() > target_size) {
3817     if (_cm->verbose_low()) {
3818       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
3819                              _worker_id, target_size);
3820     }
3821 
3822     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3823       get_entries_from_global_stack();
3824       drain_local_queue(partially);
3825     }
3826 
3827     if (_cm->verbose_low()) {
3828       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
3829                              _worker_id, _cm->mark_stack_size());
3830     }
3831   }
3832 }
3833 
3834 // SATB Queue has several assumptions on whether to call the par or
3835 // non-par versions of the methods. this is why some of the code is
3836 // replicated. We should really get rid of the single-threaded version
3837 // of the code to simplify things.
3838 void CMTask::drain_satb_buffers() {
3839   if (has_aborted()) return;
3840 
3841   // We set this so that the regular clock knows that we're in the
3842   // middle of draining buffers and doesn't set the abort flag when it
3843   // notices that SATB buffers are available for draining. It'd be
3844   // very counter productive if it did that. :-)
3845   _draining_satb_buffers = true;
3846 
3847   CMObjectClosure oc(this);
3848   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3849   if (G1CollectedHeap::use_parallel_gc_threads()) {
3850     satb_mq_set.set_par_closure(_worker_id, &oc);
3851   } else {
3852     satb_mq_set.set_closure(&oc);
3853   }
3854 
3855   // This keeps claiming and applying the closure to completed buffers
3856   // until we run out of buffers or we need to abort.
3857   if (G1CollectedHeap::use_parallel_gc_threads()) {
3858     while (!has_aborted() &&
3859            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3860       if (_cm->verbose_medium()) {
3861         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3862       }
3863       statsOnly( ++_satb_buffers_processed );
3864       regular_clock_call();
3865     }
3866   } else {
3867     while (!has_aborted() &&
3868            satb_mq_set.apply_closure_to_completed_buffer()) {
3869       if (_cm->verbose_medium()) {
3870         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3871       }
3872       statsOnly( ++_satb_buffers_processed );
3873       regular_clock_call();
3874     }
3875   }
3876 
3877   if (!concurrent() && !has_aborted()) {
3878     // We should only do this during remark.
3879     if (G1CollectedHeap::use_parallel_gc_threads()) {
3880       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3881     } else {
3882       satb_mq_set.iterate_closure_all_threads();
3883     }
3884   }
3885 
3886   _draining_satb_buffers = false;
3887 
3888   assert(has_aborted() ||
3889          concurrent() ||
3890          satb_mq_set.completed_buffers_num() == 0, "invariant");
3891 
3892   if (G1CollectedHeap::use_parallel_gc_threads()) {
3893     satb_mq_set.set_par_closure(_worker_id, NULL);
3894   } else {
3895     satb_mq_set.set_closure(NULL);
3896   }
3897 
3898   // again, this was a potentially expensive operation, decrease the
3899   // limits to get the regular clock call early
3900   decrease_limits();
3901 }
3902 
3903 void CMTask::print_stats() {
3904   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3905                          _worker_id, _calls);
3906   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3907                          _elapsed_time_ms, _termination_time_ms);
3908   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3909                          _step_times_ms.num(), _step_times_ms.avg(),
3910                          _step_times_ms.sd());
3911   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3912                          _step_times_ms.maximum(), _step_times_ms.sum());
3913 
3914 #if _MARKING_STATS_
3915   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3916                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3917                          _all_clock_intervals_ms.sd());
3918   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3919                          _all_clock_intervals_ms.maximum(),
3920                          _all_clock_intervals_ms.sum());
3921   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3922                          _clock_due_to_scanning, _clock_due_to_marking);
3923   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3924                          _objs_scanned, _objs_found_on_bitmap);
3925   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3926                          _local_pushes, _local_pops, _local_max_size);
3927   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3928                          _global_pushes, _global_pops, _global_max_size);
3929   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3930                          _global_transfers_to,_global_transfers_from);
3931   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3932   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3933   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3934                          _steal_attempts, _steals);
3935   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3936   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3937                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3938   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3939                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3940 #endif // _MARKING_STATS_
3941 }
3942 
3943 /*****************************************************************************
3944 
3945     The do_marking_step(time_target_ms, ...) method is the building
3946     block of the parallel marking framework. It can be called in parallel
3947     with other invocations of do_marking_step() on different tasks
3948     (but only one per task, obviously) and concurrently with the
3949     mutator threads, or during remark, hence it eliminates the need
3950     for two versions of the code. When called during remark, it will
3951     pick up from where the task left off during the concurrent marking
3952     phase. Interestingly, tasks are also claimable during evacuation
3953     pauses too, since do_marking_step() ensures that it aborts before
3954     it needs to yield.
3955 
3956     The data structures that it uses to do marking work are the
3957     following:
3958 
3959       (1) Marking Bitmap. If there are gray objects that appear only
3960       on the bitmap (this happens either when dealing with an overflow
3961       or when the initial marking phase has simply marked the roots
3962       and didn't push them on the stack), then tasks claim heap
3963       regions whose bitmap they then scan to find gray objects. A
3964       global finger indicates where the end of the last claimed region
3965       is. A local finger indicates how far into the region a task has
3966       scanned. The two fingers are used to determine how to gray an
3967       object (i.e. whether simply marking it is OK, as it will be
3968       visited by a task in the future, or whether it needs to be also
3969       pushed on a stack).
3970 
3971       (2) Local Queue. The local queue of the task which is accessed
3972       reasonably efficiently by the task. Other tasks can steal from
3973       it when they run out of work. Throughout the marking phase, a
3974       task attempts to keep its local queue short but not totally
3975       empty, so that entries are available for stealing by other
3976       tasks. Only when there is no more work, a task will totally
3977       drain its local queue.
3978 
3979       (3) Global Mark Stack. This handles local queue overflow. During
3980       marking only sets of entries are moved between it and the local
3981       queues, as access to it requires a mutex and more fine-grain
3982       interaction with it which might cause contention. If it
3983       overflows, then the marking phase should restart and iterate
3984       over the bitmap to identify gray objects. Throughout the marking
3985       phase, tasks attempt to keep the global mark stack at a small
3986       length but not totally empty, so that entries are available for
3987       popping by other tasks. Only when there is no more work, tasks
3988       will totally drain the global mark stack.
3989 
3990       (4) SATB Buffer Queue. This is where completed SATB buffers are
3991       made available. Buffers are regularly removed from this queue
3992       and scanned for roots, so that the queue doesn't get too
3993       long. During remark, all completed buffers are processed, as
3994       well as the filled in parts of any uncompleted buffers.
3995 
3996     The do_marking_step() method tries to abort when the time target
3997     has been reached. There are a few other cases when the
3998     do_marking_step() method also aborts:
3999 
4000       (1) When the marking phase has been aborted (after a Full GC).
4001 
4002       (2) When a global overflow (on the global stack) has been
4003       triggered. Before the task aborts, it will actually sync up with
4004       the other tasks to ensure that all the marking data structures
4005       (local queues, stacks, fingers etc.)  are re-initialized so that
4006       when do_marking_step() completes, the marking phase can
4007       immediately restart.
4008 
4009       (3) When enough completed SATB buffers are available. The
4010       do_marking_step() method only tries to drain SATB buffers right
4011       at the beginning. So, if enough buffers are available, the
4012       marking step aborts and the SATB buffers are processed at
4013       the beginning of the next invocation.
4014 
4015       (4) To yield. when we have to yield then we abort and yield
4016       right at the end of do_marking_step(). This saves us from a lot
4017       of hassle as, by yielding we might allow a Full GC. If this
4018       happens then objects will be compacted underneath our feet, the
4019       heap might shrink, etc. We save checking for this by just
4020       aborting and doing the yield right at the end.
4021 
4022     From the above it follows that the do_marking_step() method should
4023     be called in a loop (or, otherwise, regularly) until it completes.
4024 
4025     If a marking step completes without its has_aborted() flag being
4026     true, it means it has completed the current marking phase (and
4027     also all other marking tasks have done so and have all synced up).
4028 
4029     A method called regular_clock_call() is invoked "regularly" (in
4030     sub ms intervals) throughout marking. It is this clock method that
4031     checks all the abort conditions which were mentioned above and
4032     decides when the task should abort. A work-based scheme is used to
4033     trigger this clock method: when the number of object words the
4034     marking phase has scanned or the number of references the marking
4035     phase has visited reach a given limit. Additional invocations to
4036     the method clock have been planted in a few other strategic places
4037     too. The initial reason for the clock method was to avoid calling
4038     vtime too regularly, as it is quite expensive. So, once it was in
4039     place, it was natural to piggy-back all the other conditions on it
4040     too and not constantly check them throughout the code.
4041 
4042     If do_termination is true then do_marking_step will enter its
4043     termination protocol.
4044 
4045     The value of is_serial must be true when do_marking_step is being
4046     called serially (i.e. by the VMThread) and do_marking_step should
4047     skip any synchronization in the termination and overflow code.
4048     Examples include the serial remark code and the serial reference
4049     processing closures.
4050 
4051     The value of is_serial must be false when do_marking_step is
4052     being called by any of the worker threads in a work gang.
4053     Examples include the concurrent marking code (CMMarkingTask),
4054     the MT remark code, and the MT reference processing closures.
4055 
4056  *****************************************************************************/
4057 
4058 void CMTask::do_marking_step(double time_target_ms,
4059                              bool do_termination,
4060                              bool is_serial) {
4061   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4062   assert(concurrent() == _cm->concurrent(), "they should be the same");
4063 
4064   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4065   assert(_task_queues != NULL, "invariant");
4066   assert(_task_queue != NULL, "invariant");
4067   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4068 
4069   assert(!_claimed,
4070          "only one thread should claim this task at any one time");
4071 
4072   // OK, this doesn't safeguard again all possible scenarios, as it is
4073   // possible for two threads to set the _claimed flag at the same
4074   // time. But it is only for debugging purposes anyway and it will
4075   // catch most problems.
4076   _claimed = true;
4077 
4078   _start_time_ms = os::elapsedVTime() * 1000.0;
4079   statsOnly( _interval_start_time_ms = _start_time_ms );
4080 
4081   // If do_stealing is true then do_marking_step will attempt to
4082   // steal work from the other CMTasks. It only makes sense to
4083   // enable stealing when the termination protocol is enabled
4084   // and do_marking_step() is not being called serially.
4085   bool do_stealing = do_termination && !is_serial;
4086 
4087   double diff_prediction_ms =
4088     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4089   _time_target_ms = time_target_ms - diff_prediction_ms;
4090 
4091   // set up the variables that are used in the work-based scheme to
4092   // call the regular clock method
4093   _words_scanned = 0;
4094   _refs_reached  = 0;
4095   recalculate_limits();
4096 
4097   // clear all flags
4098   clear_has_aborted();
4099   _has_timed_out = false;
4100   _draining_satb_buffers = false;
4101 
4102   ++_calls;
4103 
4104   if (_cm->verbose_low()) {
4105     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4106                            "target = %1.2lfms >>>>>>>>>>",
4107                            _worker_id, _calls, _time_target_ms);
4108   }
4109 
4110   // Set up the bitmap and oop closures. Anything that uses them is
4111   // eventually called from this method, so it is OK to allocate these
4112   // statically.
4113   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4114   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4115   set_cm_oop_closure(&cm_oop_closure);
4116 
4117   if (_cm->has_overflown()) {
4118     // This can happen if the mark stack overflows during a GC pause
4119     // and this task, after a yield point, restarts. We have to abort
4120     // as we need to get into the overflow protocol which happens
4121     // right at the end of this task.
4122     set_has_aborted();
4123   }
4124 
4125   // First drain any available SATB buffers. After this, we will not
4126   // look at SATB buffers before the next invocation of this method.
4127   // If enough completed SATB buffers are queued up, the regular clock
4128   // will abort this task so that it restarts.
4129   drain_satb_buffers();
4130   // ...then partially drain the local queue and the global stack
4131   drain_local_queue(true);
4132   drain_global_stack(true);
4133 
4134   do {
4135     if (!has_aborted() && _curr_region != NULL) {
4136       // This means that we're already holding on to a region.
4137       assert(_finger != NULL, "if region is not NULL, then the finger "
4138              "should not be NULL either");
4139 
4140       // We might have restarted this task after an evacuation pause
4141       // which might have evacuated the region we're holding on to
4142       // underneath our feet. Let's read its limit again to make sure
4143       // that we do not iterate over a region of the heap that
4144       // contains garbage (update_region_limit() will also move
4145       // _finger to the start of the region if it is found empty).
4146       update_region_limit();
4147       // We will start from _finger not from the start of the region,
4148       // as we might be restarting this task after aborting half-way
4149       // through scanning this region. In this case, _finger points to
4150       // the address where we last found a marked object. If this is a
4151       // fresh region, _finger points to start().
4152       MemRegion mr = MemRegion(_finger, _region_limit);
4153 
4154       if (_cm->verbose_low()) {
4155         gclog_or_tty->print_cr("[%u] we're scanning part "
4156                                "["PTR_FORMAT", "PTR_FORMAT") "
4157                                "of region "HR_FORMAT,
4158                                _worker_id, _finger, _region_limit,
4159                                HR_FORMAT_PARAMS(_curr_region));
4160       }
4161 
4162       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4163              "humongous regions should go around loop once only");
4164 
4165       // Some special cases:
4166       // If the memory region is empty, we can just give up the region.
4167       // If the current region is humongous then we only need to check
4168       // the bitmap for the bit associated with the start of the object,
4169       // scan the object if it's live, and give up the region.
4170       // Otherwise, let's iterate over the bitmap of the part of the region
4171       // that is left.
4172       // If the iteration is successful, give up the region.
4173       if (mr.is_empty()) {
4174         giveup_current_region();
4175         regular_clock_call();
4176       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4177         if (_nextMarkBitMap->isMarked(mr.start())) {
4178           // The object is marked - apply the closure
4179           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4180           bitmap_closure.do_bit(offset);
4181         }
4182         // Even if this task aborted while scanning the humongous object
4183         // we can (and should) give up the current region.
4184         giveup_current_region();
4185         regular_clock_call();
4186       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4187         giveup_current_region();
4188         regular_clock_call();
4189       } else {
4190         assert(has_aborted(), "currently the only way to do so");
4191         // The only way to abort the bitmap iteration is to return
4192         // false from the do_bit() method. However, inside the
4193         // do_bit() method we move the _finger to point to the
4194         // object currently being looked at. So, if we bail out, we
4195         // have definitely set _finger to something non-null.
4196         assert(_finger != NULL, "invariant");
4197 
4198         // Region iteration was actually aborted. So now _finger
4199         // points to the address of the object we last scanned. If we
4200         // leave it there, when we restart this task, we will rescan
4201         // the object. It is easy to avoid this. We move the finger by
4202         // enough to point to the next possible object header (the
4203         // bitmap knows by how much we need to move it as it knows its
4204         // granularity).
4205         assert(_finger < _region_limit, "invariant");
4206         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4207         // Check if bitmap iteration was aborted while scanning the last object
4208         if (new_finger >= _region_limit) {
4209           giveup_current_region();
4210         } else {
4211           move_finger_to(new_finger);
4212         }
4213       }
4214     }
4215     // At this point we have either completed iterating over the
4216     // region we were holding on to, or we have aborted.
4217 
4218     // We then partially drain the local queue and the global stack.
4219     // (Do we really need this?)
4220     drain_local_queue(true);
4221     drain_global_stack(true);
4222 
4223     // Read the note on the claim_region() method on why it might
4224     // return NULL with potentially more regions available for
4225     // claiming and why we have to check out_of_regions() to determine
4226     // whether we're done or not.
4227     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4228       // We are going to try to claim a new region. We should have
4229       // given up on the previous one.
4230       // Separated the asserts so that we know which one fires.
4231       assert(_curr_region  == NULL, "invariant");
4232       assert(_finger       == NULL, "invariant");
4233       assert(_region_limit == NULL, "invariant");
4234       if (_cm->verbose_low()) {
4235         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4236       }
4237       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4238       if (claimed_region != NULL) {
4239         // Yes, we managed to claim one
4240         statsOnly( ++_regions_claimed );
4241 
4242         if (_cm->verbose_low()) {
4243           gclog_or_tty->print_cr("[%u] we successfully claimed "
4244                                  "region "PTR_FORMAT,
4245                                  _worker_id, claimed_region);
4246         }
4247 
4248         setup_for_region(claimed_region);
4249         assert(_curr_region == claimed_region, "invariant");
4250       }
4251       // It is important to call the regular clock here. It might take
4252       // a while to claim a region if, for example, we hit a large
4253       // block of empty regions. So we need to call the regular clock
4254       // method once round the loop to make sure it's called
4255       // frequently enough.
4256       regular_clock_call();
4257     }
4258 
4259     if (!has_aborted() && _curr_region == NULL) {
4260       assert(_cm->out_of_regions(),
4261              "at this point we should be out of regions");
4262     }
4263   } while ( _curr_region != NULL && !has_aborted());
4264 
4265   if (!has_aborted()) {
4266     // We cannot check whether the global stack is empty, since other
4267     // tasks might be pushing objects to it concurrently.
4268     assert(_cm->out_of_regions(),
4269            "at this point we should be out of regions");
4270 
4271     if (_cm->verbose_low()) {
4272       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4273     }
4274 
4275     // Try to reduce the number of available SATB buffers so that
4276     // remark has less work to do.
4277     drain_satb_buffers();
4278   }
4279 
4280   // Since we've done everything else, we can now totally drain the
4281   // local queue and global stack.
4282   drain_local_queue(false);
4283   drain_global_stack(false);
4284 
4285   // Attempt at work stealing from other task's queues.
4286   if (do_stealing && !has_aborted()) {
4287     // We have not aborted. This means that we have finished all that
4288     // we could. Let's try to do some stealing...
4289 
4290     // We cannot check whether the global stack is empty, since other
4291     // tasks might be pushing objects to it concurrently.
4292     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4293            "only way to reach here");
4294 
4295     if (_cm->verbose_low()) {
4296       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4297     }
4298 
4299     while (!has_aborted()) {
4300       oop obj;
4301       statsOnly( ++_steal_attempts );
4302 
4303       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4304         if (_cm->verbose_medium()) {
4305           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4306                                  _worker_id, (void*) obj);
4307         }
4308 
4309         statsOnly( ++_steals );
4310 
4311         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4312                "any stolen object should be marked");
4313         scan_object(obj);
4314 
4315         // And since we're towards the end, let's totally drain the
4316         // local queue and global stack.
4317         drain_local_queue(false);
4318         drain_global_stack(false);
4319       } else {
4320         break;
4321       }
4322     }
4323   }
4324 
4325   // If we are about to wrap up and go into termination, check if we
4326   // should raise the overflow flag.
4327   if (do_termination && !has_aborted()) {
4328     if (_cm->force_overflow()->should_force()) {
4329       _cm->set_has_overflown();
4330       regular_clock_call();
4331     }
4332   }
4333 
4334   // We still haven't aborted. Now, let's try to get into the
4335   // termination protocol.
4336   if (do_termination && !has_aborted()) {
4337     // We cannot check whether the global stack is empty, since other
4338     // tasks might be concurrently pushing objects on it.
4339     // Separated the asserts so that we know which one fires.
4340     assert(_cm->out_of_regions(), "only way to reach here");
4341     assert(_task_queue->size() == 0, "only way to reach here");
4342 
4343     if (_cm->verbose_low()) {
4344       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4345     }
4346 
4347     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4348 
4349     // The CMTask class also extends the TerminatorTerminator class,
4350     // hence its should_exit_termination() method will also decide
4351     // whether to exit the termination protocol or not.
4352     bool finished = (is_serial ||
4353                      _cm->terminator()->offer_termination(this));
4354     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4355     _termination_time_ms +=
4356       termination_end_time_ms - _termination_start_time_ms;
4357 
4358     if (finished) {
4359       // We're all done.
4360 
4361       if (_worker_id == 0) {
4362         // let's allow task 0 to do this
4363         if (concurrent()) {
4364           assert(_cm->concurrent_marking_in_progress(), "invariant");
4365           // we need to set this to false before the next
4366           // safepoint. This way we ensure that the marking phase
4367           // doesn't observe any more heap expansions.
4368           _cm->clear_concurrent_marking_in_progress();
4369         }
4370       }
4371 
4372       // We can now guarantee that the global stack is empty, since
4373       // all other tasks have finished. We separated the guarantees so
4374       // that, if a condition is false, we can immediately find out
4375       // which one.
4376       guarantee(_cm->out_of_regions(), "only way to reach here");
4377       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4378       guarantee(_task_queue->size() == 0, "only way to reach here");
4379       guarantee(!_cm->has_overflown(), "only way to reach here");
4380       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4381 
4382       if (_cm->verbose_low()) {
4383         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4384       }
4385     } else {
4386       // Apparently there's more work to do. Let's abort this task. It
4387       // will restart it and we can hopefully find more things to do.
4388 
4389       if (_cm->verbose_low()) {
4390         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4391                                _worker_id);
4392       }
4393 
4394       set_has_aborted();
4395       statsOnly( ++_aborted_termination );
4396     }
4397   }
4398 
4399   // Mainly for debugging purposes to make sure that a pointer to the
4400   // closure which was statically allocated in this frame doesn't
4401   // escape it by accident.
4402   set_cm_oop_closure(NULL);
4403   double end_time_ms = os::elapsedVTime() * 1000.0;
4404   double elapsed_time_ms = end_time_ms - _start_time_ms;
4405   // Update the step history.
4406   _step_times_ms.add(elapsed_time_ms);
4407 
4408   if (has_aborted()) {
4409     // The task was aborted for some reason.
4410 
4411     statsOnly( ++_aborted );
4412 
4413     if (_has_timed_out) {
4414       double diff_ms = elapsed_time_ms - _time_target_ms;
4415       // Keep statistics of how well we did with respect to hitting
4416       // our target only if we actually timed out (if we aborted for
4417       // other reasons, then the results might get skewed).
4418       _marking_step_diffs_ms.add(diff_ms);
4419     }
4420 
4421     if (_cm->has_overflown()) {
4422       // This is the interesting one. We aborted because a global
4423       // overflow was raised. This means we have to restart the
4424       // marking phase and start iterating over regions. However, in
4425       // order to do this we have to make sure that all tasks stop
4426       // what they are doing and re-initialize in a safe manner. We
4427       // will achieve this with the use of two barrier sync points.
4428 
4429       if (_cm->verbose_low()) {
4430         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4431       }
4432 
4433       if (!is_serial) {
4434         // We only need to enter the sync barrier if being called
4435         // from a parallel context
4436         _cm->enter_first_sync_barrier(_worker_id);
4437 
4438         // When we exit this sync barrier we know that all tasks have
4439         // stopped doing marking work. So, it's now safe to
4440         // re-initialize our data structures. At the end of this method,
4441         // task 0 will clear the global data structures.
4442       }
4443 
4444       statsOnly( ++_aborted_overflow );
4445 
4446       // We clear the local state of this task...
4447       clear_region_fields();
4448 
4449       if (!is_serial) {
4450         // ...and enter the second barrier.
4451         _cm->enter_second_sync_barrier(_worker_id);
4452       }
4453       // At this point, if we're during the concurrent phase of
4454       // marking, everything has been re-initialized and we're
4455       // ready to restart.
4456     }
4457 
4458     if (_cm->verbose_low()) {
4459       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4460                              "elapsed = %1.2lfms <<<<<<<<<<",
4461                              _worker_id, _time_target_ms, elapsed_time_ms);
4462       if (_cm->has_aborted()) {
4463         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4464                                _worker_id);
4465       }
4466     }
4467   } else {
4468     if (_cm->verbose_low()) {
4469       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4470                              "elapsed = %1.2lfms <<<<<<<<<<",
4471                              _worker_id, _time_target_ms, elapsed_time_ms);
4472     }
4473   }
4474 
4475   _claimed = false;
4476 }
4477 
4478 CMTask::CMTask(uint worker_id,
4479                ConcurrentMark* cm,
4480                size_t* marked_bytes,
4481                BitMap* card_bm,
4482                CMTaskQueue* task_queue,
4483                CMTaskQueueSet* task_queues)
4484   : _g1h(G1CollectedHeap::heap()),
4485     _worker_id(worker_id), _cm(cm),
4486     _claimed(false),
4487     _nextMarkBitMap(NULL), _hash_seed(17),
4488     _task_queue(task_queue),
4489     _task_queues(task_queues),
4490     _cm_oop_closure(NULL),
4491     _marked_bytes_array(marked_bytes),
4492     _card_bm(card_bm) {
4493   guarantee(task_queue != NULL, "invariant");
4494   guarantee(task_queues != NULL, "invariant");
4495 
4496   statsOnly( _clock_due_to_scanning = 0;
4497              _clock_due_to_marking  = 0 );
4498 
4499   _marking_step_diffs_ms.add(0.5);
4500 }
4501 
4502 // These are formatting macros that are used below to ensure
4503 // consistent formatting. The *_H_* versions are used to format the
4504 // header for a particular value and they should be kept consistent
4505 // with the corresponding macro. Also note that most of the macros add
4506 // the necessary white space (as a prefix) which makes them a bit
4507 // easier to compose.
4508 
4509 // All the output lines are prefixed with this string to be able to
4510 // identify them easily in a large log file.
4511 #define G1PPRL_LINE_PREFIX            "###"
4512 
4513 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4514 #ifdef _LP64
4515 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4516 #else // _LP64
4517 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4518 #endif // _LP64
4519 
4520 // For per-region info
4521 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4522 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4523 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4524 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4525 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4526 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4527 
4528 // For summary info
4529 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4530 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4531 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4532 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4533 
4534 G1PrintRegionLivenessInfoClosure::
4535 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4536   : _out(out),
4537     _total_used_bytes(0), _total_capacity_bytes(0),
4538     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4539     _hum_used_bytes(0), _hum_capacity_bytes(0),
4540     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4541     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4542   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4543   MemRegion g1_committed = g1h->g1_committed();
4544   MemRegion g1_reserved = g1h->g1_reserved();
4545   double now = os::elapsedTime();
4546 
4547   // Print the header of the output.
4548   _out->cr();
4549   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4550   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4551                  G1PPRL_SUM_ADDR_FORMAT("committed")
4552                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4553                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4554                  g1_committed.start(), g1_committed.end(),
4555                  g1_reserved.start(), g1_reserved.end(),
4556                  HeapRegion::GrainBytes);
4557   _out->print_cr(G1PPRL_LINE_PREFIX);
4558   _out->print_cr(G1PPRL_LINE_PREFIX
4559                 G1PPRL_TYPE_H_FORMAT
4560                 G1PPRL_ADDR_BASE_H_FORMAT
4561                 G1PPRL_BYTE_H_FORMAT
4562                 G1PPRL_BYTE_H_FORMAT
4563                 G1PPRL_BYTE_H_FORMAT
4564                 G1PPRL_DOUBLE_H_FORMAT
4565                 G1PPRL_BYTE_H_FORMAT
4566                 G1PPRL_BYTE_H_FORMAT,
4567                 "type", "address-range",
4568                 "used", "prev-live", "next-live", "gc-eff",
4569                 "remset", "code-roots");
4570   _out->print_cr(G1PPRL_LINE_PREFIX
4571                 G1PPRL_TYPE_H_FORMAT
4572                 G1PPRL_ADDR_BASE_H_FORMAT
4573                 G1PPRL_BYTE_H_FORMAT
4574                 G1PPRL_BYTE_H_FORMAT
4575                 G1PPRL_BYTE_H_FORMAT
4576                 G1PPRL_DOUBLE_H_FORMAT
4577                 G1PPRL_BYTE_H_FORMAT
4578                 G1PPRL_BYTE_H_FORMAT,
4579                 "", "",
4580                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4581                 "(bytes)", "(bytes)");
4582 }
4583 
4584 // It takes as a parameter a reference to one of the _hum_* fields, it
4585 // deduces the corresponding value for a region in a humongous region
4586 // series (either the region size, or what's left if the _hum_* field
4587 // is < the region size), and updates the _hum_* field accordingly.
4588 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4589   size_t bytes = 0;
4590   // The > 0 check is to deal with the prev and next live bytes which
4591   // could be 0.
4592   if (*hum_bytes > 0) {
4593     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4594     *hum_bytes -= bytes;
4595   }
4596   return bytes;
4597 }
4598 
4599 // It deduces the values for a region in a humongous region series
4600 // from the _hum_* fields and updates those accordingly. It assumes
4601 // that that _hum_* fields have already been set up from the "starts
4602 // humongous" region and we visit the regions in address order.
4603 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4604                                                      size_t* capacity_bytes,
4605                                                      size_t* prev_live_bytes,
4606                                                      size_t* next_live_bytes) {
4607   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4608   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4609   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4610   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4611   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4612 }
4613 
4614 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4615   const char* type = "";
4616   HeapWord* bottom       = r->bottom();
4617   HeapWord* end          = r->end();
4618   size_t capacity_bytes  = r->capacity();
4619   size_t used_bytes      = r->used();
4620   size_t prev_live_bytes = r->live_bytes();
4621   size_t next_live_bytes = r->next_live_bytes();
4622   double gc_eff          = r->gc_efficiency();
4623   size_t remset_bytes    = r->rem_set()->mem_size();
4624   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4625 
4626   if (r->used() == 0) {
4627     type = "FREE";
4628   } else if (r->is_survivor()) {
4629     type = "SURV";
4630   } else if (r->is_young()) {
4631     type = "EDEN";
4632   } else if (r->startsHumongous()) {
4633     type = "HUMS";
4634 
4635     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4636            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4637            "they should have been zeroed after the last time we used them");
4638     // Set up the _hum_* fields.
4639     _hum_capacity_bytes  = capacity_bytes;
4640     _hum_used_bytes      = used_bytes;
4641     _hum_prev_live_bytes = prev_live_bytes;
4642     _hum_next_live_bytes = next_live_bytes;
4643     get_hum_bytes(&used_bytes, &capacity_bytes,
4644                   &prev_live_bytes, &next_live_bytes);
4645     end = bottom + HeapRegion::GrainWords;
4646   } else if (r->continuesHumongous()) {
4647     type = "HUMC";
4648     get_hum_bytes(&used_bytes, &capacity_bytes,
4649                   &prev_live_bytes, &next_live_bytes);
4650     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4651   } else {
4652     type = "OLD";
4653   }
4654 
4655   _total_used_bytes      += used_bytes;
4656   _total_capacity_bytes  += capacity_bytes;
4657   _total_prev_live_bytes += prev_live_bytes;
4658   _total_next_live_bytes += next_live_bytes;
4659   _total_remset_bytes    += remset_bytes;
4660   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4661 
4662   // Print a line for this particular region.
4663   _out->print_cr(G1PPRL_LINE_PREFIX
4664                  G1PPRL_TYPE_FORMAT
4665                  G1PPRL_ADDR_BASE_FORMAT
4666                  G1PPRL_BYTE_FORMAT
4667                  G1PPRL_BYTE_FORMAT
4668                  G1PPRL_BYTE_FORMAT
4669                  G1PPRL_DOUBLE_FORMAT
4670                  G1PPRL_BYTE_FORMAT
4671                  G1PPRL_BYTE_FORMAT,
4672                  type, bottom, end,
4673                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4674                  remset_bytes, strong_code_roots_bytes);
4675 
4676   return false;
4677 }
4678 
4679 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4680   // add static memory usages to remembered set sizes
4681   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4682   // Print the footer of the output.
4683   _out->print_cr(G1PPRL_LINE_PREFIX);
4684   _out->print_cr(G1PPRL_LINE_PREFIX
4685                  " SUMMARY"
4686                  G1PPRL_SUM_MB_FORMAT("capacity")
4687                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4688                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4689                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4690                  G1PPRL_SUM_MB_FORMAT("remset")
4691                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4692                  bytes_to_mb(_total_capacity_bytes),
4693                  bytes_to_mb(_total_used_bytes),
4694                  perc(_total_used_bytes, _total_capacity_bytes),
4695                  bytes_to_mb(_total_prev_live_bytes),
4696                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4697                  bytes_to_mb(_total_next_live_bytes),
4698                  perc(_total_next_live_bytes, _total_capacity_bytes),
4699                  bytes_to_mb(_total_remset_bytes),
4700                  bytes_to_mb(_total_strong_code_roots_bytes));
4701   _out->cr();
4702 }