1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1YCTypes.hpp"
  43 #include "gc_implementation/g1/heapRegion.inline.hpp"
  44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  46 #include "gc_implementation/g1/vm_operations_g1.hpp"
  47 #include "gc_implementation/shared/gcHeapSummary.hpp"
  48 #include "gc_implementation/shared/gcTimer.hpp"
  49 #include "gc_implementation/shared/gcTrace.hpp"
  50 #include "gc_implementation/shared/gcTraceTime.hpp"
  51 #include "gc_implementation/shared/isGCActiveMark.hpp"
  52 #include "memory/gcLocker.inline.hpp"
  53 #include "memory/generationSpec.hpp"
  54 #include "memory/iterator.hpp"
  55 #include "memory/referenceProcessor.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/oop.pcgc.inline.hpp"
  58 #include "runtime/vmThread.hpp"
  59 #include "utilities/ticks.hpp"
  60 
  61 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  62 
  63 // turn it on so that the contents of the young list (scan-only /
  64 // to-be-collected) are printed at "strategic" points before / during
  65 // / after the collection --- this is useful for debugging
  66 #define YOUNG_LIST_VERBOSE 0
  67 // CURRENT STATUS
  68 // This file is under construction.  Search for "FIXME".
  69 
  70 // INVARIANTS/NOTES
  71 //
  72 // All allocation activity covered by the G1CollectedHeap interface is
  73 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  74 // and allocate_new_tlab, which are the "entry" points to the
  75 // allocation code from the rest of the JVM.  (Note that this does not
  76 // apply to TLAB allocation, which is not part of this interface: it
  77 // is done by clients of this interface.)
  78 
  79 // Notes on implementation of parallelism in different tasks.
  80 //
  81 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  82 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  83 // It does use run_task() which sets _n_workers in the task.
  84 // G1ParTask executes g1_process_strong_roots() ->
  85 // SharedHeap::process_strong_roots() which calls eventually to
  86 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  87 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  88 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  89 //
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   SuspendibleThreadSet* _sts;
  95   G1RemSet* _g1rs;
  96   ConcurrentG1Refine* _cg1r;
  97   bool _concurrent;
  98 public:
  99   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
 100                               G1RemSet* g1rs,
 101                               ConcurrentG1Refine* cg1r) :
 102     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 103   {}
 104   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 105     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 106     // This path is executed by the concurrent refine or mutator threads,
 107     // concurrently, and so we do not care if card_ptr contains references
 108     // that point into the collection set.
 109     assert(!oops_into_cset, "should be");
 110 
 111     if (_concurrent && _sts->should_yield()) {
 112       // Caller will actually yield.
 113       return false;
 114     }
 115     // Otherwise, we finished successfully; return true.
 116     return true;
 117   }
 118   void set_concurrent(bool b) { _concurrent = b; }
 119 };
 120 
 121 
 122 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 123   int _calls;
 124   G1CollectedHeap* _g1h;
 125   CardTableModRefBS* _ctbs;
 126   int _histo[256];
 127 public:
 128   ClearLoggedCardTableEntryClosure() :
 129     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 130   {
 131     for (int i = 0; i < 256; i++) _histo[i] = 0;
 132   }
 133   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 134     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 135       _calls++;
 136       unsigned char* ujb = (unsigned char*)card_ptr;
 137       int ind = (int)(*ujb);
 138       _histo[ind]++;
 139       *card_ptr = -1;
 140     }
 141     return true;
 142   }
 143   int calls() { return _calls; }
 144   void print_histo() {
 145     gclog_or_tty->print_cr("Card table value histogram:");
 146     for (int i = 0; i < 256; i++) {
 147       if (_histo[i] != 0) {
 148         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 149       }
 150     }
 151   }
 152 };
 153 
 154 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 155   int _calls;
 156   G1CollectedHeap* _g1h;
 157   CardTableModRefBS* _ctbs;
 158 public:
 159   RedirtyLoggedCardTableEntryClosure() :
 160     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 161 
 162   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 163     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 164       _calls++;
 165       *card_ptr = 0;
 166     }
 167     return true;
 168   }
 169   int calls() { return _calls; }
 170 };
 171 
 172 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 173 public:
 174   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 175     *card_ptr = CardTableModRefBS::dirty_card_val();
 176     return true;
 177   }
 178 };
 179 
 180 YoungList::YoungList(G1CollectedHeap* g1h) :
 181     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 182     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 183   guarantee(check_list_empty(false), "just making sure...");
 184 }
 185 
 186 void YoungList::push_region(HeapRegion *hr) {
 187   assert(!hr->is_young(), "should not already be young");
 188   assert(hr->get_next_young_region() == NULL, "cause it should!");
 189 
 190   hr->set_next_young_region(_head);
 191   _head = hr;
 192 
 193   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 194   ++_length;
 195 }
 196 
 197 void YoungList::add_survivor_region(HeapRegion* hr) {
 198   assert(hr->is_survivor(), "should be flagged as survivor region");
 199   assert(hr->get_next_young_region() == NULL, "cause it should!");
 200 
 201   hr->set_next_young_region(_survivor_head);
 202   if (_survivor_head == NULL) {
 203     _survivor_tail = hr;
 204   }
 205   _survivor_head = hr;
 206   ++_survivor_length;
 207 }
 208 
 209 void YoungList::empty_list(HeapRegion* list) {
 210   while (list != NULL) {
 211     HeapRegion* next = list->get_next_young_region();
 212     list->set_next_young_region(NULL);
 213     list->uninstall_surv_rate_group();
 214     list->set_not_young();
 215     list = next;
 216   }
 217 }
 218 
 219 void YoungList::empty_list() {
 220   assert(check_list_well_formed(), "young list should be well formed");
 221 
 222   empty_list(_head);
 223   _head = NULL;
 224   _length = 0;
 225 
 226   empty_list(_survivor_head);
 227   _survivor_head = NULL;
 228   _survivor_tail = NULL;
 229   _survivor_length = 0;
 230 
 231   _last_sampled_rs_lengths = 0;
 232 
 233   assert(check_list_empty(false), "just making sure...");
 234 }
 235 
 236 bool YoungList::check_list_well_formed() {
 237   bool ret = true;
 238 
 239   uint length = 0;
 240   HeapRegion* curr = _head;
 241   HeapRegion* last = NULL;
 242   while (curr != NULL) {
 243     if (!curr->is_young()) {
 244       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 245                              "incorrectly tagged (y: %d, surv: %d)",
 246                              curr->bottom(), curr->end(),
 247                              curr->is_young(), curr->is_survivor());
 248       ret = false;
 249     }
 250     ++length;
 251     last = curr;
 252     curr = curr->get_next_young_region();
 253   }
 254   ret = ret && (length == _length);
 255 
 256   if (!ret) {
 257     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 258     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 259                            length, _length);
 260   }
 261 
 262   return ret;
 263 }
 264 
 265 bool YoungList::check_list_empty(bool check_sample) {
 266   bool ret = true;
 267 
 268   if (_length != 0) {
 269     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 270                   _length);
 271     ret = false;
 272   }
 273   if (check_sample && _last_sampled_rs_lengths != 0) {
 274     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 275     ret = false;
 276   }
 277   if (_head != NULL) {
 278     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 279     ret = false;
 280   }
 281   if (!ret) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 283   }
 284 
 285   return ret;
 286 }
 287 
 288 void
 289 YoungList::rs_length_sampling_init() {
 290   _sampled_rs_lengths = 0;
 291   _curr               = _head;
 292 }
 293 
 294 bool
 295 YoungList::rs_length_sampling_more() {
 296   return _curr != NULL;
 297 }
 298 
 299 void
 300 YoungList::rs_length_sampling_next() {
 301   assert( _curr != NULL, "invariant" );
 302   size_t rs_length = _curr->rem_set()->occupied();
 303 
 304   _sampled_rs_lengths += rs_length;
 305 
 306   // The current region may not yet have been added to the
 307   // incremental collection set (it gets added when it is
 308   // retired as the current allocation region).
 309   if (_curr->in_collection_set()) {
 310     // Update the collection set policy information for this region
 311     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 312   }
 313 
 314   _curr = _curr->get_next_young_region();
 315   if (_curr == NULL) {
 316     _last_sampled_rs_lengths = _sampled_rs_lengths;
 317     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 318   }
 319 }
 320 
 321 void
 322 YoungList::reset_auxilary_lists() {
 323   guarantee( is_empty(), "young list should be empty" );
 324   assert(check_list_well_formed(), "young list should be well formed");
 325 
 326   // Add survivor regions to SurvRateGroup.
 327   _g1h->g1_policy()->note_start_adding_survivor_regions();
 328   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 329 
 330   int young_index_in_cset = 0;
 331   for (HeapRegion* curr = _survivor_head;
 332        curr != NULL;
 333        curr = curr->get_next_young_region()) {
 334     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 335 
 336     // The region is a non-empty survivor so let's add it to
 337     // the incremental collection set for the next evacuation
 338     // pause.
 339     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 340     young_index_in_cset += 1;
 341   }
 342   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 343   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 344 
 345   _head   = _survivor_head;
 346   _length = _survivor_length;
 347   if (_survivor_head != NULL) {
 348     assert(_survivor_tail != NULL, "cause it shouldn't be");
 349     assert(_survivor_length > 0, "invariant");
 350     _survivor_tail->set_next_young_region(NULL);
 351   }
 352 
 353   // Don't clear the survivor list handles until the start of
 354   // the next evacuation pause - we need it in order to re-tag
 355   // the survivor regions from this evacuation pause as 'young'
 356   // at the start of the next.
 357 
 358   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 359 
 360   assert(check_list_well_formed(), "young list should be well formed");
 361 }
 362 
 363 void YoungList::print() {
 364   HeapRegion* lists[] = {_head,   _survivor_head};
 365   const char* names[] = {"YOUNG", "SURVIVOR"};
 366 
 367   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 368     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 369     HeapRegion *curr = lists[list];
 370     if (curr == NULL)
 371       gclog_or_tty->print_cr("  empty");
 372     while (curr != NULL) {
 373       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 374                              HR_FORMAT_PARAMS(curr),
 375                              curr->prev_top_at_mark_start(),
 376                              curr->next_top_at_mark_start(),
 377                              curr->age_in_surv_rate_group_cond());
 378       curr = curr->get_next_young_region();
 379     }
 380   }
 381 
 382   gclog_or_tty->print_cr("");
 383 }
 384 
 385 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 386 {
 387   // Claim the right to put the region on the dirty cards region list
 388   // by installing a self pointer.
 389   HeapRegion* next = hr->get_next_dirty_cards_region();
 390   if (next == NULL) {
 391     HeapRegion* res = (HeapRegion*)
 392       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 393                           NULL);
 394     if (res == NULL) {
 395       HeapRegion* head;
 396       do {
 397         // Put the region to the dirty cards region list.
 398         head = _dirty_cards_region_list;
 399         next = (HeapRegion*)
 400           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 401         if (next == head) {
 402           assert(hr->get_next_dirty_cards_region() == hr,
 403                  "hr->get_next_dirty_cards_region() != hr");
 404           if (next == NULL) {
 405             // The last region in the list points to itself.
 406             hr->set_next_dirty_cards_region(hr);
 407           } else {
 408             hr->set_next_dirty_cards_region(next);
 409           }
 410         }
 411       } while (next != head);
 412     }
 413   }
 414 }
 415 
 416 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 417 {
 418   HeapRegion* head;
 419   HeapRegion* hr;
 420   do {
 421     head = _dirty_cards_region_list;
 422     if (head == NULL) {
 423       return NULL;
 424     }
 425     HeapRegion* new_head = head->get_next_dirty_cards_region();
 426     if (head == new_head) {
 427       // The last region.
 428       new_head = NULL;
 429     }
 430     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 431                                           head);
 432   } while (hr != head);
 433   assert(hr != NULL, "invariant");
 434   hr->set_next_dirty_cards_region(NULL);
 435   return hr;
 436 }
 437 
 438 void G1CollectedHeap::stop_conc_gc_threads() {
 439   _cg1r->stop();
 440   _cmThread->stop();
 441 }
 442 
 443 #ifdef ASSERT
 444 // A region is added to the collection set as it is retired
 445 // so an address p can point to a region which will be in the
 446 // collection set but has not yet been retired.  This method
 447 // therefore is only accurate during a GC pause after all
 448 // regions have been retired.  It is used for debugging
 449 // to check if an nmethod has references to objects that can
 450 // be move during a partial collection.  Though it can be
 451 // inaccurate, it is sufficient for G1 because the conservative
 452 // implementation of is_scavengable() for G1 will indicate that
 453 // all nmethods must be scanned during a partial collection.
 454 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 455   HeapRegion* hr = heap_region_containing(p);
 456   return hr != NULL && hr->in_collection_set();
 457 }
 458 #endif
 459 
 460 // Returns true if the reference points to an object that
 461 // can move in an incremental collection.
 462 bool G1CollectedHeap::is_scavengable(const void* p) {
 463   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 464   G1CollectorPolicy* g1p = g1h->g1_policy();
 465   HeapRegion* hr = heap_region_containing(p);
 466   if (hr == NULL) {
 467      // null
 468      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 469      return false;
 470   } else {
 471     return !hr->isHumongous();
 472   }
 473 }
 474 
 475 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 476   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 477   CardTableModRefBS* ct_bs = g1_barrier_set();
 478 
 479   // Count the dirty cards at the start.
 480   CountNonCleanMemRegionClosure count1(this);
 481   ct_bs->mod_card_iterate(&count1);
 482   int orig_count = count1.n();
 483 
 484   // First clear the logged cards.
 485   ClearLoggedCardTableEntryClosure clear;
 486   dcqs.set_closure(&clear);
 487   dcqs.apply_closure_to_all_completed_buffers();
 488   dcqs.iterate_closure_all_threads(false);
 489   clear.print_histo();
 490 
 491   // Now ensure that there's no dirty cards.
 492   CountNonCleanMemRegionClosure count2(this);
 493   ct_bs->mod_card_iterate(&count2);
 494   if (count2.n() != 0) {
 495     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 496                            count2.n(), orig_count);
 497   }
 498   guarantee(count2.n() == 0, "Card table should be clean.");
 499 
 500   RedirtyLoggedCardTableEntryClosure redirty;
 501   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 502   dcqs.apply_closure_to_all_completed_buffers();
 503   dcqs.iterate_closure_all_threads(false);
 504   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 505                          clear.calls(), orig_count);
 506   guarantee(redirty.calls() == clear.calls(),
 507             "Or else mechanism is broken.");
 508 
 509   CountNonCleanMemRegionClosure count3(this);
 510   ct_bs->mod_card_iterate(&count3);
 511   if (count3.n() != orig_count) {
 512     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 513                            orig_count, count3.n());
 514     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 515   }
 516 
 517   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 518 }
 519 
 520 // Private class members.
 521 
 522 G1CollectedHeap* G1CollectedHeap::_g1h;
 523 
 524 // Private methods.
 525 
 526 HeapRegion*
 527 G1CollectedHeap::new_region_try_secondary_free_list() {
 528   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 529   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 530     if (!_secondary_free_list.is_empty()) {
 531       if (G1ConcRegionFreeingVerbose) {
 532         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 533                                "secondary_free_list has %u entries",
 534                                _secondary_free_list.length());
 535       }
 536       // It looks as if there are free regions available on the
 537       // secondary_free_list. Let's move them to the free_list and try
 538       // again to allocate from it.
 539       append_secondary_free_list();
 540 
 541       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 542              "empty we should have moved at least one entry to the free_list");
 543       HeapRegion* res = _free_list.remove_head();
 544       if (G1ConcRegionFreeingVerbose) {
 545         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 546                                "allocated "HR_FORMAT" from secondary_free_list",
 547                                HR_FORMAT_PARAMS(res));
 548       }
 549       return res;
 550     }
 551 
 552     // Wait here until we get notified either when (a) there are no
 553     // more free regions coming or (b) some regions have been moved on
 554     // the secondary_free_list.
 555     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 556   }
 557 
 558   if (G1ConcRegionFreeingVerbose) {
 559     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 560                            "could not allocate from secondary_free_list");
 561   }
 562   return NULL;
 563 }
 564 
 565 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 566   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 567          "the only time we use this to allocate a humongous region is "
 568          "when we are allocating a single humongous region");
 569 
 570   HeapRegion* res;
 571   if (G1StressConcRegionFreeing) {
 572     if (!_secondary_free_list.is_empty()) {
 573       if (G1ConcRegionFreeingVerbose) {
 574         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 575                                "forced to look at the secondary_free_list");
 576       }
 577       res = new_region_try_secondary_free_list();
 578       if (res != NULL) {
 579         return res;
 580       }
 581     }
 582   }
 583   res = _free_list.remove_head_or_null();
 584   if (res == NULL) {
 585     if (G1ConcRegionFreeingVerbose) {
 586       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 587                              "res == NULL, trying the secondary_free_list");
 588     }
 589     res = new_region_try_secondary_free_list();
 590   }
 591   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 592     // Currently, only attempts to allocate GC alloc regions set
 593     // do_expand to true. So, we should only reach here during a
 594     // safepoint. If this assumption changes we might have to
 595     // reconsider the use of _expand_heap_after_alloc_failure.
 596     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 597 
 598     ergo_verbose1(ErgoHeapSizing,
 599                   "attempt heap expansion",
 600                   ergo_format_reason("region allocation request failed")
 601                   ergo_format_byte("allocation request"),
 602                   word_size * HeapWordSize);
 603     if (expand(word_size * HeapWordSize)) {
 604       // Given that expand() succeeded in expanding the heap, and we
 605       // always expand the heap by an amount aligned to the heap
 606       // region size, the free list should in theory not be empty. So
 607       // it would probably be OK to use remove_head(). But the extra
 608       // check for NULL is unlikely to be a performance issue here (we
 609       // just expanded the heap!) so let's just be conservative and
 610       // use remove_head_or_null().
 611       res = _free_list.remove_head_or_null();
 612     } else {
 613       _expand_heap_after_alloc_failure = false;
 614     }
 615   }
 616   return res;
 617 }
 618 
 619 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 620                                                         size_t word_size) {
 621   assert(isHumongous(word_size), "word_size should be humongous");
 622   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 623 
 624   uint first = G1_NULL_HRS_INDEX;
 625   if (num_regions == 1) {
 626     // Only one region to allocate, no need to go through the slower
 627     // path. The caller will attempt the expansion if this fails, so
 628     // let's not try to expand here too.
 629     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 630     if (hr != NULL) {
 631       first = hr->hrs_index();
 632     } else {
 633       first = G1_NULL_HRS_INDEX;
 634     }
 635   } else {
 636     // We can't allocate humongous regions while cleanupComplete() is
 637     // running, since some of the regions we find to be empty might not
 638     // yet be added to the free list and it is not straightforward to
 639     // know which list they are on so that we can remove them. Note
 640     // that we only need to do this if we need to allocate more than
 641     // one region to satisfy the current humongous allocation
 642     // request. If we are only allocating one region we use the common
 643     // region allocation code (see above).
 644     wait_while_free_regions_coming();
 645     append_secondary_free_list_if_not_empty_with_lock();
 646 
 647     if (free_regions() >= num_regions) {
 648       first = _hrs.find_contiguous(num_regions);
 649       if (first != G1_NULL_HRS_INDEX) {
 650         for (uint i = first; i < first + num_regions; ++i) {
 651           HeapRegion* hr = region_at(i);
 652           assert(hr->is_empty(), "sanity");
 653           assert(is_on_master_free_list(hr), "sanity");
 654           hr->set_pending_removal(true);
 655         }
 656         _free_list.remove_all_pending(num_regions);
 657       }
 658     }
 659   }
 660   return first;
 661 }
 662 
 663 HeapWord*
 664 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 665                                                            uint num_regions,
 666                                                            size_t word_size) {
 667   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 668   assert(isHumongous(word_size), "word_size should be humongous");
 669   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 670 
 671   // Index of last region in the series + 1.
 672   uint last = first + num_regions;
 673 
 674   // We need to initialize the region(s) we just discovered. This is
 675   // a bit tricky given that it can happen concurrently with
 676   // refinement threads refining cards on these regions and
 677   // potentially wanting to refine the BOT as they are scanning
 678   // those cards (this can happen shortly after a cleanup; see CR
 679   // 6991377). So we have to set up the region(s) carefully and in
 680   // a specific order.
 681 
 682   // The word size sum of all the regions we will allocate.
 683   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 684   assert(word_size <= word_size_sum, "sanity");
 685 
 686   // This will be the "starts humongous" region.
 687   HeapRegion* first_hr = region_at(first);
 688   // The header of the new object will be placed at the bottom of
 689   // the first region.
 690   HeapWord* new_obj = first_hr->bottom();
 691   // This will be the new end of the first region in the series that
 692   // should also match the end of the last region in the series.
 693   HeapWord* new_end = new_obj + word_size_sum;
 694   // This will be the new top of the first region that will reflect
 695   // this allocation.
 696   HeapWord* new_top = new_obj + word_size;
 697 
 698   // First, we need to zero the header of the space that we will be
 699   // allocating. When we update top further down, some refinement
 700   // threads might try to scan the region. By zeroing the header we
 701   // ensure that any thread that will try to scan the region will
 702   // come across the zero klass word and bail out.
 703   //
 704   // NOTE: It would not have been correct to have used
 705   // CollectedHeap::fill_with_object() and make the space look like
 706   // an int array. The thread that is doing the allocation will
 707   // later update the object header to a potentially different array
 708   // type and, for a very short period of time, the klass and length
 709   // fields will be inconsistent. This could cause a refinement
 710   // thread to calculate the object size incorrectly.
 711   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 712 
 713   // We will set up the first region as "starts humongous". This
 714   // will also update the BOT covering all the regions to reflect
 715   // that there is a single object that starts at the bottom of the
 716   // first region.
 717   first_hr->set_startsHumongous(new_top, new_end);
 718 
 719   // Then, if there are any, we will set up the "continues
 720   // humongous" regions.
 721   HeapRegion* hr = NULL;
 722   for (uint i = first + 1; i < last; ++i) {
 723     hr = region_at(i);
 724     hr->set_continuesHumongous(first_hr);
 725   }
 726   // If we have "continues humongous" regions (hr != NULL), then the
 727   // end of the last one should match new_end.
 728   assert(hr == NULL || hr->end() == new_end, "sanity");
 729 
 730   // Up to this point no concurrent thread would have been able to
 731   // do any scanning on any region in this series. All the top
 732   // fields still point to bottom, so the intersection between
 733   // [bottom,top] and [card_start,card_end] will be empty. Before we
 734   // update the top fields, we'll do a storestore to make sure that
 735   // no thread sees the update to top before the zeroing of the
 736   // object header and the BOT initialization.
 737   OrderAccess::storestore();
 738 
 739   // Now that the BOT and the object header have been initialized,
 740   // we can update top of the "starts humongous" region.
 741   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 742          "new_top should be in this region");
 743   first_hr->set_top(new_top);
 744   if (_hr_printer.is_active()) {
 745     HeapWord* bottom = first_hr->bottom();
 746     HeapWord* end = first_hr->orig_end();
 747     if ((first + 1) == last) {
 748       // the series has a single humongous region
 749       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 750     } else {
 751       // the series has more than one humongous regions
 752       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 753     }
 754   }
 755 
 756   // Now, we will update the top fields of the "continues humongous"
 757   // regions. The reason we need to do this is that, otherwise,
 758   // these regions would look empty and this will confuse parts of
 759   // G1. For example, the code that looks for a consecutive number
 760   // of empty regions will consider them empty and try to
 761   // re-allocate them. We can extend is_empty() to also include
 762   // !continuesHumongous(), but it is easier to just update the top
 763   // fields here. The way we set top for all regions (i.e., top ==
 764   // end for all regions but the last one, top == new_top for the
 765   // last one) is actually used when we will free up the humongous
 766   // region in free_humongous_region().
 767   hr = NULL;
 768   for (uint i = first + 1; i < last; ++i) {
 769     hr = region_at(i);
 770     if ((i + 1) == last) {
 771       // last continues humongous region
 772       assert(hr->bottom() < new_top && new_top <= hr->end(),
 773              "new_top should fall on this region");
 774       hr->set_top(new_top);
 775       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 776     } else {
 777       // not last one
 778       assert(new_top > hr->end(), "new_top should be above this region");
 779       hr->set_top(hr->end());
 780       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 781     }
 782   }
 783   // If we have continues humongous regions (hr != NULL), then the
 784   // end of the last one should match new_end and its top should
 785   // match new_top.
 786   assert(hr == NULL ||
 787          (hr->end() == new_end && hr->top() == new_top), "sanity");
 788 
 789   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 790   _summary_bytes_used += first_hr->used();
 791   _humongous_set.add(first_hr);
 792 
 793   return new_obj;
 794 }
 795 
 796 // If could fit into free regions w/o expansion, try.
 797 // Otherwise, if can expand, do so.
 798 // Otherwise, if using ex regions might help, try with ex given back.
 799 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 800   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 801 
 802   verify_region_sets_optional();
 803 
 804   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 805   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 806   uint x_num = expansion_regions();
 807   uint fs = _hrs.free_suffix();
 808   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 809   if (first == G1_NULL_HRS_INDEX) {
 810     // The only thing we can do now is attempt expansion.
 811     if (fs + x_num >= num_regions) {
 812       // If the number of regions we're trying to allocate for this
 813       // object is at most the number of regions in the free suffix,
 814       // then the call to humongous_obj_allocate_find_first() above
 815       // should have succeeded and we wouldn't be here.
 816       //
 817       // We should only be trying to expand when the free suffix is
 818       // not sufficient for the object _and_ we have some expansion
 819       // room available.
 820       assert(num_regions > fs, "earlier allocation should have succeeded");
 821 
 822       ergo_verbose1(ErgoHeapSizing,
 823                     "attempt heap expansion",
 824                     ergo_format_reason("humongous allocation request failed")
 825                     ergo_format_byte("allocation request"),
 826                     word_size * HeapWordSize);
 827       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 828         // Even though the heap was expanded, it might not have
 829         // reached the desired size. So, we cannot assume that the
 830         // allocation will succeed.
 831         first = humongous_obj_allocate_find_first(num_regions, word_size);
 832       }
 833     }
 834   }
 835 
 836   HeapWord* result = NULL;
 837   if (first != G1_NULL_HRS_INDEX) {
 838     result =
 839       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 840     assert(result != NULL, "it should always return a valid result");
 841 
 842     // A successful humongous object allocation changes the used space
 843     // information of the old generation so we need to recalculate the
 844     // sizes and update the jstat counters here.
 845     g1mm()->update_sizes();
 846   }
 847 
 848   verify_region_sets_optional();
 849 
 850   return result;
 851 }
 852 
 853 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 854   assert_heap_not_locked_and_not_at_safepoint();
 855   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 856 
 857   unsigned int dummy_gc_count_before;
 858   int dummy_gclocker_retry_count = 0;
 859   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 860 }
 861 
 862 HeapWord*
 863 G1CollectedHeap::mem_allocate(size_t word_size,
 864                               bool*  gc_overhead_limit_was_exceeded) {
 865   assert_heap_not_locked_and_not_at_safepoint();
 866 
 867   // Loop until the allocation is satisfied, or unsatisfied after GC.
 868   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 869     unsigned int gc_count_before;
 870 
 871     HeapWord* result = NULL;
 872     if (!isHumongous(word_size)) {
 873       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 874     } else {
 875       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 876     }
 877     if (result != NULL) {
 878       return result;
 879     }
 880 
 881     // Create the garbage collection operation...
 882     VM_G1CollectForAllocation op(gc_count_before, word_size);
 883     // ...and get the VM thread to execute it.
 884     VMThread::execute(&op);
 885 
 886     if (op.prologue_succeeded() && op.pause_succeeded()) {
 887       // If the operation was successful we'll return the result even
 888       // if it is NULL. If the allocation attempt failed immediately
 889       // after a Full GC, it's unlikely we'll be able to allocate now.
 890       HeapWord* result = op.result();
 891       if (result != NULL && !isHumongous(word_size)) {
 892         // Allocations that take place on VM operations do not do any
 893         // card dirtying and we have to do it here. We only have to do
 894         // this for non-humongous allocations, though.
 895         dirty_young_block(result, word_size);
 896       }
 897       return result;
 898     } else {
 899       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 900         return NULL;
 901       }
 902       assert(op.result() == NULL,
 903              "the result should be NULL if the VM op did not succeed");
 904     }
 905 
 906     // Give a warning if we seem to be looping forever.
 907     if ((QueuedAllocationWarningCount > 0) &&
 908         (try_count % QueuedAllocationWarningCount == 0)) {
 909       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 910     }
 911   }
 912 
 913   ShouldNotReachHere();
 914   return NULL;
 915 }
 916 
 917 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 918                                            unsigned int *gc_count_before_ret,
 919                                            int* gclocker_retry_count_ret) {
 920   // Make sure you read the note in attempt_allocation_humongous().
 921 
 922   assert_heap_not_locked_and_not_at_safepoint();
 923   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 924          "be called for humongous allocation requests");
 925 
 926   // We should only get here after the first-level allocation attempt
 927   // (attempt_allocation()) failed to allocate.
 928 
 929   // We will loop until a) we manage to successfully perform the
 930   // allocation or b) we successfully schedule a collection which
 931   // fails to perform the allocation. b) is the only case when we'll
 932   // return NULL.
 933   HeapWord* result = NULL;
 934   for (int try_count = 1; /* we'll return */; try_count += 1) {
 935     bool should_try_gc;
 936     unsigned int gc_count_before;
 937 
 938     {
 939       MutexLockerEx x(Heap_lock);
 940 
 941       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 942                                                       false /* bot_updates */);
 943       if (result != NULL) {
 944         return result;
 945       }
 946 
 947       // If we reach here, attempt_allocation_locked() above failed to
 948       // allocate a new region. So the mutator alloc region should be NULL.
 949       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 950 
 951       if (GC_locker::is_active_and_needs_gc()) {
 952         if (g1_policy()->can_expand_young_list()) {
 953           // No need for an ergo verbose message here,
 954           // can_expand_young_list() does this when it returns true.
 955           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 956                                                       false /* bot_updates */);
 957           if (result != NULL) {
 958             return result;
 959           }
 960         }
 961         should_try_gc = false;
 962       } else {
 963         // The GCLocker may not be active but the GCLocker initiated
 964         // GC may not yet have been performed (GCLocker::needs_gc()
 965         // returns true). In this case we do not try this GC and
 966         // wait until the GCLocker initiated GC is performed, and
 967         // then retry the allocation.
 968         if (GC_locker::needs_gc()) {
 969           should_try_gc = false;
 970         } else {
 971           // Read the GC count while still holding the Heap_lock.
 972           gc_count_before = total_collections();
 973           should_try_gc = true;
 974         }
 975       }
 976     }
 977 
 978     if (should_try_gc) {
 979       bool succeeded;
 980       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 981           GCCause::_g1_inc_collection_pause);
 982       if (result != NULL) {
 983         assert(succeeded, "only way to get back a non-NULL result");
 984         return result;
 985       }
 986 
 987       if (succeeded) {
 988         // If we get here we successfully scheduled a collection which
 989         // failed to allocate. No point in trying to allocate
 990         // further. We'll just return NULL.
 991         MutexLockerEx x(Heap_lock);
 992         *gc_count_before_ret = total_collections();
 993         return NULL;
 994       }
 995     } else {
 996       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 997         MutexLockerEx x(Heap_lock);
 998         *gc_count_before_ret = total_collections();
 999         return NULL;
1000       }
1001       // The GCLocker is either active or the GCLocker initiated
1002       // GC has not yet been performed. Stall until it is and
1003       // then retry the allocation.
1004       GC_locker::stall_until_clear();
1005       (*gclocker_retry_count_ret) += 1;
1006     }
1007 
1008     // We can reach here if we were unsuccessful in scheduling a
1009     // collection (because another thread beat us to it) or if we were
1010     // stalled due to the GC locker. In either can we should retry the
1011     // allocation attempt in case another thread successfully
1012     // performed a collection and reclaimed enough space. We do the
1013     // first attempt (without holding the Heap_lock) here and the
1014     // follow-on attempt will be at the start of the next loop
1015     // iteration (after taking the Heap_lock).
1016     result = _mutator_alloc_region.attempt_allocation(word_size,
1017                                                       false /* bot_updates */);
1018     if (result != NULL) {
1019       return result;
1020     }
1021 
1022     // Give a warning if we seem to be looping forever.
1023     if ((QueuedAllocationWarningCount > 0) &&
1024         (try_count % QueuedAllocationWarningCount == 0)) {
1025       warning("G1CollectedHeap::attempt_allocation_slow() "
1026               "retries %d times", try_count);
1027     }
1028   }
1029 
1030   ShouldNotReachHere();
1031   return NULL;
1032 }
1033 
1034 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1035                                           unsigned int * gc_count_before_ret,
1036                                           int* gclocker_retry_count_ret) {
1037   // The structure of this method has a lot of similarities to
1038   // attempt_allocation_slow(). The reason these two were not merged
1039   // into a single one is that such a method would require several "if
1040   // allocation is not humongous do this, otherwise do that"
1041   // conditional paths which would obscure its flow. In fact, an early
1042   // version of this code did use a unified method which was harder to
1043   // follow and, as a result, it had subtle bugs that were hard to
1044   // track down. So keeping these two methods separate allows each to
1045   // be more readable. It will be good to keep these two in sync as
1046   // much as possible.
1047 
1048   assert_heap_not_locked_and_not_at_safepoint();
1049   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1050          "should only be called for humongous allocations");
1051 
1052   // Humongous objects can exhaust the heap quickly, so we should check if we
1053   // need to start a marking cycle at each humongous object allocation. We do
1054   // the check before we do the actual allocation. The reason for doing it
1055   // before the allocation is that we avoid having to keep track of the newly
1056   // allocated memory while we do a GC.
1057   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1058                                            word_size)) {
1059     collect(GCCause::_g1_humongous_allocation);
1060   }
1061 
1062   // We will loop until a) we manage to successfully perform the
1063   // allocation or b) we successfully schedule a collection which
1064   // fails to perform the allocation. b) is the only case when we'll
1065   // return NULL.
1066   HeapWord* result = NULL;
1067   for (int try_count = 1; /* we'll return */; try_count += 1) {
1068     bool should_try_gc;
1069     unsigned int gc_count_before;
1070 
1071     {
1072       MutexLockerEx x(Heap_lock);
1073 
1074       // Given that humongous objects are not allocated in young
1075       // regions, we'll first try to do the allocation without doing a
1076       // collection hoping that there's enough space in the heap.
1077       result = humongous_obj_allocate(word_size);
1078       if (result != NULL) {
1079         return result;
1080       }
1081 
1082       if (GC_locker::is_active_and_needs_gc()) {
1083         should_try_gc = false;
1084       } else {
1085          // The GCLocker may not be active but the GCLocker initiated
1086         // GC may not yet have been performed (GCLocker::needs_gc()
1087         // returns true). In this case we do not try this GC and
1088         // wait until the GCLocker initiated GC is performed, and
1089         // then retry the allocation.
1090         if (GC_locker::needs_gc()) {
1091           should_try_gc = false;
1092         } else {
1093           // Read the GC count while still holding the Heap_lock.
1094           gc_count_before = total_collections();
1095           should_try_gc = true;
1096         }
1097       }
1098     }
1099 
1100     if (should_try_gc) {
1101       // If we failed to allocate the humongous object, we should try to
1102       // do a collection pause (if we're allowed) in case it reclaims
1103       // enough space for the allocation to succeed after the pause.
1104 
1105       bool succeeded;
1106       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1107           GCCause::_g1_humongous_allocation);
1108       if (result != NULL) {
1109         assert(succeeded, "only way to get back a non-NULL result");
1110         return result;
1111       }
1112 
1113       if (succeeded) {
1114         // If we get here we successfully scheduled a collection which
1115         // failed to allocate. No point in trying to allocate
1116         // further. We'll just return NULL.
1117         MutexLockerEx x(Heap_lock);
1118         *gc_count_before_ret = total_collections();
1119         return NULL;
1120       }
1121     } else {
1122       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1123         MutexLockerEx x(Heap_lock);
1124         *gc_count_before_ret = total_collections();
1125         return NULL;
1126       }
1127       // The GCLocker is either active or the GCLocker initiated
1128       // GC has not yet been performed. Stall until it is and
1129       // then retry the allocation.
1130       GC_locker::stall_until_clear();
1131       (*gclocker_retry_count_ret) += 1;
1132     }
1133 
1134     // We can reach here if we were unsuccessful in scheduling a
1135     // collection (because another thread beat us to it) or if we were
1136     // stalled due to the GC locker. In either can we should retry the
1137     // allocation attempt in case another thread successfully
1138     // performed a collection and reclaimed enough space.  Give a
1139     // warning if we seem to be looping forever.
1140 
1141     if ((QueuedAllocationWarningCount > 0) &&
1142         (try_count % QueuedAllocationWarningCount == 0)) {
1143       warning("G1CollectedHeap::attempt_allocation_humongous() "
1144               "retries %d times", try_count);
1145     }
1146   }
1147 
1148   ShouldNotReachHere();
1149   return NULL;
1150 }
1151 
1152 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1153                                        bool expect_null_mutator_alloc_region) {
1154   assert_at_safepoint(true /* should_be_vm_thread */);
1155   assert(_mutator_alloc_region.get() == NULL ||
1156                                              !expect_null_mutator_alloc_region,
1157          "the current alloc region was unexpectedly found to be non-NULL");
1158 
1159   if (!isHumongous(word_size)) {
1160     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1161                                                       false /* bot_updates */);
1162   } else {
1163     HeapWord* result = humongous_obj_allocate(word_size);
1164     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1165       g1_policy()->set_initiate_conc_mark_if_possible();
1166     }
1167     return result;
1168   }
1169 
1170   ShouldNotReachHere();
1171 }
1172 
1173 class PostMCRemSetClearClosure: public HeapRegionClosure {
1174   G1CollectedHeap* _g1h;
1175   ModRefBarrierSet* _mr_bs;
1176 public:
1177   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1178     _g1h(g1h), _mr_bs(mr_bs) {}
1179 
1180   bool doHeapRegion(HeapRegion* r) {
1181     HeapRegionRemSet* hrrs = r->rem_set();
1182 
1183     if (r->continuesHumongous()) {
1184       // We'll assert that the strong code root list and RSet is empty
1185       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1186       assert(hrrs->occupied() == 0, "RSet should be empty");
1187       return false;
1188     }
1189 
1190     _g1h->reset_gc_time_stamps(r);
1191     hrrs->clear();
1192     // You might think here that we could clear just the cards
1193     // corresponding to the used region.  But no: if we leave a dirty card
1194     // in a region we might allocate into, then it would prevent that card
1195     // from being enqueued, and cause it to be missed.
1196     // Re: the performance cost: we shouldn't be doing full GC anyway!
1197     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1198 
1199     return false;
1200   }
1201 };
1202 
1203 void G1CollectedHeap::clear_rsets_post_compaction() {
1204   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1205   heap_region_iterate(&rs_clear);
1206 }
1207 
1208 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1209   G1CollectedHeap*   _g1h;
1210   UpdateRSOopClosure _cl;
1211   int                _worker_i;
1212 public:
1213   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1214     _cl(g1->g1_rem_set(), worker_i),
1215     _worker_i(worker_i),
1216     _g1h(g1)
1217   { }
1218 
1219   bool doHeapRegion(HeapRegion* r) {
1220     if (!r->continuesHumongous()) {
1221       _cl.set_from(r);
1222       r->oop_iterate(&_cl);
1223     }
1224     return false;
1225   }
1226 };
1227 
1228 class ParRebuildRSTask: public AbstractGangTask {
1229   G1CollectedHeap* _g1;
1230 public:
1231   ParRebuildRSTask(G1CollectedHeap* g1)
1232     : AbstractGangTask("ParRebuildRSTask"),
1233       _g1(g1)
1234   { }
1235 
1236   void work(uint worker_id) {
1237     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1238     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1239                                           _g1->workers()->active_workers(),
1240                                          HeapRegion::RebuildRSClaimValue);
1241   }
1242 };
1243 
1244 class PostCompactionPrinterClosure: public HeapRegionClosure {
1245 private:
1246   G1HRPrinter* _hr_printer;
1247 public:
1248   bool doHeapRegion(HeapRegion* hr) {
1249     assert(!hr->is_young(), "not expecting to find young regions");
1250     // We only generate output for non-empty regions.
1251     if (!hr->is_empty()) {
1252       if (!hr->isHumongous()) {
1253         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1254       } else if (hr->startsHumongous()) {
1255         if (hr->region_num() == 1) {
1256           // single humongous region
1257           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1258         } else {
1259           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1260         }
1261       } else {
1262         assert(hr->continuesHumongous(), "only way to get here");
1263         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1264       }
1265     }
1266     return false;
1267   }
1268 
1269   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1270     : _hr_printer(hr_printer) { }
1271 };
1272 
1273 void G1CollectedHeap::print_hrs_post_compaction() {
1274   PostCompactionPrinterClosure cl(hr_printer());
1275   heap_region_iterate(&cl);
1276 }
1277 
1278 bool G1CollectedHeap::do_collection(bool explicit_gc,
1279                                     bool clear_all_soft_refs,
1280                                     size_t word_size) {
1281   assert_at_safepoint(true /* should_be_vm_thread */);
1282 
1283   if (GC_locker::check_active_before_gc()) {
1284     return false;
1285   }
1286 
1287   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1288   gc_timer->register_gc_start();
1289 
1290   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1291   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1292 
1293   SvcGCMarker sgcm(SvcGCMarker::FULL);
1294   ResourceMark rm;
1295 
1296   print_heap_before_gc();
1297   trace_heap_before_gc(gc_tracer);
1298 
1299   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1300 
1301   verify_region_sets_optional();
1302 
1303   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1304                            collector_policy()->should_clear_all_soft_refs();
1305 
1306   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1307 
1308   {
1309     IsGCActiveMark x;
1310 
1311     // Timing
1312     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1313     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1314     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1315 
1316     {
1317       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1318       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1319       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1320 
1321       double start = os::elapsedTime();
1322       g1_policy()->record_full_collection_start();
1323 
1324       // Note: When we have a more flexible GC logging framework that
1325       // allows us to add optional attributes to a GC log record we
1326       // could consider timing and reporting how long we wait in the
1327       // following two methods.
1328       wait_while_free_regions_coming();
1329       // If we start the compaction before the CM threads finish
1330       // scanning the root regions we might trip them over as we'll
1331       // be moving objects / updating references. So let's wait until
1332       // they are done. By telling them to abort, they should complete
1333       // early.
1334       _cm->root_regions()->abort();
1335       _cm->root_regions()->wait_until_scan_finished();
1336       append_secondary_free_list_if_not_empty_with_lock();
1337 
1338       gc_prologue(true);
1339       increment_total_collections(true /* full gc */);
1340       increment_old_marking_cycles_started();
1341 
1342       assert(used() == recalculate_used(), "Should be equal");
1343 
1344       verify_before_gc();
1345 
1346       pre_full_gc_dump(gc_timer);
1347 
1348       COMPILER2_PRESENT(DerivedPointerTable::clear());
1349 
1350       // Disable discovery and empty the discovered lists
1351       // for the CM ref processor.
1352       ref_processor_cm()->disable_discovery();
1353       ref_processor_cm()->abandon_partial_discovery();
1354       ref_processor_cm()->verify_no_references_recorded();
1355 
1356       // Abandon current iterations of concurrent marking and concurrent
1357       // refinement, if any are in progress. We have to do this before
1358       // wait_until_scan_finished() below.
1359       concurrent_mark()->abort();
1360 
1361       // Make sure we'll choose a new allocation region afterwards.
1362       release_mutator_alloc_region();
1363       abandon_gc_alloc_regions();
1364       g1_rem_set()->cleanupHRRS();
1365 
1366       // We should call this after we retire any currently active alloc
1367       // regions so that all the ALLOC / RETIRE events are generated
1368       // before the start GC event.
1369       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1370 
1371       // We may have added regions to the current incremental collection
1372       // set between the last GC or pause and now. We need to clear the
1373       // incremental collection set and then start rebuilding it afresh
1374       // after this full GC.
1375       abandon_collection_set(g1_policy()->inc_cset_head());
1376       g1_policy()->clear_incremental_cset();
1377       g1_policy()->stop_incremental_cset_building();
1378 
1379       tear_down_region_sets(false /* free_list_only */);
1380       g1_policy()->set_gcs_are_young(true);
1381 
1382       // See the comments in g1CollectedHeap.hpp and
1383       // G1CollectedHeap::ref_processing_init() about
1384       // how reference processing currently works in G1.
1385 
1386       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1387       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1388 
1389       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1390       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1391 
1392       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1393       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1394 
1395       // Do collection work
1396       {
1397         HandleMark hm;  // Discard invalid handles created during gc
1398         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1399       }
1400 
1401       assert(free_regions() == 0, "we should not have added any free regions");
1402       rebuild_region_sets(false /* free_list_only */);
1403 
1404       // Enqueue any discovered reference objects that have
1405       // not been removed from the discovered lists.
1406       ref_processor_stw()->enqueue_discovered_references();
1407 
1408       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1409 
1410       MemoryService::track_memory_usage();
1411 
1412       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1413       ref_processor_stw()->verify_no_references_recorded();
1414 
1415       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1416       ClassLoaderDataGraph::purge();
1417       MetaspaceAux::verify_metrics();
1418 
1419       // Note: since we've just done a full GC, concurrent
1420       // marking is no longer active. Therefore we need not
1421       // re-enable reference discovery for the CM ref processor.
1422       // That will be done at the start of the next marking cycle.
1423       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1424       ref_processor_cm()->verify_no_references_recorded();
1425 
1426       reset_gc_time_stamp();
1427       // Since everything potentially moved, we will clear all remembered
1428       // sets, and clear all cards.  Later we will rebuild remembered
1429       // sets. We will also reset the GC time stamps of the regions.
1430       clear_rsets_post_compaction();
1431       check_gc_time_stamps();
1432 
1433       // Resize the heap if necessary.
1434       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1435 
1436       if (_hr_printer.is_active()) {
1437         // We should do this after we potentially resize the heap so
1438         // that all the COMMIT / UNCOMMIT events are generated before
1439         // the end GC event.
1440 
1441         print_hrs_post_compaction();
1442         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1443       }
1444 
1445       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1446       if (hot_card_cache->use_cache()) {
1447         hot_card_cache->reset_card_counts();
1448         hot_card_cache->reset_hot_cache();
1449       }
1450 
1451       // Rebuild remembered sets of all regions.
1452       if (G1CollectedHeap::use_parallel_gc_threads()) {
1453         uint n_workers =
1454           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1455                                                   workers()->active_workers(),
1456                                                   Threads::number_of_non_daemon_threads());
1457         assert(UseDynamicNumberOfGCThreads ||
1458                n_workers == workers()->total_workers(),
1459                "If not dynamic should be using all the  workers");
1460         workers()->set_active_workers(n_workers);
1461         // Set parallel threads in the heap (_n_par_threads) only
1462         // before a parallel phase and always reset it to 0 after
1463         // the phase so that the number of parallel threads does
1464         // no get carried forward to a serial phase where there
1465         // may be code that is "possibly_parallel".
1466         set_par_threads(n_workers);
1467 
1468         ParRebuildRSTask rebuild_rs_task(this);
1469         assert(check_heap_region_claim_values(
1470                HeapRegion::InitialClaimValue), "sanity check");
1471         assert(UseDynamicNumberOfGCThreads ||
1472                workers()->active_workers() == workers()->total_workers(),
1473                "Unless dynamic should use total workers");
1474         // Use the most recent number of  active workers
1475         assert(workers()->active_workers() > 0,
1476                "Active workers not properly set");
1477         set_par_threads(workers()->active_workers());
1478         workers()->run_task(&rebuild_rs_task);
1479         set_par_threads(0);
1480         assert(check_heap_region_claim_values(
1481                HeapRegion::RebuildRSClaimValue), "sanity check");
1482         reset_heap_region_claim_values();
1483       } else {
1484         RebuildRSOutOfRegionClosure rebuild_rs(this);
1485         heap_region_iterate(&rebuild_rs);
1486       }
1487 
1488       // Rebuild the strong code root lists for each region
1489       rebuild_strong_code_roots();
1490 
1491       if (true) { // FIXME
1492         MetaspaceGC::compute_new_size();
1493       }
1494 
1495 #ifdef TRACESPINNING
1496       ParallelTaskTerminator::print_termination_counts();
1497 #endif
1498 
1499       // Discard all rset updates
1500       JavaThread::dirty_card_queue_set().abandon_logs();
1501       assert(!G1DeferredRSUpdate
1502              || (G1DeferredRSUpdate &&
1503                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1504 
1505       _young_list->reset_sampled_info();
1506       // At this point there should be no regions in the
1507       // entire heap tagged as young.
1508       assert(check_young_list_empty(true /* check_heap */),
1509              "young list should be empty at this point");
1510 
1511       // Update the number of full collections that have been completed.
1512       increment_old_marking_cycles_completed(false /* concurrent */);
1513 
1514       _hrs.verify_optional();
1515       verify_region_sets_optional();
1516 
1517       verify_after_gc();
1518 
1519       // Start a new incremental collection set for the next pause
1520       assert(g1_policy()->collection_set() == NULL, "must be");
1521       g1_policy()->start_incremental_cset_building();
1522 
1523       // Clear the _cset_fast_test bitmap in anticipation of adding
1524       // regions to the incremental collection set for the next
1525       // evacuation pause.
1526       clear_cset_fast_test();
1527 
1528       init_mutator_alloc_region();
1529 
1530       double end = os::elapsedTime();
1531       g1_policy()->record_full_collection_end();
1532 
1533       if (G1Log::fine()) {
1534         g1_policy()->print_heap_transition();
1535       }
1536 
1537       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1538       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1539       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1540       // before any GC notifications are raised.
1541       g1mm()->update_sizes();
1542 
1543       gc_epilogue(true);
1544     }
1545 
1546     if (G1Log::finer()) {
1547       g1_policy()->print_detailed_heap_transition(true /* full */);
1548     }
1549 
1550     print_heap_after_gc();
1551     trace_heap_after_gc(gc_tracer);
1552 
1553     post_full_gc_dump(gc_timer);
1554 
1555     gc_timer->register_gc_end();
1556     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1557   }
1558 
1559   return true;
1560 }
1561 
1562 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1563   // do_collection() will return whether it succeeded in performing
1564   // the GC. Currently, there is no facility on the
1565   // do_full_collection() API to notify the caller than the collection
1566   // did not succeed (e.g., because it was locked out by the GC
1567   // locker). So, right now, we'll ignore the return value.
1568   bool dummy = do_collection(true,                /* explicit_gc */
1569                              clear_all_soft_refs,
1570                              0                    /* word_size */);
1571 }
1572 
1573 // This code is mostly copied from TenuredGeneration.
1574 void
1575 G1CollectedHeap::
1576 resize_if_necessary_after_full_collection(size_t word_size) {
1577   // Include the current allocation, if any, and bytes that will be
1578   // pre-allocated to support collections, as "used".
1579   const size_t used_after_gc = used();
1580   const size_t capacity_after_gc = capacity();
1581   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1582 
1583   // This is enforced in arguments.cpp.
1584   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1585          "otherwise the code below doesn't make sense");
1586 
1587   // We don't have floating point command-line arguments
1588   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1589   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1590   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1591   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1592 
1593   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1594   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1595 
1596   // We have to be careful here as these two calculations can overflow
1597   // 32-bit size_t's.
1598   double used_after_gc_d = (double) used_after_gc;
1599   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1600   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1601 
1602   // Let's make sure that they are both under the max heap size, which
1603   // by default will make them fit into a size_t.
1604   double desired_capacity_upper_bound = (double) max_heap_size;
1605   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1606                                     desired_capacity_upper_bound);
1607   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1608                                     desired_capacity_upper_bound);
1609 
1610   // We can now safely turn them into size_t's.
1611   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1612   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1613 
1614   // This assert only makes sense here, before we adjust them
1615   // with respect to the min and max heap size.
1616   assert(minimum_desired_capacity <= maximum_desired_capacity,
1617          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1618                  "maximum_desired_capacity = "SIZE_FORMAT,
1619                  minimum_desired_capacity, maximum_desired_capacity));
1620 
1621   // Should not be greater than the heap max size. No need to adjust
1622   // it with respect to the heap min size as it's a lower bound (i.e.,
1623   // we'll try to make the capacity larger than it, not smaller).
1624   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1625   // Should not be less than the heap min size. No need to adjust it
1626   // with respect to the heap max size as it's an upper bound (i.e.,
1627   // we'll try to make the capacity smaller than it, not greater).
1628   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1629 
1630   if (capacity_after_gc < minimum_desired_capacity) {
1631     // Don't expand unless it's significant
1632     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1633     ergo_verbose4(ErgoHeapSizing,
1634                   "attempt heap expansion",
1635                   ergo_format_reason("capacity lower than "
1636                                      "min desired capacity after Full GC")
1637                   ergo_format_byte("capacity")
1638                   ergo_format_byte("occupancy")
1639                   ergo_format_byte_perc("min desired capacity"),
1640                   capacity_after_gc, used_after_gc,
1641                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1642     expand(expand_bytes);
1643 
1644     // No expansion, now see if we want to shrink
1645   } else if (capacity_after_gc > maximum_desired_capacity) {
1646     // Capacity too large, compute shrinking size
1647     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1648     ergo_verbose4(ErgoHeapSizing,
1649                   "attempt heap shrinking",
1650                   ergo_format_reason("capacity higher than "
1651                                      "max desired capacity after Full GC")
1652                   ergo_format_byte("capacity")
1653                   ergo_format_byte("occupancy")
1654                   ergo_format_byte_perc("max desired capacity"),
1655                   capacity_after_gc, used_after_gc,
1656                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1657     shrink(shrink_bytes);
1658   }
1659 }
1660 
1661 
1662 HeapWord*
1663 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1664                                            bool* succeeded) {
1665   assert_at_safepoint(true /* should_be_vm_thread */);
1666 
1667   *succeeded = true;
1668   // Let's attempt the allocation first.
1669   HeapWord* result =
1670     attempt_allocation_at_safepoint(word_size,
1671                                  false /* expect_null_mutator_alloc_region */);
1672   if (result != NULL) {
1673     assert(*succeeded, "sanity");
1674     return result;
1675   }
1676 
1677   // In a G1 heap, we're supposed to keep allocation from failing by
1678   // incremental pauses.  Therefore, at least for now, we'll favor
1679   // expansion over collection.  (This might change in the future if we can
1680   // do something smarter than full collection to satisfy a failed alloc.)
1681   result = expand_and_allocate(word_size);
1682   if (result != NULL) {
1683     assert(*succeeded, "sanity");
1684     return result;
1685   }
1686 
1687   // Expansion didn't work, we'll try to do a Full GC.
1688   bool gc_succeeded = do_collection(false, /* explicit_gc */
1689                                     false, /* clear_all_soft_refs */
1690                                     word_size);
1691   if (!gc_succeeded) {
1692     *succeeded = false;
1693     return NULL;
1694   }
1695 
1696   // Retry the allocation
1697   result = attempt_allocation_at_safepoint(word_size,
1698                                   true /* expect_null_mutator_alloc_region */);
1699   if (result != NULL) {
1700     assert(*succeeded, "sanity");
1701     return result;
1702   }
1703 
1704   // Then, try a Full GC that will collect all soft references.
1705   gc_succeeded = do_collection(false, /* explicit_gc */
1706                                true,  /* clear_all_soft_refs */
1707                                word_size);
1708   if (!gc_succeeded) {
1709     *succeeded = false;
1710     return NULL;
1711   }
1712 
1713   // Retry the allocation once more
1714   result = attempt_allocation_at_safepoint(word_size,
1715                                   true /* expect_null_mutator_alloc_region */);
1716   if (result != NULL) {
1717     assert(*succeeded, "sanity");
1718     return result;
1719   }
1720 
1721   assert(!collector_policy()->should_clear_all_soft_refs(),
1722          "Flag should have been handled and cleared prior to this point");
1723 
1724   // What else?  We might try synchronous finalization later.  If the total
1725   // space available is large enough for the allocation, then a more
1726   // complete compaction phase than we've tried so far might be
1727   // appropriate.
1728   assert(*succeeded, "sanity");
1729   return NULL;
1730 }
1731 
1732 // Attempting to expand the heap sufficiently
1733 // to support an allocation of the given "word_size".  If
1734 // successful, perform the allocation and return the address of the
1735 // allocated block, or else "NULL".
1736 
1737 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1738   assert_at_safepoint(true /* should_be_vm_thread */);
1739 
1740   verify_region_sets_optional();
1741 
1742   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1743   ergo_verbose1(ErgoHeapSizing,
1744                 "attempt heap expansion",
1745                 ergo_format_reason("allocation request failed")
1746                 ergo_format_byte("allocation request"),
1747                 word_size * HeapWordSize);
1748   if (expand(expand_bytes)) {
1749     _hrs.verify_optional();
1750     verify_region_sets_optional();
1751     return attempt_allocation_at_safepoint(word_size,
1752                                  false /* expect_null_mutator_alloc_region */);
1753   }
1754   return NULL;
1755 }
1756 
1757 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1758                                              HeapWord* new_end) {
1759   assert(old_end != new_end, "don't call this otherwise");
1760   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1761 
1762   // Update the committed mem region.
1763   _g1_committed.set_end(new_end);
1764   // Tell the card table about the update.
1765   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1766   // Tell the BOT about the update.
1767   _bot_shared->resize(_g1_committed.word_size());
1768   // Tell the hot card cache about the update
1769   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1770 }
1771 
1772 bool G1CollectedHeap::expand(size_t expand_bytes) {
1773   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1774   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1775                                        HeapRegion::GrainBytes);
1776   ergo_verbose2(ErgoHeapSizing,
1777                 "expand the heap",
1778                 ergo_format_byte("requested expansion amount")
1779                 ergo_format_byte("attempted expansion amount"),
1780                 expand_bytes, aligned_expand_bytes);
1781 
1782   if (_g1_storage.uncommitted_size() == 0) {
1783     ergo_verbose0(ErgoHeapSizing,
1784                       "did not expand the heap",
1785                       ergo_format_reason("heap already fully expanded"));
1786     return false;
1787   }
1788 
1789   // First commit the memory.
1790   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1791   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1792   if (successful) {
1793     // Then propagate this update to the necessary data structures.
1794     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1795     update_committed_space(old_end, new_end);
1796 
1797     FreeRegionList expansion_list("Local Expansion List");
1798     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1799     assert(mr.start() == old_end, "post-condition");
1800     // mr might be a smaller region than what was requested if
1801     // expand_by() was unable to allocate the HeapRegion instances
1802     assert(mr.end() <= new_end, "post-condition");
1803 
1804     size_t actual_expand_bytes = mr.byte_size();
1805     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1806     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1807            "post-condition");
1808     if (actual_expand_bytes < aligned_expand_bytes) {
1809       // We could not expand _hrs to the desired size. In this case we
1810       // need to shrink the committed space accordingly.
1811       assert(mr.end() < new_end, "invariant");
1812 
1813       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1814       // First uncommit the memory.
1815       _g1_storage.shrink_by(diff_bytes);
1816       // Then propagate this update to the necessary data structures.
1817       update_committed_space(new_end, mr.end());
1818     }
1819     _free_list.add_as_tail(&expansion_list);
1820 
1821     if (_hr_printer.is_active()) {
1822       HeapWord* curr = mr.start();
1823       while (curr < mr.end()) {
1824         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1825         _hr_printer.commit(curr, curr_end);
1826         curr = curr_end;
1827       }
1828       assert(curr == mr.end(), "post-condition");
1829     }
1830     g1_policy()->record_new_heap_size(n_regions());
1831   } else {
1832     ergo_verbose0(ErgoHeapSizing,
1833                   "did not expand the heap",
1834                   ergo_format_reason("heap expansion operation failed"));
1835     // The expansion of the virtual storage space was unsuccessful.
1836     // Let's see if it was because we ran out of swap.
1837     if (G1ExitOnExpansionFailure &&
1838         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1839       // We had head room...
1840       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1841     }
1842   }
1843   return successful;
1844 }
1845 
1846 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1847   size_t aligned_shrink_bytes =
1848     ReservedSpace::page_align_size_down(shrink_bytes);
1849   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1850                                          HeapRegion::GrainBytes);
1851   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1852 
1853   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1854   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1855   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1856 
1857   ergo_verbose3(ErgoHeapSizing,
1858                 "shrink the heap",
1859                 ergo_format_byte("requested shrinking amount")
1860                 ergo_format_byte("aligned shrinking amount")
1861                 ergo_format_byte("attempted shrinking amount"),
1862                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1863   if (num_regions_removed > 0) {
1864     _g1_storage.shrink_by(shrunk_bytes);
1865     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1866 
1867     if (_hr_printer.is_active()) {
1868       HeapWord* curr = old_end;
1869       while (curr > new_end) {
1870         HeapWord* curr_end = curr;
1871         curr -= HeapRegion::GrainWords;
1872         _hr_printer.uncommit(curr, curr_end);
1873       }
1874     }
1875 
1876     _expansion_regions += num_regions_removed;
1877     update_committed_space(old_end, new_end);
1878     HeapRegionRemSet::shrink_heap(n_regions());
1879     g1_policy()->record_new_heap_size(n_regions());
1880   } else {
1881     ergo_verbose0(ErgoHeapSizing,
1882                   "did not shrink the heap",
1883                   ergo_format_reason("heap shrinking operation failed"));
1884   }
1885 }
1886 
1887 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1888   verify_region_sets_optional();
1889 
1890   // We should only reach here at the end of a Full GC which means we
1891   // should not not be holding to any GC alloc regions. The method
1892   // below will make sure of that and do any remaining clean up.
1893   abandon_gc_alloc_regions();
1894 
1895   // Instead of tearing down / rebuilding the free lists here, we
1896   // could instead use the remove_all_pending() method on free_list to
1897   // remove only the ones that we need to remove.
1898   tear_down_region_sets(true /* free_list_only */);
1899   shrink_helper(shrink_bytes);
1900   rebuild_region_sets(true /* free_list_only */);
1901 
1902   _hrs.verify_optional();
1903   verify_region_sets_optional();
1904 }
1905 
1906 // Public methods.
1907 
1908 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1909 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1910 #endif // _MSC_VER
1911 
1912 
1913 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1914   SharedHeap(policy_),
1915   _g1_policy(policy_),
1916   _dirty_card_queue_set(false),
1917   _into_cset_dirty_card_queue_set(false),
1918   _is_alive_closure_cm(this),
1919   _is_alive_closure_stw(this),
1920   _ref_processor_cm(NULL),
1921   _ref_processor_stw(NULL),
1922   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1923   _bot_shared(NULL),
1924   _evac_failure_scan_stack(NULL),
1925   _mark_in_progress(false),
1926   _cg1r(NULL), _summary_bytes_used(0),
1927   _g1mm(NULL),
1928   _refine_cte_cl(NULL),
1929   _full_collection(false),
1930   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1931   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1932   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1933   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1934   _free_regions_coming(false),
1935   _young_list(new YoungList(this)),
1936   _gc_time_stamp(0),
1937   _retained_old_gc_alloc_region(NULL),
1938   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1939   _old_plab_stats(OldPLABSize, PLABWeight),
1940   _expand_heap_after_alloc_failure(true),
1941   _surviving_young_words(NULL),
1942   _old_marking_cycles_started(0),
1943   _old_marking_cycles_completed(0),
1944   _concurrent_cycle_started(false),
1945   _in_cset_fast_test(NULL),
1946   _in_cset_fast_test_base(NULL),
1947   _dirty_cards_region_list(NULL),
1948   _worker_cset_start_region(NULL),
1949   _worker_cset_start_region_time_stamp(NULL),
1950   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1951   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1952   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1953   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1954 
1955   _g1h = this;
1956   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1957     vm_exit_during_initialization("Failed necessary allocation.");
1958   }
1959 
1960   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1961 
1962   int n_queues = MAX2((int)ParallelGCThreads, 1);
1963   _task_queues = new RefToScanQueueSet(n_queues);
1964 
1965   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1966   assert(n_rem_sets > 0, "Invariant.");
1967 
1968   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1969   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1970   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1971 
1972   for (int i = 0; i < n_queues; i++) {
1973     RefToScanQueue* q = new RefToScanQueue();
1974     q->initialize();
1975     _task_queues->register_queue(i, q);
1976     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1977   }
1978   clear_cset_start_regions();
1979 
1980   // Initialize the G1EvacuationFailureALot counters and flags.
1981   NOT_PRODUCT(reset_evacuation_should_fail();)
1982 
1983   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1984 }
1985 
1986 jint G1CollectedHeap::initialize() {
1987   CollectedHeap::pre_initialize();
1988   os::enable_vtime();
1989 
1990   G1Log::init();
1991 
1992   // Necessary to satisfy locking discipline assertions.
1993 
1994   MutexLocker x(Heap_lock);
1995 
1996   // We have to initialize the printer before committing the heap, as
1997   // it will be used then.
1998   _hr_printer.set_active(G1PrintHeapRegions);
1999 
2000   // While there are no constraints in the GC code that HeapWordSize
2001   // be any particular value, there are multiple other areas in the
2002   // system which believe this to be true (e.g. oop->object_size in some
2003   // cases incorrectly returns the size in wordSize units rather than
2004   // HeapWordSize).
2005   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2006 
2007   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2008   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2009   size_t heap_alignment = collector_policy()->heap_alignment();
2010 
2011   // Ensure that the sizes are properly aligned.
2012   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2013   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2014   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2015 
2016   _cg1r = new ConcurrentG1Refine(this);
2017 
2018   // Reserve the maximum.
2019 
2020   // When compressed oops are enabled, the preferred heap base
2021   // is calculated by subtracting the requested size from the
2022   // 32Gb boundary and using the result as the base address for
2023   // heap reservation. If the requested size is not aligned to
2024   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2025   // into the ReservedHeapSpace constructor) then the actual
2026   // base of the reserved heap may end up differing from the
2027   // address that was requested (i.e. the preferred heap base).
2028   // If this happens then we could end up using a non-optimal
2029   // compressed oops mode.
2030 
2031   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2032                                                  heap_alignment);
2033 
2034   // It is important to do this in a way such that concurrent readers can't
2035   // temporarily think something is in the heap.  (I've actually seen this
2036   // happen in asserts: DLD.)
2037   _reserved.set_word_size(0);
2038   _reserved.set_start((HeapWord*)heap_rs.base());
2039   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2040 
2041   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2042 
2043   // Create the gen rem set (and barrier set) for the entire reserved region.
2044   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2045   set_barrier_set(rem_set()->bs());
2046   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2047     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2048     return JNI_ENOMEM;
2049   }
2050 
2051   // Also create a G1 rem set.
2052   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2053 
2054   // Carve out the G1 part of the heap.
2055 
2056   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2057   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2058                            g1_rs.size()/HeapWordSize);
2059 
2060   _g1_storage.initialize(g1_rs, 0);
2061   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2062   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2063                   (HeapWord*) _g1_reserved.end());
2064   assert(_hrs.max_length() == _expansion_regions,
2065          err_msg("max length: %u expansion regions: %u",
2066                  _hrs.max_length(), _expansion_regions));
2067 
2068   // Do later initialization work for concurrent refinement.
2069   _cg1r->init();
2070 
2071   // 6843694 - ensure that the maximum region index can fit
2072   // in the remembered set structures.
2073   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2074   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2075 
2076   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2077   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2078   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2079             "too many cards per region");
2080 
2081   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2082 
2083   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2084                                              heap_word_size(init_byte_size));
2085 
2086   _g1h = this;
2087 
2088   _in_cset_fast_test_length = max_regions();
2089   _in_cset_fast_test_base =
2090                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2091 
2092   // We're biasing _in_cset_fast_test to avoid subtracting the
2093   // beginning of the heap every time we want to index; basically
2094   // it's the same with what we do with the card table.
2095   _in_cset_fast_test = _in_cset_fast_test_base -
2096                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2097 
2098   // Clear the _cset_fast_test bitmap in anticipation of adding
2099   // regions to the incremental collection set for the first
2100   // evacuation pause.
2101   clear_cset_fast_test();
2102 
2103   // Create the ConcurrentMark data structure and thread.
2104   // (Must do this late, so that "max_regions" is defined.)
2105   _cm = new ConcurrentMark(this, heap_rs);
2106   if (_cm == NULL || !_cm->completed_initialization()) {
2107     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2108     return JNI_ENOMEM;
2109   }
2110   _cmThread = _cm->cmThread();
2111 
2112   // Initialize the from_card cache structure of HeapRegionRemSet.
2113   HeapRegionRemSet::init_heap(max_regions());
2114 
2115   // Now expand into the initial heap size.
2116   if (!expand(init_byte_size)) {
2117     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2118     return JNI_ENOMEM;
2119   }
2120 
2121   // Perform any initialization actions delegated to the policy.
2122   g1_policy()->init();
2123 
2124   _refine_cte_cl =
2125     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2126                                     g1_rem_set(),
2127                                     concurrent_g1_refine());
2128   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2129 
2130   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2131                                                SATB_Q_FL_lock,
2132                                                G1SATBProcessCompletedThreshold,
2133                                                Shared_SATB_Q_lock);
2134 
2135   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2136                                                 DirtyCardQ_FL_lock,
2137                                                 concurrent_g1_refine()->yellow_zone(),
2138                                                 concurrent_g1_refine()->red_zone(),
2139                                                 Shared_DirtyCardQ_lock);
2140 
2141   if (G1DeferredRSUpdate) {
2142     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2143                                       DirtyCardQ_FL_lock,
2144                                       -1, // never trigger processing
2145                                       -1, // no limit on length
2146                                       Shared_DirtyCardQ_lock,
2147                                       &JavaThread::dirty_card_queue_set());
2148   }
2149 
2150   // Initialize the card queue set used to hold cards containing
2151   // references into the collection set.
2152   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2153                                              DirtyCardQ_FL_lock,
2154                                              -1, // never trigger processing
2155                                              -1, // no limit on length
2156                                              Shared_DirtyCardQ_lock,
2157                                              &JavaThread::dirty_card_queue_set());
2158 
2159   // In case we're keeping closure specialization stats, initialize those
2160   // counts and that mechanism.
2161   SpecializationStats::clear();
2162 
2163   // Here we allocate the dummy full region that is required by the
2164   // G1AllocRegion class. If we don't pass an address in the reserved
2165   // space here, lots of asserts fire.
2166 
2167   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2168                                              _g1_reserved.start());
2169   // We'll re-use the same region whether the alloc region will
2170   // require BOT updates or not and, if it doesn't, then a non-young
2171   // region will complain that it cannot support allocations without
2172   // BOT updates. So we'll tag the dummy region as young to avoid that.
2173   dummy_region->set_young();
2174   // Make sure it's full.
2175   dummy_region->set_top(dummy_region->end());
2176   G1AllocRegion::setup(this, dummy_region);
2177 
2178   init_mutator_alloc_region();
2179 
2180   // Do create of the monitoring and management support so that
2181   // values in the heap have been properly initialized.
2182   _g1mm = new G1MonitoringSupport(this);
2183 
2184   return JNI_OK;
2185 }
2186 
2187 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2188   return HeapRegion::max_region_size();
2189 }
2190 
2191 void G1CollectedHeap::ref_processing_init() {
2192   // Reference processing in G1 currently works as follows:
2193   //
2194   // * There are two reference processor instances. One is
2195   //   used to record and process discovered references
2196   //   during concurrent marking; the other is used to
2197   //   record and process references during STW pauses
2198   //   (both full and incremental).
2199   // * Both ref processors need to 'span' the entire heap as
2200   //   the regions in the collection set may be dotted around.
2201   //
2202   // * For the concurrent marking ref processor:
2203   //   * Reference discovery is enabled at initial marking.
2204   //   * Reference discovery is disabled and the discovered
2205   //     references processed etc during remarking.
2206   //   * Reference discovery is MT (see below).
2207   //   * Reference discovery requires a barrier (see below).
2208   //   * Reference processing may or may not be MT
2209   //     (depending on the value of ParallelRefProcEnabled
2210   //     and ParallelGCThreads).
2211   //   * A full GC disables reference discovery by the CM
2212   //     ref processor and abandons any entries on it's
2213   //     discovered lists.
2214   //
2215   // * For the STW processor:
2216   //   * Non MT discovery is enabled at the start of a full GC.
2217   //   * Processing and enqueueing during a full GC is non-MT.
2218   //   * During a full GC, references are processed after marking.
2219   //
2220   //   * Discovery (may or may not be MT) is enabled at the start
2221   //     of an incremental evacuation pause.
2222   //   * References are processed near the end of a STW evacuation pause.
2223   //   * For both types of GC:
2224   //     * Discovery is atomic - i.e. not concurrent.
2225   //     * Reference discovery will not need a barrier.
2226 
2227   SharedHeap::ref_processing_init();
2228   MemRegion mr = reserved_region();
2229 
2230   // Concurrent Mark ref processor
2231   _ref_processor_cm =
2232     new ReferenceProcessor(mr,    // span
2233                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2234                                 // mt processing
2235                            (int) ParallelGCThreads,
2236                                 // degree of mt processing
2237                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2238                                 // mt discovery
2239                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2240                                 // degree of mt discovery
2241                            false,
2242                                 // Reference discovery is not atomic
2243                            &_is_alive_closure_cm,
2244                                 // is alive closure
2245                                 // (for efficiency/performance)
2246                            true);
2247                                 // Setting next fields of discovered
2248                                 // lists requires a barrier.
2249 
2250   // STW ref processor
2251   _ref_processor_stw =
2252     new ReferenceProcessor(mr,    // span
2253                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2254                                 // mt processing
2255                            MAX2((int)ParallelGCThreads, 1),
2256                                 // degree of mt processing
2257                            (ParallelGCThreads > 1),
2258                                 // mt discovery
2259                            MAX2((int)ParallelGCThreads, 1),
2260                                 // degree of mt discovery
2261                            true,
2262                                 // Reference discovery is atomic
2263                            &_is_alive_closure_stw,
2264                                 // is alive closure
2265                                 // (for efficiency/performance)
2266                            false);
2267                                 // Setting next fields of discovered
2268                                 // lists does not require a barrier.
2269 }
2270 
2271 size_t G1CollectedHeap::capacity() const {
2272   return _g1_committed.byte_size();
2273 }
2274 
2275 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2276   assert(!hr->continuesHumongous(), "pre-condition");
2277   hr->reset_gc_time_stamp();
2278   if (hr->startsHumongous()) {
2279     uint first_index = hr->hrs_index() + 1;
2280     uint last_index = hr->last_hc_index();
2281     for (uint i = first_index; i < last_index; i += 1) {
2282       HeapRegion* chr = region_at(i);
2283       assert(chr->continuesHumongous(), "sanity");
2284       chr->reset_gc_time_stamp();
2285     }
2286   }
2287 }
2288 
2289 #ifndef PRODUCT
2290 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2291 private:
2292   unsigned _gc_time_stamp;
2293   bool _failures;
2294 
2295 public:
2296   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2297     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2298 
2299   virtual bool doHeapRegion(HeapRegion* hr) {
2300     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2301     if (_gc_time_stamp != region_gc_time_stamp) {
2302       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2303                              "expected %d", HR_FORMAT_PARAMS(hr),
2304                              region_gc_time_stamp, _gc_time_stamp);
2305       _failures = true;
2306     }
2307     return false;
2308   }
2309 
2310   bool failures() { return _failures; }
2311 };
2312 
2313 void G1CollectedHeap::check_gc_time_stamps() {
2314   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2315   heap_region_iterate(&cl);
2316   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2317 }
2318 #endif // PRODUCT
2319 
2320 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2321                                                  DirtyCardQueue* into_cset_dcq,
2322                                                  bool concurrent,
2323                                                  int worker_i) {
2324   // Clean cards in the hot card cache
2325   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2326   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2327 
2328   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2329   int n_completed_buffers = 0;
2330   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2331     n_completed_buffers++;
2332   }
2333   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2334   dcqs.clear_n_completed_buffers();
2335   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2336 }
2337 
2338 
2339 // Computes the sum of the storage used by the various regions.
2340 
2341 size_t G1CollectedHeap::used() const {
2342   assert(Heap_lock->owner() != NULL,
2343          "Should be owned on this thread's behalf.");
2344   size_t result = _summary_bytes_used;
2345   // Read only once in case it is set to NULL concurrently
2346   HeapRegion* hr = _mutator_alloc_region.get();
2347   if (hr != NULL)
2348     result += hr->used();
2349   return result;
2350 }
2351 
2352 size_t G1CollectedHeap::used_unlocked() const {
2353   size_t result = _summary_bytes_used;
2354   return result;
2355 }
2356 
2357 class SumUsedClosure: public HeapRegionClosure {
2358   size_t _used;
2359 public:
2360   SumUsedClosure() : _used(0) {}
2361   bool doHeapRegion(HeapRegion* r) {
2362     if (!r->continuesHumongous()) {
2363       _used += r->used();
2364     }
2365     return false;
2366   }
2367   size_t result() { return _used; }
2368 };
2369 
2370 size_t G1CollectedHeap::recalculate_used() const {
2371   SumUsedClosure blk;
2372   heap_region_iterate(&blk);
2373   return blk.result();
2374 }
2375 
2376 size_t G1CollectedHeap::unsafe_max_alloc() {
2377   if (free_regions() > 0) return HeapRegion::GrainBytes;
2378   // otherwise, is there space in the current allocation region?
2379 
2380   // We need to store the current allocation region in a local variable
2381   // here. The problem is that this method doesn't take any locks and
2382   // there may be other threads which overwrite the current allocation
2383   // region field. attempt_allocation(), for example, sets it to NULL
2384   // and this can happen *after* the NULL check here but before the call
2385   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2386   // to be a problem in the optimized build, since the two loads of the
2387   // current allocation region field are optimized away.
2388   HeapRegion* hr = _mutator_alloc_region.get();
2389   if (hr == NULL) {
2390     return 0;
2391   }
2392   return hr->free();
2393 }
2394 
2395 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2396   switch (cause) {
2397     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2398     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2399     case GCCause::_g1_humongous_allocation: return true;
2400     default:                                return false;
2401   }
2402 }
2403 
2404 #ifndef PRODUCT
2405 void G1CollectedHeap::allocate_dummy_regions() {
2406   // Let's fill up most of the region
2407   size_t word_size = HeapRegion::GrainWords - 1024;
2408   // And as a result the region we'll allocate will be humongous.
2409   guarantee(isHumongous(word_size), "sanity");
2410 
2411   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2412     // Let's use the existing mechanism for the allocation
2413     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2414     if (dummy_obj != NULL) {
2415       MemRegion mr(dummy_obj, word_size);
2416       CollectedHeap::fill_with_object(mr);
2417     } else {
2418       // If we can't allocate once, we probably cannot allocate
2419       // again. Let's get out of the loop.
2420       break;
2421     }
2422   }
2423 }
2424 #endif // !PRODUCT
2425 
2426 void G1CollectedHeap::increment_old_marking_cycles_started() {
2427   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2428     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2429     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2430     _old_marking_cycles_started, _old_marking_cycles_completed));
2431 
2432   _old_marking_cycles_started++;
2433 }
2434 
2435 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2436   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2437 
2438   // We assume that if concurrent == true, then the caller is a
2439   // concurrent thread that was joined the Suspendible Thread
2440   // Set. If there's ever a cheap way to check this, we should add an
2441   // assert here.
2442 
2443   // Given that this method is called at the end of a Full GC or of a
2444   // concurrent cycle, and those can be nested (i.e., a Full GC can
2445   // interrupt a concurrent cycle), the number of full collections
2446   // completed should be either one (in the case where there was no
2447   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2448   // behind the number of full collections started.
2449 
2450   // This is the case for the inner caller, i.e. a Full GC.
2451   assert(concurrent ||
2452          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2453          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2454          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2455                  "is inconsistent with _old_marking_cycles_completed = %u",
2456                  _old_marking_cycles_started, _old_marking_cycles_completed));
2457 
2458   // This is the case for the outer caller, i.e. the concurrent cycle.
2459   assert(!concurrent ||
2460          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2461          err_msg("for outer caller (concurrent cycle): "
2462                  "_old_marking_cycles_started = %u "
2463                  "is inconsistent with _old_marking_cycles_completed = %u",
2464                  _old_marking_cycles_started, _old_marking_cycles_completed));
2465 
2466   _old_marking_cycles_completed += 1;
2467 
2468   // We need to clear the "in_progress" flag in the CM thread before
2469   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2470   // is set) so that if a waiter requests another System.gc() it doesn't
2471   // incorrectly see that a marking cycle is still in progress.
2472   if (concurrent) {
2473     _cmThread->clear_in_progress();
2474   }
2475 
2476   // This notify_all() will ensure that a thread that called
2477   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2478   // and it's waiting for a full GC to finish will be woken up. It is
2479   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2480   FullGCCount_lock->notify_all();
2481 }
2482 
2483 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2484   _concurrent_cycle_started = true;
2485   _gc_timer_cm->register_gc_start(start_time);
2486 
2487   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2488   trace_heap_before_gc(_gc_tracer_cm);
2489 }
2490 
2491 void G1CollectedHeap::register_concurrent_cycle_end() {
2492   if (_concurrent_cycle_started) {
2493     if (_cm->has_aborted()) {
2494       _gc_tracer_cm->report_concurrent_mode_failure();
2495     }
2496 
2497     _gc_timer_cm->register_gc_end();
2498     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2499 
2500     _concurrent_cycle_started = false;
2501   }
2502 }
2503 
2504 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2505   if (_concurrent_cycle_started) {
2506     trace_heap_after_gc(_gc_tracer_cm);
2507   }
2508 }
2509 
2510 G1YCType G1CollectedHeap::yc_type() {
2511   bool is_young = g1_policy()->gcs_are_young();
2512   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2513   bool is_during_mark = mark_in_progress();
2514 
2515   if (is_initial_mark) {
2516     return InitialMark;
2517   } else if (is_during_mark) {
2518     return DuringMark;
2519   } else if (is_young) {
2520     return Normal;
2521   } else {
2522     return Mixed;
2523   }
2524 }
2525 
2526 void G1CollectedHeap::collect(GCCause::Cause cause) {
2527   assert_heap_not_locked();
2528 
2529   unsigned int gc_count_before;
2530   unsigned int old_marking_count_before;
2531   bool retry_gc;
2532 
2533   do {
2534     retry_gc = false;
2535 
2536     {
2537       MutexLocker ml(Heap_lock);
2538 
2539       // Read the GC count while holding the Heap_lock
2540       gc_count_before = total_collections();
2541       old_marking_count_before = _old_marking_cycles_started;
2542     }
2543 
2544     if (should_do_concurrent_full_gc(cause)) {
2545       // Schedule an initial-mark evacuation pause that will start a
2546       // concurrent cycle. We're setting word_size to 0 which means that
2547       // we are not requesting a post-GC allocation.
2548       VM_G1IncCollectionPause op(gc_count_before,
2549                                  0,     /* word_size */
2550                                  true,  /* should_initiate_conc_mark */
2551                                  g1_policy()->max_pause_time_ms(),
2552                                  cause);
2553 
2554       VMThread::execute(&op);
2555       if (!op.pause_succeeded()) {
2556         if (old_marking_count_before == _old_marking_cycles_started) {
2557           retry_gc = op.should_retry_gc();
2558         } else {
2559           // A Full GC happened while we were trying to schedule the
2560           // initial-mark GC. No point in starting a new cycle given
2561           // that the whole heap was collected anyway.
2562         }
2563 
2564         if (retry_gc) {
2565           if (GC_locker::is_active_and_needs_gc()) {
2566             GC_locker::stall_until_clear();
2567           }
2568         }
2569       }
2570     } else {
2571       if (cause == GCCause::_gc_locker
2572           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2573 
2574         // Schedule a standard evacuation pause. We're setting word_size
2575         // to 0 which means that we are not requesting a post-GC allocation.
2576         VM_G1IncCollectionPause op(gc_count_before,
2577                                    0,     /* word_size */
2578                                    false, /* should_initiate_conc_mark */
2579                                    g1_policy()->max_pause_time_ms(),
2580                                    cause);
2581         VMThread::execute(&op);
2582       } else {
2583         // Schedule a Full GC.
2584         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2585         VMThread::execute(&op);
2586       }
2587     }
2588   } while (retry_gc);
2589 }
2590 
2591 bool G1CollectedHeap::is_in(const void* p) const {
2592   if (_g1_committed.contains(p)) {
2593     // Given that we know that p is in the committed space,
2594     // heap_region_containing_raw() should successfully
2595     // return the containing region.
2596     HeapRegion* hr = heap_region_containing_raw(p);
2597     return hr->is_in(p);
2598   } else {
2599     return false;
2600   }
2601 }
2602 
2603 // Iteration functions.
2604 
2605 // Iterates an OopClosure over all ref-containing fields of objects
2606 // within a HeapRegion.
2607 
2608 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2609   MemRegion _mr;
2610   ExtendedOopClosure* _cl;
2611 public:
2612   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2613     : _mr(mr), _cl(cl) {}
2614   bool doHeapRegion(HeapRegion* r) {
2615     if (!r->continuesHumongous()) {
2616       r->oop_iterate(_cl);
2617     }
2618     return false;
2619   }
2620 };
2621 
2622 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2623   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2624   heap_region_iterate(&blk);
2625 }
2626 
2627 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2628   IterateOopClosureRegionClosure blk(mr, cl);
2629   heap_region_iterate(&blk);
2630 }
2631 
2632 // Iterates an ObjectClosure over all objects within a HeapRegion.
2633 
2634 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2635   ObjectClosure* _cl;
2636 public:
2637   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2638   bool doHeapRegion(HeapRegion* r) {
2639     if (! r->continuesHumongous()) {
2640       r->object_iterate(_cl);
2641     }
2642     return false;
2643   }
2644 };
2645 
2646 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2647   IterateObjectClosureRegionClosure blk(cl);
2648   heap_region_iterate(&blk);
2649 }
2650 
2651 // Calls a SpaceClosure on a HeapRegion.
2652 
2653 class SpaceClosureRegionClosure: public HeapRegionClosure {
2654   SpaceClosure* _cl;
2655 public:
2656   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2657   bool doHeapRegion(HeapRegion* r) {
2658     _cl->do_space(r);
2659     return false;
2660   }
2661 };
2662 
2663 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2664   SpaceClosureRegionClosure blk(cl);
2665   heap_region_iterate(&blk);
2666 }
2667 
2668 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2669   _hrs.iterate(cl);
2670 }
2671 
2672 void
2673 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2674                                                  uint worker_id,
2675                                                  uint no_of_par_workers,
2676                                                  jint claim_value) {
2677   const uint regions = n_regions();
2678   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2679                              no_of_par_workers :
2680                              1);
2681   assert(UseDynamicNumberOfGCThreads ||
2682          no_of_par_workers == workers()->total_workers(),
2683          "Non dynamic should use fixed number of workers");
2684   // try to spread out the starting points of the workers
2685   const HeapRegion* start_hr =
2686                         start_region_for_worker(worker_id, no_of_par_workers);
2687   const uint start_index = start_hr->hrs_index();
2688 
2689   // each worker will actually look at all regions
2690   for (uint count = 0; count < regions; ++count) {
2691     const uint index = (start_index + count) % regions;
2692     assert(0 <= index && index < regions, "sanity");
2693     HeapRegion* r = region_at(index);
2694     // we'll ignore "continues humongous" regions (we'll process them
2695     // when we come across their corresponding "start humongous"
2696     // region) and regions already claimed
2697     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2698       continue;
2699     }
2700     // OK, try to claim it
2701     if (r->claimHeapRegion(claim_value)) {
2702       // success!
2703       assert(!r->continuesHumongous(), "sanity");
2704       if (r->startsHumongous()) {
2705         // If the region is "starts humongous" we'll iterate over its
2706         // "continues humongous" first; in fact we'll do them
2707         // first. The order is important. In on case, calling the
2708         // closure on the "starts humongous" region might de-allocate
2709         // and clear all its "continues humongous" regions and, as a
2710         // result, we might end up processing them twice. So, we'll do
2711         // them first (notice: most closures will ignore them anyway) and
2712         // then we'll do the "starts humongous" region.
2713         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2714           HeapRegion* chr = region_at(ch_index);
2715 
2716           // if the region has already been claimed or it's not
2717           // "continues humongous" we're done
2718           if (chr->claim_value() == claim_value ||
2719               !chr->continuesHumongous()) {
2720             break;
2721           }
2722 
2723           // No one should have claimed it directly. We can given
2724           // that we claimed its "starts humongous" region.
2725           assert(chr->claim_value() != claim_value, "sanity");
2726           assert(chr->humongous_start_region() == r, "sanity");
2727 
2728           if (chr->claimHeapRegion(claim_value)) {
2729             // we should always be able to claim it; no one else should
2730             // be trying to claim this region
2731 
2732             bool res2 = cl->doHeapRegion(chr);
2733             assert(!res2, "Should not abort");
2734 
2735             // Right now, this holds (i.e., no closure that actually
2736             // does something with "continues humongous" regions
2737             // clears them). We might have to weaken it in the future,
2738             // but let's leave these two asserts here for extra safety.
2739             assert(chr->continuesHumongous(), "should still be the case");
2740             assert(chr->humongous_start_region() == r, "sanity");
2741           } else {
2742             guarantee(false, "we should not reach here");
2743           }
2744         }
2745       }
2746 
2747       assert(!r->continuesHumongous(), "sanity");
2748       bool res = cl->doHeapRegion(r);
2749       assert(!res, "Should not abort");
2750     }
2751   }
2752 }
2753 
2754 class ResetClaimValuesClosure: public HeapRegionClosure {
2755 public:
2756   bool doHeapRegion(HeapRegion* r) {
2757     r->set_claim_value(HeapRegion::InitialClaimValue);
2758     return false;
2759   }
2760 };
2761 
2762 void G1CollectedHeap::reset_heap_region_claim_values() {
2763   ResetClaimValuesClosure blk;
2764   heap_region_iterate(&blk);
2765 }
2766 
2767 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2768   ResetClaimValuesClosure blk;
2769   collection_set_iterate(&blk);
2770 }
2771 
2772 #ifdef ASSERT
2773 // This checks whether all regions in the heap have the correct claim
2774 // value. I also piggy-backed on this a check to ensure that the
2775 // humongous_start_region() information on "continues humongous"
2776 // regions is correct.
2777 
2778 class CheckClaimValuesClosure : public HeapRegionClosure {
2779 private:
2780   jint _claim_value;
2781   uint _failures;
2782   HeapRegion* _sh_region;
2783 
2784 public:
2785   CheckClaimValuesClosure(jint claim_value) :
2786     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2787   bool doHeapRegion(HeapRegion* r) {
2788     if (r->claim_value() != _claim_value) {
2789       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2790                              "claim value = %d, should be %d",
2791                              HR_FORMAT_PARAMS(r),
2792                              r->claim_value(), _claim_value);
2793       ++_failures;
2794     }
2795     if (!r->isHumongous()) {
2796       _sh_region = NULL;
2797     } else if (r->startsHumongous()) {
2798       _sh_region = r;
2799     } else if (r->continuesHumongous()) {
2800       if (r->humongous_start_region() != _sh_region) {
2801         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2802                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2803                                HR_FORMAT_PARAMS(r),
2804                                r->humongous_start_region(),
2805                                _sh_region);
2806         ++_failures;
2807       }
2808     }
2809     return false;
2810   }
2811   uint failures() { return _failures; }
2812 };
2813 
2814 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2815   CheckClaimValuesClosure cl(claim_value);
2816   heap_region_iterate(&cl);
2817   return cl.failures() == 0;
2818 }
2819 
2820 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2821 private:
2822   jint _claim_value;
2823   uint _failures;
2824 
2825 public:
2826   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2827     _claim_value(claim_value), _failures(0) { }
2828 
2829   uint failures() { return _failures; }
2830 
2831   bool doHeapRegion(HeapRegion* hr) {
2832     assert(hr->in_collection_set(), "how?");
2833     assert(!hr->isHumongous(), "H-region in CSet");
2834     if (hr->claim_value() != _claim_value) {
2835       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2836                              "claim value = %d, should be %d",
2837                              HR_FORMAT_PARAMS(hr),
2838                              hr->claim_value(), _claim_value);
2839       _failures += 1;
2840     }
2841     return false;
2842   }
2843 };
2844 
2845 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2846   CheckClaimValuesInCSetHRClosure cl(claim_value);
2847   collection_set_iterate(&cl);
2848   return cl.failures() == 0;
2849 }
2850 #endif // ASSERT
2851 
2852 // Clear the cached CSet starting regions and (more importantly)
2853 // the time stamps. Called when we reset the GC time stamp.
2854 void G1CollectedHeap::clear_cset_start_regions() {
2855   assert(_worker_cset_start_region != NULL, "sanity");
2856   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2857 
2858   int n_queues = MAX2((int)ParallelGCThreads, 1);
2859   for (int i = 0; i < n_queues; i++) {
2860     _worker_cset_start_region[i] = NULL;
2861     _worker_cset_start_region_time_stamp[i] = 0;
2862   }
2863 }
2864 
2865 // Given the id of a worker, obtain or calculate a suitable
2866 // starting region for iterating over the current collection set.
2867 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2868   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2869 
2870   HeapRegion* result = NULL;
2871   unsigned gc_time_stamp = get_gc_time_stamp();
2872 
2873   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2874     // Cached starting region for current worker was set
2875     // during the current pause - so it's valid.
2876     // Note: the cached starting heap region may be NULL
2877     // (when the collection set is empty).
2878     result = _worker_cset_start_region[worker_i];
2879     assert(result == NULL || result->in_collection_set(), "sanity");
2880     return result;
2881   }
2882 
2883   // The cached entry was not valid so let's calculate
2884   // a suitable starting heap region for this worker.
2885 
2886   // We want the parallel threads to start their collection
2887   // set iteration at different collection set regions to
2888   // avoid contention.
2889   // If we have:
2890   //          n collection set regions
2891   //          p threads
2892   // Then thread t will start at region floor ((t * n) / p)
2893 
2894   result = g1_policy()->collection_set();
2895   if (G1CollectedHeap::use_parallel_gc_threads()) {
2896     uint cs_size = g1_policy()->cset_region_length();
2897     uint active_workers = workers()->active_workers();
2898     assert(UseDynamicNumberOfGCThreads ||
2899              active_workers == workers()->total_workers(),
2900              "Unless dynamic should use total workers");
2901 
2902     uint end_ind   = (cs_size * worker_i) / active_workers;
2903     uint start_ind = 0;
2904 
2905     if (worker_i > 0 &&
2906         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2907       // Previous workers starting region is valid
2908       // so let's iterate from there
2909       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2910       result = _worker_cset_start_region[worker_i - 1];
2911     }
2912 
2913     for (uint i = start_ind; i < end_ind; i++) {
2914       result = result->next_in_collection_set();
2915     }
2916   }
2917 
2918   // Note: the calculated starting heap region may be NULL
2919   // (when the collection set is empty).
2920   assert(result == NULL || result->in_collection_set(), "sanity");
2921   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2922          "should be updated only once per pause");
2923   _worker_cset_start_region[worker_i] = result;
2924   OrderAccess::storestore();
2925   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2926   return result;
2927 }
2928 
2929 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2930                                                      uint no_of_par_workers) {
2931   uint worker_num =
2932            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2933   assert(UseDynamicNumberOfGCThreads ||
2934          no_of_par_workers == workers()->total_workers(),
2935          "Non dynamic should use fixed number of workers");
2936   const uint start_index = n_regions() * worker_i / worker_num;
2937   return region_at(start_index);
2938 }
2939 
2940 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2941   HeapRegion* r = g1_policy()->collection_set();
2942   while (r != NULL) {
2943     HeapRegion* next = r->next_in_collection_set();
2944     if (cl->doHeapRegion(r)) {
2945       cl->incomplete();
2946       return;
2947     }
2948     r = next;
2949   }
2950 }
2951 
2952 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2953                                                   HeapRegionClosure *cl) {
2954   if (r == NULL) {
2955     // The CSet is empty so there's nothing to do.
2956     return;
2957   }
2958 
2959   assert(r->in_collection_set(),
2960          "Start region must be a member of the collection set.");
2961   HeapRegion* cur = r;
2962   while (cur != NULL) {
2963     HeapRegion* next = cur->next_in_collection_set();
2964     if (cl->doHeapRegion(cur) && false) {
2965       cl->incomplete();
2966       return;
2967     }
2968     cur = next;
2969   }
2970   cur = g1_policy()->collection_set();
2971   while (cur != r) {
2972     HeapRegion* next = cur->next_in_collection_set();
2973     if (cl->doHeapRegion(cur) && false) {
2974       cl->incomplete();
2975       return;
2976     }
2977     cur = next;
2978   }
2979 }
2980 
2981 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2982   return n_regions() > 0 ? region_at(0) : NULL;
2983 }
2984 
2985 
2986 Space* G1CollectedHeap::space_containing(const void* addr) const {
2987   Space* res = heap_region_containing(addr);
2988   return res;
2989 }
2990 
2991 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2992   Space* sp = space_containing(addr);
2993   if (sp != NULL) {
2994     return sp->block_start(addr);
2995   }
2996   return NULL;
2997 }
2998 
2999 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3000   Space* sp = space_containing(addr);
3001   assert(sp != NULL, "block_size of address outside of heap");
3002   return sp->block_size(addr);
3003 }
3004 
3005 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3006   Space* sp = space_containing(addr);
3007   return sp->block_is_obj(addr);
3008 }
3009 
3010 bool G1CollectedHeap::supports_tlab_allocation() const {
3011   return true;
3012 }
3013 
3014 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3015   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
3016 }
3017 
3018 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
3019   return young_list()->eden_used_bytes();
3020 }
3021 
3022 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
3023 // must be smaller than the humongous object limit.
3024 size_t G1CollectedHeap::max_tlab_size() const {
3025   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
3026 }
3027 
3028 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3029   // Return the remaining space in the cur alloc region, but not less than
3030   // the min TLAB size.
3031 
3032   // Also, this value can be at most the humongous object threshold,
3033   // since we can't allow tlabs to grow big enough to accommodate
3034   // humongous objects.
3035 
3036   HeapRegion* hr = _mutator_alloc_region.get();
3037   size_t max_tlab = max_tlab_size() * wordSize;
3038   if (hr == NULL) {
3039     return max_tlab;
3040   } else {
3041     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3042   }
3043 }
3044 
3045 size_t G1CollectedHeap::max_capacity() const {
3046   return _g1_reserved.byte_size();
3047 }
3048 
3049 jlong G1CollectedHeap::millis_since_last_gc() {
3050   // assert(false, "NYI");
3051   return 0;
3052 }
3053 
3054 void G1CollectedHeap::prepare_for_verify() {
3055   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3056     ensure_parsability(false);
3057   }
3058   g1_rem_set()->prepare_for_verify();
3059 }
3060 
3061 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3062                                               VerifyOption vo) {
3063   switch (vo) {
3064   case VerifyOption_G1UsePrevMarking:
3065     return hr->obj_allocated_since_prev_marking(obj);
3066   case VerifyOption_G1UseNextMarking:
3067     return hr->obj_allocated_since_next_marking(obj);
3068   case VerifyOption_G1UseMarkWord:
3069     return false;
3070   default:
3071     ShouldNotReachHere();
3072   }
3073   return false; // keep some compilers happy
3074 }
3075 
3076 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3077   switch (vo) {
3078   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3079   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3080   case VerifyOption_G1UseMarkWord:    return NULL;
3081   default:                            ShouldNotReachHere();
3082   }
3083   return NULL; // keep some compilers happy
3084 }
3085 
3086 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3087   switch (vo) {
3088   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3089   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3090   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3091   default:                            ShouldNotReachHere();
3092   }
3093   return false; // keep some compilers happy
3094 }
3095 
3096 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3097   switch (vo) {
3098   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3099   case VerifyOption_G1UseNextMarking: return "NTAMS";
3100   case VerifyOption_G1UseMarkWord:    return "NONE";
3101   default:                            ShouldNotReachHere();
3102   }
3103   return NULL; // keep some compilers happy
3104 }
3105 
3106 class VerifyRootsClosure: public OopClosure {
3107 private:
3108   G1CollectedHeap* _g1h;
3109   VerifyOption     _vo;
3110   bool             _failures;
3111 public:
3112   // _vo == UsePrevMarking -> use "prev" marking information,
3113   // _vo == UseNextMarking -> use "next" marking information,
3114   // _vo == UseMarkWord    -> use mark word from object header.
3115   VerifyRootsClosure(VerifyOption vo) :
3116     _g1h(G1CollectedHeap::heap()),
3117     _vo(vo),
3118     _failures(false) { }
3119 
3120   bool failures() { return _failures; }
3121 
3122   template <class T> void do_oop_nv(T* p) {
3123     T heap_oop = oopDesc::load_heap_oop(p);
3124     if (!oopDesc::is_null(heap_oop)) {
3125       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3126       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3127         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3128                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3129         if (_vo == VerifyOption_G1UseMarkWord) {
3130           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3131         }
3132         obj->print_on(gclog_or_tty);
3133         _failures = true;
3134       }
3135     }
3136   }
3137 
3138   void do_oop(oop* p)       { do_oop_nv(p); }
3139   void do_oop(narrowOop* p) { do_oop_nv(p); }
3140 };
3141 
3142 class G1VerifyCodeRootOopClosure: public OopClosure {
3143   G1CollectedHeap* _g1h;
3144   OopClosure* _root_cl;
3145   nmethod* _nm;
3146   VerifyOption _vo;
3147   bool _failures;
3148 
3149   template <class T> void do_oop_work(T* p) {
3150     // First verify that this root is live
3151     _root_cl->do_oop(p);
3152 
3153     if (!G1VerifyHeapRegionCodeRoots) {
3154       // We're not verifying the code roots attached to heap region.
3155       return;
3156     }
3157 
3158     // Don't check the code roots during marking verification in a full GC
3159     if (_vo == VerifyOption_G1UseMarkWord) {
3160       return;
3161     }
3162 
3163     // Now verify that the current nmethod (which contains p) is
3164     // in the code root list of the heap region containing the
3165     // object referenced by p.
3166 
3167     T heap_oop = oopDesc::load_heap_oop(p);
3168     if (!oopDesc::is_null(heap_oop)) {
3169       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3170 
3171       // Now fetch the region containing the object
3172       HeapRegion* hr = _g1h->heap_region_containing(obj);
3173       HeapRegionRemSet* hrrs = hr->rem_set();
3174       // Verify that the strong code root list for this region
3175       // contains the nmethod
3176       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3177         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3178                               "from nmethod "PTR_FORMAT" not in strong "
3179                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3180                               p, _nm, hr->bottom(), hr->end());
3181         _failures = true;
3182       }
3183     }
3184   }
3185 
3186 public:
3187   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3188     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3189 
3190   void do_oop(oop* p) { do_oop_work(p); }
3191   void do_oop(narrowOop* p) { do_oop_work(p); }
3192 
3193   void set_nmethod(nmethod* nm) { _nm = nm; }
3194   bool failures() { return _failures; }
3195 };
3196 
3197 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3198   G1VerifyCodeRootOopClosure* _oop_cl;
3199 
3200 public:
3201   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3202     _oop_cl(oop_cl) {}
3203 
3204   void do_code_blob(CodeBlob* cb) {
3205     nmethod* nm = cb->as_nmethod_or_null();
3206     if (nm != NULL) {
3207       _oop_cl->set_nmethod(nm);
3208       nm->oops_do(_oop_cl);
3209     }
3210   }
3211 };
3212 
3213 class YoungRefCounterClosure : public OopClosure {
3214   G1CollectedHeap* _g1h;
3215   int              _count;
3216  public:
3217   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3218   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3219   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3220 
3221   int count() { return _count; }
3222   void reset_count() { _count = 0; };
3223 };
3224 
3225 class VerifyKlassClosure: public KlassClosure {
3226   YoungRefCounterClosure _young_ref_counter_closure;
3227   OopClosure *_oop_closure;
3228  public:
3229   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3230   void do_klass(Klass* k) {
3231     k->oops_do(_oop_closure);
3232 
3233     _young_ref_counter_closure.reset_count();
3234     k->oops_do(&_young_ref_counter_closure);
3235     if (_young_ref_counter_closure.count() > 0) {
3236       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3237     }
3238   }
3239 };
3240 
3241 class VerifyLivenessOopClosure: public OopClosure {
3242   G1CollectedHeap* _g1h;
3243   VerifyOption _vo;
3244 public:
3245   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3246     _g1h(g1h), _vo(vo)
3247   { }
3248   void do_oop(narrowOop *p) { do_oop_work(p); }
3249   void do_oop(      oop *p) { do_oop_work(p); }
3250 
3251   template <class T> void do_oop_work(T *p) {
3252     oop obj = oopDesc::load_decode_heap_oop(p);
3253     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3254               "Dead object referenced by a not dead object");
3255   }
3256 };
3257 
3258 class VerifyObjsInRegionClosure: public ObjectClosure {
3259 private:
3260   G1CollectedHeap* _g1h;
3261   size_t _live_bytes;
3262   HeapRegion *_hr;
3263   VerifyOption _vo;
3264 public:
3265   // _vo == UsePrevMarking -> use "prev" marking information,
3266   // _vo == UseNextMarking -> use "next" marking information,
3267   // _vo == UseMarkWord    -> use mark word from object header.
3268   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3269     : _live_bytes(0), _hr(hr), _vo(vo) {
3270     _g1h = G1CollectedHeap::heap();
3271   }
3272   void do_object(oop o) {
3273     VerifyLivenessOopClosure isLive(_g1h, _vo);
3274     assert(o != NULL, "Huh?");
3275     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3276       // If the object is alive according to the mark word,
3277       // then verify that the marking information agrees.
3278       // Note we can't verify the contra-positive of the
3279       // above: if the object is dead (according to the mark
3280       // word), it may not be marked, or may have been marked
3281       // but has since became dead, or may have been allocated
3282       // since the last marking.
3283       if (_vo == VerifyOption_G1UseMarkWord) {
3284         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3285       }
3286 
3287       o->oop_iterate_no_header(&isLive);
3288       if (!_hr->obj_allocated_since_prev_marking(o)) {
3289         size_t obj_size = o->size();    // Make sure we don't overflow
3290         _live_bytes += (obj_size * HeapWordSize);
3291       }
3292     }
3293   }
3294   size_t live_bytes() { return _live_bytes; }
3295 };
3296 
3297 class PrintObjsInRegionClosure : public ObjectClosure {
3298   HeapRegion *_hr;
3299   G1CollectedHeap *_g1;
3300 public:
3301   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3302     _g1 = G1CollectedHeap::heap();
3303   };
3304 
3305   void do_object(oop o) {
3306     if (o != NULL) {
3307       HeapWord *start = (HeapWord *) o;
3308       size_t word_sz = o->size();
3309       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3310                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3311                           (void*) o, word_sz,
3312                           _g1->isMarkedPrev(o),
3313                           _g1->isMarkedNext(o),
3314                           _hr->obj_allocated_since_prev_marking(o));
3315       HeapWord *end = start + word_sz;
3316       HeapWord *cur;
3317       int *val;
3318       for (cur = start; cur < end; cur++) {
3319         val = (int *) cur;
3320         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3321       }
3322     }
3323   }
3324 };
3325 
3326 class VerifyRegionClosure: public HeapRegionClosure {
3327 private:
3328   bool             _par;
3329   VerifyOption     _vo;
3330   bool             _failures;
3331 public:
3332   // _vo == UsePrevMarking -> use "prev" marking information,
3333   // _vo == UseNextMarking -> use "next" marking information,
3334   // _vo == UseMarkWord    -> use mark word from object header.
3335   VerifyRegionClosure(bool par, VerifyOption vo)
3336     : _par(par),
3337       _vo(vo),
3338       _failures(false) {}
3339 
3340   bool failures() {
3341     return _failures;
3342   }
3343 
3344   bool doHeapRegion(HeapRegion* r) {
3345     if (!r->continuesHumongous()) {
3346       bool failures = false;
3347       r->verify(_vo, &failures);
3348       if (failures) {
3349         _failures = true;
3350       } else {
3351         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3352         r->object_iterate(&not_dead_yet_cl);
3353         if (_vo != VerifyOption_G1UseNextMarking) {
3354           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3355             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3356                                    "max_live_bytes "SIZE_FORMAT" "
3357                                    "< calculated "SIZE_FORMAT,
3358                                    r->bottom(), r->end(),
3359                                    r->max_live_bytes(),
3360                                  not_dead_yet_cl.live_bytes());
3361             _failures = true;
3362           }
3363         } else {
3364           // When vo == UseNextMarking we cannot currently do a sanity
3365           // check on the live bytes as the calculation has not been
3366           // finalized yet.
3367         }
3368       }
3369     }
3370     return false; // stop the region iteration if we hit a failure
3371   }
3372 };
3373 
3374 // This is the task used for parallel verification of the heap regions
3375 
3376 class G1ParVerifyTask: public AbstractGangTask {
3377 private:
3378   G1CollectedHeap* _g1h;
3379   VerifyOption     _vo;
3380   bool             _failures;
3381 
3382 public:
3383   // _vo == UsePrevMarking -> use "prev" marking information,
3384   // _vo == UseNextMarking -> use "next" marking information,
3385   // _vo == UseMarkWord    -> use mark word from object header.
3386   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3387     AbstractGangTask("Parallel verify task"),
3388     _g1h(g1h),
3389     _vo(vo),
3390     _failures(false) { }
3391 
3392   bool failures() {
3393     return _failures;
3394   }
3395 
3396   void work(uint worker_id) {
3397     HandleMark hm;
3398     VerifyRegionClosure blk(true, _vo);
3399     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3400                                           _g1h->workers()->active_workers(),
3401                                           HeapRegion::ParVerifyClaimValue);
3402     if (blk.failures()) {
3403       _failures = true;
3404     }
3405   }
3406 };
3407 
3408 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3409   if (SafepointSynchronize::is_at_safepoint()) {
3410     assert(Thread::current()->is_VM_thread(),
3411            "Expected to be executed serially by the VM thread at this point");
3412 
3413     if (!silent) { gclog_or_tty->print("Roots "); }
3414     VerifyRootsClosure rootsCl(vo);
3415     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3416     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3417     VerifyKlassClosure klassCl(this, &rootsCl);
3418 
3419     // We apply the relevant closures to all the oops in the
3420     // system dictionary, the string table and the code cache.
3421     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3422 
3423     // Need cleared claim bits for the strong roots processing
3424     ClassLoaderDataGraph::clear_claimed_marks();
3425 
3426     process_strong_roots(true,      // activate StrongRootsScope
3427                          false,     // we set "is scavenging" to false,
3428                                     // so we don't reset the dirty cards.
3429                          ScanningOption(so),  // roots scanning options
3430                          &rootsCl,
3431                          &blobsCl,
3432                          &klassCl
3433                          );
3434 
3435     bool failures = rootsCl.failures() || codeRootsCl.failures();
3436 
3437     if (vo != VerifyOption_G1UseMarkWord) {
3438       // If we're verifying during a full GC then the region sets
3439       // will have been torn down at the start of the GC. Therefore
3440       // verifying the region sets will fail. So we only verify
3441       // the region sets when not in a full GC.
3442       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3443       verify_region_sets();
3444     }
3445 
3446     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3447     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3448       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3449              "sanity check");
3450 
3451       G1ParVerifyTask task(this, vo);
3452       assert(UseDynamicNumberOfGCThreads ||
3453         workers()->active_workers() == workers()->total_workers(),
3454         "If not dynamic should be using all the workers");
3455       int n_workers = workers()->active_workers();
3456       set_par_threads(n_workers);
3457       workers()->run_task(&task);
3458       set_par_threads(0);
3459       if (task.failures()) {
3460         failures = true;
3461       }
3462 
3463       // Checks that the expected amount of parallel work was done.
3464       // The implication is that n_workers is > 0.
3465       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3466              "sanity check");
3467 
3468       reset_heap_region_claim_values();
3469 
3470       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3471              "sanity check");
3472     } else {
3473       VerifyRegionClosure blk(false, vo);
3474       heap_region_iterate(&blk);
3475       if (blk.failures()) {
3476         failures = true;
3477       }
3478     }
3479     if (!silent) gclog_or_tty->print("RemSet ");
3480     rem_set()->verify();
3481 
3482     if (failures) {
3483       gclog_or_tty->print_cr("Heap:");
3484       // It helps to have the per-region information in the output to
3485       // help us track down what went wrong. This is why we call
3486       // print_extended_on() instead of print_on().
3487       print_extended_on(gclog_or_tty);
3488       gclog_or_tty->print_cr("");
3489 #ifndef PRODUCT
3490       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3491         concurrent_mark()->print_reachable("at-verification-failure",
3492                                            vo, false /* all */);
3493       }
3494 #endif
3495       gclog_or_tty->flush();
3496     }
3497     guarantee(!failures, "there should not have been any failures");
3498   } else {
3499     if (!silent)
3500       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3501   }
3502 }
3503 
3504 void G1CollectedHeap::verify(bool silent) {
3505   verify(silent, VerifyOption_G1UsePrevMarking);
3506 }
3507 
3508 double G1CollectedHeap::verify(bool guard, const char* msg) {
3509   double verify_time_ms = 0.0;
3510 
3511   if (guard && total_collections() >= VerifyGCStartAt) {
3512     double verify_start = os::elapsedTime();
3513     HandleMark hm;  // Discard invalid handles created during verification
3514     prepare_for_verify();
3515     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3516     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3517   }
3518 
3519   return verify_time_ms;
3520 }
3521 
3522 void G1CollectedHeap::verify_before_gc() {
3523   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3524   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3525 }
3526 
3527 void G1CollectedHeap::verify_after_gc() {
3528   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3529   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3530 }
3531 
3532 class PrintRegionClosure: public HeapRegionClosure {
3533   outputStream* _st;
3534 public:
3535   PrintRegionClosure(outputStream* st) : _st(st) {}
3536   bool doHeapRegion(HeapRegion* r) {
3537     r->print_on(_st);
3538     return false;
3539   }
3540 };
3541 
3542 void G1CollectedHeap::print_on(outputStream* st) const {
3543   st->print(" %-20s", "garbage-first heap");
3544   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3545             capacity()/K, used_unlocked()/K);
3546   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3547             _g1_storage.low_boundary(),
3548             _g1_storage.high(),
3549             _g1_storage.high_boundary());
3550   st->cr();
3551   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3552   uint young_regions = _young_list->length();
3553   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3554             (size_t) young_regions * HeapRegion::GrainBytes / K);
3555   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3556   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3557             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3558   st->cr();
3559   MetaspaceAux::print_on(st);
3560 }
3561 
3562 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3563   print_on(st);
3564 
3565   // Print the per-region information.
3566   st->cr();
3567   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3568                "HS=humongous(starts), HC=humongous(continues), "
3569                "CS=collection set, F=free, TS=gc time stamp, "
3570                "PTAMS=previous top-at-mark-start, "
3571                "NTAMS=next top-at-mark-start)");
3572   PrintRegionClosure blk(st);
3573   heap_region_iterate(&blk);
3574 }
3575 
3576 void G1CollectedHeap::print_on_error(outputStream* st) const {
3577   this->CollectedHeap::print_on_error(st);
3578 
3579   if (_cm != NULL) {
3580     st->cr();
3581     _cm->print_on_error(st);
3582   }
3583 }
3584 
3585 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3586   if (G1CollectedHeap::use_parallel_gc_threads()) {
3587     workers()->print_worker_threads_on(st);
3588   }
3589   _cmThread->print_on(st);
3590   st->cr();
3591   _cm->print_worker_threads_on(st);
3592   _cg1r->print_worker_threads_on(st);
3593 }
3594 
3595 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3596   if (G1CollectedHeap::use_parallel_gc_threads()) {
3597     workers()->threads_do(tc);
3598   }
3599   tc->do_thread(_cmThread);
3600   _cg1r->threads_do(tc);
3601 }
3602 
3603 void G1CollectedHeap::print_tracing_info() const {
3604   // We'll overload this to mean "trace GC pause statistics."
3605   if (TraceGen0Time || TraceGen1Time) {
3606     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3607     // to that.
3608     g1_policy()->print_tracing_info();
3609   }
3610   if (G1SummarizeRSetStats) {
3611     g1_rem_set()->print_summary_info();
3612   }
3613   if (G1SummarizeConcMark) {
3614     concurrent_mark()->print_summary_info();
3615   }
3616   g1_policy()->print_yg_surv_rate_info();
3617   SpecializationStats::print();
3618 }
3619 
3620 #ifndef PRODUCT
3621 // Helpful for debugging RSet issues.
3622 
3623 class PrintRSetsClosure : public HeapRegionClosure {
3624 private:
3625   const char* _msg;
3626   size_t _occupied_sum;
3627 
3628 public:
3629   bool doHeapRegion(HeapRegion* r) {
3630     HeapRegionRemSet* hrrs = r->rem_set();
3631     size_t occupied = hrrs->occupied();
3632     _occupied_sum += occupied;
3633 
3634     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3635                            HR_FORMAT_PARAMS(r));
3636     if (occupied == 0) {
3637       gclog_or_tty->print_cr("  RSet is empty");
3638     } else {
3639       hrrs->print();
3640     }
3641     gclog_or_tty->print_cr("----------");
3642     return false;
3643   }
3644 
3645   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3646     gclog_or_tty->cr();
3647     gclog_or_tty->print_cr("========================================");
3648     gclog_or_tty->print_cr(msg);
3649     gclog_or_tty->cr();
3650   }
3651 
3652   ~PrintRSetsClosure() {
3653     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3654     gclog_or_tty->print_cr("========================================");
3655     gclog_or_tty->cr();
3656   }
3657 };
3658 
3659 void G1CollectedHeap::print_cset_rsets() {
3660   PrintRSetsClosure cl("Printing CSet RSets");
3661   collection_set_iterate(&cl);
3662 }
3663 
3664 void G1CollectedHeap::print_all_rsets() {
3665   PrintRSetsClosure cl("Printing All RSets");;
3666   heap_region_iterate(&cl);
3667 }
3668 #endif // PRODUCT
3669 
3670 G1CollectedHeap* G1CollectedHeap::heap() {
3671   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3672          "not a garbage-first heap");
3673   return _g1h;
3674 }
3675 
3676 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3677   // always_do_update_barrier = false;
3678   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3679   // Fill TLAB's and such
3680   accumulate_statistics_all_tlabs();
3681   ensure_parsability(true);
3682 
3683   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3684       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3685     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3686   }
3687 }
3688 
3689 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3690 
3691   if (G1SummarizeRSetStats &&
3692       (G1SummarizeRSetStatsPeriod > 0) &&
3693       // we are at the end of the GC. Total collections has already been increased.
3694       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3695     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3696   }
3697 
3698   // FIXME: what is this about?
3699   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3700   // is set.
3701   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3702                         "derived pointer present"));
3703   // always_do_update_barrier = true;
3704 
3705   resize_all_tlabs();
3706 
3707   // We have just completed a GC. Update the soft reference
3708   // policy with the new heap occupancy
3709   Universe::update_heap_info_at_gc();
3710 }
3711 
3712 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3713                                                unsigned int gc_count_before,
3714                                                bool* succeeded,
3715                                                GCCause::Cause gc_cause) {
3716   assert_heap_not_locked_and_not_at_safepoint();
3717   g1_policy()->record_stop_world_start();
3718   VM_G1IncCollectionPause op(gc_count_before,
3719                              word_size,
3720                              false, /* should_initiate_conc_mark */
3721                              g1_policy()->max_pause_time_ms(),
3722                              gc_cause);
3723   VMThread::execute(&op);
3724 
3725   HeapWord* result = op.result();
3726   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3727   assert(result == NULL || ret_succeeded,
3728          "the result should be NULL if the VM did not succeed");
3729   *succeeded = ret_succeeded;
3730 
3731   assert_heap_not_locked();
3732   return result;
3733 }
3734 
3735 void
3736 G1CollectedHeap::doConcurrentMark() {
3737   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3738   if (!_cmThread->in_progress()) {
3739     _cmThread->set_started();
3740     CGC_lock->notify();
3741   }
3742 }
3743 
3744 size_t G1CollectedHeap::pending_card_num() {
3745   size_t extra_cards = 0;
3746   JavaThread *curr = Threads::first();
3747   while (curr != NULL) {
3748     DirtyCardQueue& dcq = curr->dirty_card_queue();
3749     extra_cards += dcq.size();
3750     curr = curr->next();
3751   }
3752   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3753   size_t buffer_size = dcqs.buffer_size();
3754   size_t buffer_num = dcqs.completed_buffers_num();
3755 
3756   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3757   // in bytes - not the number of 'entries'. We need to convert
3758   // into a number of cards.
3759   return (buffer_size * buffer_num + extra_cards) / oopSize;
3760 }
3761 
3762 size_t G1CollectedHeap::cards_scanned() {
3763   return g1_rem_set()->cardsScanned();
3764 }
3765 
3766 void
3767 G1CollectedHeap::setup_surviving_young_words() {
3768   assert(_surviving_young_words == NULL, "pre-condition");
3769   uint array_length = g1_policy()->young_cset_region_length();
3770   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3771   if (_surviving_young_words == NULL) {
3772     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3773                           "Not enough space for young surv words summary.");
3774   }
3775   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3776 #ifdef ASSERT
3777   for (uint i = 0;  i < array_length; ++i) {
3778     assert( _surviving_young_words[i] == 0, "memset above" );
3779   }
3780 #endif // !ASSERT
3781 }
3782 
3783 void
3784 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3785   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3786   uint array_length = g1_policy()->young_cset_region_length();
3787   for (uint i = 0; i < array_length; ++i) {
3788     _surviving_young_words[i] += surv_young_words[i];
3789   }
3790 }
3791 
3792 void
3793 G1CollectedHeap::cleanup_surviving_young_words() {
3794   guarantee( _surviving_young_words != NULL, "pre-condition" );
3795   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3796   _surviving_young_words = NULL;
3797 }
3798 
3799 #ifdef ASSERT
3800 class VerifyCSetClosure: public HeapRegionClosure {
3801 public:
3802   bool doHeapRegion(HeapRegion* hr) {
3803     // Here we check that the CSet region's RSet is ready for parallel
3804     // iteration. The fields that we'll verify are only manipulated
3805     // when the region is part of a CSet and is collected. Afterwards,
3806     // we reset these fields when we clear the region's RSet (when the
3807     // region is freed) so they are ready when the region is
3808     // re-allocated. The only exception to this is if there's an
3809     // evacuation failure and instead of freeing the region we leave
3810     // it in the heap. In that case, we reset these fields during
3811     // evacuation failure handling.
3812     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3813 
3814     // Here's a good place to add any other checks we'd like to
3815     // perform on CSet regions.
3816     return false;
3817   }
3818 };
3819 #endif // ASSERT
3820 
3821 #if TASKQUEUE_STATS
3822 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3823   st->print_raw_cr("GC Task Stats");
3824   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3825   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3826 }
3827 
3828 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3829   print_taskqueue_stats_hdr(st);
3830 
3831   TaskQueueStats totals;
3832   const int n = workers() != NULL ? workers()->total_workers() : 1;
3833   for (int i = 0; i < n; ++i) {
3834     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3835     totals += task_queue(i)->stats;
3836   }
3837   st->print_raw("tot "); totals.print(st); st->cr();
3838 
3839   DEBUG_ONLY(totals.verify());
3840 }
3841 
3842 void G1CollectedHeap::reset_taskqueue_stats() {
3843   const int n = workers() != NULL ? workers()->total_workers() : 1;
3844   for (int i = 0; i < n; ++i) {
3845     task_queue(i)->stats.reset();
3846   }
3847 }
3848 #endif // TASKQUEUE_STATS
3849 
3850 void G1CollectedHeap::log_gc_header() {
3851   if (!G1Log::fine()) {
3852     return;
3853   }
3854 
3855   gclog_or_tty->date_stamp(PrintGCDateStamps);
3856   gclog_or_tty->stamp(PrintGCTimeStamps);
3857 
3858   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3859     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3860     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3861 
3862   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3863 }
3864 
3865 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3866   if (!G1Log::fine()) {
3867     return;
3868   }
3869 
3870   if (G1Log::finer()) {
3871     if (evacuation_failed()) {
3872       gclog_or_tty->print(" (to-space exhausted)");
3873     }
3874     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3875     g1_policy()->phase_times()->note_gc_end();
3876     g1_policy()->phase_times()->print(pause_time_sec);
3877     g1_policy()->print_detailed_heap_transition();
3878   } else {
3879     if (evacuation_failed()) {
3880       gclog_or_tty->print("--");
3881     }
3882     g1_policy()->print_heap_transition();
3883     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3884   }
3885   gclog_or_tty->flush();
3886 }
3887 
3888 bool
3889 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3890   assert_at_safepoint(true /* should_be_vm_thread */);
3891   guarantee(!is_gc_active(), "collection is not reentrant");
3892 
3893   if (GC_locker::check_active_before_gc()) {
3894     return false;
3895   }
3896 
3897   _gc_timer_stw->register_gc_start();
3898 
3899   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3900 
3901   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3902   ResourceMark rm;
3903 
3904   print_heap_before_gc();
3905   trace_heap_before_gc(_gc_tracer_stw);
3906 
3907   verify_region_sets_optional();
3908   verify_dirty_young_regions();
3909 
3910   // This call will decide whether this pause is an initial-mark
3911   // pause. If it is, during_initial_mark_pause() will return true
3912   // for the duration of this pause.
3913   g1_policy()->decide_on_conc_mark_initiation();
3914 
3915   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3916   assert(!g1_policy()->during_initial_mark_pause() ||
3917           g1_policy()->gcs_are_young(), "sanity");
3918 
3919   // We also do not allow mixed GCs during marking.
3920   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3921 
3922   // Record whether this pause is an initial mark. When the current
3923   // thread has completed its logging output and it's safe to signal
3924   // the CM thread, the flag's value in the policy has been reset.
3925   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3926 
3927   // Inner scope for scope based logging, timers, and stats collection
3928   {
3929     EvacuationInfo evacuation_info;
3930 
3931     if (g1_policy()->during_initial_mark_pause()) {
3932       // We are about to start a marking cycle, so we increment the
3933       // full collection counter.
3934       increment_old_marking_cycles_started();
3935       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3936     }
3937 
3938     _gc_tracer_stw->report_yc_type(yc_type());
3939 
3940     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3941 
3942     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3943                                 workers()->active_workers() : 1);
3944     double pause_start_sec = os::elapsedTime();
3945     g1_policy()->phase_times()->note_gc_start(active_workers);
3946     log_gc_header();
3947 
3948     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3949     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3950 
3951     // If the secondary_free_list is not empty, append it to the
3952     // free_list. No need to wait for the cleanup operation to finish;
3953     // the region allocation code will check the secondary_free_list
3954     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3955     // set, skip this step so that the region allocation code has to
3956     // get entries from the secondary_free_list.
3957     if (!G1StressConcRegionFreeing) {
3958       append_secondary_free_list_if_not_empty_with_lock();
3959     }
3960 
3961     assert(check_young_list_well_formed(), "young list should be well formed");
3962     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3963            "sanity check");
3964 
3965     // Don't dynamically change the number of GC threads this early.  A value of
3966     // 0 is used to indicate serial work.  When parallel work is done,
3967     // it will be set.
3968 
3969     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3970       IsGCActiveMark x;
3971 
3972       gc_prologue(false);
3973       increment_total_collections(false /* full gc */);
3974       increment_gc_time_stamp();
3975 
3976       verify_before_gc();
3977 
3978       COMPILER2_PRESENT(DerivedPointerTable::clear());
3979 
3980       // Please see comment in g1CollectedHeap.hpp and
3981       // G1CollectedHeap::ref_processing_init() to see how
3982       // reference processing currently works in G1.
3983 
3984       // Enable discovery in the STW reference processor
3985       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3986                                             true /*verify_no_refs*/);
3987 
3988       {
3989         // We want to temporarily turn off discovery by the
3990         // CM ref processor, if necessary, and turn it back on
3991         // on again later if we do. Using a scoped
3992         // NoRefDiscovery object will do this.
3993         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3994 
3995         // Forget the current alloc region (we might even choose it to be part
3996         // of the collection set!).
3997         release_mutator_alloc_region();
3998 
3999         // We should call this after we retire the mutator alloc
4000         // region(s) so that all the ALLOC / RETIRE events are generated
4001         // before the start GC event.
4002         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4003 
4004         // This timing is only used by the ergonomics to handle our pause target.
4005         // It is unclear why this should not include the full pause. We will
4006         // investigate this in CR 7178365.
4007         //
4008         // Preserving the old comment here if that helps the investigation:
4009         //
4010         // The elapsed time induced by the start time below deliberately elides
4011         // the possible verification above.
4012         double sample_start_time_sec = os::elapsedTime();
4013 
4014 #if YOUNG_LIST_VERBOSE
4015         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4016         _young_list->print();
4017         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4018 #endif // YOUNG_LIST_VERBOSE
4019 
4020         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4021 
4022         double scan_wait_start = os::elapsedTime();
4023         // We have to wait until the CM threads finish scanning the
4024         // root regions as it's the only way to ensure that all the
4025         // objects on them have been correctly scanned before we start
4026         // moving them during the GC.
4027         bool waited = _cm->root_regions()->wait_until_scan_finished();
4028         double wait_time_ms = 0.0;
4029         if (waited) {
4030           double scan_wait_end = os::elapsedTime();
4031           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4032         }
4033         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4034 
4035 #if YOUNG_LIST_VERBOSE
4036         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4037         _young_list->print();
4038 #endif // YOUNG_LIST_VERBOSE
4039 
4040         if (g1_policy()->during_initial_mark_pause()) {
4041           concurrent_mark()->checkpointRootsInitialPre();
4042         }
4043 
4044 #if YOUNG_LIST_VERBOSE
4045         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4046         _young_list->print();
4047         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4048 #endif // YOUNG_LIST_VERBOSE
4049 
4050         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4051 
4052         _cm->note_start_of_gc();
4053         // We should not verify the per-thread SATB buffers given that
4054         // we have not filtered them yet (we'll do so during the
4055         // GC). We also call this after finalize_cset() to
4056         // ensure that the CSet has been finalized.
4057         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4058                                  true  /* verify_enqueued_buffers */,
4059                                  false /* verify_thread_buffers */,
4060                                  true  /* verify_fingers */);
4061 
4062         if (_hr_printer.is_active()) {
4063           HeapRegion* hr = g1_policy()->collection_set();
4064           while (hr != NULL) {
4065             G1HRPrinter::RegionType type;
4066             if (!hr->is_young()) {
4067               type = G1HRPrinter::Old;
4068             } else if (hr->is_survivor()) {
4069               type = G1HRPrinter::Survivor;
4070             } else {
4071               type = G1HRPrinter::Eden;
4072             }
4073             _hr_printer.cset(hr);
4074             hr = hr->next_in_collection_set();
4075           }
4076         }
4077 
4078 #ifdef ASSERT
4079         VerifyCSetClosure cl;
4080         collection_set_iterate(&cl);
4081 #endif // ASSERT
4082 
4083         setup_surviving_young_words();
4084 
4085         // Initialize the GC alloc regions.
4086         init_gc_alloc_regions(evacuation_info);
4087 
4088         // Actually do the work...
4089         evacuate_collection_set(evacuation_info);
4090 
4091         // We do this to mainly verify the per-thread SATB buffers
4092         // (which have been filtered by now) since we didn't verify
4093         // them earlier. No point in re-checking the stacks / enqueued
4094         // buffers given that the CSet has not changed since last time
4095         // we checked.
4096         _cm->verify_no_cset_oops(false /* verify_stacks */,
4097                                  false /* verify_enqueued_buffers */,
4098                                  true  /* verify_thread_buffers */,
4099                                  true  /* verify_fingers */);
4100 
4101         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4102         g1_policy()->clear_collection_set();
4103 
4104         cleanup_surviving_young_words();
4105 
4106         // Start a new incremental collection set for the next pause.
4107         g1_policy()->start_incremental_cset_building();
4108 
4109         // Clear the _cset_fast_test bitmap in anticipation of adding
4110         // regions to the incremental collection set for the next
4111         // evacuation pause.
4112         clear_cset_fast_test();
4113 
4114         _young_list->reset_sampled_info();
4115 
4116         // Don't check the whole heap at this point as the
4117         // GC alloc regions from this pause have been tagged
4118         // as survivors and moved on to the survivor list.
4119         // Survivor regions will fail the !is_young() check.
4120         assert(check_young_list_empty(false /* check_heap */),
4121           "young list should be empty");
4122 
4123 #if YOUNG_LIST_VERBOSE
4124         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4125         _young_list->print();
4126 #endif // YOUNG_LIST_VERBOSE
4127 
4128         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4129                                              _young_list->first_survivor_region(),
4130                                              _young_list->last_survivor_region());
4131 
4132         _young_list->reset_auxilary_lists();
4133 
4134         if (evacuation_failed()) {
4135           _summary_bytes_used = recalculate_used();
4136           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4137           for (uint i = 0; i < n_queues; i++) {
4138             if (_evacuation_failed_info_array[i].has_failed()) {
4139               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4140             }
4141           }
4142         } else {
4143           // The "used" of the the collection set have already been subtracted
4144           // when they were freed.  Add in the bytes evacuated.
4145           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4146         }
4147 
4148         if (g1_policy()->during_initial_mark_pause()) {
4149           // We have to do this before we notify the CM threads that
4150           // they can start working to make sure that all the
4151           // appropriate initialization is done on the CM object.
4152           concurrent_mark()->checkpointRootsInitialPost();
4153           set_marking_started();
4154           // Note that we don't actually trigger the CM thread at
4155           // this point. We do that later when we're sure that
4156           // the current thread has completed its logging output.
4157         }
4158 
4159         allocate_dummy_regions();
4160 
4161 #if YOUNG_LIST_VERBOSE
4162         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4163         _young_list->print();
4164         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4165 #endif // YOUNG_LIST_VERBOSE
4166 
4167         init_mutator_alloc_region();
4168 
4169         {
4170           size_t expand_bytes = g1_policy()->expansion_amount();
4171           if (expand_bytes > 0) {
4172             size_t bytes_before = capacity();
4173             // No need for an ergo verbose message here,
4174             // expansion_amount() does this when it returns a value > 0.
4175             if (!expand(expand_bytes)) {
4176               // We failed to expand the heap so let's verify that
4177               // committed/uncommitted amount match the backing store
4178               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4179               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4180             }
4181           }
4182         }
4183 
4184         // We redo the verification but now wrt to the new CSet which
4185         // has just got initialized after the previous CSet was freed.
4186         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4187                                  true  /* verify_enqueued_buffers */,
4188                                  true  /* verify_thread_buffers */,
4189                                  true  /* verify_fingers */);
4190         _cm->note_end_of_gc();
4191 
4192         // This timing is only used by the ergonomics to handle our pause target.
4193         // It is unclear why this should not include the full pause. We will
4194         // investigate this in CR 7178365.
4195         double sample_end_time_sec = os::elapsedTime();
4196         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4197         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4198 
4199         MemoryService::track_memory_usage();
4200 
4201         // In prepare_for_verify() below we'll need to scan the deferred
4202         // update buffers to bring the RSets up-to-date if
4203         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4204         // the update buffers we'll probably need to scan cards on the
4205         // regions we just allocated to (i.e., the GC alloc
4206         // regions). However, during the last GC we called
4207         // set_saved_mark() on all the GC alloc regions, so card
4208         // scanning might skip the [saved_mark_word()...top()] area of
4209         // those regions (i.e., the area we allocated objects into
4210         // during the last GC). But it shouldn't. Given that
4211         // saved_mark_word() is conditional on whether the GC time stamp
4212         // on the region is current or not, by incrementing the GC time
4213         // stamp here we invalidate all the GC time stamps on all the
4214         // regions and saved_mark_word() will simply return top() for
4215         // all the regions. This is a nicer way of ensuring this rather
4216         // than iterating over the regions and fixing them. In fact, the
4217         // GC time stamp increment here also ensures that
4218         // saved_mark_word() will return top() between pauses, i.e.,
4219         // during concurrent refinement. So we don't need the
4220         // is_gc_active() check to decided which top to use when
4221         // scanning cards (see CR 7039627).
4222         increment_gc_time_stamp();
4223 
4224         verify_after_gc();
4225 
4226         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4227         ref_processor_stw()->verify_no_references_recorded();
4228 
4229         // CM reference discovery will be re-enabled if necessary.
4230       }
4231 
4232       // We should do this after we potentially expand the heap so
4233       // that all the COMMIT events are generated before the end GC
4234       // event, and after we retire the GC alloc regions so that all
4235       // RETIRE events are generated before the end GC event.
4236       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4237 
4238       if (mark_in_progress()) {
4239         concurrent_mark()->update_g1_committed();
4240       }
4241 
4242 #ifdef TRACESPINNING
4243       ParallelTaskTerminator::print_termination_counts();
4244 #endif
4245 
4246       gc_epilogue(false);
4247     }
4248 
4249     // Print the remainder of the GC log output.
4250     log_gc_footer(os::elapsedTime() - pause_start_sec);
4251 
4252     // It is not yet to safe to tell the concurrent mark to
4253     // start as we have some optional output below. We don't want the
4254     // output from the concurrent mark thread interfering with this
4255     // logging output either.
4256 
4257     _hrs.verify_optional();
4258     verify_region_sets_optional();
4259 
4260     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4261     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4262 
4263     print_heap_after_gc();
4264     trace_heap_after_gc(_gc_tracer_stw);
4265 
4266     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4267     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4268     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4269     // before any GC notifications are raised.
4270     g1mm()->update_sizes();
4271 
4272     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4273     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4274     _gc_timer_stw->register_gc_end();
4275     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4276   }
4277   // It should now be safe to tell the concurrent mark thread to start
4278   // without its logging output interfering with the logging output
4279   // that came from the pause.
4280 
4281   if (should_start_conc_mark) {
4282     // CAUTION: after the doConcurrentMark() call below,
4283     // the concurrent marking thread(s) could be running
4284     // concurrently with us. Make sure that anything after
4285     // this point does not assume that we are the only GC thread
4286     // running. Note: of course, the actual marking work will
4287     // not start until the safepoint itself is released in
4288     // ConcurrentGCThread::safepoint_desynchronize().
4289     doConcurrentMark();
4290   }
4291 
4292   return true;
4293 }
4294 
4295 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4296 {
4297   size_t gclab_word_size;
4298   switch (purpose) {
4299     case GCAllocForSurvived:
4300       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4301       break;
4302     case GCAllocForTenured:
4303       gclab_word_size = _old_plab_stats.desired_plab_sz();
4304       break;
4305     default:
4306       assert(false, "unknown GCAllocPurpose");
4307       gclab_word_size = _old_plab_stats.desired_plab_sz();
4308       break;
4309   }
4310 
4311   // Prevent humongous PLAB sizes for two reasons:
4312   // * PLABs are allocated using a similar paths as oops, but should
4313   //   never be in a humongous region
4314   // * Allowing humongous PLABs needlessly churns the region free lists
4315   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4316 }
4317 
4318 void G1CollectedHeap::init_mutator_alloc_region() {
4319   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4320   _mutator_alloc_region.init();
4321 }
4322 
4323 void G1CollectedHeap::release_mutator_alloc_region() {
4324   _mutator_alloc_region.release();
4325   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4326 }
4327 
4328 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4329   assert_at_safepoint(true /* should_be_vm_thread */);
4330 
4331   _survivor_gc_alloc_region.init();
4332   _old_gc_alloc_region.init();
4333   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4334   _retained_old_gc_alloc_region = NULL;
4335 
4336   // We will discard the current GC alloc region if:
4337   // a) it's in the collection set (it can happen!),
4338   // b) it's already full (no point in using it),
4339   // c) it's empty (this means that it was emptied during
4340   // a cleanup and it should be on the free list now), or
4341   // d) it's humongous (this means that it was emptied
4342   // during a cleanup and was added to the free list, but
4343   // has been subsequently used to allocate a humongous
4344   // object that may be less than the region size).
4345   if (retained_region != NULL &&
4346       !retained_region->in_collection_set() &&
4347       !(retained_region->top() == retained_region->end()) &&
4348       !retained_region->is_empty() &&
4349       !retained_region->isHumongous()) {
4350     retained_region->set_saved_mark();
4351     // The retained region was added to the old region set when it was
4352     // retired. We have to remove it now, since we don't allow regions
4353     // we allocate to in the region sets. We'll re-add it later, when
4354     // it's retired again.
4355     _old_set.remove(retained_region);
4356     bool during_im = g1_policy()->during_initial_mark_pause();
4357     retained_region->note_start_of_copying(during_im);
4358     _old_gc_alloc_region.set(retained_region);
4359     _hr_printer.reuse(retained_region);
4360     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4361   }
4362 }
4363 
4364 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4365   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4366                                          _old_gc_alloc_region.count());
4367   _survivor_gc_alloc_region.release();
4368   // If we have an old GC alloc region to release, we'll save it in
4369   // _retained_old_gc_alloc_region. If we don't
4370   // _retained_old_gc_alloc_region will become NULL. This is what we
4371   // want either way so no reason to check explicitly for either
4372   // condition.
4373   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4374 
4375   if (ResizePLAB) {
4376     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4377     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4378   }
4379 }
4380 
4381 void G1CollectedHeap::abandon_gc_alloc_regions() {
4382   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4383   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4384   _retained_old_gc_alloc_region = NULL;
4385 }
4386 
4387 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4388   _drain_in_progress = false;
4389   set_evac_failure_closure(cl);
4390   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4391 }
4392 
4393 void G1CollectedHeap::finalize_for_evac_failure() {
4394   assert(_evac_failure_scan_stack != NULL &&
4395          _evac_failure_scan_stack->length() == 0,
4396          "Postcondition");
4397   assert(!_drain_in_progress, "Postcondition");
4398   delete _evac_failure_scan_stack;
4399   _evac_failure_scan_stack = NULL;
4400 }
4401 
4402 void G1CollectedHeap::remove_self_forwarding_pointers() {
4403   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4404 
4405   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4406 
4407   if (G1CollectedHeap::use_parallel_gc_threads()) {
4408     set_par_threads();
4409     workers()->run_task(&rsfp_task);
4410     set_par_threads(0);
4411   } else {
4412     rsfp_task.work(0);
4413   }
4414 
4415   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4416 
4417   // Reset the claim values in the regions in the collection set.
4418   reset_cset_heap_region_claim_values();
4419 
4420   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4421 
4422   // Now restore saved marks, if any.
4423   assert(_objs_with_preserved_marks.size() ==
4424             _preserved_marks_of_objs.size(), "Both or none.");
4425   while (!_objs_with_preserved_marks.is_empty()) {
4426     oop obj = _objs_with_preserved_marks.pop();
4427     markOop m = _preserved_marks_of_objs.pop();
4428     obj->set_mark(m);
4429   }
4430   _objs_with_preserved_marks.clear(true);
4431   _preserved_marks_of_objs.clear(true);
4432 }
4433 
4434 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4435   _evac_failure_scan_stack->push(obj);
4436 }
4437 
4438 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4439   assert(_evac_failure_scan_stack != NULL, "precondition");
4440 
4441   while (_evac_failure_scan_stack->length() > 0) {
4442      oop obj = _evac_failure_scan_stack->pop();
4443      _evac_failure_closure->set_region(heap_region_containing(obj));
4444      obj->oop_iterate_backwards(_evac_failure_closure);
4445   }
4446 }
4447 
4448 oop
4449 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4450                                                oop old) {
4451   assert(obj_in_cs(old),
4452          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4453                  (HeapWord*) old));
4454   markOop m = old->mark();
4455   oop forward_ptr = old->forward_to_atomic(old);
4456   if (forward_ptr == NULL) {
4457     // Forward-to-self succeeded.
4458     assert(_par_scan_state != NULL, "par scan state");
4459     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4460     uint queue_num = _par_scan_state->queue_num();
4461 
4462     _evacuation_failed = true;
4463     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4464     if (_evac_failure_closure != cl) {
4465       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4466       assert(!_drain_in_progress,
4467              "Should only be true while someone holds the lock.");
4468       // Set the global evac-failure closure to the current thread's.
4469       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4470       set_evac_failure_closure(cl);
4471       // Now do the common part.
4472       handle_evacuation_failure_common(old, m);
4473       // Reset to NULL.
4474       set_evac_failure_closure(NULL);
4475     } else {
4476       // The lock is already held, and this is recursive.
4477       assert(_drain_in_progress, "This should only be the recursive case.");
4478       handle_evacuation_failure_common(old, m);
4479     }
4480     return old;
4481   } else {
4482     // Forward-to-self failed. Either someone else managed to allocate
4483     // space for this object (old != forward_ptr) or they beat us in
4484     // self-forwarding it (old == forward_ptr).
4485     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4486            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4487                    "should not be in the CSet",
4488                    (HeapWord*) old, (HeapWord*) forward_ptr));
4489     return forward_ptr;
4490   }
4491 }
4492 
4493 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4494   preserve_mark_if_necessary(old, m);
4495 
4496   HeapRegion* r = heap_region_containing(old);
4497   if (!r->evacuation_failed()) {
4498     r->set_evacuation_failed(true);
4499     _hr_printer.evac_failure(r);
4500   }
4501 
4502   push_on_evac_failure_scan_stack(old);
4503 
4504   if (!_drain_in_progress) {
4505     // prevent recursion in copy_to_survivor_space()
4506     _drain_in_progress = true;
4507     drain_evac_failure_scan_stack();
4508     _drain_in_progress = false;
4509   }
4510 }
4511 
4512 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4513   assert(evacuation_failed(), "Oversaving!");
4514   // We want to call the "for_promotion_failure" version only in the
4515   // case of a promotion failure.
4516   if (m->must_be_preserved_for_promotion_failure(obj)) {
4517     _objs_with_preserved_marks.push(obj);
4518     _preserved_marks_of_objs.push(m);
4519   }
4520 }
4521 
4522 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4523                                                   size_t word_size) {
4524   if (purpose == GCAllocForSurvived) {
4525     HeapWord* result = survivor_attempt_allocation(word_size);
4526     if (result != NULL) {
4527       return result;
4528     } else {
4529       // Let's try to allocate in the old gen in case we can fit the
4530       // object there.
4531       return old_attempt_allocation(word_size);
4532     }
4533   } else {
4534     assert(purpose ==  GCAllocForTenured, "sanity");
4535     HeapWord* result = old_attempt_allocation(word_size);
4536     if (result != NULL) {
4537       return result;
4538     } else {
4539       // Let's try to allocate in the survivors in case we can fit the
4540       // object there.
4541       return survivor_attempt_allocation(word_size);
4542     }
4543   }
4544 
4545   ShouldNotReachHere();
4546   // Trying to keep some compilers happy.
4547   return NULL;
4548 }
4549 
4550 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4551   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4552 
4553 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4554   : _g1h(g1h),
4555     _refs(g1h->task_queue(queue_num)),
4556     _dcq(&g1h->dirty_card_queue_set()),
4557     _ct_bs(g1h->g1_barrier_set()),
4558     _g1_rem(g1h->g1_rem_set()),
4559     _hash_seed(17), _queue_num(queue_num),
4560     _term_attempts(0),
4561     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4562     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4563     _age_table(false), _scanner(g1h, this, rp),
4564     _strong_roots_time(0), _term_time(0),
4565     _alloc_buffer_waste(0), _undo_waste(0) {
4566   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4567   // we "sacrifice" entry 0 to keep track of surviving bytes for
4568   // non-young regions (where the age is -1)
4569   // We also add a few elements at the beginning and at the end in
4570   // an attempt to eliminate cache contention
4571   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4572   uint array_length = PADDING_ELEM_NUM +
4573                       real_length +
4574                       PADDING_ELEM_NUM;
4575   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4576   if (_surviving_young_words_base == NULL)
4577     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4578                           "Not enough space for young surv histo.");
4579   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4580   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4581 
4582   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4583   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4584 
4585   _start = os::elapsedTime();
4586 }
4587 
4588 void
4589 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4590 {
4591   st->print_raw_cr("GC Termination Stats");
4592   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4593                    " ------waste (KiB)------");
4594   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4595                    "  total   alloc    undo");
4596   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4597                    " ------- ------- -------");
4598 }
4599 
4600 void
4601 G1ParScanThreadState::print_termination_stats(int i,
4602                                               outputStream* const st) const
4603 {
4604   const double elapsed_ms = elapsed_time() * 1000.0;
4605   const double s_roots_ms = strong_roots_time() * 1000.0;
4606   const double term_ms    = term_time() * 1000.0;
4607   st->print_cr("%3d %9.2f %9.2f %6.2f "
4608                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4609                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4610                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4611                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4612                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4613                alloc_buffer_waste() * HeapWordSize / K,
4614                undo_waste() * HeapWordSize / K);
4615 }
4616 
4617 #ifdef ASSERT
4618 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4619   assert(ref != NULL, "invariant");
4620   assert(UseCompressedOops, "sanity");
4621   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4622   oop p = oopDesc::load_decode_heap_oop(ref);
4623   assert(_g1h->is_in_g1_reserved(p),
4624          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4625   return true;
4626 }
4627 
4628 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4629   assert(ref != NULL, "invariant");
4630   if (has_partial_array_mask(ref)) {
4631     // Must be in the collection set--it's already been copied.
4632     oop p = clear_partial_array_mask(ref);
4633     assert(_g1h->obj_in_cs(p),
4634            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4635   } else {
4636     oop p = oopDesc::load_decode_heap_oop(ref);
4637     assert(_g1h->is_in_g1_reserved(p),
4638            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4639   }
4640   return true;
4641 }
4642 
4643 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4644   if (ref.is_narrow()) {
4645     return verify_ref((narrowOop*) ref);
4646   } else {
4647     return verify_ref((oop*) ref);
4648   }
4649 }
4650 #endif // ASSERT
4651 
4652 void G1ParScanThreadState::trim_queue() {
4653   assert(_evac_cl != NULL, "not set");
4654   assert(_evac_failure_cl != NULL, "not set");
4655   assert(_partial_scan_cl != NULL, "not set");
4656 
4657   StarTask ref;
4658   do {
4659     // Drain the overflow stack first, so other threads can steal.
4660     while (refs()->pop_overflow(ref)) {
4661       deal_with_reference(ref);
4662     }
4663 
4664     while (refs()->pop_local(ref)) {
4665       deal_with_reference(ref);
4666     }
4667   } while (!refs()->is_empty());
4668 }
4669 
4670 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4671                                      G1ParScanThreadState* par_scan_state) :
4672   _g1(g1), _par_scan_state(par_scan_state),
4673   _worker_id(par_scan_state->queue_num()) { }
4674 
4675 void G1ParCopyHelper::mark_object(oop obj) {
4676 #ifdef ASSERT
4677   HeapRegion* hr = _g1->heap_region_containing(obj);
4678   assert(hr != NULL, "sanity");
4679   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4680 #endif // ASSERT
4681 
4682   // We know that the object is not moving so it's safe to read its size.
4683   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4684 }
4685 
4686 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4687 #ifdef ASSERT
4688   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4689   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4690   assert(from_obj != to_obj, "should not be self-forwarded");
4691 
4692   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4693   assert(from_hr != NULL, "sanity");
4694   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4695 
4696   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4697   assert(to_hr != NULL, "sanity");
4698   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4699 #endif // ASSERT
4700 
4701   // The object might be in the process of being copied by another
4702   // worker so we cannot trust that its to-space image is
4703   // well-formed. So we have to read its size from its from-space
4704   // image which we know should not be changing.
4705   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4706 }
4707 
4708 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4709   size_t word_sz = old->size();
4710   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4711   // +1 to make the -1 indexes valid...
4712   int       young_index = from_region->young_index_in_cset()+1;
4713   assert( (from_region->is_young() && young_index >  0) ||
4714          (!from_region->is_young() && young_index == 0), "invariant" );
4715   G1CollectorPolicy* g1p = _g1h->g1_policy();
4716   markOop m = old->mark();
4717   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4718                                            : m->age();
4719   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4720                                                              word_sz);
4721   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4722 #ifndef PRODUCT
4723   // Should this evacuation fail?
4724   if (_g1h->evacuation_should_fail()) {
4725     if (obj_ptr != NULL) {
4726       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4727       obj_ptr = NULL;
4728     }
4729   }
4730 #endif // !PRODUCT
4731 
4732   if (obj_ptr == NULL) {
4733     // This will either forward-to-self, or detect that someone else has
4734     // installed a forwarding pointer.
4735     return _g1h->handle_evacuation_failure_par(this, old);
4736   }
4737 
4738   oop obj = oop(obj_ptr);
4739 
4740   // We're going to allocate linearly, so might as well prefetch ahead.
4741   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4742 
4743   oop forward_ptr = old->forward_to_atomic(obj);
4744   if (forward_ptr == NULL) {
4745     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4746 
4747     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4748     // we actually allocated from and update alloc_purpose accordingly
4749     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4750     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4751 
4752     if (g1p->track_object_age(alloc_purpose)) {
4753       // We could simply do obj->incr_age(). However, this causes a
4754       // performance issue. obj->incr_age() will first check whether
4755       // the object has a displaced mark by checking its mark word;
4756       // getting the mark word from the new location of the object
4757       // stalls. So, given that we already have the mark word and we
4758       // are about to install it anyway, it's better to increase the
4759       // age on the mark word, when the object does not have a
4760       // displaced mark word. We're not expecting many objects to have
4761       // a displaced marked word, so that case is not optimized
4762       // further (it could be...) and we simply call obj->incr_age().
4763 
4764       if (m->has_displaced_mark_helper()) {
4765         // in this case, we have to install the mark word first,
4766         // otherwise obj looks to be forwarded (the old mark word,
4767         // which contains the forward pointer, was copied)
4768         obj->set_mark(m);
4769         obj->incr_age();
4770       } else {
4771         m = m->incr_age();
4772         obj->set_mark(m);
4773       }
4774       age_table()->add(obj, word_sz);
4775     } else {
4776       obj->set_mark(m);
4777     }
4778 
4779     size_t* surv_young_words = surviving_young_words();
4780     surv_young_words[young_index] += word_sz;
4781 
4782     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4783       // We keep track of the next start index in the length field of
4784       // the to-space object. The actual length can be found in the
4785       // length field of the from-space object.
4786       arrayOop(obj)->set_length(0);
4787       oop* old_p = set_partial_array_mask(old);
4788       push_on_queue(old_p);
4789     } else {
4790       // No point in using the slower heap_region_containing() method,
4791       // given that we know obj is in the heap.
4792       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4793       obj->oop_iterate_backwards(&_scanner);
4794     }
4795   } else {
4796     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4797     obj = forward_ptr;
4798   }
4799   return obj;
4800 }
4801 
4802 template <class T>
4803 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4804   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4805     _scanned_klass->record_modified_oops();
4806   }
4807 }
4808 
4809 template <G1Barrier barrier, bool do_mark_object>
4810 template <class T>
4811 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4812   T heap_oop = oopDesc::load_heap_oop(p);
4813 
4814   if (oopDesc::is_null(heap_oop)) {
4815     return;
4816   }
4817 
4818   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4819 
4820   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4821 
4822   if (_g1->in_cset_fast_test(obj)) {
4823     oop forwardee;
4824     if (obj->is_forwarded()) {
4825       forwardee = obj->forwardee();
4826     } else {
4827       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4828     }
4829     assert(forwardee != NULL, "forwardee should not be NULL");
4830     oopDesc::encode_store_heap_oop(p, forwardee);
4831     if (do_mark_object && forwardee != obj) {
4832       // If the object is self-forwarded we don't need to explicitly
4833       // mark it, the evacuation failure protocol will do so.
4834       mark_forwarded_object(obj, forwardee);
4835     }
4836 
4837     if (barrier == G1BarrierKlass) {
4838       do_klass_barrier(p, forwardee);
4839     }
4840   } else {
4841     // The object is not in collection set. If we're a root scanning
4842     // closure during an initial mark pause (i.e. do_mark_object will
4843     // be true) then attempt to mark the object.
4844     if (do_mark_object) {
4845       mark_object(obj);
4846     }
4847   }
4848 
4849   if (barrier == G1BarrierEvac) {
4850     _par_scan_state->update_rs(_from, p, _worker_id);
4851   }
4852 }
4853 
4854 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4855 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4856 
4857 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4858   assert(has_partial_array_mask(p), "invariant");
4859   oop from_obj = clear_partial_array_mask(p);
4860 
4861   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4862   assert(from_obj->is_objArray(), "must be obj array");
4863   objArrayOop from_obj_array = objArrayOop(from_obj);
4864   // The from-space object contains the real length.
4865   int length                 = from_obj_array->length();
4866 
4867   assert(from_obj->is_forwarded(), "must be forwarded");
4868   oop to_obj                 = from_obj->forwardee();
4869   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4870   objArrayOop to_obj_array   = objArrayOop(to_obj);
4871   // We keep track of the next start index in the length field of the
4872   // to-space object.
4873   int next_index             = to_obj_array->length();
4874   assert(0 <= next_index && next_index < length,
4875          err_msg("invariant, next index: %d, length: %d", next_index, length));
4876 
4877   int start                  = next_index;
4878   int end                    = length;
4879   int remainder              = end - start;
4880   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4881   if (remainder > 2 * ParGCArrayScanChunk) {
4882     end = start + ParGCArrayScanChunk;
4883     to_obj_array->set_length(end);
4884     // Push the remainder before we process the range in case another
4885     // worker has run out of things to do and can steal it.
4886     oop* from_obj_p = set_partial_array_mask(from_obj);
4887     _par_scan_state->push_on_queue(from_obj_p);
4888   } else {
4889     assert(length == end, "sanity");
4890     // We'll process the final range for this object. Restore the length
4891     // so that the heap remains parsable in case of evacuation failure.
4892     to_obj_array->set_length(end);
4893   }
4894   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4895   // Process indexes [start,end). It will also process the header
4896   // along with the first chunk (i.e., the chunk with start == 0).
4897   // Note that at this point the length field of to_obj_array is not
4898   // correct given that we are using it to keep track of the next
4899   // start index. oop_iterate_range() (thankfully!) ignores the length
4900   // field and only relies on the start / end parameters.  It does
4901   // however return the size of the object which will be incorrect. So
4902   // we have to ignore it even if we wanted to use it.
4903   to_obj_array->oop_iterate_range(&_scanner, start, end);
4904 }
4905 
4906 class G1ParEvacuateFollowersClosure : public VoidClosure {
4907 protected:
4908   G1CollectedHeap*              _g1h;
4909   G1ParScanThreadState*         _par_scan_state;
4910   RefToScanQueueSet*            _queues;
4911   ParallelTaskTerminator*       _terminator;
4912 
4913   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4914   RefToScanQueueSet*      queues()         { return _queues; }
4915   ParallelTaskTerminator* terminator()     { return _terminator; }
4916 
4917 public:
4918   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4919                                 G1ParScanThreadState* par_scan_state,
4920                                 RefToScanQueueSet* queues,
4921                                 ParallelTaskTerminator* terminator)
4922     : _g1h(g1h), _par_scan_state(par_scan_state),
4923       _queues(queues), _terminator(terminator) {}
4924 
4925   void do_void();
4926 
4927 private:
4928   inline bool offer_termination();
4929 };
4930 
4931 bool G1ParEvacuateFollowersClosure::offer_termination() {
4932   G1ParScanThreadState* const pss = par_scan_state();
4933   pss->start_term_time();
4934   const bool res = terminator()->offer_termination();
4935   pss->end_term_time();
4936   return res;
4937 }
4938 
4939 void G1ParEvacuateFollowersClosure::do_void() {
4940   StarTask stolen_task;
4941   G1ParScanThreadState* const pss = par_scan_state();
4942   pss->trim_queue();
4943 
4944   do {
4945     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4946       assert(pss->verify_task(stolen_task), "sanity");
4947       if (stolen_task.is_narrow()) {
4948         pss->deal_with_reference((narrowOop*) stolen_task);
4949       } else {
4950         pss->deal_with_reference((oop*) stolen_task);
4951       }
4952 
4953       // We've just processed a reference and we might have made
4954       // available new entries on the queues. So we have to make sure
4955       // we drain the queues as necessary.
4956       pss->trim_queue();
4957     }
4958   } while (!offer_termination());
4959 
4960   pss->retire_alloc_buffers();
4961 }
4962 
4963 class G1KlassScanClosure : public KlassClosure {
4964  G1ParCopyHelper* _closure;
4965  bool             _process_only_dirty;
4966  int              _count;
4967  public:
4968   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4969       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4970   void do_klass(Klass* klass) {
4971     // If the klass has not been dirtied we know that there's
4972     // no references into  the young gen and we can skip it.
4973    if (!_process_only_dirty || klass->has_modified_oops()) {
4974       // Clean the klass since we're going to scavenge all the metadata.
4975       klass->clear_modified_oops();
4976 
4977       // Tell the closure that this klass is the Klass to scavenge
4978       // and is the one to dirty if oops are left pointing into the young gen.
4979       _closure->set_scanned_klass(klass);
4980 
4981       klass->oops_do(_closure);
4982 
4983       _closure->set_scanned_klass(NULL);
4984     }
4985     _count++;
4986   }
4987 };
4988 
4989 class G1ParTask : public AbstractGangTask {
4990 protected:
4991   G1CollectedHeap*       _g1h;
4992   RefToScanQueueSet      *_queues;
4993   ParallelTaskTerminator _terminator;
4994   uint _n_workers;
4995 
4996   Mutex _stats_lock;
4997   Mutex* stats_lock() { return &_stats_lock; }
4998 
4999   size_t getNCards() {
5000     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
5001       / G1BlockOffsetSharedArray::N_bytes;
5002   }
5003 
5004 public:
5005   G1ParTask(G1CollectedHeap* g1h,
5006             RefToScanQueueSet *task_queues)
5007     : AbstractGangTask("G1 collection"),
5008       _g1h(g1h),
5009       _queues(task_queues),
5010       _terminator(0, _queues),
5011       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5012   {}
5013 
5014   RefToScanQueueSet* queues() { return _queues; }
5015 
5016   RefToScanQueue *work_queue(int i) {
5017     return queues()->queue(i);
5018   }
5019 
5020   ParallelTaskTerminator* terminator() { return &_terminator; }
5021 
5022   virtual void set_for_termination(int active_workers) {
5023     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5024     // in the young space (_par_seq_tasks) in the G1 heap
5025     // for SequentialSubTasksDone.
5026     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5027     // both of which need setting by set_n_termination().
5028     _g1h->SharedHeap::set_n_termination(active_workers);
5029     _g1h->set_n_termination(active_workers);
5030     terminator()->reset_for_reuse(active_workers);
5031     _n_workers = active_workers;
5032   }
5033 
5034   void work(uint worker_id) {
5035     if (worker_id >= _n_workers) return;  // no work needed this round
5036 
5037     double start_time_ms = os::elapsedTime() * 1000.0;
5038     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5039 
5040     {
5041       ResourceMark rm;
5042       HandleMark   hm;
5043 
5044       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5045 
5046       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5047       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5048       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5049       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5050 
5051       pss.set_evac_closure(&scan_evac_cl);
5052       pss.set_evac_failure_closure(&evac_failure_cl);
5053       pss.set_partial_scan_closure(&partial_scan_cl);
5054 
5055       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5056       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5057 
5058       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5059       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5060 
5061       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5062       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5063       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5064 
5065       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5066       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5067 
5068       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5069         // We also need to mark copied objects.
5070         scan_root_cl = &scan_mark_root_cl;
5071         scan_klasses_cl = &scan_mark_klasses_cl_s;
5072       }
5073 
5074       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5075 
5076       // Don't scan the scavengable methods in the code cache as part
5077       // of strong root scanning. The code roots that point into a
5078       // region in the collection set are scanned when we scan the
5079       // region's RSet.
5080       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5081 
5082       pss.start_strong_roots();
5083       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5084                                     SharedHeap::ScanningOption(so),
5085                                     scan_root_cl,
5086                                     &push_heap_rs_cl,
5087                                     scan_klasses_cl,
5088                                     worker_id);
5089       pss.end_strong_roots();
5090 
5091       {
5092         double start = os::elapsedTime();
5093         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5094         evac.do_void();
5095         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5096         double term_ms = pss.term_time()*1000.0;
5097         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5098         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5099       }
5100       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5101       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5102 
5103       if (ParallelGCVerbose) {
5104         MutexLocker x(stats_lock());
5105         pss.print_termination_stats(worker_id);
5106       }
5107 
5108       assert(pss.refs()->is_empty(), "should be empty");
5109 
5110       // Close the inner scope so that the ResourceMark and HandleMark
5111       // destructors are executed here and are included as part of the
5112       // "GC Worker Time".
5113     }
5114 
5115     double end_time_ms = os::elapsedTime() * 1000.0;
5116     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5117   }
5118 };
5119 
5120 // *** Common G1 Evacuation Stuff
5121 
5122 // This method is run in a GC worker.
5123 
5124 void
5125 G1CollectedHeap::
5126 g1_process_strong_roots(bool is_scavenging,
5127                         ScanningOption so,
5128                         OopClosure* scan_non_heap_roots,
5129                         OopsInHeapRegionClosure* scan_rs,
5130                         G1KlassScanClosure* scan_klasses,
5131                         int worker_i) {
5132 
5133   // First scan the strong roots
5134   double ext_roots_start = os::elapsedTime();
5135   double closure_app_time_sec = 0.0;
5136 
5137   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5138 
5139   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5140   // Walk the code cache/strong code roots w/o buffering, because StarTask
5141   // cannot handle unaligned oop locations.
5142   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5143 
5144   process_strong_roots(false, // no scoping; this is parallel code
5145                        is_scavenging, so,
5146                        &buf_scan_non_heap_roots,
5147                        &eager_scan_code_roots,
5148                        scan_klasses
5149                        );
5150 
5151   // Now the CM ref_processor roots.
5152   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5153     // We need to treat the discovered reference lists of the
5154     // concurrent mark ref processor as roots and keep entries
5155     // (which are added by the marking threads) on them live
5156     // until they can be processed at the end of marking.
5157     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5158   }
5159 
5160   // Finish up any enqueued closure apps (attributed as object copy time).
5161   buf_scan_non_heap_roots.done();
5162 
5163   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5164 
5165   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5166 
5167   double ext_root_time_ms =
5168     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5169 
5170   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5171 
5172   // During conc marking we have to filter the per-thread SATB buffers
5173   // to make sure we remove any oops into the CSet (which will show up
5174   // as implicitly live).
5175   double satb_filtering_ms = 0.0;
5176   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5177     if (mark_in_progress()) {
5178       double satb_filter_start = os::elapsedTime();
5179 
5180       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5181 
5182       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5183     }
5184   }
5185   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5186 
5187   // If this is an initial mark pause, and we're not scanning
5188   // the entire code cache, we need to mark the oops in the
5189   // strong code root lists for the regions that are not in
5190   // the collection set.
5191   // Note all threads participate in this set of root tasks.
5192   double mark_strong_code_roots_ms = 0.0;
5193   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5194     double mark_strong_roots_start = os::elapsedTime();
5195     mark_strong_code_roots(worker_i);
5196     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5197   }
5198   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5199 
5200   // Now scan the complement of the collection set.
5201   if (scan_rs != NULL) {
5202     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5203   }
5204   _process_strong_tasks->all_tasks_completed();
5205 }
5206 
5207 void
5208 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5209   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5210   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5211 }
5212 
5213 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5214 private:
5215   BoolObjectClosure* _is_alive;
5216   int _initial_string_table_size;
5217   int _initial_symbol_table_size;
5218 
5219   bool  _process_strings;
5220   int _strings_processed;
5221   int _strings_removed;
5222 
5223   bool  _process_symbols;
5224   int _symbols_processed;
5225   int _symbols_removed;
5226 
5227   bool _do_in_parallel;
5228 public:
5229   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5230     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5231     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5232     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5233     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5234 
5235     _initial_string_table_size = StringTable::the_table()->table_size();
5236     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5237     if (process_strings) {
5238       StringTable::clear_parallel_claimed_index();
5239     }
5240     if (process_symbols) {
5241       SymbolTable::clear_parallel_claimed_index();
5242     }
5243   }
5244 
5245   ~G1StringSymbolTableUnlinkTask() {
5246     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5247               err_msg("claim value "INT32_FORMAT" after unlink less than initial string table size "INT32_FORMAT,
5248                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5249     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5250               err_msg("claim value "INT32_FORMAT" after unlink less than initial symbol table size "INT32_FORMAT,
5251                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5252   }
5253 
5254   void work(uint worker_id) {
5255     if (_do_in_parallel) {
5256       int strings_processed = 0;
5257       int strings_removed = 0;
5258       int symbols_processed = 0;
5259       int symbols_removed = 0;
5260       if (_process_strings) {
5261         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5262         Atomic::add(strings_processed, &_strings_processed);
5263         Atomic::add(strings_removed, &_strings_removed);
5264       }
5265       if (_process_symbols) {
5266         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5267         Atomic::add(symbols_processed, &_symbols_processed);
5268         Atomic::add(symbols_removed, &_symbols_removed);
5269       }
5270     } else {
5271       if (_process_strings) {
5272         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5273       }
5274       if (_process_symbols) {
5275         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5276       }
5277     }
5278   }
5279 
5280   size_t strings_processed() const { return (size_t)_strings_processed; }
5281   size_t strings_removed()   const { return (size_t)_strings_removed; }
5282 
5283   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5284   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5285 };
5286 
5287 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5288                                                      bool process_strings, bool process_symbols) {
5289   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5290                    _g1h->workers()->active_workers() : 1);
5291 
5292   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5293   if (G1CollectedHeap::use_parallel_gc_threads()) {
5294     set_par_threads(n_workers);
5295     workers()->run_task(&g1_unlink_task);
5296     set_par_threads(0);
5297   } else {
5298     g1_unlink_task.work(0);
5299   }
5300   if (G1TraceStringSymbolTableScrubbing) {
5301     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5302                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5303                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5304                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5305                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5306   }
5307 }
5308 
5309 // Weak Reference Processing support
5310 
5311 // An always "is_alive" closure that is used to preserve referents.
5312 // If the object is non-null then it's alive.  Used in the preservation
5313 // of referent objects that are pointed to by reference objects
5314 // discovered by the CM ref processor.
5315 class G1AlwaysAliveClosure: public BoolObjectClosure {
5316   G1CollectedHeap* _g1;
5317 public:
5318   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5319   bool do_object_b(oop p) {
5320     if (p != NULL) {
5321       return true;
5322     }
5323     return false;
5324   }
5325 };
5326 
5327 bool G1STWIsAliveClosure::do_object_b(oop p) {
5328   // An object is reachable if it is outside the collection set,
5329   // or is inside and copied.
5330   return !_g1->obj_in_cs(p) || p->is_forwarded();
5331 }
5332 
5333 // Non Copying Keep Alive closure
5334 class G1KeepAliveClosure: public OopClosure {
5335   G1CollectedHeap* _g1;
5336 public:
5337   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5338   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5339   void do_oop(      oop* p) {
5340     oop obj = *p;
5341 
5342     if (_g1->obj_in_cs(obj)) {
5343       assert( obj->is_forwarded(), "invariant" );
5344       *p = obj->forwardee();
5345     }
5346   }
5347 };
5348 
5349 // Copying Keep Alive closure - can be called from both
5350 // serial and parallel code as long as different worker
5351 // threads utilize different G1ParScanThreadState instances
5352 // and different queues.
5353 
5354 class G1CopyingKeepAliveClosure: public OopClosure {
5355   G1CollectedHeap*         _g1h;
5356   OopClosure*              _copy_non_heap_obj_cl;
5357   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5358   G1ParScanThreadState*    _par_scan_state;
5359 
5360 public:
5361   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5362                             OopClosure* non_heap_obj_cl,
5363                             OopsInHeapRegionClosure* metadata_obj_cl,
5364                             G1ParScanThreadState* pss):
5365     _g1h(g1h),
5366     _copy_non_heap_obj_cl(non_heap_obj_cl),
5367     _copy_metadata_obj_cl(metadata_obj_cl),
5368     _par_scan_state(pss)
5369   {}
5370 
5371   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5372   virtual void do_oop(      oop* p) { do_oop_work(p); }
5373 
5374   template <class T> void do_oop_work(T* p) {
5375     oop obj = oopDesc::load_decode_heap_oop(p);
5376 
5377     if (_g1h->obj_in_cs(obj)) {
5378       // If the referent object has been forwarded (either copied
5379       // to a new location or to itself in the event of an
5380       // evacuation failure) then we need to update the reference
5381       // field and, if both reference and referent are in the G1
5382       // heap, update the RSet for the referent.
5383       //
5384       // If the referent has not been forwarded then we have to keep
5385       // it alive by policy. Therefore we have copy the referent.
5386       //
5387       // If the reference field is in the G1 heap then we can push
5388       // on the PSS queue. When the queue is drained (after each
5389       // phase of reference processing) the object and it's followers
5390       // will be copied, the reference field set to point to the
5391       // new location, and the RSet updated. Otherwise we need to
5392       // use the the non-heap or metadata closures directly to copy
5393       // the referent object and update the pointer, while avoiding
5394       // updating the RSet.
5395 
5396       if (_g1h->is_in_g1_reserved(p)) {
5397         _par_scan_state->push_on_queue(p);
5398       } else {
5399         assert(!ClassLoaderDataGraph::contains((address)p),
5400                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5401                               PTR_FORMAT, p));
5402           _copy_non_heap_obj_cl->do_oop(p);
5403         }
5404       }
5405     }
5406 };
5407 
5408 // Serial drain queue closure. Called as the 'complete_gc'
5409 // closure for each discovered list in some of the
5410 // reference processing phases.
5411 
5412 class G1STWDrainQueueClosure: public VoidClosure {
5413 protected:
5414   G1CollectedHeap* _g1h;
5415   G1ParScanThreadState* _par_scan_state;
5416 
5417   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5418 
5419 public:
5420   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5421     _g1h(g1h),
5422     _par_scan_state(pss)
5423   { }
5424 
5425   void do_void() {
5426     G1ParScanThreadState* const pss = par_scan_state();
5427     pss->trim_queue();
5428   }
5429 };
5430 
5431 // Parallel Reference Processing closures
5432 
5433 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5434 // processing during G1 evacuation pauses.
5435 
5436 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5437 private:
5438   G1CollectedHeap*   _g1h;
5439   RefToScanQueueSet* _queues;
5440   FlexibleWorkGang*  _workers;
5441   int                _active_workers;
5442 
5443 public:
5444   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5445                         FlexibleWorkGang* workers,
5446                         RefToScanQueueSet *task_queues,
5447                         int n_workers) :
5448     _g1h(g1h),
5449     _queues(task_queues),
5450     _workers(workers),
5451     _active_workers(n_workers)
5452   {
5453     assert(n_workers > 0, "shouldn't call this otherwise");
5454   }
5455 
5456   // Executes the given task using concurrent marking worker threads.
5457   virtual void execute(ProcessTask& task);
5458   virtual void execute(EnqueueTask& task);
5459 };
5460 
5461 // Gang task for possibly parallel reference processing
5462 
5463 class G1STWRefProcTaskProxy: public AbstractGangTask {
5464   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5465   ProcessTask&     _proc_task;
5466   G1CollectedHeap* _g1h;
5467   RefToScanQueueSet *_task_queues;
5468   ParallelTaskTerminator* _terminator;
5469 
5470 public:
5471   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5472                      G1CollectedHeap* g1h,
5473                      RefToScanQueueSet *task_queues,
5474                      ParallelTaskTerminator* terminator) :
5475     AbstractGangTask("Process reference objects in parallel"),
5476     _proc_task(proc_task),
5477     _g1h(g1h),
5478     _task_queues(task_queues),
5479     _terminator(terminator)
5480   {}
5481 
5482   virtual void work(uint worker_id) {
5483     // The reference processing task executed by a single worker.
5484     ResourceMark rm;
5485     HandleMark   hm;
5486 
5487     G1STWIsAliveClosure is_alive(_g1h);
5488 
5489     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5490 
5491     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5492     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5493     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5494 
5495     pss.set_evac_closure(&scan_evac_cl);
5496     pss.set_evac_failure_closure(&evac_failure_cl);
5497     pss.set_partial_scan_closure(&partial_scan_cl);
5498 
5499     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5500     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5501 
5502     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5503     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5504 
5505     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5506     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5507 
5508     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5509       // We also need to mark copied objects.
5510       copy_non_heap_cl = &copy_mark_non_heap_cl;
5511       copy_metadata_cl = &copy_mark_metadata_cl;
5512     }
5513 
5514     // Keep alive closure.
5515     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5516 
5517     // Complete GC closure
5518     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5519 
5520     // Call the reference processing task's work routine.
5521     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5522 
5523     // Note we cannot assert that the refs array is empty here as not all
5524     // of the processing tasks (specifically phase2 - pp2_work) execute
5525     // the complete_gc closure (which ordinarily would drain the queue) so
5526     // the queue may not be empty.
5527   }
5528 };
5529 
5530 // Driver routine for parallel reference processing.
5531 // Creates an instance of the ref processing gang
5532 // task and has the worker threads execute it.
5533 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5534   assert(_workers != NULL, "Need parallel worker threads.");
5535 
5536   ParallelTaskTerminator terminator(_active_workers, _queues);
5537   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5538 
5539   _g1h->set_par_threads(_active_workers);
5540   _workers->run_task(&proc_task_proxy);
5541   _g1h->set_par_threads(0);
5542 }
5543 
5544 // Gang task for parallel reference enqueueing.
5545 
5546 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5547   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5548   EnqueueTask& _enq_task;
5549 
5550 public:
5551   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5552     AbstractGangTask("Enqueue reference objects in parallel"),
5553     _enq_task(enq_task)
5554   { }
5555 
5556   virtual void work(uint worker_id) {
5557     _enq_task.work(worker_id);
5558   }
5559 };
5560 
5561 // Driver routine for parallel reference enqueueing.
5562 // Creates an instance of the ref enqueueing gang
5563 // task and has the worker threads execute it.
5564 
5565 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5566   assert(_workers != NULL, "Need parallel worker threads.");
5567 
5568   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5569 
5570   _g1h->set_par_threads(_active_workers);
5571   _workers->run_task(&enq_task_proxy);
5572   _g1h->set_par_threads(0);
5573 }
5574 
5575 // End of weak reference support closures
5576 
5577 // Abstract task used to preserve (i.e. copy) any referent objects
5578 // that are in the collection set and are pointed to by reference
5579 // objects discovered by the CM ref processor.
5580 
5581 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5582 protected:
5583   G1CollectedHeap* _g1h;
5584   RefToScanQueueSet      *_queues;
5585   ParallelTaskTerminator _terminator;
5586   uint _n_workers;
5587 
5588 public:
5589   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5590     AbstractGangTask("ParPreserveCMReferents"),
5591     _g1h(g1h),
5592     _queues(task_queues),
5593     _terminator(workers, _queues),
5594     _n_workers(workers)
5595   { }
5596 
5597   void work(uint worker_id) {
5598     ResourceMark rm;
5599     HandleMark   hm;
5600 
5601     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5602     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5603     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5604     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5605 
5606     pss.set_evac_closure(&scan_evac_cl);
5607     pss.set_evac_failure_closure(&evac_failure_cl);
5608     pss.set_partial_scan_closure(&partial_scan_cl);
5609 
5610     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5611 
5612 
5613     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5614     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5615 
5616     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5617     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5618 
5619     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5620     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5621 
5622     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5623       // We also need to mark copied objects.
5624       copy_non_heap_cl = &copy_mark_non_heap_cl;
5625       copy_metadata_cl = &copy_mark_metadata_cl;
5626     }
5627 
5628     // Is alive closure
5629     G1AlwaysAliveClosure always_alive(_g1h);
5630 
5631     // Copying keep alive closure. Applied to referent objects that need
5632     // to be copied.
5633     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5634 
5635     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5636 
5637     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5638     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5639 
5640     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5641     // So this must be true - but assert just in case someone decides to
5642     // change the worker ids.
5643     assert(0 <= worker_id && worker_id < limit, "sanity");
5644     assert(!rp->discovery_is_atomic(), "check this code");
5645 
5646     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5647     for (uint idx = worker_id; idx < limit; idx += stride) {
5648       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5649 
5650       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5651       while (iter.has_next()) {
5652         // Since discovery is not atomic for the CM ref processor, we
5653         // can see some null referent objects.
5654         iter.load_ptrs(DEBUG_ONLY(true));
5655         oop ref = iter.obj();
5656 
5657         // This will filter nulls.
5658         if (iter.is_referent_alive()) {
5659           iter.make_referent_alive();
5660         }
5661         iter.move_to_next();
5662       }
5663     }
5664 
5665     // Drain the queue - which may cause stealing
5666     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5667     drain_queue.do_void();
5668     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5669     assert(pss.refs()->is_empty(), "should be");
5670   }
5671 };
5672 
5673 // Weak Reference processing during an evacuation pause (part 1).
5674 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5675   double ref_proc_start = os::elapsedTime();
5676 
5677   ReferenceProcessor* rp = _ref_processor_stw;
5678   assert(rp->discovery_enabled(), "should have been enabled");
5679 
5680   // Any reference objects, in the collection set, that were 'discovered'
5681   // by the CM ref processor should have already been copied (either by
5682   // applying the external root copy closure to the discovered lists, or
5683   // by following an RSet entry).
5684   //
5685   // But some of the referents, that are in the collection set, that these
5686   // reference objects point to may not have been copied: the STW ref
5687   // processor would have seen that the reference object had already
5688   // been 'discovered' and would have skipped discovering the reference,
5689   // but would not have treated the reference object as a regular oop.
5690   // As a result the copy closure would not have been applied to the
5691   // referent object.
5692   //
5693   // We need to explicitly copy these referent objects - the references
5694   // will be processed at the end of remarking.
5695   //
5696   // We also need to do this copying before we process the reference
5697   // objects discovered by the STW ref processor in case one of these
5698   // referents points to another object which is also referenced by an
5699   // object discovered by the STW ref processor.
5700 
5701   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5702            no_of_gc_workers == workers()->active_workers(),
5703            "Need to reset active GC workers");
5704 
5705   set_par_threads(no_of_gc_workers);
5706   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5707                                                  no_of_gc_workers,
5708                                                  _task_queues);
5709 
5710   if (G1CollectedHeap::use_parallel_gc_threads()) {
5711     workers()->run_task(&keep_cm_referents);
5712   } else {
5713     keep_cm_referents.work(0);
5714   }
5715 
5716   set_par_threads(0);
5717 
5718   // Closure to test whether a referent is alive.
5719   G1STWIsAliveClosure is_alive(this);
5720 
5721   // Even when parallel reference processing is enabled, the processing
5722   // of JNI refs is serial and performed serially by the current thread
5723   // rather than by a worker. The following PSS will be used for processing
5724   // JNI refs.
5725 
5726   // Use only a single queue for this PSS.
5727   G1ParScanThreadState            pss(this, 0, NULL);
5728 
5729   // We do not embed a reference processor in the copying/scanning
5730   // closures while we're actually processing the discovered
5731   // reference objects.
5732   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5733   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5734   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5735 
5736   pss.set_evac_closure(&scan_evac_cl);
5737   pss.set_evac_failure_closure(&evac_failure_cl);
5738   pss.set_partial_scan_closure(&partial_scan_cl);
5739 
5740   assert(pss.refs()->is_empty(), "pre-condition");
5741 
5742   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5743   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5744 
5745   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5746   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5747 
5748   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5749   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5750 
5751   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5752     // We also need to mark copied objects.
5753     copy_non_heap_cl = &copy_mark_non_heap_cl;
5754     copy_metadata_cl = &copy_mark_metadata_cl;
5755   }
5756 
5757   // Keep alive closure.
5758   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5759 
5760   // Serial Complete GC closure
5761   G1STWDrainQueueClosure drain_queue(this, &pss);
5762 
5763   // Setup the soft refs policy...
5764   rp->setup_policy(false);
5765 
5766   ReferenceProcessorStats stats;
5767   if (!rp->processing_is_mt()) {
5768     // Serial reference processing...
5769     stats = rp->process_discovered_references(&is_alive,
5770                                               &keep_alive,
5771                                               &drain_queue,
5772                                               NULL,
5773                                               _gc_timer_stw);
5774   } else {
5775     // Parallel reference processing
5776     assert(rp->num_q() == no_of_gc_workers, "sanity");
5777     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5778 
5779     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5780     stats = rp->process_discovered_references(&is_alive,
5781                                               &keep_alive,
5782                                               &drain_queue,
5783                                               &par_task_executor,
5784                                               _gc_timer_stw);
5785   }
5786 
5787   _gc_tracer_stw->report_gc_reference_stats(stats);
5788   // We have completed copying any necessary live referent objects
5789   // (that were not copied during the actual pause) so we can
5790   // retire any active alloc buffers
5791   pss.retire_alloc_buffers();
5792   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5793 
5794   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5795   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5796 }
5797 
5798 // Weak Reference processing during an evacuation pause (part 2).
5799 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5800   double ref_enq_start = os::elapsedTime();
5801 
5802   ReferenceProcessor* rp = _ref_processor_stw;
5803   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5804 
5805   // Now enqueue any remaining on the discovered lists on to
5806   // the pending list.
5807   if (!rp->processing_is_mt()) {
5808     // Serial reference processing...
5809     rp->enqueue_discovered_references();
5810   } else {
5811     // Parallel reference enqueueing
5812 
5813     assert(no_of_gc_workers == workers()->active_workers(),
5814            "Need to reset active workers");
5815     assert(rp->num_q() == no_of_gc_workers, "sanity");
5816     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5817 
5818     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5819     rp->enqueue_discovered_references(&par_task_executor);
5820   }
5821 
5822   rp->verify_no_references_recorded();
5823   assert(!rp->discovery_enabled(), "should have been disabled");
5824 
5825   // FIXME
5826   // CM's reference processing also cleans up the string and symbol tables.
5827   // Should we do that here also? We could, but it is a serial operation
5828   // and could significantly increase the pause time.
5829 
5830   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5831   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5832 }
5833 
5834 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5835   _expand_heap_after_alloc_failure = true;
5836   _evacuation_failed = false;
5837 
5838   // Should G1EvacuationFailureALot be in effect for this GC?
5839   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5840 
5841   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5842 
5843   // Disable the hot card cache.
5844   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5845   hot_card_cache->reset_hot_cache_claimed_index();
5846   hot_card_cache->set_use_cache(false);
5847 
5848   uint n_workers;
5849   if (G1CollectedHeap::use_parallel_gc_threads()) {
5850     n_workers =
5851       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5852                                      workers()->active_workers(),
5853                                      Threads::number_of_non_daemon_threads());
5854     assert(UseDynamicNumberOfGCThreads ||
5855            n_workers == workers()->total_workers(),
5856            "If not dynamic should be using all the  workers");
5857     workers()->set_active_workers(n_workers);
5858     set_par_threads(n_workers);
5859   } else {
5860     assert(n_par_threads() == 0,
5861            "Should be the original non-parallel value");
5862     n_workers = 1;
5863   }
5864 
5865   G1ParTask g1_par_task(this, _task_queues);
5866 
5867   init_for_evac_failure(NULL);
5868 
5869   rem_set()->prepare_for_younger_refs_iterate(true);
5870 
5871   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5872   double start_par_time_sec = os::elapsedTime();
5873   double end_par_time_sec;
5874 
5875   {
5876     StrongRootsScope srs(this);
5877 
5878     if (G1CollectedHeap::use_parallel_gc_threads()) {
5879       // The individual threads will set their evac-failure closures.
5880       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5881       // These tasks use ShareHeap::_process_strong_tasks
5882       assert(UseDynamicNumberOfGCThreads ||
5883              workers()->active_workers() == workers()->total_workers(),
5884              "If not dynamic should be using all the  workers");
5885       workers()->run_task(&g1_par_task);
5886     } else {
5887       g1_par_task.set_for_termination(n_workers);
5888       g1_par_task.work(0);
5889     }
5890     end_par_time_sec = os::elapsedTime();
5891 
5892     // Closing the inner scope will execute the destructor
5893     // for the StrongRootsScope object. We record the current
5894     // elapsed time before closing the scope so that time
5895     // taken for the SRS destructor is NOT included in the
5896     // reported parallel time.
5897   }
5898 
5899   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5900   g1_policy()->phase_times()->record_par_time(par_time_ms);
5901 
5902   double code_root_fixup_time_ms =
5903         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5904   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5905 
5906   set_par_threads(0);
5907 
5908   // Process any discovered reference objects - we have
5909   // to do this _before_ we retire the GC alloc regions
5910   // as we may have to copy some 'reachable' referent
5911   // objects (and their reachable sub-graphs) that were
5912   // not copied during the pause.
5913   process_discovered_references(n_workers);
5914 
5915   // Weak root processing.
5916   {
5917     G1STWIsAliveClosure is_alive(this);
5918     G1KeepAliveClosure keep_alive(this);
5919     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5920   }
5921 
5922   release_gc_alloc_regions(n_workers, evacuation_info);
5923   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5924 
5925   // Reset and re-enable the hot card cache.
5926   // Note the counts for the cards in the regions in the
5927   // collection set are reset when the collection set is freed.
5928   hot_card_cache->reset_hot_cache();
5929   hot_card_cache->set_use_cache(true);
5930 
5931   // Migrate the strong code roots attached to each region in
5932   // the collection set. Ideally we would like to do this
5933   // after we have finished the scanning/evacuation of the
5934   // strong code roots for a particular heap region.
5935   migrate_strong_code_roots();
5936 
5937   if (g1_policy()->during_initial_mark_pause()) {
5938     // Reset the claim values set during marking the strong code roots
5939     reset_heap_region_claim_values();
5940   }
5941 
5942   finalize_for_evac_failure();
5943 
5944   if (evacuation_failed()) {
5945     remove_self_forwarding_pointers();
5946 
5947     // Reset the G1EvacuationFailureALot counters and flags
5948     // Note: the values are reset only when an actual
5949     // evacuation failure occurs.
5950     NOT_PRODUCT(reset_evacuation_should_fail();)
5951   }
5952 
5953   // Enqueue any remaining references remaining on the STW
5954   // reference processor's discovered lists. We need to do
5955   // this after the card table is cleaned (and verified) as
5956   // the act of enqueueing entries on to the pending list
5957   // will log these updates (and dirty their associated
5958   // cards). We need these updates logged to update any
5959   // RSets.
5960   enqueue_discovered_references(n_workers);
5961 
5962   if (G1DeferredRSUpdate) {
5963     RedirtyLoggedCardTableEntryFastClosure redirty;
5964     dirty_card_queue_set().set_closure(&redirty);
5965     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5966 
5967     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5968     dcq.merge_bufferlists(&dirty_card_queue_set());
5969     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5970   }
5971   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5972 }
5973 
5974 void G1CollectedHeap::free_region(HeapRegion* hr,
5975                                   FreeRegionList* free_list,
5976                                   bool par) {
5977   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5978   assert(!hr->is_empty(), "the region should not be empty");
5979   assert(free_list != NULL, "pre-condition");
5980 
5981   // Clear the card counts for this region.
5982   // Note: we only need to do this if the region is not young
5983   // (since we don't refine cards in young regions).
5984   if (!hr->is_young()) {
5985     _cg1r->hot_card_cache()->reset_card_counts(hr);
5986   }
5987   hr->hr_clear(par, true /* clear_space */);
5988   free_list->add_as_head(hr);
5989 }
5990 
5991 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5992                                      FreeRegionList* free_list,
5993                                      bool par) {
5994   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5995   assert(free_list != NULL, "pre-condition");
5996 
5997   size_t hr_capacity = hr->capacity();
5998   // We need to read this before we make the region non-humongous,
5999   // otherwise the information will be gone.
6000   uint last_index = hr->last_hc_index();
6001   hr->set_notHumongous();
6002   free_region(hr, free_list, par);
6003 
6004   uint i = hr->hrs_index() + 1;
6005   while (i < last_index) {
6006     HeapRegion* curr_hr = region_at(i);
6007     assert(curr_hr->continuesHumongous(), "invariant");
6008     curr_hr->set_notHumongous();
6009     free_region(curr_hr, free_list, par);
6010     i += 1;
6011   }
6012 }
6013 
6014 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
6015                                        const HeapRegionSetCount& humongous_regions_removed) {
6016   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
6017     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
6018     _old_set.bulk_remove(old_regions_removed);
6019     _humongous_set.bulk_remove(humongous_regions_removed);
6020   }
6021 
6022 }
6023 
6024 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
6025   assert(list != NULL, "list can't be null");
6026   if (!list->is_empty()) {
6027     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
6028     _free_list.add_as_head(list);
6029   }
6030 }
6031 
6032 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
6033   assert(_summary_bytes_used >= bytes,
6034          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
6035                   _summary_bytes_used, bytes));
6036   _summary_bytes_used -= bytes;
6037 }
6038 
6039 class G1ParCleanupCTTask : public AbstractGangTask {
6040   G1SATBCardTableModRefBS* _ct_bs;
6041   G1CollectedHeap* _g1h;
6042   HeapRegion* volatile _su_head;
6043 public:
6044   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6045                      G1CollectedHeap* g1h) :
6046     AbstractGangTask("G1 Par Cleanup CT Task"),
6047     _ct_bs(ct_bs), _g1h(g1h) { }
6048 
6049   void work(uint worker_id) {
6050     HeapRegion* r;
6051     while (r = _g1h->pop_dirty_cards_region()) {
6052       clear_cards(r);
6053     }
6054   }
6055 
6056   void clear_cards(HeapRegion* r) {
6057     // Cards of the survivors should have already been dirtied.
6058     if (!r->is_survivor()) {
6059       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6060     }
6061   }
6062 };
6063 
6064 #ifndef PRODUCT
6065 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6066   G1CollectedHeap* _g1h;
6067   G1SATBCardTableModRefBS* _ct_bs;
6068 public:
6069   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6070     : _g1h(g1h), _ct_bs(ct_bs) { }
6071   virtual bool doHeapRegion(HeapRegion* r) {
6072     if (r->is_survivor()) {
6073       _g1h->verify_dirty_region(r);
6074     } else {
6075       _g1h->verify_not_dirty_region(r);
6076     }
6077     return false;
6078   }
6079 };
6080 
6081 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6082   // All of the region should be clean.
6083   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6084   MemRegion mr(hr->bottom(), hr->end());
6085   ct_bs->verify_not_dirty_region(mr);
6086 }
6087 
6088 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6089   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6090   // dirty allocated blocks as they allocate them. The thread that
6091   // retires each region and replaces it with a new one will do a
6092   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6093   // not dirty that area (one less thing to have to do while holding
6094   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6095   // is dirty.
6096   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6097   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6098   if (hr->is_young()) {
6099     ct_bs->verify_g1_young_region(mr);
6100   } else {
6101     ct_bs->verify_dirty_region(mr);
6102   }
6103 }
6104 
6105 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6106   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6107   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6108     verify_dirty_region(hr);
6109   }
6110 }
6111 
6112 void G1CollectedHeap::verify_dirty_young_regions() {
6113   verify_dirty_young_list(_young_list->first_region());
6114 }
6115 #endif
6116 
6117 void G1CollectedHeap::cleanUpCardTable() {
6118   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6119   double start = os::elapsedTime();
6120 
6121   {
6122     // Iterate over the dirty cards region list.
6123     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6124 
6125     if (G1CollectedHeap::use_parallel_gc_threads()) {
6126       set_par_threads();
6127       workers()->run_task(&cleanup_task);
6128       set_par_threads(0);
6129     } else {
6130       while (_dirty_cards_region_list) {
6131         HeapRegion* r = _dirty_cards_region_list;
6132         cleanup_task.clear_cards(r);
6133         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6134         if (_dirty_cards_region_list == r) {
6135           // The last region.
6136           _dirty_cards_region_list = NULL;
6137         }
6138         r->set_next_dirty_cards_region(NULL);
6139       }
6140     }
6141 #ifndef PRODUCT
6142     if (G1VerifyCTCleanup || VerifyAfterGC) {
6143       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6144       heap_region_iterate(&cleanup_verifier);
6145     }
6146 #endif
6147   }
6148 
6149   double elapsed = os::elapsedTime() - start;
6150   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6151 }
6152 
6153 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6154   size_t pre_used = 0;
6155   FreeRegionList local_free_list("Local List for CSet Freeing");
6156 
6157   double young_time_ms     = 0.0;
6158   double non_young_time_ms = 0.0;
6159 
6160   // Since the collection set is a superset of the the young list,
6161   // all we need to do to clear the young list is clear its
6162   // head and length, and unlink any young regions in the code below
6163   _young_list->clear();
6164 
6165   G1CollectorPolicy* policy = g1_policy();
6166 
6167   double start_sec = os::elapsedTime();
6168   bool non_young = true;
6169 
6170   HeapRegion* cur = cs_head;
6171   int age_bound = -1;
6172   size_t rs_lengths = 0;
6173 
6174   while (cur != NULL) {
6175     assert(!is_on_master_free_list(cur), "sanity");
6176     if (non_young) {
6177       if (cur->is_young()) {
6178         double end_sec = os::elapsedTime();
6179         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6180         non_young_time_ms += elapsed_ms;
6181 
6182         start_sec = os::elapsedTime();
6183         non_young = false;
6184       }
6185     } else {
6186       if (!cur->is_young()) {
6187         double end_sec = os::elapsedTime();
6188         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6189         young_time_ms += elapsed_ms;
6190 
6191         start_sec = os::elapsedTime();
6192         non_young = true;
6193       }
6194     }
6195 
6196     rs_lengths += cur->rem_set()->occupied();
6197 
6198     HeapRegion* next = cur->next_in_collection_set();
6199     assert(cur->in_collection_set(), "bad CS");
6200     cur->set_next_in_collection_set(NULL);
6201     cur->set_in_collection_set(false);
6202 
6203     if (cur->is_young()) {
6204       int index = cur->young_index_in_cset();
6205       assert(index != -1, "invariant");
6206       assert((uint) index < policy->young_cset_region_length(), "invariant");
6207       size_t words_survived = _surviving_young_words[index];
6208       cur->record_surv_words_in_group(words_survived);
6209 
6210       // At this point the we have 'popped' cur from the collection set
6211       // (linked via next_in_collection_set()) but it is still in the
6212       // young list (linked via next_young_region()). Clear the
6213       // _next_young_region field.
6214       cur->set_next_young_region(NULL);
6215     } else {
6216       int index = cur->young_index_in_cset();
6217       assert(index == -1, "invariant");
6218     }
6219 
6220     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6221             (!cur->is_young() && cur->young_index_in_cset() == -1),
6222             "invariant" );
6223 
6224     if (!cur->evacuation_failed()) {
6225       MemRegion used_mr = cur->used_region();
6226 
6227       // And the region is empty.
6228       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6229       pre_used += cur->used();
6230       free_region(cur, &local_free_list, false /* par */);
6231     } else {
6232       cur->uninstall_surv_rate_group();
6233       if (cur->is_young()) {
6234         cur->set_young_index_in_cset(-1);
6235       }
6236       cur->set_not_young();
6237       cur->set_evacuation_failed(false);
6238       // The region is now considered to be old.
6239       _old_set.add(cur);
6240       evacuation_info.increment_collectionset_used_after(cur->used());
6241     }
6242     cur = next;
6243   }
6244 
6245   evacuation_info.set_regions_freed(local_free_list.length());
6246   policy->record_max_rs_lengths(rs_lengths);
6247   policy->cset_regions_freed();
6248 
6249   double end_sec = os::elapsedTime();
6250   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6251 
6252   if (non_young) {
6253     non_young_time_ms += elapsed_ms;
6254   } else {
6255     young_time_ms += elapsed_ms;
6256   }
6257 
6258   prepend_to_freelist(&local_free_list);
6259   decrement_summary_bytes(pre_used);
6260   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6261   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6262 }
6263 
6264 // This routine is similar to the above but does not record
6265 // any policy statistics or update free lists; we are abandoning
6266 // the current incremental collection set in preparation of a
6267 // full collection. After the full GC we will start to build up
6268 // the incremental collection set again.
6269 // This is only called when we're doing a full collection
6270 // and is immediately followed by the tearing down of the young list.
6271 
6272 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6273   HeapRegion* cur = cs_head;
6274 
6275   while (cur != NULL) {
6276     HeapRegion* next = cur->next_in_collection_set();
6277     assert(cur->in_collection_set(), "bad CS");
6278     cur->set_next_in_collection_set(NULL);
6279     cur->set_in_collection_set(false);
6280     cur->set_young_index_in_cset(-1);
6281     cur = next;
6282   }
6283 }
6284 
6285 void G1CollectedHeap::set_free_regions_coming() {
6286   if (G1ConcRegionFreeingVerbose) {
6287     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6288                            "setting free regions coming");
6289   }
6290 
6291   assert(!free_regions_coming(), "pre-condition");
6292   _free_regions_coming = true;
6293 }
6294 
6295 void G1CollectedHeap::reset_free_regions_coming() {
6296   assert(free_regions_coming(), "pre-condition");
6297 
6298   {
6299     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6300     _free_regions_coming = false;
6301     SecondaryFreeList_lock->notify_all();
6302   }
6303 
6304   if (G1ConcRegionFreeingVerbose) {
6305     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6306                            "reset free regions coming");
6307   }
6308 }
6309 
6310 void G1CollectedHeap::wait_while_free_regions_coming() {
6311   // Most of the time we won't have to wait, so let's do a quick test
6312   // first before we take the lock.
6313   if (!free_regions_coming()) {
6314     return;
6315   }
6316 
6317   if (G1ConcRegionFreeingVerbose) {
6318     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6319                            "waiting for free regions");
6320   }
6321 
6322   {
6323     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6324     while (free_regions_coming()) {
6325       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6326     }
6327   }
6328 
6329   if (G1ConcRegionFreeingVerbose) {
6330     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6331                            "done waiting for free regions");
6332   }
6333 }
6334 
6335 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6336   assert(heap_lock_held_for_gc(),
6337               "the heap lock should already be held by or for this thread");
6338   _young_list->push_region(hr);
6339 }
6340 
6341 class NoYoungRegionsClosure: public HeapRegionClosure {
6342 private:
6343   bool _success;
6344 public:
6345   NoYoungRegionsClosure() : _success(true) { }
6346   bool doHeapRegion(HeapRegion* r) {
6347     if (r->is_young()) {
6348       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6349                              r->bottom(), r->end());
6350       _success = false;
6351     }
6352     return false;
6353   }
6354   bool success() { return _success; }
6355 };
6356 
6357 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6358   bool ret = _young_list->check_list_empty(check_sample);
6359 
6360   if (check_heap) {
6361     NoYoungRegionsClosure closure;
6362     heap_region_iterate(&closure);
6363     ret = ret && closure.success();
6364   }
6365 
6366   return ret;
6367 }
6368 
6369 class TearDownRegionSetsClosure : public HeapRegionClosure {
6370 private:
6371   HeapRegionSet *_old_set;
6372 
6373 public:
6374   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6375 
6376   bool doHeapRegion(HeapRegion* r) {
6377     if (r->is_empty()) {
6378       // We ignore empty regions, we'll empty the free list afterwards
6379     } else if (r->is_young()) {
6380       // We ignore young regions, we'll empty the young list afterwards
6381     } else if (r->isHumongous()) {
6382       // We ignore humongous regions, we're not tearing down the
6383       // humongous region set
6384     } else {
6385       // The rest should be old
6386       _old_set->remove(r);
6387     }
6388     return false;
6389   }
6390 
6391   ~TearDownRegionSetsClosure() {
6392     assert(_old_set->is_empty(), "post-condition");
6393   }
6394 };
6395 
6396 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6397   assert_at_safepoint(true /* should_be_vm_thread */);
6398 
6399   if (!free_list_only) {
6400     TearDownRegionSetsClosure cl(&_old_set);
6401     heap_region_iterate(&cl);
6402 
6403     // Need to do this after the heap iteration to be able to
6404     // recognize the young regions and ignore them during the iteration.
6405     _young_list->empty_list();
6406   }
6407   _free_list.remove_all();
6408 }
6409 
6410 class RebuildRegionSetsClosure : public HeapRegionClosure {
6411 private:
6412   bool            _free_list_only;
6413   HeapRegionSet*   _old_set;
6414   FreeRegionList* _free_list;
6415   size_t          _total_used;
6416 
6417 public:
6418   RebuildRegionSetsClosure(bool free_list_only,
6419                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6420     _free_list_only(free_list_only),
6421     _old_set(old_set), _free_list(free_list), _total_used(0) {
6422     assert(_free_list->is_empty(), "pre-condition");
6423     if (!free_list_only) {
6424       assert(_old_set->is_empty(), "pre-condition");
6425     }
6426   }
6427 
6428   bool doHeapRegion(HeapRegion* r) {
6429     if (r->continuesHumongous()) {
6430       return false;
6431     }
6432 
6433     if (r->is_empty()) {
6434       // Add free regions to the free list
6435       _free_list->add_as_tail(r);
6436     } else if (!_free_list_only) {
6437       assert(!r->is_young(), "we should not come across young regions");
6438 
6439       if (r->isHumongous()) {
6440         // We ignore humongous regions, we left the humongous set unchanged
6441       } else {
6442         // The rest should be old, add them to the old set
6443         _old_set->add(r);
6444       }
6445       _total_used += r->used();
6446     }
6447 
6448     return false;
6449   }
6450 
6451   size_t total_used() {
6452     return _total_used;
6453   }
6454 };
6455 
6456 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6457   assert_at_safepoint(true /* should_be_vm_thread */);
6458 
6459   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6460   heap_region_iterate(&cl);
6461 
6462   if (!free_list_only) {
6463     _summary_bytes_used = cl.total_used();
6464   }
6465   assert(_summary_bytes_used == recalculate_used(),
6466          err_msg("inconsistent _summary_bytes_used, "
6467                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6468                  _summary_bytes_used, recalculate_used()));
6469 }
6470 
6471 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6472   _refine_cte_cl->set_concurrent(concurrent);
6473 }
6474 
6475 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6476   HeapRegion* hr = heap_region_containing(p);
6477   if (hr == NULL) {
6478     return false;
6479   } else {
6480     return hr->is_in(p);
6481   }
6482 }
6483 
6484 // Methods for the mutator alloc region
6485 
6486 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6487                                                       bool force) {
6488   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6489   assert(!force || g1_policy()->can_expand_young_list(),
6490          "if force is true we should be able to expand the young list");
6491   bool young_list_full = g1_policy()->is_young_list_full();
6492   if (force || !young_list_full) {
6493     HeapRegion* new_alloc_region = new_region(word_size,
6494                                               false /* do_expand */);
6495     if (new_alloc_region != NULL) {
6496       set_region_short_lived_locked(new_alloc_region);
6497       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6498       return new_alloc_region;
6499     }
6500   }
6501   return NULL;
6502 }
6503 
6504 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6505                                                   size_t allocated_bytes) {
6506   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6507   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6508 
6509   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6510   _summary_bytes_used += allocated_bytes;
6511   _hr_printer.retire(alloc_region);
6512   // We update the eden sizes here, when the region is retired,
6513   // instead of when it's allocated, since this is the point that its
6514   // used space has been recored in _summary_bytes_used.
6515   g1mm()->update_eden_size();
6516 }
6517 
6518 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6519                                                     bool force) {
6520   return _g1h->new_mutator_alloc_region(word_size, force);
6521 }
6522 
6523 void G1CollectedHeap::set_par_threads() {
6524   // Don't change the number of workers.  Use the value previously set
6525   // in the workgroup.
6526   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6527   uint n_workers = workers()->active_workers();
6528   assert(UseDynamicNumberOfGCThreads ||
6529            n_workers == workers()->total_workers(),
6530       "Otherwise should be using the total number of workers");
6531   if (n_workers == 0) {
6532     assert(false, "Should have been set in prior evacuation pause.");
6533     n_workers = ParallelGCThreads;
6534     workers()->set_active_workers(n_workers);
6535   }
6536   set_par_threads(n_workers);
6537 }
6538 
6539 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6540                                        size_t allocated_bytes) {
6541   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6542 }
6543 
6544 // Methods for the GC alloc regions
6545 
6546 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6547                                                  uint count,
6548                                                  GCAllocPurpose ap) {
6549   assert(FreeList_lock->owned_by_self(), "pre-condition");
6550 
6551   if (count < g1_policy()->max_regions(ap)) {
6552     HeapRegion* new_alloc_region = new_region(word_size,
6553                                               true /* do_expand */);
6554     if (new_alloc_region != NULL) {
6555       // We really only need to do this for old regions given that we
6556       // should never scan survivors. But it doesn't hurt to do it
6557       // for survivors too.
6558       new_alloc_region->set_saved_mark();
6559       if (ap == GCAllocForSurvived) {
6560         new_alloc_region->set_survivor();
6561         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6562       } else {
6563         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6564       }
6565       bool during_im = g1_policy()->during_initial_mark_pause();
6566       new_alloc_region->note_start_of_copying(during_im);
6567       return new_alloc_region;
6568     } else {
6569       g1_policy()->note_alloc_region_limit_reached(ap);
6570     }
6571   }
6572   return NULL;
6573 }
6574 
6575 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6576                                              size_t allocated_bytes,
6577                                              GCAllocPurpose ap) {
6578   bool during_im = g1_policy()->during_initial_mark_pause();
6579   alloc_region->note_end_of_copying(during_im);
6580   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6581   if (ap == GCAllocForSurvived) {
6582     young_list()->add_survivor_region(alloc_region);
6583   } else {
6584     _old_set.add(alloc_region);
6585   }
6586   _hr_printer.retire(alloc_region);
6587 }
6588 
6589 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6590                                                        bool force) {
6591   assert(!force, "not supported for GC alloc regions");
6592   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6593 }
6594 
6595 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6596                                           size_t allocated_bytes) {
6597   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6598                                GCAllocForSurvived);
6599 }
6600 
6601 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6602                                                   bool force) {
6603   assert(!force, "not supported for GC alloc regions");
6604   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6605 }
6606 
6607 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6608                                      size_t allocated_bytes) {
6609   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6610                                GCAllocForTenured);
6611 }
6612 // Heap region set verification
6613 
6614 class VerifyRegionListsClosure : public HeapRegionClosure {
6615 private:
6616   HeapRegionSet*   _old_set;
6617   HeapRegionSet*   _humongous_set;
6618   FreeRegionList*  _free_list;
6619 
6620 public:
6621   HeapRegionSetCount _old_count;
6622   HeapRegionSetCount _humongous_count;
6623   HeapRegionSetCount _free_count;
6624 
6625   VerifyRegionListsClosure(HeapRegionSet* old_set,
6626                            HeapRegionSet* humongous_set,
6627                            FreeRegionList* free_list) :
6628     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6629     _old_count(), _humongous_count(), _free_count(){ }
6630 
6631   bool doHeapRegion(HeapRegion* hr) {
6632     if (hr->continuesHumongous()) {
6633       return false;
6634     }
6635 
6636     if (hr->is_young()) {
6637       // TODO
6638     } else if (hr->startsHumongous()) {
6639       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->region_num()));
6640       _humongous_count.increment(1u, hr->capacity());
6641     } else if (hr->is_empty()) {
6642       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->region_num()));
6643       _free_count.increment(1u, hr->capacity());
6644     } else {
6645       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->region_num()));
6646       _old_count.increment(1u, hr->capacity());
6647     }
6648     return false;
6649   }
6650 
6651   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6652     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6653     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6654         old_set->total_capacity_bytes(), _old_count.capacity()));
6655 
6656     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6657     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6658         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6659 
6660     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6661     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6662         free_list->total_capacity_bytes(), _free_count.capacity()));
6663   }
6664 };
6665 
6666 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6667                                              HeapWord* bottom) {
6668   HeapWord* end = bottom + HeapRegion::GrainWords;
6669   MemRegion mr(bottom, end);
6670   assert(_g1_reserved.contains(mr), "invariant");
6671   // This might return NULL if the allocation fails
6672   return new HeapRegion(hrs_index, _bot_shared, mr);
6673 }
6674 
6675 void G1CollectedHeap::verify_region_sets() {
6676   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6677 
6678   // First, check the explicit lists.
6679   _free_list.verify_list();
6680   {
6681     // Given that a concurrent operation might be adding regions to
6682     // the secondary free list we have to take the lock before
6683     // verifying it.
6684     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6685     _secondary_free_list.verify_list();
6686   }
6687 
6688   // If a concurrent region freeing operation is in progress it will
6689   // be difficult to correctly attributed any free regions we come
6690   // across to the correct free list given that they might belong to
6691   // one of several (free_list, secondary_free_list, any local lists,
6692   // etc.). So, if that's the case we will skip the rest of the
6693   // verification operation. Alternatively, waiting for the concurrent
6694   // operation to complete will have a non-trivial effect on the GC's
6695   // operation (no concurrent operation will last longer than the
6696   // interval between two calls to verification) and it might hide
6697   // any issues that we would like to catch during testing.
6698   if (free_regions_coming()) {
6699     return;
6700   }
6701 
6702   // Make sure we append the secondary_free_list on the free_list so
6703   // that all free regions we will come across can be safely
6704   // attributed to the free_list.
6705   append_secondary_free_list_if_not_empty_with_lock();
6706 
6707   // Finally, make sure that the region accounting in the lists is
6708   // consistent with what we see in the heap.
6709 
6710   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6711   heap_region_iterate(&cl);
6712   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6713 }
6714 
6715 // Optimized nmethod scanning
6716 
6717 class RegisterNMethodOopClosure: public OopClosure {
6718   G1CollectedHeap* _g1h;
6719   nmethod* _nm;
6720 
6721   template <class T> void do_oop_work(T* p) {
6722     T heap_oop = oopDesc::load_heap_oop(p);
6723     if (!oopDesc::is_null(heap_oop)) {
6724       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6725       HeapRegion* hr = _g1h->heap_region_containing(obj);
6726       assert(!hr->continuesHumongous(),
6727              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6728                      " starting at "HR_FORMAT,
6729                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6730 
6731       // HeapRegion::add_strong_code_root() avoids adding duplicate
6732       // entries but having duplicates is  OK since we "mark" nmethods
6733       // as visited when we scan the strong code root lists during the GC.
6734       hr->add_strong_code_root(_nm);
6735       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6736              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6737                      _nm, HR_FORMAT_PARAMS(hr)));
6738     }
6739   }
6740 
6741 public:
6742   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6743     _g1h(g1h), _nm(nm) {}
6744 
6745   void do_oop(oop* p)       { do_oop_work(p); }
6746   void do_oop(narrowOop* p) { do_oop_work(p); }
6747 };
6748 
6749 class UnregisterNMethodOopClosure: public OopClosure {
6750   G1CollectedHeap* _g1h;
6751   nmethod* _nm;
6752 
6753   template <class T> void do_oop_work(T* p) {
6754     T heap_oop = oopDesc::load_heap_oop(p);
6755     if (!oopDesc::is_null(heap_oop)) {
6756       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6757       HeapRegion* hr = _g1h->heap_region_containing(obj);
6758       assert(!hr->continuesHumongous(),
6759              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6760                      " starting at "HR_FORMAT,
6761                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6762 
6763       hr->remove_strong_code_root(_nm);
6764       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6765              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6766                      _nm, HR_FORMAT_PARAMS(hr)));
6767     }
6768   }
6769 
6770 public:
6771   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6772     _g1h(g1h), _nm(nm) {}
6773 
6774   void do_oop(oop* p)       { do_oop_work(p); }
6775   void do_oop(narrowOop* p) { do_oop_work(p); }
6776 };
6777 
6778 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6779   CollectedHeap::register_nmethod(nm);
6780 
6781   guarantee(nm != NULL, "sanity");
6782   RegisterNMethodOopClosure reg_cl(this, nm);
6783   nm->oops_do(&reg_cl);
6784 }
6785 
6786 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6787   CollectedHeap::unregister_nmethod(nm);
6788 
6789   guarantee(nm != NULL, "sanity");
6790   UnregisterNMethodOopClosure reg_cl(this, nm);
6791   nm->oops_do(&reg_cl, true);
6792 }
6793 
6794 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6795 public:
6796   bool doHeapRegion(HeapRegion *hr) {
6797     assert(!hr->isHumongous(),
6798            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6799                    HR_FORMAT_PARAMS(hr)));
6800     hr->migrate_strong_code_roots();
6801     return false;
6802   }
6803 };
6804 
6805 void G1CollectedHeap::migrate_strong_code_roots() {
6806   MigrateCodeRootsHeapRegionClosure cl;
6807   double migrate_start = os::elapsedTime();
6808   collection_set_iterate(&cl);
6809   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6810   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6811 }
6812 
6813 // Mark all the code roots that point into regions *not* in the
6814 // collection set.
6815 //
6816 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6817 // walking the the code roots lists of regions not in the collection
6818 // set. Suppose we have an nmethod (M) that points to objects in two
6819 // separate regions - one in the collection set (R1) and one not (R2).
6820 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6821 // nmethod M when walking the code roots for R1. When we come to scan
6822 // the code roots for R2, we would see that M is already marked and it
6823 // would be skipped and the objects in R2 that are referenced from M
6824 // would not be evacuated.
6825 
6826 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6827 
6828   class MarkStrongCodeRootOopClosure: public OopClosure {
6829     ConcurrentMark* _cm;
6830     HeapRegion* _hr;
6831     uint _worker_id;
6832 
6833     template <class T> void do_oop_work(T* p) {
6834       T heap_oop = oopDesc::load_heap_oop(p);
6835       if (!oopDesc::is_null(heap_oop)) {
6836         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6837         // Only mark objects in the region (which is assumed
6838         // to be not in the collection set).
6839         if (_hr->is_in(obj)) {
6840           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6841         }
6842       }
6843     }
6844 
6845   public:
6846     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6847       _cm(cm), _hr(hr), _worker_id(worker_id) {
6848       assert(!_hr->in_collection_set(), "sanity");
6849     }
6850 
6851     void do_oop(narrowOop* p) { do_oop_work(p); }
6852     void do_oop(oop* p)       { do_oop_work(p); }
6853   };
6854 
6855   MarkStrongCodeRootOopClosure _oop_cl;
6856 
6857 public:
6858   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6859     _oop_cl(cm, hr, worker_id) {}
6860 
6861   void do_code_blob(CodeBlob* cb) {
6862     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6863     if (nm != NULL) {
6864       nm->oops_do(&_oop_cl);
6865     }
6866   }
6867 };
6868 
6869 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6870   G1CollectedHeap* _g1h;
6871   uint _worker_id;
6872 
6873 public:
6874   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6875     _g1h(g1h), _worker_id(worker_id) {}
6876 
6877   bool doHeapRegion(HeapRegion *hr) {
6878     HeapRegionRemSet* hrrs = hr->rem_set();
6879     if (hr->continuesHumongous()) {
6880       // Code roots should never be attached to a continuation of a humongous region
6881       assert(hrrs->strong_code_roots_list_length() == 0,
6882              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6883                      " starting at "HR_FORMAT", but has "INT32_FORMAT,
6884                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6885                      hrrs->strong_code_roots_list_length()));
6886       return false;
6887     }
6888 
6889     if (hr->in_collection_set()) {
6890       // Don't mark code roots into regions in the collection set here.
6891       // They will be marked when we scan them.
6892       return false;
6893     }
6894 
6895     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6896     hr->strong_code_roots_do(&cb_cl);
6897     return false;
6898   }
6899 };
6900 
6901 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6902   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6903   if (G1CollectedHeap::use_parallel_gc_threads()) {
6904     heap_region_par_iterate_chunked(&cl,
6905                                     worker_id,
6906                                     workers()->active_workers(),
6907                                     HeapRegion::ParMarkRootClaimValue);
6908   } else {
6909     heap_region_iterate(&cl);
6910   }
6911 }
6912 
6913 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6914   G1CollectedHeap* _g1h;
6915 
6916 public:
6917   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6918     _g1h(g1h) {}
6919 
6920   void do_code_blob(CodeBlob* cb) {
6921     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6922     if (nm == NULL) {
6923       return;
6924     }
6925 
6926     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6927       _g1h->register_nmethod(nm);
6928     }
6929   }
6930 };
6931 
6932 void G1CollectedHeap::rebuild_strong_code_roots() {
6933   RebuildStrongCodeRootClosure blob_cl(this);
6934   CodeCache::blobs_do(&blob_cl);
6935 }