1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "gc_implementation/g1/concurrentMark.inline.hpp"
  28 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  31 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  32 #include "gc_implementation/g1/g1Log.hpp"
  33 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  34 #include "gc_implementation/g1/g1RemSet.hpp"
  35 #include "gc_implementation/g1/heapRegion.inline.hpp"
  36 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  37 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  38 #include "gc_implementation/shared/vmGCOperations.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "memory/genOopClosures.inline.hpp"
  43 #include "memory/referencePolicy.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/java.hpp"
  48 #include "services/memTracker.hpp"
  49 
  50 // Concurrent marking bit map wrapper
  51 
  52 CMBitMapRO::CMBitMapRO(int shifter) :
  53   _bm(),
  54   _shifter(shifter) {
  55   _bmStartWord = 0;
  56   _bmWordSize = 0;
  57 }
  58 
  59 HeapWord* CMBitMapRO::getNextMarkedWordAddress(HeapWord* addr,
  60                                                HeapWord* limit) const {
  61   // First we must round addr *up* to a possible object boundary.
  62   addr = (HeapWord*)align_size_up((intptr_t)addr,
  63                                   HeapWordSize << _shifter);
  64   size_t addrOffset = heapWordToOffset(addr);
  65   if (limit == NULL) {
  66     limit = _bmStartWord + _bmWordSize;
  67   }
  68   size_t limitOffset = heapWordToOffset(limit);
  69   size_t nextOffset = _bm.get_next_one_offset(addrOffset, limitOffset);
  70   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  71   assert(nextAddr >= addr, "get_next_one postcondition");
  72   assert(nextAddr == limit || isMarked(nextAddr),
  73          "get_next_one postcondition");
  74   return nextAddr;
  75 }
  76 
  77 HeapWord* CMBitMapRO::getNextUnmarkedWordAddress(HeapWord* addr,
  78                                                  HeapWord* limit) const {
  79   size_t addrOffset = heapWordToOffset(addr);
  80   if (limit == NULL) {
  81     limit = _bmStartWord + _bmWordSize;
  82   }
  83   size_t limitOffset = heapWordToOffset(limit);
  84   size_t nextOffset = _bm.get_next_zero_offset(addrOffset, limitOffset);
  85   HeapWord* nextAddr = offsetToHeapWord(nextOffset);
  86   assert(nextAddr >= addr, "get_next_one postcondition");
  87   assert(nextAddr == limit || !isMarked(nextAddr),
  88          "get_next_one postcondition");
  89   return nextAddr;
  90 }
  91 
  92 int CMBitMapRO::heapWordDiffToOffsetDiff(size_t diff) const {
  93   assert((diff & ((1 << _shifter) - 1)) == 0, "argument check");
  94   return (int) (diff >> _shifter);
  95 }
  96 
  97 #ifndef PRODUCT
  98 bool CMBitMapRO::covers(ReservedSpace heap_rs) const {
  99   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
 100   assert(((size_t)_bm.size() * ((size_t)1 << _shifter)) == _bmWordSize,
 101          "size inconsistency");
 102   return _bmStartWord == (HeapWord*)(heap_rs.base()) &&
 103          _bmWordSize  == heap_rs.size()>>LogHeapWordSize;
 104 }
 105 #endif
 106 
 107 void CMBitMapRO::print_on_error(outputStream* st, const char* prefix) const {
 108   _bm.print_on_error(st, prefix);
 109 }
 110 
 111 bool CMBitMap::allocate(ReservedSpace heap_rs) {
 112   _bmStartWord = (HeapWord*)(heap_rs.base());
 113   _bmWordSize  = heap_rs.size()/HeapWordSize;    // heap_rs.size() is in bytes
 114   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
 115                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
 116   if (!brs.is_reserved()) {
 117     warning("ConcurrentMark marking bit map allocation failure");
 118     return false;
 119   }
 120   MemTracker::record_virtual_memory_type((address)brs.base(), mtGC);
 121   // For now we'll just commit all of the bit map up front.
 122   // Later on we'll try to be more parsimonious with swap.
 123   if (!_virtual_space.initialize(brs, brs.size())) {
 124     warning("ConcurrentMark marking bit map backing store failure");
 125     return false;
 126   }
 127   assert(_virtual_space.committed_size() == brs.size(),
 128          "didn't reserve backing store for all of concurrent marking bit map?");
 129   _bm.set_map((uintptr_t*)_virtual_space.low());
 130   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
 131          _bmWordSize, "inconsistency in bit map sizing");
 132   _bm.set_size(_bmWordSize >> _shifter);
 133   return true;
 134 }
 135 
 136 void CMBitMap::clearAll() {
 137   _bm.clear();
 138   return;
 139 }
 140 
 141 void CMBitMap::markRange(MemRegion mr) {
 142   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 143   assert(!mr.is_empty(), "unexpected empty region");
 144   assert((offsetToHeapWord(heapWordToOffset(mr.end())) ==
 145           ((HeapWord *) mr.end())),
 146          "markRange memory region end is not card aligned");
 147   // convert address range into offset range
 148   _bm.at_put_range(heapWordToOffset(mr.start()),
 149                    heapWordToOffset(mr.end()), true);
 150 }
 151 
 152 void CMBitMap::clearRange(MemRegion mr) {
 153   mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
 154   assert(!mr.is_empty(), "unexpected empty region");
 155   // convert address range into offset range
 156   _bm.at_put_range(heapWordToOffset(mr.start()),
 157                    heapWordToOffset(mr.end()), false);
 158 }
 159 
 160 MemRegion CMBitMap::getAndClearMarkedRegion(HeapWord* addr,
 161                                             HeapWord* end_addr) {
 162   HeapWord* start = getNextMarkedWordAddress(addr);
 163   start = MIN2(start, end_addr);
 164   HeapWord* end   = getNextUnmarkedWordAddress(start);
 165   end = MIN2(end, end_addr);
 166   assert(start <= end, "Consistency check");
 167   MemRegion mr(start, end);
 168   if (!mr.is_empty()) {
 169     clearRange(mr);
 170   }
 171   return mr;
 172 }
 173 
 174 CMMarkStack::CMMarkStack(ConcurrentMark* cm) :
 175   _base(NULL), _cm(cm)
 176 #ifdef ASSERT
 177   , _drain_in_progress(false)
 178   , _drain_in_progress_yields(false)
 179 #endif
 180 {}
 181 
 182 bool CMMarkStack::allocate(size_t capacity) {
 183   // allocate a stack of the requisite depth
 184   ReservedSpace rs(ReservedSpace::allocation_align_size_up(capacity * sizeof(oop)));
 185   if (!rs.is_reserved()) {
 186     warning("ConcurrentMark MarkStack allocation failure");
 187     return false;
 188   }
 189   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 190   if (!_virtual_space.initialize(rs, rs.size())) {
 191     warning("ConcurrentMark MarkStack backing store failure");
 192     // Release the virtual memory reserved for the marking stack
 193     rs.release();
 194     return false;
 195   }
 196   assert(_virtual_space.committed_size() == rs.size(),
 197          "Didn't reserve backing store for all of ConcurrentMark stack?");
 198   _base = (oop*) _virtual_space.low();
 199   setEmpty();
 200   _capacity = (jint) capacity;
 201   _saved_index = -1;
 202   _should_expand = false;
 203   NOT_PRODUCT(_max_depth = 0);
 204   return true;
 205 }
 206 
 207 void CMMarkStack::expand() {
 208   // Called, during remark, if we've overflown the marking stack during marking.
 209   assert(isEmpty(), "stack should been emptied while handling overflow");
 210   assert(_capacity <= (jint) MarkStackSizeMax, "stack bigger than permitted");
 211   // Clear expansion flag
 212   _should_expand = false;
 213   if (_capacity == (jint) MarkStackSizeMax) {
 214     if (PrintGCDetails && Verbose) {
 215       gclog_or_tty->print_cr(" (benign) Can't expand marking stack capacity, at max size limit");
 216     }
 217     return;
 218   }
 219   // Double capacity if possible
 220   jint new_capacity = MIN2(_capacity*2, (jint) MarkStackSizeMax);
 221   // Do not give up existing stack until we have managed to
 222   // get the double capacity that we desired.
 223   ReservedSpace rs(ReservedSpace::allocation_align_size_up(new_capacity *
 224                                                            sizeof(oop)));
 225   if (rs.is_reserved()) {
 226     // Release the backing store associated with old stack
 227     _virtual_space.release();
 228     // Reinitialize virtual space for new stack
 229     if (!_virtual_space.initialize(rs, rs.size())) {
 230       fatal("Not enough swap for expanded marking stack capacity");
 231     }
 232     _base = (oop*)(_virtual_space.low());
 233     _index = 0;
 234     _capacity = new_capacity;
 235   } else {
 236     if (PrintGCDetails && Verbose) {
 237       // Failed to double capacity, continue;
 238       gclog_or_tty->print(" (benign) Failed to expand marking stack capacity from "
 239                           SIZE_FORMAT"K to " SIZE_FORMAT"K",
 240                           _capacity / K, new_capacity / K);
 241     }
 242   }
 243 }
 244 
 245 void CMMarkStack::set_should_expand() {
 246   // If we're resetting the marking state because of an
 247   // marking stack overflow, record that we should, if
 248   // possible, expand the stack.
 249   _should_expand = _cm->has_overflown();
 250 }
 251 
 252 CMMarkStack::~CMMarkStack() {
 253   if (_base != NULL) {
 254     _base = NULL;
 255     _virtual_space.release();
 256   }
 257 }
 258 
 259 void CMMarkStack::par_push(oop ptr) {
 260   while (true) {
 261     if (isFull()) {
 262       _overflow = true;
 263       return;
 264     }
 265     // Otherwise...
 266     jint index = _index;
 267     jint next_index = index+1;
 268     jint res = Atomic::cmpxchg(next_index, &_index, index);
 269     if (res == index) {
 270       _base[index] = ptr;
 271       // Note that we don't maintain this atomically.  We could, but it
 272       // doesn't seem necessary.
 273       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 274       return;
 275     }
 276     // Otherwise, we need to try again.
 277   }
 278 }
 279 
 280 void CMMarkStack::par_adjoin_arr(oop* ptr_arr, int n) {
 281   while (true) {
 282     if (isFull()) {
 283       _overflow = true;
 284       return;
 285     }
 286     // Otherwise...
 287     jint index = _index;
 288     jint next_index = index + n;
 289     if (next_index > _capacity) {
 290       _overflow = true;
 291       return;
 292     }
 293     jint res = Atomic::cmpxchg(next_index, &_index, index);
 294     if (res == index) {
 295       for (int i = 0; i < n; i++) {
 296         int  ind = index + i;
 297         assert(ind < _capacity, "By overflow test above.");
 298         _base[ind] = ptr_arr[i];
 299       }
 300       NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 301       return;
 302     }
 303     // Otherwise, we need to try again.
 304   }
 305 }
 306 
 307 void CMMarkStack::par_push_arr(oop* ptr_arr, int n) {
 308   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 309   jint start = _index;
 310   jint next_index = start + n;
 311   if (next_index > _capacity) {
 312     _overflow = true;
 313     return;
 314   }
 315   // Otherwise.
 316   _index = next_index;
 317   for (int i = 0; i < n; i++) {
 318     int ind = start + i;
 319     assert(ind < _capacity, "By overflow test above.");
 320     _base[ind] = ptr_arr[i];
 321   }
 322   NOT_PRODUCT(_max_depth = MAX2(_max_depth, next_index));
 323 }
 324 
 325 bool CMMarkStack::par_pop_arr(oop* ptr_arr, int max, int* n) {
 326   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
 327   jint index = _index;
 328   if (index == 0) {
 329     *n = 0;
 330     return false;
 331   } else {
 332     int k = MIN2(max, index);
 333     jint  new_ind = index - k;
 334     for (int j = 0; j < k; j++) {
 335       ptr_arr[j] = _base[new_ind + j];
 336     }
 337     _index = new_ind;
 338     *n = k;
 339     return true;
 340   }
 341 }
 342 
 343 template<class OopClosureClass>
 344 bool CMMarkStack::drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after) {
 345   assert(!_drain_in_progress || !_drain_in_progress_yields || yield_after
 346          || SafepointSynchronize::is_at_safepoint(),
 347          "Drain recursion must be yield-safe.");
 348   bool res = true;
 349   debug_only(_drain_in_progress = true);
 350   debug_only(_drain_in_progress_yields = yield_after);
 351   while (!isEmpty()) {
 352     oop newOop = pop();
 353     assert(G1CollectedHeap::heap()->is_in_reserved(newOop), "Bad pop");
 354     assert(newOop->is_oop(), "Expected an oop");
 355     assert(bm == NULL || bm->isMarked((HeapWord*)newOop),
 356            "only grey objects on this stack");
 357     newOop->oop_iterate(cl);
 358     if (yield_after && _cm->do_yield_check()) {
 359       res = false;
 360       break;
 361     }
 362   }
 363   debug_only(_drain_in_progress = false);
 364   return res;
 365 }
 366 
 367 void CMMarkStack::note_start_of_gc() {
 368   assert(_saved_index == -1,
 369          "note_start_of_gc()/end_of_gc() bracketed incorrectly");
 370   _saved_index = _index;
 371 }
 372 
 373 void CMMarkStack::note_end_of_gc() {
 374   // This is intentionally a guarantee, instead of an assert. If we
 375   // accidentally add something to the mark stack during GC, it
 376   // will be a correctness issue so it's better if we crash. we'll
 377   // only check this once per GC anyway, so it won't be a performance
 378   // issue in any way.
 379   guarantee(_saved_index == _index,
 380             err_msg("saved index: %d index: %d", _saved_index, _index));
 381   _saved_index = -1;
 382 }
 383 
 384 void CMMarkStack::oops_do(OopClosure* f) {
 385   assert(_saved_index == _index,
 386          err_msg("saved index: %d index: %d", _saved_index, _index));
 387   for (int i = 0; i < _index; i += 1) {
 388     f->do_oop(&_base[i]);
 389   }
 390 }
 391 
 392 bool ConcurrentMark::not_yet_marked(oop obj) const {
 393   return _g1h->is_obj_ill(obj);
 394 }
 395 
 396 CMRootRegions::CMRootRegions() :
 397   _young_list(NULL), _cm(NULL), _scan_in_progress(false),
 398   _should_abort(false),  _next_survivor(NULL) { }
 399 
 400 void CMRootRegions::init(G1CollectedHeap* g1h, ConcurrentMark* cm) {
 401   _young_list = g1h->young_list();
 402   _cm = cm;
 403 }
 404 
 405 void CMRootRegions::prepare_for_scan() {
 406   assert(!scan_in_progress(), "pre-condition");
 407 
 408   // Currently, only survivors can be root regions.
 409   assert(_next_survivor == NULL, "pre-condition");
 410   _next_survivor = _young_list->first_survivor_region();
 411   _scan_in_progress = (_next_survivor != NULL);
 412   _should_abort = false;
 413 }
 414 
 415 HeapRegion* CMRootRegions::claim_next() {
 416   if (_should_abort) {
 417     // If someone has set the should_abort flag, we return NULL to
 418     // force the caller to bail out of their loop.
 419     return NULL;
 420   }
 421 
 422   // Currently, only survivors can be root regions.
 423   HeapRegion* res = _next_survivor;
 424   if (res != NULL) {
 425     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 426     // Read it again in case it changed while we were waiting for the lock.
 427     res = _next_survivor;
 428     if (res != NULL) {
 429       if (res == _young_list->last_survivor_region()) {
 430         // We just claimed the last survivor so store NULL to indicate
 431         // that we're done.
 432         _next_survivor = NULL;
 433       } else {
 434         _next_survivor = res->get_next_young_region();
 435       }
 436     } else {
 437       // Someone else claimed the last survivor while we were trying
 438       // to take the lock so nothing else to do.
 439     }
 440   }
 441   assert(res == NULL || res->is_survivor(), "post-condition");
 442 
 443   return res;
 444 }
 445 
 446 void CMRootRegions::scan_finished() {
 447   assert(scan_in_progress(), "pre-condition");
 448 
 449   // Currently, only survivors can be root regions.
 450   if (!_should_abort) {
 451     assert(_next_survivor == NULL, "we should have claimed all survivors");
 452   }
 453   _next_survivor = NULL;
 454 
 455   {
 456     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 457     _scan_in_progress = false;
 458     RootRegionScan_lock->notify_all();
 459   }
 460 }
 461 
 462 bool CMRootRegions::wait_until_scan_finished() {
 463   if (!scan_in_progress()) return false;
 464 
 465   {
 466     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 467     while (scan_in_progress()) {
 468       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 469     }
 470   }
 471   return true;
 472 }
 473 
 474 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 475 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 476 #endif // _MSC_VER
 477 
 478 uint ConcurrentMark::scale_parallel_threads(uint n_par_threads) {
 479   return MAX2((n_par_threads + 2) / 4, 1U);
 480 }
 481 
 482 ConcurrentMark::ConcurrentMark(G1CollectedHeap* g1h, ReservedSpace heap_rs) :
 483   _g1h(g1h),
 484   _markBitMap1(log2_intptr(MinObjAlignment)),
 485   _markBitMap2(log2_intptr(MinObjAlignment)),
 486   _parallel_marking_threads(0),
 487   _max_parallel_marking_threads(0),
 488   _sleep_factor(0.0),
 489   _marking_task_overhead(1.0),
 490   _cleanup_sleep_factor(0.0),
 491   _cleanup_task_overhead(1.0),
 492   _cleanup_list("Cleanup List"),
 493   _region_bm((BitMap::idx_t)(g1h->max_regions()), false /* in_resource_area*/),
 494   _card_bm((heap_rs.size() + CardTableModRefBS::card_size - 1) >>
 495             CardTableModRefBS::card_shift,
 496             false /* in_resource_area*/),
 497 
 498   _prevMarkBitMap(&_markBitMap1),
 499   _nextMarkBitMap(&_markBitMap2),
 500 
 501   _markStack(this),
 502   // _finger set in set_non_marking_state
 503 
 504   _max_worker_id(MAX2((uint)ParallelGCThreads, 1U)),
 505   // _active_tasks set in set_non_marking_state
 506   // _tasks set inside the constructor
 507   _task_queues(new CMTaskQueueSet((int) _max_worker_id)),
 508   _terminator(ParallelTaskTerminator((int) _max_worker_id, _task_queues)),
 509 
 510   _has_overflown(false),
 511   _concurrent(false),
 512   _has_aborted(false),
 513   _restart_for_overflow(false),
 514   _concurrent_marking_in_progress(false),
 515 
 516   // _verbose_level set below
 517 
 518   _init_times(),
 519   _remark_times(), _remark_mark_times(), _remark_weak_ref_times(),
 520   _cleanup_times(),
 521   _total_counting_time(0.0),
 522   _total_rs_scrub_time(0.0),
 523 
 524   _parallel_workers(NULL),
 525 
 526   _count_card_bitmaps(NULL),
 527   _count_marked_bytes(NULL),
 528   _completed_initialization(false) {
 529   CMVerboseLevel verbose_level = (CMVerboseLevel) G1MarkingVerboseLevel;
 530   if (verbose_level < no_verbose) {
 531     verbose_level = no_verbose;
 532   }
 533   if (verbose_level > high_verbose) {
 534     verbose_level = high_verbose;
 535   }
 536   _verbose_level = verbose_level;
 537 
 538   if (verbose_low()) {
 539     gclog_or_tty->print_cr("[global] init, heap start = "PTR_FORMAT", "
 540                            "heap end = "PTR_FORMAT, _heap_start, _heap_end);
 541   }
 542 
 543   if (!_markBitMap1.allocate(heap_rs)) {
 544     warning("Failed to allocate first CM bit map");
 545     return;
 546   }
 547   if (!_markBitMap2.allocate(heap_rs)) {
 548     warning("Failed to allocate second CM bit map");
 549     return;
 550   }
 551 
 552   // Create & start a ConcurrentMark thread.
 553   _cmThread = new ConcurrentMarkThread(this);
 554   assert(cmThread() != NULL, "CM Thread should have been created");
 555   assert(cmThread()->cm() != NULL, "CM Thread should refer to this cm");
 556   if (_cmThread->osthread() == NULL) {
 557       vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 558   }
 559 
 560   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 561   assert(_markBitMap1.covers(heap_rs), "_markBitMap1 inconsistency");
 562   assert(_markBitMap2.covers(heap_rs), "_markBitMap2 inconsistency");
 563 
 564   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
 565   satb_qs.set_buffer_size(G1SATBBufferSize);
 566 
 567   _root_regions.init(_g1h, this);
 568 
 569   if (ConcGCThreads > ParallelGCThreads) {
 570     warning("Can't have more ConcGCThreads (" UINT32_FORMAT ") "
 571             "than ParallelGCThreads (" UINT32_FORMAT ").",
 572             ConcGCThreads, ParallelGCThreads);
 573     return;
 574   }
 575   if (ParallelGCThreads == 0) {
 576     // if we are not running with any parallel GC threads we will not
 577     // spawn any marking threads either
 578     _parallel_marking_threads =       0;
 579     _max_parallel_marking_threads =   0;
 580     _sleep_factor             =     0.0;
 581     _marking_task_overhead    =     1.0;
 582   } else {
 583     if (!FLAG_IS_DEFAULT(ConcGCThreads) && ConcGCThreads > 0) {
 584       // Note: ConcGCThreads has precedence over G1MarkingOverheadPercent
 585       // if both are set
 586       _sleep_factor             = 0.0;
 587       _marking_task_overhead    = 1.0;
 588     } else if (G1MarkingOverheadPercent > 0) {
 589       // We will calculate the number of parallel marking threads based
 590       // on a target overhead with respect to the soft real-time goal
 591       double marking_overhead = (double) G1MarkingOverheadPercent / 100.0;
 592       double overall_cm_overhead =
 593         (double) MaxGCPauseMillis * marking_overhead /
 594         (double) GCPauseIntervalMillis;
 595       double cpu_ratio = 1.0 / (double) os::processor_count();
 596       double marking_thread_num = ceil(overall_cm_overhead / cpu_ratio);
 597       double marking_task_overhead =
 598         overall_cm_overhead / marking_thread_num *
 599                                                 (double) os::processor_count();
 600       double sleep_factor =
 601                          (1.0 - marking_task_overhead) / marking_task_overhead;
 602 
 603       FLAG_SET_ERGO(uintx, ConcGCThreads, (uint) marking_thread_num);
 604       _sleep_factor             = sleep_factor;
 605       _marking_task_overhead    = marking_task_overhead;
 606     } else {
 607       // Calculate the number of parallel marking threads by scaling
 608       // the number of parallel GC threads.
 609       uint marking_thread_num = scale_parallel_threads((uint) ParallelGCThreads);
 610       FLAG_SET_ERGO(uintx, ConcGCThreads, marking_thread_num);
 611       _sleep_factor             = 0.0;
 612       _marking_task_overhead    = 1.0;
 613     }
 614 
 615     assert(ConcGCThreads > 0, "Should have been set");
 616     _parallel_marking_threads = (uint) ConcGCThreads;
 617     _max_parallel_marking_threads = _parallel_marking_threads;
 618 
 619     if (parallel_marking_threads() > 1) {
 620       _cleanup_task_overhead = 1.0;
 621     } else {
 622       _cleanup_task_overhead = marking_task_overhead();
 623     }
 624     _cleanup_sleep_factor =
 625                      (1.0 - cleanup_task_overhead()) / cleanup_task_overhead();
 626 
 627 #if 0
 628     gclog_or_tty->print_cr("Marking Threads          %d", parallel_marking_threads());
 629     gclog_or_tty->print_cr("CM Marking Task Overhead %1.4lf", marking_task_overhead());
 630     gclog_or_tty->print_cr("CM Sleep Factor          %1.4lf", sleep_factor());
 631     gclog_or_tty->print_cr("CL Marking Task Overhead %1.4lf", cleanup_task_overhead());
 632     gclog_or_tty->print_cr("CL Sleep Factor          %1.4lf", cleanup_sleep_factor());
 633 #endif
 634 
 635     guarantee(parallel_marking_threads() > 0, "peace of mind");
 636     _parallel_workers = new FlexibleWorkGang("G1 Parallel Marking Threads",
 637          _max_parallel_marking_threads, false, true);
 638     if (_parallel_workers == NULL) {
 639       vm_exit_during_initialization("Failed necessary allocation.");
 640     } else {
 641       _parallel_workers->initialize_workers();
 642     }
 643   }
 644 
 645   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 646     uintx mark_stack_size =
 647       MIN2(MarkStackSizeMax,
 648           MAX2(MarkStackSize, (uintx) (parallel_marking_threads() * TASKQUEUE_SIZE)));
 649     // Verify that the calculated value for MarkStackSize is in range.
 650     // It would be nice to use the private utility routine from Arguments.
 651     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 652       warning("Invalid value calculated for MarkStackSize (" UINTX_FORMAT "): "
 653               "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 654               mark_stack_size, 1, MarkStackSizeMax);
 655       return;
 656     }
 657     FLAG_SET_ERGO(uintx, MarkStackSize, mark_stack_size);
 658   } else {
 659     // Verify MarkStackSize is in range.
 660     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 661       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 662         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 663           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT "): "
 664                   "must be between " UINTX_FORMAT " and " UINTX_FORMAT,
 665                   MarkStackSize, 1, MarkStackSizeMax);
 666           return;
 667         }
 668       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 669         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 670           warning("Invalid value specified for MarkStackSize (" UINTX_FORMAT ")"
 671                   " or for MarkStackSizeMax (" UINTX_FORMAT ")",
 672                   MarkStackSize, MarkStackSizeMax);
 673           return;
 674         }
 675       }
 676     }
 677   }
 678 
 679   if (!_markStack.allocate(MarkStackSize)) {
 680     warning("Failed to allocate CM marking stack");
 681     return;
 682   }
 683 
 684   _tasks = NEW_C_HEAP_ARRAY(CMTask*, _max_worker_id, mtGC);
 685   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_worker_id, mtGC);
 686 
 687   _count_card_bitmaps = NEW_C_HEAP_ARRAY(BitMap,  _max_worker_id, mtGC);
 688   _count_marked_bytes = NEW_C_HEAP_ARRAY(size_t*, _max_worker_id, mtGC);
 689 
 690   BitMap::idx_t card_bm_size = _card_bm.size();
 691 
 692   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 693   _active_tasks = _max_worker_id;
 694 
 695   size_t max_regions = (size_t) _g1h->max_regions();
 696   for (uint i = 0; i < _max_worker_id; ++i) {
 697     CMTaskQueue* task_queue = new CMTaskQueue();
 698     task_queue->initialize();
 699     _task_queues->register_queue(i, task_queue);
 700 
 701     _count_card_bitmaps[i] = BitMap(card_bm_size, false);
 702     _count_marked_bytes[i] = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 703 
 704     _tasks[i] = new CMTask(i, this,
 705                            _count_marked_bytes[i],
 706                            &_count_card_bitmaps[i],
 707                            task_queue, _task_queues);
 708 
 709     _accum_task_vtime[i] = 0.0;
 710   }
 711 
 712   // Calculate the card number for the bottom of the heap. Used
 713   // in biasing indexes into the accounting card bitmaps.
 714   _heap_bottom_card_num =
 715     intptr_t(uintptr_t(_g1h->reserved_region().start()) >>
 716                                 CardTableModRefBS::card_shift);
 717 
 718   // Clear all the liveness counting data
 719   clear_all_count_data();
 720 
 721   // so that the call below can read a sensible value
 722   _heap_start = (HeapWord*) heap_rs.base();
 723   set_non_marking_state();
 724   _completed_initialization = true;
 725 }
 726 
 727 void ConcurrentMark::update_g1_committed(bool force) {
 728   // If concurrent marking is not in progress, then we do not need to
 729   // update _heap_end.
 730   if (!concurrent_marking_in_progress() && !force) return;
 731 
 732   MemRegion committed = _g1h->g1_committed();
 733   assert(committed.start() == _heap_start, "start shouldn't change");
 734   HeapWord* new_end = committed.end();
 735   if (new_end > _heap_end) {
 736     // The heap has been expanded.
 737 
 738     _heap_end = new_end;
 739   }
 740   // Notice that the heap can also shrink. However, this only happens
 741   // during a Full GC (at least currently) and the entire marking
 742   // phase will bail out and the task will not be restarted. So, let's
 743   // do nothing.
 744 }
 745 
 746 void ConcurrentMark::reset() {
 747   // Starting values for these two. This should be called in a STW
 748   // phase. CM will be notified of any future g1_committed expansions
 749   // will be at the end of evacuation pauses, when tasks are
 750   // inactive.
 751   MemRegion committed = _g1h->g1_committed();
 752   _heap_start = committed.start();
 753   _heap_end   = committed.end();
 754 
 755   // Separated the asserts so that we know which one fires.
 756   assert(_heap_start != NULL, "heap bounds should look ok");
 757   assert(_heap_end != NULL, "heap bounds should look ok");
 758   assert(_heap_start < _heap_end, "heap bounds should look ok");
 759 
 760   // Reset all the marking data structures and any necessary flags
 761   reset_marking_state();
 762 
 763   if (verbose_low()) {
 764     gclog_or_tty->print_cr("[global] resetting");
 765   }
 766 
 767   // We do reset all of them, since different phases will use
 768   // different number of active threads. So, it's easiest to have all
 769   // of them ready.
 770   for (uint i = 0; i < _max_worker_id; ++i) {
 771     _tasks[i]->reset(_nextMarkBitMap);
 772   }
 773 
 774   // we need this to make sure that the flag is on during the evac
 775   // pause with initial mark piggy-backed
 776   set_concurrent_marking_in_progress();
 777 }
 778 
 779 
 780 void ConcurrentMark::reset_marking_state(bool clear_overflow) {
 781   _markStack.set_should_expand();
 782   _markStack.setEmpty();        // Also clears the _markStack overflow flag
 783   if (clear_overflow) {
 784     clear_has_overflown();
 785   } else {
 786     assert(has_overflown(), "pre-condition");
 787   }
 788   _finger = _heap_start;
 789 
 790   for (uint i = 0; i < _max_worker_id; ++i) {
 791     CMTaskQueue* queue = _task_queues->queue(i);
 792     queue->set_empty();
 793   }
 794 }
 795 
 796 void ConcurrentMark::set_concurrency(uint active_tasks) {
 797   assert(active_tasks <= _max_worker_id, "we should not have more");
 798 
 799   _active_tasks = active_tasks;
 800   // Need to update the three data structures below according to the
 801   // number of active threads for this phase.
 802   _terminator   = ParallelTaskTerminator((int) active_tasks, _task_queues);
 803   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 804   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 805 }
 806 
 807 void ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 808   set_concurrency(active_tasks);
 809 
 810   _concurrent = concurrent;
 811   // We propagate this to all tasks, not just the active ones.
 812   for (uint i = 0; i < _max_worker_id; ++i)
 813     _tasks[i]->set_concurrent(concurrent);
 814 
 815   if (concurrent) {
 816     set_concurrent_marking_in_progress();
 817   } else {
 818     // We currently assume that the concurrent flag has been set to
 819     // false before we start remark. At this point we should also be
 820     // in a STW phase.
 821     assert(!concurrent_marking_in_progress(), "invariant");
 822     assert(_finger == _heap_end,
 823            err_msg("only way to get here: _finger: "PTR_FORMAT", _heap_end: "PTR_FORMAT,
 824                    _finger, _heap_end));
 825     update_g1_committed(true);
 826   }
 827 }
 828 
 829 void ConcurrentMark::set_non_marking_state() {
 830   // We set the global marking state to some default values when we're
 831   // not doing marking.
 832   reset_marking_state();
 833   _active_tasks = 0;
 834   clear_concurrent_marking_in_progress();
 835 }
 836 
 837 ConcurrentMark::~ConcurrentMark() {
 838   // The ConcurrentMark instance is never freed.
 839   ShouldNotReachHere();
 840 }
 841 
 842 void ConcurrentMark::clearNextBitmap() {
 843   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 844   G1CollectorPolicy* g1p = g1h->g1_policy();
 845 
 846   // Make sure that the concurrent mark thread looks to still be in
 847   // the current cycle.
 848   guarantee(cmThread()->during_cycle(), "invariant");
 849 
 850   // We are finishing up the current cycle by clearing the next
 851   // marking bitmap and getting it ready for the next cycle. During
 852   // this time no other cycle can start. So, let's make sure that this
 853   // is the case.
 854   guarantee(!g1h->mark_in_progress(), "invariant");
 855 
 856   // clear the mark bitmap (no grey objects to start with).
 857   // We need to do this in chunks and offer to yield in between
 858   // each chunk.
 859   HeapWord* start  = _nextMarkBitMap->startWord();
 860   HeapWord* end    = _nextMarkBitMap->endWord();
 861   HeapWord* cur    = start;
 862   size_t chunkSize = M;
 863   while (cur < end) {
 864     HeapWord* next = cur + chunkSize;
 865     if (next > end) {
 866       next = end;
 867     }
 868     MemRegion mr(cur,next);
 869     _nextMarkBitMap->clearRange(mr);
 870     cur = next;
 871     do_yield_check();
 872 
 873     // Repeat the asserts from above. We'll do them as asserts here to
 874     // minimize their overhead on the product. However, we'll have
 875     // them as guarantees at the beginning / end of the bitmap
 876     // clearing to get some checking in the product.
 877     assert(cmThread()->during_cycle(), "invariant");
 878     assert(!g1h->mark_in_progress(), "invariant");
 879   }
 880 
 881   // Clear the liveness counting data
 882   clear_all_count_data();
 883 
 884   // Repeat the asserts from above.
 885   guarantee(cmThread()->during_cycle(), "invariant");
 886   guarantee(!g1h->mark_in_progress(), "invariant");
 887 }
 888 
 889 class NoteStartOfMarkHRClosure: public HeapRegionClosure {
 890 public:
 891   bool doHeapRegion(HeapRegion* r) {
 892     if (!r->continuesHumongous()) {
 893       r->note_start_of_marking();
 894     }
 895     return false;
 896   }
 897 };
 898 
 899 void ConcurrentMark::checkpointRootsInitialPre() {
 900   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 901   G1CollectorPolicy* g1p = g1h->g1_policy();
 902 
 903   _has_aborted = false;
 904 
 905 #ifndef PRODUCT
 906   if (G1PrintReachableAtInitialMark) {
 907     print_reachable("at-cycle-start",
 908                     VerifyOption_G1UsePrevMarking, true /* all */);
 909   }
 910 #endif
 911 
 912   // Initialize marking structures. This has to be done in a STW phase.
 913   reset();
 914 
 915   // For each region note start of marking.
 916   NoteStartOfMarkHRClosure startcl;
 917   g1h->heap_region_iterate(&startcl);
 918 }
 919 
 920 
 921 void ConcurrentMark::checkpointRootsInitialPost() {
 922   G1CollectedHeap*   g1h = G1CollectedHeap::heap();
 923 
 924   // If we force an overflow during remark, the remark operation will
 925   // actually abort and we'll restart concurrent marking. If we always
 926   // force an overflow during remark we'll never actually complete the
 927   // marking phase. So, we initialize this here, at the start of the
 928   // cycle, so that at the remaining overflow number will decrease at
 929   // every remark and we'll eventually not need to cause one.
 930   force_overflow_stw()->init();
 931 
 932   // Start Concurrent Marking weak-reference discovery.
 933   ReferenceProcessor* rp = g1h->ref_processor_cm();
 934   // enable ("weak") refs discovery
 935   rp->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
 936   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 937 
 938   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
 939   // This is the start of  the marking cycle, we're expected all
 940   // threads to have SATB queues with active set to false.
 941   satb_mq_set.set_active_all_threads(true, /* new active value */
 942                                      false /* expected_active */);
 943 
 944   _root_regions.prepare_for_scan();
 945 
 946   // update_g1_committed() will be called at the end of an evac pause
 947   // when marking is on. So, it's also called at the end of the
 948   // initial-mark pause to update the heap end, if the heap expands
 949   // during it. No need to call it here.
 950 }
 951 
 952 /*
 953  * Notice that in the next two methods, we actually leave the STS
 954  * during the barrier sync and join it immediately afterwards. If we
 955  * do not do this, the following deadlock can occur: one thread could
 956  * be in the barrier sync code, waiting for the other thread to also
 957  * sync up, whereas another one could be trying to yield, while also
 958  * waiting for the other threads to sync up too.
 959  *
 960  * Note, however, that this code is also used during remark and in
 961  * this case we should not attempt to leave / enter the STS, otherwise
 962  * we'll either hit an assert (debug / fastdebug) or deadlock
 963  * (product). So we should only leave / enter the STS if we are
 964  * operating concurrently.
 965  *
 966  * Because the thread that does the sync barrier has left the STS, it
 967  * is possible to be suspended for a Full GC or an evacuation pause
 968  * could occur. This is actually safe, since the entering the sync
 969  * barrier is one of the last things do_marking_step() does, and it
 970  * doesn't manipulate any data structures afterwards.
 971  */
 972 
 973 void ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 974   if (verbose_low()) {
 975     gclog_or_tty->print_cr("[%u] entering first barrier", worker_id);
 976   }
 977 
 978   if (concurrent()) {
 979     ConcurrentGCThread::stsLeave();
 980   }
 981   _first_overflow_barrier_sync.enter();
 982   if (concurrent()) {
 983     ConcurrentGCThread::stsJoin();
 984   }
 985   // at this point everyone should have synced up and not be doing any
 986   // more work
 987 
 988   if (verbose_low()) {
 989     gclog_or_tty->print_cr("[%u] leaving first barrier", worker_id);
 990   }
 991 
 992   // If we're executing the concurrent phase of marking, reset the marking
 993   // state; otherwise the marking state is reset after reference processing,
 994   // during the remark pause.
 995   // If we reset here as a result of an overflow during the remark we will
 996   // see assertion failures from any subsequent set_concurrency_and_phase()
 997   // calls.
 998   if (concurrent()) {
 999     // let the task associated with with worker 0 do this
1000     if (worker_id == 0) {
1001       // task 0 is responsible for clearing the global data structures
1002       // We should be here because of an overflow. During STW we should
1003       // not clear the overflow flag since we rely on it being true when
1004       // we exit this method to abort the pause and restart concurrent
1005       // marking.
1006       reset_marking_state(true /* clear_overflow */);
1007       force_overflow()->update();
1008 
1009       if (G1Log::fine()) {
1010         gclog_or_tty->date_stamp(PrintGCDateStamps);
1011         gclog_or_tty->stamp(PrintGCTimeStamps);
1012         gclog_or_tty->print_cr("[GC concurrent-mark-reset-for-overflow]");
1013       }
1014     }
1015   }
1016 
1017   // after this, each task should reset its own data structures then
1018   // then go into the second barrier
1019 }
1020 
1021 void ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
1022   if (verbose_low()) {
1023     gclog_or_tty->print_cr("[%u] entering second barrier", worker_id);
1024   }
1025 
1026   if (concurrent()) {
1027     ConcurrentGCThread::stsLeave();
1028   }
1029   _second_overflow_barrier_sync.enter();
1030   if (concurrent()) {
1031     ConcurrentGCThread::stsJoin();
1032   }
1033   // at this point everything should be re-initialized and ready to go
1034 
1035   if (verbose_low()) {
1036     gclog_or_tty->print_cr("[%u] leaving second barrier", worker_id);
1037   }
1038 }
1039 
1040 #ifndef PRODUCT
1041 void ForceOverflowSettings::init() {
1042   _num_remaining = G1ConcMarkForceOverflow;
1043   _force = false;
1044   update();
1045 }
1046 
1047 void ForceOverflowSettings::update() {
1048   if (_num_remaining > 0) {
1049     _num_remaining -= 1;
1050     _force = true;
1051   } else {
1052     _force = false;
1053   }
1054 }
1055 
1056 bool ForceOverflowSettings::should_force() {
1057   if (_force) {
1058     _force = false;
1059     return true;
1060   } else {
1061     return false;
1062   }
1063 }
1064 #endif // !PRODUCT
1065 
1066 class CMConcurrentMarkingTask: public AbstractGangTask {
1067 private:
1068   ConcurrentMark*       _cm;
1069   ConcurrentMarkThread* _cmt;
1070 
1071 public:
1072   void work(uint worker_id) {
1073     assert(Thread::current()->is_ConcurrentGC_thread(),
1074            "this should only be done by a conc GC thread");
1075     ResourceMark rm;
1076 
1077     double start_vtime = os::elapsedVTime();
1078 
1079     ConcurrentGCThread::stsJoin();
1080 
1081     assert(worker_id < _cm->active_tasks(), "invariant");
1082     CMTask* the_task = _cm->task(worker_id);
1083     the_task->record_start_time();
1084     if (!_cm->has_aborted()) {
1085       do {
1086         double start_vtime_sec = os::elapsedVTime();
1087         double start_time_sec = os::elapsedTime();
1088         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1089 
1090         the_task->do_marking_step(mark_step_duration_ms,
1091                                   true  /* do_termination */,
1092                                   false /* is_serial*/);
1093 
1094         double end_time_sec = os::elapsedTime();
1095         double end_vtime_sec = os::elapsedVTime();
1096         double elapsed_vtime_sec = end_vtime_sec - start_vtime_sec;
1097         double elapsed_time_sec = end_time_sec - start_time_sec;
1098         _cm->clear_has_overflown();
1099 
1100         bool ret = _cm->do_yield_check(worker_id);
1101 
1102         jlong sleep_time_ms;
1103         if (!_cm->has_aborted() && the_task->has_aborted()) {
1104           sleep_time_ms =
1105             (jlong) (elapsed_vtime_sec * _cm->sleep_factor() * 1000.0);
1106           ConcurrentGCThread::stsLeave();
1107           os::sleep(Thread::current(), sleep_time_ms, false);
1108           ConcurrentGCThread::stsJoin();
1109         }
1110         double end_time2_sec = os::elapsedTime();
1111         double elapsed_time2_sec = end_time2_sec - start_time_sec;
1112 
1113 #if 0
1114           gclog_or_tty->print_cr("CM: elapsed %1.4lf ms, sleep %1.4lf ms, "
1115                                  "overhead %1.4lf",
1116                                  elapsed_vtime_sec * 1000.0, (double) sleep_time_ms,
1117                                  the_task->conc_overhead(os::elapsedTime()) * 8.0);
1118           gclog_or_tty->print_cr("elapsed time %1.4lf ms, time 2: %1.4lf ms",
1119                                  elapsed_time_sec * 1000.0, elapsed_time2_sec * 1000.0);
1120 #endif
1121       } while (!_cm->has_aborted() && the_task->has_aborted());
1122     }
1123     the_task->record_end_time();
1124     guarantee(!the_task->has_aborted() || _cm->has_aborted(), "invariant");
1125 
1126     ConcurrentGCThread::stsLeave();
1127 
1128     double end_vtime = os::elapsedVTime();
1129     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
1130   }
1131 
1132   CMConcurrentMarkingTask(ConcurrentMark* cm,
1133                           ConcurrentMarkThread* cmt) :
1134       AbstractGangTask("Concurrent Mark"), _cm(cm), _cmt(cmt) { }
1135 
1136   ~CMConcurrentMarkingTask() { }
1137 };
1138 
1139 // Calculates the number of active workers for a concurrent
1140 // phase.
1141 uint ConcurrentMark::calc_parallel_marking_threads() {
1142   if (G1CollectedHeap::use_parallel_gc_threads()) {
1143     uint n_conc_workers = 0;
1144     if (!UseDynamicNumberOfGCThreads ||
1145         (!FLAG_IS_DEFAULT(ConcGCThreads) &&
1146          !ForceDynamicNumberOfGCThreads)) {
1147       n_conc_workers = max_parallel_marking_threads();
1148     } else {
1149       n_conc_workers =
1150         AdaptiveSizePolicy::calc_default_active_workers(
1151                                      max_parallel_marking_threads(),
1152                                      1, /* Minimum workers */
1153                                      parallel_marking_threads(),
1154                                      Threads::number_of_non_daemon_threads());
1155       // Don't scale down "n_conc_workers" by scale_parallel_threads() because
1156       // that scaling has already gone into "_max_parallel_marking_threads".
1157     }
1158     assert(n_conc_workers > 0, "Always need at least 1");
1159     return n_conc_workers;
1160   }
1161   // If we are not running with any parallel GC threads we will not
1162   // have spawned any marking threads either. Hence the number of
1163   // concurrent workers should be 0.
1164   return 0;
1165 }
1166 
1167 void ConcurrentMark::scanRootRegion(HeapRegion* hr, uint worker_id) {
1168   // Currently, only survivors can be root regions.
1169   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
1170   G1RootRegionScanClosure cl(_g1h, this, worker_id);
1171 
1172   const uintx interval = PrefetchScanIntervalInBytes;
1173   HeapWord* curr = hr->bottom();
1174   const HeapWord* end = hr->top();
1175   while (curr < end) {
1176     Prefetch::read(curr, interval);
1177     oop obj = oop(curr);
1178     int size = obj->oop_iterate(&cl);
1179     assert(size == obj->size(), "sanity");
1180     curr += size;
1181   }
1182 }
1183 
1184 class CMRootRegionScanTask : public AbstractGangTask {
1185 private:
1186   ConcurrentMark* _cm;
1187 
1188 public:
1189   CMRootRegionScanTask(ConcurrentMark* cm) :
1190     AbstractGangTask("Root Region Scan"), _cm(cm) { }
1191 
1192   void work(uint worker_id) {
1193     assert(Thread::current()->is_ConcurrentGC_thread(),
1194            "this should only be done by a conc GC thread");
1195 
1196     CMRootRegions* root_regions = _cm->root_regions();
1197     HeapRegion* hr = root_regions->claim_next();
1198     while (hr != NULL) {
1199       _cm->scanRootRegion(hr, worker_id);
1200       hr = root_regions->claim_next();
1201     }
1202   }
1203 };
1204 
1205 void ConcurrentMark::scanRootRegions() {
1206   // scan_in_progress() will have been set to true only if there was
1207   // at least one root region to scan. So, if it's false, we
1208   // should not attempt to do any further work.
1209   if (root_regions()->scan_in_progress()) {
1210     _parallel_marking_threads = calc_parallel_marking_threads();
1211     assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1212            "Maximum number of marking threads exceeded");
1213     uint active_workers = MAX2(1U, parallel_marking_threads());
1214 
1215     CMRootRegionScanTask task(this);
1216     if (use_parallel_marking_threads()) {
1217       _parallel_workers->set_active_workers((int) active_workers);
1218       _parallel_workers->run_task(&task);
1219     } else {
1220       task.work(0);
1221     }
1222 
1223     // It's possible that has_aborted() is true here without actually
1224     // aborting the survivor scan earlier. This is OK as it's
1225     // mainly used for sanity checking.
1226     root_regions()->scan_finished();
1227   }
1228 }
1229 
1230 void ConcurrentMark::markFromRoots() {
1231   // we might be tempted to assert that:
1232   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
1233   //        "inconsistent argument?");
1234   // However that wouldn't be right, because it's possible that
1235   // a safepoint is indeed in progress as a younger generation
1236   // stop-the-world GC happens even as we mark in this generation.
1237 
1238   _restart_for_overflow = false;
1239   force_overflow_conc()->init();
1240 
1241   // _g1h has _n_par_threads
1242   _parallel_marking_threads = calc_parallel_marking_threads();
1243   assert(parallel_marking_threads() <= max_parallel_marking_threads(),
1244     "Maximum number of marking threads exceeded");
1245 
1246   uint active_workers = MAX2(1U, parallel_marking_threads());
1247 
1248   // Parallel task terminator is set in "set_concurrency_and_phase()"
1249   set_concurrency_and_phase(active_workers, true /* concurrent */);
1250 
1251   CMConcurrentMarkingTask markingTask(this, cmThread());
1252   if (use_parallel_marking_threads()) {
1253     _parallel_workers->set_active_workers((int)active_workers);
1254     // Don't set _n_par_threads because it affects MT in process_strong_roots()
1255     // and the decisions on that MT processing is made elsewhere.
1256     assert(_parallel_workers->active_workers() > 0, "Should have been set");
1257     _parallel_workers->run_task(&markingTask);
1258   } else {
1259     markingTask.work(0);
1260   }
1261   print_stats();
1262 }
1263 
1264 void ConcurrentMark::checkpointRootsFinal(bool clear_all_soft_refs) {
1265   // world is stopped at this checkpoint
1266   assert(SafepointSynchronize::is_at_safepoint(),
1267          "world should be stopped");
1268 
1269   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1270 
1271   // If a full collection has happened, we shouldn't do this.
1272   if (has_aborted()) {
1273     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1274     return;
1275   }
1276 
1277   SvcGCMarker sgcm(SvcGCMarker::OTHER);
1278 
1279   if (VerifyDuringGC) {
1280     HandleMark hm;  // handle scope
1281     Universe::heap()->prepare_for_verify();
1282     Universe::verify(VerifyOption_G1UsePrevMarking,
1283                      " VerifyDuringGC:(before)");
1284   }
1285 
1286   G1CollectorPolicy* g1p = g1h->g1_policy();
1287   g1p->record_concurrent_mark_remark_start();
1288 
1289   double start = os::elapsedTime();
1290 
1291   checkpointRootsFinalWork();
1292 
1293   double mark_work_end = os::elapsedTime();
1294 
1295   weakRefsWork(clear_all_soft_refs);
1296 
1297   if (has_overflown()) {
1298     // Oops.  We overflowed.  Restart concurrent marking.
1299     _restart_for_overflow = true;
1300     if (G1TraceMarkStackOverflow) {
1301       gclog_or_tty->print_cr("\nRemark led to restart for overflow.");
1302     }
1303 
1304     // Verify the heap w.r.t. the previous marking bitmap.
1305     if (VerifyDuringGC) {
1306       HandleMark hm;  // handle scope
1307       Universe::heap()->prepare_for_verify();
1308       Universe::verify(VerifyOption_G1UsePrevMarking,
1309                        " VerifyDuringGC:(overflow)");
1310     }
1311 
1312     // Clear the marking state because we will be restarting
1313     // marking due to overflowing the global mark stack.
1314     reset_marking_state();
1315   } else {
1316     // Aggregate the per-task counting data that we have accumulated
1317     // while marking.
1318     aggregate_count_data();
1319 
1320     SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
1321     // We're done with marking.
1322     // This is the end of  the marking cycle, we're expected all
1323     // threads to have SATB queues with active set to true.
1324     satb_mq_set.set_active_all_threads(false, /* new active value */
1325                                        true /* expected_active */);
1326 
1327     if (VerifyDuringGC) {
1328       HandleMark hm;  // handle scope
1329       Universe::heap()->prepare_for_verify();
1330       Universe::verify(VerifyOption_G1UseNextMarking,
1331                        " VerifyDuringGC:(after)");
1332     }
1333     assert(!restart_for_overflow(), "sanity");
1334     // Completely reset the marking state since marking completed
1335     set_non_marking_state();
1336   }
1337 
1338   // Expand the marking stack, if we have to and if we can.
1339   if (_markStack.should_expand()) {
1340     _markStack.expand();
1341   }
1342 
1343   // Statistics
1344   double now = os::elapsedTime();
1345   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1346   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1347   _remark_times.add((now - start) * 1000.0);
1348 
1349   g1p->record_concurrent_mark_remark_end();
1350 
1351   G1CMIsAliveClosure is_alive(g1h);
1352   g1h->gc_tracer_cm()->report_object_count_after_gc(&is_alive);
1353 }
1354 
1355 // Base class of the closures that finalize and verify the
1356 // liveness counting data.
1357 class CMCountDataClosureBase: public HeapRegionClosure {
1358 protected:
1359   G1CollectedHeap* _g1h;
1360   ConcurrentMark* _cm;
1361   CardTableModRefBS* _ct_bs;
1362 
1363   BitMap* _region_bm;
1364   BitMap* _card_bm;
1365 
1366   // Takes a region that's not empty (i.e., it has at least one
1367   // live object in it and sets its corresponding bit on the region
1368   // bitmap to 1. If the region is "starts humongous" it will also set
1369   // to 1 the bits on the region bitmap that correspond to its
1370   // associated "continues humongous" regions.
1371   void set_bit_for_region(HeapRegion* hr) {
1372     assert(!hr->continuesHumongous(), "should have filtered those out");
1373 
1374     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1375     if (!hr->startsHumongous()) {
1376       // Normal (non-humongous) case: just set the bit.
1377       _region_bm->par_at_put(index, true);
1378     } else {
1379       // Starts humongous case: calculate how many regions are part of
1380       // this humongous region and then set the bit range.
1381       BitMap::idx_t end_index = (BitMap::idx_t) hr->last_hc_index();
1382       _region_bm->par_at_put_range(index, end_index, true);
1383     }
1384   }
1385 
1386 public:
1387   CMCountDataClosureBase(G1CollectedHeap* g1h,
1388                          BitMap* region_bm, BitMap* card_bm):
1389     _g1h(g1h), _cm(g1h->concurrent_mark()),
1390     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
1391     _region_bm(region_bm), _card_bm(card_bm) { }
1392 };
1393 
1394 // Closure that calculates the # live objects per region. Used
1395 // for verification purposes during the cleanup pause.
1396 class CalcLiveObjectsClosure: public CMCountDataClosureBase {
1397   CMBitMapRO* _bm;
1398   size_t _region_marked_bytes;
1399 
1400 public:
1401   CalcLiveObjectsClosure(CMBitMapRO *bm, G1CollectedHeap* g1h,
1402                          BitMap* region_bm, BitMap* card_bm) :
1403     CMCountDataClosureBase(g1h, region_bm, card_bm),
1404     _bm(bm), _region_marked_bytes(0) { }
1405 
1406   bool doHeapRegion(HeapRegion* hr) {
1407 
1408     if (hr->continuesHumongous()) {
1409       // We will ignore these here and process them when their
1410       // associated "starts humongous" region is processed (see
1411       // set_bit_for_heap_region()). Note that we cannot rely on their
1412       // associated "starts humongous" region to have their bit set to
1413       // 1 since, due to the region chunking in the parallel region
1414       // iteration, a "continues humongous" region might be visited
1415       // before its associated "starts humongous".
1416       return false;
1417     }
1418 
1419     HeapWord* ntams = hr->next_top_at_mark_start();
1420     HeapWord* start = hr->bottom();
1421 
1422     assert(start <= hr->end() && start <= ntams && ntams <= hr->end(),
1423            err_msg("Preconditions not met - "
1424                    "start: "PTR_FORMAT", ntams: "PTR_FORMAT", end: "PTR_FORMAT,
1425                    start, ntams, hr->end()));
1426 
1427     // Find the first marked object at or after "start".
1428     start = _bm->getNextMarkedWordAddress(start, ntams);
1429 
1430     size_t marked_bytes = 0;
1431 
1432     while (start < ntams) {
1433       oop obj = oop(start);
1434       int obj_sz = obj->size();
1435       HeapWord* obj_end = start + obj_sz;
1436 
1437       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
1438       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(obj_end);
1439 
1440       // Note: if we're looking at the last region in heap - obj_end
1441       // could be actually just beyond the end of the heap; end_idx
1442       // will then correspond to a (non-existent) card that is also
1443       // just beyond the heap.
1444       if (_g1h->is_in_g1_reserved(obj_end) && !_ct_bs->is_card_aligned(obj_end)) {
1445         // end of object is not card aligned - increment to cover
1446         // all the cards spanned by the object
1447         end_idx += 1;
1448       }
1449 
1450       // Set the bits in the card BM for the cards spanned by this object.
1451       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1452 
1453       // Add the size of this object to the number of marked bytes.
1454       marked_bytes += (size_t)obj_sz * HeapWordSize;
1455 
1456       // Find the next marked object after this one.
1457       start = _bm->getNextMarkedWordAddress(obj_end, ntams);
1458     }
1459 
1460     // Mark the allocated-since-marking portion...
1461     HeapWord* top = hr->top();
1462     if (ntams < top) {
1463       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1464       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1465 
1466       // Note: if we're looking at the last region in heap - top
1467       // could be actually just beyond the end of the heap; end_idx
1468       // will then correspond to a (non-existent) card that is also
1469       // just beyond the heap.
1470       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1471         // end of object is not card aligned - increment to cover
1472         // all the cards spanned by the object
1473         end_idx += 1;
1474       }
1475       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1476 
1477       // This definitely means the region has live objects.
1478       set_bit_for_region(hr);
1479     }
1480 
1481     // Update the live region bitmap.
1482     if (marked_bytes > 0) {
1483       set_bit_for_region(hr);
1484     }
1485 
1486     // Set the marked bytes for the current region so that
1487     // it can be queried by a calling verification routine
1488     _region_marked_bytes = marked_bytes;
1489 
1490     return false;
1491   }
1492 
1493   size_t region_marked_bytes() const { return _region_marked_bytes; }
1494 };
1495 
1496 // Heap region closure used for verifying the counting data
1497 // that was accumulated concurrently and aggregated during
1498 // the remark pause. This closure is applied to the heap
1499 // regions during the STW cleanup pause.
1500 
1501 class VerifyLiveObjectDataHRClosure: public HeapRegionClosure {
1502   G1CollectedHeap* _g1h;
1503   ConcurrentMark* _cm;
1504   CalcLiveObjectsClosure _calc_cl;
1505   BitMap* _region_bm;   // Region BM to be verified
1506   BitMap* _card_bm;     // Card BM to be verified
1507   bool _verbose;        // verbose output?
1508 
1509   BitMap* _exp_region_bm; // Expected Region BM values
1510   BitMap* _exp_card_bm;   // Expected card BM values
1511 
1512   int _failures;
1513 
1514 public:
1515   VerifyLiveObjectDataHRClosure(G1CollectedHeap* g1h,
1516                                 BitMap* region_bm,
1517                                 BitMap* card_bm,
1518                                 BitMap* exp_region_bm,
1519                                 BitMap* exp_card_bm,
1520                                 bool verbose) :
1521     _g1h(g1h), _cm(g1h->concurrent_mark()),
1522     _calc_cl(_cm->nextMarkBitMap(), g1h, exp_region_bm, exp_card_bm),
1523     _region_bm(region_bm), _card_bm(card_bm), _verbose(verbose),
1524     _exp_region_bm(exp_region_bm), _exp_card_bm(exp_card_bm),
1525     _failures(0) { }
1526 
1527   int failures() const { return _failures; }
1528 
1529   bool doHeapRegion(HeapRegion* hr) {
1530     if (hr->continuesHumongous()) {
1531       // We will ignore these here and process them when their
1532       // associated "starts humongous" region is processed (see
1533       // set_bit_for_heap_region()). Note that we cannot rely on their
1534       // associated "starts humongous" region to have their bit set to
1535       // 1 since, due to the region chunking in the parallel region
1536       // iteration, a "continues humongous" region might be visited
1537       // before its associated "starts humongous".
1538       return false;
1539     }
1540 
1541     int failures = 0;
1542 
1543     // Call the CalcLiveObjectsClosure to walk the marking bitmap for
1544     // this region and set the corresponding bits in the expected region
1545     // and card bitmaps.
1546     bool res = _calc_cl.doHeapRegion(hr);
1547     assert(res == false, "should be continuing");
1548 
1549     MutexLockerEx x((_verbose ? ParGCRareEvent_lock : NULL),
1550                     Mutex::_no_safepoint_check_flag);
1551 
1552     // Verify the marked bytes for this region.
1553     size_t exp_marked_bytes = _calc_cl.region_marked_bytes();
1554     size_t act_marked_bytes = hr->next_marked_bytes();
1555 
1556     // We're not OK if expected marked bytes > actual marked bytes. It means
1557     // we have missed accounting some objects during the actual marking.
1558     if (exp_marked_bytes > act_marked_bytes) {
1559       if (_verbose) {
1560         gclog_or_tty->print_cr("Region %u: marked bytes mismatch: "
1561                                "expected: " SIZE_FORMAT ", actual: " SIZE_FORMAT,
1562                                hr->hrs_index(), exp_marked_bytes, act_marked_bytes);
1563       }
1564       failures += 1;
1565     }
1566 
1567     // Verify the bit, for this region, in the actual and expected
1568     // (which was just calculated) region bit maps.
1569     // We're not OK if the bit in the calculated expected region
1570     // bitmap is set and the bit in the actual region bitmap is not.
1571     BitMap::idx_t index = (BitMap::idx_t) hr->hrs_index();
1572 
1573     bool expected = _exp_region_bm->at(index);
1574     bool actual = _region_bm->at(index);
1575     if (expected && !actual) {
1576       if (_verbose) {
1577         gclog_or_tty->print_cr("Region %u: region bitmap mismatch: "
1578                                "expected: %s, actual: %s",
1579                                hr->hrs_index(),
1580                                BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1581       }
1582       failures += 1;
1583     }
1584 
1585     // Verify that the card bit maps for the cards spanned by the current
1586     // region match. We have an error if we have a set bit in the expected
1587     // bit map and the corresponding bit in the actual bitmap is not set.
1588 
1589     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(hr->bottom());
1590     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(hr->top());
1591 
1592     for (BitMap::idx_t i = start_idx; i < end_idx; i+=1) {
1593       expected = _exp_card_bm->at(i);
1594       actual = _card_bm->at(i);
1595 
1596       if (expected && !actual) {
1597         if (_verbose) {
1598           gclog_or_tty->print_cr("Region %u: card bitmap mismatch at " SIZE_FORMAT ": "
1599                                  "expected: %s, actual: %s",
1600                                  hr->hrs_index(), i,
1601                                  BOOL_TO_STR(expected), BOOL_TO_STR(actual));
1602         }
1603         failures += 1;
1604       }
1605     }
1606 
1607     if (failures > 0 && _verbose)  {
1608       gclog_or_tty->print_cr("Region " HR_FORMAT ", ntams: " PTR_FORMAT ", "
1609                              "marked_bytes: calc/actual " SIZE_FORMAT "/" SIZE_FORMAT,
1610                              HR_FORMAT_PARAMS(hr), hr->next_top_at_mark_start(),
1611                              _calc_cl.region_marked_bytes(), hr->next_marked_bytes());
1612     }
1613 
1614     _failures += failures;
1615 
1616     // We could stop iteration over the heap when we
1617     // find the first violating region by returning true.
1618     return false;
1619   }
1620 };
1621 
1622 class G1ParVerifyFinalCountTask: public AbstractGangTask {
1623 protected:
1624   G1CollectedHeap* _g1h;
1625   ConcurrentMark* _cm;
1626   BitMap* _actual_region_bm;
1627   BitMap* _actual_card_bm;
1628 
1629   uint    _n_workers;
1630 
1631   BitMap* _expected_region_bm;
1632   BitMap* _expected_card_bm;
1633 
1634   int  _failures;
1635   bool _verbose;
1636 
1637 public:
1638   G1ParVerifyFinalCountTask(G1CollectedHeap* g1h,
1639                             BitMap* region_bm, BitMap* card_bm,
1640                             BitMap* expected_region_bm, BitMap* expected_card_bm)
1641     : AbstractGangTask("G1 verify final counting"),
1642       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1643       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1644       _expected_region_bm(expected_region_bm), _expected_card_bm(expected_card_bm),
1645       _failures(0), _verbose(false),
1646       _n_workers(0) {
1647     assert(VerifyDuringGC, "don't call this otherwise");
1648 
1649     // Use the value already set as the number of active threads
1650     // in the call to run_task().
1651     if (G1CollectedHeap::use_parallel_gc_threads()) {
1652       assert( _g1h->workers()->active_workers() > 0,
1653         "Should have been previously set");
1654       _n_workers = _g1h->workers()->active_workers();
1655     } else {
1656       _n_workers = 1;
1657     }
1658 
1659     assert(_expected_card_bm->size() == _actual_card_bm->size(), "sanity");
1660     assert(_expected_region_bm->size() == _actual_region_bm->size(), "sanity");
1661 
1662     _verbose = _cm->verbose_medium();
1663   }
1664 
1665   void work(uint worker_id) {
1666     assert(worker_id < _n_workers, "invariant");
1667 
1668     VerifyLiveObjectDataHRClosure verify_cl(_g1h,
1669                                             _actual_region_bm, _actual_card_bm,
1670                                             _expected_region_bm,
1671                                             _expected_card_bm,
1672                                             _verbose);
1673 
1674     if (G1CollectedHeap::use_parallel_gc_threads()) {
1675       _g1h->heap_region_par_iterate_chunked(&verify_cl,
1676                                             worker_id,
1677                                             _n_workers,
1678                                             HeapRegion::VerifyCountClaimValue);
1679     } else {
1680       _g1h->heap_region_iterate(&verify_cl);
1681     }
1682 
1683     Atomic::add(verify_cl.failures(), &_failures);
1684   }
1685 
1686   int failures() const { return _failures; }
1687 };
1688 
1689 // Closure that finalizes the liveness counting data.
1690 // Used during the cleanup pause.
1691 // Sets the bits corresponding to the interval [NTAMS, top]
1692 // (which contains the implicitly live objects) in the
1693 // card liveness bitmap. Also sets the bit for each region,
1694 // containing live data, in the region liveness bitmap.
1695 
1696 class FinalCountDataUpdateClosure: public CMCountDataClosureBase {
1697  public:
1698   FinalCountDataUpdateClosure(G1CollectedHeap* g1h,
1699                               BitMap* region_bm,
1700                               BitMap* card_bm) :
1701     CMCountDataClosureBase(g1h, region_bm, card_bm) { }
1702 
1703   bool doHeapRegion(HeapRegion* hr) {
1704 
1705     if (hr->continuesHumongous()) {
1706       // We will ignore these here and process them when their
1707       // associated "starts humongous" region is processed (see
1708       // set_bit_for_heap_region()). Note that we cannot rely on their
1709       // associated "starts humongous" region to have their bit set to
1710       // 1 since, due to the region chunking in the parallel region
1711       // iteration, a "continues humongous" region might be visited
1712       // before its associated "starts humongous".
1713       return false;
1714     }
1715 
1716     HeapWord* ntams = hr->next_top_at_mark_start();
1717     HeapWord* top   = hr->top();
1718 
1719     assert(hr->bottom() <= ntams && ntams <= hr->end(), "Preconditions.");
1720 
1721     // Mark the allocated-since-marking portion...
1722     if (ntams < top) {
1723       // This definitely means the region has live objects.
1724       set_bit_for_region(hr);
1725 
1726       // Now set the bits in the card bitmap for [ntams, top)
1727       BitMap::idx_t start_idx = _cm->card_bitmap_index_for(ntams);
1728       BitMap::idx_t end_idx = _cm->card_bitmap_index_for(top);
1729 
1730       // Note: if we're looking at the last region in heap - top
1731       // could be actually just beyond the end of the heap; end_idx
1732       // will then correspond to a (non-existent) card that is also
1733       // just beyond the heap.
1734       if (_g1h->is_in_g1_reserved(top) && !_ct_bs->is_card_aligned(top)) {
1735         // end of object is not card aligned - increment to cover
1736         // all the cards spanned by the object
1737         end_idx += 1;
1738       }
1739 
1740       assert(end_idx <= _card_bm->size(),
1741              err_msg("oob: end_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1742                      end_idx, _card_bm->size()));
1743       assert(start_idx < _card_bm->size(),
1744              err_msg("oob: start_idx=  "SIZE_FORMAT", bitmap size= "SIZE_FORMAT,
1745                      start_idx, _card_bm->size()));
1746 
1747       _cm->set_card_bitmap_range(_card_bm, start_idx, end_idx, true /* is_par */);
1748     }
1749 
1750     // Set the bit for the region if it contains live data
1751     if (hr->next_marked_bytes() > 0) {
1752       set_bit_for_region(hr);
1753     }
1754 
1755     return false;
1756   }
1757 };
1758 
1759 class G1ParFinalCountTask: public AbstractGangTask {
1760 protected:
1761   G1CollectedHeap* _g1h;
1762   ConcurrentMark* _cm;
1763   BitMap* _actual_region_bm;
1764   BitMap* _actual_card_bm;
1765 
1766   uint    _n_workers;
1767 
1768 public:
1769   G1ParFinalCountTask(G1CollectedHeap* g1h, BitMap* region_bm, BitMap* card_bm)
1770     : AbstractGangTask("G1 final counting"),
1771       _g1h(g1h), _cm(_g1h->concurrent_mark()),
1772       _actual_region_bm(region_bm), _actual_card_bm(card_bm),
1773       _n_workers(0) {
1774     // Use the value already set as the number of active threads
1775     // in the call to run_task().
1776     if (G1CollectedHeap::use_parallel_gc_threads()) {
1777       assert( _g1h->workers()->active_workers() > 0,
1778         "Should have been previously set");
1779       _n_workers = _g1h->workers()->active_workers();
1780     } else {
1781       _n_workers = 1;
1782     }
1783   }
1784 
1785   void work(uint worker_id) {
1786     assert(worker_id < _n_workers, "invariant");
1787 
1788     FinalCountDataUpdateClosure final_update_cl(_g1h,
1789                                                 _actual_region_bm,
1790                                                 _actual_card_bm);
1791 
1792     if (G1CollectedHeap::use_parallel_gc_threads()) {
1793       _g1h->heap_region_par_iterate_chunked(&final_update_cl,
1794                                             worker_id,
1795                                             _n_workers,
1796                                             HeapRegion::FinalCountClaimValue);
1797     } else {
1798       _g1h->heap_region_iterate(&final_update_cl);
1799     }
1800   }
1801 };
1802 
1803 class G1ParNoteEndTask;
1804 
1805 class G1NoteEndOfConcMarkClosure : public HeapRegionClosure {
1806   G1CollectedHeap* _g1;
1807   int _worker_num;
1808   size_t _max_live_bytes;
1809   uint _regions_claimed;
1810   size_t _freed_bytes;
1811   FreeRegionList* _local_cleanup_list;
1812   OldRegionSet* _old_proxy_set;
1813   HumongousRegionSet* _humongous_proxy_set;
1814   HRRSCleanupTask* _hrrs_cleanup_task;
1815   double _claimed_region_time;
1816   double _max_region_time;
1817 
1818 public:
1819   G1NoteEndOfConcMarkClosure(G1CollectedHeap* g1,
1820                              int worker_num,
1821                              FreeRegionList* local_cleanup_list,
1822                              OldRegionSet* old_proxy_set,
1823                              HumongousRegionSet* humongous_proxy_set,
1824                              HRRSCleanupTask* hrrs_cleanup_task) :
1825     _g1(g1), _worker_num(worker_num),
1826     _max_live_bytes(0), _regions_claimed(0),
1827     _freed_bytes(0),
1828     _claimed_region_time(0.0), _max_region_time(0.0),
1829     _local_cleanup_list(local_cleanup_list),
1830     _old_proxy_set(old_proxy_set),
1831     _humongous_proxy_set(humongous_proxy_set),
1832     _hrrs_cleanup_task(hrrs_cleanup_task) { }
1833 
1834   size_t freed_bytes() { return _freed_bytes; }
1835 
1836   bool doHeapRegion(HeapRegion *hr) {
1837     if (hr->continuesHumongous()) {
1838       return false;
1839     }
1840     // We use a claim value of zero here because all regions
1841     // were claimed with value 1 in the FinalCount task.
1842     _g1->reset_gc_time_stamps(hr);
1843     double start = os::elapsedTime();
1844     _regions_claimed++;
1845     hr->note_end_of_marking();
1846     _max_live_bytes += hr->max_live_bytes();
1847     _g1->free_region_if_empty(hr,
1848                               &_freed_bytes,
1849                               _local_cleanup_list,
1850                               _old_proxy_set,
1851                               _humongous_proxy_set,
1852                               _hrrs_cleanup_task,
1853                               true /* par */);
1854     double region_time = (os::elapsedTime() - start);
1855     _claimed_region_time += region_time;
1856     if (region_time > _max_region_time) {
1857       _max_region_time = region_time;
1858     }
1859     return false;
1860   }
1861 
1862   size_t max_live_bytes() { return _max_live_bytes; }
1863   uint regions_claimed() { return _regions_claimed; }
1864   double claimed_region_time_sec() { return _claimed_region_time; }
1865   double max_region_time_sec() { return _max_region_time; }
1866 };
1867 
1868 class G1ParNoteEndTask: public AbstractGangTask {
1869   friend class G1NoteEndOfConcMarkClosure;
1870 
1871 protected:
1872   G1CollectedHeap* _g1h;
1873   size_t _max_live_bytes;
1874   size_t _freed_bytes;
1875   FreeRegionList* _cleanup_list;
1876 
1877 public:
1878   G1ParNoteEndTask(G1CollectedHeap* g1h,
1879                    FreeRegionList* cleanup_list) :
1880     AbstractGangTask("G1 note end"), _g1h(g1h),
1881     _max_live_bytes(0), _freed_bytes(0), _cleanup_list(cleanup_list) { }
1882 
1883   void work(uint worker_id) {
1884     double start = os::elapsedTime();
1885     FreeRegionList local_cleanup_list("Local Cleanup List");
1886     OldRegionSet old_proxy_set("Local Cleanup Old Proxy Set");
1887     HumongousRegionSet humongous_proxy_set("Local Cleanup Humongous Proxy Set");
1888     HRRSCleanupTask hrrs_cleanup_task;
1889     G1NoteEndOfConcMarkClosure g1_note_end(_g1h, worker_id, &local_cleanup_list,
1890                                            &old_proxy_set,
1891                                            &humongous_proxy_set,
1892                                            &hrrs_cleanup_task);
1893     if (G1CollectedHeap::use_parallel_gc_threads()) {
1894       _g1h->heap_region_par_iterate_chunked(&g1_note_end, worker_id,
1895                                             _g1h->workers()->active_workers(),
1896                                             HeapRegion::NoteEndClaimValue);
1897     } else {
1898       _g1h->heap_region_iterate(&g1_note_end);
1899     }
1900     assert(g1_note_end.complete(), "Shouldn't have yielded!");
1901 
1902     // Now update the lists
1903     _g1h->update_sets_after_freeing_regions(g1_note_end.freed_bytes(),
1904                                             NULL /* free_list */,
1905                                             &old_proxy_set,
1906                                             &humongous_proxy_set,
1907                                             true /* par */);
1908     {
1909       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1910       _max_live_bytes += g1_note_end.max_live_bytes();
1911       _freed_bytes += g1_note_end.freed_bytes();
1912 
1913       // If we iterate over the global cleanup list at the end of
1914       // cleanup to do this printing we will not guarantee to only
1915       // generate output for the newly-reclaimed regions (the list
1916       // might not be empty at the beginning of cleanup; we might
1917       // still be working on its previous contents). So we do the
1918       // printing here, before we append the new regions to the global
1919       // cleanup list.
1920 
1921       G1HRPrinter* hr_printer = _g1h->hr_printer();
1922       if (hr_printer->is_active()) {
1923         HeapRegionLinkedListIterator iter(&local_cleanup_list);
1924         while (iter.more_available()) {
1925           HeapRegion* hr = iter.get_next();
1926           hr_printer->cleanup(hr);
1927         }
1928       }
1929 
1930       _cleanup_list->add_as_tail(&local_cleanup_list);
1931       assert(local_cleanup_list.is_empty(), "post-condition");
1932 
1933       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1934     }
1935   }
1936   size_t max_live_bytes() { return _max_live_bytes; }
1937   size_t freed_bytes() { return _freed_bytes; }
1938 };
1939 
1940 class G1ParScrubRemSetTask: public AbstractGangTask {
1941 protected:
1942   G1RemSet* _g1rs;
1943   BitMap* _region_bm;
1944   BitMap* _card_bm;
1945 public:
1946   G1ParScrubRemSetTask(G1CollectedHeap* g1h,
1947                        BitMap* region_bm, BitMap* card_bm) :
1948     AbstractGangTask("G1 ScrubRS"), _g1rs(g1h->g1_rem_set()),
1949     _region_bm(region_bm), _card_bm(card_bm) { }
1950 
1951   void work(uint worker_id) {
1952     if (G1CollectedHeap::use_parallel_gc_threads()) {
1953       _g1rs->scrub_par(_region_bm, _card_bm, worker_id,
1954                        HeapRegion::ScrubRemSetClaimValue);
1955     } else {
1956       _g1rs->scrub(_region_bm, _card_bm);
1957     }
1958   }
1959 
1960 };
1961 
1962 void ConcurrentMark::cleanup() {
1963   // world is stopped at this checkpoint
1964   assert(SafepointSynchronize::is_at_safepoint(),
1965          "world should be stopped");
1966   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1967 
1968   // If a full collection has happened, we shouldn't do this.
1969   if (has_aborted()) {
1970     g1h->set_marking_complete(); // So bitmap clearing isn't confused
1971     return;
1972   }
1973 
1974   HRSPhaseSetter x(HRSPhaseCleanup);
1975   g1h->verify_region_sets_optional();
1976 
1977   if (VerifyDuringGC) {
1978     HandleMark hm;  // handle scope
1979     Universe::heap()->prepare_for_verify();
1980     Universe::verify(VerifyOption_G1UsePrevMarking,
1981                      " VerifyDuringGC:(before)");
1982   }
1983 
1984   G1CollectorPolicy* g1p = G1CollectedHeap::heap()->g1_policy();
1985   g1p->record_concurrent_mark_cleanup_start();
1986 
1987   double start = os::elapsedTime();
1988 
1989   HeapRegionRemSet::reset_for_cleanup_tasks();
1990 
1991   uint n_workers;
1992 
1993   // Do counting once more with the world stopped for good measure.
1994   G1ParFinalCountTask g1_par_count_task(g1h, &_region_bm, &_card_bm);
1995 
1996   if (G1CollectedHeap::use_parallel_gc_threads()) {
1997    assert(g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
1998            "sanity check");
1999 
2000     g1h->set_par_threads();
2001     n_workers = g1h->n_par_threads();
2002     assert(g1h->n_par_threads() == n_workers,
2003            "Should not have been reset");
2004     g1h->workers()->run_task(&g1_par_count_task);
2005     // Done with the parallel phase so reset to 0.
2006     g1h->set_par_threads(0);
2007 
2008     assert(g1h->check_heap_region_claim_values(HeapRegion::FinalCountClaimValue),
2009            "sanity check");
2010   } else {
2011     n_workers = 1;
2012     g1_par_count_task.work(0);
2013   }
2014 
2015   if (VerifyDuringGC) {
2016     // Verify that the counting data accumulated during marking matches
2017     // that calculated by walking the marking bitmap.
2018 
2019     // Bitmaps to hold expected values
2020     BitMap expected_region_bm(_region_bm.size(), false);
2021     BitMap expected_card_bm(_card_bm.size(), false);
2022 
2023     G1ParVerifyFinalCountTask g1_par_verify_task(g1h,
2024                                                  &_region_bm,
2025                                                  &_card_bm,
2026                                                  &expected_region_bm,
2027                                                  &expected_card_bm);
2028 
2029     if (G1CollectedHeap::use_parallel_gc_threads()) {
2030       g1h->set_par_threads((int)n_workers);
2031       g1h->workers()->run_task(&g1_par_verify_task);
2032       // Done with the parallel phase so reset to 0.
2033       g1h->set_par_threads(0);
2034 
2035       assert(g1h->check_heap_region_claim_values(HeapRegion::VerifyCountClaimValue),
2036              "sanity check");
2037     } else {
2038       g1_par_verify_task.work(0);
2039     }
2040 
2041     guarantee(g1_par_verify_task.failures() == 0, "Unexpected accounting failures");
2042   }
2043 
2044   size_t start_used_bytes = g1h->used();
2045   g1h->set_marking_complete();
2046 
2047   double count_end = os::elapsedTime();
2048   double this_final_counting_time = (count_end - start);
2049   _total_counting_time += this_final_counting_time;
2050 
2051   if (G1PrintRegionLivenessInfo) {
2052     G1PrintRegionLivenessInfoClosure cl(gclog_or_tty, "Post-Marking");
2053     _g1h->heap_region_iterate(&cl);
2054   }
2055 
2056   // Install newly created mark bitMap as "prev".
2057   swapMarkBitMaps();
2058 
2059   g1h->reset_gc_time_stamp();
2060 
2061   // Note end of marking in all heap regions.
2062   G1ParNoteEndTask g1_par_note_end_task(g1h, &_cleanup_list);
2063   if (G1CollectedHeap::use_parallel_gc_threads()) {
2064     g1h->set_par_threads((int)n_workers);
2065     g1h->workers()->run_task(&g1_par_note_end_task);
2066     g1h->set_par_threads(0);
2067 
2068     assert(g1h->check_heap_region_claim_values(HeapRegion::NoteEndClaimValue),
2069            "sanity check");
2070   } else {
2071     g1_par_note_end_task.work(0);
2072   }
2073   g1h->check_gc_time_stamps();
2074 
2075   if (!cleanup_list_is_empty()) {
2076     // The cleanup list is not empty, so we'll have to process it
2077     // concurrently. Notify anyone else that might be wanting free
2078     // regions that there will be more free regions coming soon.
2079     g1h->set_free_regions_coming();
2080   }
2081 
2082   // call below, since it affects the metric by which we sort the heap
2083   // regions.
2084   if (G1ScrubRemSets) {
2085     double rs_scrub_start = os::elapsedTime();
2086     G1ParScrubRemSetTask g1_par_scrub_rs_task(g1h, &_region_bm, &_card_bm);
2087     if (G1CollectedHeap::use_parallel_gc_threads()) {
2088       g1h->set_par_threads((int)n_workers);
2089       g1h->workers()->run_task(&g1_par_scrub_rs_task);
2090       g1h->set_par_threads(0);
2091 
2092       assert(g1h->check_heap_region_claim_values(
2093                                             HeapRegion::ScrubRemSetClaimValue),
2094              "sanity check");
2095     } else {
2096       g1_par_scrub_rs_task.work(0);
2097     }
2098 
2099     double rs_scrub_end = os::elapsedTime();
2100     double this_rs_scrub_time = (rs_scrub_end - rs_scrub_start);
2101     _total_rs_scrub_time += this_rs_scrub_time;
2102   }
2103 
2104   // this will also free any regions totally full of garbage objects,
2105   // and sort the regions.
2106   g1h->g1_policy()->record_concurrent_mark_cleanup_end((int)n_workers);
2107 
2108   // Statistics.
2109   double end = os::elapsedTime();
2110   _cleanup_times.add((end - start) * 1000.0);
2111 
2112   if (G1Log::fine()) {
2113     g1h->print_size_transition(gclog_or_tty,
2114                                start_used_bytes,
2115                                g1h->used(),
2116                                g1h->capacity());
2117   }
2118 
2119   // Clean up will have freed any regions completely full of garbage.
2120   // Update the soft reference policy with the new heap occupancy.
2121   Universe::update_heap_info_at_gc();
2122 
2123   // We need to make this be a "collection" so any collection pause that
2124   // races with it goes around and waits for completeCleanup to finish.
2125   g1h->increment_total_collections();
2126 
2127   // We reclaimed old regions so we should calculate the sizes to make
2128   // sure we update the old gen/space data.
2129   g1h->g1mm()->update_sizes();
2130 
2131   if (VerifyDuringGC) {
2132     HandleMark hm;  // handle scope
2133     Universe::heap()->prepare_for_verify();
2134     Universe::verify(VerifyOption_G1UsePrevMarking,
2135                      " VerifyDuringGC:(after)");
2136   }
2137 
2138   g1h->verify_region_sets_optional();
2139   g1h->trace_heap_after_concurrent_cycle();
2140 }
2141 
2142 void ConcurrentMark::completeCleanup() {
2143   if (has_aborted()) return;
2144 
2145   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2146 
2147   _cleanup_list.verify_optional();
2148   FreeRegionList tmp_free_list("Tmp Free List");
2149 
2150   if (G1ConcRegionFreeingVerbose) {
2151     gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2152                            "cleanup list has %u entries",
2153                            _cleanup_list.length());
2154   }
2155 
2156   // Noone else should be accessing the _cleanup_list at this point,
2157   // so it's not necessary to take any locks
2158   while (!_cleanup_list.is_empty()) {
2159     HeapRegion* hr = _cleanup_list.remove_head();
2160     assert(hr != NULL, "the list was not empty");
2161     hr->par_clear();
2162     tmp_free_list.add_as_tail(hr);
2163 
2164     // Instead of adding one region at a time to the secondary_free_list,
2165     // we accumulate them in the local list and move them a few at a
2166     // time. This also cuts down on the number of notify_all() calls
2167     // we do during this process. We'll also append the local list when
2168     // _cleanup_list is empty (which means we just removed the last
2169     // region from the _cleanup_list).
2170     if ((tmp_free_list.length() % G1SecondaryFreeListAppendLength == 0) ||
2171         _cleanup_list.is_empty()) {
2172       if (G1ConcRegionFreeingVerbose) {
2173         gclog_or_tty->print_cr("G1ConcRegionFreeing [complete cleanup] : "
2174                                "appending %u entries to the secondary_free_list, "
2175                                "cleanup list still has %u entries",
2176                                tmp_free_list.length(),
2177                                _cleanup_list.length());
2178       }
2179 
2180       {
2181         MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
2182         g1h->secondary_free_list_add_as_tail(&tmp_free_list);
2183         SecondaryFreeList_lock->notify_all();
2184       }
2185 
2186       if (G1StressConcRegionFreeing) {
2187         for (uintx i = 0; i < G1StressConcRegionFreeingDelayMillis; ++i) {
2188           os::sleep(Thread::current(), (jlong) 1, false);
2189         }
2190       }
2191     }
2192   }
2193   assert(tmp_free_list.is_empty(), "post-condition");
2194 }
2195 
2196 // Supporting Object and Oop closures for reference discovery
2197 // and processing in during marking
2198 
2199 bool G1CMIsAliveClosure::do_object_b(oop obj) {
2200   HeapWord* addr = (HeapWord*)obj;
2201   return addr != NULL &&
2202          (!_g1->is_in_g1_reserved(addr) || !_g1->is_obj_ill(obj));
2203 }
2204 
2205 // 'Keep Alive' oop closure used by both serial parallel reference processing.
2206 // Uses the CMTask associated with a worker thread (for serial reference
2207 // processing the CMTask for worker 0 is used) to preserve (mark) and
2208 // trace referent objects.
2209 //
2210 // Using the CMTask and embedded local queues avoids having the worker
2211 // threads operating on the global mark stack. This reduces the risk
2212 // of overflowing the stack - which we would rather avoid at this late
2213 // state. Also using the tasks' local queues removes the potential
2214 // of the workers interfering with each other that could occur if
2215 // operating on the global stack.
2216 
2217 class G1CMKeepAliveAndDrainClosure: public OopClosure {
2218   ConcurrentMark* _cm;
2219   CMTask*         _task;
2220   int             _ref_counter_limit;
2221   int             _ref_counter;
2222   bool            _is_serial;
2223  public:
2224   G1CMKeepAliveAndDrainClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2225     _cm(cm), _task(task), _is_serial(is_serial),
2226     _ref_counter_limit(G1RefProcDrainInterval) {
2227     assert(_ref_counter_limit > 0, "sanity");
2228     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2229     _ref_counter = _ref_counter_limit;
2230   }
2231 
2232   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
2233   virtual void do_oop(      oop* p) { do_oop_work(p); }
2234 
2235   template <class T> void do_oop_work(T* p) {
2236     if (!_cm->has_overflown()) {
2237       oop obj = oopDesc::load_decode_heap_oop(p);
2238       if (_cm->verbose_high()) {
2239         gclog_or_tty->print_cr("\t[%u] we're looking at location "
2240                                "*"PTR_FORMAT" = "PTR_FORMAT,
2241                                _task->worker_id(), p, (void*) obj);
2242       }
2243 
2244       _task->deal_with_reference(obj);
2245       _ref_counter--;
2246 
2247       if (_ref_counter == 0) {
2248         // We have dealt with _ref_counter_limit references, pushing them
2249         // and objects reachable from them on to the local stack (and
2250         // possibly the global stack). Call CMTask::do_marking_step() to
2251         // process these entries.
2252         //
2253         // We call CMTask::do_marking_step() in a loop, which we'll exit if
2254         // there's nothing more to do (i.e. we're done with the entries that
2255         // were pushed as a result of the CMTask::deal_with_reference() calls
2256         // above) or we overflow.
2257         //
2258         // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2259         // flag while there may still be some work to do. (See the comment at
2260         // the beginning of CMTask::do_marking_step() for those conditions -
2261         // one of which is reaching the specified time target.) It is only
2262         // when CMTask::do_marking_step() returns without setting the
2263         // has_aborted() flag that the marking step has completed.
2264         do {
2265           double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
2266           _task->do_marking_step(mark_step_duration_ms,
2267                                  false      /* do_termination */,
2268                                  _is_serial);
2269         } while (_task->has_aborted() && !_cm->has_overflown());
2270         _ref_counter = _ref_counter_limit;
2271       }
2272     } else {
2273       if (_cm->verbose_high()) {
2274          gclog_or_tty->print_cr("\t[%u] CM Overflow", _task->worker_id());
2275       }
2276     }
2277   }
2278 };
2279 
2280 // 'Drain' oop closure used by both serial and parallel reference processing.
2281 // Uses the CMTask associated with a given worker thread (for serial
2282 // reference processing the CMtask for worker 0 is used). Calls the
2283 // do_marking_step routine, with an unbelievably large timeout value,
2284 // to drain the marking data structures of the remaining entries
2285 // added by the 'keep alive' oop closure above.
2286 
2287 class G1CMDrainMarkingStackClosure: public VoidClosure {
2288   ConcurrentMark* _cm;
2289   CMTask*         _task;
2290   bool            _is_serial;
2291  public:
2292   G1CMDrainMarkingStackClosure(ConcurrentMark* cm, CMTask* task, bool is_serial) :
2293     _cm(cm), _task(task), _is_serial(is_serial) {
2294     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
2295   }
2296 
2297   void do_void() {
2298     do {
2299       if (_cm->verbose_high()) {
2300         gclog_or_tty->print_cr("\t[%u] Drain: Calling do_marking_step - serial: %s",
2301                                _task->worker_id(), BOOL_TO_STR(_is_serial));
2302       }
2303 
2304       // We call CMTask::do_marking_step() to completely drain the local
2305       // and global marking stacks of entries pushed by the 'keep alive'
2306       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
2307       //
2308       // CMTask::do_marking_step() is called in a loop, which we'll exit
2309       // if there's nothing more to do (i.e. we've completely drained the
2310       // entries that were pushed as a a result of applying the 'keep alive'
2311       // closure to the entries on the discovered ref lists) or we overflow
2312       // the global marking stack.
2313       //
2314       // Note: CMTask::do_marking_step() can set the CMTask::has_aborted()
2315       // flag while there may still be some work to do. (See the comment at
2316       // the beginning of CMTask::do_marking_step() for those conditions -
2317       // one of which is reaching the specified time target.) It is only
2318       // when CMTask::do_marking_step() returns without setting the
2319       // has_aborted() flag that the marking step has completed.
2320 
2321       _task->do_marking_step(1000000000.0 /* something very large */,
2322                              true         /* do_termination */,
2323                              _is_serial);
2324     } while (_task->has_aborted() && !_cm->has_overflown());
2325   }
2326 };
2327 
2328 // Implementation of AbstractRefProcTaskExecutor for parallel
2329 // reference processing at the end of G1 concurrent marking
2330 
2331 class G1CMRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
2332 private:
2333   G1CollectedHeap* _g1h;
2334   ConcurrentMark*  _cm;
2335   WorkGang*        _workers;
2336   int              _active_workers;
2337 
2338 public:
2339   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
2340                         ConcurrentMark* cm,
2341                         WorkGang* workers,
2342                         int n_workers) :
2343     _g1h(g1h), _cm(cm),
2344     _workers(workers), _active_workers(n_workers) { }
2345 
2346   // Executes the given task using concurrent marking worker threads.
2347   virtual void execute(ProcessTask& task);
2348   virtual void execute(EnqueueTask& task);
2349 };
2350 
2351 class G1CMRefProcTaskProxy: public AbstractGangTask {
2352   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
2353   ProcessTask&     _proc_task;
2354   G1CollectedHeap* _g1h;
2355   ConcurrentMark*  _cm;
2356 
2357 public:
2358   G1CMRefProcTaskProxy(ProcessTask& proc_task,
2359                      G1CollectedHeap* g1h,
2360                      ConcurrentMark* cm) :
2361     AbstractGangTask("Process reference objects in parallel"),
2362     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
2363     ReferenceProcessor* rp = _g1h->ref_processor_cm();
2364     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
2365   }
2366 
2367   virtual void work(uint worker_id) {
2368     CMTask* task = _cm->task(worker_id);
2369     G1CMIsAliveClosure g1_is_alive(_g1h);
2370     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
2371     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
2372 
2373     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
2374   }
2375 };
2376 
2377 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) {
2378   assert(_workers != NULL, "Need parallel worker threads.");
2379   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2380 
2381   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
2382 
2383   // We need to reset the concurrency level before each
2384   // proxy task execution, so that the termination protocol
2385   // and overflow handling in CMTask::do_marking_step() knows
2386   // how many workers to wait for.
2387   _cm->set_concurrency(_active_workers);
2388   _g1h->set_par_threads(_active_workers);
2389   _workers->run_task(&proc_task_proxy);
2390   _g1h->set_par_threads(0);
2391 }
2392 
2393 class G1CMRefEnqueueTaskProxy: public AbstractGangTask {
2394   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
2395   EnqueueTask& _enq_task;
2396 
2397 public:
2398   G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) :
2399     AbstractGangTask("Enqueue reference objects in parallel"),
2400     _enq_task(enq_task) { }
2401 
2402   virtual void work(uint worker_id) {
2403     _enq_task.work(worker_id);
2404   }
2405 };
2406 
2407 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
2408   assert(_workers != NULL, "Need parallel worker threads.");
2409   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
2410 
2411   G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task);
2412 
2413   // Not strictly necessary but...
2414   //
2415   // We need to reset the concurrency level before each
2416   // proxy task execution, so that the termination protocol
2417   // and overflow handling in CMTask::do_marking_step() knows
2418   // how many workers to wait for.
2419   _cm->set_concurrency(_active_workers);
2420   _g1h->set_par_threads(_active_workers);
2421   _workers->run_task(&enq_task_proxy);
2422   _g1h->set_par_threads(0);
2423 }
2424 
2425 void ConcurrentMark::weakRefsWork(bool clear_all_soft_refs) {
2426   if (has_overflown()) {
2427     // Skip processing the discovered references if we have
2428     // overflown the global marking stack. Reference objects
2429     // only get discovered once so it is OK to not
2430     // de-populate the discovered reference lists. We could have,
2431     // but the only benefit would be that, when marking restarts,
2432     // less reference objects are discovered.
2433     return;
2434   }
2435 
2436   ResourceMark rm;
2437   HandleMark   hm;
2438 
2439   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2440 
2441   // Is alive closure.
2442   G1CMIsAliveClosure g1_is_alive(g1h);
2443 
2444   // Inner scope to exclude the cleaning of the string and symbol
2445   // tables from the displayed time.
2446   {
2447     if (G1Log::finer()) {
2448       gclog_or_tty->put(' ');
2449     }
2450     GCTraceTime t("GC ref-proc", G1Log::finer(), false, g1h->gc_timer_cm());
2451 
2452     ReferenceProcessor* rp = g1h->ref_processor_cm();
2453 
2454     // See the comment in G1CollectedHeap::ref_processing_init()
2455     // about how reference processing currently works in G1.
2456 
2457     // Set the soft reference policy
2458     rp->setup_policy(clear_all_soft_refs);
2459     assert(_markStack.isEmpty(), "mark stack should be empty");
2460 
2461     // Instances of the 'Keep Alive' and 'Complete GC' closures used
2462     // in serial reference processing. Note these closures are also
2463     // used for serially processing (by the the current thread) the
2464     // JNI references during parallel reference processing.
2465     //
2466     // These closures do not need to synchronize with the worker
2467     // threads involved in parallel reference processing as these
2468     // instances are executed serially by the current thread (e.g.
2469     // reference processing is not multi-threaded and is thus
2470     // performed by the current thread instead of a gang worker).
2471     //
2472     // The gang tasks involved in parallel reference processing create
2473     // their own instances of these closures, which do their own
2474     // synchronization among themselves.
2475     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
2476     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
2477 
2478     // We need at least one active thread. If reference processing
2479     // is not multi-threaded we use the current (VMThread) thread,
2480     // otherwise we use the work gang from the G1CollectedHeap and
2481     // we utilize all the worker threads we can.
2482     bool processing_is_mt = rp->processing_is_mt() && g1h->workers() != NULL;
2483     uint active_workers = (processing_is_mt ? g1h->workers()->active_workers() : 1U);
2484     active_workers = MAX2(MIN2(active_workers, _max_worker_id), 1U);
2485 
2486     // Parallel processing task executor.
2487     G1CMRefProcTaskExecutor par_task_executor(g1h, this,
2488                                               g1h->workers(), active_workers);
2489     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
2490 
2491     // Set the concurrency level. The phase was already set prior to
2492     // executing the remark task.
2493     set_concurrency(active_workers);
2494 
2495     // Set the degree of MT processing here.  If the discovery was done MT,
2496     // the number of threads involved during discovery could differ from
2497     // the number of active workers.  This is OK as long as the discovered
2498     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
2499     rp->set_active_mt_degree(active_workers);
2500 
2501     // Process the weak references.
2502     const ReferenceProcessorStats& stats =
2503         rp->process_discovered_references(&g1_is_alive,
2504                                           &g1_keep_alive,
2505                                           &g1_drain_mark_stack,
2506                                           executor,
2507                                           g1h->gc_timer_cm());
2508     g1h->gc_tracer_cm()->report_gc_reference_stats(stats);
2509 
2510     // The do_oop work routines of the keep_alive and drain_marking_stack
2511     // oop closures will set the has_overflown flag if we overflow the
2512     // global marking stack.
2513 
2514     assert(_markStack.overflow() || _markStack.isEmpty(),
2515             "mark stack should be empty (unless it overflowed)");
2516 
2517     if (_markStack.overflow()) {
2518       // This should have been done already when we tried to push an
2519       // entry on to the global mark stack. But let's do it again.
2520       set_has_overflown();
2521     }
2522 
2523     assert(rp->num_q() == active_workers, "why not");
2524 
2525     rp->enqueue_discovered_references(executor);
2526 
2527     rp->verify_no_references_recorded();
2528     assert(!rp->discovery_enabled(), "Post condition");
2529   }
2530 
2531   g1h->unlink_string_and_symbol_table(&g1_is_alive,
2532                                       /* process_strings */ false, // currently strings are always roots
2533                                       /* process_symbols */ true);
2534 }
2535 
2536 void ConcurrentMark::swapMarkBitMaps() {
2537   CMBitMapRO* temp = _prevMarkBitMap;
2538   _prevMarkBitMap  = (CMBitMapRO*)_nextMarkBitMap;
2539   _nextMarkBitMap  = (CMBitMap*)  temp;
2540 }
2541 
2542 class CMRemarkTask: public AbstractGangTask {
2543 private:
2544   ConcurrentMark* _cm;
2545   bool            _is_serial;
2546 public:
2547   void work(uint worker_id) {
2548     // Since all available tasks are actually started, we should
2549     // only proceed if we're supposed to be active.
2550     if (worker_id < _cm->active_tasks()) {
2551       CMTask* task = _cm->task(worker_id);
2552       task->record_start_time();
2553       do {
2554         task->do_marking_step(1000000000.0 /* something very large */,
2555                               true         /* do_termination       */,
2556                               _is_serial);
2557       } while (task->has_aborted() && !_cm->has_overflown());
2558       // If we overflow, then we do not want to restart. We instead
2559       // want to abort remark and do concurrent marking again.
2560       task->record_end_time();
2561     }
2562   }
2563 
2564   CMRemarkTask(ConcurrentMark* cm, int active_workers, bool is_serial) :
2565     AbstractGangTask("Par Remark"), _cm(cm), _is_serial(is_serial) {
2566     _cm->terminator()->reset_for_reuse(active_workers);
2567   }
2568 };
2569 
2570 void ConcurrentMark::checkpointRootsFinalWork() {
2571   ResourceMark rm;
2572   HandleMark   hm;
2573   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2574 
2575   g1h->ensure_parsability(false);
2576 
2577   if (G1CollectedHeap::use_parallel_gc_threads()) {
2578     G1CollectedHeap::StrongRootsScope srs(g1h);
2579     // this is remark, so we'll use up all active threads
2580     uint active_workers = g1h->workers()->active_workers();
2581     if (active_workers == 0) {
2582       assert(active_workers > 0, "Should have been set earlier");
2583       active_workers = (uint) ParallelGCThreads;
2584       g1h->workers()->set_active_workers(active_workers);
2585     }
2586     set_concurrency_and_phase(active_workers, false /* concurrent */);
2587     // Leave _parallel_marking_threads at it's
2588     // value originally calculated in the ConcurrentMark
2589     // constructor and pass values of the active workers
2590     // through the gang in the task.
2591 
2592     CMRemarkTask remarkTask(this, active_workers, false /* is_serial */);
2593     // We will start all available threads, even if we decide that the
2594     // active_workers will be fewer. The extra ones will just bail out
2595     // immediately.
2596     g1h->set_par_threads(active_workers);
2597     g1h->workers()->run_task(&remarkTask);
2598     g1h->set_par_threads(0);
2599   } else {
2600     G1CollectedHeap::StrongRootsScope srs(g1h);
2601     uint active_workers = 1;
2602     set_concurrency_and_phase(active_workers, false /* concurrent */);
2603 
2604     // Note - if there's no work gang then the VMThread will be
2605     // the thread to execute the remark - serially. We have
2606     // to pass true for the is_serial parameter so that
2607     // CMTask::do_marking_step() doesn't enter the sync
2608     // barriers in the event of an overflow. Doing so will
2609     // cause an assert that the current thread is not a
2610     // concurrent GC thread.
2611     CMRemarkTask remarkTask(this, active_workers, true /* is_serial*/);
2612     remarkTask.work(0);
2613   }
2614   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
2615   guarantee(has_overflown() ||
2616             satb_mq_set.completed_buffers_num() == 0,
2617             err_msg("Invariant: has_overflown = %s, num buffers = %d",
2618                     BOOL_TO_STR(has_overflown()),
2619                     satb_mq_set.completed_buffers_num()));
2620 
2621   print_stats();
2622 }
2623 
2624 #ifndef PRODUCT
2625 
2626 class PrintReachableOopClosure: public OopClosure {
2627 private:
2628   G1CollectedHeap* _g1h;
2629   outputStream*    _out;
2630   VerifyOption     _vo;
2631   bool             _all;
2632 
2633 public:
2634   PrintReachableOopClosure(outputStream* out,
2635                            VerifyOption  vo,
2636                            bool          all) :
2637     _g1h(G1CollectedHeap::heap()),
2638     _out(out), _vo(vo), _all(all) { }
2639 
2640   void do_oop(narrowOop* p) { do_oop_work(p); }
2641   void do_oop(      oop* p) { do_oop_work(p); }
2642 
2643   template <class T> void do_oop_work(T* p) {
2644     oop         obj = oopDesc::load_decode_heap_oop(p);
2645     const char* str = NULL;
2646     const char* str2 = "";
2647 
2648     if (obj == NULL) {
2649       str = "";
2650     } else if (!_g1h->is_in_g1_reserved(obj)) {
2651       str = " O";
2652     } else {
2653       HeapRegion* hr  = _g1h->heap_region_containing(obj);
2654       guarantee(hr != NULL, "invariant");
2655       bool over_tams = _g1h->allocated_since_marking(obj, hr, _vo);
2656       bool marked = _g1h->is_marked(obj, _vo);
2657 
2658       if (over_tams) {
2659         str = " >";
2660         if (marked) {
2661           str2 = " AND MARKED";
2662         }
2663       } else if (marked) {
2664         str = " M";
2665       } else {
2666         str = " NOT";
2667       }
2668     }
2669 
2670     _out->print_cr("  "PTR_FORMAT": "PTR_FORMAT"%s%s",
2671                    p, (void*) obj, str, str2);
2672   }
2673 };
2674 
2675 class PrintReachableObjectClosure : public ObjectClosure {
2676 private:
2677   G1CollectedHeap* _g1h;
2678   outputStream*    _out;
2679   VerifyOption     _vo;
2680   bool             _all;
2681   HeapRegion*      _hr;
2682 
2683 public:
2684   PrintReachableObjectClosure(outputStream* out,
2685                               VerifyOption  vo,
2686                               bool          all,
2687                               HeapRegion*   hr) :
2688     _g1h(G1CollectedHeap::heap()),
2689     _out(out), _vo(vo), _all(all), _hr(hr) { }
2690 
2691   void do_object(oop o) {
2692     bool over_tams = _g1h->allocated_since_marking(o, _hr, _vo);
2693     bool marked = _g1h->is_marked(o, _vo);
2694     bool print_it = _all || over_tams || marked;
2695 
2696     if (print_it) {
2697       _out->print_cr(" "PTR_FORMAT"%s",
2698                      (void *)o, (over_tams) ? " >" : (marked) ? " M" : "");
2699       PrintReachableOopClosure oopCl(_out, _vo, _all);
2700       o->oop_iterate_no_header(&oopCl);
2701     }
2702   }
2703 };
2704 
2705 class PrintReachableRegionClosure : public HeapRegionClosure {
2706 private:
2707   G1CollectedHeap* _g1h;
2708   outputStream*    _out;
2709   VerifyOption     _vo;
2710   bool             _all;
2711 
2712 public:
2713   bool doHeapRegion(HeapRegion* hr) {
2714     HeapWord* b = hr->bottom();
2715     HeapWord* e = hr->end();
2716     HeapWord* t = hr->top();
2717     HeapWord* p = _g1h->top_at_mark_start(hr, _vo);
2718     _out->print_cr("** ["PTR_FORMAT", "PTR_FORMAT"] top: "PTR_FORMAT" "
2719                    "TAMS: "PTR_FORMAT, b, e, t, p);
2720     _out->cr();
2721 
2722     HeapWord* from = b;
2723     HeapWord* to   = t;
2724 
2725     if (to > from) {
2726       _out->print_cr("Objects in ["PTR_FORMAT", "PTR_FORMAT"]", from, to);
2727       _out->cr();
2728       PrintReachableObjectClosure ocl(_out, _vo, _all, hr);
2729       hr->object_iterate_mem_careful(MemRegion(from, to), &ocl);
2730       _out->cr();
2731     }
2732 
2733     return false;
2734   }
2735 
2736   PrintReachableRegionClosure(outputStream* out,
2737                               VerifyOption  vo,
2738                               bool          all) :
2739     _g1h(G1CollectedHeap::heap()), _out(out), _vo(vo), _all(all) { }
2740 };
2741 
2742 void ConcurrentMark::print_reachable(const char* str,
2743                                      VerifyOption vo,
2744                                      bool all) {
2745   gclog_or_tty->cr();
2746   gclog_or_tty->print_cr("== Doing heap dump... ");
2747 
2748   if (G1PrintReachableBaseFile == NULL) {
2749     gclog_or_tty->print_cr("  #### error: no base file defined");
2750     return;
2751   }
2752 
2753   if (strlen(G1PrintReachableBaseFile) + 1 + strlen(str) >
2754       (JVM_MAXPATHLEN - 1)) {
2755     gclog_or_tty->print_cr("  #### error: file name too long");
2756     return;
2757   }
2758 
2759   char file_name[JVM_MAXPATHLEN];
2760   sprintf(file_name, "%s.%s", G1PrintReachableBaseFile, str);
2761   gclog_or_tty->print_cr("  dumping to file %s", file_name);
2762 
2763   fileStream fout(file_name);
2764   if (!fout.is_open()) {
2765     gclog_or_tty->print_cr("  #### error: could not open file");
2766     return;
2767   }
2768 
2769   outputStream* out = &fout;
2770   out->print_cr("-- USING %s", _g1h->top_at_mark_start_str(vo));
2771   out->cr();
2772 
2773   out->print_cr("--- ITERATING OVER REGIONS");
2774   out->cr();
2775   PrintReachableRegionClosure rcl(out, vo, all);
2776   _g1h->heap_region_iterate(&rcl);
2777   out->cr();
2778 
2779   gclog_or_tty->print_cr("  done");
2780   gclog_or_tty->flush();
2781 }
2782 
2783 #endif // PRODUCT
2784 
2785 void ConcurrentMark::clearRangePrevBitmap(MemRegion mr) {
2786   // Note we are overriding the read-only view of the prev map here, via
2787   // the cast.
2788   ((CMBitMap*)_prevMarkBitMap)->clearRange(mr);
2789 }
2790 
2791 void ConcurrentMark::clearRangeNextBitmap(MemRegion mr) {
2792   _nextMarkBitMap->clearRange(mr);
2793 }
2794 
2795 void ConcurrentMark::clearRangeBothBitmaps(MemRegion mr) {
2796   clearRangePrevBitmap(mr);
2797   clearRangeNextBitmap(mr);
2798 }
2799 
2800 HeapRegion*
2801 ConcurrentMark::claim_region(uint worker_id) {
2802   // "checkpoint" the finger
2803   HeapWord* finger = _finger;
2804 
2805   // _heap_end will not change underneath our feet; it only changes at
2806   // yield points.
2807   while (finger < _heap_end) {
2808     assert(_g1h->is_in_g1_reserved(finger), "invariant");
2809 
2810     // Note on how this code handles humongous regions. In the
2811     // normal case the finger will reach the start of a "starts
2812     // humongous" (SH) region. Its end will either be the end of the
2813     // last "continues humongous" (CH) region in the sequence, or the
2814     // standard end of the SH region (if the SH is the only region in
2815     // the sequence). That way claim_region() will skip over the CH
2816     // regions. However, there is a subtle race between a CM thread
2817     // executing this method and a mutator thread doing a humongous
2818     // object allocation. The two are not mutually exclusive as the CM
2819     // thread does not need to hold the Heap_lock when it gets
2820     // here. So there is a chance that claim_region() will come across
2821     // a free region that's in the progress of becoming a SH or a CH
2822     // region. In the former case, it will either
2823     //   a) Miss the update to the region's end, in which case it will
2824     //      visit every subsequent CH region, will find their bitmaps
2825     //      empty, and do nothing, or
2826     //   b) Will observe the update of the region's end (in which case
2827     //      it will skip the subsequent CH regions).
2828     // If it comes across a region that suddenly becomes CH, the
2829     // scenario will be similar to b). So, the race between
2830     // claim_region() and a humongous object allocation might force us
2831     // to do a bit of unnecessary work (due to some unnecessary bitmap
2832     // iterations) but it should not introduce and correctness issues.
2833     HeapRegion* curr_region   = _g1h->heap_region_containing_raw(finger);
2834     HeapWord*   bottom        = curr_region->bottom();
2835     HeapWord*   end           = curr_region->end();
2836     HeapWord*   limit         = curr_region->next_top_at_mark_start();
2837 
2838     if (verbose_low()) {
2839       gclog_or_tty->print_cr("[%u] curr_region = "PTR_FORMAT" "
2840                              "["PTR_FORMAT", "PTR_FORMAT"), "
2841                              "limit = "PTR_FORMAT,
2842                              worker_id, curr_region, bottom, end, limit);
2843     }
2844 
2845     // Is the gap between reading the finger and doing the CAS too long?
2846     HeapWord* res = (HeapWord*) Atomic::cmpxchg_ptr(end, &_finger, finger);
2847     if (res == finger) {
2848       // we succeeded
2849 
2850       // notice that _finger == end cannot be guaranteed here since,
2851       // someone else might have moved the finger even further
2852       assert(_finger >= end, "the finger should have moved forward");
2853 
2854       if (verbose_low()) {
2855         gclog_or_tty->print_cr("[%u] we were successful with region = "
2856                                PTR_FORMAT, worker_id, curr_region);
2857       }
2858 
2859       if (limit > bottom) {
2860         if (verbose_low()) {
2861           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is not empty, "
2862                                  "returning it ", worker_id, curr_region);
2863         }
2864         return curr_region;
2865       } else {
2866         assert(limit == bottom,
2867                "the region limit should be at bottom");
2868         if (verbose_low()) {
2869           gclog_or_tty->print_cr("[%u] region "PTR_FORMAT" is empty, "
2870                                  "returning NULL", worker_id, curr_region);
2871         }
2872         // we return NULL and the caller should try calling
2873         // claim_region() again.
2874         return NULL;
2875       }
2876     } else {
2877       assert(_finger > finger, "the finger should have moved forward");
2878       if (verbose_low()) {
2879         gclog_or_tty->print_cr("[%u] somebody else moved the finger, "
2880                                "global finger = "PTR_FORMAT", "
2881                                "our finger = "PTR_FORMAT,
2882                                worker_id, _finger, finger);
2883       }
2884 
2885       // read it again
2886       finger = _finger;
2887     }
2888   }
2889 
2890   return NULL;
2891 }
2892 
2893 #ifndef PRODUCT
2894 enum VerifyNoCSetOopsPhase {
2895   VerifyNoCSetOopsStack,
2896   VerifyNoCSetOopsQueues,
2897   VerifyNoCSetOopsSATBCompleted,
2898   VerifyNoCSetOopsSATBThread
2899 };
2900 
2901 class VerifyNoCSetOopsClosure : public OopClosure, public ObjectClosure  {
2902 private:
2903   G1CollectedHeap* _g1h;
2904   VerifyNoCSetOopsPhase _phase;
2905   int _info;
2906 
2907   const char* phase_str() {
2908     switch (_phase) {
2909     case VerifyNoCSetOopsStack:         return "Stack";
2910     case VerifyNoCSetOopsQueues:        return "Queue";
2911     case VerifyNoCSetOopsSATBCompleted: return "Completed SATB Buffers";
2912     case VerifyNoCSetOopsSATBThread:    return "Thread SATB Buffers";
2913     default:                            ShouldNotReachHere();
2914     }
2915     return NULL;
2916   }
2917 
2918   void do_object_work(oop obj) {
2919     guarantee(!_g1h->obj_in_cs(obj),
2920               err_msg("obj: "PTR_FORMAT" in CSet, phase: %s, info: %d",
2921                       (void*) obj, phase_str(), _info));
2922   }
2923 
2924 public:
2925   VerifyNoCSetOopsClosure() : _g1h(G1CollectedHeap::heap()) { }
2926 
2927   void set_phase(VerifyNoCSetOopsPhase phase, int info = -1) {
2928     _phase = phase;
2929     _info = info;
2930   }
2931 
2932   virtual void do_oop(oop* p) {
2933     oop obj = oopDesc::load_decode_heap_oop(p);
2934     do_object_work(obj);
2935   }
2936 
2937   virtual void do_oop(narrowOop* p) {
2938     // We should not come across narrow oops while scanning marking
2939     // stacks and SATB buffers.
2940     ShouldNotReachHere();
2941   }
2942 
2943   virtual void do_object(oop obj) {
2944     do_object_work(obj);
2945   }
2946 };
2947 
2948 void ConcurrentMark::verify_no_cset_oops(bool verify_stacks,
2949                                          bool verify_enqueued_buffers,
2950                                          bool verify_thread_buffers,
2951                                          bool verify_fingers) {
2952   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
2953   if (!G1CollectedHeap::heap()->mark_in_progress()) {
2954     return;
2955   }
2956 
2957   VerifyNoCSetOopsClosure cl;
2958 
2959   if (verify_stacks) {
2960     // Verify entries on the global mark stack
2961     cl.set_phase(VerifyNoCSetOopsStack);
2962     _markStack.oops_do(&cl);
2963 
2964     // Verify entries on the task queues
2965     for (uint i = 0; i < _max_worker_id; i += 1) {
2966       cl.set_phase(VerifyNoCSetOopsQueues, i);
2967       CMTaskQueue* queue = _task_queues->queue(i);
2968       queue->oops_do(&cl);
2969     }
2970   }
2971 
2972   SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set();
2973 
2974   // Verify entries on the enqueued SATB buffers
2975   if (verify_enqueued_buffers) {
2976     cl.set_phase(VerifyNoCSetOopsSATBCompleted);
2977     satb_qs.iterate_completed_buffers_read_only(&cl);
2978   }
2979 
2980   // Verify entries on the per-thread SATB buffers
2981   if (verify_thread_buffers) {
2982     cl.set_phase(VerifyNoCSetOopsSATBThread);
2983     satb_qs.iterate_thread_buffers_read_only(&cl);
2984   }
2985 
2986   if (verify_fingers) {
2987     // Verify the global finger
2988     HeapWord* global_finger = finger();
2989     if (global_finger != NULL && global_finger < _heap_end) {
2990       // The global finger always points to a heap region boundary. We
2991       // use heap_region_containing_raw() to get the containing region
2992       // given that the global finger could be pointing to a free region
2993       // which subsequently becomes continues humongous. If that
2994       // happens, heap_region_containing() will return the bottom of the
2995       // corresponding starts humongous region and the check below will
2996       // not hold any more.
2997       HeapRegion* global_hr = _g1h->heap_region_containing_raw(global_finger);
2998       guarantee(global_finger == global_hr->bottom(),
2999                 err_msg("global finger: "PTR_FORMAT" region: "HR_FORMAT,
3000                         global_finger, HR_FORMAT_PARAMS(global_hr)));
3001     }
3002 
3003     // Verify the task fingers
3004     assert(parallel_marking_threads() <= _max_worker_id, "sanity");
3005     for (int i = 0; i < (int) parallel_marking_threads(); i += 1) {
3006       CMTask* task = _tasks[i];
3007       HeapWord* task_finger = task->finger();
3008       if (task_finger != NULL && task_finger < _heap_end) {
3009         // See above note on the global finger verification.
3010         HeapRegion* task_hr = _g1h->heap_region_containing_raw(task_finger);
3011         guarantee(task_finger == task_hr->bottom() ||
3012                   !task_hr->in_collection_set(),
3013                   err_msg("task finger: "PTR_FORMAT" region: "HR_FORMAT,
3014                           task_finger, HR_FORMAT_PARAMS(task_hr)));
3015       }
3016     }
3017   }
3018 }
3019 #endif // PRODUCT
3020 
3021 // Aggregate the counting data that was constructed concurrently
3022 // with marking.
3023 class AggregateCountDataHRClosure: public HeapRegionClosure {
3024   G1CollectedHeap* _g1h;
3025   ConcurrentMark* _cm;
3026   CardTableModRefBS* _ct_bs;
3027   BitMap* _cm_card_bm;
3028   uint _max_worker_id;
3029 
3030  public:
3031   AggregateCountDataHRClosure(G1CollectedHeap* g1h,
3032                               BitMap* cm_card_bm,
3033                               uint max_worker_id) :
3034     _g1h(g1h), _cm(g1h->concurrent_mark()),
3035     _ct_bs((CardTableModRefBS*) (g1h->barrier_set())),
3036     _cm_card_bm(cm_card_bm), _max_worker_id(max_worker_id) { }
3037 
3038   bool doHeapRegion(HeapRegion* hr) {
3039     if (hr->continuesHumongous()) {
3040       // We will ignore these here and process them when their
3041       // associated "starts humongous" region is processed.
3042       // Note that we cannot rely on their associated
3043       // "starts humongous" region to have their bit set to 1
3044       // since, due to the region chunking in the parallel region
3045       // iteration, a "continues humongous" region might be visited
3046       // before its associated "starts humongous".
3047       return false;
3048     }
3049 
3050     HeapWord* start = hr->bottom();
3051     HeapWord* limit = hr->next_top_at_mark_start();
3052     HeapWord* end = hr->end();
3053 
3054     assert(start <= limit && limit <= hr->top() && hr->top() <= hr->end(),
3055            err_msg("Preconditions not met - "
3056                    "start: "PTR_FORMAT", limit: "PTR_FORMAT", "
3057                    "top: "PTR_FORMAT", end: "PTR_FORMAT,
3058                    start, limit, hr->top(), hr->end()));
3059 
3060     assert(hr->next_marked_bytes() == 0, "Precondition");
3061 
3062     if (start == limit) {
3063       // NTAMS of this region has not been set so nothing to do.
3064       return false;
3065     }
3066 
3067     // 'start' should be in the heap.
3068     assert(_g1h->is_in_g1_reserved(start) && _ct_bs->is_card_aligned(start), "sanity");
3069     // 'end' *may* be just beyond the end of the heap (if hr is the last region)
3070     assert(!_g1h->is_in_g1_reserved(end) || _ct_bs->is_card_aligned(end), "sanity");
3071 
3072     BitMap::idx_t start_idx = _cm->card_bitmap_index_for(start);
3073     BitMap::idx_t limit_idx = _cm->card_bitmap_index_for(limit);
3074     BitMap::idx_t end_idx = _cm->card_bitmap_index_for(end);
3075 
3076     // If ntams is not card aligned then we bump card bitmap index
3077     // for limit so that we get the all the cards spanned by
3078     // the object ending at ntams.
3079     // Note: if this is the last region in the heap then ntams
3080     // could be actually just beyond the end of the the heap;
3081     // limit_idx will then  correspond to a (non-existent) card
3082     // that is also outside the heap.
3083     if (_g1h->is_in_g1_reserved(limit) && !_ct_bs->is_card_aligned(limit)) {
3084       limit_idx += 1;
3085     }
3086 
3087     assert(limit_idx <= end_idx, "or else use atomics");
3088 
3089     // Aggregate the "stripe" in the count data associated with hr.
3090     uint hrs_index = hr->hrs_index();
3091     size_t marked_bytes = 0;
3092 
3093     for (uint i = 0; i < _max_worker_id; i += 1) {
3094       size_t* marked_bytes_array = _cm->count_marked_bytes_array_for(i);
3095       BitMap* task_card_bm = _cm->count_card_bitmap_for(i);
3096 
3097       // Fetch the marked_bytes in this region for task i and
3098       // add it to the running total for this region.
3099       marked_bytes += marked_bytes_array[hrs_index];
3100 
3101       // Now union the bitmaps[0,max_worker_id)[start_idx..limit_idx)
3102       // into the global card bitmap.
3103       BitMap::idx_t scan_idx = task_card_bm->get_next_one_offset(start_idx, limit_idx);
3104 
3105       while (scan_idx < limit_idx) {
3106         assert(task_card_bm->at(scan_idx) == true, "should be");
3107         _cm_card_bm->set_bit(scan_idx);
3108         assert(_cm_card_bm->at(scan_idx) == true, "should be");
3109 
3110         // BitMap::get_next_one_offset() can handle the case when
3111         // its left_offset parameter is greater than its right_offset
3112         // parameter. It does, however, have an early exit if
3113         // left_offset == right_offset. So let's limit the value
3114         // passed in for left offset here.
3115         BitMap::idx_t next_idx = MIN2(scan_idx + 1, limit_idx);
3116         scan_idx = task_card_bm->get_next_one_offset(next_idx, limit_idx);
3117       }
3118     }
3119 
3120     // Update the marked bytes for this region.
3121     hr->add_to_marked_bytes(marked_bytes);
3122 
3123     // Next heap region
3124     return false;
3125   }
3126 };
3127 
3128 class G1AggregateCountDataTask: public AbstractGangTask {
3129 protected:
3130   G1CollectedHeap* _g1h;
3131   ConcurrentMark* _cm;
3132   BitMap* _cm_card_bm;
3133   uint _max_worker_id;
3134   int _active_workers;
3135 
3136 public:
3137   G1AggregateCountDataTask(G1CollectedHeap* g1h,
3138                            ConcurrentMark* cm,
3139                            BitMap* cm_card_bm,
3140                            uint max_worker_id,
3141                            int n_workers) :
3142     AbstractGangTask("Count Aggregation"),
3143     _g1h(g1h), _cm(cm), _cm_card_bm(cm_card_bm),
3144     _max_worker_id(max_worker_id),
3145     _active_workers(n_workers) { }
3146 
3147   void work(uint worker_id) {
3148     AggregateCountDataHRClosure cl(_g1h, _cm_card_bm, _max_worker_id);
3149 
3150     if (G1CollectedHeap::use_parallel_gc_threads()) {
3151       _g1h->heap_region_par_iterate_chunked(&cl, worker_id,
3152                                             _active_workers,
3153                                             HeapRegion::AggregateCountClaimValue);
3154     } else {
3155       _g1h->heap_region_iterate(&cl);
3156     }
3157   }
3158 };
3159 
3160 
3161 void ConcurrentMark::aggregate_count_data() {
3162   int n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3163                         _g1h->workers()->active_workers() :
3164                         1);
3165 
3166   G1AggregateCountDataTask g1_par_agg_task(_g1h, this, &_card_bm,
3167                                            _max_worker_id, n_workers);
3168 
3169   if (G1CollectedHeap::use_parallel_gc_threads()) {
3170     assert(_g1h->check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3171            "sanity check");
3172     _g1h->set_par_threads(n_workers);
3173     _g1h->workers()->run_task(&g1_par_agg_task);
3174     _g1h->set_par_threads(0);
3175 
3176     assert(_g1h->check_heap_region_claim_values(HeapRegion::AggregateCountClaimValue),
3177            "sanity check");
3178     _g1h->reset_heap_region_claim_values();
3179   } else {
3180     g1_par_agg_task.work(0);
3181   }
3182 }
3183 
3184 // Clear the per-worker arrays used to store the per-region counting data
3185 void ConcurrentMark::clear_all_count_data() {
3186   // Clear the global card bitmap - it will be filled during
3187   // liveness count aggregation (during remark) and the
3188   // final counting task.
3189   _card_bm.clear();
3190 
3191   // Clear the global region bitmap - it will be filled as part
3192   // of the final counting task.
3193   _region_bm.clear();
3194 
3195   uint max_regions = _g1h->max_regions();
3196   assert(_max_worker_id > 0, "uninitialized");
3197 
3198   for (uint i = 0; i < _max_worker_id; i += 1) {
3199     BitMap* task_card_bm = count_card_bitmap_for(i);
3200     size_t* marked_bytes_array = count_marked_bytes_array_for(i);
3201 
3202     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
3203     assert(marked_bytes_array != NULL, "uninitialized");
3204 
3205     memset(marked_bytes_array, 0, (size_t) max_regions * sizeof(size_t));
3206     task_card_bm->clear();
3207   }
3208 }
3209 
3210 void ConcurrentMark::print_stats() {
3211   if (verbose_stats()) {
3212     gclog_or_tty->print_cr("---------------------------------------------------------------------");
3213     for (size_t i = 0; i < _active_tasks; ++i) {
3214       _tasks[i]->print_stats();
3215       gclog_or_tty->print_cr("---------------------------------------------------------------------");
3216     }
3217   }
3218 }
3219 
3220 // abandon current marking iteration due to a Full GC
3221 void ConcurrentMark::abort() {
3222   // Clear all marks to force marking thread to do nothing
3223   _nextMarkBitMap->clearAll();
3224   // Clear the liveness counting data
3225   clear_all_count_data();
3226   // Empty mark stack
3227   reset_marking_state();
3228   for (uint i = 0; i < _max_worker_id; ++i) {
3229     _tasks[i]->clear_region_fields();
3230   }
3231   _has_aborted = true;
3232 
3233   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3234   satb_mq_set.abandon_partial_marking();
3235   // This can be called either during or outside marking, we'll read
3236   // the expected_active value from the SATB queue set.
3237   satb_mq_set.set_active_all_threads(
3238                                  false, /* new active value */
3239                                  satb_mq_set.is_active() /* expected_active */);
3240 
3241   _g1h->trace_heap_after_concurrent_cycle();
3242   _g1h->register_concurrent_cycle_end();
3243 }
3244 
3245 static void print_ms_time_info(const char* prefix, const char* name,
3246                                NumberSeq& ns) {
3247   gclog_or_tty->print_cr("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
3248                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
3249   if (ns.num() > 0) {
3250     gclog_or_tty->print_cr("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
3251                            prefix, ns.sd(), ns.maximum());
3252   }
3253 }
3254 
3255 void ConcurrentMark::print_summary_info() {
3256   gclog_or_tty->print_cr(" Concurrent marking:");
3257   print_ms_time_info("  ", "init marks", _init_times);
3258   print_ms_time_info("  ", "remarks", _remark_times);
3259   {
3260     print_ms_time_info("     ", "final marks", _remark_mark_times);
3261     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
3262 
3263   }
3264   print_ms_time_info("  ", "cleanups", _cleanup_times);
3265   gclog_or_tty->print_cr("    Final counting total time = %8.2f s (avg = %8.2f ms).",
3266                          _total_counting_time,
3267                          (_cleanup_times.num() > 0 ? _total_counting_time * 1000.0 /
3268                           (double)_cleanup_times.num()
3269                          : 0.0));
3270   if (G1ScrubRemSets) {
3271     gclog_or_tty->print_cr("    RS scrub total time = %8.2f s (avg = %8.2f ms).",
3272                            _total_rs_scrub_time,
3273                            (_cleanup_times.num() > 0 ? _total_rs_scrub_time * 1000.0 /
3274                             (double)_cleanup_times.num()
3275                            : 0.0));
3276   }
3277   gclog_or_tty->print_cr("  Total stop_world time = %8.2f s.",
3278                          (_init_times.sum() + _remark_times.sum() +
3279                           _cleanup_times.sum())/1000.0);
3280   gclog_or_tty->print_cr("  Total concurrent time = %8.2f s "
3281                 "(%8.2f s marking).",
3282                 cmThread()->vtime_accum(),
3283                 cmThread()->vtime_mark_accum());
3284 }
3285 
3286 void ConcurrentMark::print_worker_threads_on(outputStream* st) const {
3287   if (use_parallel_marking_threads()) {
3288     _parallel_workers->print_worker_threads_on(st);
3289   }
3290 }
3291 
3292 void ConcurrentMark::print_on_error(outputStream* st) const {
3293   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
3294       _prevMarkBitMap, _nextMarkBitMap);
3295   _prevMarkBitMap->print_on_error(st, " Prev Bits: ");
3296   _nextMarkBitMap->print_on_error(st, " Next Bits: ");
3297 }
3298 
3299 // We take a break if someone is trying to stop the world.
3300 bool ConcurrentMark::do_yield_check(uint worker_id) {
3301   if (should_yield()) {
3302     if (worker_id == 0) {
3303       _g1h->g1_policy()->record_concurrent_pause();
3304     }
3305     cmThread()->yield();
3306     return true;
3307   } else {
3308     return false;
3309   }
3310 }
3311 
3312 bool ConcurrentMark::should_yield() {
3313   return cmThread()->should_yield();
3314 }
3315 
3316 bool ConcurrentMark::containing_card_is_marked(void* p) {
3317   size_t offset = pointer_delta(p, _g1h->reserved_region().start(), 1);
3318   return _card_bm.at(offset >> CardTableModRefBS::card_shift);
3319 }
3320 
3321 bool ConcurrentMark::containing_cards_are_marked(void* start,
3322                                                  void* last) {
3323   return containing_card_is_marked(start) &&
3324          containing_card_is_marked(last);
3325 }
3326 
3327 #ifndef PRODUCT
3328 // for debugging purposes
3329 void ConcurrentMark::print_finger() {
3330   gclog_or_tty->print_cr("heap ["PTR_FORMAT", "PTR_FORMAT"), global finger = "PTR_FORMAT,
3331                          _heap_start, _heap_end, _finger);
3332   for (uint i = 0; i < _max_worker_id; ++i) {
3333     gclog_or_tty->print("   %u: "PTR_FORMAT, i, _tasks[i]->finger());
3334   }
3335   gclog_or_tty->print_cr("");
3336 }
3337 #endif
3338 
3339 void CMTask::scan_object(oop obj) {
3340   assert(_nextMarkBitMap->isMarked((HeapWord*) obj), "invariant");
3341 
3342   if (_cm->verbose_high()) {
3343     gclog_or_tty->print_cr("[%u] we're scanning object "PTR_FORMAT,
3344                            _worker_id, (void*) obj);
3345   }
3346 
3347   size_t obj_size = obj->size();
3348   _words_scanned += obj_size;
3349 
3350   obj->oop_iterate(_cm_oop_closure);
3351   statsOnly( ++_objs_scanned );
3352   check_limits();
3353 }
3354 
3355 // Closure for iteration over bitmaps
3356 class CMBitMapClosure : public BitMapClosure {
3357 private:
3358   // the bitmap that is being iterated over
3359   CMBitMap*                   _nextMarkBitMap;
3360   ConcurrentMark*             _cm;
3361   CMTask*                     _task;
3362 
3363 public:
3364   CMBitMapClosure(CMTask *task, ConcurrentMark* cm, CMBitMap* nextMarkBitMap) :
3365     _task(task), _cm(cm), _nextMarkBitMap(nextMarkBitMap) { }
3366 
3367   bool do_bit(size_t offset) {
3368     HeapWord* addr = _nextMarkBitMap->offsetToHeapWord(offset);
3369     assert(_nextMarkBitMap->isMarked(addr), "invariant");
3370     assert( addr < _cm->finger(), "invariant");
3371 
3372     statsOnly( _task->increase_objs_found_on_bitmap() );
3373     assert(addr >= _task->finger(), "invariant");
3374 
3375     // We move that task's local finger along.
3376     _task->move_finger_to(addr);
3377 
3378     _task->scan_object(oop(addr));
3379     // we only partially drain the local queue and global stack
3380     _task->drain_local_queue(true);
3381     _task->drain_global_stack(true);
3382 
3383     // if the has_aborted flag has been raised, we need to bail out of
3384     // the iteration
3385     return !_task->has_aborted();
3386   }
3387 };
3388 
3389 // Closure for iterating over objects, currently only used for
3390 // processing SATB buffers.
3391 class CMObjectClosure : public ObjectClosure {
3392 private:
3393   CMTask* _task;
3394 
3395 public:
3396   void do_object(oop obj) {
3397     _task->deal_with_reference(obj);
3398   }
3399 
3400   CMObjectClosure(CMTask* task) : _task(task) { }
3401 };
3402 
3403 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
3404                                ConcurrentMark* cm,
3405                                CMTask* task)
3406   : _g1h(g1h), _cm(cm), _task(task) {
3407   assert(_ref_processor == NULL, "should be initialized to NULL");
3408 
3409   if (G1UseConcMarkReferenceProcessing) {
3410     _ref_processor = g1h->ref_processor_cm();
3411     assert(_ref_processor != NULL, "should not be NULL");
3412   }
3413 }
3414 
3415 void CMTask::setup_for_region(HeapRegion* hr) {
3416   // Separated the asserts so that we know which one fires.
3417   assert(hr != NULL,
3418         "claim_region() should have filtered out continues humongous regions");
3419   assert(!hr->continuesHumongous(),
3420         "claim_region() should have filtered out continues humongous regions");
3421 
3422   if (_cm->verbose_low()) {
3423     gclog_or_tty->print_cr("[%u] setting up for region "PTR_FORMAT,
3424                            _worker_id, hr);
3425   }
3426 
3427   _curr_region  = hr;
3428   _finger       = hr->bottom();
3429   update_region_limit();
3430 }
3431 
3432 void CMTask::update_region_limit() {
3433   HeapRegion* hr            = _curr_region;
3434   HeapWord* bottom          = hr->bottom();
3435   HeapWord* limit           = hr->next_top_at_mark_start();
3436 
3437   if (limit == bottom) {
3438     if (_cm->verbose_low()) {
3439       gclog_or_tty->print_cr("[%u] found an empty region "
3440                              "["PTR_FORMAT", "PTR_FORMAT")",
3441                              _worker_id, bottom, limit);
3442     }
3443     // The region was collected underneath our feet.
3444     // We set the finger to bottom to ensure that the bitmap
3445     // iteration that will follow this will not do anything.
3446     // (this is not a condition that holds when we set the region up,
3447     // as the region is not supposed to be empty in the first place)
3448     _finger = bottom;
3449   } else if (limit >= _region_limit) {
3450     assert(limit >= _finger, "peace of mind");
3451   } else {
3452     assert(limit < _region_limit, "only way to get here");
3453     // This can happen under some pretty unusual circumstances.  An
3454     // evacuation pause empties the region underneath our feet (NTAMS
3455     // at bottom). We then do some allocation in the region (NTAMS
3456     // stays at bottom), followed by the region being used as a GC
3457     // alloc region (NTAMS will move to top() and the objects
3458     // originally below it will be grayed). All objects now marked in
3459     // the region are explicitly grayed, if below the global finger,
3460     // and we do not need in fact to scan anything else. So, we simply
3461     // set _finger to be limit to ensure that the bitmap iteration
3462     // doesn't do anything.
3463     _finger = limit;
3464   }
3465 
3466   _region_limit = limit;
3467 }
3468 
3469 void CMTask::giveup_current_region() {
3470   assert(_curr_region != NULL, "invariant");
3471   if (_cm->verbose_low()) {
3472     gclog_or_tty->print_cr("[%u] giving up region "PTR_FORMAT,
3473                            _worker_id, _curr_region);
3474   }
3475   clear_region_fields();
3476 }
3477 
3478 void CMTask::clear_region_fields() {
3479   // Values for these three fields that indicate that we're not
3480   // holding on to a region.
3481   _curr_region   = NULL;
3482   _finger        = NULL;
3483   _region_limit  = NULL;
3484 }
3485 
3486 void CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
3487   if (cm_oop_closure == NULL) {
3488     assert(_cm_oop_closure != NULL, "invariant");
3489   } else {
3490     assert(_cm_oop_closure == NULL, "invariant");
3491   }
3492   _cm_oop_closure = cm_oop_closure;
3493 }
3494 
3495 void CMTask::reset(CMBitMap* nextMarkBitMap) {
3496   guarantee(nextMarkBitMap != NULL, "invariant");
3497 
3498   if (_cm->verbose_low()) {
3499     gclog_or_tty->print_cr("[%u] resetting", _worker_id);
3500   }
3501 
3502   _nextMarkBitMap                = nextMarkBitMap;
3503   clear_region_fields();
3504 
3505   _calls                         = 0;
3506   _elapsed_time_ms               = 0.0;
3507   _termination_time_ms           = 0.0;
3508   _termination_start_time_ms     = 0.0;
3509 
3510 #if _MARKING_STATS_
3511   _local_pushes                  = 0;
3512   _local_pops                    = 0;
3513   _local_max_size                = 0;
3514   _objs_scanned                  = 0;
3515   _global_pushes                 = 0;
3516   _global_pops                   = 0;
3517   _global_max_size               = 0;
3518   _global_transfers_to           = 0;
3519   _global_transfers_from         = 0;
3520   _regions_claimed               = 0;
3521   _objs_found_on_bitmap          = 0;
3522   _satb_buffers_processed        = 0;
3523   _steal_attempts                = 0;
3524   _steals                        = 0;
3525   _aborted                       = 0;
3526   _aborted_overflow              = 0;
3527   _aborted_cm_aborted            = 0;
3528   _aborted_yield                 = 0;
3529   _aborted_timed_out             = 0;
3530   _aborted_satb                  = 0;
3531   _aborted_termination           = 0;
3532 #endif // _MARKING_STATS_
3533 }
3534 
3535 bool CMTask::should_exit_termination() {
3536   regular_clock_call();
3537   // This is called when we are in the termination protocol. We should
3538   // quit if, for some reason, this task wants to abort or the global
3539   // stack is not empty (this means that we can get work from it).
3540   return !_cm->mark_stack_empty() || has_aborted();
3541 }
3542 
3543 void CMTask::reached_limit() {
3544   assert(_words_scanned >= _words_scanned_limit ||
3545          _refs_reached >= _refs_reached_limit ,
3546          "shouldn't have been called otherwise");
3547   regular_clock_call();
3548 }
3549 
3550 void CMTask::regular_clock_call() {
3551   if (has_aborted()) return;
3552 
3553   // First, we need to recalculate the words scanned and refs reached
3554   // limits for the next clock call.
3555   recalculate_limits();
3556 
3557   // During the regular clock call we do the following
3558 
3559   // (1) If an overflow has been flagged, then we abort.
3560   if (_cm->has_overflown()) {
3561     set_has_aborted();
3562     return;
3563   }
3564 
3565   // If we are not concurrent (i.e. we're doing remark) we don't need
3566   // to check anything else. The other steps are only needed during
3567   // the concurrent marking phase.
3568   if (!concurrent()) return;
3569 
3570   // (2) If marking has been aborted for Full GC, then we also abort.
3571   if (_cm->has_aborted()) {
3572     set_has_aborted();
3573     statsOnly( ++_aborted_cm_aborted );
3574     return;
3575   }
3576 
3577   double curr_time_ms = os::elapsedVTime() * 1000.0;
3578 
3579   // (3) If marking stats are enabled, then we update the step history.
3580 #if _MARKING_STATS_
3581   if (_words_scanned >= _words_scanned_limit) {
3582     ++_clock_due_to_scanning;
3583   }
3584   if (_refs_reached >= _refs_reached_limit) {
3585     ++_clock_due_to_marking;
3586   }
3587 
3588   double last_interval_ms = curr_time_ms - _interval_start_time_ms;
3589   _interval_start_time_ms = curr_time_ms;
3590   _all_clock_intervals_ms.add(last_interval_ms);
3591 
3592   if (_cm->verbose_medium()) {
3593       gclog_or_tty->print_cr("[%u] regular clock, interval = %1.2lfms, "
3594                         "scanned = %d%s, refs reached = %d%s",
3595                         _worker_id, last_interval_ms,
3596                         _words_scanned,
3597                         (_words_scanned >= _words_scanned_limit) ? " (*)" : "",
3598                         _refs_reached,
3599                         (_refs_reached >= _refs_reached_limit) ? " (*)" : "");
3600   }
3601 #endif // _MARKING_STATS_
3602 
3603   // (4) We check whether we should yield. If we have to, then we abort.
3604   if (_cm->should_yield()) {
3605     // We should yield. To do this we abort the task. The caller is
3606     // responsible for yielding.
3607     set_has_aborted();
3608     statsOnly( ++_aborted_yield );
3609     return;
3610   }
3611 
3612   // (5) We check whether we've reached our time quota. If we have,
3613   // then we abort.
3614   double elapsed_time_ms = curr_time_ms - _start_time_ms;
3615   if (elapsed_time_ms > _time_target_ms) {
3616     set_has_aborted();
3617     _has_timed_out = true;
3618     statsOnly( ++_aborted_timed_out );
3619     return;
3620   }
3621 
3622   // (6) Finally, we check whether there are enough completed STAB
3623   // buffers available for processing. If there are, we abort.
3624   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3625   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
3626     if (_cm->verbose_low()) {
3627       gclog_or_tty->print_cr("[%u] aborting to deal with pending SATB buffers",
3628                              _worker_id);
3629     }
3630     // we do need to process SATB buffers, we'll abort and restart
3631     // the marking task to do so
3632     set_has_aborted();
3633     statsOnly( ++_aborted_satb );
3634     return;
3635   }
3636 }
3637 
3638 void CMTask::recalculate_limits() {
3639   _real_words_scanned_limit = _words_scanned + words_scanned_period;
3640   _words_scanned_limit      = _real_words_scanned_limit;
3641 
3642   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
3643   _refs_reached_limit       = _real_refs_reached_limit;
3644 }
3645 
3646 void CMTask::decrease_limits() {
3647   // This is called when we believe that we're going to do an infrequent
3648   // operation which will increase the per byte scanned cost (i.e. move
3649   // entries to/from the global stack). It basically tries to decrease the
3650   // scanning limit so that the clock is called earlier.
3651 
3652   if (_cm->verbose_medium()) {
3653     gclog_or_tty->print_cr("[%u] decreasing limits", _worker_id);
3654   }
3655 
3656   _words_scanned_limit = _real_words_scanned_limit -
3657     3 * words_scanned_period / 4;
3658   _refs_reached_limit  = _real_refs_reached_limit -
3659     3 * refs_reached_period / 4;
3660 }
3661 
3662 void CMTask::move_entries_to_global_stack() {
3663   // local array where we'll store the entries that will be popped
3664   // from the local queue
3665   oop buffer[global_stack_transfer_size];
3666 
3667   int n = 0;
3668   oop obj;
3669   while (n < global_stack_transfer_size && _task_queue->pop_local(obj)) {
3670     buffer[n] = obj;
3671     ++n;
3672   }
3673 
3674   if (n > 0) {
3675     // we popped at least one entry from the local queue
3676 
3677     statsOnly( ++_global_transfers_to; _local_pops += n );
3678 
3679     if (!_cm->mark_stack_push(buffer, n)) {
3680       if (_cm->verbose_low()) {
3681         gclog_or_tty->print_cr("[%u] aborting due to global stack overflow",
3682                                _worker_id);
3683       }
3684       set_has_aborted();
3685     } else {
3686       // the transfer was successful
3687 
3688       if (_cm->verbose_medium()) {
3689         gclog_or_tty->print_cr("[%u] pushed %d entries to the global stack",
3690                                _worker_id, n);
3691       }
3692       statsOnly( int tmp_size = _cm->mark_stack_size();
3693                  if (tmp_size > _global_max_size) {
3694                    _global_max_size = tmp_size;
3695                  }
3696                  _global_pushes += n );
3697     }
3698   }
3699 
3700   // this operation was quite expensive, so decrease the limits
3701   decrease_limits();
3702 }
3703 
3704 void CMTask::get_entries_from_global_stack() {
3705   // local array where we'll store the entries that will be popped
3706   // from the global stack.
3707   oop buffer[global_stack_transfer_size];
3708   int n;
3709   _cm->mark_stack_pop(buffer, global_stack_transfer_size, &n);
3710   assert(n <= global_stack_transfer_size,
3711          "we should not pop more than the given limit");
3712   if (n > 0) {
3713     // yes, we did actually pop at least one entry
3714 
3715     statsOnly( ++_global_transfers_from; _global_pops += n );
3716     if (_cm->verbose_medium()) {
3717       gclog_or_tty->print_cr("[%u] popped %d entries from the global stack",
3718                              _worker_id, n);
3719     }
3720     for (int i = 0; i < n; ++i) {
3721       bool success = _task_queue->push(buffer[i]);
3722       // We only call this when the local queue is empty or under a
3723       // given target limit. So, we do not expect this push to fail.
3724       assert(success, "invariant");
3725     }
3726 
3727     statsOnly( int tmp_size = _task_queue->size();
3728                if (tmp_size > _local_max_size) {
3729                  _local_max_size = tmp_size;
3730                }
3731                _local_pushes += n );
3732   }
3733 
3734   // this operation was quite expensive, so decrease the limits
3735   decrease_limits();
3736 }
3737 
3738 void CMTask::drain_local_queue(bool partially) {
3739   if (has_aborted()) return;
3740 
3741   // Decide what the target size is, depending whether we're going to
3742   // drain it partially (so that other tasks can steal if they run out
3743   // of things to do) or totally (at the very end).
3744   size_t target_size;
3745   if (partially) {
3746     target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize);
3747   } else {
3748     target_size = 0;
3749   }
3750 
3751   if (_task_queue->size() > target_size) {
3752     if (_cm->verbose_high()) {
3753       gclog_or_tty->print_cr("[%u] draining local queue, target size = %d",
3754                              _worker_id, target_size);
3755     }
3756 
3757     oop obj;
3758     bool ret = _task_queue->pop_local(obj);
3759     while (ret) {
3760       statsOnly( ++_local_pops );
3761 
3762       if (_cm->verbose_high()) {
3763         gclog_or_tty->print_cr("[%u] popped "PTR_FORMAT, _worker_id,
3764                                (void*) obj);
3765       }
3766 
3767       assert(_g1h->is_in_g1_reserved((HeapWord*) obj), "invariant" );
3768       assert(!_g1h->is_on_master_free_list(
3769                   _g1h->heap_region_containing((HeapWord*) obj)), "invariant");
3770 
3771       scan_object(obj);
3772 
3773       if (_task_queue->size() <= target_size || has_aborted()) {
3774         ret = false;
3775       } else {
3776         ret = _task_queue->pop_local(obj);
3777       }
3778     }
3779 
3780     if (_cm->verbose_high()) {
3781       gclog_or_tty->print_cr("[%u] drained local queue, size = %d",
3782                              _worker_id, _task_queue->size());
3783     }
3784   }
3785 }
3786 
3787 void CMTask::drain_global_stack(bool partially) {
3788   if (has_aborted()) return;
3789 
3790   // We have a policy to drain the local queue before we attempt to
3791   // drain the global stack.
3792   assert(partially || _task_queue->size() == 0, "invariant");
3793 
3794   // Decide what the target size is, depending whether we're going to
3795   // drain it partially (so that other tasks can steal if they run out
3796   // of things to do) or totally (at the very end).  Notice that,
3797   // because we move entries from the global stack in chunks or
3798   // because another task might be doing the same, we might in fact
3799   // drop below the target. But, this is not a problem.
3800   size_t target_size;
3801   if (partially) {
3802     target_size = _cm->partial_mark_stack_size_target();
3803   } else {
3804     target_size = 0;
3805   }
3806 
3807   if (_cm->mark_stack_size() > target_size) {
3808     if (_cm->verbose_low()) {
3809       gclog_or_tty->print_cr("[%u] draining global_stack, target size %d",
3810                              _worker_id, target_size);
3811     }
3812 
3813     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
3814       get_entries_from_global_stack();
3815       drain_local_queue(partially);
3816     }
3817 
3818     if (_cm->verbose_low()) {
3819       gclog_or_tty->print_cr("[%u] drained global stack, size = %d",
3820                              _worker_id, _cm->mark_stack_size());
3821     }
3822   }
3823 }
3824 
3825 // SATB Queue has several assumptions on whether to call the par or
3826 // non-par versions of the methods. this is why some of the code is
3827 // replicated. We should really get rid of the single-threaded version
3828 // of the code to simplify things.
3829 void CMTask::drain_satb_buffers() {
3830   if (has_aborted()) return;
3831 
3832   // We set this so that the regular clock knows that we're in the
3833   // middle of draining buffers and doesn't set the abort flag when it
3834   // notices that SATB buffers are available for draining. It'd be
3835   // very counter productive if it did that. :-)
3836   _draining_satb_buffers = true;
3837 
3838   CMObjectClosure oc(this);
3839   SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set();
3840   if (G1CollectedHeap::use_parallel_gc_threads()) {
3841     satb_mq_set.set_par_closure(_worker_id, &oc);
3842   } else {
3843     satb_mq_set.set_closure(&oc);
3844   }
3845 
3846   // This keeps claiming and applying the closure to completed buffers
3847   // until we run out of buffers or we need to abort.
3848   if (G1CollectedHeap::use_parallel_gc_threads()) {
3849     while (!has_aborted() &&
3850            satb_mq_set.par_apply_closure_to_completed_buffer(_worker_id)) {
3851       if (_cm->verbose_medium()) {
3852         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3853       }
3854       statsOnly( ++_satb_buffers_processed );
3855       regular_clock_call();
3856     }
3857   } else {
3858     while (!has_aborted() &&
3859            satb_mq_set.apply_closure_to_completed_buffer()) {
3860       if (_cm->verbose_medium()) {
3861         gclog_or_tty->print_cr("[%u] processed an SATB buffer", _worker_id);
3862       }
3863       statsOnly( ++_satb_buffers_processed );
3864       regular_clock_call();
3865     }
3866   }
3867 
3868   if (!concurrent() && !has_aborted()) {
3869     // We should only do this during remark.
3870     if (G1CollectedHeap::use_parallel_gc_threads()) {
3871       satb_mq_set.par_iterate_closure_all_threads(_worker_id);
3872     } else {
3873       satb_mq_set.iterate_closure_all_threads();
3874     }
3875   }
3876 
3877   _draining_satb_buffers = false;
3878 
3879   assert(has_aborted() ||
3880          concurrent() ||
3881          satb_mq_set.completed_buffers_num() == 0, "invariant");
3882 
3883   if (G1CollectedHeap::use_parallel_gc_threads()) {
3884     satb_mq_set.set_par_closure(_worker_id, NULL);
3885   } else {
3886     satb_mq_set.set_closure(NULL);
3887   }
3888 
3889   // again, this was a potentially expensive operation, decrease the
3890   // limits to get the regular clock call early
3891   decrease_limits();
3892 }
3893 
3894 void CMTask::print_stats() {
3895   gclog_or_tty->print_cr("Marking Stats, task = %u, calls = %d",
3896                          _worker_id, _calls);
3897   gclog_or_tty->print_cr("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
3898                          _elapsed_time_ms, _termination_time_ms);
3899   gclog_or_tty->print_cr("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3900                          _step_times_ms.num(), _step_times_ms.avg(),
3901                          _step_times_ms.sd());
3902   gclog_or_tty->print_cr("                    max = %1.2lfms, total = %1.2lfms",
3903                          _step_times_ms.maximum(), _step_times_ms.sum());
3904 
3905 #if _MARKING_STATS_
3906   gclog_or_tty->print_cr("  Clock Intervals (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms",
3907                          _all_clock_intervals_ms.num(), _all_clock_intervals_ms.avg(),
3908                          _all_clock_intervals_ms.sd());
3909   gclog_or_tty->print_cr("                         max = %1.2lfms, total = %1.2lfms",
3910                          _all_clock_intervals_ms.maximum(),
3911                          _all_clock_intervals_ms.sum());
3912   gclog_or_tty->print_cr("  Clock Causes (cum): scanning = %d, marking = %d",
3913                          _clock_due_to_scanning, _clock_due_to_marking);
3914   gclog_or_tty->print_cr("  Objects: scanned = %d, found on the bitmap = %d",
3915                          _objs_scanned, _objs_found_on_bitmap);
3916   gclog_or_tty->print_cr("  Local Queue:  pushes = %d, pops = %d, max size = %d",
3917                          _local_pushes, _local_pops, _local_max_size);
3918   gclog_or_tty->print_cr("  Global Stack: pushes = %d, pops = %d, max size = %d",
3919                          _global_pushes, _global_pops, _global_max_size);
3920   gclog_or_tty->print_cr("                transfers to = %d, transfers from = %d",
3921                          _global_transfers_to,_global_transfers_from);
3922   gclog_or_tty->print_cr("  Regions: claimed = %d", _regions_claimed);
3923   gclog_or_tty->print_cr("  SATB buffers: processed = %d", _satb_buffers_processed);
3924   gclog_or_tty->print_cr("  Steals: attempts = %d, successes = %d",
3925                          _steal_attempts, _steals);
3926   gclog_or_tty->print_cr("  Aborted: %d, due to", _aborted);
3927   gclog_or_tty->print_cr("    overflow: %d, global abort: %d, yield: %d",
3928                          _aborted_overflow, _aborted_cm_aborted, _aborted_yield);
3929   gclog_or_tty->print_cr("    time out: %d, SATB: %d, termination: %d",
3930                          _aborted_timed_out, _aborted_satb, _aborted_termination);
3931 #endif // _MARKING_STATS_
3932 }
3933 
3934 /*****************************************************************************
3935 
3936     The do_marking_step(time_target_ms, ...) method is the building
3937     block of the parallel marking framework. It can be called in parallel
3938     with other invocations of do_marking_step() on different tasks
3939     (but only one per task, obviously) and concurrently with the
3940     mutator threads, or during remark, hence it eliminates the need
3941     for two versions of the code. When called during remark, it will
3942     pick up from where the task left off during the concurrent marking
3943     phase. Interestingly, tasks are also claimable during evacuation
3944     pauses too, since do_marking_step() ensures that it aborts before
3945     it needs to yield.
3946 
3947     The data structures that it uses to do marking work are the
3948     following:
3949 
3950       (1) Marking Bitmap. If there are gray objects that appear only
3951       on the bitmap (this happens either when dealing with an overflow
3952       or when the initial marking phase has simply marked the roots
3953       and didn't push them on the stack), then tasks claim heap
3954       regions whose bitmap they then scan to find gray objects. A
3955       global finger indicates where the end of the last claimed region
3956       is. A local finger indicates how far into the region a task has
3957       scanned. The two fingers are used to determine how to gray an
3958       object (i.e. whether simply marking it is OK, as it will be
3959       visited by a task in the future, or whether it needs to be also
3960       pushed on a stack).
3961 
3962       (2) Local Queue. The local queue of the task which is accessed
3963       reasonably efficiently by the task. Other tasks can steal from
3964       it when they run out of work. Throughout the marking phase, a
3965       task attempts to keep its local queue short but not totally
3966       empty, so that entries are available for stealing by other
3967       tasks. Only when there is no more work, a task will totally
3968       drain its local queue.
3969 
3970       (3) Global Mark Stack. This handles local queue overflow. During
3971       marking only sets of entries are moved between it and the local
3972       queues, as access to it requires a mutex and more fine-grain
3973       interaction with it which might cause contention. If it
3974       overflows, then the marking phase should restart and iterate
3975       over the bitmap to identify gray objects. Throughout the marking
3976       phase, tasks attempt to keep the global mark stack at a small
3977       length but not totally empty, so that entries are available for
3978       popping by other tasks. Only when there is no more work, tasks
3979       will totally drain the global mark stack.
3980 
3981       (4) SATB Buffer Queue. This is where completed SATB buffers are
3982       made available. Buffers are regularly removed from this queue
3983       and scanned for roots, so that the queue doesn't get too
3984       long. During remark, all completed buffers are processed, as
3985       well as the filled in parts of any uncompleted buffers.
3986 
3987     The do_marking_step() method tries to abort when the time target
3988     has been reached. There are a few other cases when the
3989     do_marking_step() method also aborts:
3990 
3991       (1) When the marking phase has been aborted (after a Full GC).
3992 
3993       (2) When a global overflow (on the global stack) has been
3994       triggered. Before the task aborts, it will actually sync up with
3995       the other tasks to ensure that all the marking data structures
3996       (local queues, stacks, fingers etc.)  are re-initialized so that
3997       when do_marking_step() completes, the marking phase can
3998       immediately restart.
3999 
4000       (3) When enough completed SATB buffers are available. The
4001       do_marking_step() method only tries to drain SATB buffers right
4002       at the beginning. So, if enough buffers are available, the
4003       marking step aborts and the SATB buffers are processed at
4004       the beginning of the next invocation.
4005 
4006       (4) To yield. when we have to yield then we abort and yield
4007       right at the end of do_marking_step(). This saves us from a lot
4008       of hassle as, by yielding we might allow a Full GC. If this
4009       happens then objects will be compacted underneath our feet, the
4010       heap might shrink, etc. We save checking for this by just
4011       aborting and doing the yield right at the end.
4012 
4013     From the above it follows that the do_marking_step() method should
4014     be called in a loop (or, otherwise, regularly) until it completes.
4015 
4016     If a marking step completes without its has_aborted() flag being
4017     true, it means it has completed the current marking phase (and
4018     also all other marking tasks have done so and have all synced up).
4019 
4020     A method called regular_clock_call() is invoked "regularly" (in
4021     sub ms intervals) throughout marking. It is this clock method that
4022     checks all the abort conditions which were mentioned above and
4023     decides when the task should abort. A work-based scheme is used to
4024     trigger this clock method: when the number of object words the
4025     marking phase has scanned or the number of references the marking
4026     phase has visited reach a given limit. Additional invocations to
4027     the method clock have been planted in a few other strategic places
4028     too. The initial reason for the clock method was to avoid calling
4029     vtime too regularly, as it is quite expensive. So, once it was in
4030     place, it was natural to piggy-back all the other conditions on it
4031     too and not constantly check them throughout the code.
4032 
4033     If do_termination is true then do_marking_step will enter its
4034     termination protocol.
4035 
4036     The value of is_serial must be true when do_marking_step is being
4037     called serially (i.e. by the VMThread) and do_marking_step should
4038     skip any synchronization in the termination and overflow code.
4039     Examples include the serial remark code and the serial reference
4040     processing closures.
4041 
4042     The value of is_serial must be false when do_marking_step is
4043     being called by any of the worker threads in a work gang.
4044     Examples include the concurrent marking code (CMMarkingTask),
4045     the MT remark code, and the MT reference processing closures.
4046 
4047  *****************************************************************************/
4048 
4049 void CMTask::do_marking_step(double time_target_ms,
4050                              bool do_termination,
4051                              bool is_serial) {
4052   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
4053   assert(concurrent() == _cm->concurrent(), "they should be the same");
4054 
4055   G1CollectorPolicy* g1_policy = _g1h->g1_policy();
4056   assert(_task_queues != NULL, "invariant");
4057   assert(_task_queue != NULL, "invariant");
4058   assert(_task_queues->queue(_worker_id) == _task_queue, "invariant");
4059 
4060   assert(!_claimed,
4061          "only one thread should claim this task at any one time");
4062 
4063   // OK, this doesn't safeguard again all possible scenarios, as it is
4064   // possible for two threads to set the _claimed flag at the same
4065   // time. But it is only for debugging purposes anyway and it will
4066   // catch most problems.
4067   _claimed = true;
4068 
4069   _start_time_ms = os::elapsedVTime() * 1000.0;
4070   statsOnly( _interval_start_time_ms = _start_time_ms );
4071 
4072   // If do_stealing is true then do_marking_step will attempt to
4073   // steal work from the other CMTasks. It only makes sense to
4074   // enable stealing when the termination protocol is enabled
4075   // and do_marking_step() is not being called serially.
4076   bool do_stealing = do_termination && !is_serial;
4077 
4078   double diff_prediction_ms =
4079     g1_policy->get_new_prediction(&_marking_step_diffs_ms);
4080   _time_target_ms = time_target_ms - diff_prediction_ms;
4081 
4082   // set up the variables that are used in the work-based scheme to
4083   // call the regular clock method
4084   _words_scanned = 0;
4085   _refs_reached  = 0;
4086   recalculate_limits();
4087 
4088   // clear all flags
4089   clear_has_aborted();
4090   _has_timed_out = false;
4091   _draining_satb_buffers = false;
4092 
4093   ++_calls;
4094 
4095   if (_cm->verbose_low()) {
4096     gclog_or_tty->print_cr("[%u] >>>>>>>>>> START, call = %d, "
4097                            "target = %1.2lfms >>>>>>>>>>",
4098                            _worker_id, _calls, _time_target_ms);
4099   }
4100 
4101   // Set up the bitmap and oop closures. Anything that uses them is
4102   // eventually called from this method, so it is OK to allocate these
4103   // statically.
4104   CMBitMapClosure bitmap_closure(this, _cm, _nextMarkBitMap);
4105   G1CMOopClosure  cm_oop_closure(_g1h, _cm, this);
4106   set_cm_oop_closure(&cm_oop_closure);
4107 
4108   if (_cm->has_overflown()) {
4109     // This can happen if the mark stack overflows during a GC pause
4110     // and this task, after a yield point, restarts. We have to abort
4111     // as we need to get into the overflow protocol which happens
4112     // right at the end of this task.
4113     set_has_aborted();
4114   }
4115 
4116   // First drain any available SATB buffers. After this, we will not
4117   // look at SATB buffers before the next invocation of this method.
4118   // If enough completed SATB buffers are queued up, the regular clock
4119   // will abort this task so that it restarts.
4120   drain_satb_buffers();
4121   // ...then partially drain the local queue and the global stack
4122   drain_local_queue(true);
4123   drain_global_stack(true);
4124 
4125   do {
4126     if (!has_aborted() && _curr_region != NULL) {
4127       // This means that we're already holding on to a region.
4128       assert(_finger != NULL, "if region is not NULL, then the finger "
4129              "should not be NULL either");
4130 
4131       // We might have restarted this task after an evacuation pause
4132       // which might have evacuated the region we're holding on to
4133       // underneath our feet. Let's read its limit again to make sure
4134       // that we do not iterate over a region of the heap that
4135       // contains garbage (update_region_limit() will also move
4136       // _finger to the start of the region if it is found empty).
4137       update_region_limit();
4138       // We will start from _finger not from the start of the region,
4139       // as we might be restarting this task after aborting half-way
4140       // through scanning this region. In this case, _finger points to
4141       // the address where we last found a marked object. If this is a
4142       // fresh region, _finger points to start().
4143       MemRegion mr = MemRegion(_finger, _region_limit);
4144 
4145       if (_cm->verbose_low()) {
4146         gclog_or_tty->print_cr("[%u] we're scanning part "
4147                                "["PTR_FORMAT", "PTR_FORMAT") "
4148                                "of region "HR_FORMAT,
4149                                _worker_id, _finger, _region_limit,
4150                                HR_FORMAT_PARAMS(_curr_region));
4151       }
4152 
4153       assert(!_curr_region->isHumongous() || mr.start() == _curr_region->bottom(),
4154              "humongous regions should go around loop once only");
4155 
4156       // Some special cases:
4157       // If the memory region is empty, we can just give up the region.
4158       // If the current region is humongous then we only need to check
4159       // the bitmap for the bit associated with the start of the object,
4160       // scan the object if it's live, and give up the region.
4161       // Otherwise, let's iterate over the bitmap of the part of the region
4162       // that is left.
4163       // If the iteration is successful, give up the region.
4164       if (mr.is_empty()) {
4165         giveup_current_region();
4166         regular_clock_call();
4167       } else if (_curr_region->isHumongous() && mr.start() == _curr_region->bottom()) {
4168         if (_nextMarkBitMap->isMarked(mr.start())) {
4169           // The object is marked - apply the closure
4170           BitMap::idx_t offset = _nextMarkBitMap->heapWordToOffset(mr.start());
4171           bitmap_closure.do_bit(offset);
4172         }
4173         // Even if this task aborted while scanning the humongous object
4174         // we can (and should) give up the current region.
4175         giveup_current_region();
4176         regular_clock_call();
4177       } else if (_nextMarkBitMap->iterate(&bitmap_closure, mr)) {
4178         giveup_current_region();
4179         regular_clock_call();
4180       } else {
4181         assert(has_aborted(), "currently the only way to do so");
4182         // The only way to abort the bitmap iteration is to return
4183         // false from the do_bit() method. However, inside the
4184         // do_bit() method we move the _finger to point to the
4185         // object currently being looked at. So, if we bail out, we
4186         // have definitely set _finger to something non-null.
4187         assert(_finger != NULL, "invariant");
4188 
4189         // Region iteration was actually aborted. So now _finger
4190         // points to the address of the object we last scanned. If we
4191         // leave it there, when we restart this task, we will rescan
4192         // the object. It is easy to avoid this. We move the finger by
4193         // enough to point to the next possible object header (the
4194         // bitmap knows by how much we need to move it as it knows its
4195         // granularity).
4196         assert(_finger < _region_limit, "invariant");
4197         HeapWord* new_finger = _nextMarkBitMap->nextObject(_finger);
4198         // Check if bitmap iteration was aborted while scanning the last object
4199         if (new_finger >= _region_limit) {
4200           giveup_current_region();
4201         } else {
4202           move_finger_to(new_finger);
4203         }
4204       }
4205     }
4206     // At this point we have either completed iterating over the
4207     // region we were holding on to, or we have aborted.
4208 
4209     // We then partially drain the local queue and the global stack.
4210     // (Do we really need this?)
4211     drain_local_queue(true);
4212     drain_global_stack(true);
4213 
4214     // Read the note on the claim_region() method on why it might
4215     // return NULL with potentially more regions available for
4216     // claiming and why we have to check out_of_regions() to determine
4217     // whether we're done or not.
4218     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
4219       // We are going to try to claim a new region. We should have
4220       // given up on the previous one.
4221       // Separated the asserts so that we know which one fires.
4222       assert(_curr_region  == NULL, "invariant");
4223       assert(_finger       == NULL, "invariant");
4224       assert(_region_limit == NULL, "invariant");
4225       if (_cm->verbose_low()) {
4226         gclog_or_tty->print_cr("[%u] trying to claim a new region", _worker_id);
4227       }
4228       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
4229       if (claimed_region != NULL) {
4230         // Yes, we managed to claim one
4231         statsOnly( ++_regions_claimed );
4232 
4233         if (_cm->verbose_low()) {
4234           gclog_or_tty->print_cr("[%u] we successfully claimed "
4235                                  "region "PTR_FORMAT,
4236                                  _worker_id, claimed_region);
4237         }
4238 
4239         setup_for_region(claimed_region);
4240         assert(_curr_region == claimed_region, "invariant");
4241       }
4242       // It is important to call the regular clock here. It might take
4243       // a while to claim a region if, for example, we hit a large
4244       // block of empty regions. So we need to call the regular clock
4245       // method once round the loop to make sure it's called
4246       // frequently enough.
4247       regular_clock_call();
4248     }
4249 
4250     if (!has_aborted() && _curr_region == NULL) {
4251       assert(_cm->out_of_regions(),
4252              "at this point we should be out of regions");
4253     }
4254   } while ( _curr_region != NULL && !has_aborted());
4255 
4256   if (!has_aborted()) {
4257     // We cannot check whether the global stack is empty, since other
4258     // tasks might be pushing objects to it concurrently.
4259     assert(_cm->out_of_regions(),
4260            "at this point we should be out of regions");
4261 
4262     if (_cm->verbose_low()) {
4263       gclog_or_tty->print_cr("[%u] all regions claimed", _worker_id);
4264     }
4265 
4266     // Try to reduce the number of available SATB buffers so that
4267     // remark has less work to do.
4268     drain_satb_buffers();
4269   }
4270 
4271   // Since we've done everything else, we can now totally drain the
4272   // local queue and global stack.
4273   drain_local_queue(false);
4274   drain_global_stack(false);
4275 
4276   // Attempt at work stealing from other task's queues.
4277   if (do_stealing && !has_aborted()) {
4278     // We have not aborted. This means that we have finished all that
4279     // we could. Let's try to do some stealing...
4280 
4281     // We cannot check whether the global stack is empty, since other
4282     // tasks might be pushing objects to it concurrently.
4283     assert(_cm->out_of_regions() && _task_queue->size() == 0,
4284            "only way to reach here");
4285 
4286     if (_cm->verbose_low()) {
4287       gclog_or_tty->print_cr("[%u] starting to steal", _worker_id);
4288     }
4289 
4290     while (!has_aborted()) {
4291       oop obj;
4292       statsOnly( ++_steal_attempts );
4293 
4294       if (_cm->try_stealing(_worker_id, &_hash_seed, obj)) {
4295         if (_cm->verbose_medium()) {
4296           gclog_or_tty->print_cr("[%u] stolen "PTR_FORMAT" successfully",
4297                                  _worker_id, (void*) obj);
4298         }
4299 
4300         statsOnly( ++_steals );
4301 
4302         assert(_nextMarkBitMap->isMarked((HeapWord*) obj),
4303                "any stolen object should be marked");
4304         scan_object(obj);
4305 
4306         // And since we're towards the end, let's totally drain the
4307         // local queue and global stack.
4308         drain_local_queue(false);
4309         drain_global_stack(false);
4310       } else {
4311         break;
4312       }
4313     }
4314   }
4315 
4316   // If we are about to wrap up and go into termination, check if we
4317   // should raise the overflow flag.
4318   if (do_termination && !has_aborted()) {
4319     if (_cm->force_overflow()->should_force()) {
4320       _cm->set_has_overflown();
4321       regular_clock_call();
4322     }
4323   }
4324 
4325   // We still haven't aborted. Now, let's try to get into the
4326   // termination protocol.
4327   if (do_termination && !has_aborted()) {
4328     // We cannot check whether the global stack is empty, since other
4329     // tasks might be concurrently pushing objects on it.
4330     // Separated the asserts so that we know which one fires.
4331     assert(_cm->out_of_regions(), "only way to reach here");
4332     assert(_task_queue->size() == 0, "only way to reach here");
4333 
4334     if (_cm->verbose_low()) {
4335       gclog_or_tty->print_cr("[%u] starting termination protocol", _worker_id);
4336     }
4337 
4338     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
4339 
4340     // The CMTask class also extends the TerminatorTerminator class,
4341     // hence its should_exit_termination() method will also decide
4342     // whether to exit the termination protocol or not.
4343     bool finished = (is_serial ||
4344                      _cm->terminator()->offer_termination(this));
4345     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
4346     _termination_time_ms +=
4347       termination_end_time_ms - _termination_start_time_ms;
4348 
4349     if (finished) {
4350       // We're all done.
4351 
4352       if (_worker_id == 0) {
4353         // let's allow task 0 to do this
4354         if (concurrent()) {
4355           assert(_cm->concurrent_marking_in_progress(), "invariant");
4356           // we need to set this to false before the next
4357           // safepoint. This way we ensure that the marking phase
4358           // doesn't observe any more heap expansions.
4359           _cm->clear_concurrent_marking_in_progress();
4360         }
4361       }
4362 
4363       // We can now guarantee that the global stack is empty, since
4364       // all other tasks have finished. We separated the guarantees so
4365       // that, if a condition is false, we can immediately find out
4366       // which one.
4367       guarantee(_cm->out_of_regions(), "only way to reach here");
4368       guarantee(_cm->mark_stack_empty(), "only way to reach here");
4369       guarantee(_task_queue->size() == 0, "only way to reach here");
4370       guarantee(!_cm->has_overflown(), "only way to reach here");
4371       guarantee(!_cm->mark_stack_overflow(), "only way to reach here");
4372 
4373       if (_cm->verbose_low()) {
4374         gclog_or_tty->print_cr("[%u] all tasks terminated", _worker_id);
4375       }
4376     } else {
4377       // Apparently there's more work to do. Let's abort this task. It
4378       // will restart it and we can hopefully find more things to do.
4379 
4380       if (_cm->verbose_low()) {
4381         gclog_or_tty->print_cr("[%u] apparently there is more work to do",
4382                                _worker_id);
4383       }
4384 
4385       set_has_aborted();
4386       statsOnly( ++_aborted_termination );
4387     }
4388   }
4389 
4390   // Mainly for debugging purposes to make sure that a pointer to the
4391   // closure which was statically allocated in this frame doesn't
4392   // escape it by accident.
4393   set_cm_oop_closure(NULL);
4394   double end_time_ms = os::elapsedVTime() * 1000.0;
4395   double elapsed_time_ms = end_time_ms - _start_time_ms;
4396   // Update the step history.
4397   _step_times_ms.add(elapsed_time_ms);
4398 
4399   if (has_aborted()) {
4400     // The task was aborted for some reason.
4401 
4402     statsOnly( ++_aborted );
4403 
4404     if (_has_timed_out) {
4405       double diff_ms = elapsed_time_ms - _time_target_ms;
4406       // Keep statistics of how well we did with respect to hitting
4407       // our target only if we actually timed out (if we aborted for
4408       // other reasons, then the results might get skewed).
4409       _marking_step_diffs_ms.add(diff_ms);
4410     }
4411 
4412     if (_cm->has_overflown()) {
4413       // This is the interesting one. We aborted because a global
4414       // overflow was raised. This means we have to restart the
4415       // marking phase and start iterating over regions. However, in
4416       // order to do this we have to make sure that all tasks stop
4417       // what they are doing and re-initialize in a safe manner. We
4418       // will achieve this with the use of two barrier sync points.
4419 
4420       if (_cm->verbose_low()) {
4421         gclog_or_tty->print_cr("[%u] detected overflow", _worker_id);
4422       }
4423 
4424       if (!is_serial) {
4425         // We only need to enter the sync barrier if being called
4426         // from a parallel context
4427         _cm->enter_first_sync_barrier(_worker_id);
4428 
4429         // When we exit this sync barrier we know that all tasks have
4430         // stopped doing marking work. So, it's now safe to
4431         // re-initialize our data structures. At the end of this method,
4432         // task 0 will clear the global data structures.
4433       }
4434 
4435       statsOnly( ++_aborted_overflow );
4436 
4437       // We clear the local state of this task...
4438       clear_region_fields();
4439 
4440       if (!is_serial) {
4441         // ...and enter the second barrier.
4442         _cm->enter_second_sync_barrier(_worker_id);
4443       }
4444       // At this point, if we're during the concurrent phase of
4445       // marking, everything has been re-initialized and we're
4446       // ready to restart.
4447     }
4448 
4449     if (_cm->verbose_low()) {
4450       gclog_or_tty->print_cr("[%u] <<<<<<<<<< ABORTING, target = %1.2lfms, "
4451                              "elapsed = %1.2lfms <<<<<<<<<<",
4452                              _worker_id, _time_target_ms, elapsed_time_ms);
4453       if (_cm->has_aborted()) {
4454         gclog_or_tty->print_cr("[%u] ========== MARKING ABORTED ==========",
4455                                _worker_id);
4456       }
4457     }
4458   } else {
4459     if (_cm->verbose_low()) {
4460       gclog_or_tty->print_cr("[%u] <<<<<<<<<< FINISHED, target = %1.2lfms, "
4461                              "elapsed = %1.2lfms <<<<<<<<<<",
4462                              _worker_id, _time_target_ms, elapsed_time_ms);
4463     }
4464   }
4465 
4466   _claimed = false;
4467 }
4468 
4469 CMTask::CMTask(uint worker_id,
4470                ConcurrentMark* cm,
4471                size_t* marked_bytes,
4472                BitMap* card_bm,
4473                CMTaskQueue* task_queue,
4474                CMTaskQueueSet* task_queues)
4475   : _g1h(G1CollectedHeap::heap()),
4476     _worker_id(worker_id), _cm(cm),
4477     _claimed(false),
4478     _nextMarkBitMap(NULL), _hash_seed(17),
4479     _task_queue(task_queue),
4480     _task_queues(task_queues),
4481     _cm_oop_closure(NULL),
4482     _marked_bytes_array(marked_bytes),
4483     _card_bm(card_bm) {
4484   guarantee(task_queue != NULL, "invariant");
4485   guarantee(task_queues != NULL, "invariant");
4486 
4487   statsOnly( _clock_due_to_scanning = 0;
4488              _clock_due_to_marking  = 0 );
4489 
4490   _marking_step_diffs_ms.add(0.5);
4491 }
4492 
4493 // These are formatting macros that are used below to ensure
4494 // consistent formatting. The *_H_* versions are used to format the
4495 // header for a particular value and they should be kept consistent
4496 // with the corresponding macro. Also note that most of the macros add
4497 // the necessary white space (as a prefix) which makes them a bit
4498 // easier to compose.
4499 
4500 // All the output lines are prefixed with this string to be able to
4501 // identify them easily in a large log file.
4502 #define G1PPRL_LINE_PREFIX            "###"
4503 
4504 #define G1PPRL_ADDR_BASE_FORMAT    " "PTR_FORMAT"-"PTR_FORMAT
4505 #ifdef _LP64
4506 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
4507 #else // _LP64
4508 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
4509 #endif // _LP64
4510 
4511 // For per-region info
4512 #define G1PPRL_TYPE_FORMAT            "   %-4s"
4513 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
4514 #define G1PPRL_BYTE_FORMAT            "  "SIZE_FORMAT_W(9)
4515 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
4516 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
4517 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
4518 
4519 // For summary info
4520 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  "tag":"G1PPRL_ADDR_BASE_FORMAT
4521 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  "tag": "SIZE_FORMAT
4522 #define G1PPRL_SUM_MB_FORMAT(tag)      "  "tag": %1.2f MB"
4523 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag)" / %1.2f %%"
4524 
4525 G1PrintRegionLivenessInfoClosure::
4526 G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name)
4527   : _out(out),
4528     _total_used_bytes(0), _total_capacity_bytes(0),
4529     _total_prev_live_bytes(0), _total_next_live_bytes(0),
4530     _hum_used_bytes(0), _hum_capacity_bytes(0),
4531     _hum_prev_live_bytes(0), _hum_next_live_bytes(0),
4532     _total_remset_bytes(0), _total_strong_code_roots_bytes(0) {
4533   G1CollectedHeap* g1h = G1CollectedHeap::heap();
4534   MemRegion g1_committed = g1h->g1_committed();
4535   MemRegion g1_reserved = g1h->g1_reserved();
4536   double now = os::elapsedTime();
4537 
4538   // Print the header of the output.
4539   _out->cr();
4540   _out->print_cr(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
4541   _out->print_cr(G1PPRL_LINE_PREFIX" HEAP"
4542                  G1PPRL_SUM_ADDR_FORMAT("committed")
4543                  G1PPRL_SUM_ADDR_FORMAT("reserved")
4544                  G1PPRL_SUM_BYTE_FORMAT("region-size"),
4545                  g1_committed.start(), g1_committed.end(),
4546                  g1_reserved.start(), g1_reserved.end(),
4547                  HeapRegion::GrainBytes);
4548   _out->print_cr(G1PPRL_LINE_PREFIX);
4549   _out->print_cr(G1PPRL_LINE_PREFIX
4550                 G1PPRL_TYPE_H_FORMAT
4551                 G1PPRL_ADDR_BASE_H_FORMAT
4552                 G1PPRL_BYTE_H_FORMAT
4553                 G1PPRL_BYTE_H_FORMAT
4554                 G1PPRL_BYTE_H_FORMAT
4555                 G1PPRL_DOUBLE_H_FORMAT
4556                 G1PPRL_BYTE_H_FORMAT
4557                 G1PPRL_BYTE_H_FORMAT,
4558                 "type", "address-range",
4559                 "used", "prev-live", "next-live", "gc-eff",
4560                 "remset", "code-roots");
4561   _out->print_cr(G1PPRL_LINE_PREFIX
4562                 G1PPRL_TYPE_H_FORMAT
4563                 G1PPRL_ADDR_BASE_H_FORMAT
4564                 G1PPRL_BYTE_H_FORMAT
4565                 G1PPRL_BYTE_H_FORMAT
4566                 G1PPRL_BYTE_H_FORMAT
4567                 G1PPRL_DOUBLE_H_FORMAT
4568                 G1PPRL_BYTE_H_FORMAT
4569                 G1PPRL_BYTE_H_FORMAT,
4570                 "", "",
4571                 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
4572                 "(bytes)", "(bytes)");
4573 }
4574 
4575 // It takes as a parameter a reference to one of the _hum_* fields, it
4576 // deduces the corresponding value for a region in a humongous region
4577 // series (either the region size, or what's left if the _hum_* field
4578 // is < the region size), and updates the _hum_* field accordingly.
4579 size_t G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* hum_bytes) {
4580   size_t bytes = 0;
4581   // The > 0 check is to deal with the prev and next live bytes which
4582   // could be 0.
4583   if (*hum_bytes > 0) {
4584     bytes = MIN2(HeapRegion::GrainBytes, *hum_bytes);
4585     *hum_bytes -= bytes;
4586   }
4587   return bytes;
4588 }
4589 
4590 // It deduces the values for a region in a humongous region series
4591 // from the _hum_* fields and updates those accordingly. It assumes
4592 // that that _hum_* fields have already been set up from the "starts
4593 // humongous" region and we visit the regions in address order.
4594 void G1PrintRegionLivenessInfoClosure::get_hum_bytes(size_t* used_bytes,
4595                                                      size_t* capacity_bytes,
4596                                                      size_t* prev_live_bytes,
4597                                                      size_t* next_live_bytes) {
4598   assert(_hum_used_bytes > 0 && _hum_capacity_bytes > 0, "pre-condition");
4599   *used_bytes      = get_hum_bytes(&_hum_used_bytes);
4600   *capacity_bytes  = get_hum_bytes(&_hum_capacity_bytes);
4601   *prev_live_bytes = get_hum_bytes(&_hum_prev_live_bytes);
4602   *next_live_bytes = get_hum_bytes(&_hum_next_live_bytes);
4603 }
4604 
4605 bool G1PrintRegionLivenessInfoClosure::doHeapRegion(HeapRegion* r) {
4606   const char* type = "";
4607   HeapWord* bottom       = r->bottom();
4608   HeapWord* end          = r->end();
4609   size_t capacity_bytes  = r->capacity();
4610   size_t used_bytes      = r->used();
4611   size_t prev_live_bytes = r->live_bytes();
4612   size_t next_live_bytes = r->next_live_bytes();
4613   double gc_eff          = r->gc_efficiency();
4614   size_t remset_bytes    = r->rem_set()->mem_size();
4615   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
4616 
4617   if (r->used() == 0) {
4618     type = "FREE";
4619   } else if (r->is_survivor()) {
4620     type = "SURV";
4621   } else if (r->is_young()) {
4622     type = "EDEN";
4623   } else if (r->startsHumongous()) {
4624     type = "HUMS";
4625 
4626     assert(_hum_used_bytes == 0 && _hum_capacity_bytes == 0 &&
4627            _hum_prev_live_bytes == 0 && _hum_next_live_bytes == 0,
4628            "they should have been zeroed after the last time we used them");
4629     // Set up the _hum_* fields.
4630     _hum_capacity_bytes  = capacity_bytes;
4631     _hum_used_bytes      = used_bytes;
4632     _hum_prev_live_bytes = prev_live_bytes;
4633     _hum_next_live_bytes = next_live_bytes;
4634     get_hum_bytes(&used_bytes, &capacity_bytes,
4635                   &prev_live_bytes, &next_live_bytes);
4636     end = bottom + HeapRegion::GrainWords;
4637   } else if (r->continuesHumongous()) {
4638     type = "HUMC";
4639     get_hum_bytes(&used_bytes, &capacity_bytes,
4640                   &prev_live_bytes, &next_live_bytes);
4641     assert(end == bottom + HeapRegion::GrainWords, "invariant");
4642   } else {
4643     type = "OLD";
4644   }
4645 
4646   _total_used_bytes      += used_bytes;
4647   _total_capacity_bytes  += capacity_bytes;
4648   _total_prev_live_bytes += prev_live_bytes;
4649   _total_next_live_bytes += next_live_bytes;
4650   _total_remset_bytes    += remset_bytes;
4651   _total_strong_code_roots_bytes += strong_code_roots_bytes;
4652 
4653   // Print a line for this particular region.
4654   _out->print_cr(G1PPRL_LINE_PREFIX
4655                  G1PPRL_TYPE_FORMAT
4656                  G1PPRL_ADDR_BASE_FORMAT
4657                  G1PPRL_BYTE_FORMAT
4658                  G1PPRL_BYTE_FORMAT
4659                  G1PPRL_BYTE_FORMAT
4660                  G1PPRL_DOUBLE_FORMAT
4661                  G1PPRL_BYTE_FORMAT
4662                  G1PPRL_BYTE_FORMAT,
4663                  type, bottom, end,
4664                  used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
4665                  remset_bytes, strong_code_roots_bytes);
4666 
4667   return false;
4668 }
4669 
4670 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
4671   // add static memory usages to remembered set sizes
4672   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
4673   // Print the footer of the output.
4674   _out->print_cr(G1PPRL_LINE_PREFIX);
4675   _out->print_cr(G1PPRL_LINE_PREFIX
4676                  " SUMMARY"
4677                  G1PPRL_SUM_MB_FORMAT("capacity")
4678                  G1PPRL_SUM_MB_PERC_FORMAT("used")
4679                  G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
4680                  G1PPRL_SUM_MB_PERC_FORMAT("next-live")
4681                  G1PPRL_SUM_MB_FORMAT("remset")
4682                  G1PPRL_SUM_MB_FORMAT("code-roots"),
4683                  bytes_to_mb(_total_capacity_bytes),
4684                  bytes_to_mb(_total_used_bytes),
4685                  perc(_total_used_bytes, _total_capacity_bytes),
4686                  bytes_to_mb(_total_prev_live_bytes),
4687                  perc(_total_prev_live_bytes, _total_capacity_bytes),
4688                  bytes_to_mb(_total_next_live_bytes),
4689                  perc(_total_next_live_bytes, _total_capacity_bytes),
4690                  bytes_to_mb(_total_remset_bytes),
4691                  bytes_to_mb(_total_strong_code_roots_bytes));
4692   _out->cr();
4693 }