1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP
  27 
  28 #include "gc_interface/gcCause.hpp"
  29 #include "gc_implementation/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/events.hpp"
  35 
  36 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  37 // is an abstract class: there may be many different kinds of heaps.  This
  38 // class defines the functions that a heap must implement, and contains
  39 // infrastructure common to all heaps.
  40 
  41 class AdaptiveSizePolicy;
  42 class BarrierSet;
  43 class CollectorPolicy;
  44 class GCHeapSummary;
  45 class GCTimer;
  46 class GCTracer;
  47 class MetaspaceSummary;
  48 class Thread;
  49 class ThreadClosure;
  50 class VirtualSpaceSummary;
  51 class nmethod;
  52 
  53 class GCMessage : public FormatBuffer<1024> {
  54  public:
  55   bool is_before;
  56 
  57  public:
  58   GCMessage() {}
  59 };
  60 
  61 class GCHeapLog : public EventLogBase<GCMessage> {
  62  private:
  63   void log_heap(bool before);
  64 
  65  public:
  66   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  67 
  68   void log_heap_before() {
  69     log_heap(true);
  70   }
  71   void log_heap_after() {
  72     log_heap(false);
  73   }
  74 };
  75 
  76 //
  77 // CollectedHeap
  78 //   SharedHeap
  79 //     GenCollectedHeap
  80 //     G1CollectedHeap
  81 //   ParallelScavengeHeap
  82 //
  83 class CollectedHeap : public CHeapObj<mtInternal> {
  84   friend class VMStructs;
  85   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  86 
  87  private:
  88 #ifdef ASSERT
  89   static int       _fire_out_of_memory_count;
  90 #endif
  91 
  92   // Used for filler objects (static, but initialized in ctor).
  93   static size_t _filler_array_max_size;
  94 
  95   GCHeapLog* _gc_heap_log;
  96 
  97   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2 is being used
  98   bool _defer_initial_card_mark;
  99 
 100   MemRegion _reserved;
 101 
 102  protected:
 103   BarrierSet* _barrier_set;
 104   bool _is_gc_active;
 105   uint _n_par_threads;
 106 
 107   unsigned int _total_collections;          // ... started
 108   unsigned int _total_full_collections;     // ... started
 109   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 110   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 111 
 112   // Reason for current garbage collection.  Should be set to
 113   // a value reflecting no collection between collections.
 114   GCCause::Cause _gc_cause;
 115   GCCause::Cause _gc_lastcause;
 116   PerfStringVariable* _perf_gc_cause;
 117   PerfStringVariable* _perf_gc_lastcause;
 118 
 119   // Constructor
 120   CollectedHeap();
 121 
 122   // Do common initializations that must follow instance construction,
 123   // for example, those needing virtual calls.
 124   // This code could perhaps be moved into initialize() but would
 125   // be slightly more awkward because we want the latter to be a
 126   // pure virtual.
 127   void pre_initialize();
 128 
 129   // Create a new tlab. All TLAB allocations must go through this.
 130   virtual HeapWord* allocate_new_tlab(size_t size);
 131 
 132   // Accumulate statistics on all tlabs.
 133   virtual void accumulate_statistics_all_tlabs();
 134 
 135   // Reinitialize tlabs before resuming mutators.
 136   virtual void resize_all_tlabs();
 137 
 138   // Allocate from the current thread's TLAB, with broken-out slow path.
 139   inline static HeapWord* allocate_from_tlab(KlassHandle klass, Thread* thread, size_t size);
 140   static HeapWord* allocate_from_tlab_slow(KlassHandle klass, Thread* thread, size_t size);
 141 
 142   // Allocate an uninitialized block of the given size, or returns NULL if
 143   // this is impossible.
 144   inline static HeapWord* common_mem_allocate_noinit(KlassHandle klass, size_t size, TRAPS);
 145 
 146   // Like allocate_init, but the block returned by a successful allocation
 147   // is guaranteed initialized to zeros.
 148   inline static HeapWord* common_mem_allocate_init(KlassHandle klass, size_t size, TRAPS);
 149 
 150   // Helper functions for (VM) allocation.
 151   inline static void post_allocation_setup_common(KlassHandle klass, HeapWord* obj);
 152   inline static void post_allocation_setup_no_klass_install(KlassHandle klass,
 153                                                             HeapWord* objPtr);
 154 
 155   inline static void post_allocation_setup_obj(KlassHandle klass, HeapWord* obj, int size);
 156 
 157   inline static void post_allocation_setup_array(KlassHandle klass,
 158                                                  HeapWord* obj, int length);
 159 
 160   // Clears an allocated object.
 161   inline static void init_obj(HeapWord* obj, size_t size);
 162 
 163   // Filler object utilities.
 164   static inline size_t filler_array_hdr_size();
 165   static inline size_t filler_array_min_size();
 166 
 167   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 168   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 169 
 170   // Fill with a single array; caller must ensure filler_array_min_size() <=
 171   // words <= filler_array_max_size().
 172   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 173 
 174   // Fill with a single object (either an int array or a java.lang.Object).
 175   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 176 
 177   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 178 
 179   // Verification functions
 180   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 181     PRODUCT_RETURN;
 182   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 183     PRODUCT_RETURN;
 184   debug_only(static void check_for_valid_allocation_state();)
 185 
 186  public:
 187   enum Name {
 188     Abstract,
 189     SharedHeap,
 190     GenCollectedHeap,
 191     ParallelScavengeHeap,
 192     G1CollectedHeap
 193   };
 194 
 195   static inline size_t filler_array_max_size() {
 196     return _filler_array_max_size;
 197   }
 198 
 199   virtual CollectedHeap::Name kind() const { return CollectedHeap::Abstract; }
 200 
 201   /**
 202    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 203    * and JNI_OK on success.
 204    */
 205   virtual jint initialize() = 0;
 206 
 207   // In many heaps, there will be a need to perform some initialization activities
 208   // after the Universe is fully formed, but before general heap allocation is allowed.
 209   // This is the correct place to place such initialization methods.
 210   virtual void post_initialize() = 0;
 211 
 212   // Stop any onging concurrent work and prepare for exit.
 213   virtual void stop() {}
 214 
 215   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 216   MemRegion reserved_region() const { return _reserved; }
 217   address base() const { return (address)reserved_region().start(); }
 218 
 219   virtual size_t capacity() const = 0;
 220   virtual size_t used() const = 0;
 221 
 222   // Return "true" if the part of the heap that allocates Java
 223   // objects has reached the maximal committed limit that it can
 224   // reach, without a garbage collection.
 225   virtual bool is_maximal_no_gc() const = 0;
 226 
 227   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 228   // memory that the vm could make available for storing 'normal' java objects.
 229   // This is based on the reserved address space, but should not include space
 230   // that the vm uses internally for bookkeeping or temporary storage
 231   // (e.g., in the case of the young gen, one of the survivor
 232   // spaces).
 233   virtual size_t max_capacity() const = 0;
 234 
 235   // Returns "TRUE" if "p" points into the reserved area of the heap.
 236   bool is_in_reserved(const void* p) const {
 237     return _reserved.contains(p);
 238   }
 239 
 240   bool is_in_reserved_or_null(const void* p) const {
 241     return p == NULL || is_in_reserved(p);
 242   }
 243 
 244   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 245   // Since this method can be expensive in general, we restrict its
 246   // use to assertion checking only.
 247   virtual bool is_in(const void* p) const = 0;
 248 
 249   bool is_in_or_null(const void* p) const {
 250     return p == NULL || is_in(p);
 251   }
 252 
 253   bool is_in_place(Metadata** p) {
 254     return !Universe::heap()->is_in(p);
 255   }
 256   bool is_in_place(oop* p) { return Universe::heap()->is_in(p); }
 257   bool is_in_place(narrowOop* p) {
 258     oop o = oopDesc::load_decode_heap_oop_not_null(p);
 259     return Universe::heap()->is_in((const void*)o);
 260   }
 261 
 262   // Let's define some terms: a "closed" subset of a heap is one that
 263   //
 264   // 1) contains all currently-allocated objects, and
 265   //
 266   // 2) is closed under reference: no object in the closed subset
 267   //    references one outside the closed subset.
 268   //
 269   // Membership in a heap's closed subset is useful for assertions.
 270   // Clearly, the entire heap is a closed subset, so the default
 271   // implementation is to use "is_in_reserved".  But this may not be too
 272   // liberal to perform useful checking.  Also, the "is_in" predicate
 273   // defines a closed subset, but may be too expensive, since "is_in"
 274   // verifies that its argument points to an object head.  The
 275   // "closed_subset" method allows a heap to define an intermediate
 276   // predicate, allowing more precise checking than "is_in_reserved" at
 277   // lower cost than "is_in."
 278 
 279   // One important case is a heap composed of disjoint contiguous spaces,
 280   // such as the Garbage-First collector.  Such heaps have a convenient
 281   // closed subset consisting of the allocated portions of those
 282   // contiguous spaces.
 283 
 284   // Return "TRUE" iff the given pointer points into the heap's defined
 285   // closed subset (which defaults to the entire heap).
 286   virtual bool is_in_closed_subset(const void* p) const {
 287     return is_in_reserved(p);
 288   }
 289 
 290   bool is_in_closed_subset_or_null(const void* p) const {
 291     return p == NULL || is_in_closed_subset(p);
 292   }
 293 
 294   // An object is scavengable if its location may move during a scavenge.
 295   // (A scavenge is a GC which is not a full GC.)
 296   virtual bool is_scavengable(const void *p) = 0;
 297 
 298   void set_gc_cause(GCCause::Cause v) {
 299      if (UsePerfData) {
 300        _gc_lastcause = _gc_cause;
 301        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 302        _perf_gc_cause->set_value(GCCause::to_string(v));
 303      }
 304     _gc_cause = v;
 305   }
 306   GCCause::Cause gc_cause() { return _gc_cause; }
 307 
 308   // Number of threads currently working on GC tasks.
 309   uint n_par_threads() { return _n_par_threads; }
 310 
 311   // May be overridden to set additional parallelism.
 312   virtual void set_par_threads(uint t) { _n_par_threads = t; };
 313 
 314   // General obj/array allocation facilities.
 315   inline static oop obj_allocate(KlassHandle klass, int size, TRAPS);
 316   inline static oop array_allocate(KlassHandle klass, int size, int length, TRAPS);
 317   inline static oop array_allocate_nozero(KlassHandle klass, int size, int length, TRAPS);
 318 
 319   inline static void post_allocation_install_obj_klass(KlassHandle klass,
 320                                                        oop obj);
 321 
 322   // Raw memory allocation facilities
 323   // The obj and array allocate methods are covers for these methods.
 324   // mem_allocate() should never be
 325   // called to allocate TLABs, only individual objects.
 326   virtual HeapWord* mem_allocate(size_t size,
 327                                  bool* gc_overhead_limit_was_exceeded) = 0;
 328 
 329   // Utilities for turning raw memory into filler objects.
 330   //
 331   // min_fill_size() is the smallest region that can be filled.
 332   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 333   // multiple objects.  fill_with_object() is for regions known to be smaller
 334   // than the largest array of integers; it uses a single object to fill the
 335   // region and has slightly less overhead.
 336   static size_t min_fill_size() {
 337     return size_t(align_object_size(oopDesc::header_size()));
 338   }
 339 
 340   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 341 
 342   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 343   static void fill_with_object(MemRegion region, bool zap = true) {
 344     fill_with_object(region.start(), region.word_size(), zap);
 345   }
 346   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 347     fill_with_object(start, pointer_delta(end, start), zap);
 348   }
 349 
 350   // Return the address "addr" aligned by "alignment_in_bytes" if such
 351   // an address is below "end".  Return NULL otherwise.
 352   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 353                                                    HeapWord* end,
 354                                                    unsigned short alignment_in_bytes);
 355 
 356   // Some heaps may offer a contiguous region for shared non-blocking
 357   // allocation, via inlined code (by exporting the address of the top and
 358   // end fields defining the extent of the contiguous allocation region.)
 359 
 360   // This function returns "true" iff the heap supports this kind of
 361   // allocation.  (Default is "no".)
 362   virtual bool supports_inline_contig_alloc() const {
 363     return false;
 364   }
 365   // These functions return the addresses of the fields that define the
 366   // boundaries of the contiguous allocation area.  (These fields should be
 367   // physically near to one another.)
 368   virtual HeapWord** top_addr() const {
 369     guarantee(false, "inline contiguous allocation not supported");
 370     return NULL;
 371   }
 372   virtual HeapWord** end_addr() const {
 373     guarantee(false, "inline contiguous allocation not supported");
 374     return NULL;
 375   }
 376 
 377   // Some heaps may be in an unparseable state at certain times between
 378   // collections. This may be necessary for efficient implementation of
 379   // certain allocation-related activities. Calling this function before
 380   // attempting to parse a heap ensures that the heap is in a parsable
 381   // state (provided other concurrent activity does not introduce
 382   // unparsability). It is normally expected, therefore, that this
 383   // method is invoked with the world stopped.
 384   // NOTE: if you override this method, make sure you call
 385   // super::ensure_parsability so that the non-generational
 386   // part of the work gets done. See implementation of
 387   // CollectedHeap::ensure_parsability and, for instance,
 388   // that of GenCollectedHeap::ensure_parsability().
 389   // The argument "retire_tlabs" controls whether existing TLABs
 390   // are merely filled or also retired, thus preventing further
 391   // allocation from them and necessitating allocation of new TLABs.
 392   virtual void ensure_parsability(bool retire_tlabs);
 393 
 394   // Section on thread-local allocation buffers (TLABs)
 395   // If the heap supports thread-local allocation buffers, it should override
 396   // the following methods:
 397   // Returns "true" iff the heap supports thread-local allocation buffers.
 398   // The default is "no".
 399   virtual bool supports_tlab_allocation() const = 0;
 400 
 401   // The amount of space available for thread-local allocation buffers.
 402   virtual size_t tlab_capacity(Thread *thr) const = 0;
 403 
 404   // The amount of used space for thread-local allocation buffers for the given thread.
 405   virtual size_t tlab_used(Thread *thr) const = 0;
 406 
 407   virtual size_t max_tlab_size() const;
 408 
 409   // An estimate of the maximum allocation that could be performed
 410   // for thread-local allocation buffers without triggering any
 411   // collection or expansion activity.
 412   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 413     guarantee(false, "thread-local allocation buffers not supported");
 414     return 0;
 415   }
 416 
 417   // Can a compiler initialize a new object without store barriers?
 418   // This permission only extends from the creation of a new object
 419   // via a TLAB up to the first subsequent safepoint. If such permission
 420   // is granted for this heap type, the compiler promises to call
 421   // defer_store_barrier() below on any slow path allocation of
 422   // a new object for which such initializing store barriers will
 423   // have been elided.
 424   virtual bool can_elide_tlab_store_barriers() const = 0;
 425 
 426   // If a compiler is eliding store barriers for TLAB-allocated objects,
 427   // there is probably a corresponding slow path which can produce
 428   // an object allocated anywhere.  The compiler's runtime support
 429   // promises to call this function on such a slow-path-allocated
 430   // object before performing initializations that have elided
 431   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 432   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 433 
 434   // Answers whether an initializing store to a new object currently
 435   // allocated at the given address doesn't need a store
 436   // barrier. Returns "true" if it doesn't need an initializing
 437   // store barrier; answers "false" if it does.
 438   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 439 
 440   // If a compiler is eliding store barriers for TLAB-allocated objects,
 441   // we will be informed of a slow-path allocation by a call
 442   // to new_store_pre_barrier() above. Such a call precedes the
 443   // initialization of the object itself, and no post-store-barriers will
 444   // be issued. Some heap types require that the barrier strictly follows
 445   // the initializing stores. (This is currently implemented by deferring the
 446   // barrier until the next slow-path allocation or gc-related safepoint.)
 447   // This interface answers whether a particular heap type needs the card
 448   // mark to be thus strictly sequenced after the stores.
 449   virtual bool card_mark_must_follow_store() const = 0;
 450 
 451   // If the CollectedHeap was asked to defer a store barrier above,
 452   // this informs it to flush such a deferred store barrier to the
 453   // remembered set.
 454   virtual void flush_deferred_store_barrier(JavaThread* thread);
 455 
 456   // Does this heap support heap inspection (+PrintClassHistogram?)
 457   virtual bool supports_heap_inspection() const = 0;
 458 
 459   // Perform a collection of the heap; intended for use in implementing
 460   // "System.gc".  This probably implies as full a collection as the
 461   // "CollectedHeap" supports.
 462   virtual void collect(GCCause::Cause cause) = 0;
 463 
 464   // Perform a full collection
 465   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 466 
 467   // This interface assumes that it's being called by the
 468   // vm thread. It collects the heap assuming that the
 469   // heap lock is already held and that we are executing in
 470   // the context of the vm thread.
 471   virtual void collect_as_vm_thread(GCCause::Cause cause);
 472 
 473   // Returns the barrier set for this heap
 474   BarrierSet* barrier_set() { return _barrier_set; }
 475 
 476   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 477   // that it should answer "false" for the concurrent part of a concurrent
 478   // collector -- dld).
 479   bool is_gc_active() const { return _is_gc_active; }
 480 
 481   // Total number of GC collections (started)
 482   unsigned int total_collections() const { return _total_collections; }
 483   unsigned int total_full_collections() const { return _total_full_collections;}
 484 
 485   // Increment total number of GC collections (started)
 486   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 487   void increment_total_collections(bool full = false) {
 488     _total_collections++;
 489     if (full) {
 490       increment_total_full_collections();
 491     }
 492   }
 493 
 494   void increment_total_full_collections() { _total_full_collections++; }
 495 
 496   // Return the AdaptiveSizePolicy for the heap.
 497   virtual AdaptiveSizePolicy* size_policy() = 0;
 498 
 499   // Return the CollectorPolicy for the heap
 500   virtual CollectorPolicy* collector_policy() const = 0;
 501 
 502   void oop_iterate_no_header(OopClosure* cl);
 503 
 504   // Iterate over all the ref-containing fields of all objects, calling
 505   // "cl.do_oop" on each.
 506   virtual void oop_iterate(ExtendedOopClosure* cl) = 0;
 507 
 508   // Iterate over all objects, calling "cl.do_object" on each.
 509   virtual void object_iterate(ObjectClosure* cl) = 0;
 510 
 511   // Similar to object_iterate() except iterates only
 512   // over live objects.
 513   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 514 
 515   // NOTE! There is no requirement that a collector implement these
 516   // functions.
 517   //
 518   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 519   // each address in the (reserved) heap is a member of exactly
 520   // one block.  The defining characteristic of a block is that it is
 521   // possible to find its size, and thus to progress forward to the next
 522   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 523   // represent Java objects, or they might be free blocks in a
 524   // free-list-based heap (or subheap), as long as the two kinds are
 525   // distinguishable and the size of each is determinable.
 526 
 527   // Returns the address of the start of the "block" that contains the
 528   // address "addr".  We say "blocks" instead of "object" since some heaps
 529   // may not pack objects densely; a chunk may either be an object or a
 530   // non-object.
 531   virtual HeapWord* block_start(const void* addr) const = 0;
 532 
 533   // Requires "addr" to be the start of a chunk, and returns its size.
 534   // "addr + size" is required to be the start of a new chunk, or the end
 535   // of the active area of the heap.
 536   virtual size_t block_size(const HeapWord* addr) const = 0;
 537 
 538   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 539   // the block is an object.
 540   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 541 
 542   // Returns the longest time (in ms) that has elapsed since the last
 543   // time that any part of the heap was examined by a garbage collection.
 544   virtual jlong millis_since_last_gc() = 0;
 545 
 546   // Perform any cleanup actions necessary before allowing a verification.
 547   virtual void prepare_for_verify() = 0;
 548 
 549   // Generate any dumps preceding or following a full gc
 550   void pre_full_gc_dump(GCTimer* timer);
 551   void post_full_gc_dump(GCTimer* timer);
 552 
 553   VirtualSpaceSummary create_heap_space_summary();
 554   GCHeapSummary create_heap_summary();
 555 
 556   MetaspaceSummary create_metaspace_summary();
 557 
 558   // Print heap information on the given outputStream.
 559   virtual void print_on(outputStream* st) const = 0;
 560   // The default behavior is to call print_on() on tty.
 561   virtual void print() const {
 562     print_on(tty);
 563   }
 564   // Print more detailed heap information on the given
 565   // outputStream. The default behavior is to call print_on(). It is
 566   // up to each subclass to override it and add any additional output
 567   // it needs.
 568   virtual void print_extended_on(outputStream* st) const {
 569     print_on(st);
 570   }
 571 
 572   virtual void print_on_error(outputStream* st) const;
 573 
 574   // Print all GC threads (other than the VM thread)
 575   // used by this heap.
 576   virtual void print_gc_threads_on(outputStream* st) const = 0;
 577   // The default behavior is to call print_gc_threads_on() on tty.
 578   void print_gc_threads() {
 579     print_gc_threads_on(tty);
 580   }
 581   // Iterator for all GC threads (other than VM thread)
 582   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 583 
 584   // Print any relevant tracing info that flags imply.
 585   // Default implementation does nothing.
 586   virtual void print_tracing_info() const = 0;
 587 
 588   void print_heap_before_gc();
 589   void print_heap_after_gc();
 590 
 591   // Registering and unregistering an nmethod (compiled code) with the heap.
 592   // Override with specific mechanism for each specialized heap type.
 593   virtual void register_nmethod(nmethod* nm);
 594   virtual void unregister_nmethod(nmethod* nm);
 595 
 596   void trace_heap_before_gc(const GCTracer* gc_tracer);
 597   void trace_heap_after_gc(const GCTracer* gc_tracer);
 598 
 599   // Heap verification
 600   virtual void verify(bool silent, VerifyOption option) = 0;
 601 
 602   // Non product verification and debugging.
 603 #ifndef PRODUCT
 604   // Support for PromotionFailureALot.  Return true if it's time to cause a
 605   // promotion failure.  The no-argument version uses
 606   // this->_promotion_failure_alot_count as the counter.
 607   inline bool promotion_should_fail(volatile size_t* count);
 608   inline bool promotion_should_fail();
 609 
 610   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 611   // GC in which promotion failure occurred.
 612   inline void reset_promotion_should_fail(volatile size_t* count);
 613   inline void reset_promotion_should_fail();
 614 #endif  // #ifndef PRODUCT
 615 
 616 #ifdef ASSERT
 617   static int fired_fake_oom() {
 618     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 619   }
 620 #endif
 621 
 622  public:
 623   // This is a convenience method that is used in cases where
 624   // the actual number of GC worker threads is not pertinent but
 625   // only whether there more than 0.  Use of this method helps
 626   // reduce the occurrence of ParallelGCThreads to uses where the
 627   // actual number may be germane.
 628   static bool use_parallel_gc_threads() { return ParallelGCThreads > 0; }
 629 
 630   // Copy the current allocation context statistics for the specified contexts.
 631   // For each context in contexts, set the corresponding entries in the totals
 632   // and accuracy arrays to the current values held by the statistics.  Each
 633   // array should be of length len.
 634   // Returns true if there are more stats available.
 635   virtual bool copy_allocation_context_stats(const jint* contexts,
 636                                              jlong* totals,
 637                                              jbyte* accuracy,
 638                                              jint len) {
 639     return false;
 640   }
 641 
 642   /////////////// Unit tests ///////////////
 643 
 644   NOT_PRODUCT(static void test_is_in();)
 645 };
 646 
 647 // Class to set and reset the GC cause for a CollectedHeap.
 648 
 649 class GCCauseSetter : StackObj {
 650   CollectedHeap* _heap;
 651   GCCause::Cause _previous_cause;
 652  public:
 653   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 654     assert(SafepointSynchronize::is_at_safepoint(),
 655            "This method manipulates heap state without locking");
 656     _heap = heap;
 657     _previous_cause = _heap->gc_cause();
 658     _heap->set_gc_cause(cause);
 659   }
 660 
 661   ~GCCauseSetter() {
 662     assert(SafepointSynchronize::is_at_safepoint(),
 663           "This method manipulates heap state without locking");
 664     _heap->set_gc_cause(_previous_cause);
 665   }
 666 };
 667 
 668 #endif // SHARE_VM_GC_INTERFACE_COLLECTEDHEAP_HPP