1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardGeneration.inline.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.inline.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/strongRootsScope.hpp"
  57 #include "memory/tenuredGeneration.hpp"
  58 #include "oops/oop.inline.hpp"
  59 #include "prims/jvmtiExport.hpp"
  60 #include "runtime/atomic.inline.hpp"
  61 #include "runtime/globals_extension.hpp"
  62 #include "runtime/handles.inline.hpp"
  63 #include "runtime/java.hpp"
  64 #include "runtime/orderAccess.inline.hpp"
  65 #include "runtime/vmThread.hpp"
  66 #include "services/memoryService.hpp"
  67 #include "services/runtimeService.hpp"
  68 
  69 // statics
  70 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  71 bool CMSCollector::_full_gc_requested = false;
  72 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  73 
  74 //////////////////////////////////////////////////////////////////
  75 // In support of CMS/VM thread synchronization
  76 //////////////////////////////////////////////////////////////////
  77 // We split use of the CGC_lock into 2 "levels".
  78 // The low-level locking is of the usual CGC_lock monitor. We introduce
  79 // a higher level "token" (hereafter "CMS token") built on top of the
  80 // low level monitor (hereafter "CGC lock").
  81 // The token-passing protocol gives priority to the VM thread. The
  82 // CMS-lock doesn't provide any fairness guarantees, but clients
  83 // should ensure that it is only held for very short, bounded
  84 // durations.
  85 //
  86 // When either of the CMS thread or the VM thread is involved in
  87 // collection operations during which it does not want the other
  88 // thread to interfere, it obtains the CMS token.
  89 //
  90 // If either thread tries to get the token while the other has
  91 // it, that thread waits. However, if the VM thread and CMS thread
  92 // both want the token, then the VM thread gets priority while the
  93 // CMS thread waits. This ensures, for instance, that the "concurrent"
  94 // phases of the CMS thread's work do not block out the VM thread
  95 // for long periods of time as the CMS thread continues to hog
  96 // the token. (See bug 4616232).
  97 //
  98 // The baton-passing functions are, however, controlled by the
  99 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 100 // and here the low-level CMS lock, not the high level token,
 101 // ensures mutual exclusion.
 102 //
 103 // Two important conditions that we have to satisfy:
 104 // 1. if a thread does a low-level wait on the CMS lock, then it
 105 //    relinquishes the CMS token if it were holding that token
 106 //    when it acquired the low-level CMS lock.
 107 // 2. any low-level notifications on the low-level lock
 108 //    should only be sent when a thread has relinquished the token.
 109 //
 110 // In the absence of either property, we'd have potential deadlock.
 111 //
 112 // We protect each of the CMS (concurrent and sequential) phases
 113 // with the CMS _token_, not the CMS _lock_.
 114 //
 115 // The only code protected by CMS lock is the token acquisition code
 116 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 117 // baton-passing code.
 118 //
 119 // Unfortunately, i couldn't come up with a good abstraction to factor and
 120 // hide the naked CGC_lock manipulation in the baton-passing code
 121 // further below. That's something we should try to do. Also, the proof
 122 // of correctness of this 2-level locking scheme is far from obvious,
 123 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 124 // that there may be a theoretical possibility of delay/starvation in the
 125 // low-level lock/wait/notify scheme used for the baton-passing because of
 126 // potential interference with the priority scheme embodied in the
 127 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 128 // invocation further below and marked with "XXX 20011219YSR".
 129 // Indeed, as we note elsewhere, this may become yet more slippery
 130 // in the presence of multiple CMS and/or multiple VM threads. XXX
 131 
 132 class CMSTokenSync: public StackObj {
 133  private:
 134   bool _is_cms_thread;
 135  public:
 136   CMSTokenSync(bool is_cms_thread):
 137     _is_cms_thread(is_cms_thread) {
 138     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 139            "Incorrect argument to constructor");
 140     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 141   }
 142 
 143   ~CMSTokenSync() {
 144     assert(_is_cms_thread ?
 145              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 146              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 147           "Incorrect state");
 148     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 149   }
 150 };
 151 
 152 // Convenience class that does a CMSTokenSync, and then acquires
 153 // upto three locks.
 154 class CMSTokenSyncWithLocks: public CMSTokenSync {
 155  private:
 156   // Note: locks are acquired in textual declaration order
 157   // and released in the opposite order
 158   MutexLockerEx _locker1, _locker2, _locker3;
 159  public:
 160   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 161                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 162     CMSTokenSync(is_cms_thread),
 163     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 164     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 165     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 166   { }
 167 };
 168 
 169 
 170 //////////////////////////////////////////////////////////////////
 171 //  Concurrent Mark-Sweep Generation /////////////////////////////
 172 //////////////////////////////////////////////////////////////////
 173 
 174 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 175 
 176 // This struct contains per-thread things necessary to support parallel
 177 // young-gen collection.
 178 class CMSParGCThreadState: public CHeapObj<mtGC> {
 179  public:
 180   CFLS_LAB lab;
 181   PromotionInfo promo;
 182 
 183   // Constructor.
 184   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 185     promo.setSpace(cfls);
 186   }
 187 };
 188 
 189 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 190      ReservedSpace rs, size_t initial_byte_size, int level,
 191      CardTableRS* ct, bool use_adaptive_freelists,
 192      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 193   CardGeneration(rs, initial_byte_size, level, ct),
 194   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 195   _did_compact(false)
 196 {
 197   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 198   HeapWord* end    = (HeapWord*) _virtual_space.high();
 199 
 200   _direct_allocated_words = 0;
 201   NOT_PRODUCT(
 202     _numObjectsPromoted = 0;
 203     _numWordsPromoted = 0;
 204     _numObjectsAllocated = 0;
 205     _numWordsAllocated = 0;
 206   )
 207 
 208   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 209                                            use_adaptive_freelists,
 210                                            dictionaryChoice);
 211   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 212   _cmsSpace->_gen = this;
 213 
 214   _gc_stats = new CMSGCStats();
 215 
 216   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 217   // offsets match. The ability to tell free chunks from objects
 218   // depends on this property.
 219   debug_only(
 220     FreeChunk* junk = NULL;
 221     assert(UseCompressedClassPointers ||
 222            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 223            "Offset of FreeChunk::_prev within FreeChunk must match"
 224            "  that of OopDesc::_klass within OopDesc");
 225   )
 226   if (CollectedHeap::use_parallel_gc_threads()) {
 227     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 228     _par_gc_thread_states =
 229       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 230     for (uint i = 0; i < ParallelGCThreads; i++) {
 231       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 232     }
 233   } else {
 234     _par_gc_thread_states = NULL;
 235   }
 236   _incremental_collection_failed = false;
 237   // The "dilatation_factor" is the expansion that can occur on
 238   // account of the fact that the minimum object size in the CMS
 239   // generation may be larger than that in, say, a contiguous young
 240   //  generation.
 241   // Ideally, in the calculation below, we'd compute the dilatation
 242   // factor as: MinChunkSize/(promoting_gen's min object size)
 243   // Since we do not have such a general query interface for the
 244   // promoting generation, we'll instead just use the minimum
 245   // object size (which today is a header's worth of space);
 246   // note that all arithmetic is in units of HeapWords.
 247   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 248   assert(_dilatation_factor >= 1.0, "from previous assert");
 249 }
 250 
 251 
 252 // The field "_initiating_occupancy" represents the occupancy percentage
 253 // at which we trigger a new collection cycle.  Unless explicitly specified
 254 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 255 // is calculated by:
 256 //
 257 //   Let "f" be MinHeapFreeRatio in
 258 //
 259 //    _initiating_occupancy = 100-f +
 260 //                           f * (CMSTriggerRatio/100)
 261 //   where CMSTriggerRatio is the argument "tr" below.
 262 //
 263 // That is, if we assume the heap is at its desired maximum occupancy at the
 264 // end of a collection, we let CMSTriggerRatio of the (purported) free
 265 // space be allocated before initiating a new collection cycle.
 266 //
 267 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 268   assert(io <= 100 && tr <= 100, "Check the arguments");
 269   if (io >= 0) {
 270     _initiating_occupancy = (double)io / 100.0;
 271   } else {
 272     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 273                              (double)(tr * MinHeapFreeRatio) / 100.0)
 274                             / 100.0;
 275   }
 276 }
 277 
 278 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 279   assert(collector() != NULL, "no collector");
 280   collector()->ref_processor_init();
 281 }
 282 
 283 void CMSCollector::ref_processor_init() {
 284   if (_ref_processor == NULL) {
 285     // Allocate and initialize a reference processor
 286     _ref_processor =
 287       new ReferenceProcessor(_span,                               // span
 288                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 289                              (int) ParallelGCThreads,             // mt processing degree
 290                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 291                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 292                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 293                              &_is_alive_closure);                 // closure for liveness info
 294     // Initialize the _ref_processor field of CMSGen
 295     _cmsGen->set_ref_processor(_ref_processor);
 296 
 297   }
 298 }
 299 
 300 AdaptiveSizePolicy* CMSCollector::size_policy() {
 301   GenCollectedHeap* gch = GenCollectedHeap::heap();
 302   return gch->gen_policy()->size_policy();
 303 }
 304 
 305 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 306 
 307   const char* gen_name = "old";
 308   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 309 
 310   // Generation Counters - generation 1, 1 subspace
 311   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 312       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 313 
 314   _space_counters = new GSpaceCounters(gen_name, 0,
 315                                        _virtual_space.reserved_size(),
 316                                        this, _gen_counters);
 317 }
 318 
 319 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 320   _cms_gen(cms_gen)
 321 {
 322   assert(alpha <= 100, "bad value");
 323   _saved_alpha = alpha;
 324 
 325   // Initialize the alphas to the bootstrap value of 100.
 326   _gc0_alpha = _cms_alpha = 100;
 327 
 328   _cms_begin_time.update();
 329   _cms_end_time.update();
 330 
 331   _gc0_duration = 0.0;
 332   _gc0_period = 0.0;
 333   _gc0_promoted = 0;
 334 
 335   _cms_duration = 0.0;
 336   _cms_period = 0.0;
 337   _cms_allocated = 0;
 338 
 339   _cms_used_at_gc0_begin = 0;
 340   _cms_used_at_gc0_end = 0;
 341   _allow_duty_cycle_reduction = false;
 342   _valid_bits = 0;
 343 }
 344 
 345 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 346   // TBD: CR 6909490
 347   return 1.0;
 348 }
 349 
 350 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 351 }
 352 
 353 // If promotion failure handling is on use
 354 // the padded average size of the promotion for each
 355 // young generation collection.
 356 double CMSStats::time_until_cms_gen_full() const {
 357   size_t cms_free = _cms_gen->cmsSpace()->free();
 358   GenCollectedHeap* gch = GenCollectedHeap::heap();
 359   size_t expected_promotion = MIN2(gch->young_gen()->capacity(),
 360                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 361   if (cms_free > expected_promotion) {
 362     // Start a cms collection if there isn't enough space to promote
 363     // for the next minor collection.  Use the padded average as
 364     // a safety factor.
 365     cms_free -= expected_promotion;
 366 
 367     // Adjust by the safety factor.
 368     double cms_free_dbl = (double)cms_free;
 369     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 370     // Apply a further correction factor which tries to adjust
 371     // for recent occurance of concurrent mode failures.
 372     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 373     cms_free_dbl = cms_free_dbl * cms_adjustment;
 374 
 375     if (PrintGCDetails && Verbose) {
 376       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 377         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 378         cms_free, expected_promotion);
 379       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 380         cms_free_dbl, cms_consumption_rate() + 1.0);
 381     }
 382     // Add 1 in case the consumption rate goes to zero.
 383     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 384   }
 385   return 0.0;
 386 }
 387 
 388 // Compare the duration of the cms collection to the
 389 // time remaining before the cms generation is empty.
 390 // Note that the time from the start of the cms collection
 391 // to the start of the cms sweep (less than the total
 392 // duration of the cms collection) can be used.  This
 393 // has been tried and some applications experienced
 394 // promotion failures early in execution.  This was
 395 // possibly because the averages were not accurate
 396 // enough at the beginning.
 397 double CMSStats::time_until_cms_start() const {
 398   // We add "gc0_period" to the "work" calculation
 399   // below because this query is done (mostly) at the
 400   // end of a scavenge, so we need to conservatively
 401   // account for that much possible delay
 402   // in the query so as to avoid concurrent mode failures
 403   // due to starting the collection just a wee bit too
 404   // late.
 405   double work = cms_duration() + gc0_period();
 406   double deadline = time_until_cms_gen_full();
 407   // If a concurrent mode failure occurred recently, we want to be
 408   // more conservative and halve our expected time_until_cms_gen_full()
 409   if (work > deadline) {
 410     if (Verbose && PrintGCDetails) {
 411       gclog_or_tty->print(
 412         " CMSCollector: collect because of anticipated promotion "
 413         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 414         gc0_period(), time_until_cms_gen_full());
 415     }
 416     return 0.0;
 417   }
 418   return work - deadline;
 419 }
 420 
 421 #ifndef PRODUCT
 422 void CMSStats::print_on(outputStream *st) const {
 423   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 424   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 425                gc0_duration(), gc0_period(), gc0_promoted());
 426   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 427             cms_duration(), cms_period(), cms_allocated());
 428   st->print(",cms_since_beg=%g,cms_since_end=%g",
 429             cms_time_since_begin(), cms_time_since_end());
 430   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 431             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 432 
 433   if (valid()) {
 434     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 435               promotion_rate(), cms_allocation_rate());
 436     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 437               cms_consumption_rate(), time_until_cms_gen_full());
 438   }
 439   st->print(" ");
 440 }
 441 #endif // #ifndef PRODUCT
 442 
 443 CMSCollector::CollectorState CMSCollector::_collectorState =
 444                              CMSCollector::Idling;
 445 bool CMSCollector::_foregroundGCIsActive = false;
 446 bool CMSCollector::_foregroundGCShouldWait = false;
 447 
 448 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 449                            CardTableRS*                   ct,
 450                            ConcurrentMarkSweepPolicy*     cp):
 451   _cmsGen(cmsGen),
 452   _ct(ct),
 453   _ref_processor(NULL),    // will be set later
 454   _conc_workers(NULL),     // may be set later
 455   _abort_preclean(false),
 456   _start_sampling(false),
 457   _between_prologue_and_epilogue(false),
 458   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 459   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 460                  -1 /* lock-free */, "No_lock" /* dummy */),
 461   _modUnionClosure(&_modUnionTable),
 462   _modUnionClosurePar(&_modUnionTable),
 463   // Adjust my span to cover old (cms) gen
 464   _span(cmsGen->reserved()),
 465   // Construct the is_alive_closure with _span & markBitMap
 466   _is_alive_closure(_span, &_markBitMap),
 467   _restart_addr(NULL),
 468   _overflow_list(NULL),
 469   _stats(cmsGen),
 470   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 471                              //verify that this lock should be acquired with safepoint check.
 472                              Monitor::_safepoint_check_sometimes)),
 473   _eden_chunk_array(NULL),     // may be set in ctor body
 474   _eden_chunk_capacity(0),     // -- ditto --
 475   _eden_chunk_index(0),        // -- ditto --
 476   _survivor_plab_array(NULL),  // -- ditto --
 477   _survivor_chunk_array(NULL), // -- ditto --
 478   _survivor_chunk_capacity(0), // -- ditto --
 479   _survivor_chunk_index(0),    // -- ditto --
 480   _ser_pmc_preclean_ovflw(0),
 481   _ser_kac_preclean_ovflw(0),
 482   _ser_pmc_remark_ovflw(0),
 483   _par_pmc_remark_ovflw(0),
 484   _ser_kac_ovflw(0),
 485   _par_kac_ovflw(0),
 486 #ifndef PRODUCT
 487   _num_par_pushes(0),
 488 #endif
 489   _collection_count_start(0),
 490   _verifying(false),
 491   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 492   _completed_initialization(false),
 493   _collector_policy(cp),
 494   _should_unload_classes(CMSClassUnloadingEnabled),
 495   _concurrent_cycles_since_last_unload(0),
 496   _roots_scanning_options(GenCollectedHeap::SO_None),
 497   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 498   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 499   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 500   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 501   _cms_start_registered(false)
 502 {
 503   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 504     ExplicitGCInvokesConcurrent = true;
 505   }
 506   // Now expand the span and allocate the collection support structures
 507   // (MUT, marking bit map etc.) to cover both generations subject to
 508   // collection.
 509 
 510   // For use by dirty card to oop closures.
 511   _cmsGen->cmsSpace()->set_collector(this);
 512 
 513   // Allocate MUT and marking bit map
 514   {
 515     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 516     if (!_markBitMap.allocate(_span)) {
 517       warning("Failed to allocate CMS Bit Map");
 518       return;
 519     }
 520     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 521   }
 522   {
 523     _modUnionTable.allocate(_span);
 524     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 525   }
 526 
 527   if (!_markStack.allocate(MarkStackSize)) {
 528     warning("Failed to allocate CMS Marking Stack");
 529     return;
 530   }
 531 
 532   // Support for multi-threaded concurrent phases
 533   if (CMSConcurrentMTEnabled) {
 534     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 535       // just for now
 536       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 537     }
 538     if (ConcGCThreads > 1) {
 539       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 540                                  ConcGCThreads, true);
 541       if (_conc_workers == NULL) {
 542         warning("GC/CMS: _conc_workers allocation failure: "
 543               "forcing -CMSConcurrentMTEnabled");
 544         CMSConcurrentMTEnabled = false;
 545       } else {
 546         _conc_workers->initialize_workers();
 547       }
 548     } else {
 549       CMSConcurrentMTEnabled = false;
 550     }
 551   }
 552   if (!CMSConcurrentMTEnabled) {
 553     ConcGCThreads = 0;
 554   } else {
 555     // Turn off CMSCleanOnEnter optimization temporarily for
 556     // the MT case where it's not fixed yet; see 6178663.
 557     CMSCleanOnEnter = false;
 558   }
 559   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 560          "Inconsistency");
 561 
 562   // Parallel task queues; these are shared for the
 563   // concurrent and stop-world phases of CMS, but
 564   // are not shared with parallel scavenge (ParNew).
 565   {
 566     uint i;
 567     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 568 
 569     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 570          || ParallelRefProcEnabled)
 571         && num_queues > 0) {
 572       _task_queues = new OopTaskQueueSet(num_queues);
 573       if (_task_queues == NULL) {
 574         warning("task_queues allocation failure.");
 575         return;
 576       }
 577       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 578       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 579       for (i = 0; i < num_queues; i++) {
 580         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 581         if (q == NULL) {
 582           warning("work_queue allocation failure.");
 583           return;
 584         }
 585         _task_queues->register_queue(i, q);
 586       }
 587       for (i = 0; i < num_queues; i++) {
 588         _task_queues->queue(i)->initialize();
 589         _hash_seed[i] = 17;  // copied from ParNew
 590       }
 591     }
 592   }
 593 
 594   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 595 
 596   // Clip CMSBootstrapOccupancy between 0 and 100.
 597   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 598 
 599   // Now tell CMS generations the identity of their collector
 600   ConcurrentMarkSweepGeneration::set_collector(this);
 601 
 602   // Create & start a CMS thread for this CMS collector
 603   _cmsThread = ConcurrentMarkSweepThread::start(this);
 604   assert(cmsThread() != NULL, "CMS Thread should have been created");
 605   assert(cmsThread()->collector() == this,
 606          "CMS Thread should refer to this gen");
 607   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 608 
 609   // Support for parallelizing young gen rescan
 610   GenCollectedHeap* gch = GenCollectedHeap::heap();
 611   assert(gch->young_gen()->kind() == Generation::ParNew, "CMS can only be used with ParNew");
 612   _young_gen = (ParNewGeneration*)gch->young_gen();
 613   if (gch->supports_inline_contig_alloc()) {
 614     _top_addr = gch->top_addr();
 615     _end_addr = gch->end_addr();
 616     assert(_young_gen != NULL, "no _young_gen");
 617     _eden_chunk_index = 0;
 618     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 619     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 620   }
 621 
 622   // Support for parallelizing survivor space rescan
 623   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 624     const size_t max_plab_samples =
 625       ((DefNewGeneration*)_young_gen)->max_survivor_size() / plab_sample_minimum_size();
 626 
 627     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 628     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 629     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 630     _survivor_chunk_capacity = 2*max_plab_samples;
 631     for (uint i = 0; i < ParallelGCThreads; i++) {
 632       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 633       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 634       assert(cur->end() == 0, "Should be 0");
 635       assert(cur->array() == vec, "Should be vec");
 636       assert(cur->capacity() == max_plab_samples, "Error");
 637     }
 638   }
 639 
 640   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 641   _gc_counters = new CollectorCounters("CMS", 1);
 642   _completed_initialization = true;
 643   _inter_sweep_timer.start();  // start of time
 644 }
 645 
 646 size_t CMSCollector::plab_sample_minimum_size() {
 647   // The default value of MinTLABSize is 2k, but there is
 648   // no way to get the default value if the flag has been overridden.
 649   return MAX2(ThreadLocalAllocBuffer::min_size() * HeapWordSize, 2 * K);
 650 }
 651 
 652 const char* ConcurrentMarkSweepGeneration::name() const {
 653   return "concurrent mark-sweep generation";
 654 }
 655 void ConcurrentMarkSweepGeneration::update_counters() {
 656   if (UsePerfData) {
 657     _space_counters->update_all();
 658     _gen_counters->update_all();
 659   }
 660 }
 661 
 662 // this is an optimized version of update_counters(). it takes the
 663 // used value as a parameter rather than computing it.
 664 //
 665 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 666   if (UsePerfData) {
 667     _space_counters->update_used(used);
 668     _space_counters->update_capacity();
 669     _gen_counters->update_all();
 670   }
 671 }
 672 
 673 void ConcurrentMarkSweepGeneration::print() const {
 674   Generation::print();
 675   cmsSpace()->print();
 676 }
 677 
 678 #ifndef PRODUCT
 679 void ConcurrentMarkSweepGeneration::print_statistics() {
 680   cmsSpace()->printFLCensus(0);
 681 }
 682 #endif
 683 
 684 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 685   GenCollectedHeap* gch = GenCollectedHeap::heap();
 686   if (PrintGCDetails) {
 687     if (Verbose) {
 688       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 689         level(), short_name(), s, used(), capacity());
 690     } else {
 691       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 692         level(), short_name(), s, used() / K, capacity() / K);
 693     }
 694   }
 695   if (Verbose) {
 696     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 697               gch->used(), gch->capacity());
 698   } else {
 699     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 700               gch->used() / K, gch->capacity() / K);
 701   }
 702 }
 703 
 704 size_t
 705 ConcurrentMarkSweepGeneration::contiguous_available() const {
 706   // dld proposes an improvement in precision here. If the committed
 707   // part of the space ends in a free block we should add that to
 708   // uncommitted size in the calculation below. Will make this
 709   // change later, staying with the approximation below for the
 710   // time being. -- ysr.
 711   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 712 }
 713 
 714 size_t
 715 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 716   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 717 }
 718 
 719 size_t ConcurrentMarkSweepGeneration::max_available() const {
 720   return free() + _virtual_space.uncommitted_size();
 721 }
 722 
 723 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 724   size_t available = max_available();
 725   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 726   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 727   if (Verbose && PrintGCDetails) {
 728     gclog_or_tty->print_cr(
 729       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 730       "max_promo("SIZE_FORMAT")",
 731       res? "":" not", available, res? ">=":"<",
 732       av_promo, max_promotion_in_bytes);
 733   }
 734   return res;
 735 }
 736 
 737 // At a promotion failure dump information on block layout in heap
 738 // (cms old generation).
 739 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 740   if (CMSDumpAtPromotionFailure) {
 741     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 742   }
 743 }
 744 
 745 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 746   // Clear the promotion information.  These pointers can be adjusted
 747   // along with all the other pointers into the heap but
 748   // compaction is expected to be a rare event with
 749   // a heap using cms so don't do it without seeing the need.
 750   for (uint i = 0; i < ParallelGCThreads; i++) {
 751     _par_gc_thread_states[i]->promo.reset();
 752   }
 753 }
 754 
 755 void ConcurrentMarkSweepGeneration::compute_new_size() {
 756   assert_locked_or_safepoint(Heap_lock);
 757 
 758   // If incremental collection failed, we just want to expand
 759   // to the limit.
 760   if (incremental_collection_failed()) {
 761     clear_incremental_collection_failed();
 762     grow_to_reserved();
 763     return;
 764   }
 765 
 766   // The heap has been compacted but not reset yet.
 767   // Any metric such as free() or used() will be incorrect.
 768 
 769   CardGeneration::compute_new_size();
 770 
 771   // Reset again after a possible resizing
 772   if (did_compact()) {
 773     cmsSpace()->reset_after_compaction();
 774   }
 775 }
 776 
 777 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 778   assert_locked_or_safepoint(Heap_lock);
 779 
 780   // If incremental collection failed, we just want to expand
 781   // to the limit.
 782   if (incremental_collection_failed()) {
 783     clear_incremental_collection_failed();
 784     grow_to_reserved();
 785     return;
 786   }
 787 
 788   double free_percentage = ((double) free()) / capacity();
 789   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 790   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 791 
 792   // compute expansion delta needed for reaching desired free percentage
 793   if (free_percentage < desired_free_percentage) {
 794     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 795     assert(desired_capacity >= capacity(), "invalid expansion size");
 796     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 797     if (PrintGCDetails && Verbose) {
 798       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 799       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 800       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 801       gclog_or_tty->print_cr("  Desired free fraction %f",
 802         desired_free_percentage);
 803       gclog_or_tty->print_cr("  Maximum free fraction %f",
 804         maximum_free_percentage);
 805       gclog_or_tty->print_cr("  Capacity "SIZE_FORMAT, capacity()/1000);
 806       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 807         desired_capacity/1000);
 808       int prev_level = level() - 1;
 809       if (prev_level >= 0) {
 810         size_t prev_size = 0;
 811         GenCollectedHeap* gch = GenCollectedHeap::heap();
 812         Generation* prev_gen = gch->young_gen();
 813         prev_size = prev_gen->capacity();
 814           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 815                                  prev_size/1000);
 816       }
 817       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 818         unsafe_max_alloc_nogc()/1000);
 819       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 820         contiguous_available()/1000);
 821       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 822         expand_bytes);
 823     }
 824     // safe if expansion fails
 825     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 826     if (PrintGCDetails && Verbose) {
 827       gclog_or_tty->print_cr("  Expanded free fraction %f",
 828         ((double) free()) / capacity());
 829     }
 830   } else {
 831     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 832     assert(desired_capacity <= capacity(), "invalid expansion size");
 833     size_t shrink_bytes = capacity() - desired_capacity;
 834     // Don't shrink unless the delta is greater than the minimum shrink we want
 835     if (shrink_bytes >= MinHeapDeltaBytes) {
 836       shrink_free_list_by(shrink_bytes);
 837     }
 838   }
 839 }
 840 
 841 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 842   return cmsSpace()->freelistLock();
 843 }
 844 
 845 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
 846                                                   bool   tlab) {
 847   CMSSynchronousYieldRequest yr;
 848   MutexLockerEx x(freelistLock(),
 849                   Mutex::_no_safepoint_check_flag);
 850   return have_lock_and_allocate(size, tlab);
 851 }
 852 
 853 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 854                                                   bool   tlab /* ignored */) {
 855   assert_lock_strong(freelistLock());
 856   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 857   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 858   // Allocate the object live (grey) if the background collector has
 859   // started marking. This is necessary because the marker may
 860   // have passed this address and consequently this object will
 861   // not otherwise be greyed and would be incorrectly swept up.
 862   // Note that if this object contains references, the writing
 863   // of those references will dirty the card containing this object
 864   // allowing the object to be blackened (and its references scanned)
 865   // either during a preclean phase or at the final checkpoint.
 866   if (res != NULL) {
 867     // We may block here with an uninitialized object with
 868     // its mark-bit or P-bits not yet set. Such objects need
 869     // to be safely navigable by block_start().
 870     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 871     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 872     collector()->direct_allocated(res, adjustedSize);
 873     _direct_allocated_words += adjustedSize;
 874     // allocation counters
 875     NOT_PRODUCT(
 876       _numObjectsAllocated++;
 877       _numWordsAllocated += (int)adjustedSize;
 878     )
 879   }
 880   return res;
 881 }
 882 
 883 // In the case of direct allocation by mutators in a generation that
 884 // is being concurrently collected, the object must be allocated
 885 // live (grey) if the background collector has started marking.
 886 // This is necessary because the marker may
 887 // have passed this address and consequently this object will
 888 // not otherwise be greyed and would be incorrectly swept up.
 889 // Note that if this object contains references, the writing
 890 // of those references will dirty the card containing this object
 891 // allowing the object to be blackened (and its references scanned)
 892 // either during a preclean phase or at the final checkpoint.
 893 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 894   assert(_markBitMap.covers(start, size), "Out of bounds");
 895   if (_collectorState >= Marking) {
 896     MutexLockerEx y(_markBitMap.lock(),
 897                     Mutex::_no_safepoint_check_flag);
 898     // [see comments preceding SweepClosure::do_blk() below for details]
 899     //
 900     // Can the P-bits be deleted now?  JJJ
 901     //
 902     // 1. need to mark the object as live so it isn't collected
 903     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 904     // 3. need to mark the end of the object so marking, precleaning or sweeping
 905     //    can skip over uninitialized or unparsable objects. An allocated
 906     //    object is considered uninitialized for our purposes as long as
 907     //    its klass word is NULL.  All old gen objects are parsable
 908     //    as soon as they are initialized.)
 909     _markBitMap.mark(start);          // object is live
 910     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 911     _markBitMap.mark(start + size - 1);
 912                                       // mark end of object
 913   }
 914   // check that oop looks uninitialized
 915   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 916 }
 917 
 918 void CMSCollector::promoted(bool par, HeapWord* start,
 919                             bool is_obj_array, size_t obj_size) {
 920   assert(_markBitMap.covers(start), "Out of bounds");
 921   // See comment in direct_allocated() about when objects should
 922   // be allocated live.
 923   if (_collectorState >= Marking) {
 924     // we already hold the marking bit map lock, taken in
 925     // the prologue
 926     if (par) {
 927       _markBitMap.par_mark(start);
 928     } else {
 929       _markBitMap.mark(start);
 930     }
 931     // We don't need to mark the object as uninitialized (as
 932     // in direct_allocated above) because this is being done with the
 933     // world stopped and the object will be initialized by the
 934     // time the marking, precleaning or sweeping get to look at it.
 935     // But see the code for copying objects into the CMS generation,
 936     // where we need to ensure that concurrent readers of the
 937     // block offset table are able to safely navigate a block that
 938     // is in flux from being free to being allocated (and in
 939     // transition while being copied into) and subsequently
 940     // becoming a bona-fide object when the copy/promotion is complete.
 941     assert(SafepointSynchronize::is_at_safepoint(),
 942            "expect promotion only at safepoints");
 943 
 944     if (_collectorState < Sweeping) {
 945       // Mark the appropriate cards in the modUnionTable, so that
 946       // this object gets scanned before the sweep. If this is
 947       // not done, CMS generation references in the object might
 948       // not get marked.
 949       // For the case of arrays, which are otherwise precisely
 950       // marked, we need to dirty the entire array, not just its head.
 951       if (is_obj_array) {
 952         // The [par_]mark_range() method expects mr.end() below to
 953         // be aligned to the granularity of a bit's representation
 954         // in the heap. In the case of the MUT below, that's a
 955         // card size.
 956         MemRegion mr(start,
 957                      (HeapWord*)round_to((intptr_t)(start + obj_size),
 958                         CardTableModRefBS::card_size /* bytes */));
 959         if (par) {
 960           _modUnionTable.par_mark_range(mr);
 961         } else {
 962           _modUnionTable.mark_range(mr);
 963         }
 964       } else {  // not an obj array; we can just mark the head
 965         if (par) {
 966           _modUnionTable.par_mark(start);
 967         } else {
 968           _modUnionTable.mark(start);
 969         }
 970       }
 971     }
 972   }
 973 }
 974 
 975 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 976   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 977   // allocate, copy and if necessary update promoinfo --
 978   // delegate to underlying space.
 979   assert_lock_strong(freelistLock());
 980 
 981 #ifndef PRODUCT
 982   if (GenCollectedHeap::heap()->promotion_should_fail()) {
 983     return NULL;
 984   }
 985 #endif  // #ifndef PRODUCT
 986 
 987   oop res = _cmsSpace->promote(obj, obj_size);
 988   if (res == NULL) {
 989     // expand and retry
 990     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 991     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 992     // Since this is the old generation, we don't try to promote
 993     // into a more senior generation.
 994     res = _cmsSpace->promote(obj, obj_size);
 995   }
 996   if (res != NULL) {
 997     // See comment in allocate() about when objects should
 998     // be allocated live.
 999     assert(obj->is_oop(), "Will dereference klass pointer below");
1000     collector()->promoted(false,           // Not parallel
1001                           (HeapWord*)res, obj->is_objArray(), obj_size);
1002     // promotion counters
1003     NOT_PRODUCT(
1004       _numObjectsPromoted++;
1005       _numWordsPromoted +=
1006         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1007     )
1008   }
1009   return res;
1010 }
1011 
1012 
1013 // IMPORTANT: Notes on object size recognition in CMS.
1014 // ---------------------------------------------------
1015 // A block of storage in the CMS generation is always in
1016 // one of three states. A free block (FREE), an allocated
1017 // object (OBJECT) whose size() method reports the correct size,
1018 // and an intermediate state (TRANSIENT) in which its size cannot
1019 // be accurately determined.
1020 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1021 // -----------------------------------------------------
1022 // FREE:      klass_word & 1 == 1; mark_word holds block size
1023 //
1024 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1025 //            obj->size() computes correct size
1026 //
1027 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1028 //
1029 // STATE IDENTIFICATION: (64 bit+COOPS)
1030 // ------------------------------------
1031 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1032 //
1033 // OBJECT:    klass_word installed; klass_word != 0;
1034 //            obj->size() computes correct size
1035 //
1036 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1037 //
1038 //
1039 // STATE TRANSITION DIAGRAM
1040 //
1041 //        mut / parnew                     mut  /  parnew
1042 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1043 //  ^                                                                   |
1044 //  |------------------------ DEAD <------------------------------------|
1045 //         sweep                            mut
1046 //
1047 // While a block is in TRANSIENT state its size cannot be determined
1048 // so readers will either need to come back later or stall until
1049 // the size can be determined. Note that for the case of direct
1050 // allocation, P-bits, when available, may be used to determine the
1051 // size of an object that may not yet have been initialized.
1052 
1053 // Things to support parallel young-gen collection.
1054 oop
1055 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1056                                            oop old, markOop m,
1057                                            size_t word_sz) {
1058 #ifndef PRODUCT
1059   if (GenCollectedHeap::heap()->promotion_should_fail()) {
1060     return NULL;
1061   }
1062 #endif  // #ifndef PRODUCT
1063 
1064   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1065   PromotionInfo* promoInfo = &ps->promo;
1066   // if we are tracking promotions, then first ensure space for
1067   // promotion (including spooling space for saving header if necessary).
1068   // then allocate and copy, then track promoted info if needed.
1069   // When tracking (see PromotionInfo::track()), the mark word may
1070   // be displaced and in this case restoration of the mark word
1071   // occurs in the (oop_since_save_marks_)iterate phase.
1072   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1073     // Out of space for allocating spooling buffers;
1074     // try expanding and allocating spooling buffers.
1075     if (!expand_and_ensure_spooling_space(promoInfo)) {
1076       return NULL;
1077     }
1078   }
1079   assert(promoInfo->has_spooling_space(), "Control point invariant");
1080   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1081   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1082   if (obj_ptr == NULL) {
1083      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1084      if (obj_ptr == NULL) {
1085        return NULL;
1086      }
1087   }
1088   oop obj = oop(obj_ptr);
1089   OrderAccess::storestore();
1090   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1091   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1092   // IMPORTANT: See note on object initialization for CMS above.
1093   // Otherwise, copy the object.  Here we must be careful to insert the
1094   // klass pointer last, since this marks the block as an allocated object.
1095   // Except with compressed oops it's the mark word.
1096   HeapWord* old_ptr = (HeapWord*)old;
1097   // Restore the mark word copied above.
1098   obj->set_mark(m);
1099   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1100   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1101   OrderAccess::storestore();
1102 
1103   if (UseCompressedClassPointers) {
1104     // Copy gap missed by (aligned) header size calculation below
1105     obj->set_klass_gap(old->klass_gap());
1106   }
1107   if (word_sz > (size_t)oopDesc::header_size()) {
1108     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1109                                  obj_ptr + oopDesc::header_size(),
1110                                  word_sz - oopDesc::header_size());
1111   }
1112 
1113   // Now we can track the promoted object, if necessary.  We take care
1114   // to delay the transition from uninitialized to full object
1115   // (i.e., insertion of klass pointer) until after, so that it
1116   // atomically becomes a promoted object.
1117   if (promoInfo->tracking()) {
1118     promoInfo->track((PromotedObject*)obj, old->klass());
1119   }
1120   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1121   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1122   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1123 
1124   // Finally, install the klass pointer (this should be volatile).
1125   OrderAccess::storestore();
1126   obj->set_klass(old->klass());
1127   // We should now be able to calculate the right size for this object
1128   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1129 
1130   collector()->promoted(true,          // parallel
1131                         obj_ptr, old->is_objArray(), word_sz);
1132 
1133   NOT_PRODUCT(
1134     Atomic::inc_ptr(&_numObjectsPromoted);
1135     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1136   )
1137 
1138   return obj;
1139 }
1140 
1141 void
1142 ConcurrentMarkSweepGeneration::
1143 par_promote_alloc_done(int thread_num) {
1144   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1145   ps->lab.retire(thread_num);
1146 }
1147 
1148 void
1149 ConcurrentMarkSweepGeneration::
1150 par_oop_since_save_marks_iterate_done(int thread_num) {
1151   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1152   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1153   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1154 }
1155 
1156 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1157                                                    size_t size,
1158                                                    bool   tlab)
1159 {
1160   // We allow a STW collection only if a full
1161   // collection was requested.
1162   return full || should_allocate(size, tlab); // FIX ME !!!
1163   // This and promotion failure handling are connected at the
1164   // hip and should be fixed by untying them.
1165 }
1166 
1167 bool CMSCollector::shouldConcurrentCollect() {
1168   if (_full_gc_requested) {
1169     if (Verbose && PrintGCDetails) {
1170       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1171                              " gc request (or gc_locker)");
1172     }
1173     return true;
1174   }
1175 
1176   FreelistLocker x(this);
1177   // ------------------------------------------------------------------
1178   // Print out lots of information which affects the initiation of
1179   // a collection.
1180   if (PrintCMSInitiationStatistics && stats().valid()) {
1181     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1182     gclog_or_tty->stamp();
1183     gclog_or_tty->cr();
1184     stats().print_on(gclog_or_tty);
1185     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1186       stats().time_until_cms_gen_full());
1187     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1188     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1189                            _cmsGen->contiguous_available());
1190     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1191     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1192     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1193     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1194     gclog_or_tty->print_cr("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1195     gclog_or_tty->print_cr("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1196     gclog_or_tty->print_cr("metadata initialized %d",
1197       MetaspaceGC::should_concurrent_collect());
1198   }
1199   // ------------------------------------------------------------------
1200 
1201   // If the estimated time to complete a cms collection (cms_duration())
1202   // is less than the estimated time remaining until the cms generation
1203   // is full, start a collection.
1204   if (!UseCMSInitiatingOccupancyOnly) {
1205     if (stats().valid()) {
1206       if (stats().time_until_cms_start() == 0.0) {
1207         return true;
1208       }
1209     } else {
1210       // We want to conservatively collect somewhat early in order
1211       // to try and "bootstrap" our CMS/promotion statistics;
1212       // this branch will not fire after the first successful CMS
1213       // collection because the stats should then be valid.
1214       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1215         if (Verbose && PrintGCDetails) {
1216           gclog_or_tty->print_cr(
1217             " CMSCollector: collect for bootstrapping statistics:"
1218             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1219             _bootstrap_occupancy);
1220         }
1221         return true;
1222       }
1223     }
1224   }
1225 
1226   // Otherwise, we start a collection cycle if
1227   // old gen want a collection cycle started. Each may use
1228   // an appropriate criterion for making this decision.
1229   // XXX We need to make sure that the gen expansion
1230   // criterion dovetails well with this. XXX NEED TO FIX THIS
1231   if (_cmsGen->should_concurrent_collect()) {
1232     if (Verbose && PrintGCDetails) {
1233       gclog_or_tty->print_cr("CMS old gen initiated");
1234     }
1235     return true;
1236   }
1237 
1238   // We start a collection if we believe an incremental collection may fail;
1239   // this is not likely to be productive in practice because it's probably too
1240   // late anyway.
1241   GenCollectedHeap* gch = GenCollectedHeap::heap();
1242   assert(gch->collector_policy()->is_generation_policy(),
1243          "You may want to check the correctness of the following");
1244   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1245     if (Verbose && PrintGCDetails) {
1246       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1247     }
1248     return true;
1249   }
1250 
1251   if (MetaspaceGC::should_concurrent_collect()) {
1252     if (Verbose && PrintGCDetails) {
1253       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1254     }
1255     return true;
1256   }
1257 
1258   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1259   if (CMSTriggerInterval >= 0) {
1260     if (CMSTriggerInterval == 0) {
1261       // Trigger always
1262       return true;
1263     }
1264 
1265     // Check the CMS time since begin (we do not check the stats validity
1266     // as we want to be able to trigger the first CMS cycle as well)
1267     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1268       if (Verbose && PrintGCDetails) {
1269         if (stats().valid()) {
1270           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1271                                  stats().cms_time_since_begin());
1272         } else {
1273           gclog_or_tty->print_cr("CMSCollector: collect because of trigger interval (first collection)");
1274         }
1275       }
1276       return true;
1277     }
1278   }
1279 
1280   return false;
1281 }
1282 
1283 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1284 
1285 // Clear _expansion_cause fields of constituent generations
1286 void CMSCollector::clear_expansion_cause() {
1287   _cmsGen->clear_expansion_cause();
1288 }
1289 
1290 // We should be conservative in starting a collection cycle.  To
1291 // start too eagerly runs the risk of collecting too often in the
1292 // extreme.  To collect too rarely falls back on full collections,
1293 // which works, even if not optimum in terms of concurrent work.
1294 // As a work around for too eagerly collecting, use the flag
1295 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1296 // giving the user an easily understandable way of controlling the
1297 // collections.
1298 // We want to start a new collection cycle if any of the following
1299 // conditions hold:
1300 // . our current occupancy exceeds the configured initiating occupancy
1301 //   for this generation, or
1302 // . we recently needed to expand this space and have not, since that
1303 //   expansion, done a collection of this generation, or
1304 // . the underlying space believes that it may be a good idea to initiate
1305 //   a concurrent collection (this may be based on criteria such as the
1306 //   following: the space uses linear allocation and linear allocation is
1307 //   going to fail, or there is believed to be excessive fragmentation in
1308 //   the generation, etc... or ...
1309 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1310 //   the case of the old generation; see CR 6543076):
1311 //   we may be approaching a point at which allocation requests may fail because
1312 //   we will be out of sufficient free space given allocation rate estimates.]
1313 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1314 
1315   assert_lock_strong(freelistLock());
1316   if (occupancy() > initiating_occupancy()) {
1317     if (PrintGCDetails && Verbose) {
1318       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1319         short_name(), occupancy(), initiating_occupancy());
1320     }
1321     return true;
1322   }
1323   if (UseCMSInitiatingOccupancyOnly) {
1324     return false;
1325   }
1326   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1327     if (PrintGCDetails && Verbose) {
1328       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1329         short_name());
1330     }
1331     return true;
1332   }
1333   if (_cmsSpace->should_concurrent_collect()) {
1334     if (PrintGCDetails && Verbose) {
1335       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1336         short_name());
1337     }
1338     return true;
1339   }
1340   return false;
1341 }
1342 
1343 void ConcurrentMarkSweepGeneration::collect(bool   full,
1344                                             bool   clear_all_soft_refs,
1345                                             size_t size,
1346                                             bool   tlab)
1347 {
1348   collector()->collect(full, clear_all_soft_refs, size, tlab);
1349 }
1350 
1351 void CMSCollector::collect(bool   full,
1352                            bool   clear_all_soft_refs,
1353                            size_t size,
1354                            bool   tlab)
1355 {
1356   // The following "if" branch is present for defensive reasons.
1357   // In the current uses of this interface, it can be replaced with:
1358   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1359   // But I am not placing that assert here to allow future
1360   // generality in invoking this interface.
1361   if (GC_locker::is_active()) {
1362     // A consistency test for GC_locker
1363     assert(GC_locker::needs_gc(), "Should have been set already");
1364     // Skip this foreground collection, instead
1365     // expanding the heap if necessary.
1366     // Need the free list locks for the call to free() in compute_new_size()
1367     compute_new_size();
1368     return;
1369   }
1370   acquire_control_and_collect(full, clear_all_soft_refs);
1371 }
1372 
1373 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1374   GenCollectedHeap* gch = GenCollectedHeap::heap();
1375   unsigned int gc_count = gch->total_full_collections();
1376   if (gc_count == full_gc_count) {
1377     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1378     _full_gc_requested = true;
1379     _full_gc_cause = cause;
1380     CGC_lock->notify();   // nudge CMS thread
1381   } else {
1382     assert(gc_count > full_gc_count, "Error: causal loop");
1383   }
1384 }
1385 
1386 bool CMSCollector::is_external_interruption() {
1387   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1388   return GCCause::is_user_requested_gc(cause) ||
1389          GCCause::is_serviceability_requested_gc(cause);
1390 }
1391 
1392 void CMSCollector::report_concurrent_mode_interruption() {
1393   if (is_external_interruption()) {
1394     if (PrintGCDetails) {
1395       gclog_or_tty->print(" (concurrent mode interrupted)");
1396     }
1397   } else {
1398     if (PrintGCDetails) {
1399       gclog_or_tty->print(" (concurrent mode failure)");
1400     }
1401     _gc_tracer_cm->report_concurrent_mode_failure();
1402   }
1403 }
1404 
1405 
1406 // The foreground and background collectors need to coordinate in order
1407 // to make sure that they do not mutually interfere with CMS collections.
1408 // When a background collection is active,
1409 // the foreground collector may need to take over (preempt) and
1410 // synchronously complete an ongoing collection. Depending on the
1411 // frequency of the background collections and the heap usage
1412 // of the application, this preemption can be seldom or frequent.
1413 // There are only certain
1414 // points in the background collection that the "collection-baton"
1415 // can be passed to the foreground collector.
1416 //
1417 // The foreground collector will wait for the baton before
1418 // starting any part of the collection.  The foreground collector
1419 // will only wait at one location.
1420 //
1421 // The background collector will yield the baton before starting a new
1422 // phase of the collection (e.g., before initial marking, marking from roots,
1423 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1424 // of the loop which switches the phases. The background collector does some
1425 // of the phases (initial mark, final re-mark) with the world stopped.
1426 // Because of locking involved in stopping the world,
1427 // the foreground collector should not block waiting for the background
1428 // collector when it is doing a stop-the-world phase.  The background
1429 // collector will yield the baton at an additional point just before
1430 // it enters a stop-the-world phase.  Once the world is stopped, the
1431 // background collector checks the phase of the collection.  If the
1432 // phase has not changed, it proceeds with the collection.  If the
1433 // phase has changed, it skips that phase of the collection.  See
1434 // the comments on the use of the Heap_lock in collect_in_background().
1435 //
1436 // Variable used in baton passing.
1437 //   _foregroundGCIsActive - Set to true by the foreground collector when
1438 //      it wants the baton.  The foreground clears it when it has finished
1439 //      the collection.
1440 //   _foregroundGCShouldWait - Set to true by the background collector
1441 //        when it is running.  The foreground collector waits while
1442 //      _foregroundGCShouldWait is true.
1443 //  CGC_lock - monitor used to protect access to the above variables
1444 //      and to notify the foreground and background collectors.
1445 //  _collectorState - current state of the CMS collection.
1446 //
1447 // The foreground collector
1448 //   acquires the CGC_lock
1449 //   sets _foregroundGCIsActive
1450 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1451 //     various locks acquired in preparation for the collection
1452 //     are released so as not to block the background collector
1453 //     that is in the midst of a collection
1454 //   proceeds with the collection
1455 //   clears _foregroundGCIsActive
1456 //   returns
1457 //
1458 // The background collector in a loop iterating on the phases of the
1459 //      collection
1460 //   acquires the CGC_lock
1461 //   sets _foregroundGCShouldWait
1462 //   if _foregroundGCIsActive is set
1463 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1464 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1465 //     and exits the loop.
1466 //   otherwise
1467 //     proceed with that phase of the collection
1468 //     if the phase is a stop-the-world phase,
1469 //       yield the baton once more just before enqueueing
1470 //       the stop-world CMS operation (executed by the VM thread).
1471 //   returns after all phases of the collection are done
1472 //
1473 
1474 void CMSCollector::acquire_control_and_collect(bool full,
1475         bool clear_all_soft_refs) {
1476   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1477   assert(!Thread::current()->is_ConcurrentGC_thread(),
1478          "shouldn't try to acquire control from self!");
1479 
1480   // Start the protocol for acquiring control of the
1481   // collection from the background collector (aka CMS thread).
1482   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1483          "VM thread should have CMS token");
1484   // Remember the possibly interrupted state of an ongoing
1485   // concurrent collection
1486   CollectorState first_state = _collectorState;
1487 
1488   // Signal to a possibly ongoing concurrent collection that
1489   // we want to do a foreground collection.
1490   _foregroundGCIsActive = true;
1491 
1492   // release locks and wait for a notify from the background collector
1493   // releasing the locks in only necessary for phases which
1494   // do yields to improve the granularity of the collection.
1495   assert_lock_strong(bitMapLock());
1496   // We need to lock the Free list lock for the space that we are
1497   // currently collecting.
1498   assert(haveFreelistLocks(), "Must be holding free list locks");
1499   bitMapLock()->unlock();
1500   releaseFreelistLocks();
1501   {
1502     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1503     if (_foregroundGCShouldWait) {
1504       // We are going to be waiting for action for the CMS thread;
1505       // it had better not be gone (for instance at shutdown)!
1506       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1507              "CMS thread must be running");
1508       // Wait here until the background collector gives us the go-ahead
1509       ConcurrentMarkSweepThread::clear_CMS_flag(
1510         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1511       // Get a possibly blocked CMS thread going:
1512       //   Note that we set _foregroundGCIsActive true above,
1513       //   without protection of the CGC_lock.
1514       CGC_lock->notify();
1515       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1516              "Possible deadlock");
1517       while (_foregroundGCShouldWait) {
1518         // wait for notification
1519         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1520         // Possibility of delay/starvation here, since CMS token does
1521         // not know to give priority to VM thread? Actually, i think
1522         // there wouldn't be any delay/starvation, but the proof of
1523         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1524       }
1525       ConcurrentMarkSweepThread::set_CMS_flag(
1526         ConcurrentMarkSweepThread::CMS_vm_has_token);
1527     }
1528   }
1529   // The CMS_token is already held.  Get back the other locks.
1530   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1531          "VM thread should have CMS token");
1532   getFreelistLocks();
1533   bitMapLock()->lock_without_safepoint_check();
1534   if (TraceCMSState) {
1535     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1536       INTPTR_FORMAT " with first state %d", p2i(Thread::current()), first_state);
1537     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1538   }
1539 
1540   // Inform cms gen if this was due to partial collection failing.
1541   // The CMS gen may use this fact to determine its expansion policy.
1542   GenCollectedHeap* gch = GenCollectedHeap::heap();
1543   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1544     assert(!_cmsGen->incremental_collection_failed(),
1545            "Should have been noticed, reacted to and cleared");
1546     _cmsGen->set_incremental_collection_failed();
1547   }
1548 
1549   if (first_state > Idling) {
1550     report_concurrent_mode_interruption();
1551   }
1552 
1553   set_did_compact(true);
1554 
1555   // If the collection is being acquired from the background
1556   // collector, there may be references on the discovered
1557   // references lists.  Abandon those references, since some
1558   // of them may have become unreachable after concurrent
1559   // discovery; the STW compacting collector will redo discovery
1560   // more precisely, without being subject to floating garbage.
1561   // Leaving otherwise unreachable references in the discovered
1562   // lists would require special handling.
1563   ref_processor()->disable_discovery();
1564   ref_processor()->abandon_partial_discovery();
1565   ref_processor()->verify_no_references_recorded();
1566 
1567   if (first_state > Idling) {
1568     save_heap_summary();
1569   }
1570 
1571   do_compaction_work(clear_all_soft_refs);
1572 
1573   // Has the GC time limit been exceeded?
1574   size_t max_eden_size = _young_gen->max_capacity() -
1575                          _young_gen->to()->capacity() -
1576                          _young_gen->from()->capacity();
1577   GCCause::Cause gc_cause = gch->gc_cause();
1578   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1579                                          _young_gen->eden()->used(),
1580                                          _cmsGen->max_capacity(),
1581                                          max_eden_size,
1582                                          full,
1583                                          gc_cause,
1584                                          gch->collector_policy());
1585 
1586   // Reset the expansion cause, now that we just completed
1587   // a collection cycle.
1588   clear_expansion_cause();
1589   _foregroundGCIsActive = false;
1590   return;
1591 }
1592 
1593 // Resize the tenured generation
1594 // after obtaining the free list locks for the
1595 // two generations.
1596 void CMSCollector::compute_new_size() {
1597   assert_locked_or_safepoint(Heap_lock);
1598   FreelistLocker z(this);
1599   MetaspaceGC::compute_new_size();
1600   _cmsGen->compute_new_size_free_list();
1601 }
1602 
1603 // A work method used by the foreground collector to do
1604 // a mark-sweep-compact.
1605 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1606   GenCollectedHeap* gch = GenCollectedHeap::heap();
1607 
1608   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1609   gc_timer->register_gc_start();
1610 
1611   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1612   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
1613 
1614   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL, gc_tracer->gc_id());
1615 
1616   // Temporarily widen the span of the weak reference processing to
1617   // the entire heap.
1618   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
1619   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1620   // Temporarily, clear the "is_alive_non_header" field of the
1621   // reference processor.
1622   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1623   // Temporarily make reference _processing_ single threaded (non-MT).
1624   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1625   // Temporarily make refs discovery atomic
1626   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1627   // Temporarily make reference _discovery_ single threaded (non-MT)
1628   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1629 
1630   ref_processor()->set_enqueuing_is_done(false);
1631   ref_processor()->enable_discovery();
1632   ref_processor()->setup_policy(clear_all_soft_refs);
1633   // If an asynchronous collection finishes, the _modUnionTable is
1634   // all clear.  If we are assuming the collection from an asynchronous
1635   // collection, clear the _modUnionTable.
1636   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1637     "_modUnionTable should be clear if the baton was not passed");
1638   _modUnionTable.clear_all();
1639   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
1640     "mod union for klasses should be clear if the baton was passed");
1641   _ct->klass_rem_set()->clear_mod_union();
1642 
1643   // We must adjust the allocation statistics being maintained
1644   // in the free list space. We do so by reading and clearing
1645   // the sweep timer and updating the block flux rate estimates below.
1646   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1647   if (_inter_sweep_timer.is_active()) {
1648     _inter_sweep_timer.stop();
1649     // Note that we do not use this sample to update the _inter_sweep_estimate.
1650     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1651                                             _inter_sweep_estimate.padded_average(),
1652                                             _intra_sweep_estimate.padded_average());
1653   }
1654 
1655   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
1656     ref_processor(), clear_all_soft_refs);
1657   #ifdef ASSERT
1658     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1659     size_t free_size = cms_space->free();
1660     assert(free_size ==
1661            pointer_delta(cms_space->end(), cms_space->compaction_top())
1662            * HeapWordSize,
1663       "All the free space should be compacted into one chunk at top");
1664     assert(cms_space->dictionary()->total_chunk_size(
1665                                       debug_only(cms_space->freelistLock())) == 0 ||
1666            cms_space->totalSizeInIndexedFreeLists() == 0,
1667       "All the free space should be in a single chunk");
1668     size_t num = cms_space->totalCount();
1669     assert((free_size == 0 && num == 0) ||
1670            (free_size > 0  && (num == 1 || num == 2)),
1671          "There should be at most 2 free chunks after compaction");
1672   #endif // ASSERT
1673   _collectorState = Resetting;
1674   assert(_restart_addr == NULL,
1675          "Should have been NULL'd before baton was passed");
1676   reset(false /* == !concurrent */);
1677   _cmsGen->reset_after_compaction();
1678   _concurrent_cycles_since_last_unload = 0;
1679 
1680   // Clear any data recorded in the PLAB chunk arrays.
1681   if (_survivor_plab_array != NULL) {
1682     reset_survivor_plab_arrays();
1683   }
1684 
1685   // Adjust the per-size allocation stats for the next epoch.
1686   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1687   // Restart the "inter sweep timer" for the next epoch.
1688   _inter_sweep_timer.reset();
1689   _inter_sweep_timer.start();
1690 
1691   gc_timer->register_gc_end();
1692 
1693   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1694 
1695   // For a mark-sweep-compact, compute_new_size() will be called
1696   // in the heap's do_collection() method.
1697 }
1698 
1699 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1700   ContiguousSpace* eden_space = _young_gen->eden();
1701   ContiguousSpace* from_space = _young_gen->from();
1702   ContiguousSpace* to_space   = _young_gen->to();
1703   // Eden
1704   if (_eden_chunk_array != NULL) {
1705     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1706                            p2i(eden_space->bottom()), p2i(eden_space->top()),
1707                            p2i(eden_space->end()), eden_space->capacity());
1708     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
1709                            "_eden_chunk_capacity=" SIZE_FORMAT,
1710                            _eden_chunk_index, _eden_chunk_capacity);
1711     for (size_t i = 0; i < _eden_chunk_index; i++) {
1712       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1713                              i, p2i(_eden_chunk_array[i]));
1714     }
1715   }
1716   // Survivor
1717   if (_survivor_chunk_array != NULL) {
1718     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1719                            p2i(from_space->bottom()), p2i(from_space->top()),
1720                            p2i(from_space->end()), from_space->capacity());
1721     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
1722                            "_survivor_chunk_capacity=" SIZE_FORMAT,
1723                            _survivor_chunk_index, _survivor_chunk_capacity);
1724     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1725       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
1726                              i, p2i(_survivor_chunk_array[i]));
1727     }
1728   }
1729 }
1730 
1731 void CMSCollector::getFreelistLocks() const {
1732   // Get locks for all free lists in all generations that this
1733   // collector is responsible for
1734   _cmsGen->freelistLock()->lock_without_safepoint_check();
1735 }
1736 
1737 void CMSCollector::releaseFreelistLocks() const {
1738   // Release locks for all free lists in all generations that this
1739   // collector is responsible for
1740   _cmsGen->freelistLock()->unlock();
1741 }
1742 
1743 bool CMSCollector::haveFreelistLocks() const {
1744   // Check locks for all free lists in all generations that this
1745   // collector is responsible for
1746   assert_lock_strong(_cmsGen->freelistLock());
1747   PRODUCT_ONLY(ShouldNotReachHere());
1748   return true;
1749 }
1750 
1751 // A utility class that is used by the CMS collector to
1752 // temporarily "release" the foreground collector from its
1753 // usual obligation to wait for the background collector to
1754 // complete an ongoing phase before proceeding.
1755 class ReleaseForegroundGC: public StackObj {
1756  private:
1757   CMSCollector* _c;
1758  public:
1759   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1760     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1761     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1762     // allow a potentially blocked foreground collector to proceed
1763     _c->_foregroundGCShouldWait = false;
1764     if (_c->_foregroundGCIsActive) {
1765       CGC_lock->notify();
1766     }
1767     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1768            "Possible deadlock");
1769   }
1770 
1771   ~ReleaseForegroundGC() {
1772     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1773     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1774     _c->_foregroundGCShouldWait = true;
1775   }
1776 };
1777 
1778 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1779   assert(Thread::current()->is_ConcurrentGC_thread(),
1780     "A CMS asynchronous collection is only allowed on a CMS thread.");
1781 
1782   GenCollectedHeap* gch = GenCollectedHeap::heap();
1783   {
1784     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1785     MutexLockerEx hl(Heap_lock, safepoint_check);
1786     FreelistLocker fll(this);
1787     MutexLockerEx x(CGC_lock, safepoint_check);
1788     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
1789       // The foreground collector is active or we're
1790       // not using asynchronous collections.  Skip this
1791       // background collection.
1792       assert(!_foregroundGCShouldWait, "Should be clear");
1793       return;
1794     } else {
1795       assert(_collectorState == Idling, "Should be idling before start.");
1796       _collectorState = InitialMarking;
1797       register_gc_start(cause);
1798       // Reset the expansion cause, now that we are about to begin
1799       // a new cycle.
1800       clear_expansion_cause();
1801 
1802       // Clear the MetaspaceGC flag since a concurrent collection
1803       // is starting but also clear it after the collection.
1804       MetaspaceGC::set_should_concurrent_collect(false);
1805     }
1806     // Decide if we want to enable class unloading as part of the
1807     // ensuing concurrent GC cycle.
1808     update_should_unload_classes();
1809     _full_gc_requested = false;           // acks all outstanding full gc requests
1810     _full_gc_cause = GCCause::_no_gc;
1811     // Signal that we are about to start a collection
1812     gch->increment_total_full_collections();  // ... starting a collection cycle
1813     _collection_count_start = gch->total_full_collections();
1814   }
1815 
1816   // Used for PrintGC
1817   size_t prev_used;
1818   if (PrintGC && Verbose) {
1819     prev_used = _cmsGen->used();
1820   }
1821 
1822   // The change of the collection state is normally done at this level;
1823   // the exceptions are phases that are executed while the world is
1824   // stopped.  For those phases the change of state is done while the
1825   // world is stopped.  For baton passing purposes this allows the
1826   // background collector to finish the phase and change state atomically.
1827   // The foreground collector cannot wait on a phase that is done
1828   // while the world is stopped because the foreground collector already
1829   // has the world stopped and would deadlock.
1830   while (_collectorState != Idling) {
1831     if (TraceCMSState) {
1832       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
1833         p2i(Thread::current()), _collectorState);
1834     }
1835     // The foreground collector
1836     //   holds the Heap_lock throughout its collection.
1837     //   holds the CMS token (but not the lock)
1838     //     except while it is waiting for the background collector to yield.
1839     //
1840     // The foreground collector should be blocked (not for long)
1841     //   if the background collector is about to start a phase
1842     //   executed with world stopped.  If the background
1843     //   collector has already started such a phase, the
1844     //   foreground collector is blocked waiting for the
1845     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1846     //   are executed in the VM thread.
1847     //
1848     // The locking order is
1849     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1850     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1851     //   CMS token  (claimed in
1852     //                stop_world_and_do() -->
1853     //                  safepoint_synchronize() -->
1854     //                    CMSThread::synchronize())
1855 
1856     {
1857       // Check if the FG collector wants us to yield.
1858       CMSTokenSync x(true); // is cms thread
1859       if (waitForForegroundGC()) {
1860         // We yielded to a foreground GC, nothing more to be
1861         // done this round.
1862         assert(_foregroundGCShouldWait == false, "We set it to false in "
1863                "waitForForegroundGC()");
1864         if (TraceCMSState) {
1865           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1866             " exiting collection CMS state %d",
1867             p2i(Thread::current()), _collectorState);
1868         }
1869         return;
1870       } else {
1871         // The background collector can run but check to see if the
1872         // foreground collector has done a collection while the
1873         // background collector was waiting to get the CGC_lock
1874         // above.  If yes, break so that _foregroundGCShouldWait
1875         // is cleared before returning.
1876         if (_collectorState == Idling) {
1877           break;
1878         }
1879       }
1880     }
1881 
1882     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1883       "should be waiting");
1884 
1885     switch (_collectorState) {
1886       case InitialMarking:
1887         {
1888           ReleaseForegroundGC x(this);
1889           stats().record_cms_begin();
1890           VM_CMS_Initial_Mark initial_mark_op(this);
1891           VMThread::execute(&initial_mark_op);
1892         }
1893         // The collector state may be any legal state at this point
1894         // since the background collector may have yielded to the
1895         // foreground collector.
1896         break;
1897       case Marking:
1898         // initial marking in checkpointRootsInitialWork has been completed
1899         if (markFromRoots()) { // we were successful
1900           assert(_collectorState == Precleaning, "Collector state should "
1901             "have changed");
1902         } else {
1903           assert(_foregroundGCIsActive, "Internal state inconsistency");
1904         }
1905         break;
1906       case Precleaning:
1907         // marking from roots in markFromRoots has been completed
1908         preclean();
1909         assert(_collectorState == AbortablePreclean ||
1910                _collectorState == FinalMarking,
1911                "Collector state should have changed");
1912         break;
1913       case AbortablePreclean:
1914         abortable_preclean();
1915         assert(_collectorState == FinalMarking, "Collector state should "
1916           "have changed");
1917         break;
1918       case FinalMarking:
1919         {
1920           ReleaseForegroundGC x(this);
1921 
1922           VM_CMS_Final_Remark final_remark_op(this);
1923           VMThread::execute(&final_remark_op);
1924         }
1925         assert(_foregroundGCShouldWait, "block post-condition");
1926         break;
1927       case Sweeping:
1928         // final marking in checkpointRootsFinal has been completed
1929         sweep();
1930         assert(_collectorState == Resizing, "Collector state change "
1931           "to Resizing must be done under the free_list_lock");
1932 
1933       case Resizing: {
1934         // Sweeping has been completed...
1935         // At this point the background collection has completed.
1936         // Don't move the call to compute_new_size() down
1937         // into code that might be executed if the background
1938         // collection was preempted.
1939         {
1940           ReleaseForegroundGC x(this);   // unblock FG collection
1941           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1942           CMSTokenSync        z(true);   // not strictly needed.
1943           if (_collectorState == Resizing) {
1944             compute_new_size();
1945             save_heap_summary();
1946             _collectorState = Resetting;
1947           } else {
1948             assert(_collectorState == Idling, "The state should only change"
1949                    " because the foreground collector has finished the collection");
1950           }
1951         }
1952         break;
1953       }
1954       case Resetting:
1955         // CMS heap resizing has been completed
1956         reset(true);
1957         assert(_collectorState == Idling, "Collector state should "
1958           "have changed");
1959 
1960         MetaspaceGC::set_should_concurrent_collect(false);
1961 
1962         stats().record_cms_end();
1963         // Don't move the concurrent_phases_end() and compute_new_size()
1964         // calls to here because a preempted background collection
1965         // has it's state set to "Resetting".
1966         break;
1967       case Idling:
1968       default:
1969         ShouldNotReachHere();
1970         break;
1971     }
1972     if (TraceCMSState) {
1973       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1974         p2i(Thread::current()), _collectorState);
1975     }
1976     assert(_foregroundGCShouldWait, "block post-condition");
1977   }
1978 
1979   // Should this be in gc_epilogue?
1980   collector_policy()->counters()->update_counters();
1981 
1982   {
1983     // Clear _foregroundGCShouldWait and, in the event that the
1984     // foreground collector is waiting, notify it, before
1985     // returning.
1986     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1987     _foregroundGCShouldWait = false;
1988     if (_foregroundGCIsActive) {
1989       CGC_lock->notify();
1990     }
1991     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1992            "Possible deadlock");
1993   }
1994   if (TraceCMSState) {
1995     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
1996       " exiting collection CMS state %d",
1997       p2i(Thread::current()), _collectorState);
1998   }
1999   if (PrintGC && Verbose) {
2000     _cmsGen->print_heap_change(prev_used);
2001   }
2002 }
2003 
2004 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2005   _cms_start_registered = true;
2006   _gc_timer_cm->register_gc_start();
2007   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2008 }
2009 
2010 void CMSCollector::register_gc_end() {
2011   if (_cms_start_registered) {
2012     report_heap_summary(GCWhen::AfterGC);
2013 
2014     _gc_timer_cm->register_gc_end();
2015     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2016     _cms_start_registered = false;
2017   }
2018 }
2019 
2020 void CMSCollector::save_heap_summary() {
2021   GenCollectedHeap* gch = GenCollectedHeap::heap();
2022   _last_heap_summary = gch->create_heap_summary();
2023   _last_metaspace_summary = gch->create_metaspace_summary();
2024 }
2025 
2026 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2027   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
2028   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
2029 }
2030 
2031 bool CMSCollector::waitForForegroundGC() {
2032   bool res = false;
2033   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2034          "CMS thread should have CMS token");
2035   // Block the foreground collector until the
2036   // background collectors decides whether to
2037   // yield.
2038   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2039   _foregroundGCShouldWait = true;
2040   if (_foregroundGCIsActive) {
2041     // The background collector yields to the
2042     // foreground collector and returns a value
2043     // indicating that it has yielded.  The foreground
2044     // collector can proceed.
2045     res = true;
2046     _foregroundGCShouldWait = false;
2047     ConcurrentMarkSweepThread::clear_CMS_flag(
2048       ConcurrentMarkSweepThread::CMS_cms_has_token);
2049     ConcurrentMarkSweepThread::set_CMS_flag(
2050       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2051     // Get a possibly blocked foreground thread going
2052     CGC_lock->notify();
2053     if (TraceCMSState) {
2054       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2055         p2i(Thread::current()), _collectorState);
2056     }
2057     while (_foregroundGCIsActive) {
2058       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2059     }
2060     ConcurrentMarkSweepThread::set_CMS_flag(
2061       ConcurrentMarkSweepThread::CMS_cms_has_token);
2062     ConcurrentMarkSweepThread::clear_CMS_flag(
2063       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2064   }
2065   if (TraceCMSState) {
2066     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2067       p2i(Thread::current()), _collectorState);
2068   }
2069   return res;
2070 }
2071 
2072 // Because of the need to lock the free lists and other structures in
2073 // the collector, common to all the generations that the collector is
2074 // collecting, we need the gc_prologues of individual CMS generations
2075 // delegate to their collector. It may have been simpler had the
2076 // current infrastructure allowed one to call a prologue on a
2077 // collector. In the absence of that we have the generation's
2078 // prologue delegate to the collector, which delegates back
2079 // some "local" work to a worker method in the individual generations
2080 // that it's responsible for collecting, while itself doing any
2081 // work common to all generations it's responsible for. A similar
2082 // comment applies to the  gc_epilogue()'s.
2083 // The role of the variable _between_prologue_and_epilogue is to
2084 // enforce the invocation protocol.
2085 void CMSCollector::gc_prologue(bool full) {
2086   // Call gc_prologue_work() for the CMSGen
2087   // we are responsible for.
2088 
2089   // The following locking discipline assumes that we are only called
2090   // when the world is stopped.
2091   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2092 
2093   // The CMSCollector prologue must call the gc_prologues for the
2094   // "generations" that it's responsible
2095   // for.
2096 
2097   assert(   Thread::current()->is_VM_thread()
2098          || (   CMSScavengeBeforeRemark
2099              && Thread::current()->is_ConcurrentGC_thread()),
2100          "Incorrect thread type for prologue execution");
2101 
2102   if (_between_prologue_and_epilogue) {
2103     // We have already been invoked; this is a gc_prologue delegation
2104     // from yet another CMS generation that we are responsible for, just
2105     // ignore it since all relevant work has already been done.
2106     return;
2107   }
2108 
2109   // set a bit saying prologue has been called; cleared in epilogue
2110   _between_prologue_and_epilogue = true;
2111   // Claim locks for common data structures, then call gc_prologue_work()
2112   // for each CMSGen.
2113 
2114   getFreelistLocks();   // gets free list locks on constituent spaces
2115   bitMapLock()->lock_without_safepoint_check();
2116 
2117   // Should call gc_prologue_work() for all cms gens we are responsible for
2118   bool duringMarking =    _collectorState >= Marking
2119                          && _collectorState < Sweeping;
2120 
2121   // The young collections clear the modified oops state, which tells if
2122   // there are any modified oops in the class. The remark phase also needs
2123   // that information. Tell the young collection to save the union of all
2124   // modified klasses.
2125   if (duringMarking) {
2126     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2127   }
2128 
2129   bool registerClosure = duringMarking;
2130 
2131   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2132                                                &_modUnionClosurePar
2133                                                : &_modUnionClosure;
2134   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2135 
2136   if (!full) {
2137     stats().record_gc0_begin();
2138   }
2139 }
2140 
2141 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2142 
2143   _capacity_at_prologue = capacity();
2144   _used_at_prologue = used();
2145 
2146   // Delegate to CMScollector which knows how to coordinate between
2147   // this and any other CMS generations that it is responsible for
2148   // collecting.
2149   collector()->gc_prologue(full);
2150 }
2151 
2152 // This is a "private" interface for use by this generation's CMSCollector.
2153 // Not to be called directly by any other entity (for instance,
2154 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2155 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2156   bool registerClosure, ModUnionClosure* modUnionClosure) {
2157   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2158   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2159     "Should be NULL");
2160   if (registerClosure) {
2161     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2162   }
2163   cmsSpace()->gc_prologue();
2164   // Clear stat counters
2165   NOT_PRODUCT(
2166     assert(_numObjectsPromoted == 0, "check");
2167     assert(_numWordsPromoted   == 0, "check");
2168     if (Verbose && PrintGC) {
2169       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2170                           SIZE_FORMAT" bytes concurrently",
2171       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2172     }
2173     _numObjectsAllocated = 0;
2174     _numWordsAllocated   = 0;
2175   )
2176 }
2177 
2178 void CMSCollector::gc_epilogue(bool full) {
2179   // The following locking discipline assumes that we are only called
2180   // when the world is stopped.
2181   assert(SafepointSynchronize::is_at_safepoint(),
2182          "world is stopped assumption");
2183 
2184   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2185   // if linear allocation blocks need to be appropriately marked to allow the
2186   // the blocks to be parsable. We also check here whether we need to nudge the
2187   // CMS collector thread to start a new cycle (if it's not already active).
2188   assert(   Thread::current()->is_VM_thread()
2189          || (   CMSScavengeBeforeRemark
2190              && Thread::current()->is_ConcurrentGC_thread()),
2191          "Incorrect thread type for epilogue execution");
2192 
2193   if (!_between_prologue_and_epilogue) {
2194     // We have already been invoked; this is a gc_epilogue delegation
2195     // from yet another CMS generation that we are responsible for, just
2196     // ignore it since all relevant work has already been done.
2197     return;
2198   }
2199   assert(haveFreelistLocks(), "must have freelist locks");
2200   assert_lock_strong(bitMapLock());
2201 
2202   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2203 
2204   _cmsGen->gc_epilogue_work(full);
2205 
2206   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2207     // in case sampling was not already enabled, enable it
2208     _start_sampling = true;
2209   }
2210   // reset _eden_chunk_array so sampling starts afresh
2211   _eden_chunk_index = 0;
2212 
2213   size_t cms_used   = _cmsGen->cmsSpace()->used();
2214 
2215   // update performance counters - this uses a special version of
2216   // update_counters() that allows the utilization to be passed as a
2217   // parameter, avoiding multiple calls to used().
2218   //
2219   _cmsGen->update_counters(cms_used);
2220 
2221   bitMapLock()->unlock();
2222   releaseFreelistLocks();
2223 
2224   if (!CleanChunkPoolAsync) {
2225     Chunk::clean_chunk_pool();
2226   }
2227 
2228   set_did_compact(false);
2229   _between_prologue_and_epilogue = false;  // ready for next cycle
2230 }
2231 
2232 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2233   collector()->gc_epilogue(full);
2234 
2235   // Also reset promotion tracking in par gc thread states.
2236   for (uint i = 0; i < ParallelGCThreads; i++) {
2237     _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2238   }
2239 }
2240 
2241 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2242   assert(!incremental_collection_failed(), "Should have been cleared");
2243   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2244   cmsSpace()->gc_epilogue();
2245     // Print stat counters
2246   NOT_PRODUCT(
2247     assert(_numObjectsAllocated == 0, "check");
2248     assert(_numWordsAllocated == 0, "check");
2249     if (Verbose && PrintGC) {
2250       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2251                           SIZE_FORMAT" bytes",
2252                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2253     }
2254     _numObjectsPromoted = 0;
2255     _numWordsPromoted   = 0;
2256   )
2257 
2258   if (PrintGC && Verbose) {
2259     // Call down the chain in contiguous_available needs the freelistLock
2260     // so print this out before releasing the freeListLock.
2261     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2262                         contiguous_available());
2263   }
2264 }
2265 
2266 #ifndef PRODUCT
2267 bool CMSCollector::have_cms_token() {
2268   Thread* thr = Thread::current();
2269   if (thr->is_VM_thread()) {
2270     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2271   } else if (thr->is_ConcurrentGC_thread()) {
2272     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2273   } else if (thr->is_GC_task_thread()) {
2274     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2275            ParGCRareEvent_lock->owned_by_self();
2276   }
2277   return false;
2278 }
2279 #endif
2280 
2281 // Check reachability of the given heap address in CMS generation,
2282 // treating all other generations as roots.
2283 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2284   // We could "guarantee" below, rather than assert, but I'll
2285   // leave these as "asserts" so that an adventurous debugger
2286   // could try this in the product build provided some subset of
2287   // the conditions were met, provided they were interested in the
2288   // results and knew that the computation below wouldn't interfere
2289   // with other concurrent computations mutating the structures
2290   // being read or written.
2291   assert(SafepointSynchronize::is_at_safepoint(),
2292          "Else mutations in object graph will make answer suspect");
2293   assert(have_cms_token(), "Should hold cms token");
2294   assert(haveFreelistLocks(), "must hold free list locks");
2295   assert_lock_strong(bitMapLock());
2296 
2297   // Clear the marking bit map array before starting, but, just
2298   // for kicks, first report if the given address is already marked
2299   gclog_or_tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2300                 _markBitMap.isMarked(addr) ? "" : " not");
2301 
2302   if (verify_after_remark()) {
2303     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2304     bool result = verification_mark_bm()->isMarked(addr);
2305     gclog_or_tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2306                            result ? "IS" : "is NOT");
2307     return result;
2308   } else {
2309     gclog_or_tty->print_cr("Could not compute result");
2310     return false;
2311   }
2312 }
2313 
2314 
2315 void
2316 CMSCollector::print_on_error(outputStream* st) {
2317   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2318   if (collector != NULL) {
2319     CMSBitMap* bitmap = &collector->_markBitMap;
2320     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2321     bitmap->print_on_error(st, " Bits: ");
2322 
2323     st->cr();
2324 
2325     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2326     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2327     mut_bitmap->print_on_error(st, " Bits: ");
2328   }
2329 }
2330 
2331 ////////////////////////////////////////////////////////
2332 // CMS Verification Support
2333 ////////////////////////////////////////////////////////
2334 // Following the remark phase, the following invariant
2335 // should hold -- each object in the CMS heap which is
2336 // marked in markBitMap() should be marked in the verification_mark_bm().
2337 
2338 class VerifyMarkedClosure: public BitMapClosure {
2339   CMSBitMap* _marks;
2340   bool       _failed;
2341 
2342  public:
2343   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2344 
2345   bool do_bit(size_t offset) {
2346     HeapWord* addr = _marks->offsetToHeapWord(offset);
2347     if (!_marks->isMarked(addr)) {
2348       oop(addr)->print_on(gclog_or_tty);
2349       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", p2i(addr));
2350       _failed = true;
2351     }
2352     return true;
2353   }
2354 
2355   bool failed() { return _failed; }
2356 };
2357 
2358 bool CMSCollector::verify_after_remark(bool silent) {
2359   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2360   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2361   static bool init = false;
2362 
2363   assert(SafepointSynchronize::is_at_safepoint(),
2364          "Else mutations in object graph will make answer suspect");
2365   assert(have_cms_token(),
2366          "Else there may be mutual interference in use of "
2367          " verification data structures");
2368   assert(_collectorState > Marking && _collectorState <= Sweeping,
2369          "Else marking info checked here may be obsolete");
2370   assert(haveFreelistLocks(), "must hold free list locks");
2371   assert_lock_strong(bitMapLock());
2372 
2373 
2374   // Allocate marking bit map if not already allocated
2375   if (!init) { // first time
2376     if (!verification_mark_bm()->allocate(_span)) {
2377       return false;
2378     }
2379     init = true;
2380   }
2381 
2382   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2383 
2384   // Turn off refs discovery -- so we will be tracing through refs.
2385   // This is as intended, because by this time
2386   // GC must already have cleared any refs that need to be cleared,
2387   // and traced those that need to be marked; moreover,
2388   // the marking done here is not going to interfere in any
2389   // way with the marking information used by GC.
2390   NoRefDiscovery no_discovery(ref_processor());
2391 
2392   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2393 
2394   // Clear any marks from a previous round
2395   verification_mark_bm()->clear_all();
2396   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2397   verify_work_stacks_empty();
2398 
2399   GenCollectedHeap* gch = GenCollectedHeap::heap();
2400   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2401   // Update the saved marks which may affect the root scans.
2402   gch->save_marks();
2403 
2404   if (CMSRemarkVerifyVariant == 1) {
2405     // In this first variant of verification, we complete
2406     // all marking, then check if the new marks-vector is
2407     // a subset of the CMS marks-vector.
2408     verify_after_remark_work_1();
2409   } else if (CMSRemarkVerifyVariant == 2) {
2410     // In this second variant of verification, we flag an error
2411     // (i.e. an object reachable in the new marks-vector not reachable
2412     // in the CMS marks-vector) immediately, also indicating the
2413     // identify of an object (A) that references the unmarked object (B) --
2414     // presumably, a mutation to A failed to be picked up by preclean/remark?
2415     verify_after_remark_work_2();
2416   } else {
2417     warning("Unrecognized value " UINTX_FORMAT " for CMSRemarkVerifyVariant",
2418             CMSRemarkVerifyVariant);
2419   }
2420   if (!silent) gclog_or_tty->print(" done] ");
2421   return true;
2422 }
2423 
2424 void CMSCollector::verify_after_remark_work_1() {
2425   ResourceMark rm;
2426   HandleMark  hm;
2427   GenCollectedHeap* gch = GenCollectedHeap::heap();
2428 
2429   // Get a clear set of claim bits for the roots processing to work with.
2430   ClassLoaderDataGraph::clear_claimed_marks();
2431 
2432   // Mark from roots one level into CMS
2433   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2434   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2435 
2436   gch->gen_process_roots(_cmsGen->level(),
2437                          true,   // younger gens are roots
2438                          true,   // activate StrongRootsScope
2439                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2440                          should_unload_classes(),
2441                          &notOlder,
2442                          NULL,
2443                          NULL);  // SSS: Provide correct closure
2444 
2445   // Now mark from the roots
2446   MarkFromRootsClosure markFromRootsClosure(this, _span,
2447     verification_mark_bm(), verification_mark_stack(),
2448     false /* don't yield */, true /* verifying */);
2449   assert(_restart_addr == NULL, "Expected pre-condition");
2450   verification_mark_bm()->iterate(&markFromRootsClosure);
2451   while (_restart_addr != NULL) {
2452     // Deal with stack overflow: by restarting at the indicated
2453     // address.
2454     HeapWord* ra = _restart_addr;
2455     markFromRootsClosure.reset(ra);
2456     _restart_addr = NULL;
2457     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2458   }
2459   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2460   verify_work_stacks_empty();
2461 
2462   // Marking completed -- now verify that each bit marked in
2463   // verification_mark_bm() is also marked in markBitMap(); flag all
2464   // errors by printing corresponding objects.
2465   VerifyMarkedClosure vcl(markBitMap());
2466   verification_mark_bm()->iterate(&vcl);
2467   if (vcl.failed()) {
2468     gclog_or_tty->print("Verification failed");
2469     gch->print_on(gclog_or_tty);
2470     fatal("CMS: failed marking verification after remark");
2471   }
2472 }
2473 
2474 class VerifyKlassOopsKlassClosure : public KlassClosure {
2475   class VerifyKlassOopsClosure : public OopClosure {
2476     CMSBitMap* _bitmap;
2477    public:
2478     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2479     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2480     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2481   } _oop_closure;
2482  public:
2483   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2484   void do_klass(Klass* k) {
2485     k->oops_do(&_oop_closure);
2486   }
2487 };
2488 
2489 void CMSCollector::verify_after_remark_work_2() {
2490   ResourceMark rm;
2491   HandleMark  hm;
2492   GenCollectedHeap* gch = GenCollectedHeap::heap();
2493 
2494   // Get a clear set of claim bits for the roots processing to work with.
2495   ClassLoaderDataGraph::clear_claimed_marks();
2496 
2497   // Mark from roots one level into CMS
2498   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2499                                      markBitMap());
2500   CLDToOopClosure cld_closure(&notOlder, true);
2501 
2502   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2503 
2504   gch->gen_process_roots(_cmsGen->level(),
2505                          true,   // younger gens are roots
2506                          true,   // activate StrongRootsScope
2507                          GenCollectedHeap::ScanningOption(roots_scanning_options()),
2508                          should_unload_classes(),
2509                          &notOlder,
2510                          NULL,
2511                          &cld_closure);
2512 
2513   // Now mark from the roots
2514   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2515     verification_mark_bm(), markBitMap(), verification_mark_stack());
2516   assert(_restart_addr == NULL, "Expected pre-condition");
2517   verification_mark_bm()->iterate(&markFromRootsClosure);
2518   while (_restart_addr != NULL) {
2519     // Deal with stack overflow: by restarting at the indicated
2520     // address.
2521     HeapWord* ra = _restart_addr;
2522     markFromRootsClosure.reset(ra);
2523     _restart_addr = NULL;
2524     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2525   }
2526   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2527   verify_work_stacks_empty();
2528 
2529   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
2530   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
2531 
2532   // Marking completed -- now verify that each bit marked in
2533   // verification_mark_bm() is also marked in markBitMap(); flag all
2534   // errors by printing corresponding objects.
2535   VerifyMarkedClosure vcl(markBitMap());
2536   verification_mark_bm()->iterate(&vcl);
2537   assert(!vcl.failed(), "Else verification above should not have succeeded");
2538 }
2539 
2540 void ConcurrentMarkSweepGeneration::save_marks() {
2541   // delegate to CMS space
2542   cmsSpace()->save_marks();
2543   for (uint i = 0; i < ParallelGCThreads; i++) {
2544     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2545   }
2546 }
2547 
2548 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2549   return cmsSpace()->no_allocs_since_save_marks();
2550 }
2551 
2552 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
2553                                                                 \
2554 void ConcurrentMarkSweepGeneration::                            \
2555 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
2556   cl->set_generation(this);                                     \
2557   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
2558   cl->reset_generation();                                       \
2559   save_marks();                                                 \
2560 }
2561 
2562 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
2563 
2564 void
2565 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
2566   if (freelistLock()->owned_by_self()) {
2567     Generation::oop_iterate(cl);
2568   } else {
2569     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2570     Generation::oop_iterate(cl);
2571   }
2572 }
2573 
2574 void
2575 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2576   if (freelistLock()->owned_by_self()) {
2577     Generation::object_iterate(cl);
2578   } else {
2579     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2580     Generation::object_iterate(cl);
2581   }
2582 }
2583 
2584 void
2585 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2586   if (freelistLock()->owned_by_self()) {
2587     Generation::safe_object_iterate(cl);
2588   } else {
2589     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2590     Generation::safe_object_iterate(cl);
2591   }
2592 }
2593 
2594 void
2595 ConcurrentMarkSweepGeneration::post_compact() {
2596 }
2597 
2598 void
2599 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2600   // Fix the linear allocation blocks to look like free blocks.
2601 
2602   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2603   // are not called when the heap is verified during universe initialization and
2604   // at vm shutdown.
2605   if (freelistLock()->owned_by_self()) {
2606     cmsSpace()->prepare_for_verify();
2607   } else {
2608     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2609     cmsSpace()->prepare_for_verify();
2610   }
2611 }
2612 
2613 void
2614 ConcurrentMarkSweepGeneration::verify() {
2615   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2616   // are not called when the heap is verified during universe initialization and
2617   // at vm shutdown.
2618   if (freelistLock()->owned_by_self()) {
2619     cmsSpace()->verify();
2620   } else {
2621     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2622     cmsSpace()->verify();
2623   }
2624 }
2625 
2626 void CMSCollector::verify() {
2627   _cmsGen->verify();
2628 }
2629 
2630 #ifndef PRODUCT
2631 bool CMSCollector::overflow_list_is_empty() const {
2632   assert(_num_par_pushes >= 0, "Inconsistency");
2633   if (_overflow_list == NULL) {
2634     assert(_num_par_pushes == 0, "Inconsistency");
2635   }
2636   return _overflow_list == NULL;
2637 }
2638 
2639 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2640 // merely consolidate assertion checks that appear to occur together frequently.
2641 void CMSCollector::verify_work_stacks_empty() const {
2642   assert(_markStack.isEmpty(), "Marking stack should be empty");
2643   assert(overflow_list_is_empty(), "Overflow list should be empty");
2644 }
2645 
2646 void CMSCollector::verify_overflow_empty() const {
2647   assert(overflow_list_is_empty(), "Overflow list should be empty");
2648   assert(no_preserved_marks(), "No preserved marks");
2649 }
2650 #endif // PRODUCT
2651 
2652 // Decide if we want to enable class unloading as part of the
2653 // ensuing concurrent GC cycle. We will collect and
2654 // unload classes if it's the case that:
2655 // (1) an explicit gc request has been made and the flag
2656 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
2657 // (2) (a) class unloading is enabled at the command line, and
2658 //     (b) old gen is getting really full
2659 // NOTE: Provided there is no change in the state of the heap between
2660 // calls to this method, it should have idempotent results. Moreover,
2661 // its results should be monotonically increasing (i.e. going from 0 to 1,
2662 // but not 1 to 0) between successive calls between which the heap was
2663 // not collected. For the implementation below, it must thus rely on
2664 // the property that concurrent_cycles_since_last_unload()
2665 // will not decrease unless a collection cycle happened and that
2666 // _cmsGen->is_too_full() are
2667 // themselves also monotonic in that sense. See check_monotonicity()
2668 // below.
2669 void CMSCollector::update_should_unload_classes() {
2670   _should_unload_classes = false;
2671   // Condition 1 above
2672   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
2673     _should_unload_classes = true;
2674   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
2675     // Disjuncts 2.b.(i,ii,iii) above
2676     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2677                               CMSClassUnloadingMaxInterval)
2678                            || _cmsGen->is_too_full();
2679   }
2680 }
2681 
2682 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2683   bool res = should_concurrent_collect();
2684   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2685   return res;
2686 }
2687 
2688 void CMSCollector::setup_cms_unloading_and_verification_state() {
2689   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2690                              || VerifyBeforeExit;
2691   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2692 
2693   // We set the proper root for this CMS cycle here.
2694   if (should_unload_classes()) {   // Should unload classes this cycle
2695     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2696     set_verifying(should_verify);    // Set verification state for this cycle
2697     return;                            // Nothing else needs to be done at this time
2698   }
2699 
2700   // Not unloading classes this cycle
2701   assert(!should_unload_classes(), "Inconsistency!");
2702 
2703   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2704     // Include symbols, strings and code cache elements to prevent their resurrection.
2705     add_root_scanning_option(rso);
2706     set_verifying(true);
2707   } else if (verifying() && !should_verify) {
2708     // We were verifying, but some verification flags got disabled.
2709     set_verifying(false);
2710     // Exclude symbols, strings and code cache elements from root scanning to
2711     // reduce IM and RM pauses.
2712     remove_root_scanning_option(rso);
2713   }
2714 }
2715 
2716 
2717 #ifndef PRODUCT
2718 HeapWord* CMSCollector::block_start(const void* p) const {
2719   const HeapWord* addr = (HeapWord*)p;
2720   if (_span.contains(p)) {
2721     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2722       return _cmsGen->cmsSpace()->block_start(p);
2723     }
2724   }
2725   return NULL;
2726 }
2727 #endif
2728 
2729 HeapWord*
2730 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2731                                                    bool   tlab,
2732                                                    bool   parallel) {
2733   CMSSynchronousYieldRequest yr;
2734   assert(!tlab, "Can't deal with TLAB allocation");
2735   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2736   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2737   if (GCExpandToAllocateDelayMillis > 0) {
2738     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2739   }
2740   return have_lock_and_allocate(word_size, tlab);
2741 }
2742 
2743 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2744     size_t bytes,
2745     size_t expand_bytes,
2746     CMSExpansionCause::Cause cause)
2747 {
2748 
2749   bool success = expand(bytes, expand_bytes);
2750 
2751   // remember why we expanded; this information is used
2752   // by shouldConcurrentCollect() when making decisions on whether to start
2753   // a new CMS cycle.
2754   if (success) {
2755     set_expansion_cause(cause);
2756     if (PrintGCDetails && Verbose) {
2757       gclog_or_tty->print_cr("Expanded CMS gen for %s",
2758         CMSExpansionCause::to_string(cause));
2759     }
2760   }
2761 }
2762 
2763 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2764   HeapWord* res = NULL;
2765   MutexLocker x(ParGCRareEvent_lock);
2766   while (true) {
2767     // Expansion by some other thread might make alloc OK now:
2768     res = ps->lab.alloc(word_sz);
2769     if (res != NULL) return res;
2770     // If there's not enough expansion space available, give up.
2771     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2772       return NULL;
2773     }
2774     // Otherwise, we try expansion.
2775     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2776     // Now go around the loop and try alloc again;
2777     // A competing par_promote might beat us to the expansion space,
2778     // so we may go around the loop again if promotion fails again.
2779     if (GCExpandToAllocateDelayMillis > 0) {
2780       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2781     }
2782   }
2783 }
2784 
2785 
2786 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2787   PromotionInfo* promo) {
2788   MutexLocker x(ParGCRareEvent_lock);
2789   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2790   while (true) {
2791     // Expansion by some other thread might make alloc OK now:
2792     if (promo->ensure_spooling_space()) {
2793       assert(promo->has_spooling_space(),
2794              "Post-condition of successful ensure_spooling_space()");
2795       return true;
2796     }
2797     // If there's not enough expansion space available, give up.
2798     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2799       return false;
2800     }
2801     // Otherwise, we try expansion.
2802     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2803     // Now go around the loop and try alloc again;
2804     // A competing allocation might beat us to the expansion space,
2805     // so we may go around the loop again if allocation fails again.
2806     if (GCExpandToAllocateDelayMillis > 0) {
2807       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2808     }
2809   }
2810 }
2811 
2812 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2813   // Only shrink if a compaction was done so that all the free space
2814   // in the generation is in a contiguous block at the end.
2815   if (did_compact()) {
2816     CardGeneration::shrink(bytes);
2817   }
2818 }
2819 
2820 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2821   assert_locked_or_safepoint(Heap_lock);
2822 }
2823 
2824 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2825   assert_locked_or_safepoint(Heap_lock);
2826   assert_lock_strong(freelistLock());
2827   if (PrintGCDetails && Verbose) {
2828     warning("Shrinking of CMS not yet implemented");
2829   }
2830   return;
2831 }
2832 
2833 
2834 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2835 // phases.
2836 class CMSPhaseAccounting: public StackObj {
2837  public:
2838   CMSPhaseAccounting(CMSCollector *collector,
2839                      const char *phase,
2840                      const GCId gc_id,
2841                      bool print_cr = true);
2842   ~CMSPhaseAccounting();
2843 
2844  private:
2845   CMSCollector *_collector;
2846   const char *_phase;
2847   elapsedTimer _wallclock;
2848   bool _print_cr;
2849   const GCId _gc_id;
2850 
2851  public:
2852   // Not MT-safe; so do not pass around these StackObj's
2853   // where they may be accessed by other threads.
2854   jlong wallclock_millis() {
2855     assert(_wallclock.is_active(), "Wall clock should not stop");
2856     _wallclock.stop();  // to record time
2857     jlong ret = _wallclock.milliseconds();
2858     _wallclock.start(); // restart
2859     return ret;
2860   }
2861 };
2862 
2863 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2864                                        const char *phase,
2865                                        const GCId gc_id,
2866                                        bool print_cr) :
2867   _collector(collector), _phase(phase), _print_cr(print_cr), _gc_id(gc_id) {
2868 
2869   if (PrintCMSStatistics != 0) {
2870     _collector->resetYields();
2871   }
2872   if (PrintGCDetails) {
2873     gclog_or_tty->gclog_stamp(_gc_id);
2874     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
2875       _collector->cmsGen()->short_name(), _phase);
2876   }
2877   _collector->resetTimer();
2878   _wallclock.start();
2879   _collector->startTimer();
2880 }
2881 
2882 CMSPhaseAccounting::~CMSPhaseAccounting() {
2883   assert(_wallclock.is_active(), "Wall clock should not have stopped");
2884   _collector->stopTimer();
2885   _wallclock.stop();
2886   if (PrintGCDetails) {
2887     gclog_or_tty->gclog_stamp(_gc_id);
2888     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
2889                  _collector->cmsGen()->short_name(),
2890                  _phase, _collector->timerValue(), _wallclock.seconds());
2891     if (_print_cr) {
2892       gclog_or_tty->cr();
2893     }
2894     if (PrintCMSStatistics != 0) {
2895       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
2896                     _collector->yields());
2897     }
2898   }
2899 }
2900 
2901 // CMS work
2902 
2903 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2904 class CMSParMarkTask : public AbstractGangTask {
2905  protected:
2906   CMSCollector*     _collector;
2907   int               _n_workers;
2908   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
2909       AbstractGangTask(name),
2910       _collector(collector),
2911       _n_workers(n_workers) {}
2912   // Work method in support of parallel rescan ... of young gen spaces
2913   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
2914                              ContiguousSpace* space,
2915                              HeapWord** chunk_array, size_t chunk_top);
2916   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
2917 };
2918 
2919 // Parallel initial mark task
2920 class CMSParInitialMarkTask: public CMSParMarkTask {
2921  public:
2922   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
2923       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
2924                      collector, n_workers) {}
2925   void work(uint worker_id);
2926 };
2927 
2928 // Checkpoint the roots into this generation from outside
2929 // this generation. [Note this initial checkpoint need only
2930 // be approximate -- we'll do a catch up phase subsequently.]
2931 void CMSCollector::checkpointRootsInitial() {
2932   assert(_collectorState == InitialMarking, "Wrong collector state");
2933   check_correct_thread_executing();
2934   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
2935 
2936   save_heap_summary();
2937   report_heap_summary(GCWhen::BeforeGC);
2938 
2939   ReferenceProcessor* rp = ref_processor();
2940   assert(_restart_addr == NULL, "Control point invariant");
2941   {
2942     // acquire locks for subsequent manipulations
2943     MutexLockerEx x(bitMapLock(),
2944                     Mutex::_no_safepoint_check_flag);
2945     checkpointRootsInitialWork();
2946     // enable ("weak") refs discovery
2947     rp->enable_discovery();
2948     _collectorState = Marking;
2949   }
2950 }
2951 
2952 void CMSCollector::checkpointRootsInitialWork() {
2953   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2954   assert(_collectorState == InitialMarking, "just checking");
2955 
2956   // If there has not been a GC[n-1] since last GC[n] cycle completed,
2957   // precede our marking with a collection of all
2958   // younger generations to keep floating garbage to a minimum.
2959   // XXX: we won't do this for now -- it's an optimization to be done later.
2960 
2961   // already have locks
2962   assert_lock_strong(bitMapLock());
2963   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2964 
2965   // Setup the verification and class unloading state for this
2966   // CMS collection cycle.
2967   setup_cms_unloading_and_verification_state();
2968 
2969   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
2970     PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
2971 
2972   // Reset all the PLAB chunk arrays if necessary.
2973   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2974     reset_survivor_plab_arrays();
2975   }
2976 
2977   ResourceMark rm;
2978   HandleMark  hm;
2979 
2980   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2981   GenCollectedHeap* gch = GenCollectedHeap::heap();
2982 
2983   verify_work_stacks_empty();
2984   verify_overflow_empty();
2985 
2986   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2987   // Update the saved marks which may affect the root scans.
2988   gch->save_marks();
2989 
2990   // weak reference processing has not started yet.
2991   ref_processor()->set_enqueuing_is_done(false);
2992 
2993   // Need to remember all newly created CLDs,
2994   // so that we can guarantee that the remark finds them.
2995   ClassLoaderDataGraph::remember_new_clds(true);
2996 
2997   // Whenever a CLD is found, it will be claimed before proceeding to mark
2998   // the klasses. The claimed marks need to be cleared before marking starts.
2999   ClassLoaderDataGraph::clear_claimed_marks();
3000 
3001   if (CMSPrintEdenSurvivorChunks) {
3002     print_eden_and_survivor_chunk_arrays();
3003   }
3004 
3005   {
3006     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3007     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3008       // The parallel version.
3009       FlexibleWorkGang* workers = gch->workers();
3010       assert(workers != NULL, "Need parallel worker threads.");
3011       int n_workers = workers->active_workers();
3012       CMSParInitialMarkTask tsk(this, n_workers);
3013       gch->set_par_threads(n_workers);
3014       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3015       if (n_workers > 1) {
3016         StrongRootsScope srs;
3017         workers->run_task(&tsk);
3018       } else {
3019         StrongRootsScope srs;
3020         tsk.work(0);
3021       }
3022       gch->set_par_threads(0);
3023     } else {
3024       // The serial version.
3025       CLDToOopClosure cld_closure(&notOlder, true);
3026       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3027       gch->gen_process_roots(_cmsGen->level(),
3028                              true,   // younger gens are roots
3029                              true,   // activate StrongRootsScope
3030                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
3031                              should_unload_classes(),
3032                              &notOlder,
3033                              NULL,
3034                              &cld_closure);
3035     }
3036   }
3037 
3038   // Clear mod-union table; it will be dirtied in the prologue of
3039   // CMS generation per each younger generation collection.
3040 
3041   assert(_modUnionTable.isAllClear(),
3042        "Was cleared in most recent final checkpoint phase"
3043        " or no bits are set in the gc_prologue before the start of the next "
3044        "subsequent marking phase.");
3045 
3046   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3047 
3048   // Save the end of the used_region of the constituent generations
3049   // to be used to limit the extent of sweep in each generation.
3050   save_sweep_limits();
3051   verify_overflow_empty();
3052 }
3053 
3054 bool CMSCollector::markFromRoots() {
3055   // we might be tempted to assert that:
3056   // assert(!SafepointSynchronize::is_at_safepoint(),
3057   //        "inconsistent argument?");
3058   // However that wouldn't be right, because it's possible that
3059   // a safepoint is indeed in progress as a younger generation
3060   // stop-the-world GC happens even as we mark in this generation.
3061   assert(_collectorState == Marking, "inconsistent state?");
3062   check_correct_thread_executing();
3063   verify_overflow_empty();
3064 
3065   // Weak ref discovery note: We may be discovering weak
3066   // refs in this generation concurrent (but interleaved) with
3067   // weak ref discovery by a younger generation collector.
3068 
3069   CMSTokenSyncWithLocks ts(true, bitMapLock());
3070   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3071   CMSPhaseAccounting pa(this, "mark", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3072   bool res = markFromRootsWork();
3073   if (res) {
3074     _collectorState = Precleaning;
3075   } else { // We failed and a foreground collection wants to take over
3076     assert(_foregroundGCIsActive, "internal state inconsistency");
3077     assert(_restart_addr == NULL,  "foreground will restart from scratch");
3078     if (PrintGCDetails) {
3079       gclog_or_tty->print_cr("bailing out to foreground collection");
3080     }
3081   }
3082   verify_overflow_empty();
3083   return res;
3084 }
3085 
3086 bool CMSCollector::markFromRootsWork() {
3087   // iterate over marked bits in bit map, doing a full scan and mark
3088   // from these roots using the following algorithm:
3089   // . if oop is to the right of the current scan pointer,
3090   //   mark corresponding bit (we'll process it later)
3091   // . else (oop is to left of current scan pointer)
3092   //   push oop on marking stack
3093   // . drain the marking stack
3094 
3095   // Note that when we do a marking step we need to hold the
3096   // bit map lock -- recall that direct allocation (by mutators)
3097   // and promotion (by younger generation collectors) is also
3098   // marking the bit map. [the so-called allocate live policy.]
3099   // Because the implementation of bit map marking is not
3100   // robust wrt simultaneous marking of bits in the same word,
3101   // we need to make sure that there is no such interference
3102   // between concurrent such updates.
3103 
3104   // already have locks
3105   assert_lock_strong(bitMapLock());
3106 
3107   verify_work_stacks_empty();
3108   verify_overflow_empty();
3109   bool result = false;
3110   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3111     result = do_marking_mt();
3112   } else {
3113     result = do_marking_st();
3114   }
3115   return result;
3116 }
3117 
3118 // Forward decl
3119 class CMSConcMarkingTask;
3120 
3121 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3122   CMSCollector*       _collector;
3123   CMSConcMarkingTask* _task;
3124  public:
3125   virtual void yield();
3126 
3127   // "n_threads" is the number of threads to be terminated.
3128   // "queue_set" is a set of work queues of other threads.
3129   // "collector" is the CMS collector associated with this task terminator.
3130   // "yield" indicates whether we need the gang as a whole to yield.
3131   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3132     ParallelTaskTerminator(n_threads, queue_set),
3133     _collector(collector) { }
3134 
3135   void set_task(CMSConcMarkingTask* task) {
3136     _task = task;
3137   }
3138 };
3139 
3140 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3141   CMSConcMarkingTask* _task;
3142  public:
3143   bool should_exit_termination();
3144   void set_task(CMSConcMarkingTask* task) {
3145     _task = task;
3146   }
3147 };
3148 
3149 // MT Concurrent Marking Task
3150 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3151   CMSCollector* _collector;
3152   int           _n_workers;                  // requested/desired # workers
3153   bool          _result;
3154   CompactibleFreeListSpace*  _cms_space;
3155   char          _pad_front[64];   // padding to ...
3156   HeapWord*     _global_finger;   // ... avoid sharing cache line
3157   char          _pad_back[64];
3158   HeapWord*     _restart_addr;
3159 
3160   //  Exposed here for yielding support
3161   Mutex* const _bit_map_lock;
3162 
3163   // The per thread work queues, available here for stealing
3164   OopTaskQueueSet*  _task_queues;
3165 
3166   // Termination (and yielding) support
3167   CMSConcMarkingTerminator _term;
3168   CMSConcMarkingTerminatorTerminator _term_term;
3169 
3170  public:
3171   CMSConcMarkingTask(CMSCollector* collector,
3172                  CompactibleFreeListSpace* cms_space,
3173                  YieldingFlexibleWorkGang* workers,
3174                  OopTaskQueueSet* task_queues):
3175     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3176     _collector(collector),
3177     _cms_space(cms_space),
3178     _n_workers(0), _result(true),
3179     _task_queues(task_queues),
3180     _term(_n_workers, task_queues, _collector),
3181     _bit_map_lock(collector->bitMapLock())
3182   {
3183     _requested_size = _n_workers;
3184     _term.set_task(this);
3185     _term_term.set_task(this);
3186     _restart_addr = _global_finger = _cms_space->bottom();
3187   }
3188 
3189 
3190   OopTaskQueueSet* task_queues()  { return _task_queues; }
3191 
3192   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3193 
3194   HeapWord** global_finger_addr() { return &_global_finger; }
3195 
3196   CMSConcMarkingTerminator* terminator() { return &_term; }
3197 
3198   virtual void set_for_termination(int active_workers) {
3199     terminator()->reset_for_reuse(active_workers);
3200   }
3201 
3202   void work(uint worker_id);
3203   bool should_yield() {
3204     return    ConcurrentMarkSweepThread::should_yield()
3205            && !_collector->foregroundGCIsActive();
3206   }
3207 
3208   virtual void coordinator_yield();  // stuff done by coordinator
3209   bool result() { return _result; }
3210 
3211   void reset(HeapWord* ra) {
3212     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3213     _restart_addr = _global_finger = ra;
3214     _term.reset_for_reuse();
3215   }
3216 
3217   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3218                                            OopTaskQueue* work_q);
3219 
3220  private:
3221   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3222   void do_work_steal(int i);
3223   void bump_global_finger(HeapWord* f);
3224 };
3225 
3226 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3227   assert(_task != NULL, "Error");
3228   return _task->yielding();
3229   // Note that we do not need the disjunct || _task->should_yield() above
3230   // because we want terminating threads to yield only if the task
3231   // is already in the midst of yielding, which happens only after at least one
3232   // thread has yielded.
3233 }
3234 
3235 void CMSConcMarkingTerminator::yield() {
3236   if (_task->should_yield()) {
3237     _task->yield();
3238   } else {
3239     ParallelTaskTerminator::yield();
3240   }
3241 }
3242 
3243 ////////////////////////////////////////////////////////////////
3244 // Concurrent Marking Algorithm Sketch
3245 ////////////////////////////////////////////////////////////////
3246 // Until all tasks exhausted (both spaces):
3247 // -- claim next available chunk
3248 // -- bump global finger via CAS
3249 // -- find first object that starts in this chunk
3250 //    and start scanning bitmap from that position
3251 // -- scan marked objects for oops
3252 // -- CAS-mark target, and if successful:
3253 //    . if target oop is above global finger (volatile read)
3254 //      nothing to do
3255 //    . if target oop is in chunk and above local finger
3256 //        then nothing to do
3257 //    . else push on work-queue
3258 // -- Deal with possible overflow issues:
3259 //    . local work-queue overflow causes stuff to be pushed on
3260 //      global (common) overflow queue
3261 //    . always first empty local work queue
3262 //    . then get a batch of oops from global work queue if any
3263 //    . then do work stealing
3264 // -- When all tasks claimed (both spaces)
3265 //    and local work queue empty,
3266 //    then in a loop do:
3267 //    . check global overflow stack; steal a batch of oops and trace
3268 //    . try to steal from other threads oif GOS is empty
3269 //    . if neither is available, offer termination
3270 // -- Terminate and return result
3271 //
3272 void CMSConcMarkingTask::work(uint worker_id) {
3273   elapsedTimer _timer;
3274   ResourceMark rm;
3275   HandleMark hm;
3276 
3277   DEBUG_ONLY(_collector->verify_overflow_empty();)
3278 
3279   // Before we begin work, our work queue should be empty
3280   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3281   // Scan the bitmap covering _cms_space, tracing through grey objects.
3282   _timer.start();
3283   do_scan_and_mark(worker_id, _cms_space);
3284   _timer.stop();
3285   if (PrintCMSStatistics != 0) {
3286     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3287       worker_id, _timer.seconds());
3288       // XXX: need xxx/xxx type of notation, two timers
3289   }
3290 
3291   // ... do work stealing
3292   _timer.reset();
3293   _timer.start();
3294   do_work_steal(worker_id);
3295   _timer.stop();
3296   if (PrintCMSStatistics != 0) {
3297     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3298       worker_id, _timer.seconds());
3299       // XXX: need xxx/xxx type of notation, two timers
3300   }
3301   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3302   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3303   // Note that under the current task protocol, the
3304   // following assertion is true even of the spaces
3305   // expanded since the completion of the concurrent
3306   // marking. XXX This will likely change under a strict
3307   // ABORT semantics.
3308   // After perm removal the comparison was changed to
3309   // greater than or equal to from strictly greater than.
3310   // Before perm removal the highest address sweep would
3311   // have been at the end of perm gen but now is at the
3312   // end of the tenured gen.
3313   assert(_global_finger >=  _cms_space->end(),
3314          "All tasks have been completed");
3315   DEBUG_ONLY(_collector->verify_overflow_empty();)
3316 }
3317 
3318 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3319   HeapWord* read = _global_finger;
3320   HeapWord* cur  = read;
3321   while (f > read) {
3322     cur = read;
3323     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3324     if (cur == read) {
3325       // our cas succeeded
3326       assert(_global_finger >= f, "protocol consistency");
3327       break;
3328     }
3329   }
3330 }
3331 
3332 // This is really inefficient, and should be redone by
3333 // using (not yet available) block-read and -write interfaces to the
3334 // stack and the work_queue. XXX FIX ME !!!
3335 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3336                                                       OopTaskQueue* work_q) {
3337   // Fast lock-free check
3338   if (ovflw_stk->length() == 0) {
3339     return false;
3340   }
3341   assert(work_q->size() == 0, "Shouldn't steal");
3342   MutexLockerEx ml(ovflw_stk->par_lock(),
3343                    Mutex::_no_safepoint_check_flag);
3344   // Grab up to 1/4 the size of the work queue
3345   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3346                     (size_t)ParGCDesiredObjsFromOverflowList);
3347   num = MIN2(num, ovflw_stk->length());
3348   for (int i = (int) num; i > 0; i--) {
3349     oop cur = ovflw_stk->pop();
3350     assert(cur != NULL, "Counted wrong?");
3351     work_q->push(cur);
3352   }
3353   return num > 0;
3354 }
3355 
3356 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3357   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3358   int n_tasks = pst->n_tasks();
3359   // We allow that there may be no tasks to do here because
3360   // we are restarting after a stack overflow.
3361   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3362   uint nth_task = 0;
3363 
3364   HeapWord* aligned_start = sp->bottom();
3365   if (sp->used_region().contains(_restart_addr)) {
3366     // Align down to a card boundary for the start of 0th task
3367     // for this space.
3368     aligned_start =
3369       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
3370                                  CardTableModRefBS::card_size);
3371   }
3372 
3373   size_t chunk_size = sp->marking_task_size();
3374   while (!pst->is_task_claimed(/* reference */ nth_task)) {
3375     // Having claimed the nth task in this space,
3376     // compute the chunk that it corresponds to:
3377     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3378                                aligned_start + (nth_task+1)*chunk_size);
3379     // Try and bump the global finger via a CAS;
3380     // note that we need to do the global finger bump
3381     // _before_ taking the intersection below, because
3382     // the task corresponding to that region will be
3383     // deemed done even if the used_region() expands
3384     // because of allocation -- as it almost certainly will
3385     // during start-up while the threads yield in the
3386     // closure below.
3387     HeapWord* finger = span.end();
3388     bump_global_finger(finger);   // atomically
3389     // There are null tasks here corresponding to chunks
3390     // beyond the "top" address of the space.
3391     span = span.intersection(sp->used_region());
3392     if (!span.is_empty()) {  // Non-null task
3393       HeapWord* prev_obj;
3394       assert(!span.contains(_restart_addr) || nth_task == 0,
3395              "Inconsistency");
3396       if (nth_task == 0) {
3397         // For the 0th task, we'll not need to compute a block_start.
3398         if (span.contains(_restart_addr)) {
3399           // In the case of a restart because of stack overflow,
3400           // we might additionally skip a chunk prefix.
3401           prev_obj = _restart_addr;
3402         } else {
3403           prev_obj = span.start();
3404         }
3405       } else {
3406         // We want to skip the first object because
3407         // the protocol is to scan any object in its entirety
3408         // that _starts_ in this span; a fortiori, any
3409         // object starting in an earlier span is scanned
3410         // as part of an earlier claimed task.
3411         // Below we use the "careful" version of block_start
3412         // so we do not try to navigate uninitialized objects.
3413         prev_obj = sp->block_start_careful(span.start());
3414         // Below we use a variant of block_size that uses the
3415         // Printezis bits to avoid waiting for allocated
3416         // objects to become initialized/parsable.
3417         while (prev_obj < span.start()) {
3418           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3419           if (sz > 0) {
3420             prev_obj += sz;
3421           } else {
3422             // In this case we may end up doing a bit of redundant
3423             // scanning, but that appears unavoidable, short of
3424             // locking the free list locks; see bug 6324141.
3425             break;
3426           }
3427         }
3428       }
3429       if (prev_obj < span.end()) {
3430         MemRegion my_span = MemRegion(prev_obj, span.end());
3431         // Do the marking work within a non-empty span --
3432         // the last argument to the constructor indicates whether the
3433         // iteration should be incremental with periodic yields.
3434         Par_MarkFromRootsClosure cl(this, _collector, my_span,
3435                                     &_collector->_markBitMap,
3436                                     work_queue(i),
3437                                     &_collector->_markStack);
3438         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3439       } // else nothing to do for this task
3440     }   // else nothing to do for this task
3441   }
3442   // We'd be tempted to assert here that since there are no
3443   // more tasks left to claim in this space, the global_finger
3444   // must exceed space->top() and a fortiori space->end(). However,
3445   // that would not quite be correct because the bumping of
3446   // global_finger occurs strictly after the claiming of a task,
3447   // so by the time we reach here the global finger may not yet
3448   // have been bumped up by the thread that claimed the last
3449   // task.
3450   pst->all_tasks_completed();
3451 }
3452 
3453 class Par_ConcMarkingClosure: public MetadataAwareOopClosure {
3454  private:
3455   CMSCollector* _collector;
3456   CMSConcMarkingTask* _task;
3457   MemRegion     _span;
3458   CMSBitMap*    _bit_map;
3459   CMSMarkStack* _overflow_stack;
3460   OopTaskQueue* _work_queue;
3461  protected:
3462   DO_OOP_WORK_DEFN
3463  public:
3464   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3465                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3466     MetadataAwareOopClosure(collector->ref_processor()),
3467     _collector(collector),
3468     _task(task),
3469     _span(collector->_span),
3470     _work_queue(work_queue),
3471     _bit_map(bit_map),
3472     _overflow_stack(overflow_stack)
3473   { }
3474   virtual void do_oop(oop* p);
3475   virtual void do_oop(narrowOop* p);
3476 
3477   void trim_queue(size_t max);
3478   void handle_stack_overflow(HeapWord* lost);
3479   void do_yield_check() {
3480     if (_task->should_yield()) {
3481       _task->yield();
3482     }
3483   }
3484 };
3485 
3486 // Grey object scanning during work stealing phase --
3487 // the salient assumption here is that any references
3488 // that are in these stolen objects being scanned must
3489 // already have been initialized (else they would not have
3490 // been published), so we do not need to check for
3491 // uninitialized objects before pushing here.
3492 void Par_ConcMarkingClosure::do_oop(oop obj) {
3493   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
3494   HeapWord* addr = (HeapWord*)obj;
3495   // Check if oop points into the CMS generation
3496   // and is not marked
3497   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3498     // a white object ...
3499     // If we manage to "claim" the object, by being the
3500     // first thread to mark it, then we push it on our
3501     // marking stack
3502     if (_bit_map->par_mark(addr)) {     // ... now grey
3503       // push on work queue (grey set)
3504       bool simulate_overflow = false;
3505       NOT_PRODUCT(
3506         if (CMSMarkStackOverflowALot &&
3507             _collector->simulate_overflow()) {
3508           // simulate a stack overflow
3509           simulate_overflow = true;
3510         }
3511       )
3512       if (simulate_overflow ||
3513           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3514         // stack overflow
3515         if (PrintCMSStatistics != 0) {
3516           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
3517                                  SIZE_FORMAT, _overflow_stack->capacity());
3518         }
3519         // We cannot assert that the overflow stack is full because
3520         // it may have been emptied since.
3521         assert(simulate_overflow ||
3522                _work_queue->size() == _work_queue->max_elems(),
3523               "Else push should have succeeded");
3524         handle_stack_overflow(addr);
3525       }
3526     } // Else, some other thread got there first
3527     do_yield_check();
3528   }
3529 }
3530 
3531 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
3532 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
3533 
3534 void Par_ConcMarkingClosure::trim_queue(size_t max) {
3535   while (_work_queue->size() > max) {
3536     oop new_oop;
3537     if (_work_queue->pop_local(new_oop)) {
3538       assert(new_oop->is_oop(), "Should be an oop");
3539       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3540       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3541       new_oop->oop_iterate(this);  // do_oop() above
3542       do_yield_check();
3543     }
3544   }
3545 }
3546 
3547 // Upon stack overflow, we discard (part of) the stack,
3548 // remembering the least address amongst those discarded
3549 // in CMSCollector's _restart_address.
3550 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3551   // We need to do this under a mutex to prevent other
3552   // workers from interfering with the work done below.
3553   MutexLockerEx ml(_overflow_stack->par_lock(),
3554                    Mutex::_no_safepoint_check_flag);
3555   // Remember the least grey address discarded
3556   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3557   _collector->lower_restart_addr(ra);
3558   _overflow_stack->reset();  // discard stack contents
3559   _overflow_stack->expand(); // expand the stack if possible
3560 }
3561 
3562 
3563 void CMSConcMarkingTask::do_work_steal(int i) {
3564   OopTaskQueue* work_q = work_queue(i);
3565   oop obj_to_scan;
3566   CMSBitMap* bm = &(_collector->_markBitMap);
3567   CMSMarkStack* ovflw = &(_collector->_markStack);
3568   int* seed = _collector->hash_seed(i);
3569   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3570   while (true) {
3571     cl.trim_queue(0);
3572     assert(work_q->size() == 0, "Should have been emptied above");
3573     if (get_work_from_overflow_stack(ovflw, work_q)) {
3574       // Can't assert below because the work obtained from the
3575       // overflow stack may already have been stolen from us.
3576       // assert(work_q->size() > 0, "Work from overflow stack");
3577       continue;
3578     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
3579       assert(obj_to_scan->is_oop(), "Should be an oop");
3580       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3581       obj_to_scan->oop_iterate(&cl);
3582     } else if (terminator()->offer_termination(&_term_term)) {
3583       assert(work_q->size() == 0, "Impossible!");
3584       break;
3585     } else if (yielding() || should_yield()) {
3586       yield();
3587     }
3588   }
3589 }
3590 
3591 // This is run by the CMS (coordinator) thread.
3592 void CMSConcMarkingTask::coordinator_yield() {
3593   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3594          "CMS thread should hold CMS token");
3595   // First give up the locks, then yield, then re-lock
3596   // We should probably use a constructor/destructor idiom to
3597   // do this unlock/lock or modify the MutexUnlocker class to
3598   // serve our purpose. XXX
3599   assert_lock_strong(_bit_map_lock);
3600   _bit_map_lock->unlock();
3601   ConcurrentMarkSweepThread::desynchronize(true);
3602   _collector->stopTimer();
3603   if (PrintCMSStatistics != 0) {
3604     _collector->incrementYields();
3605   }
3606 
3607   // It is possible for whichever thread initiated the yield request
3608   // not to get a chance to wake up and take the bitmap lock between
3609   // this thread releasing it and reacquiring it. So, while the
3610   // should_yield() flag is on, let's sleep for a bit to give the
3611   // other thread a chance to wake up. The limit imposed on the number
3612   // of iterations is defensive, to avoid any unforseen circumstances
3613   // putting us into an infinite loop. Since it's always been this
3614   // (coordinator_yield()) method that was observed to cause the
3615   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3616   // which is by default non-zero. For the other seven methods that
3617   // also perform the yield operation, as are using a different
3618   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3619   // can enable the sleeping for those methods too, if necessary.
3620   // See 6442774.
3621   //
3622   // We really need to reconsider the synchronization between the GC
3623   // thread and the yield-requesting threads in the future and we
3624   // should really use wait/notify, which is the recommended
3625   // way of doing this type of interaction. Additionally, we should
3626   // consolidate the eight methods that do the yield operation and they
3627   // are almost identical into one for better maintainability and
3628   // readability. See 6445193.
3629   //
3630   // Tony 2006.06.29
3631   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3632                    ConcurrentMarkSweepThread::should_yield() &&
3633                    !CMSCollector::foregroundGCIsActive(); ++i) {
3634     os::sleep(Thread::current(), 1, false);
3635   }
3636 
3637   ConcurrentMarkSweepThread::synchronize(true);
3638   _bit_map_lock->lock_without_safepoint_check();
3639   _collector->startTimer();
3640 }
3641 
3642 bool CMSCollector::do_marking_mt() {
3643   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3644   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
3645                                        conc_workers()->total_workers(),
3646                                        conc_workers()->active_workers(),
3647                                        Threads::number_of_non_daemon_threads());
3648   conc_workers()->set_active_workers(num_workers);
3649 
3650   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3651 
3652   CMSConcMarkingTask tsk(this,
3653                          cms_space,
3654                          conc_workers(),
3655                          task_queues());
3656 
3657   // Since the actual number of workers we get may be different
3658   // from the number we requested above, do we need to do anything different
3659   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3660   // class?? XXX
3661   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3662 
3663   // Refs discovery is already non-atomic.
3664   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3665   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3666   conc_workers()->start_task(&tsk);
3667   while (tsk.yielded()) {
3668     tsk.coordinator_yield();
3669     conc_workers()->continue_task(&tsk);
3670   }
3671   // If the task was aborted, _restart_addr will be non-NULL
3672   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3673   while (_restart_addr != NULL) {
3674     // XXX For now we do not make use of ABORTED state and have not
3675     // yet implemented the right abort semantics (even in the original
3676     // single-threaded CMS case). That needs some more investigation
3677     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3678     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3679     // If _restart_addr is non-NULL, a marking stack overflow
3680     // occurred; we need to do a fresh marking iteration from the
3681     // indicated restart address.
3682     if (_foregroundGCIsActive) {
3683       // We may be running into repeated stack overflows, having
3684       // reached the limit of the stack size, while making very
3685       // slow forward progress. It may be best to bail out and
3686       // let the foreground collector do its job.
3687       // Clear _restart_addr, so that foreground GC
3688       // works from scratch. This avoids the headache of
3689       // a "rescan" which would otherwise be needed because
3690       // of the dirty mod union table & card table.
3691       _restart_addr = NULL;
3692       return false;
3693     }
3694     // Adjust the task to restart from _restart_addr
3695     tsk.reset(_restart_addr);
3696     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3697                   _restart_addr);
3698     _restart_addr = NULL;
3699     // Get the workers going again
3700     conc_workers()->start_task(&tsk);
3701     while (tsk.yielded()) {
3702       tsk.coordinator_yield();
3703       conc_workers()->continue_task(&tsk);
3704     }
3705   }
3706   assert(tsk.completed(), "Inconsistency");
3707   assert(tsk.result() == true, "Inconsistency");
3708   return true;
3709 }
3710 
3711 bool CMSCollector::do_marking_st() {
3712   ResourceMark rm;
3713   HandleMark   hm;
3714 
3715   // Temporarily make refs discovery single threaded (non-MT)
3716   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3717   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3718     &_markStack, CMSYield);
3719   // the last argument to iterate indicates whether the iteration
3720   // should be incremental with periodic yields.
3721   _markBitMap.iterate(&markFromRootsClosure);
3722   // If _restart_addr is non-NULL, a marking stack overflow
3723   // occurred; we need to do a fresh iteration from the
3724   // indicated restart address.
3725   while (_restart_addr != NULL) {
3726     if (_foregroundGCIsActive) {
3727       // We may be running into repeated stack overflows, having
3728       // reached the limit of the stack size, while making very
3729       // slow forward progress. It may be best to bail out and
3730       // let the foreground collector do its job.
3731       // Clear _restart_addr, so that foreground GC
3732       // works from scratch. This avoids the headache of
3733       // a "rescan" which would otherwise be needed because
3734       // of the dirty mod union table & card table.
3735       _restart_addr = NULL;
3736       return false;  // indicating failure to complete marking
3737     }
3738     // Deal with stack overflow:
3739     // we restart marking from _restart_addr
3740     HeapWord* ra = _restart_addr;
3741     markFromRootsClosure.reset(ra);
3742     _restart_addr = NULL;
3743     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3744   }
3745   return true;
3746 }
3747 
3748 void CMSCollector::preclean() {
3749   check_correct_thread_executing();
3750   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3751   verify_work_stacks_empty();
3752   verify_overflow_empty();
3753   _abort_preclean = false;
3754   if (CMSPrecleaningEnabled) {
3755     if (!CMSEdenChunksRecordAlways) {
3756       _eden_chunk_index = 0;
3757     }
3758     size_t used = get_eden_used();
3759     size_t capacity = get_eden_capacity();
3760     // Don't start sampling unless we will get sufficiently
3761     // many samples.
3762     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
3763                 * CMSScheduleRemarkEdenPenetration)) {
3764       _start_sampling = true;
3765     } else {
3766       _start_sampling = false;
3767     }
3768     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3769     CMSPhaseAccounting pa(this, "preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3770     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3771   }
3772   CMSTokenSync x(true); // is cms thread
3773   if (CMSPrecleaningEnabled) {
3774     sample_eden();
3775     _collectorState = AbortablePreclean;
3776   } else {
3777     _collectorState = FinalMarking;
3778   }
3779   verify_work_stacks_empty();
3780   verify_overflow_empty();
3781 }
3782 
3783 // Try and schedule the remark such that young gen
3784 // occupancy is CMSScheduleRemarkEdenPenetration %.
3785 void CMSCollector::abortable_preclean() {
3786   check_correct_thread_executing();
3787   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3788   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3789 
3790   // If Eden's current occupancy is below this threshold,
3791   // immediately schedule the remark; else preclean
3792   // past the next scavenge in an effort to
3793   // schedule the pause as described above. By choosing
3794   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3795   // we will never do an actual abortable preclean cycle.
3796   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3797     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3798     CMSPhaseAccounting pa(this, "abortable-preclean", _gc_tracer_cm->gc_id(), !PrintGCDetails);
3799     // We need more smarts in the abortable preclean
3800     // loop below to deal with cases where allocation
3801     // in young gen is very very slow, and our precleaning
3802     // is running a losing race against a horde of
3803     // mutators intent on flooding us with CMS updates
3804     // (dirty cards).
3805     // One, admittedly dumb, strategy is to give up
3806     // after a certain number of abortable precleaning loops
3807     // or after a certain maximum time. We want to make
3808     // this smarter in the next iteration.
3809     // XXX FIX ME!!! YSR
3810     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3811     while (!(should_abort_preclean() ||
3812              ConcurrentMarkSweepThread::should_terminate())) {
3813       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3814       cumworkdone += workdone;
3815       loops++;
3816       // Voluntarily terminate abortable preclean phase if we have
3817       // been at it for too long.
3818       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3819           loops >= CMSMaxAbortablePrecleanLoops) {
3820         if (PrintGCDetails) {
3821           gclog_or_tty->print(" CMS: abort preclean due to loops ");
3822         }
3823         break;
3824       }
3825       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3826         if (PrintGCDetails) {
3827           gclog_or_tty->print(" CMS: abort preclean due to time ");
3828         }
3829         break;
3830       }
3831       // If we are doing little work each iteration, we should
3832       // take a short break.
3833       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3834         // Sleep for some time, waiting for work to accumulate
3835         stopTimer();
3836         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3837         startTimer();
3838         waited++;
3839       }
3840     }
3841     if (PrintCMSStatistics > 0) {
3842       gclog_or_tty->print(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3843                           loops, waited, cumworkdone);
3844     }
3845   }
3846   CMSTokenSync x(true); // is cms thread
3847   if (_collectorState != Idling) {
3848     assert(_collectorState == AbortablePreclean,
3849            "Spontaneous state transition?");
3850     _collectorState = FinalMarking;
3851   } // Else, a foreground collection completed this CMS cycle.
3852   return;
3853 }
3854 
3855 // Respond to an Eden sampling opportunity
3856 void CMSCollector::sample_eden() {
3857   // Make sure a young gc cannot sneak in between our
3858   // reading and recording of a sample.
3859   assert(Thread::current()->is_ConcurrentGC_thread(),
3860          "Only the cms thread may collect Eden samples");
3861   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3862          "Should collect samples while holding CMS token");
3863   if (!_start_sampling) {
3864     return;
3865   }
3866   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3867   // is populated by the young generation.
3868   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3869     if (_eden_chunk_index < _eden_chunk_capacity) {
3870       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3871       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3872              "Unexpected state of Eden");
3873       // We'd like to check that what we just sampled is an oop-start address;
3874       // however, we cannot do that here since the object may not yet have been
3875       // initialized. So we'll instead do the check when we _use_ this sample
3876       // later.
3877       if (_eden_chunk_index == 0 ||
3878           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3879                          _eden_chunk_array[_eden_chunk_index-1])
3880            >= CMSSamplingGrain)) {
3881         _eden_chunk_index++;  // commit sample
3882       }
3883     }
3884   }
3885   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3886     size_t used = get_eden_used();
3887     size_t capacity = get_eden_capacity();
3888     assert(used <= capacity, "Unexpected state of Eden");
3889     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3890       _abort_preclean = true;
3891     }
3892   }
3893 }
3894 
3895 
3896 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3897   assert(_collectorState == Precleaning ||
3898          _collectorState == AbortablePreclean, "incorrect state");
3899   ResourceMark rm;
3900   HandleMark   hm;
3901 
3902   // Precleaning is currently not MT but the reference processor
3903   // may be set for MT.  Disable it temporarily here.
3904   ReferenceProcessor* rp = ref_processor();
3905   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3906 
3907   // Do one pass of scrubbing the discovered reference lists
3908   // to remove any reference objects with strongly-reachable
3909   // referents.
3910   if (clean_refs) {
3911     CMSPrecleanRefsYieldClosure yield_cl(this);
3912     assert(rp->span().equals(_span), "Spans should be equal");
3913     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3914                                    &_markStack, true /* preclean */);
3915     CMSDrainMarkingStackClosure complete_trace(this,
3916                                    _span, &_markBitMap, &_markStack,
3917                                    &keep_alive, true /* preclean */);
3918 
3919     // We don't want this step to interfere with a young
3920     // collection because we don't want to take CPU
3921     // or memory bandwidth away from the young GC threads
3922     // (which may be as many as there are CPUs).
3923     // Note that we don't need to protect ourselves from
3924     // interference with mutators because they can't
3925     // manipulate the discovered reference lists nor affect
3926     // the computed reachability of the referents, the
3927     // only properties manipulated by the precleaning
3928     // of these reference lists.
3929     stopTimer();
3930     CMSTokenSyncWithLocks x(true /* is cms thread */,
3931                             bitMapLock());
3932     startTimer();
3933     sample_eden();
3934 
3935     // The following will yield to allow foreground
3936     // collection to proceed promptly. XXX YSR:
3937     // The code in this method may need further
3938     // tweaking for better performance and some restructuring
3939     // for cleaner interfaces.
3940     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3941     rp->preclean_discovered_references(
3942           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3943           gc_timer, _gc_tracer_cm->gc_id());
3944   }
3945 
3946   if (clean_survivor) {  // preclean the active survivor space(s)
3947     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3948                              &_markBitMap, &_modUnionTable,
3949                              &_markStack, true /* precleaning phase */);
3950     stopTimer();
3951     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3952                              bitMapLock());
3953     startTimer();
3954     unsigned int before_count =
3955       GenCollectedHeap::heap()->total_collections();
3956     SurvivorSpacePrecleanClosure
3957       sss_cl(this, _span, &_markBitMap, &_markStack,
3958              &pam_cl, before_count, CMSYield);
3959     _young_gen->from()->object_iterate_careful(&sss_cl);
3960     _young_gen->to()->object_iterate_careful(&sss_cl);
3961   }
3962   MarkRefsIntoAndScanClosure
3963     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3964              &_markStack, this, CMSYield,
3965              true /* precleaning phase */);
3966   // CAUTION: The following closure has persistent state that may need to
3967   // be reset upon a decrease in the sequence of addresses it
3968   // processes.
3969   ScanMarkedObjectsAgainCarefullyClosure
3970     smoac_cl(this, _span,
3971       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3972 
3973   // Preclean dirty cards in ModUnionTable and CardTable using
3974   // appropriate convergence criterion;
3975   // repeat CMSPrecleanIter times unless we find that
3976   // we are losing.
3977   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3978   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3979          "Bad convergence multiplier");
3980   assert(CMSPrecleanThreshold >= 100,
3981          "Unreasonably low CMSPrecleanThreshold");
3982 
3983   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3984   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3985        numIter < CMSPrecleanIter;
3986        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3987     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3988     if (Verbose && PrintGCDetails) {
3989       gclog_or_tty->print(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3990     }
3991     // Either there are very few dirty cards, so re-mark
3992     // pause will be small anyway, or our pre-cleaning isn't
3993     // that much faster than the rate at which cards are being
3994     // dirtied, so we might as well stop and re-mark since
3995     // precleaning won't improve our re-mark time by much.
3996     if (curNumCards <= CMSPrecleanThreshold ||
3997         (numIter > 0 &&
3998          (curNumCards * CMSPrecleanDenominator >
3999          lastNumCards * CMSPrecleanNumerator))) {
4000       numIter++;
4001       cumNumCards += curNumCards;
4002       break;
4003     }
4004   }
4005 
4006   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4007 
4008   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4009   cumNumCards += curNumCards;
4010   if (PrintGCDetails && PrintCMSStatistics != 0) {
4011     gclog_or_tty->print_cr(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
4012                   curNumCards, cumNumCards, numIter);
4013   }
4014   return cumNumCards;   // as a measure of useful work done
4015 }
4016 
4017 // PRECLEANING NOTES:
4018 // Precleaning involves:
4019 // . reading the bits of the modUnionTable and clearing the set bits.
4020 // . For the cards corresponding to the set bits, we scan the
4021 //   objects on those cards. This means we need the free_list_lock
4022 //   so that we can safely iterate over the CMS space when scanning
4023 //   for oops.
4024 // . When we scan the objects, we'll be both reading and setting
4025 //   marks in the marking bit map, so we'll need the marking bit map.
4026 // . For protecting _collector_state transitions, we take the CGC_lock.
4027 //   Note that any races in the reading of of card table entries by the
4028 //   CMS thread on the one hand and the clearing of those entries by the
4029 //   VM thread or the setting of those entries by the mutator threads on the
4030 //   other are quite benign. However, for efficiency it makes sense to keep
4031 //   the VM thread from racing with the CMS thread while the latter is
4032 //   dirty card info to the modUnionTable. We therefore also use the
4033 //   CGC_lock to protect the reading of the card table and the mod union
4034 //   table by the CM thread.
4035 // . We run concurrently with mutator updates, so scanning
4036 //   needs to be done carefully  -- we should not try to scan
4037 //   potentially uninitialized objects.
4038 //
4039 // Locking strategy: While holding the CGC_lock, we scan over and
4040 // reset a maximal dirty range of the mod union / card tables, then lock
4041 // the free_list_lock and bitmap lock to do a full marking, then
4042 // release these locks; and repeat the cycle. This allows for a
4043 // certain amount of fairness in the sharing of these locks between
4044 // the CMS collector on the one hand, and the VM thread and the
4045 // mutators on the other.
4046 
4047 // NOTE: preclean_mod_union_table() and preclean_card_table()
4048 // further below are largely identical; if you need to modify
4049 // one of these methods, please check the other method too.
4050 
4051 size_t CMSCollector::preclean_mod_union_table(
4052   ConcurrentMarkSweepGeneration* gen,
4053   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4054   verify_work_stacks_empty();
4055   verify_overflow_empty();
4056 
4057   // strategy: starting with the first card, accumulate contiguous
4058   // ranges of dirty cards; clear these cards, then scan the region
4059   // covered by these cards.
4060 
4061   // Since all of the MUT is committed ahead, we can just use
4062   // that, in case the generations expand while we are precleaning.
4063   // It might also be fine to just use the committed part of the
4064   // generation, but we might potentially miss cards when the
4065   // generation is rapidly expanding while we are in the midst
4066   // of precleaning.
4067   HeapWord* startAddr = gen->reserved().start();
4068   HeapWord* endAddr   = gen->reserved().end();
4069 
4070   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4071 
4072   size_t numDirtyCards, cumNumDirtyCards;
4073   HeapWord *nextAddr, *lastAddr;
4074   for (cumNumDirtyCards = numDirtyCards = 0,
4075        nextAddr = lastAddr = startAddr;
4076        nextAddr < endAddr;
4077        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4078 
4079     ResourceMark rm;
4080     HandleMark   hm;
4081 
4082     MemRegion dirtyRegion;
4083     {
4084       stopTimer();
4085       // Potential yield point
4086       CMSTokenSync ts(true);
4087       startTimer();
4088       sample_eden();
4089       // Get dirty region starting at nextOffset (inclusive),
4090       // simultaneously clearing it.
4091       dirtyRegion =
4092         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4093       assert(dirtyRegion.start() >= nextAddr,
4094              "returned region inconsistent?");
4095     }
4096     // Remember where the next search should begin.
4097     // The returned region (if non-empty) is a right open interval,
4098     // so lastOffset is obtained from the right end of that
4099     // interval.
4100     lastAddr = dirtyRegion.end();
4101     // Should do something more transparent and less hacky XXX
4102     numDirtyCards =
4103       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4104 
4105     // We'll scan the cards in the dirty region (with periodic
4106     // yields for foreground GC as needed).
4107     if (!dirtyRegion.is_empty()) {
4108       assert(numDirtyCards > 0, "consistency check");
4109       HeapWord* stop_point = NULL;
4110       stopTimer();
4111       // Potential yield point
4112       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4113                                bitMapLock());
4114       startTimer();
4115       {
4116         verify_work_stacks_empty();
4117         verify_overflow_empty();
4118         sample_eden();
4119         stop_point =
4120           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4121       }
4122       if (stop_point != NULL) {
4123         // The careful iteration stopped early either because it found an
4124         // uninitialized object, or because we were in the midst of an
4125         // "abortable preclean", which should now be aborted. Redirty
4126         // the bits corresponding to the partially-scanned or unscanned
4127         // cards. We'll either restart at the next block boundary or
4128         // abort the preclean.
4129         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4130                "Should only be AbortablePreclean.");
4131         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4132         if (should_abort_preclean()) {
4133           break; // out of preclean loop
4134         } else {
4135           // Compute the next address at which preclean should pick up;
4136           // might need bitMapLock in order to read P-bits.
4137           lastAddr = next_card_start_after_block(stop_point);
4138         }
4139       }
4140     } else {
4141       assert(lastAddr == endAddr, "consistency check");
4142       assert(numDirtyCards == 0, "consistency check");
4143       break;
4144     }
4145   }
4146   verify_work_stacks_empty();
4147   verify_overflow_empty();
4148   return cumNumDirtyCards;
4149 }
4150 
4151 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4152 // below are largely identical; if you need to modify
4153 // one of these methods, please check the other method too.
4154 
4155 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4156   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4157   // strategy: it's similar to precleamModUnionTable above, in that
4158   // we accumulate contiguous ranges of dirty cards, mark these cards
4159   // precleaned, then scan the region covered by these cards.
4160   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4161   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4162 
4163   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4164 
4165   size_t numDirtyCards, cumNumDirtyCards;
4166   HeapWord *lastAddr, *nextAddr;
4167 
4168   for (cumNumDirtyCards = numDirtyCards = 0,
4169        nextAddr = lastAddr = startAddr;
4170        nextAddr < endAddr;
4171        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4172 
4173     ResourceMark rm;
4174     HandleMark   hm;
4175 
4176     MemRegion dirtyRegion;
4177     {
4178       // See comments in "Precleaning notes" above on why we
4179       // do this locking. XXX Could the locking overheads be
4180       // too high when dirty cards are sparse? [I don't think so.]
4181       stopTimer();
4182       CMSTokenSync x(true); // is cms thread
4183       startTimer();
4184       sample_eden();
4185       // Get and clear dirty region from card table
4186       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4187                                     MemRegion(nextAddr, endAddr),
4188                                     true,
4189                                     CardTableModRefBS::precleaned_card_val());
4190 
4191       assert(dirtyRegion.start() >= nextAddr,
4192              "returned region inconsistent?");
4193     }
4194     lastAddr = dirtyRegion.end();
4195     numDirtyCards =
4196       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4197 
4198     if (!dirtyRegion.is_empty()) {
4199       stopTimer();
4200       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4201       startTimer();
4202       sample_eden();
4203       verify_work_stacks_empty();
4204       verify_overflow_empty();
4205       HeapWord* stop_point =
4206         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4207       if (stop_point != NULL) {
4208         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4209                "Should only be AbortablePreclean.");
4210         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4211         if (should_abort_preclean()) {
4212           break; // out of preclean loop
4213         } else {
4214           // Compute the next address at which preclean should pick up.
4215           lastAddr = next_card_start_after_block(stop_point);
4216         }
4217       }
4218     } else {
4219       break;
4220     }
4221   }
4222   verify_work_stacks_empty();
4223   verify_overflow_empty();
4224   return cumNumDirtyCards;
4225 }
4226 
4227 class PrecleanKlassClosure : public KlassClosure {
4228   KlassToOopClosure _cm_klass_closure;
4229  public:
4230   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4231   void do_klass(Klass* k) {
4232     if (k->has_accumulated_modified_oops()) {
4233       k->clear_accumulated_modified_oops();
4234 
4235       _cm_klass_closure.do_klass(k);
4236     }
4237   }
4238 };
4239 
4240 // The freelist lock is needed to prevent asserts, is it really needed?
4241 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4242 
4243   cl->set_freelistLock(freelistLock);
4244 
4245   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4246 
4247   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4248   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4249   PrecleanKlassClosure preclean_klass_closure(cl);
4250   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
4251 
4252   verify_work_stacks_empty();
4253   verify_overflow_empty();
4254 }
4255 
4256 void CMSCollector::checkpointRootsFinal() {
4257   assert(_collectorState == FinalMarking, "incorrect state transition?");
4258   check_correct_thread_executing();
4259   // world is stopped at this checkpoint
4260   assert(SafepointSynchronize::is_at_safepoint(),
4261          "world should be stopped");
4262   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4263 
4264   verify_work_stacks_empty();
4265   verify_overflow_empty();
4266 
4267   if (PrintGCDetails) {
4268     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4269                         _young_gen->used() / K,
4270                         _young_gen->capacity() / K);
4271   }
4272   {
4273     if (CMSScavengeBeforeRemark) {
4274       GenCollectedHeap* gch = GenCollectedHeap::heap();
4275       // Temporarily set flag to false, GCH->do_collection will
4276       // expect it to be false and set to true
4277       FlagSetting fl(gch->_is_gc_active, false);
4278       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4279         PrintGCDetails && Verbose, true, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4280       int level = _cmsGen->level() - 1;
4281       if (level >= 0) {
4282         gch->do_collection(true,        // full (i.e. force, see below)
4283                            false,       // !clear_all_soft_refs
4284                            0,           // size
4285                            false,       // is_tlab
4286                            level        // max_level
4287                           );
4288       }
4289     }
4290     FreelistLocker x(this);
4291     MutexLockerEx y(bitMapLock(),
4292                     Mutex::_no_safepoint_check_flag);
4293     checkpointRootsFinalWork();
4294   }
4295   verify_work_stacks_empty();
4296   verify_overflow_empty();
4297 }
4298 
4299 void CMSCollector::checkpointRootsFinalWork() {
4300   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4301 
4302   assert(haveFreelistLocks(), "must have free list locks");
4303   assert_lock_strong(bitMapLock());
4304 
4305   ResourceMark rm;
4306   HandleMark   hm;
4307 
4308   GenCollectedHeap* gch = GenCollectedHeap::heap();
4309 
4310   if (should_unload_classes()) {
4311     CodeCache::gc_prologue();
4312   }
4313   assert(haveFreelistLocks(), "must have free list locks");
4314   assert_lock_strong(bitMapLock());
4315 
4316   // We might assume that we need not fill TLAB's when
4317   // CMSScavengeBeforeRemark is set, because we may have just done
4318   // a scavenge which would have filled all TLAB's -- and besides
4319   // Eden would be empty. This however may not always be the case --
4320   // for instance although we asked for a scavenge, it may not have
4321   // happened because of a JNI critical section. We probably need
4322   // a policy for deciding whether we can in that case wait until
4323   // the critical section releases and then do the remark following
4324   // the scavenge, and skip it here. In the absence of that policy,
4325   // or of an indication of whether the scavenge did indeed occur,
4326   // we cannot rely on TLAB's having been filled and must do
4327   // so here just in case a scavenge did not happen.
4328   gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4329   // Update the saved marks which may affect the root scans.
4330   gch->save_marks();
4331 
4332   if (CMSPrintEdenSurvivorChunks) {
4333     print_eden_and_survivor_chunk_arrays();
4334   }
4335 
4336   {
4337     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
4338 
4339     // Note on the role of the mod union table:
4340     // Since the marker in "markFromRoots" marks concurrently with
4341     // mutators, it is possible for some reachable objects not to have been
4342     // scanned. For instance, an only reference to an object A was
4343     // placed in object B after the marker scanned B. Unless B is rescanned,
4344     // A would be collected. Such updates to references in marked objects
4345     // are detected via the mod union table which is the set of all cards
4346     // dirtied since the first checkpoint in this GC cycle and prior to
4347     // the most recent young generation GC, minus those cleaned up by the
4348     // concurrent precleaning.
4349     if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
4350       GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
4351       do_remark_parallel();
4352     } else {
4353       GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
4354                   _gc_timer_cm, _gc_tracer_cm->gc_id());
4355       do_remark_non_parallel();
4356     }
4357   }
4358   verify_work_stacks_empty();
4359   verify_overflow_empty();
4360 
4361   {
4362     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());)
4363     refProcessingWork();
4364   }
4365   verify_work_stacks_empty();
4366   verify_overflow_empty();
4367 
4368   if (should_unload_classes()) {
4369     CodeCache::gc_epilogue();
4370   }
4371   JvmtiExport::gc_epilogue();
4372 
4373   // If we encountered any (marking stack / work queue) overflow
4374   // events during the current CMS cycle, take appropriate
4375   // remedial measures, where possible, so as to try and avoid
4376   // recurrence of that condition.
4377   assert(_markStack.isEmpty(), "No grey objects");
4378   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4379                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4380   if (ser_ovflw > 0) {
4381     if (PrintCMSStatistics != 0) {
4382       gclog_or_tty->print_cr("Marking stack overflow (benign) "
4383         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
4384         ", kac_preclean="SIZE_FORMAT")",
4385         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
4386         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4387     }
4388     _markStack.expand();
4389     _ser_pmc_remark_ovflw = 0;
4390     _ser_pmc_preclean_ovflw = 0;
4391     _ser_kac_preclean_ovflw = 0;
4392     _ser_kac_ovflw = 0;
4393   }
4394   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4395     if (PrintCMSStatistics != 0) {
4396       gclog_or_tty->print_cr("Work queue overflow (benign) "
4397         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
4398         _par_pmc_remark_ovflw, _par_kac_ovflw);
4399     }
4400     _par_pmc_remark_ovflw = 0;
4401     _par_kac_ovflw = 0;
4402   }
4403   if (PrintCMSStatistics != 0) {
4404      if (_markStack._hit_limit > 0) {
4405        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
4406                               _markStack._hit_limit);
4407      }
4408      if (_markStack._failed_double > 0) {
4409        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
4410                               " current capacity "SIZE_FORMAT,
4411                               _markStack._failed_double,
4412                               _markStack.capacity());
4413      }
4414   }
4415   _markStack._hit_limit = 0;
4416   _markStack._failed_double = 0;
4417 
4418   if ((VerifyAfterGC || VerifyDuringGC) &&
4419       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
4420     verify_after_remark();
4421   }
4422 
4423   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4424 
4425   // Change under the freelistLocks.
4426   _collectorState = Sweeping;
4427   // Call isAllClear() under bitMapLock
4428   assert(_modUnionTable.isAllClear(),
4429       "Should be clear by end of the final marking");
4430   assert(_ct->klass_rem_set()->mod_union_is_clear(),
4431       "Should be clear by end of the final marking");
4432 }
4433 
4434 void CMSParInitialMarkTask::work(uint worker_id) {
4435   elapsedTimer _timer;
4436   ResourceMark rm;
4437   HandleMark   hm;
4438 
4439   // ---------- scan from roots --------------
4440   _timer.start();
4441   GenCollectedHeap* gch = GenCollectedHeap::heap();
4442   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4443 
4444   // ---------- young gen roots --------------
4445   {
4446     work_on_young_gen_roots(worker_id, &par_mri_cl);
4447     _timer.stop();
4448     if (PrintCMSStatistics != 0) {
4449       gclog_or_tty->print_cr(
4450         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
4451         worker_id, _timer.seconds());
4452     }
4453   }
4454 
4455   // ---------- remaining roots --------------
4456   _timer.reset();
4457   _timer.start();
4458 
4459   CLDToOopClosure cld_closure(&par_mri_cl, true);
4460 
4461   gch->gen_process_roots(_collector->_cmsGen->level(),
4462                          false,     // yg was scanned above
4463                          false,     // this is parallel code
4464                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4465                          _collector->should_unload_classes(),
4466                          &par_mri_cl,
4467                          NULL,
4468                          &cld_closure);
4469   assert(_collector->should_unload_classes()
4470          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4471          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4472   _timer.stop();
4473   if (PrintCMSStatistics != 0) {
4474     gclog_or_tty->print_cr(
4475       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
4476       worker_id, _timer.seconds());
4477   }
4478 }
4479 
4480 // Parallel remark task
4481 class CMSParRemarkTask: public CMSParMarkTask {
4482   CompactibleFreeListSpace* _cms_space;
4483 
4484   // The per-thread work queues, available here for stealing.
4485   OopTaskQueueSet*       _task_queues;
4486   ParallelTaskTerminator _term;
4487 
4488  public:
4489   // A value of 0 passed to n_workers will cause the number of
4490   // workers to be taken from the active workers in the work gang.
4491   CMSParRemarkTask(CMSCollector* collector,
4492                    CompactibleFreeListSpace* cms_space,
4493                    int n_workers, FlexibleWorkGang* workers,
4494                    OopTaskQueueSet* task_queues):
4495     CMSParMarkTask("Rescan roots and grey objects in parallel",
4496                    collector, n_workers),
4497     _cms_space(cms_space),
4498     _task_queues(task_queues),
4499     _term(n_workers, task_queues) { }
4500 
4501   OopTaskQueueSet* task_queues() { return _task_queues; }
4502 
4503   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4504 
4505   ParallelTaskTerminator* terminator() { return &_term; }
4506   int n_workers() { return _n_workers; }
4507 
4508   void work(uint worker_id);
4509 
4510  private:
4511   // ... of  dirty cards in old space
4512   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4513                                   Par_MarkRefsIntoAndScanClosure* cl);
4514 
4515   // ... work stealing for the above
4516   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
4517 };
4518 
4519 class RemarkKlassClosure : public KlassClosure {
4520   KlassToOopClosure _cm_klass_closure;
4521  public:
4522   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4523   void do_klass(Klass* k) {
4524     // Check if we have modified any oops in the Klass during the concurrent marking.
4525     if (k->has_accumulated_modified_oops()) {
4526       k->clear_accumulated_modified_oops();
4527 
4528       // We could have transfered the current modified marks to the accumulated marks,
4529       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4530     } else if (k->has_modified_oops()) {
4531       // Don't clear anything, this info is needed by the next young collection.
4532     } else {
4533       // No modified oops in the Klass.
4534       return;
4535     }
4536 
4537     // The klass has modified fields, need to scan the klass.
4538     _cm_klass_closure.do_klass(k);
4539   }
4540 };
4541 
4542 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
4543   ParNewGeneration* young_gen = _collector->_young_gen;
4544   ContiguousSpace* eden_space = young_gen->eden();
4545   ContiguousSpace* from_space = young_gen->from();
4546   ContiguousSpace* to_space   = young_gen->to();
4547 
4548   HeapWord** eca = _collector->_eden_chunk_array;
4549   size_t     ect = _collector->_eden_chunk_index;
4550   HeapWord** sca = _collector->_survivor_chunk_array;
4551   size_t     sct = _collector->_survivor_chunk_index;
4552 
4553   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4554   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4555 
4556   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
4557   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
4558   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
4559 }
4560 
4561 // work_queue(i) is passed to the closure
4562 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
4563 // also is passed to do_dirty_card_rescan_tasks() and to
4564 // do_work_steal() to select the i-th task_queue.
4565 
4566 void CMSParRemarkTask::work(uint worker_id) {
4567   elapsedTimer _timer;
4568   ResourceMark rm;
4569   HandleMark   hm;
4570 
4571   // ---------- rescan from roots --------------
4572   _timer.start();
4573   GenCollectedHeap* gch = GenCollectedHeap::heap();
4574   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4575     _collector->_span, _collector->ref_processor(),
4576     &(_collector->_markBitMap),
4577     work_queue(worker_id));
4578 
4579   // Rescan young gen roots first since these are likely
4580   // coarsely partitioned and may, on that account, constitute
4581   // the critical path; thus, it's best to start off that
4582   // work first.
4583   // ---------- young gen roots --------------
4584   {
4585     work_on_young_gen_roots(worker_id, &par_mrias_cl);
4586     _timer.stop();
4587     if (PrintCMSStatistics != 0) {
4588       gclog_or_tty->print_cr(
4589         "Finished young gen rescan work in %dth thread: %3.3f sec",
4590         worker_id, _timer.seconds());
4591     }
4592   }
4593 
4594   // ---------- remaining roots --------------
4595   _timer.reset();
4596   _timer.start();
4597   gch->gen_process_roots(_collector->_cmsGen->level(),
4598                          false,     // yg was scanned above
4599                          false,     // this is parallel code
4600                          GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4601                          _collector->should_unload_classes(),
4602                          &par_mrias_cl,
4603                          NULL,
4604                          NULL);     // The dirty klasses will be handled below
4605 
4606   assert(_collector->should_unload_classes()
4607          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4608          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4609   _timer.stop();
4610   if (PrintCMSStatistics != 0) {
4611     gclog_or_tty->print_cr(
4612       "Finished remaining root rescan work in %dth thread: %3.3f sec",
4613       worker_id, _timer.seconds());
4614   }
4615 
4616   // ---------- unhandled CLD scanning ----------
4617   if (worker_id == 0) { // Single threaded at the moment.
4618     _timer.reset();
4619     _timer.start();
4620 
4621     // Scan all new class loader data objects and new dependencies that were
4622     // introduced during concurrent marking.
4623     ResourceMark rm;
4624     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4625     for (int i = 0; i < array->length(); i++) {
4626       par_mrias_cl.do_class_loader_data(array->at(i));
4627     }
4628 
4629     // We don't need to keep track of new CLDs anymore.
4630     ClassLoaderDataGraph::remember_new_clds(false);
4631 
4632     _timer.stop();
4633     if (PrintCMSStatistics != 0) {
4634       gclog_or_tty->print_cr(
4635           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
4636           worker_id, _timer.seconds());
4637     }
4638   }
4639 
4640   // ---------- dirty klass scanning ----------
4641   if (worker_id == 0) { // Single threaded at the moment.
4642     _timer.reset();
4643     _timer.start();
4644 
4645     // Scan all classes that was dirtied during the concurrent marking phase.
4646     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
4647     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
4648 
4649     _timer.stop();
4650     if (PrintCMSStatistics != 0) {
4651       gclog_or_tty->print_cr(
4652           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
4653           worker_id, _timer.seconds());
4654     }
4655   }
4656 
4657   // We might have added oops to ClassLoaderData::_handles during the
4658   // concurrent marking phase. These oops point to newly allocated objects
4659   // that are guaranteed to be kept alive. Either by the direct allocation
4660   // code, or when the young collector processes the roots. Hence,
4661   // we don't have to revisit the _handles block during the remark phase.
4662 
4663   // ---------- rescan dirty cards ------------
4664   _timer.reset();
4665   _timer.start();
4666 
4667   // Do the rescan tasks for each of the two spaces
4668   // (cms_space) in turn.
4669   // "worker_id" is passed to select the task_queue for "worker_id"
4670   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4671   _timer.stop();
4672   if (PrintCMSStatistics != 0) {
4673     gclog_or_tty->print_cr(
4674       "Finished dirty card rescan work in %dth thread: %3.3f sec",
4675       worker_id, _timer.seconds());
4676   }
4677 
4678   // ---------- steal work from other threads ...
4679   // ---------- ... and drain overflow list.
4680   _timer.reset();
4681   _timer.start();
4682   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
4683   _timer.stop();
4684   if (PrintCMSStatistics != 0) {
4685     gclog_or_tty->print_cr(
4686       "Finished work stealing in %dth thread: %3.3f sec",
4687       worker_id, _timer.seconds());
4688   }
4689 }
4690 
4691 // Note that parameter "i" is not used.
4692 void
4693 CMSParMarkTask::do_young_space_rescan(uint worker_id,
4694   OopsInGenClosure* cl, ContiguousSpace* space,
4695   HeapWord** chunk_array, size_t chunk_top) {
4696   // Until all tasks completed:
4697   // . claim an unclaimed task
4698   // . compute region boundaries corresponding to task claimed
4699   //   using chunk_array
4700   // . par_oop_iterate(cl) over that region
4701 
4702   ResourceMark rm;
4703   HandleMark   hm;
4704 
4705   SequentialSubTasksDone* pst = space->par_seq_tasks();
4706 
4707   uint nth_task = 0;
4708   uint n_tasks  = pst->n_tasks();
4709 
4710   if (n_tasks > 0) {
4711     assert(pst->valid(), "Uninitialized use?");
4712     HeapWord *start, *end;
4713     while (!pst->is_task_claimed(/* reference */ nth_task)) {
4714       // We claimed task # nth_task; compute its boundaries.
4715       if (chunk_top == 0) {  // no samples were taken
4716         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4717         start = space->bottom();
4718         end   = space->top();
4719       } else if (nth_task == 0) {
4720         start = space->bottom();
4721         end   = chunk_array[nth_task];
4722       } else if (nth_task < (uint)chunk_top) {
4723         assert(nth_task >= 1, "Control point invariant");
4724         start = chunk_array[nth_task - 1];
4725         end   = chunk_array[nth_task];
4726       } else {
4727         assert(nth_task == (uint)chunk_top, "Control point invariant");
4728         start = chunk_array[chunk_top - 1];
4729         end   = space->top();
4730       }
4731       MemRegion mr(start, end);
4732       // Verify that mr is in space
4733       assert(mr.is_empty() || space->used_region().contains(mr),
4734              "Should be in space");
4735       // Verify that "start" is an object boundary
4736       assert(mr.is_empty() || oop(mr.start())->is_oop(),
4737              "Should be an oop");
4738       space->par_oop_iterate(mr, cl);
4739     }
4740     pst->all_tasks_completed();
4741   }
4742 }
4743 
4744 void
4745 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4746   CompactibleFreeListSpace* sp, int i,
4747   Par_MarkRefsIntoAndScanClosure* cl) {
4748   // Until all tasks completed:
4749   // . claim an unclaimed task
4750   // . compute region boundaries corresponding to task claimed
4751   // . transfer dirty bits ct->mut for that region
4752   // . apply rescanclosure to dirty mut bits for that region
4753 
4754   ResourceMark rm;
4755   HandleMark   hm;
4756 
4757   OopTaskQueue* work_q = work_queue(i);
4758   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4759   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4760   // CAUTION: This closure has state that persists across calls to
4761   // the work method dirty_range_iterate_clear() in that it has
4762   // embedded in it a (subtype of) UpwardsObjectClosure. The
4763   // use of that state in the embedded UpwardsObjectClosure instance
4764   // assumes that the cards are always iterated (even if in parallel
4765   // by several threads) in monotonically increasing order per each
4766   // thread. This is true of the implementation below which picks
4767   // card ranges (chunks) in monotonically increasing order globally
4768   // and, a-fortiori, in monotonically increasing order per thread
4769   // (the latter order being a subsequence of the former).
4770   // If the work code below is ever reorganized into a more chaotic
4771   // work-partitioning form than the current "sequential tasks"
4772   // paradigm, the use of that persistent state will have to be
4773   // revisited and modified appropriately. See also related
4774   // bug 4756801 work on which should examine this code to make
4775   // sure that the changes there do not run counter to the
4776   // assumptions made here and necessary for correctness and
4777   // efficiency. Note also that this code might yield inefficient
4778   // behavior in the case of very large objects that span one or
4779   // more work chunks. Such objects would potentially be scanned
4780   // several times redundantly. Work on 4756801 should try and
4781   // address that performance anomaly if at all possible. XXX
4782   MemRegion  full_span  = _collector->_span;
4783   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4784   MarkFromDirtyCardsClosure
4785     greyRescanClosure(_collector, full_span, // entire span of interest
4786                       sp, bm, work_q, cl);
4787 
4788   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4789   assert(pst->valid(), "Uninitialized use?");
4790   uint nth_task = 0;
4791   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
4792   MemRegion span = sp->used_region();
4793   HeapWord* start_addr = span.start();
4794   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
4795                                            alignment);
4796   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4797   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
4798          start_addr, "Check alignment");
4799   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
4800          chunk_size, "Check alignment");
4801 
4802   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4803     // Having claimed the nth_task, compute corresponding mem-region,
4804     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4805     // The alignment restriction ensures that we do not need any
4806     // synchronization with other gang-workers while setting or
4807     // clearing bits in thus chunk of the MUT.
4808     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4809                                     start_addr + (nth_task+1)*chunk_size);
4810     // The last chunk's end might be way beyond end of the
4811     // used region. In that case pull back appropriately.
4812     if (this_span.end() > end_addr) {
4813       this_span.set_end(end_addr);
4814       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4815     }
4816     // Iterate over the dirty cards covering this chunk, marking them
4817     // precleaned, and setting the corresponding bits in the mod union
4818     // table. Since we have been careful to partition at Card and MUT-word
4819     // boundaries no synchronization is needed between parallel threads.
4820     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
4821                                                  &modUnionClosure);
4822 
4823     // Having transferred these marks into the modUnionTable,
4824     // rescan the marked objects on the dirty cards in the modUnionTable.
4825     // Even if this is at a synchronous collection, the initial marking
4826     // may have been done during an asynchronous collection so there
4827     // may be dirty bits in the mod-union table.
4828     _collector->_modUnionTable.dirty_range_iterate_clear(
4829                   this_span, &greyRescanClosure);
4830     _collector->_modUnionTable.verifyNoOneBitsInRange(
4831                                  this_span.start(),
4832                                  this_span.end());
4833   }
4834   pst->all_tasks_completed();  // declare that i am done
4835 }
4836 
4837 // . see if we can share work_queues with ParNew? XXX
4838 void
4839 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
4840                                 int* seed) {
4841   OopTaskQueue* work_q = work_queue(i);
4842   NOT_PRODUCT(int num_steals = 0;)
4843   oop obj_to_scan;
4844   CMSBitMap* bm = &(_collector->_markBitMap);
4845 
4846   while (true) {
4847     // Completely finish any left over work from (an) earlier round(s)
4848     cl->trim_queue(0);
4849     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4850                                          (size_t)ParGCDesiredObjsFromOverflowList);
4851     // Now check if there's any work in the overflow list
4852     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4853     // only affects the number of attempts made to get work from the
4854     // overflow list and does not affect the number of workers.  Just
4855     // pass ParallelGCThreads so this behavior is unchanged.
4856     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4857                                                 work_q,
4858                                                 ParallelGCThreads)) {
4859       // found something in global overflow list;
4860       // not yet ready to go stealing work from others.
4861       // We'd like to assert(work_q->size() != 0, ...)
4862       // because we just took work from the overflow list,
4863       // but of course we can't since all of that could have
4864       // been already stolen from us.
4865       // "He giveth and He taketh away."
4866       continue;
4867     }
4868     // Verify that we have no work before we resort to stealing
4869     assert(work_q->size() == 0, "Have work, shouldn't steal");
4870     // Try to steal from other queues that have work
4871     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4872       NOT_PRODUCT(num_steals++;)
4873       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
4874       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4875       // Do scanning work
4876       obj_to_scan->oop_iterate(cl);
4877       // Loop around, finish this work, and try to steal some more
4878     } else if (terminator()->offer_termination()) {
4879         break;  // nirvana from the infinite cycle
4880     }
4881   }
4882   NOT_PRODUCT(
4883     if (PrintCMSStatistics != 0) {
4884       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
4885     }
4886   )
4887   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4888          "Else our work is not yet done");
4889 }
4890 
4891 // Record object boundaries in _eden_chunk_array by sampling the eden
4892 // top in the slow-path eden object allocation code path and record
4893 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4894 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4895 // sampling in sample_eden() that activates during the part of the
4896 // preclean phase.
4897 void CMSCollector::sample_eden_chunk() {
4898   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4899     if (_eden_chunk_lock->try_lock()) {
4900       // Record a sample. This is the critical section. The contents
4901       // of the _eden_chunk_array have to be non-decreasing in the
4902       // address order.
4903       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4904       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4905              "Unexpected state of Eden");
4906       if (_eden_chunk_index == 0 ||
4907           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4908            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4909                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4910         _eden_chunk_index++;  // commit sample
4911       }
4912       _eden_chunk_lock->unlock();
4913     }
4914   }
4915 }
4916 
4917 // Return a thread-local PLAB recording array, as appropriate.
4918 void* CMSCollector::get_data_recorder(int thr_num) {
4919   if (_survivor_plab_array != NULL &&
4920       (CMSPLABRecordAlways ||
4921        (_collectorState > Marking && _collectorState < FinalMarking))) {
4922     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4923     ChunkArray* ca = &_survivor_plab_array[thr_num];
4924     ca->reset();   // clear it so that fresh data is recorded
4925     return (void*) ca;
4926   } else {
4927     return NULL;
4928   }
4929 }
4930 
4931 // Reset all the thread-local PLAB recording arrays
4932 void CMSCollector::reset_survivor_plab_arrays() {
4933   for (uint i = 0; i < ParallelGCThreads; i++) {
4934     _survivor_plab_array[i].reset();
4935   }
4936 }
4937 
4938 // Merge the per-thread plab arrays into the global survivor chunk
4939 // array which will provide the partitioning of the survivor space
4940 // for CMS initial scan and rescan.
4941 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4942                                               int no_of_gc_threads) {
4943   assert(_survivor_plab_array  != NULL, "Error");
4944   assert(_survivor_chunk_array != NULL, "Error");
4945   assert(_collectorState == FinalMarking ||
4946          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4947   for (int j = 0; j < no_of_gc_threads; j++) {
4948     _cursor[j] = 0;
4949   }
4950   HeapWord* top = surv->top();
4951   size_t i;
4952   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4953     HeapWord* min_val = top;          // Higher than any PLAB address
4954     uint      min_tid = 0;            // position of min_val this round
4955     for (int j = 0; j < no_of_gc_threads; j++) {
4956       ChunkArray* cur_sca = &_survivor_plab_array[j];
4957       if (_cursor[j] == cur_sca->end()) {
4958         continue;
4959       }
4960       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4961       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4962       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4963       if (cur_val < min_val) {
4964         min_tid = j;
4965         min_val = cur_val;
4966       } else {
4967         assert(cur_val < top, "All recorded addresses should be less");
4968       }
4969     }
4970     // At this point min_val and min_tid are respectively
4971     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4972     // and the thread (j) that witnesses that address.
4973     // We record this address in the _survivor_chunk_array[i]
4974     // and increment _cursor[min_tid] prior to the next round i.
4975     if (min_val == top) {
4976       break;
4977     }
4978     _survivor_chunk_array[i] = min_val;
4979     _cursor[min_tid]++;
4980   }
4981   // We are all done; record the size of the _survivor_chunk_array
4982   _survivor_chunk_index = i; // exclusive: [0, i)
4983   if (PrintCMSStatistics > 0) {
4984     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4985   }
4986   // Verify that we used up all the recorded entries
4987   #ifdef ASSERT
4988     size_t total = 0;
4989     for (int j = 0; j < no_of_gc_threads; j++) {
4990       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4991       total += _cursor[j];
4992     }
4993     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4994     // Check that the merged array is in sorted order
4995     if (total > 0) {
4996       for (size_t i = 0; i < total - 1; i++) {
4997         if (PrintCMSStatistics > 0) {
4998           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4999                               i, p2i(_survivor_chunk_array[i]));
5000         }
5001         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5002                "Not sorted");
5003       }
5004     }
5005   #endif // ASSERT
5006 }
5007 
5008 // Set up the space's par_seq_tasks structure for work claiming
5009 // for parallel initial scan and rescan of young gen.
5010 // See ParRescanTask where this is currently used.
5011 void
5012 CMSCollector::
5013 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5014   assert(n_threads > 0, "Unexpected n_threads argument");
5015 
5016   // Eden space
5017   if (!_young_gen->eden()->is_empty()) {
5018     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
5019     assert(!pst->valid(), "Clobbering existing data?");
5020     // Each valid entry in [0, _eden_chunk_index) represents a task.
5021     size_t n_tasks = _eden_chunk_index + 1;
5022     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5023     // Sets the condition for completion of the subtask (how many threads
5024     // need to finish in order to be done).
5025     pst->set_n_threads(n_threads);
5026     pst->set_n_tasks((int)n_tasks);
5027   }
5028 
5029   // Merge the survivor plab arrays into _survivor_chunk_array
5030   if (_survivor_plab_array != NULL) {
5031     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
5032   } else {
5033     assert(_survivor_chunk_index == 0, "Error");
5034   }
5035 
5036   // To space
5037   {
5038     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
5039     assert(!pst->valid(), "Clobbering existing data?");
5040     // Sets the condition for completion of the subtask (how many threads
5041     // need to finish in order to be done).
5042     pst->set_n_threads(n_threads);
5043     pst->set_n_tasks(1);
5044     assert(pst->valid(), "Error");
5045   }
5046 
5047   // From space
5048   {
5049     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
5050     assert(!pst->valid(), "Clobbering existing data?");
5051     size_t n_tasks = _survivor_chunk_index + 1;
5052     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5053     // Sets the condition for completion of the subtask (how many threads
5054     // need to finish in order to be done).
5055     pst->set_n_threads(n_threads);
5056     pst->set_n_tasks((int)n_tasks);
5057     assert(pst->valid(), "Error");
5058   }
5059 }
5060 
5061 // Parallel version of remark
5062 void CMSCollector::do_remark_parallel() {
5063   GenCollectedHeap* gch = GenCollectedHeap::heap();
5064   FlexibleWorkGang* workers = gch->workers();
5065   assert(workers != NULL, "Need parallel worker threads.");
5066   // Choose to use the number of GC workers most recently set
5067   // into "active_workers".  If active_workers is not set, set it
5068   // to ParallelGCThreads.
5069   int n_workers = workers->active_workers();
5070   if (n_workers == 0) {
5071     assert(n_workers > 0, "Should have been set during scavenge");
5072     n_workers = ParallelGCThreads;
5073     workers->set_active_workers(n_workers);
5074   }
5075   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5076 
5077   CMSParRemarkTask tsk(this,
5078     cms_space,
5079     n_workers, workers, task_queues());
5080 
5081   // Set up for parallel process_roots work.
5082   gch->set_par_threads(n_workers);
5083   // We won't be iterating over the cards in the card table updating
5084   // the younger_gen cards, so we shouldn't call the following else
5085   // the verification code as well as subsequent younger_refs_iterate
5086   // code would get confused. XXX
5087   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5088 
5089   // The young gen rescan work will not be done as part of
5090   // process_roots (which currently doesn't know how to
5091   // parallelize such a scan), but rather will be broken up into
5092   // a set of parallel tasks (via the sampling that the [abortable]
5093   // preclean phase did of eden, plus the [two] tasks of
5094   // scanning the [two] survivor spaces. Further fine-grain
5095   // parallelization of the scanning of the survivor spaces
5096   // themselves, and of precleaning of the younger gen itself
5097   // is deferred to the future.
5098   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5099 
5100   // The dirty card rescan work is broken up into a "sequence"
5101   // of parallel tasks (per constituent space) that are dynamically
5102   // claimed by the parallel threads.
5103   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5104 
5105   // It turns out that even when we're using 1 thread, doing the work in a
5106   // separate thread causes wide variance in run times.  We can't help this
5107   // in the multi-threaded case, but we special-case n=1 here to get
5108   // repeatable measurements of the 1-thread overhead of the parallel code.
5109   if (n_workers > 1) {
5110     // Make refs discovery MT-safe, if it isn't already: it may not
5111     // necessarily be so, since it's possible that we are doing
5112     // ST marking.
5113     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5114     StrongRootsScope srs;
5115     workers->run_task(&tsk);
5116   } else {
5117     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5118     StrongRootsScope srs;
5119     tsk.work(0);
5120   }
5121 
5122   gch->set_par_threads(0);  // 0 ==> non-parallel.
5123   // restore, single-threaded for now, any preserved marks
5124   // as a result of work_q overflow
5125   restore_preserved_marks_if_any();
5126 }
5127 
5128 // Non-parallel version of remark
5129 void CMSCollector::do_remark_non_parallel() {
5130   ResourceMark rm;
5131   HandleMark   hm;
5132   GenCollectedHeap* gch = GenCollectedHeap::heap();
5133   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5134 
5135   MarkRefsIntoAndScanClosure
5136     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5137              &_markStack, this,
5138              false /* should_yield */, false /* not precleaning */);
5139   MarkFromDirtyCardsClosure
5140     markFromDirtyCardsClosure(this, _span,
5141                               NULL,  // space is set further below
5142                               &_markBitMap, &_markStack, &mrias_cl);
5143   {
5144     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5145     // Iterate over the dirty cards, setting the corresponding bits in the
5146     // mod union table.
5147     {
5148       ModUnionClosure modUnionClosure(&_modUnionTable);
5149       _ct->ct_bs()->dirty_card_iterate(
5150                       _cmsGen->used_region(),
5151                       &modUnionClosure);
5152     }
5153     // Having transferred these marks into the modUnionTable, we just need
5154     // to rescan the marked objects on the dirty cards in the modUnionTable.
5155     // The initial marking may have been done during an asynchronous
5156     // collection so there may be dirty bits in the mod-union table.
5157     const int alignment =
5158       CardTableModRefBS::card_size * BitsPerWord;
5159     {
5160       // ... First handle dirty cards in CMS gen
5161       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5162       MemRegion ur = _cmsGen->used_region();
5163       HeapWord* lb = ur.start();
5164       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5165       MemRegion cms_span(lb, ub);
5166       _modUnionTable.dirty_range_iterate_clear(cms_span,
5167                                                &markFromDirtyCardsClosure);
5168       verify_work_stacks_empty();
5169       if (PrintCMSStatistics != 0) {
5170         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5171           markFromDirtyCardsClosure.num_dirty_cards());
5172       }
5173     }
5174   }
5175   if (VerifyDuringGC &&
5176       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5177     HandleMark hm;  // Discard invalid handles created during verification
5178     Universe::verify();
5179   }
5180   {
5181     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5182 
5183     verify_work_stacks_empty();
5184 
5185     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5186     StrongRootsScope srs;
5187 
5188     gch->gen_process_roots(_cmsGen->level(),
5189                            true,  // younger gens as roots
5190                            false, // use the local StrongRootsScope
5191                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
5192                            should_unload_classes(),
5193                            &mrias_cl,
5194                            NULL,
5195                            NULL); // The dirty klasses will be handled below
5196 
5197     assert(should_unload_classes()
5198            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5199            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5200   }
5201 
5202   {
5203     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5204 
5205     verify_work_stacks_empty();
5206 
5207     // Scan all class loader data objects that might have been introduced
5208     // during concurrent marking.
5209     ResourceMark rm;
5210     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5211     for (int i = 0; i < array->length(); i++) {
5212       mrias_cl.do_class_loader_data(array->at(i));
5213     }
5214 
5215     // We don't need to keep track of new CLDs anymore.
5216     ClassLoaderDataGraph::remember_new_clds(false);
5217 
5218     verify_work_stacks_empty();
5219   }
5220 
5221   {
5222     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5223 
5224     verify_work_stacks_empty();
5225 
5226     RemarkKlassClosure remark_klass_closure(&mrias_cl);
5227     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5228 
5229     verify_work_stacks_empty();
5230   }
5231 
5232   // We might have added oops to ClassLoaderData::_handles during the
5233   // concurrent marking phase. These oops point to newly allocated objects
5234   // that are guaranteed to be kept alive. Either by the direct allocation
5235   // code, or when the young collector processes the roots. Hence,
5236   // we don't have to revisit the _handles block during the remark phase.
5237 
5238   verify_work_stacks_empty();
5239   // Restore evacuated mark words, if any, used for overflow list links
5240   if (!CMSOverflowEarlyRestoration) {
5241     restore_preserved_marks_if_any();
5242   }
5243   verify_overflow_empty();
5244 }
5245 
5246 ////////////////////////////////////////////////////////
5247 // Parallel Reference Processing Task Proxy Class
5248 ////////////////////////////////////////////////////////
5249 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5250   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5251   CMSCollector*          _collector;
5252   CMSBitMap*             _mark_bit_map;
5253   const MemRegion        _span;
5254   ProcessTask&           _task;
5255 
5256 public:
5257   CMSRefProcTaskProxy(ProcessTask&     task,
5258                       CMSCollector*    collector,
5259                       const MemRegion& span,
5260                       CMSBitMap*       mark_bit_map,
5261                       AbstractWorkGang* workers,
5262                       OopTaskQueueSet* task_queues):
5263     // XXX Should superclass AGTWOQ also know about AWG since it knows
5264     // about the task_queues used by the AWG? Then it could initialize
5265     // the terminator() object. See 6984287. The set_for_termination()
5266     // below is a temporary band-aid for the regression in 6984287.
5267     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5268       task_queues),
5269     _task(task),
5270     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5271   {
5272     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5273            "Inconsistency in _span");
5274     set_for_termination(workers->active_workers());
5275   }
5276 
5277   OopTaskQueueSet* task_queues() { return queues(); }
5278 
5279   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5280 
5281   void do_work_steal(int i,
5282                      CMSParDrainMarkingStackClosure* drain,
5283                      CMSParKeepAliveClosure* keep_alive,
5284                      int* seed);
5285 
5286   virtual void work(uint worker_id);
5287 };
5288 
5289 void CMSRefProcTaskProxy::work(uint worker_id) {
5290   ResourceMark rm;
5291   HandleMark hm;
5292   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5293   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5294                                         _mark_bit_map,
5295                                         work_queue(worker_id));
5296   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5297                                                  _mark_bit_map,
5298                                                  work_queue(worker_id));
5299   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5300   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5301   if (_task.marks_oops_alive()) {
5302     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5303                   _collector->hash_seed(worker_id));
5304   }
5305   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5306   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5307 }
5308 
5309 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5310   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5311   EnqueueTask& _task;
5312 
5313 public:
5314   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5315     : AbstractGangTask("Enqueue reference objects in parallel"),
5316       _task(task)
5317   { }
5318 
5319   virtual void work(uint worker_id)
5320   {
5321     _task.work(worker_id);
5322   }
5323 };
5324 
5325 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5326   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5327    _span(span),
5328    _bit_map(bit_map),
5329    _work_queue(work_queue),
5330    _mark_and_push(collector, span, bit_map, work_queue),
5331    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5332                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5333 { }
5334 
5335 // . see if we can share work_queues with ParNew? XXX
5336 void CMSRefProcTaskProxy::do_work_steal(int i,
5337   CMSParDrainMarkingStackClosure* drain,
5338   CMSParKeepAliveClosure* keep_alive,
5339   int* seed) {
5340   OopTaskQueue* work_q = work_queue(i);
5341   NOT_PRODUCT(int num_steals = 0;)
5342   oop obj_to_scan;
5343 
5344   while (true) {
5345     // Completely finish any left over work from (an) earlier round(s)
5346     drain->trim_queue(0);
5347     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5348                                          (size_t)ParGCDesiredObjsFromOverflowList);
5349     // Now check if there's any work in the overflow list
5350     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5351     // only affects the number of attempts made to get work from the
5352     // overflow list and does not affect the number of workers.  Just
5353     // pass ParallelGCThreads so this behavior is unchanged.
5354     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5355                                                 work_q,
5356                                                 ParallelGCThreads)) {
5357       // Found something in global overflow list;
5358       // not yet ready to go stealing work from others.
5359       // We'd like to assert(work_q->size() != 0, ...)
5360       // because we just took work from the overflow list,
5361       // but of course we can't, since all of that might have
5362       // been already stolen from us.
5363       continue;
5364     }
5365     // Verify that we have no work before we resort to stealing
5366     assert(work_q->size() == 0, "Have work, shouldn't steal");
5367     // Try to steal from other queues that have work
5368     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5369       NOT_PRODUCT(num_steals++;)
5370       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5371       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5372       // Do scanning work
5373       obj_to_scan->oop_iterate(keep_alive);
5374       // Loop around, finish this work, and try to steal some more
5375     } else if (terminator()->offer_termination()) {
5376       break;  // nirvana from the infinite cycle
5377     }
5378   }
5379   NOT_PRODUCT(
5380     if (PrintCMSStatistics != 0) {
5381       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5382     }
5383   )
5384 }
5385 
5386 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5387 {
5388   GenCollectedHeap* gch = GenCollectedHeap::heap();
5389   FlexibleWorkGang* workers = gch->workers();
5390   assert(workers != NULL, "Need parallel worker threads.");
5391   CMSRefProcTaskProxy rp_task(task, &_collector,
5392                               _collector.ref_processor()->span(),
5393                               _collector.markBitMap(),
5394                               workers, _collector.task_queues());
5395   workers->run_task(&rp_task);
5396 }
5397 
5398 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5399 {
5400 
5401   GenCollectedHeap* gch = GenCollectedHeap::heap();
5402   FlexibleWorkGang* workers = gch->workers();
5403   assert(workers != NULL, "Need parallel worker threads.");
5404   CMSRefEnqueueTaskProxy enq_task(task);
5405   workers->run_task(&enq_task);
5406 }
5407 
5408 void CMSCollector::refProcessingWork() {
5409   ResourceMark rm;
5410   HandleMark   hm;
5411 
5412   ReferenceProcessor* rp = ref_processor();
5413   assert(rp->span().equals(_span), "Spans should be equal");
5414   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5415   // Process weak references.
5416   rp->setup_policy(false);
5417   verify_work_stacks_empty();
5418 
5419   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5420                                           &_markStack, false /* !preclean */);
5421   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5422                                 _span, &_markBitMap, &_markStack,
5423                                 &cmsKeepAliveClosure, false /* !preclean */);
5424   {
5425     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5426 
5427     ReferenceProcessorStats stats;
5428     if (rp->processing_is_mt()) {
5429       // Set the degree of MT here.  If the discovery is done MT, there
5430       // may have been a different number of threads doing the discovery
5431       // and a different number of discovered lists may have Ref objects.
5432       // That is OK as long as the Reference lists are balanced (see
5433       // balance_all_queues() and balance_queues()).
5434       GenCollectedHeap* gch = GenCollectedHeap::heap();
5435       int active_workers = ParallelGCThreads;
5436       FlexibleWorkGang* workers = gch->workers();
5437       if (workers != NULL) {
5438         active_workers = workers->active_workers();
5439         // The expectation is that active_workers will have already
5440         // been set to a reasonable value.  If it has not been set,
5441         // investigate.
5442         assert(active_workers > 0, "Should have been set during scavenge");
5443       }
5444       rp->set_active_mt_degree(active_workers);
5445       CMSRefProcTaskExecutor task_executor(*this);
5446       stats = rp->process_discovered_references(&_is_alive_closure,
5447                                         &cmsKeepAliveClosure,
5448                                         &cmsDrainMarkingStackClosure,
5449                                         &task_executor,
5450                                         _gc_timer_cm,
5451                                         _gc_tracer_cm->gc_id());
5452     } else {
5453       stats = rp->process_discovered_references(&_is_alive_closure,
5454                                         &cmsKeepAliveClosure,
5455                                         &cmsDrainMarkingStackClosure,
5456                                         NULL,
5457                                         _gc_timer_cm,
5458                                         _gc_tracer_cm->gc_id());
5459     }
5460     _gc_tracer_cm->report_gc_reference_stats(stats);
5461 
5462   }
5463 
5464   // This is the point where the entire marking should have completed.
5465   verify_work_stacks_empty();
5466 
5467   if (should_unload_classes()) {
5468     {
5469       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5470 
5471       // Unload classes and purge the SystemDictionary.
5472       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5473 
5474       // Unload nmethods.
5475       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5476 
5477       // Prune dead klasses from subklass/sibling/implementor lists.
5478       Klass::clean_weak_klass_links(&_is_alive_closure);
5479     }
5480 
5481     {
5482       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5483       // Clean up unreferenced symbols in symbol table.
5484       SymbolTable::unlink();
5485     }
5486 
5487     {
5488       GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm, _gc_tracer_cm->gc_id());
5489       // Delete entries for dead interned strings.
5490       StringTable::unlink(&_is_alive_closure);
5491     }
5492   }
5493 
5494 
5495   // Restore any preserved marks as a result of mark stack or
5496   // work queue overflow
5497   restore_preserved_marks_if_any();  // done single-threaded for now
5498 
5499   rp->set_enqueuing_is_done(true);
5500   if (rp->processing_is_mt()) {
5501     rp->balance_all_queues();
5502     CMSRefProcTaskExecutor task_executor(*this);
5503     rp->enqueue_discovered_references(&task_executor);
5504   } else {
5505     rp->enqueue_discovered_references(NULL);
5506   }
5507   rp->verify_no_references_recorded();
5508   assert(!rp->discovery_enabled(), "should have been disabled");
5509 }
5510 
5511 #ifndef PRODUCT
5512 void CMSCollector::check_correct_thread_executing() {
5513   Thread* t = Thread::current();
5514   // Only the VM thread or the CMS thread should be here.
5515   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5516          "Unexpected thread type");
5517   // If this is the vm thread, the foreground process
5518   // should not be waiting.  Note that _foregroundGCIsActive is
5519   // true while the foreground collector is waiting.
5520   if (_foregroundGCShouldWait) {
5521     // We cannot be the VM thread
5522     assert(t->is_ConcurrentGC_thread(),
5523            "Should be CMS thread");
5524   } else {
5525     // We can be the CMS thread only if we are in a stop-world
5526     // phase of CMS collection.
5527     if (t->is_ConcurrentGC_thread()) {
5528       assert(_collectorState == InitialMarking ||
5529              _collectorState == FinalMarking,
5530              "Should be a stop-world phase");
5531       // The CMS thread should be holding the CMS_token.
5532       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5533              "Potential interference with concurrently "
5534              "executing VM thread");
5535     }
5536   }
5537 }
5538 #endif
5539 
5540 void CMSCollector::sweep() {
5541   assert(_collectorState == Sweeping, "just checking");
5542   check_correct_thread_executing();
5543   verify_work_stacks_empty();
5544   verify_overflow_empty();
5545   increment_sweep_count();
5546   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5547 
5548   _inter_sweep_timer.stop();
5549   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5550 
5551   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5552   _intra_sweep_timer.reset();
5553   _intra_sweep_timer.start();
5554   {
5555     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5556     CMSPhaseAccounting pa(this, "sweep", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5557     // First sweep the old gen
5558     {
5559       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5560                                bitMapLock());
5561       sweepWork(_cmsGen);
5562     }
5563 
5564     // Update Universe::_heap_*_at_gc figures.
5565     // We need all the free list locks to make the abstract state
5566     // transition from Sweeping to Resetting. See detailed note
5567     // further below.
5568     {
5569       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5570       // Update heap occupancy information which is used as
5571       // input to soft ref clearing policy at the next gc.
5572       Universe::update_heap_info_at_gc();
5573       _collectorState = Resizing;
5574     }
5575   }
5576   verify_work_stacks_empty();
5577   verify_overflow_empty();
5578 
5579   if (should_unload_classes()) {
5580     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5581     // requires that the virtual spaces are stable and not deleted.
5582     ClassLoaderDataGraph::set_should_purge(true);
5583   }
5584 
5585   _intra_sweep_timer.stop();
5586   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5587 
5588   _inter_sweep_timer.reset();
5589   _inter_sweep_timer.start();
5590 
5591   // We need to use a monotonically non-decreasing time in ms
5592   // or we will see time-warp warnings and os::javaTimeMillis()
5593   // does not guarantee monotonicity.
5594   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5595   update_time_of_last_gc(now);
5596 
5597   // NOTE on abstract state transitions:
5598   // Mutators allocate-live and/or mark the mod-union table dirty
5599   // based on the state of the collection.  The former is done in
5600   // the interval [Marking, Sweeping] and the latter in the interval
5601   // [Marking, Sweeping).  Thus the transitions into the Marking state
5602   // and out of the Sweeping state must be synchronously visible
5603   // globally to the mutators.
5604   // The transition into the Marking state happens with the world
5605   // stopped so the mutators will globally see it.  Sweeping is
5606   // done asynchronously by the background collector so the transition
5607   // from the Sweeping state to the Resizing state must be done
5608   // under the freelistLock (as is the check for whether to
5609   // allocate-live and whether to dirty the mod-union table).
5610   assert(_collectorState == Resizing, "Change of collector state to"
5611     " Resizing must be done under the freelistLocks (plural)");
5612 
5613   // Now that sweeping has been completed, we clear
5614   // the incremental_collection_failed flag,
5615   // thus inviting a younger gen collection to promote into
5616   // this generation. If such a promotion may still fail,
5617   // the flag will be set again when a young collection is
5618   // attempted.
5619   GenCollectedHeap* gch = GenCollectedHeap::heap();
5620   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5621   gch->update_full_collections_completed(_collection_count_start);
5622 }
5623 
5624 // FIX ME!!! Looks like this belongs in CFLSpace, with
5625 // CMSGen merely delegating to it.
5626 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5627   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5628   HeapWord*  minAddr        = _cmsSpace->bottom();
5629   HeapWord*  largestAddr    =
5630     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5631   if (largestAddr == NULL) {
5632     // The dictionary appears to be empty.  In this case
5633     // try to coalesce at the end of the heap.
5634     largestAddr = _cmsSpace->end();
5635   }
5636   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5637   size_t nearLargestOffset =
5638     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5639   if (PrintFLSStatistics != 0) {
5640     gclog_or_tty->print_cr(
5641       "CMS: Large Block: " PTR_FORMAT ";"
5642       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5643       p2i(largestAddr),
5644       p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5645   }
5646   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5647 }
5648 
5649 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5650   return addr >= _cmsSpace->nearLargestChunk();
5651 }
5652 
5653 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5654   return _cmsSpace->find_chunk_at_end();
5655 }
5656 
5657 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
5658                                                     bool full) {
5659   // The next lower level has been collected.  Gather any statistics
5660   // that are of interest at this point.
5661   if (!full && (current_level + 1) == level()) {
5662     // Gather statistics on the young generation collection.
5663     collector()->stats().record_gc0_end(used());
5664   }
5665 }
5666 
5667 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen) {
5668   // We iterate over the space(s) underlying this generation,
5669   // checking the mark bit map to see if the bits corresponding
5670   // to specific blocks are marked or not. Blocks that are
5671   // marked are live and are not swept up. All remaining blocks
5672   // are swept up, with coalescing on-the-fly as we sweep up
5673   // contiguous free and/or garbage blocks:
5674   // We need to ensure that the sweeper synchronizes with allocators
5675   // and stop-the-world collectors. In particular, the following
5676   // locks are used:
5677   // . CMS token: if this is held, a stop the world collection cannot occur
5678   // . freelistLock: if this is held no allocation can occur from this
5679   //                 generation by another thread
5680   // . bitMapLock: if this is held, no other thread can access or update
5681   //
5682 
5683   // Note that we need to hold the freelistLock if we use
5684   // block iterate below; else the iterator might go awry if
5685   // a mutator (or promotion) causes block contents to change
5686   // (for instance if the allocator divvies up a block).
5687   // If we hold the free list lock, for all practical purposes
5688   // young generation GC's can't occur (they'll usually need to
5689   // promote), so we might as well prevent all young generation
5690   // GC's while we do a sweeping step. For the same reason, we might
5691   // as well take the bit map lock for the entire duration
5692 
5693   // check that we hold the requisite locks
5694   assert(have_cms_token(), "Should hold cms token");
5695   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5696   assert_lock_strong(gen->freelistLock());
5697   assert_lock_strong(bitMapLock());
5698 
5699   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5700   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5701   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5702                                       _inter_sweep_estimate.padded_average(),
5703                                       _intra_sweep_estimate.padded_average());
5704   gen->setNearLargestChunk();
5705 
5706   {
5707     SweepClosure sweepClosure(this, gen, &_markBitMap, CMSYield);
5708     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5709     // We need to free-up/coalesce garbage/blocks from a
5710     // co-terminal free run. This is done in the SweepClosure
5711     // destructor; so, do not remove this scope, else the
5712     // end-of-sweep-census below will be off by a little bit.
5713   }
5714   gen->cmsSpace()->sweep_completed();
5715   gen->cmsSpace()->endSweepFLCensus(sweep_count());
5716   if (should_unload_classes()) {                // unloaded classes this cycle,
5717     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5718   } else {                                      // did not unload classes,
5719     _concurrent_cycles_since_last_unload++;     // ... increment count
5720   }
5721 }
5722 
5723 // Reset CMS data structures (for now just the marking bit map)
5724 // preparatory for the next cycle.
5725 void CMSCollector::reset(bool concurrent) {
5726   if (concurrent) {
5727     CMSTokenSyncWithLocks ts(true, bitMapLock());
5728 
5729     // If the state is not "Resetting", the foreground  thread
5730     // has done a collection and the resetting.
5731     if (_collectorState != Resetting) {
5732       assert(_collectorState == Idling, "The state should only change"
5733         " because the foreground collector has finished the collection");
5734       return;
5735     }
5736 
5737     // Clear the mark bitmap (no grey objects to start with)
5738     // for the next cycle.
5739     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5740     CMSPhaseAccounting cmspa(this, "reset", _gc_tracer_cm->gc_id(), !PrintGCDetails);
5741 
5742     HeapWord* curAddr = _markBitMap.startWord();
5743     while (curAddr < _markBitMap.endWord()) {
5744       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5745       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5746       _markBitMap.clear_large_range(chunk);
5747       if (ConcurrentMarkSweepThread::should_yield() &&
5748           !foregroundGCIsActive() &&
5749           CMSYield) {
5750         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5751                "CMS thread should hold CMS token");
5752         assert_lock_strong(bitMapLock());
5753         bitMapLock()->unlock();
5754         ConcurrentMarkSweepThread::desynchronize(true);
5755         stopTimer();
5756         if (PrintCMSStatistics != 0) {
5757           incrementYields();
5758         }
5759 
5760         // See the comment in coordinator_yield()
5761         for (unsigned i = 0; i < CMSYieldSleepCount &&
5762                          ConcurrentMarkSweepThread::should_yield() &&
5763                          !CMSCollector::foregroundGCIsActive(); ++i) {
5764           os::sleep(Thread::current(), 1, false);
5765         }
5766 
5767         ConcurrentMarkSweepThread::synchronize(true);
5768         bitMapLock()->lock_without_safepoint_check();
5769         startTimer();
5770       }
5771       curAddr = chunk.end();
5772     }
5773     // A successful mostly concurrent collection has been done.
5774     // Because only the full (i.e., concurrent mode failure) collections
5775     // are being measured for gc overhead limits, clean the "near" flag
5776     // and count.
5777     size_policy()->reset_gc_overhead_limit_count();
5778     _collectorState = Idling;
5779   } else {
5780     // already have the lock
5781     assert(_collectorState == Resetting, "just checking");
5782     assert_lock_strong(bitMapLock());
5783     _markBitMap.clear_all();
5784     _collectorState = Idling;
5785   }
5786 
5787   register_gc_end();
5788 }
5789 
5790 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5791   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
5792   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL, _gc_tracer_cm->gc_id());
5793   TraceCollectorStats tcs(counters());
5794 
5795   switch (op) {
5796     case CMS_op_checkpointRootsInitial: {
5797       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5798       checkpointRootsInitial();
5799       if (PrintGC) {
5800         _cmsGen->printOccupancy("initial-mark");
5801       }
5802       break;
5803     }
5804     case CMS_op_checkpointRootsFinal: {
5805       SvcGCMarker sgcm(SvcGCMarker::OTHER);
5806       checkpointRootsFinal();
5807       if (PrintGC) {
5808         _cmsGen->printOccupancy("remark");
5809       }
5810       break;
5811     }
5812     default:
5813       fatal("No such CMS_op");
5814   }
5815 }
5816 
5817 #ifndef PRODUCT
5818 size_t const CMSCollector::skip_header_HeapWords() {
5819   return FreeChunk::header_size();
5820 }
5821 
5822 // Try and collect here conditions that should hold when
5823 // CMS thread is exiting. The idea is that the foreground GC
5824 // thread should not be blocked if it wants to terminate
5825 // the CMS thread and yet continue to run the VM for a while
5826 // after that.
5827 void CMSCollector::verify_ok_to_terminate() const {
5828   assert(Thread::current()->is_ConcurrentGC_thread(),
5829          "should be called by CMS thread");
5830   assert(!_foregroundGCShouldWait, "should be false");
5831   // We could check here that all the various low-level locks
5832   // are not held by the CMS thread, but that is overkill; see
5833   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5834   // is checked.
5835 }
5836 #endif
5837 
5838 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5839    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5840           "missing Printezis mark?");
5841   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5842   size_t size = pointer_delta(nextOneAddr + 1, addr);
5843   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5844          "alignment problem");
5845   assert(size >= 3, "Necessary for Printezis marks to work");
5846   return size;
5847 }
5848 
5849 // A variant of the above (block_size_using_printezis_bits()) except
5850 // that we return 0 if the P-bits are not yet set.
5851 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5852   if (_markBitMap.isMarked(addr + 1)) {
5853     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5854     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5855     size_t size = pointer_delta(nextOneAddr + 1, addr);
5856     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5857            "alignment problem");
5858     assert(size >= 3, "Necessary for Printezis marks to work");
5859     return size;
5860   }
5861   return 0;
5862 }
5863 
5864 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5865   size_t sz = 0;
5866   oop p = (oop)addr;
5867   if (p->klass_or_null() != NULL) {
5868     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5869   } else {
5870     sz = block_size_using_printezis_bits(addr);
5871   }
5872   assert(sz > 0, "size must be nonzero");
5873   HeapWord* next_block = addr + sz;
5874   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
5875                                              CardTableModRefBS::card_size);
5876   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
5877          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
5878          "must be different cards");
5879   return next_card;
5880 }
5881 
5882 
5883 // CMS Bit Map Wrapper /////////////////////////////////////////
5884 
5885 // Construct a CMS bit map infrastructure, but don't create the
5886 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5887 // further below.
5888 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5889   _bm(),
5890   _shifter(shifter),
5891   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5892                                     Monitor::_safepoint_check_sometimes) : NULL)
5893 {
5894   _bmStartWord = 0;
5895   _bmWordSize  = 0;
5896 }
5897 
5898 bool CMSBitMap::allocate(MemRegion mr) {
5899   _bmStartWord = mr.start();
5900   _bmWordSize  = mr.word_size();
5901   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5902                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5903   if (!brs.is_reserved()) {
5904     warning("CMS bit map allocation failure");
5905     return false;
5906   }
5907   // For now we'll just commit all of the bit map up front.
5908   // Later on we'll try to be more parsimonious with swap.
5909   if (!_virtual_space.initialize(brs, brs.size())) {
5910     warning("CMS bit map backing store failure");
5911     return false;
5912   }
5913   assert(_virtual_space.committed_size() == brs.size(),
5914          "didn't reserve backing store for all of CMS bit map?");
5915   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
5916   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5917          _bmWordSize, "inconsistency in bit map sizing");
5918   _bm.set_size(_bmWordSize >> _shifter);
5919 
5920   // bm.clear(); // can we rely on getting zero'd memory? verify below
5921   assert(isAllClear(),
5922          "Expected zero'd memory from ReservedSpace constructor");
5923   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5924          "consistency check");
5925   return true;
5926 }
5927 
5928 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5929   HeapWord *next_addr, *end_addr, *last_addr;
5930   assert_locked();
5931   assert(covers(mr), "out-of-range error");
5932   // XXX assert that start and end are appropriately aligned
5933   for (next_addr = mr.start(), end_addr = mr.end();
5934        next_addr < end_addr; next_addr = last_addr) {
5935     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5936     last_addr = dirty_region.end();
5937     if (!dirty_region.is_empty()) {
5938       cl->do_MemRegion(dirty_region);
5939     } else {
5940       assert(last_addr == end_addr, "program logic");
5941       return;
5942     }
5943   }
5944 }
5945 
5946 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5947   _bm.print_on_error(st, prefix);
5948 }
5949 
5950 #ifndef PRODUCT
5951 void CMSBitMap::assert_locked() const {
5952   CMSLockVerifier::assert_locked(lock());
5953 }
5954 
5955 bool CMSBitMap::covers(MemRegion mr) const {
5956   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5957   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5958          "size inconsistency");
5959   return (mr.start() >= _bmStartWord) &&
5960          (mr.end()   <= endWord());
5961 }
5962 
5963 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5964     return (start >= _bmStartWord && (start + size) <= endWord());
5965 }
5966 
5967 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5968   // verify that there are no 1 bits in the interval [left, right)
5969   FalseBitMapClosure falseBitMapClosure;
5970   iterate(&falseBitMapClosure, left, right);
5971 }
5972 
5973 void CMSBitMap::region_invariant(MemRegion mr)
5974 {
5975   assert_locked();
5976   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5977   assert(!mr.is_empty(), "unexpected empty region");
5978   assert(covers(mr), "mr should be covered by bit map");
5979   // convert address range into offset range
5980   size_t start_ofs = heapWordToOffset(mr.start());
5981   // Make sure that end() is appropriately aligned
5982   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
5983                         (1 << (_shifter+LogHeapWordSize))),
5984          "Misaligned mr.end()");
5985   size_t end_ofs   = heapWordToOffset(mr.end());
5986   assert(end_ofs > start_ofs, "Should mark at least one bit");
5987 }
5988 
5989 #endif
5990 
5991 bool CMSMarkStack::allocate(size_t size) {
5992   // allocate a stack of the requisite depth
5993   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5994                    size * sizeof(oop)));
5995   if (!rs.is_reserved()) {
5996     warning("CMSMarkStack allocation failure");
5997     return false;
5998   }
5999   if (!_virtual_space.initialize(rs, rs.size())) {
6000     warning("CMSMarkStack backing store failure");
6001     return false;
6002   }
6003   assert(_virtual_space.committed_size() == rs.size(),
6004          "didn't reserve backing store for all of CMS stack?");
6005   _base = (oop*)(_virtual_space.low());
6006   _index = 0;
6007   _capacity = size;
6008   NOT_PRODUCT(_max_depth = 0);
6009   return true;
6010 }
6011 
6012 // XXX FIX ME !!! In the MT case we come in here holding a
6013 // leaf lock. For printing we need to take a further lock
6014 // which has lower rank. We need to recalibrate the two
6015 // lock-ranks involved in order to be able to print the
6016 // messages below. (Or defer the printing to the caller.
6017 // For now we take the expedient path of just disabling the
6018 // messages for the problematic case.)
6019 void CMSMarkStack::expand() {
6020   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6021   if (_capacity == MarkStackSizeMax) {
6022     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6023       // We print a warning message only once per CMS cycle.
6024       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6025     }
6026     return;
6027   }
6028   // Double capacity if possible
6029   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6030   // Do not give up existing stack until we have managed to
6031   // get the double capacity that we desired.
6032   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6033                    new_capacity * sizeof(oop)));
6034   if (rs.is_reserved()) {
6035     // Release the backing store associated with old stack
6036     _virtual_space.release();
6037     // Reinitialize virtual space for new stack
6038     if (!_virtual_space.initialize(rs, rs.size())) {
6039       fatal("Not enough swap for expanded marking stack");
6040     }
6041     _base = (oop*)(_virtual_space.low());
6042     _index = 0;
6043     _capacity = new_capacity;
6044   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6045     // Failed to double capacity, continue;
6046     // we print a detail message only once per CMS cycle.
6047     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6048             SIZE_FORMAT"K",
6049             _capacity / K, new_capacity / K);
6050   }
6051 }
6052 
6053 
6054 // Closures
6055 // XXX: there seems to be a lot of code  duplication here;
6056 // should refactor and consolidate common code.
6057 
6058 // This closure is used to mark refs into the CMS generation in
6059 // the CMS bit map. Called at the first checkpoint. This closure
6060 // assumes that we do not need to re-mark dirty cards; if the CMS
6061 // generation on which this is used is not an oldest
6062 // generation then this will lose younger_gen cards!
6063 
6064 MarkRefsIntoClosure::MarkRefsIntoClosure(
6065   MemRegion span, CMSBitMap* bitMap):
6066     _span(span),
6067     _bitMap(bitMap)
6068 {
6069     assert(_ref_processor == NULL, "deliberately left NULL");
6070     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6071 }
6072 
6073 void MarkRefsIntoClosure::do_oop(oop obj) {
6074   // if p points into _span, then mark corresponding bit in _markBitMap
6075   assert(obj->is_oop(), "expected an oop");
6076   HeapWord* addr = (HeapWord*)obj;
6077   if (_span.contains(addr)) {
6078     // this should be made more efficient
6079     _bitMap->mark(addr);
6080   }
6081 }
6082 
6083 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6084 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6085 
6086 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6087   MemRegion span, CMSBitMap* bitMap):
6088     _span(span),
6089     _bitMap(bitMap)
6090 {
6091     assert(_ref_processor == NULL, "deliberately left NULL");
6092     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6093 }
6094 
6095 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6096   // if p points into _span, then mark corresponding bit in _markBitMap
6097   assert(obj->is_oop(), "expected an oop");
6098   HeapWord* addr = (HeapWord*)obj;
6099   if (_span.contains(addr)) {
6100     // this should be made more efficient
6101     _bitMap->par_mark(addr);
6102   }
6103 }
6104 
6105 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6106 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6107 
6108 // A variant of the above, used for CMS marking verification.
6109 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6110   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6111     _span(span),
6112     _verification_bm(verification_bm),
6113     _cms_bm(cms_bm)
6114 {
6115     assert(_ref_processor == NULL, "deliberately left NULL");
6116     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6117 }
6118 
6119 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6120   // if p points into _span, then mark corresponding bit in _markBitMap
6121   assert(obj->is_oop(), "expected an oop");
6122   HeapWord* addr = (HeapWord*)obj;
6123   if (_span.contains(addr)) {
6124     _verification_bm->mark(addr);
6125     if (!_cms_bm->isMarked(addr)) {
6126       oop(addr)->print();
6127       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6128       fatal("... aborting");
6129     }
6130   }
6131 }
6132 
6133 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6134 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6135 
6136 //////////////////////////////////////////////////
6137 // MarkRefsIntoAndScanClosure
6138 //////////////////////////////////////////////////
6139 
6140 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6141                                                        ReferenceProcessor* rp,
6142                                                        CMSBitMap* bit_map,
6143                                                        CMSBitMap* mod_union_table,
6144                                                        CMSMarkStack*  mark_stack,
6145                                                        CMSCollector* collector,
6146                                                        bool should_yield,
6147                                                        bool concurrent_precleaning):
6148   _collector(collector),
6149   _span(span),
6150   _bit_map(bit_map),
6151   _mark_stack(mark_stack),
6152   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6153                       mark_stack, concurrent_precleaning),
6154   _yield(should_yield),
6155   _concurrent_precleaning(concurrent_precleaning),
6156   _freelistLock(NULL)
6157 {
6158   _ref_processor = rp;
6159   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6160 }
6161 
6162 // This closure is used to mark refs into the CMS generation at the
6163 // second (final) checkpoint, and to scan and transitively follow
6164 // the unmarked oops. It is also used during the concurrent precleaning
6165 // phase while scanning objects on dirty cards in the CMS generation.
6166 // The marks are made in the marking bit map and the marking stack is
6167 // used for keeping the (newly) grey objects during the scan.
6168 // The parallel version (Par_...) appears further below.
6169 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6170   if (obj != NULL) {
6171     assert(obj->is_oop(), "expected an oop");
6172     HeapWord* addr = (HeapWord*)obj;
6173     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6174     assert(_collector->overflow_list_is_empty(),
6175            "overflow list should be empty");
6176     if (_span.contains(addr) &&
6177         !_bit_map->isMarked(addr)) {
6178       // mark bit map (object is now grey)
6179       _bit_map->mark(addr);
6180       // push on marking stack (stack should be empty), and drain the
6181       // stack by applying this closure to the oops in the oops popped
6182       // from the stack (i.e. blacken the grey objects)
6183       bool res = _mark_stack->push(obj);
6184       assert(res, "Should have space to push on empty stack");
6185       do {
6186         oop new_oop = _mark_stack->pop();
6187         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6188         assert(_bit_map->isMarked((HeapWord*)new_oop),
6189                "only grey objects on this stack");
6190         // iterate over the oops in this oop, marking and pushing
6191         // the ones in CMS heap (i.e. in _span).
6192         new_oop->oop_iterate(&_pushAndMarkClosure);
6193         // check if it's time to yield
6194         do_yield_check();
6195       } while (!_mark_stack->isEmpty() ||
6196                (!_concurrent_precleaning && take_from_overflow_list()));
6197         // if marking stack is empty, and we are not doing this
6198         // during precleaning, then check the overflow list
6199     }
6200     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6201     assert(_collector->overflow_list_is_empty(),
6202            "overflow list was drained above");
6203     // We could restore evacuated mark words, if any, used for
6204     // overflow list links here because the overflow list is
6205     // provably empty here. That would reduce the maximum
6206     // size requirements for preserved_{oop,mark}_stack.
6207     // But we'll just postpone it until we are all done
6208     // so we can just stream through.
6209     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6210       _collector->restore_preserved_marks_if_any();
6211       assert(_collector->no_preserved_marks(), "No preserved marks");
6212     }
6213     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6214            "All preserved marks should have been restored above");
6215   }
6216 }
6217 
6218 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6219 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6220 
6221 void MarkRefsIntoAndScanClosure::do_yield_work() {
6222   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6223          "CMS thread should hold CMS token");
6224   assert_lock_strong(_freelistLock);
6225   assert_lock_strong(_bit_map->lock());
6226   // relinquish the free_list_lock and bitMaplock()
6227   _bit_map->lock()->unlock();
6228   _freelistLock->unlock();
6229   ConcurrentMarkSweepThread::desynchronize(true);
6230   _collector->stopTimer();
6231   if (PrintCMSStatistics != 0) {
6232     _collector->incrementYields();
6233   }
6234 
6235   // See the comment in coordinator_yield()
6236   for (unsigned i = 0;
6237        i < CMSYieldSleepCount &&
6238        ConcurrentMarkSweepThread::should_yield() &&
6239        !CMSCollector::foregroundGCIsActive();
6240        ++i) {
6241     os::sleep(Thread::current(), 1, false);
6242   }
6243 
6244   ConcurrentMarkSweepThread::synchronize(true);
6245   _freelistLock->lock_without_safepoint_check();
6246   _bit_map->lock()->lock_without_safepoint_check();
6247   _collector->startTimer();
6248 }
6249 
6250 ///////////////////////////////////////////////////////////
6251 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6252 //                                 MarkRefsIntoAndScanClosure
6253 ///////////////////////////////////////////////////////////
6254 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6255   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6256   CMSBitMap* bit_map, OopTaskQueue* work_queue):
6257   _span(span),
6258   _bit_map(bit_map),
6259   _work_queue(work_queue),
6260   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6261                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6262   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
6263 {
6264   _ref_processor = rp;
6265   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6266 }
6267 
6268 // This closure is used to mark refs into the CMS generation at the
6269 // second (final) checkpoint, and to scan and transitively follow
6270 // the unmarked oops. The marks are made in the marking bit map and
6271 // the work_queue is used for keeping the (newly) grey objects during
6272 // the scan phase whence they are also available for stealing by parallel
6273 // threads. Since the marking bit map is shared, updates are
6274 // synchronized (via CAS).
6275 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6276   if (obj != NULL) {
6277     // Ignore mark word because this could be an already marked oop
6278     // that may be chained at the end of the overflow list.
6279     assert(obj->is_oop(true), "expected an oop");
6280     HeapWord* addr = (HeapWord*)obj;
6281     if (_span.contains(addr) &&
6282         !_bit_map->isMarked(addr)) {
6283       // mark bit map (object will become grey):
6284       // It is possible for several threads to be
6285       // trying to "claim" this object concurrently;
6286       // the unique thread that succeeds in marking the
6287       // object first will do the subsequent push on
6288       // to the work queue (or overflow list).
6289       if (_bit_map->par_mark(addr)) {
6290         // push on work_queue (which may not be empty), and trim the
6291         // queue to an appropriate length by applying this closure to
6292         // the oops in the oops popped from the stack (i.e. blacken the
6293         // grey objects)
6294         bool res = _work_queue->push(obj);
6295         assert(res, "Low water mark should be less than capacity?");
6296         trim_queue(_low_water_mark);
6297       } // Else, another thread claimed the object
6298     }
6299   }
6300 }
6301 
6302 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6303 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6304 
6305 // This closure is used to rescan the marked objects on the dirty cards
6306 // in the mod union table and the card table proper.
6307 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6308   oop p, MemRegion mr) {
6309 
6310   size_t size = 0;
6311   HeapWord* addr = (HeapWord*)p;
6312   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6313   assert(_span.contains(addr), "we are scanning the CMS generation");
6314   // check if it's time to yield
6315   if (do_yield_check()) {
6316     // We yielded for some foreground stop-world work,
6317     // and we have been asked to abort this ongoing preclean cycle.
6318     return 0;
6319   }
6320   if (_bitMap->isMarked(addr)) {
6321     // it's marked; is it potentially uninitialized?
6322     if (p->klass_or_null() != NULL) {
6323         // an initialized object; ignore mark word in verification below
6324         // since we are running concurrent with mutators
6325         assert(p->is_oop(true), "should be an oop");
6326         if (p->is_objArray()) {
6327           // objArrays are precisely marked; restrict scanning
6328           // to dirty cards only.
6329           size = CompactibleFreeListSpace::adjustObjectSize(
6330                    p->oop_iterate(_scanningClosure, mr));
6331         } else {
6332           // A non-array may have been imprecisely marked; we need
6333           // to scan object in its entirety.
6334           size = CompactibleFreeListSpace::adjustObjectSize(
6335                    p->oop_iterate(_scanningClosure));
6336         }
6337         #ifdef ASSERT
6338           size_t direct_size =
6339             CompactibleFreeListSpace::adjustObjectSize(p->size());
6340           assert(size == direct_size, "Inconsistency in size");
6341           assert(size >= 3, "Necessary for Printezis marks to work");
6342           if (!_bitMap->isMarked(addr+1)) {
6343             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6344           } else {
6345             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6346             assert(_bitMap->isMarked(addr+size-1),
6347                    "inconsistent Printezis mark");
6348           }
6349         #endif // ASSERT
6350     } else {
6351       // An uninitialized object.
6352       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6353       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6354       size = pointer_delta(nextOneAddr + 1, addr);
6355       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6356              "alignment problem");
6357       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6358       // will dirty the card when the klass pointer is installed in the
6359       // object (signaling the completion of initialization).
6360     }
6361   } else {
6362     // Either a not yet marked object or an uninitialized object
6363     if (p->klass_or_null() == NULL) {
6364       // An uninitialized object, skip to the next card, since
6365       // we may not be able to read its P-bits yet.
6366       assert(size == 0, "Initial value");
6367     } else {
6368       // An object not (yet) reached by marking: we merely need to
6369       // compute its size so as to go look at the next block.
6370       assert(p->is_oop(true), "should be an oop");
6371       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6372     }
6373   }
6374   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6375   return size;
6376 }
6377 
6378 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6379   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6380          "CMS thread should hold CMS token");
6381   assert_lock_strong(_freelistLock);
6382   assert_lock_strong(_bitMap->lock());
6383   // relinquish the free_list_lock and bitMaplock()
6384   _bitMap->lock()->unlock();
6385   _freelistLock->unlock();
6386   ConcurrentMarkSweepThread::desynchronize(true);
6387   _collector->stopTimer();
6388   if (PrintCMSStatistics != 0) {
6389     _collector->incrementYields();
6390   }
6391 
6392   // See the comment in coordinator_yield()
6393   for (unsigned i = 0; i < CMSYieldSleepCount &&
6394                    ConcurrentMarkSweepThread::should_yield() &&
6395                    !CMSCollector::foregroundGCIsActive(); ++i) {
6396     os::sleep(Thread::current(), 1, false);
6397   }
6398 
6399   ConcurrentMarkSweepThread::synchronize(true);
6400   _freelistLock->lock_without_safepoint_check();
6401   _bitMap->lock()->lock_without_safepoint_check();
6402   _collector->startTimer();
6403 }
6404 
6405 
6406 //////////////////////////////////////////////////////////////////
6407 // SurvivorSpacePrecleanClosure
6408 //////////////////////////////////////////////////////////////////
6409 // This (single-threaded) closure is used to preclean the oops in
6410 // the survivor spaces.
6411 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6412 
6413   HeapWord* addr = (HeapWord*)p;
6414   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6415   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6416   assert(p->klass_or_null() != NULL, "object should be initialized");
6417   // an initialized object; ignore mark word in verification below
6418   // since we are running concurrent with mutators
6419   assert(p->is_oop(true), "should be an oop");
6420   // Note that we do not yield while we iterate over
6421   // the interior oops of p, pushing the relevant ones
6422   // on our marking stack.
6423   size_t size = p->oop_iterate(_scanning_closure);
6424   do_yield_check();
6425   // Observe that below, we do not abandon the preclean
6426   // phase as soon as we should; rather we empty the
6427   // marking stack before returning. This is to satisfy
6428   // some existing assertions. In general, it may be a
6429   // good idea to abort immediately and complete the marking
6430   // from the grey objects at a later time.
6431   while (!_mark_stack->isEmpty()) {
6432     oop new_oop = _mark_stack->pop();
6433     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6434     assert(_bit_map->isMarked((HeapWord*)new_oop),
6435            "only grey objects on this stack");
6436     // iterate over the oops in this oop, marking and pushing
6437     // the ones in CMS heap (i.e. in _span).
6438     new_oop->oop_iterate(_scanning_closure);
6439     // check if it's time to yield
6440     do_yield_check();
6441   }
6442   unsigned int after_count =
6443     GenCollectedHeap::heap()->total_collections();
6444   bool abort = (_before_count != after_count) ||
6445                _collector->should_abort_preclean();
6446   return abort ? 0 : size;
6447 }
6448 
6449 void SurvivorSpacePrecleanClosure::do_yield_work() {
6450   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6451          "CMS thread should hold CMS token");
6452   assert_lock_strong(_bit_map->lock());
6453   // Relinquish the bit map lock
6454   _bit_map->lock()->unlock();
6455   ConcurrentMarkSweepThread::desynchronize(true);
6456   _collector->stopTimer();
6457   if (PrintCMSStatistics != 0) {
6458     _collector->incrementYields();
6459   }
6460 
6461   // See the comment in coordinator_yield()
6462   for (unsigned i = 0; i < CMSYieldSleepCount &&
6463                        ConcurrentMarkSweepThread::should_yield() &&
6464                        !CMSCollector::foregroundGCIsActive(); ++i) {
6465     os::sleep(Thread::current(), 1, false);
6466   }
6467 
6468   ConcurrentMarkSweepThread::synchronize(true);
6469   _bit_map->lock()->lock_without_safepoint_check();
6470   _collector->startTimer();
6471 }
6472 
6473 // This closure is used to rescan the marked objects on the dirty cards
6474 // in the mod union table and the card table proper. In the parallel
6475 // case, although the bitMap is shared, we do a single read so the
6476 // isMarked() query is "safe".
6477 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6478   // Ignore mark word because we are running concurrent with mutators
6479   assert(p->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(p)));
6480   HeapWord* addr = (HeapWord*)p;
6481   assert(_span.contains(addr), "we are scanning the CMS generation");
6482   bool is_obj_array = false;
6483   #ifdef ASSERT
6484     if (!_parallel) {
6485       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6486       assert(_collector->overflow_list_is_empty(),
6487              "overflow list should be empty");
6488 
6489     }
6490   #endif // ASSERT
6491   if (_bit_map->isMarked(addr)) {
6492     // Obj arrays are precisely marked, non-arrays are not;
6493     // so we scan objArrays precisely and non-arrays in their
6494     // entirety.
6495     if (p->is_objArray()) {
6496       is_obj_array = true;
6497       if (_parallel) {
6498         p->oop_iterate(_par_scan_closure, mr);
6499       } else {
6500         p->oop_iterate(_scan_closure, mr);
6501       }
6502     } else {
6503       if (_parallel) {
6504         p->oop_iterate(_par_scan_closure);
6505       } else {
6506         p->oop_iterate(_scan_closure);
6507       }
6508     }
6509   }
6510   #ifdef ASSERT
6511     if (!_parallel) {
6512       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6513       assert(_collector->overflow_list_is_empty(),
6514              "overflow list should be empty");
6515 
6516     }
6517   #endif // ASSERT
6518   return is_obj_array;
6519 }
6520 
6521 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6522                         MemRegion span,
6523                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6524                         bool should_yield, bool verifying):
6525   _collector(collector),
6526   _span(span),
6527   _bitMap(bitMap),
6528   _mut(&collector->_modUnionTable),
6529   _markStack(markStack),
6530   _yield(should_yield),
6531   _skipBits(0)
6532 {
6533   assert(_markStack->isEmpty(), "stack should be empty");
6534   _finger = _bitMap->startWord();
6535   _threshold = _finger;
6536   assert(_collector->_restart_addr == NULL, "Sanity check");
6537   assert(_span.contains(_finger), "Out of bounds _finger?");
6538   DEBUG_ONLY(_verifying = verifying;)
6539 }
6540 
6541 void MarkFromRootsClosure::reset(HeapWord* addr) {
6542   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6543   assert(_span.contains(addr), "Out of bounds _finger?");
6544   _finger = addr;
6545   _threshold = (HeapWord*)round_to(
6546                  (intptr_t)_finger, CardTableModRefBS::card_size);
6547 }
6548 
6549 // Should revisit to see if this should be restructured for
6550 // greater efficiency.
6551 bool MarkFromRootsClosure::do_bit(size_t offset) {
6552   if (_skipBits > 0) {
6553     _skipBits--;
6554     return true;
6555   }
6556   // convert offset into a HeapWord*
6557   HeapWord* addr = _bitMap->startWord() + offset;
6558   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6559          "address out of range");
6560   assert(_bitMap->isMarked(addr), "tautology");
6561   if (_bitMap->isMarked(addr+1)) {
6562     // this is an allocated but not yet initialized object
6563     assert(_skipBits == 0, "tautology");
6564     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6565     oop p = oop(addr);
6566     if (p->klass_or_null() == NULL) {
6567       DEBUG_ONLY(if (!_verifying) {)
6568         // We re-dirty the cards on which this object lies and increase
6569         // the _threshold so that we'll come back to scan this object
6570         // during the preclean or remark phase. (CMSCleanOnEnter)
6571         if (CMSCleanOnEnter) {
6572           size_t sz = _collector->block_size_using_printezis_bits(addr);
6573           HeapWord* end_card_addr   = (HeapWord*)round_to(
6574                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
6575           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6576           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6577           // Bump _threshold to end_card_addr; note that
6578           // _threshold cannot possibly exceed end_card_addr, anyhow.
6579           // This prevents future clearing of the card as the scan proceeds
6580           // to the right.
6581           assert(_threshold <= end_card_addr,
6582                  "Because we are just scanning into this object");
6583           if (_threshold < end_card_addr) {
6584             _threshold = end_card_addr;
6585           }
6586           if (p->klass_or_null() != NULL) {
6587             // Redirty the range of cards...
6588             _mut->mark_range(redirty_range);
6589           } // ...else the setting of klass will dirty the card anyway.
6590         }
6591       DEBUG_ONLY(})
6592       return true;
6593     }
6594   }
6595   scanOopsInOop(addr);
6596   return true;
6597 }
6598 
6599 // We take a break if we've been at this for a while,
6600 // so as to avoid monopolizing the locks involved.
6601 void MarkFromRootsClosure::do_yield_work() {
6602   // First give up the locks, then yield, then re-lock
6603   // We should probably use a constructor/destructor idiom to
6604   // do this unlock/lock or modify the MutexUnlocker class to
6605   // serve our purpose. XXX
6606   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6607          "CMS thread should hold CMS token");
6608   assert_lock_strong(_bitMap->lock());
6609   _bitMap->lock()->unlock();
6610   ConcurrentMarkSweepThread::desynchronize(true);
6611   _collector->stopTimer();
6612   if (PrintCMSStatistics != 0) {
6613     _collector->incrementYields();
6614   }
6615 
6616   // See the comment in coordinator_yield()
6617   for (unsigned i = 0; i < CMSYieldSleepCount &&
6618                        ConcurrentMarkSweepThread::should_yield() &&
6619                        !CMSCollector::foregroundGCIsActive(); ++i) {
6620     os::sleep(Thread::current(), 1, false);
6621   }
6622 
6623   ConcurrentMarkSweepThread::synchronize(true);
6624   _bitMap->lock()->lock_without_safepoint_check();
6625   _collector->startTimer();
6626 }
6627 
6628 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6629   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6630   assert(_markStack->isEmpty(),
6631          "should drain stack to limit stack usage");
6632   // convert ptr to an oop preparatory to scanning
6633   oop obj = oop(ptr);
6634   // Ignore mark word in verification below, since we
6635   // may be running concurrent with mutators.
6636   assert(obj->is_oop(true), "should be an oop");
6637   assert(_finger <= ptr, "_finger runneth ahead");
6638   // advance the finger to right end of this object
6639   _finger = ptr + obj->size();
6640   assert(_finger > ptr, "we just incremented it above");
6641   // On large heaps, it may take us some time to get through
6642   // the marking phase. During
6643   // this time it's possible that a lot of mutations have
6644   // accumulated in the card table and the mod union table --
6645   // these mutation records are redundant until we have
6646   // actually traced into the corresponding card.
6647   // Here, we check whether advancing the finger would make
6648   // us cross into a new card, and if so clear corresponding
6649   // cards in the MUT (preclean them in the card-table in the
6650   // future).
6651 
6652   DEBUG_ONLY(if (!_verifying) {)
6653     // The clean-on-enter optimization is disabled by default,
6654     // until we fix 6178663.
6655     if (CMSCleanOnEnter && (_finger > _threshold)) {
6656       // [_threshold, _finger) represents the interval
6657       // of cards to be cleared  in MUT (or precleaned in card table).
6658       // The set of cards to be cleared is all those that overlap
6659       // with the interval [_threshold, _finger); note that
6660       // _threshold is always kept card-aligned but _finger isn't
6661       // always card-aligned.
6662       HeapWord* old_threshold = _threshold;
6663       assert(old_threshold == (HeapWord*)round_to(
6664               (intptr_t)old_threshold, CardTableModRefBS::card_size),
6665              "_threshold should always be card-aligned");
6666       _threshold = (HeapWord*)round_to(
6667                      (intptr_t)_finger, CardTableModRefBS::card_size);
6668       MemRegion mr(old_threshold, _threshold);
6669       assert(!mr.is_empty(), "Control point invariant");
6670       assert(_span.contains(mr), "Should clear within span");
6671       _mut->clear_range(mr);
6672     }
6673   DEBUG_ONLY(})
6674   // Note: the finger doesn't advance while we drain
6675   // the stack below.
6676   PushOrMarkClosure pushOrMarkClosure(_collector,
6677                                       _span, _bitMap, _markStack,
6678                                       _finger, this);
6679   bool res = _markStack->push(obj);
6680   assert(res, "Empty non-zero size stack should have space for single push");
6681   while (!_markStack->isEmpty()) {
6682     oop new_oop = _markStack->pop();
6683     // Skip verifying header mark word below because we are
6684     // running concurrent with mutators.
6685     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6686     // now scan this oop's oops
6687     new_oop->oop_iterate(&pushOrMarkClosure);
6688     do_yield_check();
6689   }
6690   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6691 }
6692 
6693 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
6694                        CMSCollector* collector, MemRegion span,
6695                        CMSBitMap* bit_map,
6696                        OopTaskQueue* work_queue,
6697                        CMSMarkStack*  overflow_stack):
6698   _collector(collector),
6699   _whole_span(collector->_span),
6700   _span(span),
6701   _bit_map(bit_map),
6702   _mut(&collector->_modUnionTable),
6703   _work_queue(work_queue),
6704   _overflow_stack(overflow_stack),
6705   _skip_bits(0),
6706   _task(task)
6707 {
6708   assert(_work_queue->size() == 0, "work_queue should be empty");
6709   _finger = span.start();
6710   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6711   assert(_span.contains(_finger), "Out of bounds _finger?");
6712 }
6713 
6714 // Should revisit to see if this should be restructured for
6715 // greater efficiency.
6716 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
6717   if (_skip_bits > 0) {
6718     _skip_bits--;
6719     return true;
6720   }
6721   // convert offset into a HeapWord*
6722   HeapWord* addr = _bit_map->startWord() + offset;
6723   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6724          "address out of range");
6725   assert(_bit_map->isMarked(addr), "tautology");
6726   if (_bit_map->isMarked(addr+1)) {
6727     // this is an allocated object that might not yet be initialized
6728     assert(_skip_bits == 0, "tautology");
6729     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6730     oop p = oop(addr);
6731     if (p->klass_or_null() == NULL) {
6732       // in the case of Clean-on-Enter optimization, redirty card
6733       // and avoid clearing card by increasing  the threshold.
6734       return true;
6735     }
6736   }
6737   scan_oops_in_oop(addr);
6738   return true;
6739 }
6740 
6741 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6742   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6743   // Should we assert that our work queue is empty or
6744   // below some drain limit?
6745   assert(_work_queue->size() == 0,
6746          "should drain stack to limit stack usage");
6747   // convert ptr to an oop preparatory to scanning
6748   oop obj = oop(ptr);
6749   // Ignore mark word in verification below, since we
6750   // may be running concurrent with mutators.
6751   assert(obj->is_oop(true), "should be an oop");
6752   assert(_finger <= ptr, "_finger runneth ahead");
6753   // advance the finger to right end of this object
6754   _finger = ptr + obj->size();
6755   assert(_finger > ptr, "we just incremented it above");
6756   // On large heaps, it may take us some time to get through
6757   // the marking phase. During
6758   // this time it's possible that a lot of mutations have
6759   // accumulated in the card table and the mod union table --
6760   // these mutation records are redundant until we have
6761   // actually traced into the corresponding card.
6762   // Here, we check whether advancing the finger would make
6763   // us cross into a new card, and if so clear corresponding
6764   // cards in the MUT (preclean them in the card-table in the
6765   // future).
6766 
6767   // The clean-on-enter optimization is disabled by default,
6768   // until we fix 6178663.
6769   if (CMSCleanOnEnter && (_finger > _threshold)) {
6770     // [_threshold, _finger) represents the interval
6771     // of cards to be cleared  in MUT (or precleaned in card table).
6772     // The set of cards to be cleared is all those that overlap
6773     // with the interval [_threshold, _finger); note that
6774     // _threshold is always kept card-aligned but _finger isn't
6775     // always card-aligned.
6776     HeapWord* old_threshold = _threshold;
6777     assert(old_threshold == (HeapWord*)round_to(
6778             (intptr_t)old_threshold, CardTableModRefBS::card_size),
6779            "_threshold should always be card-aligned");
6780     _threshold = (HeapWord*)round_to(
6781                    (intptr_t)_finger, CardTableModRefBS::card_size);
6782     MemRegion mr(old_threshold, _threshold);
6783     assert(!mr.is_empty(), "Control point invariant");
6784     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6785     _mut->clear_range(mr);
6786   }
6787 
6788   // Note: the local finger doesn't advance while we drain
6789   // the stack below, but the global finger sure can and will.
6790   HeapWord** gfa = _task->global_finger_addr();
6791   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
6792                                       _span, _bit_map,
6793                                       _work_queue,
6794                                       _overflow_stack,
6795                                       _finger,
6796                                       gfa, this);
6797   bool res = _work_queue->push(obj);   // overflow could occur here
6798   assert(res, "Will hold once we use workqueues");
6799   while (true) {
6800     oop new_oop;
6801     if (!_work_queue->pop_local(new_oop)) {
6802       // We emptied our work_queue; check if there's stuff that can
6803       // be gotten from the overflow stack.
6804       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6805             _overflow_stack, _work_queue)) {
6806         do_yield_check();
6807         continue;
6808       } else {  // done
6809         break;
6810       }
6811     }
6812     // Skip verifying header mark word below because we are
6813     // running concurrent with mutators.
6814     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
6815     // now scan this oop's oops
6816     new_oop->oop_iterate(&pushOrMarkClosure);
6817     do_yield_check();
6818   }
6819   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6820 }
6821 
6822 // Yield in response to a request from VM Thread or
6823 // from mutators.
6824 void Par_MarkFromRootsClosure::do_yield_work() {
6825   assert(_task != NULL, "sanity");
6826   _task->yield();
6827 }
6828 
6829 // A variant of the above used for verifying CMS marking work.
6830 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6831                         MemRegion span,
6832                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6833                         CMSMarkStack*  mark_stack):
6834   _collector(collector),
6835   _span(span),
6836   _verification_bm(verification_bm),
6837   _cms_bm(cms_bm),
6838   _mark_stack(mark_stack),
6839   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6840                       mark_stack)
6841 {
6842   assert(_mark_stack->isEmpty(), "stack should be empty");
6843   _finger = _verification_bm->startWord();
6844   assert(_collector->_restart_addr == NULL, "Sanity check");
6845   assert(_span.contains(_finger), "Out of bounds _finger?");
6846 }
6847 
6848 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6849   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6850   assert(_span.contains(addr), "Out of bounds _finger?");
6851   _finger = addr;
6852 }
6853 
6854 // Should revisit to see if this should be restructured for
6855 // greater efficiency.
6856 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6857   // convert offset into a HeapWord*
6858   HeapWord* addr = _verification_bm->startWord() + offset;
6859   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6860          "address out of range");
6861   assert(_verification_bm->isMarked(addr), "tautology");
6862   assert(_cms_bm->isMarked(addr), "tautology");
6863 
6864   assert(_mark_stack->isEmpty(),
6865          "should drain stack to limit stack usage");
6866   // convert addr to an oop preparatory to scanning
6867   oop obj = oop(addr);
6868   assert(obj->is_oop(), "should be an oop");
6869   assert(_finger <= addr, "_finger runneth ahead");
6870   // advance the finger to right end of this object
6871   _finger = addr + obj->size();
6872   assert(_finger > addr, "we just incremented it above");
6873   // Note: the finger doesn't advance while we drain
6874   // the stack below.
6875   bool res = _mark_stack->push(obj);
6876   assert(res, "Empty non-zero size stack should have space for single push");
6877   while (!_mark_stack->isEmpty()) {
6878     oop new_oop = _mark_stack->pop();
6879     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
6880     // now scan this oop's oops
6881     new_oop->oop_iterate(&_pam_verify_closure);
6882   }
6883   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6884   return true;
6885 }
6886 
6887 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6888   CMSCollector* collector, MemRegion span,
6889   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6890   CMSMarkStack*  mark_stack):
6891   MetadataAwareOopClosure(collector->ref_processor()),
6892   _collector(collector),
6893   _span(span),
6894   _verification_bm(verification_bm),
6895   _cms_bm(cms_bm),
6896   _mark_stack(mark_stack)
6897 { }
6898 
6899 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6900 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6901 
6902 // Upon stack overflow, we discard (part of) the stack,
6903 // remembering the least address amongst those discarded
6904 // in CMSCollector's _restart_address.
6905 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6906   // Remember the least grey address discarded
6907   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6908   _collector->lower_restart_addr(ra);
6909   _mark_stack->reset();  // discard stack contents
6910   _mark_stack->expand(); // expand the stack if possible
6911 }
6912 
6913 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6914   assert(obj->is_oop_or_null(), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
6915   HeapWord* addr = (HeapWord*)obj;
6916   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6917     // Oop lies in _span and isn't yet grey or black
6918     _verification_bm->mark(addr);            // now grey
6919     if (!_cms_bm->isMarked(addr)) {
6920       oop(addr)->print();
6921       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
6922                              p2i(addr));
6923       fatal("... aborting");
6924     }
6925 
6926     if (!_mark_stack->push(obj)) { // stack overflow
6927       if (PrintCMSStatistics != 0) {
6928         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
6929                                SIZE_FORMAT, _mark_stack->capacity());
6930       }
6931       assert(_mark_stack->isFull(), "Else push should have succeeded");
6932       handle_stack_overflow(addr);
6933     }
6934     // anything including and to the right of _finger
6935     // will be scanned as we iterate over the remainder of the
6936     // bit map
6937   }
6938 }
6939 
6940 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6941                      MemRegion span,
6942                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6943                      HeapWord* finger, MarkFromRootsClosure* parent) :
6944   MetadataAwareOopClosure(collector->ref_processor()),
6945   _collector(collector),
6946   _span(span),
6947   _bitMap(bitMap),
6948   _markStack(markStack),
6949   _finger(finger),
6950   _parent(parent)
6951 { }
6952 
6953 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
6954                      MemRegion span,
6955                      CMSBitMap* bit_map,
6956                      OopTaskQueue* work_queue,
6957                      CMSMarkStack*  overflow_stack,
6958                      HeapWord* finger,
6959                      HeapWord** global_finger_addr,
6960                      Par_MarkFromRootsClosure* parent) :
6961   MetadataAwareOopClosure(collector->ref_processor()),
6962   _collector(collector),
6963   _whole_span(collector->_span),
6964   _span(span),
6965   _bit_map(bit_map),
6966   _work_queue(work_queue),
6967   _overflow_stack(overflow_stack),
6968   _finger(finger),
6969   _global_finger_addr(global_finger_addr),
6970   _parent(parent)
6971 { }
6972 
6973 // Assumes thread-safe access by callers, who are
6974 // responsible for mutual exclusion.
6975 void CMSCollector::lower_restart_addr(HeapWord* low) {
6976   assert(_span.contains(low), "Out of bounds addr");
6977   if (_restart_addr == NULL) {
6978     _restart_addr = low;
6979   } else {
6980     _restart_addr = MIN2(_restart_addr, low);
6981   }
6982 }
6983 
6984 // Upon stack overflow, we discard (part of) the stack,
6985 // remembering the least address amongst those discarded
6986 // in CMSCollector's _restart_address.
6987 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6988   // Remember the least grey address discarded
6989   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6990   _collector->lower_restart_addr(ra);
6991   _markStack->reset();  // discard stack contents
6992   _markStack->expand(); // expand the stack if possible
6993 }
6994 
6995 // Upon stack overflow, we discard (part of) the stack,
6996 // remembering the least address amongst those discarded
6997 // in CMSCollector's _restart_address.
6998 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6999   // We need to do this under a mutex to prevent other
7000   // workers from interfering with the work done below.
7001   MutexLockerEx ml(_overflow_stack->par_lock(),
7002                    Mutex::_no_safepoint_check_flag);
7003   // Remember the least grey address discarded
7004   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7005   _collector->lower_restart_addr(ra);
7006   _overflow_stack->reset();  // discard stack contents
7007   _overflow_stack->expand(); // expand the stack if possible
7008 }
7009 
7010 void PushOrMarkClosure::do_oop(oop obj) {
7011   // Ignore mark word because we are running concurrent with mutators.
7012   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7013   HeapWord* addr = (HeapWord*)obj;
7014   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7015     // Oop lies in _span and isn't yet grey or black
7016     _bitMap->mark(addr);            // now grey
7017     if (addr < _finger) {
7018       // the bit map iteration has already either passed, or
7019       // sampled, this bit in the bit map; we'll need to
7020       // use the marking stack to scan this oop's oops.
7021       bool simulate_overflow = false;
7022       NOT_PRODUCT(
7023         if (CMSMarkStackOverflowALot &&
7024             _collector->simulate_overflow()) {
7025           // simulate a stack overflow
7026           simulate_overflow = true;
7027         }
7028       )
7029       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7030         if (PrintCMSStatistics != 0) {
7031           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7032                                  SIZE_FORMAT, _markStack->capacity());
7033         }
7034         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7035         handle_stack_overflow(addr);
7036       }
7037     }
7038     // anything including and to the right of _finger
7039     // will be scanned as we iterate over the remainder of the
7040     // bit map
7041     do_yield_check();
7042   }
7043 }
7044 
7045 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7046 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7047 
7048 void Par_PushOrMarkClosure::do_oop(oop obj) {
7049   // Ignore mark word because we are running concurrent with mutators.
7050   assert(obj->is_oop_or_null(true), err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7051   HeapWord* addr = (HeapWord*)obj;
7052   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7053     // Oop lies in _span and isn't yet grey or black
7054     // We read the global_finger (volatile read) strictly after marking oop
7055     bool res = _bit_map->par_mark(addr);    // now grey
7056     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7057     // Should we push this marked oop on our stack?
7058     // -- if someone else marked it, nothing to do
7059     // -- if target oop is above global finger nothing to do
7060     // -- if target oop is in chunk and above local finger
7061     //      then nothing to do
7062     // -- else push on work queue
7063     if (   !res       // someone else marked it, they will deal with it
7064         || (addr >= *gfa)  // will be scanned in a later task
7065         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7066       return;
7067     }
7068     // the bit map iteration has already either passed, or
7069     // sampled, this bit in the bit map; we'll need to
7070     // use the marking stack to scan this oop's oops.
7071     bool simulate_overflow = false;
7072     NOT_PRODUCT(
7073       if (CMSMarkStackOverflowALot &&
7074           _collector->simulate_overflow()) {
7075         // simulate a stack overflow
7076         simulate_overflow = true;
7077       }
7078     )
7079     if (simulate_overflow ||
7080         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7081       // stack overflow
7082       if (PrintCMSStatistics != 0) {
7083         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7084                                SIZE_FORMAT, _overflow_stack->capacity());
7085       }
7086       // We cannot assert that the overflow stack is full because
7087       // it may have been emptied since.
7088       assert(simulate_overflow ||
7089              _work_queue->size() == _work_queue->max_elems(),
7090             "Else push should have succeeded");
7091       handle_stack_overflow(addr);
7092     }
7093     do_yield_check();
7094   }
7095 }
7096 
7097 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7098 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7099 
7100 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7101                                        MemRegion span,
7102                                        ReferenceProcessor* rp,
7103                                        CMSBitMap* bit_map,
7104                                        CMSBitMap* mod_union_table,
7105                                        CMSMarkStack*  mark_stack,
7106                                        bool           concurrent_precleaning):
7107   MetadataAwareOopClosure(rp),
7108   _collector(collector),
7109   _span(span),
7110   _bit_map(bit_map),
7111   _mod_union_table(mod_union_table),
7112   _mark_stack(mark_stack),
7113   _concurrent_precleaning(concurrent_precleaning)
7114 {
7115   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7116 }
7117 
7118 // Grey object rescan during pre-cleaning and second checkpoint phases --
7119 // the non-parallel version (the parallel version appears further below.)
7120 void PushAndMarkClosure::do_oop(oop obj) {
7121   // Ignore mark word verification. If during concurrent precleaning,
7122   // the object monitor may be locked. If during the checkpoint
7123   // phases, the object may already have been reached by a  different
7124   // path and may be at the end of the global overflow list (so
7125   // the mark word may be NULL).
7126   assert(obj->is_oop_or_null(true /* ignore mark word */),
7127          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7128   HeapWord* addr = (HeapWord*)obj;
7129   // Check if oop points into the CMS generation
7130   // and is not marked
7131   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7132     // a white object ...
7133     _bit_map->mark(addr);         // ... now grey
7134     // push on the marking stack (grey set)
7135     bool simulate_overflow = false;
7136     NOT_PRODUCT(
7137       if (CMSMarkStackOverflowALot &&
7138           _collector->simulate_overflow()) {
7139         // simulate a stack overflow
7140         simulate_overflow = true;
7141       }
7142     )
7143     if (simulate_overflow || !_mark_stack->push(obj)) {
7144       if (_concurrent_precleaning) {
7145          // During precleaning we can just dirty the appropriate card(s)
7146          // in the mod union table, thus ensuring that the object remains
7147          // in the grey set  and continue. In the case of object arrays
7148          // we need to dirty all of the cards that the object spans,
7149          // since the rescan of object arrays will be limited to the
7150          // dirty cards.
7151          // Note that no one can be interfering with us in this action
7152          // of dirtying the mod union table, so no locking or atomics
7153          // are required.
7154          if (obj->is_objArray()) {
7155            size_t sz = obj->size();
7156            HeapWord* end_card_addr = (HeapWord*)round_to(
7157                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7158            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7159            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7160            _mod_union_table->mark_range(redirty_range);
7161          } else {
7162            _mod_union_table->mark(addr);
7163          }
7164          _collector->_ser_pmc_preclean_ovflw++;
7165       } else {
7166          // During the remark phase, we need to remember this oop
7167          // in the overflow list.
7168          _collector->push_on_overflow_list(obj);
7169          _collector->_ser_pmc_remark_ovflw++;
7170       }
7171     }
7172   }
7173 }
7174 
7175 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7176                                                MemRegion span,
7177                                                ReferenceProcessor* rp,
7178                                                CMSBitMap* bit_map,
7179                                                OopTaskQueue* work_queue):
7180   MetadataAwareOopClosure(rp),
7181   _collector(collector),
7182   _span(span),
7183   _bit_map(bit_map),
7184   _work_queue(work_queue)
7185 {
7186   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7187 }
7188 
7189 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7190 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7191 
7192 // Grey object rescan during second checkpoint phase --
7193 // the parallel version.
7194 void Par_PushAndMarkClosure::do_oop(oop obj) {
7195   // In the assert below, we ignore the mark word because
7196   // this oop may point to an already visited object that is
7197   // on the overflow stack (in which case the mark word has
7198   // been hijacked for chaining into the overflow stack --
7199   // if this is the last object in the overflow stack then
7200   // its mark word will be NULL). Because this object may
7201   // have been subsequently popped off the global overflow
7202   // stack, and the mark word possibly restored to the prototypical
7203   // value, by the time we get to examined this failing assert in
7204   // the debugger, is_oop_or_null(false) may subsequently start
7205   // to hold.
7206   assert(obj->is_oop_or_null(true),
7207          err_msg("Expected an oop or NULL at " PTR_FORMAT, p2i(obj)));
7208   HeapWord* addr = (HeapWord*)obj;
7209   // Check if oop points into the CMS generation
7210   // and is not marked
7211   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7212     // a white object ...
7213     // If we manage to "claim" the object, by being the
7214     // first thread to mark it, then we push it on our
7215     // marking stack
7216     if (_bit_map->par_mark(addr)) {     // ... now grey
7217       // push on work queue (grey set)
7218       bool simulate_overflow = false;
7219       NOT_PRODUCT(
7220         if (CMSMarkStackOverflowALot &&
7221             _collector->par_simulate_overflow()) {
7222           // simulate a stack overflow
7223           simulate_overflow = true;
7224         }
7225       )
7226       if (simulate_overflow || !_work_queue->push(obj)) {
7227         _collector->par_push_on_overflow_list(obj);
7228         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7229       }
7230     } // Else, some other thread got there first
7231   }
7232 }
7233 
7234 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7235 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7236 
7237 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7238   Mutex* bml = _collector->bitMapLock();
7239   assert_lock_strong(bml);
7240   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7241          "CMS thread should hold CMS token");
7242 
7243   bml->unlock();
7244   ConcurrentMarkSweepThread::desynchronize(true);
7245 
7246   _collector->stopTimer();
7247   if (PrintCMSStatistics != 0) {
7248     _collector->incrementYields();
7249   }
7250 
7251   // See the comment in coordinator_yield()
7252   for (unsigned i = 0; i < CMSYieldSleepCount &&
7253                        ConcurrentMarkSweepThread::should_yield() &&
7254                        !CMSCollector::foregroundGCIsActive(); ++i) {
7255     os::sleep(Thread::current(), 1, false);
7256   }
7257 
7258   ConcurrentMarkSweepThread::synchronize(true);
7259   bml->lock();
7260 
7261   _collector->startTimer();
7262 }
7263 
7264 bool CMSPrecleanRefsYieldClosure::should_return() {
7265   if (ConcurrentMarkSweepThread::should_yield()) {
7266     do_yield_work();
7267   }
7268   return _collector->foregroundGCIsActive();
7269 }
7270 
7271 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7272   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7273          "mr should be aligned to start at a card boundary");
7274   // We'd like to assert:
7275   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7276   //        "mr should be a range of cards");
7277   // However, that would be too strong in one case -- the last
7278   // partition ends at _unallocated_block which, in general, can be
7279   // an arbitrary boundary, not necessarily card aligned.
7280   if (PrintCMSStatistics != 0) {
7281     _num_dirty_cards +=
7282          mr.word_size()/CardTableModRefBS::card_size_in_words;
7283   }
7284   _space->object_iterate_mem(mr, &_scan_cl);
7285 }
7286 
7287 SweepClosure::SweepClosure(CMSCollector* collector,
7288                            ConcurrentMarkSweepGeneration* g,
7289                            CMSBitMap* bitMap, bool should_yield) :
7290   _collector(collector),
7291   _g(g),
7292   _sp(g->cmsSpace()),
7293   _limit(_sp->sweep_limit()),
7294   _freelistLock(_sp->freelistLock()),
7295   _bitMap(bitMap),
7296   _yield(should_yield),
7297   _inFreeRange(false),           // No free range at beginning of sweep
7298   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7299   _lastFreeRangeCoalesced(false),
7300   _freeFinger(g->used_region().start())
7301 {
7302   NOT_PRODUCT(
7303     _numObjectsFreed = 0;
7304     _numWordsFreed   = 0;
7305     _numObjectsLive = 0;
7306     _numWordsLive = 0;
7307     _numObjectsAlreadyFree = 0;
7308     _numWordsAlreadyFree = 0;
7309     _last_fc = NULL;
7310 
7311     _sp->initializeIndexedFreeListArrayReturnedBytes();
7312     _sp->dictionary()->initialize_dict_returned_bytes();
7313   )
7314   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7315          "sweep _limit out of bounds");
7316   if (CMSTraceSweeper) {
7317     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7318                         p2i(_limit));
7319   }
7320 }
7321 
7322 void SweepClosure::print_on(outputStream* st) const {
7323   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7324                 p2i(_sp->bottom()), p2i(_sp->end()));
7325   tty->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7326   tty->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7327   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7328   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7329                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7330 }
7331 
7332 #ifndef PRODUCT
7333 // Assertion checking only:  no useful work in product mode --
7334 // however, if any of the flags below become product flags,
7335 // you may need to review this code to see if it needs to be
7336 // enabled in product mode.
7337 SweepClosure::~SweepClosure() {
7338   assert_lock_strong(_freelistLock);
7339   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7340          "sweep _limit out of bounds");
7341   if (inFreeRange()) {
7342     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
7343     print();
7344     ShouldNotReachHere();
7345   }
7346   if (Verbose && PrintGC) {
7347     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
7348                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7349     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
7350                            SIZE_FORMAT" bytes  "
7351       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
7352       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
7353       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7354     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
7355                         * sizeof(HeapWord);
7356     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
7357 
7358     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
7359       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7360       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7361       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7362       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
7363       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
7364         indexListReturnedBytes);
7365       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
7366         dict_returned_bytes);
7367     }
7368   }
7369   if (CMSTraceSweeper) {
7370     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
7371                            p2i(_limit));
7372   }
7373 }
7374 #endif  // PRODUCT
7375 
7376 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7377     bool freeRangeInFreeLists) {
7378   if (CMSTraceSweeper) {
7379     gclog_or_tty->print("---- Start free range at " PTR_FORMAT " with free block (%d)\n",
7380                p2i(freeFinger), freeRangeInFreeLists);
7381   }
7382   assert(!inFreeRange(), "Trampling existing free range");
7383   set_inFreeRange(true);
7384   set_lastFreeRangeCoalesced(false);
7385 
7386   set_freeFinger(freeFinger);
7387   set_freeRangeInFreeLists(freeRangeInFreeLists);
7388   if (CMSTestInFreeList) {
7389     if (freeRangeInFreeLists) {
7390       FreeChunk* fc = (FreeChunk*) freeFinger;
7391       assert(fc->is_free(), "A chunk on the free list should be free.");
7392       assert(fc->size() > 0, "Free range should have a size");
7393       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7394     }
7395   }
7396 }
7397 
7398 // Note that the sweeper runs concurrently with mutators. Thus,
7399 // it is possible for direct allocation in this generation to happen
7400 // in the middle of the sweep. Note that the sweeper also coalesces
7401 // contiguous free blocks. Thus, unless the sweeper and the allocator
7402 // synchronize appropriately freshly allocated blocks may get swept up.
7403 // This is accomplished by the sweeper locking the free lists while
7404 // it is sweeping. Thus blocks that are determined to be free are
7405 // indeed free. There is however one additional complication:
7406 // blocks that have been allocated since the final checkpoint and
7407 // mark, will not have been marked and so would be treated as
7408 // unreachable and swept up. To prevent this, the allocator marks
7409 // the bit map when allocating during the sweep phase. This leads,
7410 // however, to a further complication -- objects may have been allocated
7411 // but not yet initialized -- in the sense that the header isn't yet
7412 // installed. The sweeper can not then determine the size of the block
7413 // in order to skip over it. To deal with this case, we use a technique
7414 // (due to Printezis) to encode such uninitialized block sizes in the
7415 // bit map. Since the bit map uses a bit per every HeapWord, but the
7416 // CMS generation has a minimum object size of 3 HeapWords, it follows
7417 // that "normal marks" won't be adjacent in the bit map (there will
7418 // always be at least two 0 bits between successive 1 bits). We make use
7419 // of these "unused" bits to represent uninitialized blocks -- the bit
7420 // corresponding to the start of the uninitialized object and the next
7421 // bit are both set. Finally, a 1 bit marks the end of the object that
7422 // started with the two consecutive 1 bits to indicate its potentially
7423 // uninitialized state.
7424 
7425 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7426   FreeChunk* fc = (FreeChunk*)addr;
7427   size_t res;
7428 
7429   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7430   // than "addr == _limit" because although _limit was a block boundary when
7431   // we started the sweep, it may no longer be one because heap expansion
7432   // may have caused us to coalesce the block ending at the address _limit
7433   // with a newly expanded chunk (this happens when _limit was set to the
7434   // previous _end of the space), so we may have stepped past _limit:
7435   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7436   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7437     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7438            "sweep _limit out of bounds");
7439     assert(addr < _sp->end(), "addr out of bounds");
7440     // Flush any free range we might be holding as a single
7441     // coalesced chunk to the appropriate free list.
7442     if (inFreeRange()) {
7443       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7444              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", p2i(freeFinger())));
7445       flush_cur_free_chunk(freeFinger(),
7446                            pointer_delta(addr, freeFinger()));
7447       if (CMSTraceSweeper) {
7448         gclog_or_tty->print("Sweep: last chunk: ");
7449         gclog_or_tty->print("put_free_blk " PTR_FORMAT " ("SIZE_FORMAT") "
7450                    "[coalesced:%d]\n",
7451                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7452                    lastFreeRangeCoalesced() ? 1 : 0);
7453       }
7454     }
7455 
7456     // help the iterator loop finish
7457     return pointer_delta(_sp->end(), addr);
7458   }
7459 
7460   assert(addr < _limit, "sweep invariant");
7461   // check if we should yield
7462   do_yield_check(addr);
7463   if (fc->is_free()) {
7464     // Chunk that is already free
7465     res = fc->size();
7466     do_already_free_chunk(fc);
7467     debug_only(_sp->verifyFreeLists());
7468     // If we flush the chunk at hand in lookahead_and_flush()
7469     // and it's coalesced with a preceding chunk, then the
7470     // process of "mangling" the payload of the coalesced block
7471     // will cause erasure of the size information from the
7472     // (erstwhile) header of all the coalesced blocks but the
7473     // first, so the first disjunct in the assert will not hold
7474     // in that specific case (in which case the second disjunct
7475     // will hold).
7476     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7477            "Otherwise the size info doesn't change at this step");
7478     NOT_PRODUCT(
7479       _numObjectsAlreadyFree++;
7480       _numWordsAlreadyFree += res;
7481     )
7482     NOT_PRODUCT(_last_fc = fc;)
7483   } else if (!_bitMap->isMarked(addr)) {
7484     // Chunk is fresh garbage
7485     res = do_garbage_chunk(fc);
7486     debug_only(_sp->verifyFreeLists());
7487     NOT_PRODUCT(
7488       _numObjectsFreed++;
7489       _numWordsFreed += res;
7490     )
7491   } else {
7492     // Chunk that is alive.
7493     res = do_live_chunk(fc);
7494     debug_only(_sp->verifyFreeLists());
7495     NOT_PRODUCT(
7496         _numObjectsLive++;
7497         _numWordsLive += res;
7498     )
7499   }
7500   return res;
7501 }
7502 
7503 // For the smart allocation, record following
7504 //  split deaths - a free chunk is removed from its free list because
7505 //      it is being split into two or more chunks.
7506 //  split birth - a free chunk is being added to its free list because
7507 //      a larger free chunk has been split and resulted in this free chunk.
7508 //  coal death - a free chunk is being removed from its free list because
7509 //      it is being coalesced into a large free chunk.
7510 //  coal birth - a free chunk is being added to its free list because
7511 //      it was created when two or more free chunks where coalesced into
7512 //      this free chunk.
7513 //
7514 // These statistics are used to determine the desired number of free
7515 // chunks of a given size.  The desired number is chosen to be relative
7516 // to the end of a CMS sweep.  The desired number at the end of a sweep
7517 // is the
7518 //      count-at-end-of-previous-sweep (an amount that was enough)
7519 //              - count-at-beginning-of-current-sweep  (the excess)
7520 //              + split-births  (gains in this size during interval)
7521 //              - split-deaths  (demands on this size during interval)
7522 // where the interval is from the end of one sweep to the end of the
7523 // next.
7524 //
7525 // When sweeping the sweeper maintains an accumulated chunk which is
7526 // the chunk that is made up of chunks that have been coalesced.  That
7527 // will be termed the left-hand chunk.  A new chunk of garbage that
7528 // is being considered for coalescing will be referred to as the
7529 // right-hand chunk.
7530 //
7531 // When making a decision on whether to coalesce a right-hand chunk with
7532 // the current left-hand chunk, the current count vs. the desired count
7533 // of the left-hand chunk is considered.  Also if the right-hand chunk
7534 // is near the large chunk at the end of the heap (see
7535 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7536 // left-hand chunk is coalesced.
7537 //
7538 // When making a decision about whether to split a chunk, the desired count
7539 // vs. the current count of the candidate to be split is also considered.
7540 // If the candidate is underpopulated (currently fewer chunks than desired)
7541 // a chunk of an overpopulated (currently more chunks than desired) size may
7542 // be chosen.  The "hint" associated with a free list, if non-null, points
7543 // to a free list which may be overpopulated.
7544 //
7545 
7546 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7547   const size_t size = fc->size();
7548   // Chunks that cannot be coalesced are not in the
7549   // free lists.
7550   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7551     assert(_sp->verify_chunk_in_free_list(fc),
7552       "free chunk should be in free lists");
7553   }
7554   // a chunk that is already free, should not have been
7555   // marked in the bit map
7556   HeapWord* const addr = (HeapWord*) fc;
7557   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7558   // Verify that the bit map has no bits marked between
7559   // addr and purported end of this block.
7560   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7561 
7562   // Some chunks cannot be coalesced under any circumstances.
7563   // See the definition of cantCoalesce().
7564   if (!fc->cantCoalesce()) {
7565     // This chunk can potentially be coalesced.
7566     if (_sp->adaptive_freelists()) {
7567       // All the work is done in
7568       do_post_free_or_garbage_chunk(fc, size);
7569     } else {  // Not adaptive free lists
7570       // this is a free chunk that can potentially be coalesced by the sweeper;
7571       if (!inFreeRange()) {
7572         // if the next chunk is a free block that can't be coalesced
7573         // it doesn't make sense to remove this chunk from the free lists
7574         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
7575         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
7576         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
7577             nextChunk->is_free()               &&     // ... which is free...
7578             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
7579           // nothing to do
7580         } else {
7581           // Potentially the start of a new free range:
7582           // Don't eagerly remove it from the free lists.
7583           // No need to remove it if it will just be put
7584           // back again.  (Also from a pragmatic point of view
7585           // if it is a free block in a region that is beyond
7586           // any allocated blocks, an assertion will fail)
7587           // Remember the start of a free run.
7588           initialize_free_range(addr, true);
7589           // end - can coalesce with next chunk
7590         }
7591       } else {
7592         // the midst of a free range, we are coalescing
7593         print_free_block_coalesced(fc);
7594         if (CMSTraceSweeper) {
7595           gclog_or_tty->print("  -- pick up free block " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7596         }
7597         // remove it from the free lists
7598         _sp->removeFreeChunkFromFreeLists(fc);
7599         set_lastFreeRangeCoalesced(true);
7600         // If the chunk is being coalesced and the current free range is
7601         // in the free lists, remove the current free range so that it
7602         // will be returned to the free lists in its entirety - all
7603         // the coalesced pieces included.
7604         if (freeRangeInFreeLists()) {
7605           FreeChunk* ffc = (FreeChunk*) freeFinger();
7606           assert(ffc->size() == pointer_delta(addr, freeFinger()),
7607             "Size of free range is inconsistent with chunk size.");
7608           if (CMSTestInFreeList) {
7609             assert(_sp->verify_chunk_in_free_list(ffc),
7610               "free range is not in free lists");
7611           }
7612           _sp->removeFreeChunkFromFreeLists(ffc);
7613           set_freeRangeInFreeLists(false);
7614         }
7615       }
7616     }
7617     // Note that if the chunk is not coalescable (the else arm
7618     // below), we unconditionally flush, without needing to do
7619     // a "lookahead," as we do below.
7620     if (inFreeRange()) lookahead_and_flush(fc, size);
7621   } else {
7622     // Code path common to both original and adaptive free lists.
7623 
7624     // cant coalesce with previous block; this should be treated
7625     // as the end of a free run if any
7626     if (inFreeRange()) {
7627       // we kicked some butt; time to pick up the garbage
7628       assert(freeFinger() < addr, "freeFinger points too high");
7629       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7630     }
7631     // else, nothing to do, just continue
7632   }
7633 }
7634 
7635 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7636   // This is a chunk of garbage.  It is not in any free list.
7637   // Add it to a free list or let it possibly be coalesced into
7638   // a larger chunk.
7639   HeapWord* const addr = (HeapWord*) fc;
7640   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7641 
7642   if (_sp->adaptive_freelists()) {
7643     // Verify that the bit map has no bits marked between
7644     // addr and purported end of just dead object.
7645     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7646 
7647     do_post_free_or_garbage_chunk(fc, size);
7648   } else {
7649     if (!inFreeRange()) {
7650       // start of a new free range
7651       assert(size > 0, "A free range should have a size");
7652       initialize_free_range(addr, false);
7653     } else {
7654       // this will be swept up when we hit the end of the
7655       // free range
7656       if (CMSTraceSweeper) {
7657         gclog_or_tty->print("  -- pick up garbage " PTR_FORMAT " (" SIZE_FORMAT ")\n", p2i(fc), size);
7658       }
7659       // If the chunk is being coalesced and the current free range is
7660       // in the free lists, remove the current free range so that it
7661       // will be returned to the free lists in its entirety - all
7662       // the coalesced pieces included.
7663       if (freeRangeInFreeLists()) {
7664         FreeChunk* ffc = (FreeChunk*)freeFinger();
7665         assert(ffc->size() == pointer_delta(addr, freeFinger()),
7666           "Size of free range is inconsistent with chunk size.");
7667         if (CMSTestInFreeList) {
7668           assert(_sp->verify_chunk_in_free_list(ffc),
7669             "free range is not in free lists");
7670         }
7671         _sp->removeFreeChunkFromFreeLists(ffc);
7672         set_freeRangeInFreeLists(false);
7673       }
7674       set_lastFreeRangeCoalesced(true);
7675     }
7676     // this will be swept up when we hit the end of the free range
7677 
7678     // Verify that the bit map has no bits marked between
7679     // addr and purported end of just dead object.
7680     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7681   }
7682   assert(_limit >= addr + size,
7683          "A freshly garbage chunk can't possibly straddle over _limit");
7684   if (inFreeRange()) lookahead_and_flush(fc, size);
7685   return size;
7686 }
7687 
7688 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7689   HeapWord* addr = (HeapWord*) fc;
7690   // The sweeper has just found a live object. Return any accumulated
7691   // left hand chunk to the free lists.
7692   if (inFreeRange()) {
7693     assert(freeFinger() < addr, "freeFinger points too high");
7694     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7695   }
7696 
7697   // This object is live: we'd normally expect this to be
7698   // an oop, and like to assert the following:
7699   // assert(oop(addr)->is_oop(), "live block should be an oop");
7700   // However, as we commented above, this may be an object whose
7701   // header hasn't yet been initialized.
7702   size_t size;
7703   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7704   if (_bitMap->isMarked(addr + 1)) {
7705     // Determine the size from the bit map, rather than trying to
7706     // compute it from the object header.
7707     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7708     size = pointer_delta(nextOneAddr + 1, addr);
7709     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7710            "alignment problem");
7711 
7712 #ifdef ASSERT
7713       if (oop(addr)->klass_or_null() != NULL) {
7714         // Ignore mark word because we are running concurrent with mutators
7715         assert(oop(addr)->is_oop(true), "live block should be an oop");
7716         assert(size ==
7717                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7718                "P-mark and computed size do not agree");
7719       }
7720 #endif
7721 
7722   } else {
7723     // This should be an initialized object that's alive.
7724     assert(oop(addr)->klass_or_null() != NULL,
7725            "Should be an initialized object");
7726     // Ignore mark word because we are running concurrent with mutators
7727     assert(oop(addr)->is_oop(true), "live block should be an oop");
7728     // Verify that the bit map has no bits marked between
7729     // addr and purported end of this block.
7730     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7731     assert(size >= 3, "Necessary for Printezis marks to work");
7732     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7733     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7734   }
7735   return size;
7736 }
7737 
7738 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7739                                                  size_t chunkSize) {
7740   // do_post_free_or_garbage_chunk() should only be called in the case
7741   // of the adaptive free list allocator.
7742   const bool fcInFreeLists = fc->is_free();
7743   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
7744   assert((HeapWord*)fc <= _limit, "sweep invariant");
7745   if (CMSTestInFreeList && fcInFreeLists) {
7746     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7747   }
7748 
7749   if (CMSTraceSweeper) {
7750     gclog_or_tty->print_cr("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7751   }
7752 
7753   HeapWord* const fc_addr = (HeapWord*) fc;
7754 
7755   bool coalesce;
7756   const size_t left  = pointer_delta(fc_addr, freeFinger());
7757   const size_t right = chunkSize;
7758   switch (FLSCoalescePolicy) {
7759     // numeric value forms a coalition aggressiveness metric
7760     case 0:  { // never coalesce
7761       coalesce = false;
7762       break;
7763     }
7764     case 1: { // coalesce if left & right chunks on overpopulated lists
7765       coalesce = _sp->coalOverPopulated(left) &&
7766                  _sp->coalOverPopulated(right);
7767       break;
7768     }
7769     case 2: { // coalesce if left chunk on overpopulated list (default)
7770       coalesce = _sp->coalOverPopulated(left);
7771       break;
7772     }
7773     case 3: { // coalesce if left OR right chunk on overpopulated list
7774       coalesce = _sp->coalOverPopulated(left) ||
7775                  _sp->coalOverPopulated(right);
7776       break;
7777     }
7778     case 4: { // always coalesce
7779       coalesce = true;
7780       break;
7781     }
7782     default:
7783      ShouldNotReachHere();
7784   }
7785 
7786   // Should the current free range be coalesced?
7787   // If the chunk is in a free range and either we decided to coalesce above
7788   // or the chunk is near the large block at the end of the heap
7789   // (isNearLargestChunk() returns true), then coalesce this chunk.
7790   const bool doCoalesce = inFreeRange()
7791                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7792   if (doCoalesce) {
7793     // Coalesce the current free range on the left with the new
7794     // chunk on the right.  If either is on a free list,
7795     // it must be removed from the list and stashed in the closure.
7796     if (freeRangeInFreeLists()) {
7797       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7798       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7799         "Size of free range is inconsistent with chunk size.");
7800       if (CMSTestInFreeList) {
7801         assert(_sp->verify_chunk_in_free_list(ffc),
7802           "Chunk is not in free lists");
7803       }
7804       _sp->coalDeath(ffc->size());
7805       _sp->removeFreeChunkFromFreeLists(ffc);
7806       set_freeRangeInFreeLists(false);
7807     }
7808     if (fcInFreeLists) {
7809       _sp->coalDeath(chunkSize);
7810       assert(fc->size() == chunkSize,
7811         "The chunk has the wrong size or is not in the free lists");
7812       _sp->removeFreeChunkFromFreeLists(fc);
7813     }
7814     set_lastFreeRangeCoalesced(true);
7815     print_free_block_coalesced(fc);
7816   } else {  // not in a free range and/or should not coalesce
7817     // Return the current free range and start a new one.
7818     if (inFreeRange()) {
7819       // In a free range but cannot coalesce with the right hand chunk.
7820       // Put the current free range into the free lists.
7821       flush_cur_free_chunk(freeFinger(),
7822                            pointer_delta(fc_addr, freeFinger()));
7823     }
7824     // Set up for new free range.  Pass along whether the right hand
7825     // chunk is in the free lists.
7826     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7827   }
7828 }
7829 
7830 // Lookahead flush:
7831 // If we are tracking a free range, and this is the last chunk that
7832 // we'll look at because its end crosses past _limit, we'll preemptively
7833 // flush it along with any free range we may be holding on to. Note that
7834 // this can be the case only for an already free or freshly garbage
7835 // chunk. If this block is an object, it can never straddle
7836 // over _limit. The "straddling" occurs when _limit is set at
7837 // the previous end of the space when this cycle started, and
7838 // a subsequent heap expansion caused the previously co-terminal
7839 // free block to be coalesced with the newly expanded portion,
7840 // thus rendering _limit a non-block-boundary making it dangerous
7841 // for the sweeper to step over and examine.
7842 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7843   assert(inFreeRange(), "Should only be called if currently in a free range.");
7844   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7845   assert(_sp->used_region().contains(eob - 1),
7846          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7847                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7848                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7849                  p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size));
7850   if (eob >= _limit) {
7851     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7852     if (CMSTraceSweeper) {
7853       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
7854                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7855                              "[" PTR_FORMAT "," PTR_FORMAT ")",
7856                              p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7857     }
7858     // Return the storage we are tracking back into the free lists.
7859     if (CMSTraceSweeper) {
7860       gclog_or_tty->print_cr("Flushing ... ");
7861     }
7862     assert(freeFinger() < eob, "Error");
7863     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7864   }
7865 }
7866 
7867 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7868   assert(inFreeRange(), "Should only be called if currently in a free range.");
7869   assert(size > 0,
7870     "A zero sized chunk cannot be added to the free lists.");
7871   if (!freeRangeInFreeLists()) {
7872     if (CMSTestInFreeList) {
7873       FreeChunk* fc = (FreeChunk*) chunk;
7874       fc->set_size(size);
7875       assert(!_sp->verify_chunk_in_free_list(fc),
7876         "chunk should not be in free lists yet");
7877     }
7878     if (CMSTraceSweeper) {
7879       gclog_or_tty->print_cr(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists",
7880                     p2i(chunk), size);
7881     }
7882     // A new free range is going to be starting.  The current
7883     // free range has not been added to the free lists yet or
7884     // was removed so add it back.
7885     // If the current free range was coalesced, then the death
7886     // of the free range was recorded.  Record a birth now.
7887     if (lastFreeRangeCoalesced()) {
7888       _sp->coalBirth(size);
7889     }
7890     _sp->addChunkAndRepairOffsetTable(chunk, size,
7891             lastFreeRangeCoalesced());
7892   } else if (CMSTraceSweeper) {
7893     gclog_or_tty->print_cr("Already in free list: nothing to flush");
7894   }
7895   set_inFreeRange(false);
7896   set_freeRangeInFreeLists(false);
7897 }
7898 
7899 // We take a break if we've been at this for a while,
7900 // so as to avoid monopolizing the locks involved.
7901 void SweepClosure::do_yield_work(HeapWord* addr) {
7902   // Return current free chunk being used for coalescing (if any)
7903   // to the appropriate freelist.  After yielding, the next
7904   // free block encountered will start a coalescing range of
7905   // free blocks.  If the next free block is adjacent to the
7906   // chunk just flushed, they will need to wait for the next
7907   // sweep to be coalesced.
7908   if (inFreeRange()) {
7909     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7910   }
7911 
7912   // First give up the locks, then yield, then re-lock.
7913   // We should probably use a constructor/destructor idiom to
7914   // do this unlock/lock or modify the MutexUnlocker class to
7915   // serve our purpose. XXX
7916   assert_lock_strong(_bitMap->lock());
7917   assert_lock_strong(_freelistLock);
7918   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7919          "CMS thread should hold CMS token");
7920   _bitMap->lock()->unlock();
7921   _freelistLock->unlock();
7922   ConcurrentMarkSweepThread::desynchronize(true);
7923   _collector->stopTimer();
7924   if (PrintCMSStatistics != 0) {
7925     _collector->incrementYields();
7926   }
7927 
7928   // See the comment in coordinator_yield()
7929   for (unsigned i = 0; i < CMSYieldSleepCount &&
7930                        ConcurrentMarkSweepThread::should_yield() &&
7931                        !CMSCollector::foregroundGCIsActive(); ++i) {
7932     os::sleep(Thread::current(), 1, false);
7933   }
7934 
7935   ConcurrentMarkSweepThread::synchronize(true);
7936   _freelistLock->lock();
7937   _bitMap->lock()->lock_without_safepoint_check();
7938   _collector->startTimer();
7939 }
7940 
7941 #ifndef PRODUCT
7942 // This is actually very useful in a product build if it can
7943 // be called from the debugger.  Compile it into the product
7944 // as needed.
7945 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7946   return debug_cms_space->verify_chunk_in_free_list(fc);
7947 }
7948 #endif
7949 
7950 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7951   if (CMSTraceSweeper) {
7952     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7953                            p2i(fc), fc->size());
7954   }
7955 }
7956 
7957 // CMSIsAliveClosure
7958 bool CMSIsAliveClosure::do_object_b(oop obj) {
7959   HeapWord* addr = (HeapWord*)obj;
7960   return addr != NULL &&
7961          (!_span.contains(addr) || _bit_map->isMarked(addr));
7962 }
7963 
7964 
7965 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7966                       MemRegion span,
7967                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7968                       bool cpc):
7969   _collector(collector),
7970   _span(span),
7971   _bit_map(bit_map),
7972   _mark_stack(mark_stack),
7973   _concurrent_precleaning(cpc) {
7974   assert(!_span.is_empty(), "Empty span could spell trouble");
7975 }
7976 
7977 
7978 // CMSKeepAliveClosure: the serial version
7979 void CMSKeepAliveClosure::do_oop(oop obj) {
7980   HeapWord* addr = (HeapWord*)obj;
7981   if (_span.contains(addr) &&
7982       !_bit_map->isMarked(addr)) {
7983     _bit_map->mark(addr);
7984     bool simulate_overflow = false;
7985     NOT_PRODUCT(
7986       if (CMSMarkStackOverflowALot &&
7987           _collector->simulate_overflow()) {
7988         // simulate a stack overflow
7989         simulate_overflow = true;
7990       }
7991     )
7992     if (simulate_overflow || !_mark_stack->push(obj)) {
7993       if (_concurrent_precleaning) {
7994         // We dirty the overflown object and let the remark
7995         // phase deal with it.
7996         assert(_collector->overflow_list_is_empty(), "Error");
7997         // In the case of object arrays, we need to dirty all of
7998         // the cards that the object spans. No locking or atomics
7999         // are needed since no one else can be mutating the mod union
8000         // table.
8001         if (obj->is_objArray()) {
8002           size_t sz = obj->size();
8003           HeapWord* end_card_addr =
8004             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8005           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8006           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8007           _collector->_modUnionTable.mark_range(redirty_range);
8008         } else {
8009           _collector->_modUnionTable.mark(addr);
8010         }
8011         _collector->_ser_kac_preclean_ovflw++;
8012       } else {
8013         _collector->push_on_overflow_list(obj);
8014         _collector->_ser_kac_ovflw++;
8015       }
8016     }
8017   }
8018 }
8019 
8020 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8021 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8022 
8023 // CMSParKeepAliveClosure: a parallel version of the above.
8024 // The work queues are private to each closure (thread),
8025 // but (may be) available for stealing by other threads.
8026 void CMSParKeepAliveClosure::do_oop(oop obj) {
8027   HeapWord* addr = (HeapWord*)obj;
8028   if (_span.contains(addr) &&
8029       !_bit_map->isMarked(addr)) {
8030     // In general, during recursive tracing, several threads
8031     // may be concurrently getting here; the first one to
8032     // "tag" it, claims it.
8033     if (_bit_map->par_mark(addr)) {
8034       bool res = _work_queue->push(obj);
8035       assert(res, "Low water mark should be much less than capacity");
8036       // Do a recursive trim in the hope that this will keep
8037       // stack usage lower, but leave some oops for potential stealers
8038       trim_queue(_low_water_mark);
8039     } // Else, another thread got there first
8040   }
8041 }
8042 
8043 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8044 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8045 
8046 void CMSParKeepAliveClosure::trim_queue(uint max) {
8047   while (_work_queue->size() > max) {
8048     oop new_oop;
8049     if (_work_queue->pop_local(new_oop)) {
8050       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8051       assert(_bit_map->isMarked((HeapWord*)new_oop),
8052              "no white objects on this stack!");
8053       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8054       // iterate over the oops in this oop, marking and pushing
8055       // the ones in CMS heap (i.e. in _span).
8056       new_oop->oop_iterate(&_mark_and_push);
8057     }
8058   }
8059 }
8060 
8061 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8062                                 CMSCollector* collector,
8063                                 MemRegion span, CMSBitMap* bit_map,
8064                                 OopTaskQueue* work_queue):
8065   _collector(collector),
8066   _span(span),
8067   _bit_map(bit_map),
8068   _work_queue(work_queue) { }
8069 
8070 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8071   HeapWord* addr = (HeapWord*)obj;
8072   if (_span.contains(addr) &&
8073       !_bit_map->isMarked(addr)) {
8074     if (_bit_map->par_mark(addr)) {
8075       bool simulate_overflow = false;
8076       NOT_PRODUCT(
8077         if (CMSMarkStackOverflowALot &&
8078             _collector->par_simulate_overflow()) {
8079           // simulate a stack overflow
8080           simulate_overflow = true;
8081         }
8082       )
8083       if (simulate_overflow || !_work_queue->push(obj)) {
8084         _collector->par_push_on_overflow_list(obj);
8085         _collector->_par_kac_ovflw++;
8086       }
8087     } // Else another thread got there already
8088   }
8089 }
8090 
8091 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8092 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8093 
8094 //////////////////////////////////////////////////////////////////
8095 //  CMSExpansionCause                /////////////////////////////
8096 //////////////////////////////////////////////////////////////////
8097 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8098   switch (cause) {
8099     case _no_expansion:
8100       return "No expansion";
8101     case _satisfy_free_ratio:
8102       return "Free ratio";
8103     case _satisfy_promotion:
8104       return "Satisfy promotion";
8105     case _satisfy_allocation:
8106       return "allocation";
8107     case _allocate_par_lab:
8108       return "Par LAB";
8109     case _allocate_par_spooling_space:
8110       return "Par Spooling Space";
8111     case _adaptive_size_policy:
8112       return "Ergonomics";
8113     default:
8114       return "unknown";
8115   }
8116 }
8117 
8118 void CMSDrainMarkingStackClosure::do_void() {
8119   // the max number to take from overflow list at a time
8120   const size_t num = _mark_stack->capacity()/4;
8121   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8122          "Overflow list should be NULL during concurrent phases");
8123   while (!_mark_stack->isEmpty() ||
8124          // if stack is empty, check the overflow list
8125          _collector->take_from_overflow_list(num, _mark_stack)) {
8126     oop obj = _mark_stack->pop();
8127     HeapWord* addr = (HeapWord*)obj;
8128     assert(_span.contains(addr), "Should be within span");
8129     assert(_bit_map->isMarked(addr), "Should be marked");
8130     assert(obj->is_oop(), "Should be an oop");
8131     obj->oop_iterate(_keep_alive);
8132   }
8133 }
8134 
8135 void CMSParDrainMarkingStackClosure::do_void() {
8136   // drain queue
8137   trim_queue(0);
8138 }
8139 
8140 // Trim our work_queue so its length is below max at return
8141 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8142   while (_work_queue->size() > max) {
8143     oop new_oop;
8144     if (_work_queue->pop_local(new_oop)) {
8145       assert(new_oop->is_oop(), "Expected an oop");
8146       assert(_bit_map->isMarked((HeapWord*)new_oop),
8147              "no white objects on this stack!");
8148       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8149       // iterate over the oops in this oop, marking and pushing
8150       // the ones in CMS heap (i.e. in _span).
8151       new_oop->oop_iterate(&_mark_and_push);
8152     }
8153   }
8154 }
8155 
8156 ////////////////////////////////////////////////////////////////////
8157 // Support for Marking Stack Overflow list handling and related code
8158 ////////////////////////////////////////////////////////////////////
8159 // Much of the following code is similar in shape and spirit to the
8160 // code used in ParNewGC. We should try and share that code
8161 // as much as possible in the future.
8162 
8163 #ifndef PRODUCT
8164 // Debugging support for CMSStackOverflowALot
8165 
8166 // It's OK to call this multi-threaded;  the worst thing
8167 // that can happen is that we'll get a bunch of closely
8168 // spaced simulated overflows, but that's OK, in fact
8169 // probably good as it would exercise the overflow code
8170 // under contention.
8171 bool CMSCollector::simulate_overflow() {
8172   if (_overflow_counter-- <= 0) { // just being defensive
8173     _overflow_counter = CMSMarkStackOverflowInterval;
8174     return true;
8175   } else {
8176     return false;
8177   }
8178 }
8179 
8180 bool CMSCollector::par_simulate_overflow() {
8181   return simulate_overflow();
8182 }
8183 #endif
8184 
8185 // Single-threaded
8186 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8187   assert(stack->isEmpty(), "Expected precondition");
8188   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8189   size_t i = num;
8190   oop  cur = _overflow_list;
8191   const markOop proto = markOopDesc::prototype();
8192   NOT_PRODUCT(ssize_t n = 0;)
8193   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8194     next = oop(cur->mark());
8195     cur->set_mark(proto);   // until proven otherwise
8196     assert(cur->is_oop(), "Should be an oop");
8197     bool res = stack->push(cur);
8198     assert(res, "Bit off more than can chew?");
8199     NOT_PRODUCT(n++;)
8200   }
8201   _overflow_list = cur;
8202 #ifndef PRODUCT
8203   assert(_num_par_pushes >= n, "Too many pops?");
8204   _num_par_pushes -=n;
8205 #endif
8206   return !stack->isEmpty();
8207 }
8208 
8209 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
8210 // (MT-safe) Get a prefix of at most "num" from the list.
8211 // The overflow list is chained through the mark word of
8212 // each object in the list. We fetch the entire list,
8213 // break off a prefix of the right size and return the
8214 // remainder. If other threads try to take objects from
8215 // the overflow list at that time, they will wait for
8216 // some time to see if data becomes available. If (and
8217 // only if) another thread places one or more object(s)
8218 // on the global list before we have returned the suffix
8219 // to the global list, we will walk down our local list
8220 // to find its end and append the global list to
8221 // our suffix before returning it. This suffix walk can
8222 // prove to be expensive (quadratic in the amount of traffic)
8223 // when there are many objects in the overflow list and
8224 // there is much producer-consumer contention on the list.
8225 // *NOTE*: The overflow list manipulation code here and
8226 // in ParNewGeneration:: are very similar in shape,
8227 // except that in the ParNew case we use the old (from/eden)
8228 // copy of the object to thread the list via its klass word.
8229 // Because of the common code, if you make any changes in
8230 // the code below, please check the ParNew version to see if
8231 // similar changes might be needed.
8232 // CR 6797058 has been filed to consolidate the common code.
8233 bool CMSCollector::par_take_from_overflow_list(size_t num,
8234                                                OopTaskQueue* work_q,
8235                                                int no_of_gc_threads) {
8236   assert(work_q->size() == 0, "First empty local work queue");
8237   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8238   if (_overflow_list == NULL) {
8239     return false;
8240   }
8241   // Grab the entire list; we'll put back a suffix
8242   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8243   Thread* tid = Thread::current();
8244   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8245   // set to ParallelGCThreads.
8246   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8247   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8248   // If the list is busy, we spin for a short while,
8249   // sleeping between attempts to get the list.
8250   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8251     os::sleep(tid, sleep_time_millis, false);
8252     if (_overflow_list == NULL) {
8253       // Nothing left to take
8254       return false;
8255     } else if (_overflow_list != BUSY) {
8256       // Try and grab the prefix
8257       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
8258     }
8259   }
8260   // If the list was found to be empty, or we spun long
8261   // enough, we give up and return empty-handed. If we leave
8262   // the list in the BUSY state below, it must be the case that
8263   // some other thread holds the overflow list and will set it
8264   // to a non-BUSY state in the future.
8265   if (prefix == NULL || prefix == BUSY) {
8266      // Nothing to take or waited long enough
8267      if (prefix == NULL) {
8268        // Write back the NULL in case we overwrote it with BUSY above
8269        // and it is still the same value.
8270        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8271      }
8272      return false;
8273   }
8274   assert(prefix != NULL && prefix != BUSY, "Error");
8275   size_t i = num;
8276   oop cur = prefix;
8277   // Walk down the first "num" objects, unless we reach the end.
8278   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8279   if (cur->mark() == NULL) {
8280     // We have "num" or fewer elements in the list, so there
8281     // is nothing to return to the global list.
8282     // Write back the NULL in lieu of the BUSY we wrote
8283     // above, if it is still the same value.
8284     if (_overflow_list == BUSY) {
8285       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8286     }
8287   } else {
8288     // Chop off the suffix and return it to the global list.
8289     assert(cur->mark() != BUSY, "Error");
8290     oop suffix_head = cur->mark(); // suffix will be put back on global list
8291     cur->set_mark(NULL);           // break off suffix
8292     // It's possible that the list is still in the empty(busy) state
8293     // we left it in a short while ago; in that case we may be
8294     // able to place back the suffix without incurring the cost
8295     // of a walk down the list.
8296     oop observed_overflow_list = _overflow_list;
8297     oop cur_overflow_list = observed_overflow_list;
8298     bool attached = false;
8299     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8300       observed_overflow_list =
8301         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8302       if (cur_overflow_list == observed_overflow_list) {
8303         attached = true;
8304         break;
8305       } else cur_overflow_list = observed_overflow_list;
8306     }
8307     if (!attached) {
8308       // Too bad, someone else sneaked in (at least) an element; we'll need
8309       // to do a splice. Find tail of suffix so we can prepend suffix to global
8310       // list.
8311       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8312       oop suffix_tail = cur;
8313       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8314              "Tautology");
8315       observed_overflow_list = _overflow_list;
8316       do {
8317         cur_overflow_list = observed_overflow_list;
8318         if (cur_overflow_list != BUSY) {
8319           // Do the splice ...
8320           suffix_tail->set_mark(markOop(cur_overflow_list));
8321         } else { // cur_overflow_list == BUSY
8322           suffix_tail->set_mark(NULL);
8323         }
8324         // ... and try to place spliced list back on overflow_list ...
8325         observed_overflow_list =
8326           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8327       } while (cur_overflow_list != observed_overflow_list);
8328       // ... until we have succeeded in doing so.
8329     }
8330   }
8331 
8332   // Push the prefix elements on work_q
8333   assert(prefix != NULL, "control point invariant");
8334   const markOop proto = markOopDesc::prototype();
8335   oop next;
8336   NOT_PRODUCT(ssize_t n = 0;)
8337   for (cur = prefix; cur != NULL; cur = next) {
8338     next = oop(cur->mark());
8339     cur->set_mark(proto);   // until proven otherwise
8340     assert(cur->is_oop(), "Should be an oop");
8341     bool res = work_q->push(cur);
8342     assert(res, "Bit off more than we can chew?");
8343     NOT_PRODUCT(n++;)
8344   }
8345 #ifndef PRODUCT
8346   assert(_num_par_pushes >= n, "Too many pops?");
8347   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
8348 #endif
8349   return true;
8350 }
8351 
8352 // Single-threaded
8353 void CMSCollector::push_on_overflow_list(oop p) {
8354   NOT_PRODUCT(_num_par_pushes++;)
8355   assert(p->is_oop(), "Not an oop");
8356   preserve_mark_if_necessary(p);
8357   p->set_mark((markOop)_overflow_list);
8358   _overflow_list = p;
8359 }
8360 
8361 // Multi-threaded; use CAS to prepend to overflow list
8362 void CMSCollector::par_push_on_overflow_list(oop p) {
8363   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
8364   assert(p->is_oop(), "Not an oop");
8365   par_preserve_mark_if_necessary(p);
8366   oop observed_overflow_list = _overflow_list;
8367   oop cur_overflow_list;
8368   do {
8369     cur_overflow_list = observed_overflow_list;
8370     if (cur_overflow_list != BUSY) {
8371       p->set_mark(markOop(cur_overflow_list));
8372     } else {
8373       p->set_mark(NULL);
8374     }
8375     observed_overflow_list =
8376       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
8377   } while (cur_overflow_list != observed_overflow_list);
8378 }
8379 #undef BUSY
8380 
8381 // Single threaded
8382 // General Note on GrowableArray: pushes may silently fail
8383 // because we are (temporarily) out of C-heap for expanding
8384 // the stack. The problem is quite ubiquitous and affects
8385 // a lot of code in the JVM. The prudent thing for GrowableArray
8386 // to do (for now) is to exit with an error. However, that may
8387 // be too draconian in some cases because the caller may be
8388 // able to recover without much harm. For such cases, we
8389 // should probably introduce a "soft_push" method which returns
8390 // an indication of success or failure with the assumption that
8391 // the caller may be able to recover from a failure; code in
8392 // the VM can then be changed, incrementally, to deal with such
8393 // failures where possible, thus, incrementally hardening the VM
8394 // in such low resource situations.
8395 void CMSCollector::preserve_mark_work(oop p, markOop m) {
8396   _preserved_oop_stack.push(p);
8397   _preserved_mark_stack.push(m);
8398   assert(m == p->mark(), "Mark word changed");
8399   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8400          "bijection");
8401 }
8402 
8403 // Single threaded
8404 void CMSCollector::preserve_mark_if_necessary(oop p) {
8405   markOop m = p->mark();
8406   if (m->must_be_preserved(p)) {
8407     preserve_mark_work(p, m);
8408   }
8409 }
8410 
8411 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8412   markOop m = p->mark();
8413   if (m->must_be_preserved(p)) {
8414     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8415     // Even though we read the mark word without holding
8416     // the lock, we are assured that it will not change
8417     // because we "own" this oop, so no other thread can
8418     // be trying to push it on the overflow list; see
8419     // the assertion in preserve_mark_work() that checks
8420     // that m == p->mark().
8421     preserve_mark_work(p, m);
8422   }
8423 }
8424 
8425 // We should be able to do this multi-threaded,
8426 // a chunk of stack being a task (this is
8427 // correct because each oop only ever appears
8428 // once in the overflow list. However, it's
8429 // not very easy to completely overlap this with
8430 // other operations, so will generally not be done
8431 // until all work's been completed. Because we
8432 // expect the preserved oop stack (set) to be small,
8433 // it's probably fine to do this single-threaded.
8434 // We can explore cleverer concurrent/overlapped/parallel
8435 // processing of preserved marks if we feel the
8436 // need for this in the future. Stack overflow should
8437 // be so rare in practice and, when it happens, its
8438 // effect on performance so great that this will
8439 // likely just be in the noise anyway.
8440 void CMSCollector::restore_preserved_marks_if_any() {
8441   assert(SafepointSynchronize::is_at_safepoint(),
8442          "world should be stopped");
8443   assert(Thread::current()->is_ConcurrentGC_thread() ||
8444          Thread::current()->is_VM_thread(),
8445          "should be single-threaded");
8446   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8447          "bijection");
8448 
8449   while (!_preserved_oop_stack.is_empty()) {
8450     oop p = _preserved_oop_stack.pop();
8451     assert(p->is_oop(), "Should be an oop");
8452     assert(_span.contains(p), "oop should be in _span");
8453     assert(p->mark() == markOopDesc::prototype(),
8454            "Set when taken from overflow list");
8455     markOop m = _preserved_mark_stack.pop();
8456     p->set_mark(m);
8457   }
8458   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8459          "stacks were cleared above");
8460 }
8461 
8462 #ifndef PRODUCT
8463 bool CMSCollector::no_preserved_marks() const {
8464   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8465 }
8466 #endif
8467 
8468 // Transfer some number of overflown objects to usual marking
8469 // stack. Return true if some objects were transferred.
8470 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8471   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8472                     (size_t)ParGCDesiredObjsFromOverflowList);
8473 
8474   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8475   assert(_collector->overflow_list_is_empty() || res,
8476          "If list is not empty, we should have taken something");
8477   assert(!res || !_mark_stack->isEmpty(),
8478          "If we took something, it should now be on our stack");
8479   return res;
8480 }
8481 
8482 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8483   size_t res = _sp->block_size_no_stall(addr, _collector);
8484   if (_sp->block_is_obj(addr)) {
8485     if (_live_bit_map->isMarked(addr)) {
8486       // It can't have been dead in a previous cycle
8487       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8488     } else {
8489       _dead_bit_map->mark(addr);      // mark the dead object
8490     }
8491   }
8492   // Could be 0, if the block size could not be computed without stalling.
8493   return res;
8494 }
8495 
8496 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8497 
8498   switch (phase) {
8499     case CMSCollector::InitialMarking:
8500       initialize(true  /* fullGC */ ,
8501                  cause /* cause of the GC */,
8502                  true  /* recordGCBeginTime */,
8503                  true  /* recordPreGCUsage */,
8504                  false /* recordPeakUsage */,
8505                  false /* recordPostGCusage */,
8506                  true  /* recordAccumulatedGCTime */,
8507                  false /* recordGCEndTime */,
8508                  false /* countCollection */  );
8509       break;
8510 
8511     case CMSCollector::FinalMarking:
8512       initialize(true  /* fullGC */ ,
8513                  cause /* cause of the GC */,
8514                  false /* recordGCBeginTime */,
8515                  false /* recordPreGCUsage */,
8516                  false /* recordPeakUsage */,
8517                  false /* recordPostGCusage */,
8518                  true  /* recordAccumulatedGCTime */,
8519                  false /* recordGCEndTime */,
8520                  false /* countCollection */  );
8521       break;
8522 
8523     case CMSCollector::Sweeping:
8524       initialize(true  /* fullGC */ ,
8525                  cause /* cause of the GC */,
8526                  false /* recordGCBeginTime */,
8527                  false /* recordPreGCUsage */,
8528                  true  /* recordPeakUsage */,
8529                  true  /* recordPostGCusage */,
8530                  false /* recordAccumulatedGCTime */,
8531                  true  /* recordGCEndTime */,
8532                  true  /* countCollection */  );
8533       break;
8534 
8535     default:
8536       ShouldNotReachHere();
8537   }
8538 }