1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/collectorCounters.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/gcHeapSummary.hpp"
  29 #include "gc_implementation/shared/gcTimer.hpp"
  30 #include "gc_implementation/shared/gcTraceTime.hpp"
  31 #include "gc_implementation/shared/gcTrace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/defNewGeneration.inline.hpp"
  34 #include "memory/gcLocker.inline.hpp"
  35 #include "memory/genCollectedHeap.hpp"
  36 #include "memory/genOopClosures.inline.hpp"
  37 #include "memory/genRemSet.hpp"
  38 #include "memory/generationSpec.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/referencePolicy.hpp"
  41 #include "memory/space.inline.hpp"
  42 #include "oops/instanceRefKlass.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "runtime/atomic.inline.hpp"
  45 #include "runtime/java.hpp"
  46 #include "runtime/prefetch.inline.hpp"
  47 #include "runtime/thread.inline.hpp"
  48 #include "utilities/copy.hpp"
  49 #include "utilities/globalDefinitions.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 #if INCLUDE_ALL_GCS
  52 #include "gc_implementation/parNew/parOopClosures.hpp"
  53 #endif
  54 
  55 //
  56 // DefNewGeneration functions.
  57 
  58 // Methods of protected closure types.
  59 
  60 DefNewGeneration::IsAliveClosure::IsAliveClosure(Generation* g) : _g(g) {
  61   assert(g->level() == 0, "Optimized for youngest gen.");
  62 }
  63 bool DefNewGeneration::IsAliveClosure::do_object_b(oop p) {
  64   return (HeapWord*)p >= _g->reserved().end() || p->is_forwarded();
  65 }
  66 
  67 DefNewGeneration::KeepAliveClosure::
  68 KeepAliveClosure(ScanWeakRefClosure* cl) : _cl(cl) {
  69   GenRemSet* rs = GenCollectedHeap::heap()->rem_set();
  70   _rs = (CardTableRS*)rs;
  71 }
  72 
  73 void DefNewGeneration::KeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  74 void DefNewGeneration::KeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::KeepAliveClosure::do_oop_work(p); }
  75 
  76 
  77 DefNewGeneration::FastKeepAliveClosure::
  78 FastKeepAliveClosure(DefNewGeneration* g, ScanWeakRefClosure* cl) :
  79   DefNewGeneration::KeepAliveClosure(cl) {
  80   _boundary = g->reserved().end();
  81 }
  82 
  83 void DefNewGeneration::FastKeepAliveClosure::do_oop(oop* p)       { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  84 void DefNewGeneration::FastKeepAliveClosure::do_oop(narrowOop* p) { DefNewGeneration::FastKeepAliveClosure::do_oop_work(p); }
  85 
  86 DefNewGeneration::EvacuateFollowersClosure::
  87 EvacuateFollowersClosure(GenCollectedHeap* gch, int level,
  88                          ScanClosure* cur, ScanClosure* older) :
  89   _gch(gch), _level(level),
  90   _scan_cur_or_nonheap(cur), _scan_older(older)
  91 {}
  92 
  93 void DefNewGeneration::EvacuateFollowersClosure::do_void() {
  94   do {
  95     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
  96                                        _scan_older);
  97   } while (!_gch->no_allocs_since_save_marks(_level));
  98 }
  99 
 100 DefNewGeneration::FastEvacuateFollowersClosure::
 101 FastEvacuateFollowersClosure(GenCollectedHeap* gch, int level,
 102                              DefNewGeneration* gen,
 103                              FastScanClosure* cur, FastScanClosure* older) :
 104   _gch(gch), _level(level), _gen(gen),
 105   _scan_cur_or_nonheap(cur), _scan_older(older)
 106 {}
 107 
 108 void DefNewGeneration::FastEvacuateFollowersClosure::do_void() {
 109   do {
 110     _gch->oop_since_save_marks_iterate(_level, _scan_cur_or_nonheap,
 111                                        _scan_older);
 112   } while (!_gch->no_allocs_since_save_marks(_level));
 113   guarantee(_gen->promo_failure_scan_is_complete(), "Failed to finish scan");
 114 }
 115 
 116 ScanClosure::ScanClosure(DefNewGeneration* g, bool gc_barrier) :
 117     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 118 {
 119   assert(_g->level() == 0, "Optimized for youngest generation");
 120   _boundary = _g->reserved().end();
 121 }
 122 
 123 void ScanClosure::do_oop(oop* p)       { ScanClosure::do_oop_work(p); }
 124 void ScanClosure::do_oop(narrowOop* p) { ScanClosure::do_oop_work(p); }
 125 
 126 FastScanClosure::FastScanClosure(DefNewGeneration* g, bool gc_barrier) :
 127     OopsInKlassOrGenClosure(g), _g(g), _gc_barrier(gc_barrier)
 128 {
 129   assert(_g->level() == 0, "Optimized for youngest generation");
 130   _boundary = _g->reserved().end();
 131 }
 132 
 133 void FastScanClosure::do_oop(oop* p)       { FastScanClosure::do_oop_work(p); }
 134 void FastScanClosure::do_oop(narrowOop* p) { FastScanClosure::do_oop_work(p); }
 135 
 136 void KlassScanClosure::do_klass(Klass* klass) {
 137 #ifndef PRODUCT
 138   if (TraceScavenge) {
 139     ResourceMark rm;
 140     gclog_or_tty->print_cr("KlassScanClosure::do_klass " PTR_FORMAT ", %s, dirty: %s",
 141                            p2i(klass),
 142                            klass->external_name(),
 143                            klass->has_modified_oops() ? "true" : "false");
 144   }
 145 #endif
 146 
 147   // If the klass has not been dirtied we know that there's
 148   // no references into  the young gen and we can skip it.
 149   if (klass->has_modified_oops()) {
 150     if (_accumulate_modified_oops) {
 151       klass->accumulate_modified_oops();
 152     }
 153 
 154     // Clear this state since we're going to scavenge all the metadata.
 155     klass->clear_modified_oops();
 156 
 157     // Tell the closure which Klass is being scanned so that it can be dirtied
 158     // if oops are left pointing into the young gen.
 159     _scavenge_closure->set_scanned_klass(klass);
 160 
 161     klass->oops_do(_scavenge_closure);
 162 
 163     _scavenge_closure->set_scanned_klass(NULL);
 164   }
 165 }
 166 
 167 ScanWeakRefClosure::ScanWeakRefClosure(DefNewGeneration* g) :
 168   _g(g)
 169 {
 170   assert(_g->level() == 0, "Optimized for youngest generation");
 171   _boundary = _g->reserved().end();
 172 }
 173 
 174 void ScanWeakRefClosure::do_oop(oop* p)       { ScanWeakRefClosure::do_oop_work(p); }
 175 void ScanWeakRefClosure::do_oop(narrowOop* p) { ScanWeakRefClosure::do_oop_work(p); }
 176 
 177 void FilteringClosure::do_oop(oop* p)       { FilteringClosure::do_oop_work(p); }
 178 void FilteringClosure::do_oop(narrowOop* p) { FilteringClosure::do_oop_work(p); }
 179 
 180 KlassScanClosure::KlassScanClosure(OopsInKlassOrGenClosure* scavenge_closure,
 181                                    KlassRemSet* klass_rem_set)
 182     : _scavenge_closure(scavenge_closure),
 183       _accumulate_modified_oops(klass_rem_set->accumulate_modified_oops()) {}
 184 
 185 
 186 DefNewGeneration::DefNewGeneration(ReservedSpace rs,
 187                                    size_t initial_size,
 188                                    int level,
 189                                    const char* policy)
 190   : Generation(rs, initial_size, level),
 191     _promo_failure_drain_in_progress(false),
 192     _should_allocate_from_space(false)
 193 {
 194   MemRegion cmr((HeapWord*)_virtual_space.low(),
 195                 (HeapWord*)_virtual_space.high());
 196   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 197 
 198   _eden_space = new ContiguousSpace();
 199   _from_space = new ContiguousSpace();
 200   _to_space   = new ContiguousSpace();
 201 
 202   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL)
 203     vm_exit_during_initialization("Could not allocate a new gen space");
 204 
 205   // Compute the maximum eden and survivor space sizes. These sizes
 206   // are computed assuming the entire reserved space is committed.
 207   // These values are exported as performance counters.
 208   uintx alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 209   uintx size = _virtual_space.reserved_size();
 210   _max_survivor_size = compute_survivor_size(size, alignment);
 211   _max_eden_size = size - (2*_max_survivor_size);
 212 
 213   // allocate the performance counters
 214   GenCollectorPolicy* gcp = (GenCollectorPolicy*) GenCollectedHeap::heap()->collector_policy();
 215 
 216   // Generation counters -- generation 0, 3 subspaces
 217   _gen_counters = new GenerationCounters("new", 0, 3,
 218       gcp->min_young_size(), gcp->max_young_size(), &_virtual_space);
 219   _gc_counters = new CollectorCounters(policy, 0);
 220 
 221   _eden_counters = new CSpaceCounters("eden", 0, _max_eden_size, _eden_space,
 222                                       _gen_counters);
 223   _from_counters = new CSpaceCounters("s0", 1, _max_survivor_size, _from_space,
 224                                       _gen_counters);
 225   _to_counters = new CSpaceCounters("s1", 2, _max_survivor_size, _to_space,
 226                                     _gen_counters);
 227 
 228   compute_space_boundaries(0, SpaceDecorator::Clear, SpaceDecorator::Mangle);
 229   update_counters();
 230   _old_gen = NULL;
 231   _tenuring_threshold = MaxTenuringThreshold;
 232   _pretenure_size_threshold_words = PretenureSizeThreshold >> LogHeapWordSize;
 233 
 234   _gc_timer = new (ResourceObj::C_HEAP, mtGC) STWGCTimer();
 235 }
 236 
 237 void DefNewGeneration::compute_space_boundaries(uintx minimum_eden_size,
 238                                                 bool clear_space,
 239                                                 bool mangle_space) {
 240   uintx alignment =
 241     GenCollectedHeap::heap()->collector_policy()->space_alignment();
 242 
 243   // If the spaces are being cleared (only done at heap initialization
 244   // currently), the survivor spaces need not be empty.
 245   // Otherwise, no care is taken for used areas in the survivor spaces
 246   // so check.
 247   assert(clear_space || (to()->is_empty() && from()->is_empty()),
 248     "Initialization of the survivor spaces assumes these are empty");
 249 
 250   // Compute sizes
 251   uintx size = _virtual_space.committed_size();
 252   uintx survivor_size = compute_survivor_size(size, alignment);
 253   uintx eden_size = size - (2*survivor_size);
 254   assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 255 
 256   if (eden_size < minimum_eden_size) {
 257     // May happen due to 64Kb rounding, if so adjust eden size back up
 258     minimum_eden_size = align_size_up(minimum_eden_size, alignment);
 259     uintx maximum_survivor_size = (size - minimum_eden_size) / 2;
 260     uintx unaligned_survivor_size =
 261       align_size_down(maximum_survivor_size, alignment);
 262     survivor_size = MAX2(unaligned_survivor_size, alignment);
 263     eden_size = size - (2*survivor_size);
 264     assert(eden_size > 0 && survivor_size <= eden_size, "just checking");
 265     assert(eden_size >= minimum_eden_size, "just checking");
 266   }
 267 
 268   char *eden_start = _virtual_space.low();
 269   char *from_start = eden_start + eden_size;
 270   char *to_start   = from_start + survivor_size;
 271   char *to_end     = to_start   + survivor_size;
 272 
 273   assert(to_end == _virtual_space.high(), "just checking");
 274   assert(Space::is_aligned((HeapWord*)eden_start), "checking alignment");
 275   assert(Space::is_aligned((HeapWord*)from_start), "checking alignment");
 276   assert(Space::is_aligned((HeapWord*)to_start),   "checking alignment");
 277 
 278   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)from_start);
 279   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)to_start);
 280   MemRegion toMR  ((HeapWord*)to_start, (HeapWord*)to_end);
 281 
 282   // A minimum eden size implies that there is a part of eden that
 283   // is being used and that affects the initialization of any
 284   // newly formed eden.
 285   bool live_in_eden = minimum_eden_size > 0;
 286 
 287   // If not clearing the spaces, do some checking to verify that
 288   // the space are already mangled.
 289   if (!clear_space) {
 290     // Must check mangling before the spaces are reshaped.  Otherwise,
 291     // the bottom or end of one space may have moved into another
 292     // a failure of the check may not correctly indicate which space
 293     // is not properly mangled.
 294     if (ZapUnusedHeapArea) {
 295       HeapWord* limit = (HeapWord*) _virtual_space.high();
 296       eden()->check_mangled_unused_area(limit);
 297       from()->check_mangled_unused_area(limit);
 298         to()->check_mangled_unused_area(limit);
 299     }
 300   }
 301 
 302   // Reset the spaces for their new regions.
 303   eden()->initialize(edenMR,
 304                      clear_space && !live_in_eden,
 305                      SpaceDecorator::Mangle);
 306   // If clear_space and live_in_eden, we will not have cleared any
 307   // portion of eden above its top. This can cause newly
 308   // expanded space not to be mangled if using ZapUnusedHeapArea.
 309   // We explicitly do such mangling here.
 310   if (ZapUnusedHeapArea && clear_space && live_in_eden && mangle_space) {
 311     eden()->mangle_unused_area();
 312   }
 313   from()->initialize(fromMR, clear_space, mangle_space);
 314   to()->initialize(toMR, clear_space, mangle_space);
 315 
 316   // Set next compaction spaces.
 317   eden()->set_next_compaction_space(from());
 318   // The to-space is normally empty before a compaction so need
 319   // not be considered.  The exception is during promotion
 320   // failure handling when to-space can contain live objects.
 321   from()->set_next_compaction_space(NULL);
 322 }
 323 
 324 void DefNewGeneration::swap_spaces() {
 325   ContiguousSpace* s = from();
 326   _from_space        = to();
 327   _to_space          = s;
 328   eden()->set_next_compaction_space(from());
 329   // The to-space is normally empty before a compaction so need
 330   // not be considered.  The exception is during promotion
 331   // failure handling when to-space can contain live objects.
 332   from()->set_next_compaction_space(NULL);
 333 
 334   if (UsePerfData) {
 335     CSpaceCounters* c = _from_counters;
 336     _from_counters = _to_counters;
 337     _to_counters = c;
 338   }
 339 }
 340 
 341 bool DefNewGeneration::expand(size_t bytes) {
 342   MutexLocker x(ExpandHeap_lock);
 343   HeapWord* prev_high = (HeapWord*) _virtual_space.high();
 344   bool success = _virtual_space.expand_by(bytes);
 345   if (success && ZapUnusedHeapArea) {
 346     // Mangle newly committed space immediately because it
 347     // can be done here more simply that after the new
 348     // spaces have been computed.
 349     HeapWord* new_high = (HeapWord*) _virtual_space.high();
 350     MemRegion mangle_region(prev_high, new_high);
 351     SpaceMangler::mangle_region(mangle_region);
 352   }
 353 
 354   // Do not attempt an expand-to-the reserve size.  The
 355   // request should properly observe the maximum size of
 356   // the generation so an expand-to-reserve should be
 357   // unnecessary.  Also a second call to expand-to-reserve
 358   // value potentially can cause an undue expansion.
 359   // For example if the first expand fail for unknown reasons,
 360   // but the second succeeds and expands the heap to its maximum
 361   // value.
 362   if (GC_locker::is_active()) {
 363     if (PrintGC && Verbose) {
 364       gclog_or_tty->print_cr("Garbage collection disabled, "
 365         "expanded heap instead");
 366     }
 367   }
 368 
 369   return success;
 370 }
 371 
 372 
 373 void DefNewGeneration::compute_new_size() {
 374   // This is called after a gc that includes the following generation
 375   // (which is required to exist.)  So from-space will normally be empty.
 376   // Note that we check both spaces, since if scavenge failed they revert roles.
 377   // If not we bail out (otherwise we would have to relocate the objects)
 378   if (!from()->is_empty() || !to()->is_empty()) {
 379     return;
 380   }
 381 
 382   int next_level = level() + 1;
 383   GenCollectedHeap* gch = GenCollectedHeap::heap();
 384   assert(next_level == 1, "DefNewGeneration must be a young gen");
 385 
 386   Generation* old_gen = gch->old_gen();
 387   size_t old_size = old_gen->capacity();
 388   size_t new_size_before = _virtual_space.committed_size();
 389   size_t min_new_size = spec()->init_size();
 390   size_t max_new_size = reserved().byte_size();
 391   assert(min_new_size <= new_size_before &&
 392          new_size_before <= max_new_size,
 393          "just checking");
 394   // All space sizes must be multiples of Generation::GenGrain.
 395   size_t alignment = Generation::GenGrain;
 396 
 397   // Compute desired new generation size based on NewRatio and
 398   // NewSizeThreadIncrease
 399   size_t desired_new_size = old_size/NewRatio;
 400   int threads_count = Threads::number_of_non_daemon_threads();
 401   size_t thread_increase_size = threads_count * NewSizeThreadIncrease;
 402   desired_new_size = align_size_up(desired_new_size + thread_increase_size, alignment);
 403 
 404   // Adjust new generation size
 405   desired_new_size = MAX2(MIN2(desired_new_size, max_new_size), min_new_size);
 406   assert(desired_new_size <= max_new_size, "just checking");
 407 
 408   bool changed = false;
 409   if (desired_new_size > new_size_before) {
 410     size_t change = desired_new_size - new_size_before;
 411     assert(change % alignment == 0, "just checking");
 412     if (expand(change)) {
 413        changed = true;
 414     }
 415     // If the heap failed to expand to the desired size,
 416     // "changed" will be false.  If the expansion failed
 417     // (and at this point it was expected to succeed),
 418     // ignore the failure (leaving "changed" as false).
 419   }
 420   if (desired_new_size < new_size_before && eden()->is_empty()) {
 421     // bail out of shrinking if objects in eden
 422     size_t change = new_size_before - desired_new_size;
 423     assert(change % alignment == 0, "just checking");
 424     _virtual_space.shrink_by(change);
 425     changed = true;
 426   }
 427   if (changed) {
 428     // The spaces have already been mangled at this point but
 429     // may not have been cleared (set top = bottom) and should be.
 430     // Mangling was done when the heap was being expanded.
 431     compute_space_boundaries(eden()->used(),
 432                              SpaceDecorator::Clear,
 433                              SpaceDecorator::DontMangle);
 434     MemRegion cmr((HeapWord*)_virtual_space.low(),
 435                   (HeapWord*)_virtual_space.high());
 436     Universe::heap()->barrier_set()->resize_covered_region(cmr);
 437     if (Verbose && PrintGC) {
 438       size_t new_size_after  = _virtual_space.committed_size();
 439       size_t eden_size_after = eden()->capacity();
 440       size_t survivor_size_after = from()->capacity();
 441       gclog_or_tty->print("New generation size " SIZE_FORMAT "K->"
 442         SIZE_FORMAT "K [eden="
 443         SIZE_FORMAT "K,survivor=" SIZE_FORMAT "K]",
 444         new_size_before/K, new_size_after/K,
 445         eden_size_after/K, survivor_size_after/K);
 446       if (WizardMode) {
 447         gclog_or_tty->print("[allowed " SIZE_FORMAT "K extra for %d threads]",
 448           thread_increase_size/K, threads_count);
 449       }
 450       gclog_or_tty->cr();
 451     }
 452   }
 453 }
 454 
 455 void DefNewGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
 456   assert(false, "NYI -- are you sure you want to call this?");
 457 }
 458 
 459 
 460 size_t DefNewGeneration::capacity() const {
 461   return eden()->capacity()
 462        + from()->capacity();  // to() is only used during scavenge
 463 }
 464 
 465 
 466 size_t DefNewGeneration::used() const {
 467   return eden()->used()
 468        + from()->used();      // to() is only used during scavenge
 469 }
 470 
 471 
 472 size_t DefNewGeneration::free() const {
 473   return eden()->free()
 474        + from()->free();      // to() is only used during scavenge
 475 }
 476 
 477 size_t DefNewGeneration::max_capacity() const {
 478   const size_t alignment = GenCollectedHeap::heap()->collector_policy()->space_alignment();
 479   const size_t reserved_bytes = reserved().byte_size();
 480   return reserved_bytes - compute_survivor_size(reserved_bytes, alignment);
 481 }
 482 
 483 size_t DefNewGeneration::unsafe_max_alloc_nogc() const {
 484   return eden()->free();
 485 }
 486 
 487 size_t DefNewGeneration::capacity_before_gc() const {
 488   return eden()->capacity();
 489 }
 490 
 491 size_t DefNewGeneration::contiguous_available() const {
 492   return eden()->free();
 493 }
 494 
 495 
 496 HeapWord** DefNewGeneration::top_addr() const { return eden()->top_addr(); }
 497 HeapWord** DefNewGeneration::end_addr() const { return eden()->end_addr(); }
 498 
 499 void DefNewGeneration::object_iterate(ObjectClosure* blk) {
 500   eden()->object_iterate(blk);
 501   from()->object_iterate(blk);
 502 }
 503 
 504 
 505 void DefNewGeneration::space_iterate(SpaceClosure* blk,
 506                                      bool usedOnly) {
 507   blk->do_space(eden());
 508   blk->do_space(from());
 509   blk->do_space(to());
 510 }
 511 
 512 // The last collection bailed out, we are running out of heap space,
 513 // so we try to allocate the from-space, too.
 514 HeapWord* DefNewGeneration::allocate_from_space(size_t size) {
 515   HeapWord* result = NULL;
 516   if (Verbose && PrintGCDetails) {
 517     gclog_or_tty->print("DefNewGeneration::allocate_from_space(" SIZE_FORMAT "):"
 518                         "  will_fail: %s"
 519                         "  heap_lock: %s"
 520                         "  free: " SIZE_FORMAT,
 521                         size,
 522                         GenCollectedHeap::heap()->incremental_collection_will_fail(false /* don't consult_young */) ?
 523                           "true" : "false",
 524                         Heap_lock->is_locked() ? "locked" : "unlocked",
 525                         from()->free());
 526   }
 527   if (should_allocate_from_space() || GC_locker::is_active_and_needs_gc()) {
 528     if (Heap_lock->owned_by_self() ||
 529         (SafepointSynchronize::is_at_safepoint() &&
 530          Thread::current()->is_VM_thread())) {
 531       // If the Heap_lock is not locked by this thread, this will be called
 532       // again later with the Heap_lock held.
 533       result = from()->allocate(size);
 534     } else if (PrintGC && Verbose) {
 535       gclog_or_tty->print_cr("  Heap_lock is not owned by self");
 536     }
 537   } else if (PrintGC && Verbose) {
 538     gclog_or_tty->print_cr("  should_allocate_from_space: NOT");
 539   }
 540   if (PrintGC && Verbose) {
 541     gclog_or_tty->print_cr("  returns %s", result == NULL ? "NULL" : "object");
 542   }
 543   return result;
 544 }
 545 
 546 HeapWord* DefNewGeneration::expand_and_allocate(size_t size,
 547                                                 bool   is_tlab,
 548                                                 bool   parallel) {
 549   // We don't attempt to expand the young generation (but perhaps we should.)
 550   return allocate(size, is_tlab);
 551 }
 552 
 553 void DefNewGeneration::adjust_desired_tenuring_threshold() {
 554   // Set the desired survivor size to half the real survivor space
 555   GCPolicyCounters* gc_counters = GenCollectedHeap::heap()->collector_policy()->counters();
 556   _tenuring_threshold =
 557     age_table()->compute_tenuring_threshold(to()->capacity()/HeapWordSize, gc_counters);
 558 }
 559 
 560 void DefNewGeneration::collect(bool   full,
 561                                bool   clear_all_soft_refs,
 562                                size_t size,
 563                                bool   is_tlab) {
 564   assert(full || size > 0, "otherwise we don't want to collect");
 565 
 566   GenCollectedHeap* gch = GenCollectedHeap::heap();
 567 
 568   _gc_timer->register_gc_start();
 569   DefNewTracer gc_tracer;
 570   gc_tracer.report_gc_start(gch->gc_cause(), _gc_timer->gc_start());
 571 
 572   _old_gen = gch->old_gen();
 573 
 574   // If the next generation is too full to accommodate promotion
 575   // from this generation, pass on collection; let the next generation
 576   // do it.
 577   if (!collection_attempt_is_safe()) {
 578     if (Verbose && PrintGCDetails) {
 579       gclog_or_tty->print(" :: Collection attempt not safe :: ");
 580     }
 581     gch->set_incremental_collection_failed(); // Slight lie: we did not even attempt one
 582     return;
 583   }
 584   assert(to()->is_empty(), "Else not collection_attempt_is_safe");
 585 
 586   init_assuming_no_promotion_failure();
 587 
 588   GCTraceTime t1(GCCauseString("GC", gch->gc_cause()), PrintGC && !PrintGCDetails, true, NULL, gc_tracer.gc_id());
 589   // Capture heap used before collection (for printing).
 590   size_t gch_prev_used = gch->used();
 591 
 592   gch->trace_heap_before_gc(&gc_tracer);
 593 
 594   // These can be shared for all code paths
 595   IsAliveClosure is_alive(this);
 596   ScanWeakRefClosure scan_weak_ref(this);
 597 
 598   age_table()->clear();
 599   to()->clear(SpaceDecorator::Mangle);
 600 
 601   gch->rem_set()->prepare_for_younger_refs_iterate(false);
 602 
 603   assert(gch->no_allocs_since_save_marks(0),
 604          "save marks have not been newly set.");
 605 
 606   // Not very pretty.
 607   CollectorPolicy* cp = gch->collector_policy();
 608 
 609   FastScanClosure fsc_with_no_gc_barrier(this, false);
 610   FastScanClosure fsc_with_gc_barrier(this, true);
 611 
 612   KlassScanClosure klass_scan_closure(&fsc_with_no_gc_barrier,
 613                                       gch->rem_set()->klass_rem_set());
 614   CLDToKlassAndOopClosure cld_scan_closure(&klass_scan_closure,
 615                                            &fsc_with_no_gc_barrier,
 616                                            false);
 617 
 618   set_promo_failure_scan_stack_closure(&fsc_with_no_gc_barrier);
 619   FastEvacuateFollowersClosure evacuate_followers(gch, _level, this,
 620                                                   &fsc_with_no_gc_barrier,
 621                                                   &fsc_with_gc_barrier);
 622 
 623   assert(gch->no_allocs_since_save_marks(0),
 624          "save marks have not been newly set.");
 625 
 626   gch->gen_process_roots(_level,
 627                          true,  // Process younger gens, if any,
 628                                 // as strong roots.
 629                          true,  // activate StrongRootsScope
 630                          GenCollectedHeap::SO_ScavengeCodeCache,
 631                          GenCollectedHeap::StrongAndWeakRoots,
 632                          &fsc_with_no_gc_barrier,
 633                          &fsc_with_gc_barrier,
 634                          &cld_scan_closure);
 635 
 636   // "evacuate followers".
 637   evacuate_followers.do_void();
 638 
 639   FastKeepAliveClosure keep_alive(this, &scan_weak_ref);
 640   ReferenceProcessor* rp = ref_processor();
 641   rp->setup_policy(clear_all_soft_refs);
 642   const ReferenceProcessorStats& stats =
 643   rp->process_discovered_references(&is_alive, &keep_alive, &evacuate_followers,
 644                                     NULL, _gc_timer, gc_tracer.gc_id());
 645   gc_tracer.report_gc_reference_stats(stats);
 646 
 647   if (!_promotion_failed) {
 648     // Swap the survivor spaces.
 649     eden()->clear(SpaceDecorator::Mangle);
 650     from()->clear(SpaceDecorator::Mangle);
 651     if (ZapUnusedHeapArea) {
 652       // This is now done here because of the piece-meal mangling which
 653       // can check for valid mangling at intermediate points in the
 654       // collection(s).  When a minor collection fails to collect
 655       // sufficient space resizing of the young generation can occur
 656       // an redistribute the spaces in the young generation.  Mangle
 657       // here so that unzapped regions don't get distributed to
 658       // other spaces.
 659       to()->mangle_unused_area();
 660     }
 661     swap_spaces();
 662 
 663     assert(to()->is_empty(), "to space should be empty now");
 664 
 665     adjust_desired_tenuring_threshold();
 666 
 667     // A successful scavenge should restart the GC time limit count which is
 668     // for full GC's.
 669     AdaptiveSizePolicy* size_policy = gch->gen_policy()->size_policy();
 670     size_policy->reset_gc_overhead_limit_count();
 671     assert(!gch->incremental_collection_failed(), "Should be clear");
 672   } else {
 673     assert(_promo_failure_scan_stack.is_empty(), "post condition");
 674     _promo_failure_scan_stack.clear(true); // Clear cached segments.
 675 
 676     remove_forwarding_pointers();
 677     if (PrintGCDetails) {
 678       gclog_or_tty->print(" (promotion failed) ");
 679     }
 680     // Add to-space to the list of space to compact
 681     // when a promotion failure has occurred.  In that
 682     // case there can be live objects in to-space
 683     // as a result of a partial evacuation of eden
 684     // and from-space.
 685     swap_spaces();   // For uniformity wrt ParNewGeneration.
 686     from()->set_next_compaction_space(to());
 687     gch->set_incremental_collection_failed();
 688 
 689     // Inform the next generation that a promotion failure occurred.
 690     _old_gen->promotion_failure_occurred();
 691     gc_tracer.report_promotion_failed(_promotion_failed_info);
 692 
 693     // Reset the PromotionFailureALot counters.
 694     NOT_PRODUCT(Universe::heap()->reset_promotion_should_fail();)
 695   }
 696   if (PrintGC && !PrintGCDetails) {
 697     gch->print_heap_change(gch_prev_used);
 698   }
 699   // set new iteration safe limit for the survivor spaces
 700   from()->set_concurrent_iteration_safe_limit(from()->top());
 701   to()->set_concurrent_iteration_safe_limit(to()->top());
 702 
 703   // We need to use a monotonically non-decreasing time in ms
 704   // or we will see time-warp warnings and os::javaTimeMillis()
 705   // does not guarantee monotonicity.
 706   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 707   update_time_of_last_gc(now);
 708 
 709   gch->trace_heap_after_gc(&gc_tracer);
 710   gc_tracer.report_tenuring_threshold(tenuring_threshold());
 711 
 712   _gc_timer->register_gc_end();
 713 
 714   gc_tracer.report_gc_end(_gc_timer->gc_end(), _gc_timer->time_partitions());
 715 }
 716 
 717 class RemoveForwardPointerClosure: public ObjectClosure {
 718 public:
 719   void do_object(oop obj) {
 720     obj->init_mark();
 721   }
 722 };
 723 
 724 void DefNewGeneration::init_assuming_no_promotion_failure() {
 725   _promotion_failed = false;
 726   _promotion_failed_info.reset();
 727   from()->set_next_compaction_space(NULL);
 728 }
 729 
 730 void DefNewGeneration::remove_forwarding_pointers() {
 731   RemoveForwardPointerClosure rspc;
 732   eden()->object_iterate(&rspc);
 733   from()->object_iterate(&rspc);
 734 
 735   // Now restore saved marks, if any.
 736   assert(_objs_with_preserved_marks.size() == _preserved_marks_of_objs.size(),
 737          "should be the same");
 738   while (!_objs_with_preserved_marks.is_empty()) {
 739     oop obj   = _objs_with_preserved_marks.pop();
 740     markOop m = _preserved_marks_of_objs.pop();
 741     obj->set_mark(m);
 742   }
 743   _objs_with_preserved_marks.clear(true);
 744   _preserved_marks_of_objs.clear(true);
 745 }
 746 
 747 void DefNewGeneration::preserve_mark(oop obj, markOop m) {
 748   assert(_promotion_failed && m->must_be_preserved_for_promotion_failure(obj),
 749          "Oversaving!");
 750   _objs_with_preserved_marks.push(obj);
 751   _preserved_marks_of_objs.push(m);
 752 }
 753 
 754 void DefNewGeneration::preserve_mark_if_necessary(oop obj, markOop m) {
 755   if (m->must_be_preserved_for_promotion_failure(obj)) {
 756     preserve_mark(obj, m);
 757   }
 758 }
 759 
 760 void DefNewGeneration::handle_promotion_failure(oop old) {
 761   if (PrintPromotionFailure && !_promotion_failed) {
 762     gclog_or_tty->print(" (promotion failure size = %d) ",
 763                         old->size());
 764   }
 765   _promotion_failed = true;
 766   _promotion_failed_info.register_copy_failure(old->size());
 767   preserve_mark_if_necessary(old, old->mark());
 768   // forward to self
 769   old->forward_to(old);
 770 
 771   _promo_failure_scan_stack.push(old);
 772 
 773   if (!_promo_failure_drain_in_progress) {
 774     // prevent recursion in copy_to_survivor_space()
 775     _promo_failure_drain_in_progress = true;
 776     drain_promo_failure_scan_stack();
 777     _promo_failure_drain_in_progress = false;
 778   }
 779 }
 780 
 781 oop DefNewGeneration::copy_to_survivor_space(oop old) {
 782   assert(is_in_reserved(old) && !old->is_forwarded(),
 783          "shouldn't be scavenging this oop");
 784   size_t s = old->size();
 785   oop obj = NULL;
 786 
 787   // Try allocating obj in to-space (unless too old)
 788   if (old->age() < tenuring_threshold()) {
 789     obj = (oop) to()->allocate_aligned(s);
 790   }
 791 
 792   // Otherwise try allocating obj tenured
 793   if (obj == NULL) {
 794     obj = _old_gen->promote(old, s);
 795     if (obj == NULL) {
 796       handle_promotion_failure(old);
 797       return old;
 798     }
 799   } else {
 800     // Prefetch beyond obj
 801     const intx interval = PrefetchCopyIntervalInBytes;
 802     Prefetch::write(obj, interval);
 803 
 804     // Copy obj
 805     Copy::aligned_disjoint_words((HeapWord*)old, (HeapWord*)obj, s);
 806 
 807     // Increment age if obj still in new generation
 808     obj->incr_age();
 809     age_table()->add(obj, s);
 810   }
 811 
 812   // Done, insert forward pointer to obj in this header
 813   old->forward_to(obj);
 814 
 815   return obj;
 816 }
 817 
 818 void DefNewGeneration::drain_promo_failure_scan_stack() {
 819   while (!_promo_failure_scan_stack.is_empty()) {
 820      oop obj = _promo_failure_scan_stack.pop();
 821      obj->oop_iterate(_promo_failure_scan_stack_closure);
 822   }
 823 }
 824 
 825 void DefNewGeneration::save_marks() {
 826   eden()->set_saved_mark();
 827   to()->set_saved_mark();
 828   from()->set_saved_mark();
 829 }
 830 
 831 
 832 void DefNewGeneration::reset_saved_marks() {
 833   eden()->reset_saved_mark();
 834   to()->reset_saved_mark();
 835   from()->reset_saved_mark();
 836 }
 837 
 838 
 839 bool DefNewGeneration::no_allocs_since_save_marks() {
 840   assert(eden()->saved_mark_at_top(), "Violated spec - alloc in eden");
 841   assert(from()->saved_mark_at_top(), "Violated spec - alloc in from");
 842   return to()->saved_mark_at_top();
 843 }
 844 
 845 #define DefNew_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 846                                                                 \
 847 void DefNewGeneration::                                         \
 848 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
 849   cl->set_generation(this);                                     \
 850   eden()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 851   to()->oop_since_save_marks_iterate##nv_suffix(cl);            \
 852   from()->oop_since_save_marks_iterate##nv_suffix(cl);          \
 853   cl->reset_generation();                                       \
 854   save_marks();                                                 \
 855 }
 856 
 857 ALL_SINCE_SAVE_MARKS_CLOSURES(DefNew_SINCE_SAVE_MARKS_DEFN)
 858 
 859 #undef DefNew_SINCE_SAVE_MARKS_DEFN
 860 
 861 void DefNewGeneration::contribute_scratch(ScratchBlock*& list, Generation* requestor,
 862                                          size_t max_alloc_words) {
 863   if (requestor == this || _promotion_failed) return;
 864   assert(requestor->level() > level(), "DefNewGeneration must be youngest");
 865 
 866   /* $$$ Assert this?  "trace" is a "MarkSweep" function so that's not appropriate.
 867   if (to_space->top() > to_space->bottom()) {
 868     trace("to_space not empty when contribute_scratch called");
 869   }
 870   */
 871 
 872   ContiguousSpace* to_space = to();
 873   assert(to_space->end() >= to_space->top(), "pointers out of order");
 874   size_t free_words = pointer_delta(to_space->end(), to_space->top());
 875   if (free_words >= MinFreeScratchWords) {
 876     ScratchBlock* sb = (ScratchBlock*)to_space->top();
 877     sb->num_words = free_words;
 878     sb->next = list;
 879     list = sb;
 880   }
 881 }
 882 
 883 void DefNewGeneration::reset_scratch() {
 884   // If contributing scratch in to_space, mangle all of
 885   // to_space if ZapUnusedHeapArea.  This is needed because
 886   // top is not maintained while using to-space as scratch.
 887   if (ZapUnusedHeapArea) {
 888     to()->mangle_unused_area_complete();
 889   }
 890 }
 891 
 892 bool DefNewGeneration::collection_attempt_is_safe() {
 893   if (!to()->is_empty()) {
 894     if (Verbose && PrintGCDetails) {
 895       gclog_or_tty->print(" :: to is not empty :: ");
 896     }
 897     return false;
 898   }
 899   if (_old_gen == NULL) {
 900     GenCollectedHeap* gch = GenCollectedHeap::heap();
 901     _old_gen = gch->old_gen();
 902   }
 903   return _old_gen->promotion_attempt_is_safe(used());
 904 }
 905 
 906 void DefNewGeneration::gc_epilogue(bool full) {
 907   DEBUG_ONLY(static bool seen_incremental_collection_failed = false;)
 908 
 909   assert(!GC_locker::is_active(), "We should not be executing here");
 910   // Check if the heap is approaching full after a collection has
 911   // been done.  Generally the young generation is empty at
 912   // a minimum at the end of a collection.  If it is not, then
 913   // the heap is approaching full.
 914   GenCollectedHeap* gch = GenCollectedHeap::heap();
 915   if (full) {
 916     DEBUG_ONLY(seen_incremental_collection_failed = false;)
 917     if (!collection_attempt_is_safe() && !_eden_space->is_empty()) {
 918       if (Verbose && PrintGCDetails) {
 919         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, not safe, set_failed, set_alloc_from, clear_seen",
 920                             GCCause::to_string(gch->gc_cause()));
 921       }
 922       gch->set_incremental_collection_failed(); // Slight lie: a full gc left us in that state
 923       set_should_allocate_from_space(); // we seem to be running out of space
 924     } else {
 925       if (Verbose && PrintGCDetails) {
 926         gclog_or_tty->print("DefNewEpilogue: cause(%s), full, safe, clear_failed, clear_alloc_from, clear_seen",
 927                             GCCause::to_string(gch->gc_cause()));
 928       }
 929       gch->clear_incremental_collection_failed(); // We just did a full collection
 930       clear_should_allocate_from_space(); // if set
 931     }
 932   } else {
 933 #ifdef ASSERT
 934     // It is possible that incremental_collection_failed() == true
 935     // here, because an attempted scavenge did not succeed. The policy
 936     // is normally expected to cause a full collection which should
 937     // clear that condition, so we should not be here twice in a row
 938     // with incremental_collection_failed() == true without having done
 939     // a full collection in between.
 940     if (!seen_incremental_collection_failed &&
 941         gch->incremental_collection_failed()) {
 942       if (Verbose && PrintGCDetails) {
 943         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, not_seen_failed, failed, set_seen_failed",
 944                             GCCause::to_string(gch->gc_cause()));
 945       }
 946       seen_incremental_collection_failed = true;
 947     } else if (seen_incremental_collection_failed) {
 948       if (Verbose && PrintGCDetails) {
 949         gclog_or_tty->print("DefNewEpilogue: cause(%s), not full, seen_failed, will_clear_seen_failed",
 950                             GCCause::to_string(gch->gc_cause()));
 951       }
 952       assert(gch->gc_cause() == GCCause::_scavenge_alot ||
 953              (gch->gc_cause() == GCCause::_java_lang_system_gc && UseConcMarkSweepGC && ExplicitGCInvokesConcurrent) ||
 954              !gch->incremental_collection_failed(),
 955              "Twice in a row");
 956       seen_incremental_collection_failed = false;
 957     }
 958 #endif // ASSERT
 959   }
 960 
 961   if (ZapUnusedHeapArea) {
 962     eden()->check_mangled_unused_area_complete();
 963     from()->check_mangled_unused_area_complete();
 964     to()->check_mangled_unused_area_complete();
 965   }
 966 
 967   if (!CleanChunkPoolAsync) {
 968     Chunk::clean_chunk_pool();
 969   }
 970 
 971   // update the generation and space performance counters
 972   update_counters();
 973   gch->collector_policy()->counters()->update_counters();
 974 }
 975 
 976 void DefNewGeneration::record_spaces_top() {
 977   assert(ZapUnusedHeapArea, "Not mangling unused space");
 978   eden()->set_top_for_allocations();
 979   to()->set_top_for_allocations();
 980   from()->set_top_for_allocations();
 981 }
 982 
 983 void DefNewGeneration::ref_processor_init() {
 984   Generation::ref_processor_init();
 985 }
 986 
 987 
 988 void DefNewGeneration::update_counters() {
 989   if (UsePerfData) {
 990     _eden_counters->update_all();
 991     _from_counters->update_all();
 992     _to_counters->update_all();
 993     _gen_counters->update_all();
 994   }
 995 }
 996 
 997 void DefNewGeneration::verify() {
 998   eden()->verify();
 999   from()->verify();
1000     to()->verify();
1001 }
1002 
1003 void DefNewGeneration::print_on(outputStream* st) const {
1004   Generation::print_on(st);
1005   st->print("  eden");
1006   eden()->print_on(st);
1007   st->print("  from");
1008   from()->print_on(st);
1009   st->print("  to  ");
1010   to()->print_on(st);
1011 }
1012 
1013 
1014 const char* DefNewGeneration::name() const {
1015   return "def new generation";
1016 }
1017 
1018 // Moved from inline file as they are not called inline
1019 CompactibleSpace* DefNewGeneration::first_compaction_space() const {
1020   return eden();
1021 }
1022 
1023 HeapWord* DefNewGeneration::allocate(size_t word_size, bool is_tlab) {
1024   // This is the slow-path allocation for the DefNewGeneration.
1025   // Most allocations are fast-path in compiled code.
1026   // We try to allocate from the eden.  If that works, we are happy.
1027   // Note that since DefNewGeneration supports lock-free allocation, we
1028   // have to use it here, as well.
1029   HeapWord* result = eden()->par_allocate(word_size);
1030   if (result != NULL) {
1031     if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1032       _old_gen->sample_eden_chunk();
1033     }
1034   } else {
1035     // If the eden is full and the last collection bailed out, we are running
1036     // out of heap space, and we try to allocate the from-space, too.
1037     // allocate_from_space can't be inlined because that would introduce a
1038     // circular dependency at compile time.
1039     result = allocate_from_space(word_size);
1040   }
1041   return result;
1042 }
1043 
1044 HeapWord* DefNewGeneration::par_allocate(size_t word_size,
1045                                          bool is_tlab) {
1046   HeapWord* res = eden()->par_allocate(word_size);
1047   if (CMSEdenChunksRecordAlways && _old_gen != NULL) {
1048     _old_gen->sample_eden_chunk();
1049   }
1050   return res;
1051 }
1052 
1053 size_t DefNewGeneration::tlab_capacity() const {
1054   return eden()->capacity();
1055 }
1056 
1057 size_t DefNewGeneration::tlab_used() const {
1058   return eden()->used();
1059 }
1060 
1061 size_t DefNewGeneration::unsafe_max_tlab_alloc() const {
1062   return unsafe_max_alloc_nogc();
1063 }