1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/adjoiningGenerations.hpp"
  27 #include "gc_implementation/parallelScavenge/adjoiningVirtualSpaces.hpp"
  28 #include "gc_implementation/parallelScavenge/cardTableExtension.hpp"
  29 #include "gc_implementation/parallelScavenge/gcTaskManager.hpp"
  30 #include "gc_implementation/parallelScavenge/generationSizer.hpp"
  31 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.inline.hpp"
  32 #include "gc_implementation/parallelScavenge/psAdaptiveSizePolicy.hpp"
  33 #include "gc_implementation/parallelScavenge/psMarkSweep.hpp"
  34 #include "gc_implementation/parallelScavenge/psParallelCompact.hpp"
  35 #include "gc_implementation/parallelScavenge/psPromotionManager.hpp"
  36 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  37 #include "gc_implementation/parallelScavenge/vmPSOperations.hpp"
  38 #include "gc_implementation/shared/gcHeapSummary.hpp"
  39 #include "gc_implementation/shared/gcWhen.hpp"
  40 #include "memory/gcLocker.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/handles.inline.hpp"
  43 #include "runtime/java.hpp"
  44 #include "runtime/vmThread.hpp"
  45 #include "services/memTracker.hpp"
  46 #include "utilities/vmError.hpp"
  47 
  48 PSYoungGen*  ParallelScavengeHeap::_young_gen = NULL;
  49 PSOldGen*    ParallelScavengeHeap::_old_gen = NULL;
  50 PSAdaptiveSizePolicy* ParallelScavengeHeap::_size_policy = NULL;
  51 PSGCAdaptivePolicyCounters* ParallelScavengeHeap::_gc_policy_counters = NULL;
  52 ParallelScavengeHeap* ParallelScavengeHeap::_psh = NULL;
  53 GCTaskManager* ParallelScavengeHeap::_gc_task_manager = NULL;
  54 
  55 jint ParallelScavengeHeap::initialize() {
  56   CollectedHeap::pre_initialize();
  57 
  58   // Initialize collector policy
  59   _collector_policy = new GenerationSizer();
  60   _collector_policy->initialize_all();
  61 
  62   const size_t heap_size = _collector_policy->max_heap_byte_size();
  63 
  64   ReservedSpace heap_rs = Universe::reserve_heap(heap_size, _collector_policy->heap_alignment());
  65   MemTracker::record_virtual_memory_type((address)heap_rs.base(), mtJavaHeap);
  66 
  67   os::trace_page_sizes("ps main", _collector_policy->min_heap_byte_size(),
  68                        heap_size, generation_alignment(),
  69                        heap_rs.base(),
  70                        heap_rs.size());
  71   if (!heap_rs.is_reserved()) {
  72     vm_shutdown_during_initialization(
  73       "Could not reserve enough space for object heap");
  74     return JNI_ENOMEM;
  75   }
  76 
  77   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
  78 
  79   CardTableExtension* const barrier_set = new CardTableExtension(reserved_region());
  80   barrier_set->initialize();
  81   set_barrier_set(barrier_set);
  82 
  83   // Make up the generations
  84   // Calculate the maximum size that a generation can grow.  This
  85   // includes growth into the other generation.  Note that the
  86   // parameter _max_gen_size is kept as the maximum
  87   // size of the generation as the boundaries currently stand.
  88   // _max_gen_size is still used as that value.
  89   double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
  90   double max_gc_minor_pause_sec = ((double) MaxGCMinorPauseMillis)/1000.0;
  91 
  92   _gens = new AdjoiningGenerations(heap_rs, _collector_policy, generation_alignment());
  93 
  94   _old_gen = _gens->old_gen();
  95   _young_gen = _gens->young_gen();
  96 
  97   const size_t eden_capacity = _young_gen->eden_space()->capacity_in_bytes();
  98   const size_t old_capacity = _old_gen->capacity_in_bytes();
  99   const size_t initial_promo_size = MIN2(eden_capacity, old_capacity);
 100   _size_policy =
 101     new PSAdaptiveSizePolicy(eden_capacity,
 102                              initial_promo_size,
 103                              young_gen()->to_space()->capacity_in_bytes(),
 104                              _collector_policy->gen_alignment(),
 105                              max_gc_pause_sec,
 106                              max_gc_minor_pause_sec,
 107                              GCTimeRatio
 108                              );
 109 
 110   assert(!UseAdaptiveGCBoundary ||
 111     (old_gen()->virtual_space()->high_boundary() ==
 112      young_gen()->virtual_space()->low_boundary()),
 113     "Boundaries must meet");
 114   // initialize the policy counters - 2 collectors, 3 generations
 115   _gc_policy_counters =
 116     new PSGCAdaptivePolicyCounters("ParScav:MSC", 2, 3, _size_policy);
 117   _psh = this;
 118 
 119   // Set up the GCTaskManager
 120   _gc_task_manager = GCTaskManager::create(ParallelGCThreads);
 121 
 122   if (UseParallelOldGC && !PSParallelCompact::initialize()) {
 123     return JNI_ENOMEM;
 124   }
 125 
 126   return JNI_OK;
 127 }
 128 
 129 void ParallelScavengeHeap::post_initialize() {
 130   // Need to init the tenuring threshold
 131   PSScavenge::initialize();
 132   if (UseParallelOldGC) {
 133     PSParallelCompact::post_initialize();
 134   } else {
 135     PSMarkSweep::initialize();
 136   }
 137   PSPromotionManager::initialize();
 138 }
 139 
 140 void ParallelScavengeHeap::update_counters() {
 141   young_gen()->update_counters();
 142   old_gen()->update_counters();
 143   MetaspaceCounters::update_performance_counters();
 144   CompressedClassSpaceCounters::update_performance_counters();
 145 }
 146 
 147 size_t ParallelScavengeHeap::capacity() const {
 148   size_t value = young_gen()->capacity_in_bytes() + old_gen()->capacity_in_bytes();
 149   return value;
 150 }
 151 
 152 size_t ParallelScavengeHeap::used() const {
 153   size_t value = young_gen()->used_in_bytes() + old_gen()->used_in_bytes();
 154   return value;
 155 }
 156 
 157 bool ParallelScavengeHeap::is_maximal_no_gc() const {
 158   return old_gen()->is_maximal_no_gc() && young_gen()->is_maximal_no_gc();
 159 }
 160 
 161 
 162 size_t ParallelScavengeHeap::max_capacity() const {
 163   size_t estimated = reserved_region().byte_size();
 164   if (UseAdaptiveSizePolicy) {
 165     estimated -= _size_policy->max_survivor_size(young_gen()->max_size());
 166   } else {
 167     estimated -= young_gen()->to_space()->capacity_in_bytes();
 168   }
 169   return MAX2(estimated, capacity());
 170 }
 171 
 172 bool ParallelScavengeHeap::is_in(const void* p) const {
 173   if (young_gen()->is_in(p)) {
 174     return true;
 175   }
 176 
 177   if (old_gen()->is_in(p)) {
 178     return true;
 179   }
 180 
 181   return false;
 182 }
 183 
 184 bool ParallelScavengeHeap::is_in_reserved(const void* p) const {
 185   if (young_gen()->is_in_reserved(p)) {
 186     return true;
 187   }
 188 
 189   if (old_gen()->is_in_reserved(p)) {
 190     return true;
 191   }
 192 
 193   return false;
 194 }
 195 
 196 bool ParallelScavengeHeap::is_scavengable(const void* addr) {
 197   return is_in_young((oop)addr);
 198 }
 199 
 200 // There are two levels of allocation policy here.
 201 //
 202 // When an allocation request fails, the requesting thread must invoke a VM
 203 // operation, transfer control to the VM thread, and await the results of a
 204 // garbage collection. That is quite expensive, and we should avoid doing it
 205 // multiple times if possible.
 206 //
 207 // To accomplish this, we have a basic allocation policy, and also a
 208 // failed allocation policy.
 209 //
 210 // The basic allocation policy controls how you allocate memory without
 211 // attempting garbage collection. It is okay to grab locks and
 212 // expand the heap, if that can be done without coming to a safepoint.
 213 // It is likely that the basic allocation policy will not be very
 214 // aggressive.
 215 //
 216 // The failed allocation policy is invoked from the VM thread after
 217 // the basic allocation policy is unable to satisfy a mem_allocate
 218 // request. This policy needs to cover the entire range of collection,
 219 // heap expansion, and out-of-memory conditions. It should make every
 220 // attempt to allocate the requested memory.
 221 
 222 // Basic allocation policy. Should never be called at a safepoint, or
 223 // from the VM thread.
 224 //
 225 // This method must handle cases where many mem_allocate requests fail
 226 // simultaneously. When that happens, only one VM operation will succeed,
 227 // and the rest will not be executed. For that reason, this method loops
 228 // during failed allocation attempts. If the java heap becomes exhausted,
 229 // we rely on the size_policy object to force a bail out.
 230 HeapWord* ParallelScavengeHeap::mem_allocate(
 231                                      size_t size,
 232                                      bool* gc_overhead_limit_was_exceeded) {
 233   assert(!SafepointSynchronize::is_at_safepoint(), "should not be at safepoint");
 234   assert(Thread::current() != (Thread*)VMThread::vm_thread(), "should not be in vm thread");
 235   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 236 
 237   // In general gc_overhead_limit_was_exceeded should be false so
 238   // set it so here and reset it to true only if the gc time
 239   // limit is being exceeded as checked below.
 240   *gc_overhead_limit_was_exceeded = false;
 241 
 242   HeapWord* result = young_gen()->allocate(size);
 243 
 244   uint loop_count = 0;
 245   uint gc_count = 0;
 246   uint gclocker_stalled_count = 0;
 247 
 248   while (result == NULL) {
 249     // We don't want to have multiple collections for a single filled generation.
 250     // To prevent this, each thread tracks the total_collections() value, and if
 251     // the count has changed, does not do a new collection.
 252     //
 253     // The collection count must be read only while holding the heap lock. VM
 254     // operations also hold the heap lock during collections. There is a lock
 255     // contention case where thread A blocks waiting on the Heap_lock, while
 256     // thread B is holding it doing a collection. When thread A gets the lock,
 257     // the collection count has already changed. To prevent duplicate collections,
 258     // The policy MUST attempt allocations during the same period it reads the
 259     // total_collections() value!
 260     {
 261       MutexLocker ml(Heap_lock);
 262       gc_count = Universe::heap()->total_collections();
 263 
 264       result = young_gen()->allocate(size);
 265       if (result != NULL) {
 266         return result;
 267       }
 268 
 269       // If certain conditions hold, try allocating from the old gen.
 270       result = mem_allocate_old_gen(size);
 271       if (result != NULL) {
 272         return result;
 273       }
 274 
 275       if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 276         return NULL;
 277       }
 278 
 279       // Failed to allocate without a gc.
 280       if (GC_locker::is_active_and_needs_gc()) {
 281         // If this thread is not in a jni critical section, we stall
 282         // the requestor until the critical section has cleared and
 283         // GC allowed. When the critical section clears, a GC is
 284         // initiated by the last thread exiting the critical section; so
 285         // we retry the allocation sequence from the beginning of the loop,
 286         // rather than causing more, now probably unnecessary, GC attempts.
 287         JavaThread* jthr = JavaThread::current();
 288         if (!jthr->in_critical()) {
 289           MutexUnlocker mul(Heap_lock);
 290           GC_locker::stall_until_clear();
 291           gclocker_stalled_count += 1;
 292           continue;
 293         } else {
 294           if (CheckJNICalls) {
 295             fatal("Possible deadlock due to allocating while"
 296                   " in jni critical section");
 297           }
 298           return NULL;
 299         }
 300       }
 301     }
 302 
 303     if (result == NULL) {
 304       // Generate a VM operation
 305       VM_ParallelGCFailedAllocation op(size, gc_count);
 306       VMThread::execute(&op);
 307 
 308       // Did the VM operation execute? If so, return the result directly.
 309       // This prevents us from looping until time out on requests that can
 310       // not be satisfied.
 311       if (op.prologue_succeeded()) {
 312         assert(Universe::heap()->is_in_or_null(op.result()),
 313           "result not in heap");
 314 
 315         // If GC was locked out during VM operation then retry allocation
 316         // and/or stall as necessary.
 317         if (op.gc_locked()) {
 318           assert(op.result() == NULL, "must be NULL if gc_locked() is true");
 319           continue;  // retry and/or stall as necessary
 320         }
 321 
 322         // Exit the loop if the gc time limit has been exceeded.
 323         // The allocation must have failed above ("result" guarding
 324         // this path is NULL) and the most recent collection has exceeded the
 325         // gc overhead limit (although enough may have been collected to
 326         // satisfy the allocation).  Exit the loop so that an out-of-memory
 327         // will be thrown (return a NULL ignoring the contents of
 328         // op.result()),
 329         // but clear gc_overhead_limit_exceeded so that the next collection
 330         // starts with a clean slate (i.e., forgets about previous overhead
 331         // excesses).  Fill op.result() with a filler object so that the
 332         // heap remains parsable.
 333         const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 334         const bool softrefs_clear = collector_policy()->all_soft_refs_clear();
 335 
 336         if (limit_exceeded && softrefs_clear) {
 337           *gc_overhead_limit_was_exceeded = true;
 338           size_policy()->set_gc_overhead_limit_exceeded(false);
 339           if (PrintGCDetails && Verbose) {
 340             gclog_or_tty->print_cr("ParallelScavengeHeap::mem_allocate: "
 341               "return NULL because gc_overhead_limit_exceeded is set");
 342           }
 343           if (op.result() != NULL) {
 344             CollectedHeap::fill_with_object(op.result(), size);
 345           }
 346           return NULL;
 347         }
 348 
 349         return op.result();
 350       }
 351     }
 352 
 353     // The policy object will prevent us from looping forever. If the
 354     // time spent in gc crosses a threshold, we will bail out.
 355     loop_count++;
 356     if ((result == NULL) && (QueuedAllocationWarningCount > 0) &&
 357         (loop_count % QueuedAllocationWarningCount == 0)) {
 358       warning("ParallelScavengeHeap::mem_allocate retries %d times \n\t"
 359               " size=" SIZE_FORMAT, loop_count, size);
 360     }
 361   }
 362 
 363   return result;
 364 }
 365 
 366 // A "death march" is a series of ultra-slow allocations in which a full gc is
 367 // done before each allocation, and after the full gc the allocation still
 368 // cannot be satisfied from the young gen.  This routine detects that condition;
 369 // it should be called after a full gc has been done and the allocation
 370 // attempted from the young gen. The parameter 'addr' should be the result of
 371 // that young gen allocation attempt.
 372 void
 373 ParallelScavengeHeap::death_march_check(HeapWord* const addr, size_t size) {
 374   if (addr != NULL) {
 375     _death_march_count = 0;  // death march has ended
 376   } else if (_death_march_count == 0) {
 377     if (should_alloc_in_eden(size)) {
 378       _death_march_count = 1;    // death march has started
 379     }
 380   }
 381 }
 382 
 383 HeapWord* ParallelScavengeHeap::mem_allocate_old_gen(size_t size) {
 384   if (!should_alloc_in_eden(size) || GC_locker::is_active_and_needs_gc()) {
 385     // Size is too big for eden, or gc is locked out.
 386     return old_gen()->allocate(size);
 387   }
 388 
 389   // If a "death march" is in progress, allocate from the old gen a limited
 390   // number of times before doing a GC.
 391   if (_death_march_count > 0) {
 392     if (_death_march_count < 64) {
 393       ++_death_march_count;
 394       return old_gen()->allocate(size);
 395     } else {
 396       _death_march_count = 0;
 397     }
 398   }
 399   return NULL;
 400 }
 401 
 402 void ParallelScavengeHeap::do_full_collection(bool clear_all_soft_refs) {
 403   if (UseParallelOldGC) {
 404     // The do_full_collection() parameter clear_all_soft_refs
 405     // is interpreted here as maximum_compaction which will
 406     // cause SoftRefs to be cleared.
 407     bool maximum_compaction = clear_all_soft_refs;
 408     PSParallelCompact::invoke(maximum_compaction);
 409   } else {
 410     PSMarkSweep::invoke(clear_all_soft_refs);
 411   }
 412 }
 413 
 414 // Failed allocation policy. Must be called from the VM thread, and
 415 // only at a safepoint! Note that this method has policy for allocation
 416 // flow, and NOT collection policy. So we do not check for gc collection
 417 // time over limit here, that is the responsibility of the heap specific
 418 // collection methods. This method decides where to attempt allocations,
 419 // and when to attempt collections, but no collection specific policy.
 420 HeapWord* ParallelScavengeHeap::failed_mem_allocate(size_t size) {
 421   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 422   assert(Thread::current() == (Thread*)VMThread::vm_thread(), "should be in vm thread");
 423   assert(!Universe::heap()->is_gc_active(), "not reentrant");
 424   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 425 
 426   // We assume that allocation in eden will fail unless we collect.
 427 
 428   // First level allocation failure, scavenge and allocate in young gen.
 429   GCCauseSetter gccs(this, GCCause::_allocation_failure);
 430   const bool invoked_full_gc = PSScavenge::invoke();
 431   HeapWord* result = young_gen()->allocate(size);
 432 
 433   // Second level allocation failure.
 434   //   Mark sweep and allocate in young generation.
 435   if (result == NULL && !invoked_full_gc) {
 436     do_full_collection(false);
 437     result = young_gen()->allocate(size);
 438   }
 439 
 440   death_march_check(result, size);
 441 
 442   // Third level allocation failure.
 443   //   After mark sweep and young generation allocation failure,
 444   //   allocate in old generation.
 445   if (result == NULL) {
 446     result = old_gen()->allocate(size);
 447   }
 448 
 449   // Fourth level allocation failure. We're running out of memory.
 450   //   More complete mark sweep and allocate in young generation.
 451   if (result == NULL) {
 452     do_full_collection(true);
 453     result = young_gen()->allocate(size);
 454   }
 455 
 456   // Fifth level allocation failure.
 457   //   After more complete mark sweep, allocate in old generation.
 458   if (result == NULL) {
 459     result = old_gen()->allocate(size);
 460   }
 461 
 462   return result;
 463 }
 464 
 465 void ParallelScavengeHeap::ensure_parsability(bool retire_tlabs) {
 466   CollectedHeap::ensure_parsability(retire_tlabs);
 467   young_gen()->eden_space()->ensure_parsability();
 468 }
 469 
 470 size_t ParallelScavengeHeap::tlab_capacity(Thread* thr) const {
 471   return young_gen()->eden_space()->tlab_capacity(thr);
 472 }
 473 
 474 size_t ParallelScavengeHeap::tlab_used(Thread* thr) const {
 475   return young_gen()->eden_space()->tlab_used(thr);
 476 }
 477 
 478 size_t ParallelScavengeHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 479   return young_gen()->eden_space()->unsafe_max_tlab_alloc(thr);
 480 }
 481 
 482 HeapWord* ParallelScavengeHeap::allocate_new_tlab(size_t size) {
 483   return young_gen()->allocate(size);
 484 }
 485 
 486 void ParallelScavengeHeap::accumulate_statistics_all_tlabs() {
 487   CollectedHeap::accumulate_statistics_all_tlabs();
 488 }
 489 
 490 void ParallelScavengeHeap::resize_all_tlabs() {
 491   CollectedHeap::resize_all_tlabs();
 492 }
 493 
 494 bool ParallelScavengeHeap::can_elide_initializing_store_barrier(oop new_obj) {
 495   // We don't need barriers for stores to objects in the
 496   // young gen and, a fortiori, for initializing stores to
 497   // objects therein.
 498   return is_in_young(new_obj);
 499 }
 500 
 501 // This method is used by System.gc() and JVMTI.
 502 void ParallelScavengeHeap::collect(GCCause::Cause cause) {
 503   assert(!Heap_lock->owned_by_self(),
 504     "this thread should not own the Heap_lock");
 505 
 506   uint gc_count      = 0;
 507   uint full_gc_count = 0;
 508   {
 509     MutexLocker ml(Heap_lock);
 510     // This value is guarded by the Heap_lock
 511     gc_count      = Universe::heap()->total_collections();
 512     full_gc_count = Universe::heap()->total_full_collections();
 513   }
 514 
 515   VM_ParallelGCSystemGC op(gc_count, full_gc_count, cause);
 516   VMThread::execute(&op);
 517 }
 518 
 519 void ParallelScavengeHeap::object_iterate(ObjectClosure* cl) {
 520   young_gen()->object_iterate(cl);
 521   old_gen()->object_iterate(cl);
 522 }
 523 
 524 
 525 HeapWord* ParallelScavengeHeap::block_start(const void* addr) const {
 526   if (young_gen()->is_in_reserved(addr)) {
 527     assert(young_gen()->is_in(addr),
 528            "addr should be in allocated part of young gen");
 529     // called from os::print_location by find or VMError
 530     if (Debugging || VMError::fatal_error_in_progress())  return NULL;
 531     Unimplemented();
 532   } else if (old_gen()->is_in_reserved(addr)) {
 533     assert(old_gen()->is_in(addr),
 534            "addr should be in allocated part of old gen");
 535     return old_gen()->start_array()->object_start((HeapWord*)addr);
 536   }
 537   return 0;
 538 }
 539 
 540 size_t ParallelScavengeHeap::block_size(const HeapWord* addr) const {
 541   return oop(addr)->size();
 542 }
 543 
 544 bool ParallelScavengeHeap::block_is_obj(const HeapWord* addr) const {
 545   return block_start(addr) == addr;
 546 }
 547 
 548 jlong ParallelScavengeHeap::millis_since_last_gc() {
 549   return UseParallelOldGC ?
 550     PSParallelCompact::millis_since_last_gc() :
 551     PSMarkSweep::millis_since_last_gc();
 552 }
 553 
 554 void ParallelScavengeHeap::prepare_for_verify() {
 555   ensure_parsability(false);  // no need to retire TLABs for verification
 556 }
 557 
 558 PSHeapSummary ParallelScavengeHeap::create_ps_heap_summary() {
 559   PSOldGen* old = old_gen();
 560   HeapWord* old_committed_end = (HeapWord*)old->virtual_space()->committed_high_addr();
 561   VirtualSpaceSummary old_summary(old->reserved().start(), old_committed_end, old->reserved().end());
 562   SpaceSummary old_space(old->reserved().start(), old_committed_end, old->used_in_bytes());
 563 
 564   PSYoungGen* young = young_gen();
 565   VirtualSpaceSummary young_summary(young->reserved().start(),
 566     (HeapWord*)young->virtual_space()->committed_high_addr(), young->reserved().end());
 567 
 568   MutableSpace* eden = young_gen()->eden_space();
 569   SpaceSummary eden_space(eden->bottom(), eden->end(), eden->used_in_bytes());
 570 
 571   MutableSpace* from = young_gen()->from_space();
 572   SpaceSummary from_space(from->bottom(), from->end(), from->used_in_bytes());
 573 
 574   MutableSpace* to = young_gen()->to_space();
 575   SpaceSummary to_space(to->bottom(), to->end(), to->used_in_bytes());
 576 
 577   VirtualSpaceSummary heap_summary = create_heap_space_summary();
 578   return PSHeapSummary(heap_summary, used(), old_summary, old_space, young_summary, eden_space, from_space, to_space);
 579 }
 580 
 581 void ParallelScavengeHeap::print_on(outputStream* st) const {
 582   young_gen()->print_on(st);
 583   old_gen()->print_on(st);
 584   MetaspaceAux::print_on(st);
 585 }
 586 
 587 void ParallelScavengeHeap::print_on_error(outputStream* st) const {
 588   this->CollectedHeap::print_on_error(st);
 589 
 590   if (UseParallelOldGC) {
 591     st->cr();
 592     PSParallelCompact::print_on_error(st);
 593   }
 594 }
 595 
 596 void ParallelScavengeHeap::gc_threads_do(ThreadClosure* tc) const {
 597   PSScavenge::gc_task_manager()->threads_do(tc);
 598 }
 599 
 600 void ParallelScavengeHeap::print_gc_threads_on(outputStream* st) const {
 601   PSScavenge::gc_task_manager()->print_threads_on(st);
 602 }
 603 
 604 void ParallelScavengeHeap::print_tracing_info() const {
 605   if (TraceYoungGenTime) {
 606     double time = PSScavenge::accumulated_time()->seconds();
 607     tty->print_cr("[Accumulated GC generation 0 time %3.7f secs]", time);
 608   }
 609   if (TraceOldGenTime) {
 610     double time = UseParallelOldGC ? PSParallelCompact::accumulated_time()->seconds() : PSMarkSweep::accumulated_time()->seconds();
 611     tty->print_cr("[Accumulated GC generation 1 time %3.7f secs]", time);
 612   }
 613 }
 614 
 615 
 616 void ParallelScavengeHeap::verify(bool silent, VerifyOption option /* ignored */) {
 617   // Why do we need the total_collections()-filter below?
 618   if (total_collections() > 0) {
 619     if (!silent) {
 620       gclog_or_tty->print("tenured ");
 621     }
 622     old_gen()->verify();
 623 
 624     if (!silent) {
 625       gclog_or_tty->print("eden ");
 626     }
 627     young_gen()->verify();
 628   }
 629 }
 630 
 631 void ParallelScavengeHeap::print_heap_change(size_t prev_used) {
 632   if (PrintGCDetails && Verbose) {
 633     gclog_or_tty->print(" "  SIZE_FORMAT
 634                         "->" SIZE_FORMAT
 635                         "("  SIZE_FORMAT ")",
 636                         prev_used, used(), capacity());
 637   } else {
 638     gclog_or_tty->print(" "  SIZE_FORMAT "K"
 639                         "->" SIZE_FORMAT "K"
 640                         "("  SIZE_FORMAT "K)",
 641                         prev_used / K, used() / K, capacity() / K);
 642   }
 643 }
 644 
 645 void ParallelScavengeHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
 646   const PSHeapSummary& heap_summary = create_ps_heap_summary();
 647   gc_tracer->report_gc_heap_summary(when, heap_summary);
 648 
 649   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
 650   gc_tracer->report_metaspace_summary(when, metaspace_summary);
 651 }
 652 
 653 ParallelScavengeHeap* ParallelScavengeHeap::heap() {
 654   assert(_psh != NULL, "Uninitialized access to ParallelScavengeHeap::heap()");
 655   assert(_psh->kind() == CollectedHeap::ParallelScavengeHeap, "not a parallel scavenge heap");
 656   return _psh;
 657 }
 658 
 659 // Before delegating the resize to the young generation,
 660 // the reserved space for the young and old generations
 661 // may be changed to accommodate the desired resize.
 662 void ParallelScavengeHeap::resize_young_gen(size_t eden_size,
 663     size_t survivor_size) {
 664   if (UseAdaptiveGCBoundary) {
 665     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 666       size_policy()->reset_bytes_absorbed_from_eden();
 667       return;  // The generation changed size already.
 668     }
 669     gens()->adjust_boundary_for_young_gen_needs(eden_size, survivor_size);
 670   }
 671 
 672   // Delegate the resize to the generation.
 673   _young_gen->resize(eden_size, survivor_size);
 674 }
 675 
 676 // Before delegating the resize to the old generation,
 677 // the reserved space for the young and old generations
 678 // may be changed to accommodate the desired resize.
 679 void ParallelScavengeHeap::resize_old_gen(size_t desired_free_space) {
 680   if (UseAdaptiveGCBoundary) {
 681     if (size_policy()->bytes_absorbed_from_eden() != 0) {
 682       size_policy()->reset_bytes_absorbed_from_eden();
 683       return;  // The generation changed size already.
 684     }
 685     gens()->adjust_boundary_for_old_gen_needs(desired_free_space);
 686   }
 687 
 688   // Delegate the resize to the generation.
 689   _old_gen->resize(desired_free_space);
 690 }
 691 
 692 ParallelScavengeHeap::ParStrongRootsScope::ParStrongRootsScope() {
 693   // nothing particular
 694 }
 695 
 696 ParallelScavengeHeap::ParStrongRootsScope::~ParStrongRootsScope() {
 697   // nothing particular
 698 }
 699 
 700 #ifndef PRODUCT
 701 void ParallelScavengeHeap::record_gen_tops_before_GC() {
 702   if (ZapUnusedHeapArea) {
 703     young_gen()->record_spaces_top();
 704     old_gen()->record_spaces_top();
 705   }
 706 }
 707 
 708 void ParallelScavengeHeap::gen_mangle_unused_area() {
 709   if (ZapUnusedHeapArea) {
 710     young_gen()->eden_space()->mangle_unused_area();
 711     young_gen()->to_space()->mangle_unused_area();
 712     young_gen()->from_space()->mangle_unused_area();
 713     old_gen()->object_space()->mangle_unused_area();
 714   }
 715 }
 716 #endif