1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  27 #include "gc_implementation/parallelScavenge/psMarkSweepDecorator.hpp"
  28 #include "gc_implementation/parallelScavenge/psScavenge.hpp"
  29 #include "gc_implementation/parallelScavenge/psYoungGen.hpp"
  30 #include "gc_implementation/shared/gcUtil.hpp"
  31 #include "gc_implementation/shared/mutableNUMASpace.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "runtime/java.hpp"
  35 
  36 PSYoungGen::PSYoungGen(size_t        initial_size,
  37                        size_t        min_size,
  38                        size_t        max_size) :
  39   _init_gen_size(initial_size),
  40   _min_gen_size(min_size),
  41   _max_gen_size(max_size)
  42 {}
  43 
  44 void PSYoungGen::initialize_virtual_space(ReservedSpace rs, size_t alignment) {
  45   assert(_init_gen_size != 0, "Should have a finite size");
  46   _virtual_space = new PSVirtualSpace(rs, alignment);
  47   if (!virtual_space()->expand_by(_init_gen_size)) {
  48     vm_exit_during_initialization("Could not reserve enough space for "
  49                                   "object heap");
  50   }
  51 }
  52 
  53 void PSYoungGen::initialize(ReservedSpace rs, size_t alignment) {
  54   initialize_virtual_space(rs, alignment);
  55   initialize_work();
  56 }
  57 
  58 void PSYoungGen::initialize_work() {
  59 
  60   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
  61                         (HeapWord*)virtual_space()->high_boundary());
  62 
  63   MemRegion cmr((HeapWord*)virtual_space()->low(),
  64                 (HeapWord*)virtual_space()->high());
  65   Universe::heap()->barrier_set()->resize_covered_region(cmr);
  66 
  67   if (ZapUnusedHeapArea) {
  68     // Mangle newly committed space immediately because it
  69     // can be done here more simply that after the new
  70     // spaces have been computed.
  71     SpaceMangler::mangle_region(cmr);
  72   }
  73 
  74   if (UseNUMA) {
  75     _eden_space = new MutableNUMASpace(virtual_space()->alignment());
  76   } else {
  77     _eden_space = new MutableSpace(virtual_space()->alignment());
  78   }
  79   _from_space = new MutableSpace(virtual_space()->alignment());
  80   _to_space   = new MutableSpace(virtual_space()->alignment());
  81 
  82   if (_eden_space == NULL || _from_space == NULL || _to_space == NULL) {
  83     vm_exit_during_initialization("Could not allocate a young gen space");
  84   }
  85 
  86   // Allocate the mark sweep views of spaces
  87   _eden_mark_sweep =
  88       new PSMarkSweepDecorator(_eden_space, NULL, MarkSweepDeadRatio);
  89   _from_mark_sweep =
  90       new PSMarkSweepDecorator(_from_space, NULL, MarkSweepDeadRatio);
  91   _to_mark_sweep =
  92       new PSMarkSweepDecorator(_to_space, NULL, MarkSweepDeadRatio);
  93 
  94   if (_eden_mark_sweep == NULL ||
  95       _from_mark_sweep == NULL ||
  96       _to_mark_sweep == NULL) {
  97     vm_exit_during_initialization("Could not complete allocation"
  98                                   " of the young generation");
  99   }
 100 
 101   // Generation Counters - generation 0, 3 subspaces
 102   _gen_counters = new PSGenerationCounters("new", 0, 3, _min_gen_size,
 103                                            _max_gen_size, _virtual_space);
 104 
 105   // Compute maximum space sizes for performance counters
 106   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 107   size_t alignment = heap->space_alignment();
 108   size_t size = virtual_space()->reserved_size();
 109 
 110   size_t max_survivor_size;
 111   size_t max_eden_size;
 112 
 113   if (UseAdaptiveSizePolicy) {
 114     max_survivor_size = size / MinSurvivorRatio;
 115 
 116     // round the survivor space size down to the nearest alignment
 117     // and make sure its size is greater than 0.
 118     max_survivor_size = align_size_down(max_survivor_size, alignment);
 119     max_survivor_size = MAX2(max_survivor_size, alignment);
 120 
 121     // set the maximum size of eden to be the size of the young gen
 122     // less two times the minimum survivor size. The minimum survivor
 123     // size for UseAdaptiveSizePolicy is one alignment.
 124     max_eden_size = size - 2 * alignment;
 125   } else {
 126     max_survivor_size = size / InitialSurvivorRatio;
 127 
 128     // round the survivor space size down to the nearest alignment
 129     // and make sure its size is greater than 0.
 130     max_survivor_size = align_size_down(max_survivor_size, alignment);
 131     max_survivor_size = MAX2(max_survivor_size, alignment);
 132 
 133     // set the maximum size of eden to be the size of the young gen
 134     // less two times the survivor size when the generation is 100%
 135     // committed. The minimum survivor size for -UseAdaptiveSizePolicy
 136     // is dependent on the committed portion (current capacity) of the
 137     // generation - the less space committed, the smaller the survivor
 138     // space, possibly as small as an alignment. However, we are interested
 139     // in the case where the young generation is 100% committed, as this
 140     // is the point where eden reaches its maximum size. At this point,
 141     // the size of a survivor space is max_survivor_size.
 142     max_eden_size = size - 2 * max_survivor_size;
 143   }
 144 
 145   _eden_counters = new SpaceCounters("eden", 0, max_eden_size, _eden_space,
 146                                      _gen_counters);
 147   _from_counters = new SpaceCounters("s0", 1, max_survivor_size, _from_space,
 148                                      _gen_counters);
 149   _to_counters = new SpaceCounters("s1", 2, max_survivor_size, _to_space,
 150                                    _gen_counters);
 151 
 152   compute_initial_space_boundaries();
 153 }
 154 
 155 void PSYoungGen::compute_initial_space_boundaries() {
 156   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 157   assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 158 
 159   // Compute sizes
 160   size_t alignment = heap->space_alignment();
 161   size_t size = virtual_space()->committed_size();
 162   assert(size >= 3 * alignment, "Young space is not large enough for eden + 2 survivors");
 163 
 164   size_t survivor_size = size / InitialSurvivorRatio;
 165   survivor_size = align_size_down(survivor_size, alignment);
 166   // ... but never less than an alignment
 167   survivor_size = MAX2(survivor_size, alignment);
 168 
 169   // Young generation is eden + 2 survivor spaces
 170   size_t eden_size = size - (2 * survivor_size);
 171 
 172   // Now go ahead and set 'em.
 173   set_space_boundaries(eden_size, survivor_size);
 174   space_invariants();
 175 
 176   if (UsePerfData) {
 177     _eden_counters->update_capacity();
 178     _from_counters->update_capacity();
 179     _to_counters->update_capacity();
 180   }
 181 }
 182 
 183 void PSYoungGen::set_space_boundaries(size_t eden_size, size_t survivor_size) {
 184   assert(eden_size < virtual_space()->committed_size(), "just checking");
 185   assert(eden_size > 0  && survivor_size > 0, "just checking");
 186 
 187   // Initial layout is Eden, to, from. After swapping survivor spaces,
 188   // that leaves us with Eden, from, to, which is step one in our two
 189   // step resize-with-live-data procedure.
 190   char *eden_start = virtual_space()->low();
 191   char *to_start   = eden_start + eden_size;
 192   char *from_start = to_start   + survivor_size;
 193   char *from_end   = from_start + survivor_size;
 194 
 195   assert(from_end == virtual_space()->high(), "just checking");
 196   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 197   assert(is_object_aligned((intptr_t)to_start),   "checking alignment");
 198   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 199 
 200   MemRegion eden_mr((HeapWord*)eden_start, (HeapWord*)to_start);
 201   MemRegion to_mr  ((HeapWord*)to_start, (HeapWord*)from_start);
 202   MemRegion from_mr((HeapWord*)from_start, (HeapWord*)from_end);
 203 
 204   eden_space()->initialize(eden_mr, true, ZapUnusedHeapArea);
 205     to_space()->initialize(to_mr  , true, ZapUnusedHeapArea);
 206   from_space()->initialize(from_mr, true, ZapUnusedHeapArea);
 207 }
 208 
 209 #ifndef PRODUCT
 210 void PSYoungGen::space_invariants() {
 211   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 212   const size_t alignment = heap->space_alignment();
 213 
 214   // Currently, our eden size cannot shrink to zero
 215   guarantee(eden_space()->capacity_in_bytes() >= alignment, "eden too small");
 216   guarantee(from_space()->capacity_in_bytes() >= alignment, "from too small");
 217   guarantee(to_space()->capacity_in_bytes() >= alignment, "to too small");
 218 
 219   // Relationship of spaces to each other
 220   char* eden_start = (char*)eden_space()->bottom();
 221   char* eden_end   = (char*)eden_space()->end();
 222   char* from_start = (char*)from_space()->bottom();
 223   char* from_end   = (char*)from_space()->end();
 224   char* to_start   = (char*)to_space()->bottom();
 225   char* to_end     = (char*)to_space()->end();
 226 
 227   guarantee(eden_start >= virtual_space()->low(), "eden bottom");
 228   guarantee(eden_start < eden_end, "eden space consistency");
 229   guarantee(from_start < from_end, "from space consistency");
 230   guarantee(to_start < to_end, "to space consistency");
 231 
 232   // Check whether from space is below to space
 233   if (from_start < to_start) {
 234     // Eden, from, to
 235     guarantee(eden_end <= from_start, "eden/from boundary");
 236     guarantee(from_end <= to_start,   "from/to boundary");
 237     guarantee(to_end <= virtual_space()->high(), "to end");
 238   } else {
 239     // Eden, to, from
 240     guarantee(eden_end <= to_start, "eden/to boundary");
 241     guarantee(to_end <= from_start, "to/from boundary");
 242     guarantee(from_end <= virtual_space()->high(), "from end");
 243   }
 244 
 245   // More checks that the virtual space is consistent with the spaces
 246   assert(virtual_space()->committed_size() >=
 247     (eden_space()->capacity_in_bytes() +
 248      to_space()->capacity_in_bytes() +
 249      from_space()->capacity_in_bytes()), "Committed size is inconsistent");
 250   assert(virtual_space()->committed_size() <= virtual_space()->reserved_size(),
 251     "Space invariant");
 252   char* eden_top = (char*)eden_space()->top();
 253   char* from_top = (char*)from_space()->top();
 254   char* to_top = (char*)to_space()->top();
 255   assert(eden_top <= virtual_space()->high(), "eden top");
 256   assert(from_top <= virtual_space()->high(), "from top");
 257   assert(to_top <= virtual_space()->high(), "to top");
 258 
 259   virtual_space()->verify();
 260 }
 261 #endif
 262 
 263 void PSYoungGen::resize(size_t eden_size, size_t survivor_size) {
 264   // Resize the generation if needed. If the generation resize
 265   // reports false, do not attempt to resize the spaces.
 266   if (resize_generation(eden_size, survivor_size)) {
 267     // Then we lay out the spaces inside the generation
 268     resize_spaces(eden_size, survivor_size);
 269 
 270     space_invariants();
 271 
 272     if (PrintAdaptiveSizePolicy && Verbose) {
 273       gclog_or_tty->print_cr("Young generation size: "
 274         "desired eden: " SIZE_FORMAT " survivor: " SIZE_FORMAT
 275         " used: " SIZE_FORMAT " capacity: " SIZE_FORMAT
 276         " gen limits: " SIZE_FORMAT " / " SIZE_FORMAT,
 277         eden_size, survivor_size, used_in_bytes(), capacity_in_bytes(),
 278         _max_gen_size, min_gen_size());
 279     }
 280   }
 281 }
 282 
 283 
 284 bool PSYoungGen::resize_generation(size_t eden_size, size_t survivor_size) {
 285   const size_t alignment = virtual_space()->alignment();
 286   size_t orig_size = virtual_space()->committed_size();
 287   bool size_changed = false;
 288 
 289   // There used to be this guarantee there.
 290   // guarantee ((eden_size + 2*survivor_size)  <= _max_gen_size, "incorrect input arguments");
 291   // Code below forces this requirement.  In addition the desired eden
 292   // size and desired survivor sizes are desired goals and may
 293   // exceed the total generation size.
 294 
 295   assert(min_gen_size() <= orig_size && orig_size <= max_size(), "just checking");
 296 
 297   // Adjust new generation size
 298   const size_t eden_plus_survivors =
 299           align_size_up(eden_size + 2 * survivor_size, alignment);
 300   size_t desired_size = MAX2(MIN2(eden_plus_survivors, max_size()),
 301                              min_gen_size());
 302   assert(desired_size <= max_size(), "just checking");
 303 
 304   if (desired_size > orig_size) {
 305     // Grow the generation
 306     size_t change = desired_size - orig_size;
 307     assert(change % alignment == 0, "just checking");
 308     HeapWord* prev_high = (HeapWord*) virtual_space()->high();
 309     if (!virtual_space()->expand_by(change)) {
 310       return false; // Error if we fail to resize!
 311     }
 312     if (ZapUnusedHeapArea) {
 313       // Mangle newly committed space immediately because it
 314       // can be done here more simply that after the new
 315       // spaces have been computed.
 316       HeapWord* new_high = (HeapWord*) virtual_space()->high();
 317       MemRegion mangle_region(prev_high, new_high);
 318       SpaceMangler::mangle_region(mangle_region);
 319     }
 320     size_changed = true;
 321   } else if (desired_size < orig_size) {
 322     size_t desired_change = orig_size - desired_size;
 323     assert(desired_change % alignment == 0, "just checking");
 324 
 325     desired_change = limit_gen_shrink(desired_change);
 326 
 327     if (desired_change > 0) {
 328       virtual_space()->shrink_by(desired_change);
 329       reset_survivors_after_shrink();
 330 
 331       size_changed = true;
 332     }
 333   } else {
 334     if (Verbose && PrintGC) {
 335       if (orig_size == gen_size_limit()) {
 336         gclog_or_tty->print_cr("PSYoung generation size at maximum: "
 337           SIZE_FORMAT "K", orig_size/K);
 338       } else if (orig_size == min_gen_size()) {
 339         gclog_or_tty->print_cr("PSYoung generation size at minium: "
 340           SIZE_FORMAT "K", orig_size/K);
 341       }
 342     }
 343   }
 344 
 345   if (size_changed) {
 346     post_resize();
 347 
 348     if (Verbose && PrintGC) {
 349       size_t current_size  = virtual_space()->committed_size();
 350       gclog_or_tty->print_cr("PSYoung generation size changed: "
 351                              SIZE_FORMAT "K->" SIZE_FORMAT "K",
 352                              orig_size/K, current_size/K);
 353     }
 354   }
 355 
 356   guarantee(eden_plus_survivors <= virtual_space()->committed_size() ||
 357             virtual_space()->committed_size() == max_size(), "Sanity");
 358 
 359   return true;
 360 }
 361 
 362 #ifndef PRODUCT
 363 // In the numa case eden is not mangled so a survivor space
 364 // moving into a region previously occupied by a survivor
 365 // may find an unmangled region.  Also in the PS case eden
 366 // to-space and from-space may not touch (i.e., there may be
 367 // gaps between them due to movement while resizing the
 368 // spaces).  Those gaps must be mangled.
 369 void PSYoungGen::mangle_survivors(MutableSpace* s1,
 370                                   MemRegion s1MR,
 371                                   MutableSpace* s2,
 372                                   MemRegion s2MR) {
 373   // Check eden and gap between eden and from-space, in deciding
 374   // what to mangle in from-space.  Check the gap between from-space
 375   // and to-space when deciding what to mangle.
 376   //
 377   //      +--------+   +----+    +---+
 378   //      | eden   |   |s1  |    |s2 |
 379   //      +--------+   +----+    +---+
 380   //                 +-------+ +-----+
 381   //                 |s1MR   | |s2MR |
 382   //                 +-------+ +-----+
 383   // All of survivor-space is properly mangled so find the
 384   // upper bound on the mangling for any portion above current s1.
 385   HeapWord* delta_end = MIN2(s1->bottom(), s1MR.end());
 386   MemRegion delta1_left;
 387   if (s1MR.start() < delta_end) {
 388     delta1_left = MemRegion(s1MR.start(), delta_end);
 389     s1->mangle_region(delta1_left);
 390   }
 391   // Find any portion to the right of the current s1.
 392   HeapWord* delta_start = MAX2(s1->end(), s1MR.start());
 393   MemRegion delta1_right;
 394   if (delta_start < s1MR.end()) {
 395     delta1_right = MemRegion(delta_start, s1MR.end());
 396     s1->mangle_region(delta1_right);
 397   }
 398 
 399   // Similarly for the second survivor space except that
 400   // any of the new region that overlaps with the current
 401   // region of the first survivor space has already been
 402   // mangled.
 403   delta_end = MIN2(s2->bottom(), s2MR.end());
 404   delta_start = MAX2(s2MR.start(), s1->end());
 405   MemRegion delta2_left;
 406   if (s2MR.start() < delta_end) {
 407     delta2_left = MemRegion(s2MR.start(), delta_end);
 408     s2->mangle_region(delta2_left);
 409   }
 410   delta_start = MAX2(s2->end(), s2MR.start());
 411   MemRegion delta2_right;
 412   if (delta_start < s2MR.end()) {
 413     s2->mangle_region(delta2_right);
 414   }
 415 
 416   if (TraceZapUnusedHeapArea) {
 417     // s1
 418     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 419       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 420       p2i(s1->bottom()), p2i(s1->end()),
 421       p2i(s1MR.start()), p2i(s1MR.end()));
 422     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 423       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 424       p2i(delta1_left.start()), p2i(delta1_left.end()),
 425       p2i(delta1_right.start()), p2i(delta1_right.end()));
 426 
 427     // s2
 428     gclog_or_tty->print_cr("Current region: [" PTR_FORMAT ", " PTR_FORMAT ") "
 429       "New region: [" PTR_FORMAT ", " PTR_FORMAT ")",
 430       p2i(s2->bottom()), p2i(s2->end()),
 431       p2i(s2MR.start()), p2i(s2MR.end()));
 432     gclog_or_tty->print_cr("    Mangle before: [" PTR_FORMAT ", "
 433       PTR_FORMAT ")  Mangle after: [" PTR_FORMAT ", " PTR_FORMAT ")",
 434       p2i(delta2_left.start()), p2i(delta2_left.end()),
 435       p2i(delta2_right.start()), p2i(delta2_right.end()));
 436   }
 437 
 438 }
 439 #endif // NOT PRODUCT
 440 
 441 void PSYoungGen::resize_spaces(size_t requested_eden_size,
 442                                size_t requested_survivor_size) {
 443   assert(UseAdaptiveSizePolicy, "sanity check");
 444   assert(requested_eden_size > 0  && requested_survivor_size > 0,
 445          "just checking");
 446 
 447   // We require eden and to space to be empty
 448   if ((!eden_space()->is_empty()) || (!to_space()->is_empty())) {
 449     return;
 450   }
 451 
 452   if (PrintAdaptiveSizePolicy && Verbose) {
 453     gclog_or_tty->print_cr("PSYoungGen::resize_spaces(requested_eden_size: "
 454                   SIZE_FORMAT
 455                   ", requested_survivor_size: " SIZE_FORMAT ")",
 456                   requested_eden_size, requested_survivor_size);
 457     gclog_or_tty->print_cr("    eden: [" PTR_FORMAT ".." PTR_FORMAT ") "
 458                   SIZE_FORMAT,
 459                   p2i(eden_space()->bottom()),
 460                   p2i(eden_space()->end()),
 461                   pointer_delta(eden_space()->end(),
 462                                 eden_space()->bottom(),
 463                                 sizeof(char)));
 464     gclog_or_tty->print_cr("    from: [" PTR_FORMAT ".." PTR_FORMAT ") "
 465                   SIZE_FORMAT,
 466                   p2i(from_space()->bottom()),
 467                   p2i(from_space()->end()),
 468                   pointer_delta(from_space()->end(),
 469                                 from_space()->bottom(),
 470                                 sizeof(char)));
 471     gclog_or_tty->print_cr("      to: [" PTR_FORMAT ".." PTR_FORMAT ") "
 472                   SIZE_FORMAT,
 473                   p2i(to_space()->bottom()),
 474                   p2i(to_space()->end()),
 475                   pointer_delta(  to_space()->end(),
 476                                   to_space()->bottom(),
 477                                   sizeof(char)));
 478   }
 479 
 480   // There's nothing to do if the new sizes are the same as the current
 481   if (requested_survivor_size == to_space()->capacity_in_bytes() &&
 482       requested_survivor_size == from_space()->capacity_in_bytes() &&
 483       requested_eden_size == eden_space()->capacity_in_bytes()) {
 484     if (PrintAdaptiveSizePolicy && Verbose) {
 485       gclog_or_tty->print_cr("    capacities are the right sizes, returning");
 486     }
 487     return;
 488   }
 489 
 490   char* eden_start = (char*)eden_space()->bottom();
 491   char* eden_end   = (char*)eden_space()->end();
 492   char* from_start = (char*)from_space()->bottom();
 493   char* from_end   = (char*)from_space()->end();
 494   char* to_start   = (char*)to_space()->bottom();
 495   char* to_end     = (char*)to_space()->end();
 496 
 497   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 498   const size_t alignment = heap->space_alignment();
 499   const bool maintain_minimum =
 500     (requested_eden_size + 2 * requested_survivor_size) <= min_gen_size();
 501 
 502   bool eden_from_to_order = from_start < to_start;
 503   // Check whether from space is below to space
 504   if (eden_from_to_order) {
 505     // Eden, from, to
 506     eden_from_to_order = true;
 507     if (PrintAdaptiveSizePolicy && Verbose) {
 508       gclog_or_tty->print_cr("  Eden, from, to:");
 509     }
 510 
 511     // Set eden
 512     // "requested_eden_size" is a goal for the size of eden
 513     // and may not be attainable.  "eden_size" below is
 514     // calculated based on the location of from-space and
 515     // the goal for the size of eden.  from-space is
 516     // fixed in place because it contains live data.
 517     // The calculation is done this way to avoid 32bit
 518     // overflow (i.e., eden_start + requested_eden_size
 519     // may too large for representation in 32bits).
 520     size_t eden_size;
 521     if (maintain_minimum) {
 522       // Only make eden larger than the requested size if
 523       // the minimum size of the generation has to be maintained.
 524       // This could be done in general but policy at a higher
 525       // level is determining a requested size for eden and that
 526       // should be honored unless there is a fundamental reason.
 527       eden_size = pointer_delta(from_start,
 528                                 eden_start,
 529                                 sizeof(char));
 530     } else {
 531       eden_size = MIN2(requested_eden_size,
 532                        pointer_delta(from_start, eden_start, sizeof(char)));
 533     }
 534 
 535     eden_end = eden_start + eden_size;
 536     assert(eden_end >= eden_start, "addition overflowed");
 537 
 538     // To may resize into from space as long as it is clear of live data.
 539     // From space must remain page aligned, though, so we need to do some
 540     // extra calculations.
 541 
 542     // First calculate an optimal to-space
 543     to_end   = (char*)virtual_space()->high();
 544     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 545                                     sizeof(char));
 546 
 547     // Does the optimal to-space overlap from-space?
 548     if (to_start < (char*)from_space()->end()) {
 549       assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 550 
 551       // Calculate the minimum offset possible for from_end
 552       size_t from_size = pointer_delta(from_space()->top(), from_start, sizeof(char));
 553 
 554       // Should we be in this method if from_space is empty? Why not the set_space method? FIX ME!
 555       if (from_size == 0) {
 556         from_size = alignment;
 557       } else {
 558         from_size = align_size_up(from_size, alignment);
 559       }
 560 
 561       from_end = from_start + from_size;
 562       assert(from_end > from_start, "addition overflow or from_size problem");
 563 
 564       guarantee(from_end <= (char*)from_space()->end(), "from_end moved to the right");
 565 
 566       // Now update to_start with the new from_end
 567       to_start = MAX2(from_end, to_start);
 568     }
 569 
 570     guarantee(to_start != to_end, "to space is zero sized");
 571 
 572     if (PrintAdaptiveSizePolicy && Verbose) {
 573       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 574                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 575                     p2i(eden_start),
 576                     p2i(eden_end),
 577                     pointer_delta(eden_end, eden_start, sizeof(char)));
 578       gclog_or_tty->print_cr("    [from_start .. from_end): "
 579                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 580                     p2i(from_start),
 581                     p2i(from_end),
 582                     pointer_delta(from_end, from_start, sizeof(char)));
 583       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 584                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 585                     p2i(to_start),
 586                     p2i(to_end),
 587                     pointer_delta(  to_end,   to_start, sizeof(char)));
 588     }
 589   } else {
 590     // Eden, to, from
 591     if (PrintAdaptiveSizePolicy && Verbose) {
 592       gclog_or_tty->print_cr("  Eden, to, from:");
 593     }
 594 
 595     // To space gets priority over eden resizing. Note that we position
 596     // to space as if we were able to resize from space, even though from
 597     // space is not modified.
 598     // Giving eden priority was tried and gave poorer performance.
 599     to_end   = (char*)pointer_delta(virtual_space()->high(),
 600                                     (char*)requested_survivor_size,
 601                                     sizeof(char));
 602     to_end   = MIN2(to_end, from_start);
 603     to_start = (char*)pointer_delta(to_end, (char*)requested_survivor_size,
 604                                     sizeof(char));
 605     // if the space sizes are to be increased by several times then
 606     // 'to_start' will point beyond the young generation. In this case
 607     // 'to_start' should be adjusted.
 608     to_start = MAX2(to_start, eden_start + alignment);
 609 
 610     // Compute how big eden can be, then adjust end.
 611     // See  comments above on calculating eden_end.
 612     size_t eden_size;
 613     if (maintain_minimum) {
 614       eden_size = pointer_delta(to_start, eden_start, sizeof(char));
 615     } else {
 616       eden_size = MIN2(requested_eden_size,
 617                        pointer_delta(to_start, eden_start, sizeof(char)));
 618     }
 619     eden_end = eden_start + eden_size;
 620     assert(eden_end >= eden_start, "addition overflowed");
 621 
 622     // Could choose to not let eden shrink
 623     // to_start = MAX2(to_start, eden_end);
 624 
 625     // Don't let eden shrink down to 0 or less.
 626     eden_end = MAX2(eden_end, eden_start + alignment);
 627     to_start = MAX2(to_start, eden_end);
 628 
 629     if (PrintAdaptiveSizePolicy && Verbose) {
 630       gclog_or_tty->print_cr("    [eden_start .. eden_end): "
 631                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 632                     p2i(eden_start),
 633                     p2i(eden_end),
 634                     pointer_delta(eden_end, eden_start, sizeof(char)));
 635       gclog_or_tty->print_cr("    [  to_start ..   to_end): "
 636                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 637                     p2i(to_start),
 638                     p2i(to_end),
 639                     pointer_delta(  to_end,   to_start, sizeof(char)));
 640       gclog_or_tty->print_cr("    [from_start .. from_end): "
 641                     "[" PTR_FORMAT " .. " PTR_FORMAT ") " SIZE_FORMAT,
 642                     p2i(from_start),
 643                     p2i(from_end),
 644                     pointer_delta(from_end, from_start, sizeof(char)));
 645     }
 646   }
 647 
 648 
 649   guarantee((HeapWord*)from_start <= from_space()->bottom(),
 650             "from start moved to the right");
 651   guarantee((HeapWord*)from_end >= from_space()->top(),
 652             "from end moved into live data");
 653   assert(is_object_aligned((intptr_t)eden_start), "checking alignment");
 654   assert(is_object_aligned((intptr_t)from_start), "checking alignment");
 655   assert(is_object_aligned((intptr_t)to_start), "checking alignment");
 656 
 657   MemRegion edenMR((HeapWord*)eden_start, (HeapWord*)eden_end);
 658   MemRegion toMR  ((HeapWord*)to_start,   (HeapWord*)to_end);
 659   MemRegion fromMR((HeapWord*)from_start, (HeapWord*)from_end);
 660 
 661   // Let's make sure the call to initialize doesn't reset "top"!
 662   HeapWord* old_from_top = from_space()->top();
 663 
 664   // For PrintAdaptiveSizePolicy block  below
 665   size_t old_from = from_space()->capacity_in_bytes();
 666   size_t old_to   = to_space()->capacity_in_bytes();
 667 
 668   if (ZapUnusedHeapArea) {
 669     // NUMA is a special case because a numa space is not mangled
 670     // in order to not prematurely bind its address to memory to
 671     // the wrong memory (i.e., don't want the GC thread to first
 672     // touch the memory).  The survivor spaces are not numa
 673     // spaces and are mangled.
 674     if (UseNUMA) {
 675       if (eden_from_to_order) {
 676         mangle_survivors(from_space(), fromMR, to_space(), toMR);
 677       } else {
 678         mangle_survivors(to_space(), toMR, from_space(), fromMR);
 679       }
 680     }
 681 
 682     // If not mangling the spaces, do some checking to verify that
 683     // the spaces are already mangled.
 684     // The spaces should be correctly mangled at this point so
 685     // do some checking here. Note that they are not being mangled
 686     // in the calls to initialize().
 687     // Must check mangling before the spaces are reshaped.  Otherwise,
 688     // the bottom or end of one space may have moved into an area
 689     // covered by another space and a failure of the check may
 690     // not correctly indicate which space is not properly mangled.
 691     HeapWord* limit = (HeapWord*) virtual_space()->high();
 692     eden_space()->check_mangled_unused_area(limit);
 693     from_space()->check_mangled_unused_area(limit);
 694       to_space()->check_mangled_unused_area(limit);
 695   }
 696   // When an existing space is being initialized, it is not
 697   // mangled because the space has been previously mangled.
 698   eden_space()->initialize(edenMR,
 699                            SpaceDecorator::Clear,
 700                            SpaceDecorator::DontMangle);
 701     to_space()->initialize(toMR,
 702                            SpaceDecorator::Clear,
 703                            SpaceDecorator::DontMangle);
 704   from_space()->initialize(fromMR,
 705                            SpaceDecorator::DontClear,
 706                            SpaceDecorator::DontMangle);
 707 
 708   assert(from_space()->top() == old_from_top, "from top changed!");
 709 
 710   if (PrintAdaptiveSizePolicy) {
 711     ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 712     assert(heap->kind() == CollectedHeap::ParallelScavengeHeap, "Sanity");
 713 
 714     gclog_or_tty->print("AdaptiveSizePolicy::survivor space sizes: "
 715                   "collection: %d "
 716                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") -> "
 717                   "(" SIZE_FORMAT ", " SIZE_FORMAT ") ",
 718                   heap->total_collections(),
 719                   old_from, old_to,
 720                   from_space()->capacity_in_bytes(),
 721                   to_space()->capacity_in_bytes());
 722     gclog_or_tty->cr();
 723   }
 724 }
 725 
 726 void PSYoungGen::swap_spaces() {
 727   MutableSpace* s    = from_space();
 728   _from_space        = to_space();
 729   _to_space          = s;
 730 
 731   // Now update the decorators.
 732   PSMarkSweepDecorator* md = from_mark_sweep();
 733   _from_mark_sweep           = to_mark_sweep();
 734   _to_mark_sweep             = md;
 735 
 736   assert(from_mark_sweep()->space() == from_space(), "Sanity");
 737   assert(to_mark_sweep()->space() == to_space(), "Sanity");
 738 }
 739 
 740 size_t PSYoungGen::capacity_in_bytes() const {
 741   return eden_space()->capacity_in_bytes()
 742        + from_space()->capacity_in_bytes();  // to_space() is only used during scavenge
 743 }
 744 
 745 
 746 size_t PSYoungGen::used_in_bytes() const {
 747   return eden_space()->used_in_bytes()
 748        + from_space()->used_in_bytes();      // to_space() is only used during scavenge
 749 }
 750 
 751 
 752 size_t PSYoungGen::free_in_bytes() const {
 753   return eden_space()->free_in_bytes()
 754        + from_space()->free_in_bytes();      // to_space() is only used during scavenge
 755 }
 756 
 757 size_t PSYoungGen::capacity_in_words() const {
 758   return eden_space()->capacity_in_words()
 759        + from_space()->capacity_in_words();  // to_space() is only used during scavenge
 760 }
 761 
 762 
 763 size_t PSYoungGen::used_in_words() const {
 764   return eden_space()->used_in_words()
 765        + from_space()->used_in_words();      // to_space() is only used during scavenge
 766 }
 767 
 768 
 769 size_t PSYoungGen::free_in_words() const {
 770   return eden_space()->free_in_words()
 771        + from_space()->free_in_words();      // to_space() is only used during scavenge
 772 }
 773 
 774 void PSYoungGen::object_iterate(ObjectClosure* blk) {
 775   eden_space()->object_iterate(blk);
 776   from_space()->object_iterate(blk);
 777   to_space()->object_iterate(blk);
 778 }
 779 
 780 void PSYoungGen::precompact() {
 781   eden_mark_sweep()->precompact();
 782   from_mark_sweep()->precompact();
 783   to_mark_sweep()->precompact();
 784 }
 785 
 786 void PSYoungGen::adjust_pointers() {
 787   eden_mark_sweep()->adjust_pointers();
 788   from_mark_sweep()->adjust_pointers();
 789   to_mark_sweep()->adjust_pointers();
 790 }
 791 
 792 void PSYoungGen::compact() {
 793   eden_mark_sweep()->compact(ZapUnusedHeapArea);
 794   from_mark_sweep()->compact(ZapUnusedHeapArea);
 795   // Mark sweep stores preserved markOops in to space, don't disturb!
 796   to_mark_sweep()->compact(false);
 797 }
 798 
 799 void PSYoungGen::print() const { print_on(tty); }
 800 void PSYoungGen::print_on(outputStream* st) const {
 801   st->print(" %-15s", "PSYoungGen");
 802   if (PrintGCDetails && Verbose) {
 803     st->print(" total " SIZE_FORMAT ", used " SIZE_FORMAT,
 804                capacity_in_bytes(), used_in_bytes());
 805   } else {
 806     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 807                capacity_in_bytes()/K, used_in_bytes()/K);
 808   }
 809   virtual_space()->print_space_boundaries_on(st);
 810   st->print("  eden"); eden_space()->print_on(st);
 811   st->print("  from"); from_space()->print_on(st);
 812   st->print("  to  "); to_space()->print_on(st);
 813 }
 814 
 815 // Note that a space is not printed before the [NAME:
 816 void PSYoungGen::print_used_change(size_t prev_used) const {
 817   gclog_or_tty->print("[%s:", name());
 818   gclog_or_tty->print(" "  SIZE_FORMAT "K"
 819                       "->" SIZE_FORMAT "K"
 820                       "("  SIZE_FORMAT "K)",
 821                       prev_used / K, used_in_bytes() / K,
 822                       capacity_in_bytes() / K);
 823   gclog_or_tty->print("]");
 824 }
 825 
 826 size_t PSYoungGen::available_for_expansion() {
 827   ShouldNotReachHere();
 828   return 0;
 829 }
 830 
 831 size_t PSYoungGen::available_for_contraction() {
 832   ShouldNotReachHere();
 833   return 0;
 834 }
 835 
 836 size_t PSYoungGen::available_to_min_gen() {
 837   assert(virtual_space()->committed_size() >= min_gen_size(), "Invariant");
 838   return virtual_space()->committed_size() - min_gen_size();
 839 }
 840 
 841 // This method assumes that from-space has live data and that
 842 // any shrinkage of the young gen is limited by location of
 843 // from-space.
 844 size_t PSYoungGen::available_to_live() {
 845   size_t delta_in_survivor = 0;
 846   ParallelScavengeHeap* heap = (ParallelScavengeHeap*)Universe::heap();
 847   const size_t space_alignment = heap->space_alignment();
 848   const size_t gen_alignment = heap->generation_alignment();
 849 
 850   MutableSpace* space_shrinking = NULL;
 851   if (from_space()->end() > to_space()->end()) {
 852     space_shrinking = from_space();
 853   } else {
 854     space_shrinking = to_space();
 855   }
 856 
 857   // Include any space that is committed but not included in
 858   // the survivor spaces.
 859   assert(((HeapWord*)virtual_space()->high()) >= space_shrinking->end(),
 860     "Survivor space beyond high end");
 861   size_t unused_committed = pointer_delta(virtual_space()->high(),
 862     space_shrinking->end(), sizeof(char));
 863 
 864   if (space_shrinking->is_empty()) {
 865     // Don't let the space shrink to 0
 866     assert(space_shrinking->capacity_in_bytes() >= space_alignment,
 867       "Space is too small");
 868     delta_in_survivor = space_shrinking->capacity_in_bytes() - space_alignment;
 869   } else {
 870     delta_in_survivor = pointer_delta(space_shrinking->end(),
 871                                       space_shrinking->top(),
 872                                       sizeof(char));
 873   }
 874 
 875   size_t delta_in_bytes = unused_committed + delta_in_survivor;
 876   delta_in_bytes = align_size_down(delta_in_bytes, gen_alignment);
 877   return delta_in_bytes;
 878 }
 879 
 880 // Return the number of bytes available for resizing down the young
 881 // generation.  This is the minimum of
 882 //      input "bytes"
 883 //      bytes to the minimum young gen size
 884 //      bytes to the size currently being used + some small extra
 885 size_t PSYoungGen::limit_gen_shrink(size_t bytes) {
 886   // Allow shrinkage into the current eden but keep eden large enough
 887   // to maintain the minimum young gen size
 888   bytes = MIN3(bytes, available_to_min_gen(), available_to_live());
 889   return align_size_down(bytes, virtual_space()->alignment());
 890 }
 891 
 892 void PSYoungGen::reset_after_change() {
 893   ShouldNotReachHere();
 894 }
 895 
 896 void PSYoungGen::reset_survivors_after_shrink() {
 897   _reserved = MemRegion((HeapWord*)virtual_space()->low_boundary(),
 898                         (HeapWord*)virtual_space()->high_boundary());
 899   PSScavenge::reference_processor()->set_span(_reserved);
 900 
 901   MutableSpace* space_shrinking = NULL;
 902   if (from_space()->end() > to_space()->end()) {
 903     space_shrinking = from_space();
 904   } else {
 905     space_shrinking = to_space();
 906   }
 907 
 908   HeapWord* new_end = (HeapWord*)virtual_space()->high();
 909   assert(new_end >= space_shrinking->bottom(), "Shrink was too large");
 910   // Was there a shrink of the survivor space?
 911   if (new_end < space_shrinking->end()) {
 912     MemRegion mr(space_shrinking->bottom(), new_end);
 913     space_shrinking->initialize(mr,
 914                                 SpaceDecorator::DontClear,
 915                                 SpaceDecorator::Mangle);
 916   }
 917 }
 918 
 919 // This method currently does not expect to expand into eden (i.e.,
 920 // the virtual space boundaries is expected to be consistent
 921 // with the eden boundaries..
 922 void PSYoungGen::post_resize() {
 923   assert_locked_or_safepoint(Heap_lock);
 924   assert((eden_space()->bottom() < to_space()->bottom()) &&
 925          (eden_space()->bottom() < from_space()->bottom()),
 926          "Eden is assumed to be below the survivor spaces");
 927 
 928   MemRegion cmr((HeapWord*)virtual_space()->low(),
 929                 (HeapWord*)virtual_space()->high());
 930   Universe::heap()->barrier_set()->resize_covered_region(cmr);
 931   space_invariants();
 932 }
 933 
 934 
 935 
 936 void PSYoungGen::update_counters() {
 937   if (UsePerfData) {
 938     _eden_counters->update_all();
 939     _from_counters->update_all();
 940     _to_counters->update_all();
 941     _gen_counters->update_all();
 942   }
 943 }
 944 
 945 void PSYoungGen::verify() {
 946   eden_space()->verify();
 947   from_space()->verify();
 948   to_space()->verify();
 949 }
 950 
 951 #ifndef PRODUCT
 952 void PSYoungGen::record_spaces_top() {
 953   assert(ZapUnusedHeapArea, "Not mangling unused space");
 954   eden_space()->set_top_for_allocations();
 955   from_space()->set_top_for_allocations();
 956   to_space()->set_top_for_allocations();
 957 }
 958 #endif