1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableModRefBS.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/interfaceSupport.hpp"
  35 #include "runtime/objectMonitor.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/sharedRuntime.hpp"
  38 #include "runtime/stubRoutines.hpp"
  39 #include "utilities/macros.hpp"
  40 #if INCLUDE_ALL_GCS
  41 #include "gc/g1/g1CollectedHeap.inline.hpp"
  42 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  43 #include "gc/g1/heapRegion.hpp"
  44 #endif // INCLUDE_ALL_GCS
  45 
  46 #ifdef PRODUCT
  47 #define BLOCK_COMMENT(str) /* nothing */
  48 #define STOP(error) stop(error)
  49 #else
  50 #define BLOCK_COMMENT(str) block_comment(str)
  51 #define STOP(error) block_comment(error); stop(error)
  52 #endif
  53 
  54 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  55 // Implementation of AddressLiteral
  56 
  57 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  58   _is_lval = false;
  59   _target = target;
  60   switch (rtype) {
  61   case relocInfo::oop_type:
  62   case relocInfo::metadata_type:
  63     // Oops are a special case. Normally they would be their own section
  64     // but in cases like icBuffer they are literals in the code stream that
  65     // we don't have a section for. We use none so that we get a literal address
  66     // which is always patchable.
  67     break;
  68   case relocInfo::external_word_type:
  69     _rspec = external_word_Relocation::spec(target);
  70     break;
  71   case relocInfo::internal_word_type:
  72     _rspec = internal_word_Relocation::spec(target);
  73     break;
  74   case relocInfo::opt_virtual_call_type:
  75     _rspec = opt_virtual_call_Relocation::spec();
  76     break;
  77   case relocInfo::static_call_type:
  78     _rspec = static_call_Relocation::spec();
  79     break;
  80   case relocInfo::runtime_call_type:
  81     _rspec = runtime_call_Relocation::spec();
  82     break;
  83   case relocInfo::poll_type:
  84   case relocInfo::poll_return_type:
  85     _rspec = Relocation::spec_simple(rtype);
  86     break;
  87   case relocInfo::none:
  88     break;
  89   default:
  90     ShouldNotReachHere();
  91     break;
  92   }
  93 }
  94 
  95 // Implementation of Address
  96 
  97 #ifdef _LP64
  98 
  99 Address Address::make_array(ArrayAddress adr) {
 100   // Not implementable on 64bit machines
 101   // Should have been handled higher up the call chain.
 102   ShouldNotReachHere();
 103   return Address();
 104 }
 105 
 106 // exceedingly dangerous constructor
 107 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 108   _base  = noreg;
 109   _index = noreg;
 110   _scale = no_scale;
 111   _disp  = disp;
 112   switch (rtype) {
 113     case relocInfo::external_word_type:
 114       _rspec = external_word_Relocation::spec(loc);
 115       break;
 116     case relocInfo::internal_word_type:
 117       _rspec = internal_word_Relocation::spec(loc);
 118       break;
 119     case relocInfo::runtime_call_type:
 120       // HMM
 121       _rspec = runtime_call_Relocation::spec();
 122       break;
 123     case relocInfo::poll_type:
 124     case relocInfo::poll_return_type:
 125       _rspec = Relocation::spec_simple(rtype);
 126       break;
 127     case relocInfo::none:
 128       break;
 129     default:
 130       ShouldNotReachHere();
 131   }
 132 }
 133 #else // LP64
 134 
 135 Address Address::make_array(ArrayAddress adr) {
 136   AddressLiteral base = adr.base();
 137   Address index = adr.index();
 138   assert(index._disp == 0, "must not have disp"); // maybe it can?
 139   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 140   array._rspec = base._rspec;
 141   return array;
 142 }
 143 
 144 // exceedingly dangerous constructor
 145 Address::Address(address loc, RelocationHolder spec) {
 146   _base  = noreg;
 147   _index = noreg;
 148   _scale = no_scale;
 149   _disp  = (intptr_t) loc;
 150   _rspec = spec;
 151 }
 152 
 153 #endif // _LP64
 154 
 155 
 156 
 157 // Convert the raw encoding form into the form expected by the constructor for
 158 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 159 // that to noreg for the Address constructor.
 160 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 161   RelocationHolder rspec;
 162   if (disp_reloc != relocInfo::none) {
 163     rspec = Relocation::spec_simple(disp_reloc);
 164   }
 165   bool valid_index = index != rsp->encoding();
 166   if (valid_index) {
 167     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 168     madr._rspec = rspec;
 169     return madr;
 170   } else {
 171     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 172     madr._rspec = rspec;
 173     return madr;
 174   }
 175 }
 176 
 177 // Implementation of Assembler
 178 
 179 int AbstractAssembler::code_fill_byte() {
 180   return (u_char)'\xF4'; // hlt
 181 }
 182 
 183 // make this go away someday
 184 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 185   if (rtype == relocInfo::none)
 186         emit_int32(data);
 187   else  emit_data(data, Relocation::spec_simple(rtype), format);
 188 }
 189 
 190 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 191   assert(imm_operand == 0, "default format must be immediate in this file");
 192   assert(inst_mark() != NULL, "must be inside InstructionMark");
 193   if (rspec.type() !=  relocInfo::none) {
 194     #ifdef ASSERT
 195       check_relocation(rspec, format);
 196     #endif
 197     // Do not use AbstractAssembler::relocate, which is not intended for
 198     // embedded words.  Instead, relocate to the enclosing instruction.
 199 
 200     // hack. call32 is too wide for mask so use disp32
 201     if (format == call32_operand)
 202       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 203     else
 204       code_section()->relocate(inst_mark(), rspec, format);
 205   }
 206   emit_int32(data);
 207 }
 208 
 209 static int encode(Register r) {
 210   int enc = r->encoding();
 211   if (enc >= 8) {
 212     enc -= 8;
 213   }
 214   return enc;
 215 }
 216 
 217 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 218   assert(dst->has_byte_register(), "must have byte register");
 219   assert(isByte(op1) && isByte(op2), "wrong opcode");
 220   assert(isByte(imm8), "not a byte");
 221   assert((op1 & 0x01) == 0, "should be 8bit operation");
 222   emit_int8(op1);
 223   emit_int8(op2 | encode(dst));
 224   emit_int8(imm8);
 225 }
 226 
 227 
 228 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 229   assert(isByte(op1) && isByte(op2), "wrong opcode");
 230   assert((op1 & 0x01) == 1, "should be 32bit operation");
 231   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 232   if (is8bit(imm32)) {
 233     emit_int8(op1 | 0x02); // set sign bit
 234     emit_int8(op2 | encode(dst));
 235     emit_int8(imm32 & 0xFF);
 236   } else {
 237     emit_int8(op1);
 238     emit_int8(op2 | encode(dst));
 239     emit_int32(imm32);
 240   }
 241 }
 242 
 243 // Force generation of a 4 byte immediate value even if it fits into 8bit
 244 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 245   assert(isByte(op1) && isByte(op2), "wrong opcode");
 246   assert((op1 & 0x01) == 1, "should be 32bit operation");
 247   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 248   emit_int8(op1);
 249   emit_int8(op2 | encode(dst));
 250   emit_int32(imm32);
 251 }
 252 
 253 // immediate-to-memory forms
 254 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 255   assert((op1 & 0x01) == 1, "should be 32bit operation");
 256   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 257   if (is8bit(imm32)) {
 258     emit_int8(op1 | 0x02); // set sign bit
 259     emit_operand(rm, adr, 1);
 260     emit_int8(imm32 & 0xFF);
 261   } else {
 262     emit_int8(op1);
 263     emit_operand(rm, adr, 4);
 264     emit_int32(imm32);
 265   }
 266 }
 267 
 268 
 269 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 270   assert(isByte(op1) && isByte(op2), "wrong opcode");
 271   emit_int8(op1);
 272   emit_int8(op2 | encode(dst) << 3 | encode(src));
 273 }
 274 
 275 
 276 void Assembler::emit_operand(Register reg, Register base, Register index,
 277                              Address::ScaleFactor scale, int disp,
 278                              RelocationHolder const& rspec,
 279                              int rip_relative_correction) {
 280   relocInfo::relocType rtype = (relocInfo::relocType) rspec.type();
 281 
 282   // Encode the registers as needed in the fields they are used in
 283 
 284   int regenc = encode(reg) << 3;
 285   int indexenc = index->is_valid() ? encode(index) << 3 : 0;
 286   int baseenc = base->is_valid() ? encode(base) : 0;
 287 
 288   if (base->is_valid()) {
 289     if (index->is_valid()) {
 290       assert(scale != Address::no_scale, "inconsistent address");
 291       // [base + index*scale + disp]
 292       if (disp == 0 && rtype == relocInfo::none  &&
 293           base != rbp LP64_ONLY(&& base != r13)) {
 294         // [base + index*scale]
 295         // [00 reg 100][ss index base]
 296         assert(index != rsp, "illegal addressing mode");
 297         emit_int8(0x04 | regenc);
 298         emit_int8(scale << 6 | indexenc | baseenc);
 299       } else if (is8bit(disp) && rtype == relocInfo::none) {
 300         // [base + index*scale + imm8]
 301         // [01 reg 100][ss index base] imm8
 302         assert(index != rsp, "illegal addressing mode");
 303         emit_int8(0x44 | regenc);
 304         emit_int8(scale << 6 | indexenc | baseenc);
 305         emit_int8(disp & 0xFF);
 306       } else {
 307         // [base + index*scale + disp32]
 308         // [10 reg 100][ss index base] disp32
 309         assert(index != rsp, "illegal addressing mode");
 310         emit_int8(0x84 | regenc);
 311         emit_int8(scale << 6 | indexenc | baseenc);
 312         emit_data(disp, rspec, disp32_operand);
 313       }
 314     } else if (base == rsp LP64_ONLY(|| base == r12)) {
 315       // [rsp + disp]
 316       if (disp == 0 && rtype == relocInfo::none) {
 317         // [rsp]
 318         // [00 reg 100][00 100 100]
 319         emit_int8(0x04 | regenc);
 320         emit_int8(0x24);
 321       } else if (is8bit(disp) && rtype == relocInfo::none) {
 322         // [rsp + imm8]
 323         // [01 reg 100][00 100 100] disp8
 324         emit_int8(0x44 | regenc);
 325         emit_int8(0x24);
 326         emit_int8(disp & 0xFF);
 327       } else {
 328         // [rsp + imm32]
 329         // [10 reg 100][00 100 100] disp32
 330         emit_int8(0x84 | regenc);
 331         emit_int8(0x24);
 332         emit_data(disp, rspec, disp32_operand);
 333       }
 334     } else {
 335       // [base + disp]
 336       assert(base != rsp LP64_ONLY(&& base != r12), "illegal addressing mode");
 337       if (disp == 0 && rtype == relocInfo::none &&
 338           base != rbp LP64_ONLY(&& base != r13)) {
 339         // [base]
 340         // [00 reg base]
 341         emit_int8(0x00 | regenc | baseenc);
 342       } else if (is8bit(disp) && rtype == relocInfo::none) {
 343         // [base + disp8]
 344         // [01 reg base] disp8
 345         emit_int8(0x40 | regenc | baseenc);
 346         emit_int8(disp & 0xFF);
 347       } else {
 348         // [base + disp32]
 349         // [10 reg base] disp32
 350         emit_int8(0x80 | regenc | baseenc);
 351         emit_data(disp, rspec, disp32_operand);
 352       }
 353     }
 354   } else {
 355     if (index->is_valid()) {
 356       assert(scale != Address::no_scale, "inconsistent address");
 357       // [index*scale + disp]
 358       // [00 reg 100][ss index 101] disp32
 359       assert(index != rsp, "illegal addressing mode");
 360       emit_int8(0x04 | regenc);
 361       emit_int8(scale << 6 | indexenc | 0x05);
 362       emit_data(disp, rspec, disp32_operand);
 363     } else if (rtype != relocInfo::none ) {
 364       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 365       // [00 000 101] disp32
 366 
 367       emit_int8(0x05 | regenc);
 368       // Note that the RIP-rel. correction applies to the generated
 369       // disp field, but _not_ to the target address in the rspec.
 370 
 371       // disp was created by converting the target address minus the pc
 372       // at the start of the instruction. That needs more correction here.
 373       // intptr_t disp = target - next_ip;
 374       assert(inst_mark() != NULL, "must be inside InstructionMark");
 375       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 376       int64_t adjusted = disp;
 377       // Do rip-rel adjustment for 64bit
 378       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 379       assert(is_simm32(adjusted),
 380              "must be 32bit offset (RIP relative address)");
 381       emit_data((int32_t) adjusted, rspec, disp32_operand);
 382 
 383     } else {
 384       // 32bit never did this, did everything as the rip-rel/disp code above
 385       // [disp] ABSOLUTE
 386       // [00 reg 100][00 100 101] disp32
 387       emit_int8(0x04 | regenc);
 388       emit_int8(0x25);
 389       emit_data(disp, rspec, disp32_operand);
 390     }
 391   }
 392 }
 393 
 394 void Assembler::emit_operand(XMMRegister reg, Register base, Register index,
 395                              Address::ScaleFactor scale, int disp,
 396                              RelocationHolder const& rspec) {
 397   emit_operand((Register)reg, base, index, scale, disp, rspec);
 398 }
 399 
 400 // Secret local extension to Assembler::WhichOperand:
 401 #define end_pc_operand (_WhichOperand_limit)
 402 
 403 address Assembler::locate_operand(address inst, WhichOperand which) {
 404   // Decode the given instruction, and return the address of
 405   // an embedded 32-bit operand word.
 406 
 407   // If "which" is disp32_operand, selects the displacement portion
 408   // of an effective address specifier.
 409   // If "which" is imm64_operand, selects the trailing immediate constant.
 410   // If "which" is call32_operand, selects the displacement of a call or jump.
 411   // Caller is responsible for ensuring that there is such an operand,
 412   // and that it is 32/64 bits wide.
 413 
 414   // If "which" is end_pc_operand, find the end of the instruction.
 415 
 416   address ip = inst;
 417   bool is_64bit = false;
 418 
 419   debug_only(bool has_disp32 = false);
 420   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 421 
 422   again_after_prefix:
 423   switch (0xFF & *ip++) {
 424 
 425   // These convenience macros generate groups of "case" labels for the switch.
 426 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 427 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 428              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 429 #define REP16(x) REP8((x)+0): \
 430               case REP8((x)+8)
 431 
 432   case CS_segment:
 433   case SS_segment:
 434   case DS_segment:
 435   case ES_segment:
 436   case FS_segment:
 437   case GS_segment:
 438     // Seems dubious
 439     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 440     assert(ip == inst+1, "only one prefix allowed");
 441     goto again_after_prefix;
 442 
 443   case 0x67:
 444   case REX:
 445   case REX_B:
 446   case REX_X:
 447   case REX_XB:
 448   case REX_R:
 449   case REX_RB:
 450   case REX_RX:
 451   case REX_RXB:
 452     NOT_LP64(assert(false, "64bit prefixes"));
 453     goto again_after_prefix;
 454 
 455   case REX_W:
 456   case REX_WB:
 457   case REX_WX:
 458   case REX_WXB:
 459   case REX_WR:
 460   case REX_WRB:
 461   case REX_WRX:
 462   case REX_WRXB:
 463     NOT_LP64(assert(false, "64bit prefixes"));
 464     is_64bit = true;
 465     goto again_after_prefix;
 466 
 467   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 468   case 0x88: // movb a, r
 469   case 0x89: // movl a, r
 470   case 0x8A: // movb r, a
 471   case 0x8B: // movl r, a
 472   case 0x8F: // popl a
 473     debug_only(has_disp32 = true);
 474     break;
 475 
 476   case 0x68: // pushq #32
 477     if (which == end_pc_operand) {
 478       return ip + 4;
 479     }
 480     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 481     return ip;                  // not produced by emit_operand
 482 
 483   case 0x66: // movw ... (size prefix)
 484     again_after_size_prefix2:
 485     switch (0xFF & *ip++) {
 486     case REX:
 487     case REX_B:
 488     case REX_X:
 489     case REX_XB:
 490     case REX_R:
 491     case REX_RB:
 492     case REX_RX:
 493     case REX_RXB:
 494     case REX_W:
 495     case REX_WB:
 496     case REX_WX:
 497     case REX_WXB:
 498     case REX_WR:
 499     case REX_WRB:
 500     case REX_WRX:
 501     case REX_WRXB:
 502       NOT_LP64(assert(false, "64bit prefix found"));
 503       goto again_after_size_prefix2;
 504     case 0x8B: // movw r, a
 505     case 0x89: // movw a, r
 506       debug_only(has_disp32 = true);
 507       break;
 508     case 0xC7: // movw a, #16
 509       debug_only(has_disp32 = true);
 510       tail_size = 2;  // the imm16
 511       break;
 512     case 0x0F: // several SSE/SSE2 variants
 513       ip--;    // reparse the 0x0F
 514       goto again_after_prefix;
 515     default:
 516       ShouldNotReachHere();
 517     }
 518     break;
 519 
 520   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 521     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 522     // these asserts are somewhat nonsensical
 523 #ifndef _LP64
 524     assert(which == imm_operand || which == disp32_operand,
 525            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 526 #else
 527     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 528            which == narrow_oop_operand && !is_64bit,
 529            err_msg("which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip)));
 530 #endif // _LP64
 531     return ip;
 532 
 533   case 0x69: // imul r, a, #32
 534   case 0xC7: // movl a, #32(oop?)
 535     tail_size = 4;
 536     debug_only(has_disp32 = true); // has both kinds of operands!
 537     break;
 538 
 539   case 0x0F: // movx..., etc.
 540     switch (0xFF & *ip++) {
 541     case 0x3A: // pcmpestri
 542       tail_size = 1;
 543     case 0x38: // ptest, pmovzxbw
 544       ip++; // skip opcode
 545       debug_only(has_disp32 = true); // has both kinds of operands!
 546       break;
 547 
 548     case 0x70: // pshufd r, r/a, #8
 549       debug_only(has_disp32 = true); // has both kinds of operands!
 550     case 0x73: // psrldq r, #8
 551       tail_size = 1;
 552       break;
 553 
 554     case 0x12: // movlps
 555     case 0x28: // movaps
 556     case 0x2E: // ucomiss
 557     case 0x2F: // comiss
 558     case 0x54: // andps
 559     case 0x55: // andnps
 560     case 0x56: // orps
 561     case 0x57: // xorps
 562     case 0x6E: // movd
 563     case 0x7E: // movd
 564     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 565       debug_only(has_disp32 = true);
 566       break;
 567 
 568     case 0xAD: // shrd r, a, %cl
 569     case 0xAF: // imul r, a
 570     case 0xBE: // movsbl r, a (movsxb)
 571     case 0xBF: // movswl r, a (movsxw)
 572     case 0xB6: // movzbl r, a (movzxb)
 573     case 0xB7: // movzwl r, a (movzxw)
 574     case REP16(0x40): // cmovl cc, r, a
 575     case 0xB0: // cmpxchgb
 576     case 0xB1: // cmpxchg
 577     case 0xC1: // xaddl
 578     case 0xC7: // cmpxchg8
 579     case REP16(0x90): // setcc a
 580       debug_only(has_disp32 = true);
 581       // fall out of the switch to decode the address
 582       break;
 583 
 584     case 0xC4: // pinsrw r, a, #8
 585       debug_only(has_disp32 = true);
 586     case 0xC5: // pextrw r, r, #8
 587       tail_size = 1;  // the imm8
 588       break;
 589 
 590     case 0xAC: // shrd r, a, #8
 591       debug_only(has_disp32 = true);
 592       tail_size = 1;  // the imm8
 593       break;
 594 
 595     case REP16(0x80): // jcc rdisp32
 596       if (which == end_pc_operand)  return ip + 4;
 597       assert(which == call32_operand, "jcc has no disp32 or imm");
 598       return ip;
 599     default:
 600       ShouldNotReachHere();
 601     }
 602     break;
 603 
 604   case 0x81: // addl a, #32; addl r, #32
 605     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 606     // on 32bit in the case of cmpl, the imm might be an oop
 607     tail_size = 4;
 608     debug_only(has_disp32 = true); // has both kinds of operands!
 609     break;
 610 
 611   case 0x83: // addl a, #8; addl r, #8
 612     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 613     debug_only(has_disp32 = true); // has both kinds of operands!
 614     tail_size = 1;
 615     break;
 616 
 617   case 0x9B:
 618     switch (0xFF & *ip++) {
 619     case 0xD9: // fnstcw a
 620       debug_only(has_disp32 = true);
 621       break;
 622     default:
 623       ShouldNotReachHere();
 624     }
 625     break;
 626 
 627   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 628   case REP4(0x10): // adc...
 629   case REP4(0x20): // and...
 630   case REP4(0x30): // xor...
 631   case REP4(0x08): // or...
 632   case REP4(0x18): // sbb...
 633   case REP4(0x28): // sub...
 634   case 0xF7: // mull a
 635   case 0x8D: // lea r, a
 636   case 0x87: // xchg r, a
 637   case REP4(0x38): // cmp...
 638   case 0x85: // test r, a
 639     debug_only(has_disp32 = true); // has both kinds of operands!
 640     break;
 641 
 642   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 643   case 0xC6: // movb a, #8
 644   case 0x80: // cmpb a, #8
 645   case 0x6B: // imul r, a, #8
 646     debug_only(has_disp32 = true); // has both kinds of operands!
 647     tail_size = 1; // the imm8
 648     break;
 649 
 650   case 0xC4: // VEX_3bytes
 651   case 0xC5: // VEX_2bytes
 652     assert((UseAVX > 0), "shouldn't have VEX prefix");
 653     assert(ip == inst+1, "no prefixes allowed");
 654     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 655     // but they have prefix 0x0F and processed when 0x0F processed above.
 656     //
 657     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 658     // instructions (these instructions are not supported in 64-bit mode).
 659     // To distinguish them bits [7:6] are set in the VEX second byte since
 660     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 661     // those VEX bits REX and vvvv bits are inverted.
 662     //
 663     // Fortunately C2 doesn't generate these instructions so we don't need
 664     // to check for them in product version.
 665 
 666     // Check second byte
 667     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 668 
 669     // First byte
 670     if ((0xFF & *inst) == VEX_3bytes) {
 671       ip++; // third byte
 672       is_64bit = ((VEX_W & *ip) == VEX_W);
 673     }
 674     ip++; // opcode
 675     // To find the end of instruction (which == end_pc_operand).
 676     switch (0xFF & *ip) {
 677     case 0x61: // pcmpestri r, r/a, #8
 678     case 0x70: // pshufd r, r/a, #8
 679     case 0x73: // psrldq r, #8
 680       tail_size = 1;  // the imm8
 681       break;
 682     default:
 683       break;
 684     }
 685     ip++; // skip opcode
 686     debug_only(has_disp32 = true); // has both kinds of operands!
 687     break;
 688 
 689   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 690   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 691   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 692   case 0xDD: // fld_d a; fst_d a; fstp_d a
 693   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
 694   case 0xDF: // fild_d a; fistp_d a
 695   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
 696   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
 697   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
 698     debug_only(has_disp32 = true);
 699     break;
 700 
 701   case 0xE8: // call rdisp32
 702   case 0xE9: // jmp  rdisp32
 703     if (which == end_pc_operand)  return ip + 4;
 704     assert(which == call32_operand, "call has no disp32 or imm");
 705     return ip;
 706 
 707   case 0xF0:                    // Lock
 708     assert(os::is_MP(), "only on MP");
 709     goto again_after_prefix;
 710 
 711   case 0xF3:                    // For SSE
 712   case 0xF2:                    // For SSE2
 713     switch (0xFF & *ip++) {
 714     case REX:
 715     case REX_B:
 716     case REX_X:
 717     case REX_XB:
 718     case REX_R:
 719     case REX_RB:
 720     case REX_RX:
 721     case REX_RXB:
 722     case REX_W:
 723     case REX_WB:
 724     case REX_WX:
 725     case REX_WXB:
 726     case REX_WR:
 727     case REX_WRB:
 728     case REX_WRX:
 729     case REX_WRXB:
 730       NOT_LP64(assert(false, "found 64bit prefix"));
 731       ip++;
 732     default:
 733       ip++;
 734     }
 735     debug_only(has_disp32 = true); // has both kinds of operands!
 736     break;
 737 
 738   default:
 739     ShouldNotReachHere();
 740 
 741 #undef REP8
 742 #undef REP16
 743   }
 744 
 745   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
 746 #ifdef _LP64
 747   assert(which != imm_operand, "instruction is not a movq reg, imm64");
 748 #else
 749   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
 750   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
 751 #endif // LP64
 752   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
 753 
 754   // parse the output of emit_operand
 755   int op2 = 0xFF & *ip++;
 756   int base = op2 & 0x07;
 757   int op3 = -1;
 758   const int b100 = 4;
 759   const int b101 = 5;
 760   if (base == b100 && (op2 >> 6) != 3) {
 761     op3 = 0xFF & *ip++;
 762     base = op3 & 0x07;   // refetch the base
 763   }
 764   // now ip points at the disp (if any)
 765 
 766   switch (op2 >> 6) {
 767   case 0:
 768     // [00 reg  100][ss index base]
 769     // [00 reg  100][00   100  esp]
 770     // [00 reg base]
 771     // [00 reg  100][ss index  101][disp32]
 772     // [00 reg  101]               [disp32]
 773 
 774     if (base == b101) {
 775       if (which == disp32_operand)
 776         return ip;              // caller wants the disp32
 777       ip += 4;                  // skip the disp32
 778     }
 779     break;
 780 
 781   case 1:
 782     // [01 reg  100][ss index base][disp8]
 783     // [01 reg  100][00   100  esp][disp8]
 784     // [01 reg base]               [disp8]
 785     ip += 1;                    // skip the disp8
 786     break;
 787 
 788   case 2:
 789     // [10 reg  100][ss index base][disp32]
 790     // [10 reg  100][00   100  esp][disp32]
 791     // [10 reg base]               [disp32]
 792     if (which == disp32_operand)
 793       return ip;                // caller wants the disp32
 794     ip += 4;                    // skip the disp32
 795     break;
 796 
 797   case 3:
 798     // [11 reg base]  (not a memory addressing mode)
 799     break;
 800   }
 801 
 802   if (which == end_pc_operand) {
 803     return ip + tail_size;
 804   }
 805 
 806 #ifdef _LP64
 807   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
 808 #else
 809   assert(which == imm_operand, "instruction has only an imm field");
 810 #endif // LP64
 811   return ip;
 812 }
 813 
 814 address Assembler::locate_next_instruction(address inst) {
 815   // Secretly share code with locate_operand:
 816   return locate_operand(inst, end_pc_operand);
 817 }
 818 
 819 
 820 #ifdef ASSERT
 821 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
 822   address inst = inst_mark();
 823   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
 824   address opnd;
 825 
 826   Relocation* r = rspec.reloc();
 827   if (r->type() == relocInfo::none) {
 828     return;
 829   } else if (r->is_call() || format == call32_operand) {
 830     // assert(format == imm32_operand, "cannot specify a nonzero format");
 831     opnd = locate_operand(inst, call32_operand);
 832   } else if (r->is_data()) {
 833     assert(format == imm_operand || format == disp32_operand
 834            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
 835     opnd = locate_operand(inst, (WhichOperand)format);
 836   } else {
 837     assert(format == imm_operand, "cannot specify a format");
 838     return;
 839   }
 840   assert(opnd == pc(), "must put operand where relocs can find it");
 841 }
 842 #endif // ASSERT
 843 
 844 void Assembler::emit_operand32(Register reg, Address adr) {
 845   assert(reg->encoding() < 8, "no extended registers");
 846   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 847   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 848                adr._rspec);
 849 }
 850 
 851 void Assembler::emit_operand(Register reg, Address adr,
 852                              int rip_relative_correction) {
 853   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 854                adr._rspec,
 855                rip_relative_correction);
 856 }
 857 
 858 void Assembler::emit_operand(XMMRegister reg, Address adr) {
 859   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
 860                adr._rspec);
 861 }
 862 
 863 // MMX operations
 864 void Assembler::emit_operand(MMXRegister reg, Address adr) {
 865   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 866   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 867 }
 868 
 869 // work around gcc (3.2.1-7a) bug
 870 void Assembler::emit_operand(Address adr, MMXRegister reg) {
 871   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
 872   emit_operand((Register)reg, adr._base, adr._index, adr._scale, adr._disp, adr._rspec);
 873 }
 874 
 875 
 876 void Assembler::emit_farith(int b1, int b2, int i) {
 877   assert(isByte(b1) && isByte(b2), "wrong opcode");
 878   assert(0 <= i &&  i < 8, "illegal stack offset");
 879   emit_int8(b1);
 880   emit_int8(b2 + i);
 881 }
 882 
 883 
 884 // Now the Assembler instructions (identical for 32/64 bits)
 885 
 886 void Assembler::adcl(Address dst, int32_t imm32) {
 887   InstructionMark im(this);
 888   prefix(dst);
 889   emit_arith_operand(0x81, rdx, dst, imm32);
 890 }
 891 
 892 void Assembler::adcl(Address dst, Register src) {
 893   InstructionMark im(this);
 894   prefix(dst, src);
 895   emit_int8(0x11);
 896   emit_operand(src, dst);
 897 }
 898 
 899 void Assembler::adcl(Register dst, int32_t imm32) {
 900   prefix(dst);
 901   emit_arith(0x81, 0xD0, dst, imm32);
 902 }
 903 
 904 void Assembler::adcl(Register dst, Address src) {
 905   InstructionMark im(this);
 906   prefix(src, dst);
 907   emit_int8(0x13);
 908   emit_operand(dst, src);
 909 }
 910 
 911 void Assembler::adcl(Register dst, Register src) {
 912   (void) prefix_and_encode(dst->encoding(), src->encoding());
 913   emit_arith(0x13, 0xC0, dst, src);
 914 }
 915 
 916 void Assembler::addl(Address dst, int32_t imm32) {
 917   InstructionMark im(this);
 918   prefix(dst);
 919   emit_arith_operand(0x81, rax, dst, imm32);
 920 }
 921 
 922 void Assembler::addl(Address dst, Register src) {
 923   InstructionMark im(this);
 924   prefix(dst, src);
 925   emit_int8(0x01);
 926   emit_operand(src, dst);
 927 }
 928 
 929 void Assembler::addl(Register dst, int32_t imm32) {
 930   prefix(dst);
 931   emit_arith(0x81, 0xC0, dst, imm32);
 932 }
 933 
 934 void Assembler::addl(Register dst, Address src) {
 935   InstructionMark im(this);
 936   prefix(src, dst);
 937   emit_int8(0x03);
 938   emit_operand(dst, src);
 939 }
 940 
 941 void Assembler::addl(Register dst, Register src) {
 942   (void) prefix_and_encode(dst->encoding(), src->encoding());
 943   emit_arith(0x03, 0xC0, dst, src);
 944 }
 945 
 946 void Assembler::addr_nop_4() {
 947   assert(UseAddressNop, "no CPU support");
 948   // 4 bytes: NOP DWORD PTR [EAX+0]
 949   emit_int8(0x0F);
 950   emit_int8(0x1F);
 951   emit_int8(0x40); // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
 952   emit_int8(0);    // 8-bits offset (1 byte)
 953 }
 954 
 955 void Assembler::addr_nop_5() {
 956   assert(UseAddressNop, "no CPU support");
 957   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
 958   emit_int8(0x0F);
 959   emit_int8(0x1F);
 960   emit_int8(0x44); // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
 961   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 962   emit_int8(0);    // 8-bits offset (1 byte)
 963 }
 964 
 965 void Assembler::addr_nop_7() {
 966   assert(UseAddressNop, "no CPU support");
 967   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
 968   emit_int8(0x0F);
 969   emit_int8(0x1F);
 970   emit_int8((unsigned char)0x80);
 971                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
 972   emit_int32(0);   // 32-bits offset (4 bytes)
 973 }
 974 
 975 void Assembler::addr_nop_8() {
 976   assert(UseAddressNop, "no CPU support");
 977   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
 978   emit_int8(0x0F);
 979   emit_int8(0x1F);
 980   emit_int8((unsigned char)0x84);
 981                    // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
 982   emit_int8(0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
 983   emit_int32(0);   // 32-bits offset (4 bytes)
 984 }
 985 
 986 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
 987   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 988   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 989 }
 990 
 991 void Assembler::addsd(XMMRegister dst, Address src) {
 992   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
 993   emit_simd_arith(0x58, dst, src, VEX_SIMD_F2);
 994 }
 995 
 996 void Assembler::addss(XMMRegister dst, XMMRegister src) {
 997   NOT_LP64(assert(VM_Version::supports_sse(), ""));
 998   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
 999 }
1000 
1001 void Assembler::addss(XMMRegister dst, Address src) {
1002   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1003   emit_simd_arith(0x58, dst, src, VEX_SIMD_F3);
1004 }
1005 
1006 void Assembler::aesdec(XMMRegister dst, Address src) {
1007   assert(VM_Version::supports_aes(), "");
1008   InstructionMark im(this);
1009   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1010   emit_int8((unsigned char)0xDE);
1011   emit_operand(dst, src);
1012 }
1013 
1014 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1015   assert(VM_Version::supports_aes(), "");
1016   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1017   emit_int8((unsigned char)0xDE);
1018   emit_int8(0xC0 | encode);
1019 }
1020 
1021 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1022   assert(VM_Version::supports_aes(), "");
1023   InstructionMark im(this);
1024   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1025   emit_int8((unsigned char)0xDF);
1026   emit_operand(dst, src);
1027 }
1028 
1029 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1030   assert(VM_Version::supports_aes(), "");
1031   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1032   emit_int8((unsigned char)0xDF);
1033   emit_int8((unsigned char)(0xC0 | encode));
1034 }
1035 
1036 void Assembler::aesenc(XMMRegister dst, Address src) {
1037   assert(VM_Version::supports_aes(), "");
1038   InstructionMark im(this);
1039   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1040   emit_int8((unsigned char)0xDC);
1041   emit_operand(dst, src);
1042 }
1043 
1044 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1045   assert(VM_Version::supports_aes(), "");
1046   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1047   emit_int8((unsigned char)0xDC);
1048   emit_int8(0xC0 | encode);
1049 }
1050 
1051 void Assembler::aesenclast(XMMRegister dst, Address src) {
1052   assert(VM_Version::supports_aes(), "");
1053   InstructionMark im(this);
1054   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1055   emit_int8((unsigned char)0xDD);
1056   emit_operand(dst, src);
1057 }
1058 
1059 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1060   assert(VM_Version::supports_aes(), "");
1061   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
1062   emit_int8((unsigned char)0xDD);
1063   emit_int8((unsigned char)(0xC0 | encode));
1064 }
1065 
1066 
1067 void Assembler::andl(Address dst, int32_t imm32) {
1068   InstructionMark im(this);
1069   prefix(dst);
1070   emit_int8((unsigned char)0x81);
1071   emit_operand(rsp, dst, 4);
1072   emit_int32(imm32);
1073 }
1074 
1075 void Assembler::andl(Register dst, int32_t imm32) {
1076   prefix(dst);
1077   emit_arith(0x81, 0xE0, dst, imm32);
1078 }
1079 
1080 void Assembler::andl(Register dst, Address src) {
1081   InstructionMark im(this);
1082   prefix(src, dst);
1083   emit_int8(0x23);
1084   emit_operand(dst, src);
1085 }
1086 
1087 void Assembler::andl(Register dst, Register src) {
1088   (void) prefix_and_encode(dst->encoding(), src->encoding());
1089   emit_arith(0x23, 0xC0, dst, src);
1090 }
1091 
1092 void Assembler::andnl(Register dst, Register src1, Register src2) {
1093   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1094   int encode = vex_prefix_0F38_and_encode(dst, src1, src2);
1095   emit_int8((unsigned char)0xF2);
1096   emit_int8((unsigned char)(0xC0 | encode));
1097 }
1098 
1099 void Assembler::andnl(Register dst, Register src1, Address src2) {
1100   InstructionMark im(this);
1101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1102   vex_prefix_0F38(dst, src1, src2);
1103   emit_int8((unsigned char)0xF2);
1104   emit_operand(dst, src2);
1105 }
1106 
1107 void Assembler::bsfl(Register dst, Register src) {
1108   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1109   emit_int8(0x0F);
1110   emit_int8((unsigned char)0xBC);
1111   emit_int8((unsigned char)(0xC0 | encode));
1112 }
1113 
1114 void Assembler::bsrl(Register dst, Register src) {
1115   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1116   emit_int8(0x0F);
1117   emit_int8((unsigned char)0xBD);
1118   emit_int8((unsigned char)(0xC0 | encode));
1119 }
1120 
1121 void Assembler::bswapl(Register reg) { // bswap
1122   int encode = prefix_and_encode(reg->encoding());
1123   emit_int8(0x0F);
1124   emit_int8((unsigned char)(0xC8 | encode));
1125 }
1126 
1127 void Assembler::blsil(Register dst, Register src) {
1128   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1129   int encode = vex_prefix_0F38_and_encode(rbx, dst, src);
1130   emit_int8((unsigned char)0xF3);
1131   emit_int8((unsigned char)(0xC0 | encode));
1132 }
1133 
1134 void Assembler::blsil(Register dst, Address src) {
1135   InstructionMark im(this);
1136   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1137   vex_prefix_0F38(rbx, dst, src);
1138   emit_int8((unsigned char)0xF3);
1139   emit_operand(rbx, src);
1140 }
1141 
1142 void Assembler::blsmskl(Register dst, Register src) {
1143   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1144   int encode = vex_prefix_0F38_and_encode(rdx, dst, src);
1145   emit_int8((unsigned char)0xF3);
1146   emit_int8((unsigned char)(0xC0 | encode));
1147 }
1148 
1149 void Assembler::blsmskl(Register dst, Address src) {
1150   InstructionMark im(this);
1151   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1152   vex_prefix_0F38(rdx, dst, src);
1153   emit_int8((unsigned char)0xF3);
1154   emit_operand(rdx, src);
1155 }
1156 
1157 void Assembler::blsrl(Register dst, Register src) {
1158   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1159   int encode = vex_prefix_0F38_and_encode(rcx, dst, src);
1160   emit_int8((unsigned char)0xF3);
1161   emit_int8((unsigned char)(0xC0 | encode));
1162 }
1163 
1164 void Assembler::blsrl(Register dst, Address src) {
1165   InstructionMark im(this);
1166   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1167   vex_prefix_0F38(rcx, dst, src);
1168   emit_int8((unsigned char)0xF3);
1169   emit_operand(rcx, src);
1170 }
1171 
1172 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1173   // suspect disp32 is always good
1174   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1175 
1176   if (L.is_bound()) {
1177     const int long_size = 5;
1178     int offs = (int)( target(L) - pc() );
1179     assert(offs <= 0, "assembler error");
1180     InstructionMark im(this);
1181     // 1110 1000 #32-bit disp
1182     emit_int8((unsigned char)0xE8);
1183     emit_data(offs - long_size, rtype, operand);
1184   } else {
1185     InstructionMark im(this);
1186     // 1110 1000 #32-bit disp
1187     L.add_patch_at(code(), locator());
1188 
1189     emit_int8((unsigned char)0xE8);
1190     emit_data(int(0), rtype, operand);
1191   }
1192 }
1193 
1194 void Assembler::call(Register dst) {
1195   int encode = prefix_and_encode(dst->encoding());
1196   emit_int8((unsigned char)0xFF);
1197   emit_int8((unsigned char)(0xD0 | encode));
1198 }
1199 
1200 
1201 void Assembler::call(Address adr) {
1202   InstructionMark im(this);
1203   prefix(adr);
1204   emit_int8((unsigned char)0xFF);
1205   emit_operand(rdx, adr);
1206 }
1207 
1208 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1209   assert(entry != NULL, "call most probably wrong");
1210   InstructionMark im(this);
1211   emit_int8((unsigned char)0xE8);
1212   intptr_t disp = entry - (pc() + sizeof(int32_t));
1213   assert(is_simm32(disp), "must be 32bit offset (call2)");
1214   // Technically, should use call32_operand, but this format is
1215   // implied by the fact that we're emitting a call instruction.
1216 
1217   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1218   emit_data((int) disp, rspec, operand);
1219 }
1220 
1221 void Assembler::cdql() {
1222   emit_int8((unsigned char)0x99);
1223 }
1224 
1225 void Assembler::cld() {
1226   emit_int8((unsigned char)0xFC);
1227 }
1228 
1229 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1230   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1231   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1232   emit_int8(0x0F);
1233   emit_int8(0x40 | cc);
1234   emit_int8((unsigned char)(0xC0 | encode));
1235 }
1236 
1237 
1238 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1239   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1240   prefix(src, dst);
1241   emit_int8(0x0F);
1242   emit_int8(0x40 | cc);
1243   emit_operand(dst, src);
1244 }
1245 
1246 void Assembler::cmpb(Address dst, int imm8) {
1247   InstructionMark im(this);
1248   prefix(dst);
1249   emit_int8((unsigned char)0x80);
1250   emit_operand(rdi, dst, 1);
1251   emit_int8(imm8);
1252 }
1253 
1254 void Assembler::cmpl(Address dst, int32_t imm32) {
1255   InstructionMark im(this);
1256   prefix(dst);
1257   emit_int8((unsigned char)0x81);
1258   emit_operand(rdi, dst, 4);
1259   emit_int32(imm32);
1260 }
1261 
1262 void Assembler::cmpl(Register dst, int32_t imm32) {
1263   prefix(dst);
1264   emit_arith(0x81, 0xF8, dst, imm32);
1265 }
1266 
1267 void Assembler::cmpl(Register dst, Register src) {
1268   (void) prefix_and_encode(dst->encoding(), src->encoding());
1269   emit_arith(0x3B, 0xC0, dst, src);
1270 }
1271 
1272 
1273 void Assembler::cmpl(Register dst, Address  src) {
1274   InstructionMark im(this);
1275   prefix(src, dst);
1276   emit_int8((unsigned char)0x3B);
1277   emit_operand(dst, src);
1278 }
1279 
1280 void Assembler::cmpw(Address dst, int imm16) {
1281   InstructionMark im(this);
1282   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1283   emit_int8(0x66);
1284   emit_int8((unsigned char)0x81);
1285   emit_operand(rdi, dst, 2);
1286   emit_int16(imm16);
1287 }
1288 
1289 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1290 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1291 // The ZF is set if the compared values were equal, and cleared otherwise.
1292 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1293   InstructionMark im(this);
1294   prefix(adr, reg);
1295   emit_int8(0x0F);
1296   emit_int8((unsigned char)0xB1);
1297   emit_operand(reg, adr);
1298 }
1299 
1300 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1301 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1302 // The ZF is set if the compared values were equal, and cleared otherwise.
1303 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1304   InstructionMark im(this);
1305   prefix(adr, reg, true);
1306   emit_int8(0x0F);
1307   emit_int8((unsigned char)0xB0);
1308   emit_operand(reg, adr);
1309 }
1310 
1311 void Assembler::comisd(XMMRegister dst, Address src) {
1312   // NOTE: dbx seems to decode this as comiss even though the
1313   // 0x66 is there. Strangly ucomisd comes out correct
1314   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1315   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1316 }
1317 
1318 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1319   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1320   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_66);
1321 }
1322 
1323 void Assembler::comiss(XMMRegister dst, Address src) {
1324   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1325   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1326 }
1327 
1328 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1329   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1330   emit_simd_arith_nonds(0x2F, dst, src, VEX_SIMD_NONE);
1331 }
1332 
1333 void Assembler::cpuid() {
1334   emit_int8(0x0F);
1335   emit_int8((unsigned char)0xA2);
1336 }
1337 
1338 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1340   emit_simd_arith_nonds(0xE6, dst, src, VEX_SIMD_F3);
1341 }
1342 
1343 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1345   emit_simd_arith_nonds(0x5B, dst, src, VEX_SIMD_NONE);
1346 }
1347 
1348 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1349   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1350   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1351 }
1352 
1353 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1354   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1355   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F2);
1356 }
1357 
1358 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1359   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1360   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2);
1361   emit_int8(0x2A);
1362   emit_int8((unsigned char)(0xC0 | encode));
1363 }
1364 
1365 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1366   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1367   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F2);
1368 }
1369 
1370 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1371   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1372   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3);
1373   emit_int8(0x2A);
1374   emit_int8((unsigned char)(0xC0 | encode));
1375 }
1376 
1377 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1378   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1379   emit_simd_arith(0x2A, dst, src, VEX_SIMD_F3);
1380 }
1381 
1382 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1383   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1384   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1385 }
1386 
1387 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1388   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1389   emit_simd_arith(0x5A, dst, src, VEX_SIMD_F3);
1390 }
1391 
1392 
1393 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1394   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1395   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F2);
1396   emit_int8(0x2C);
1397   emit_int8((unsigned char)(0xC0 | encode));
1398 }
1399 
1400 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1401   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1402   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_F3);
1403   emit_int8(0x2C);
1404   emit_int8((unsigned char)(0xC0 | encode));
1405 }
1406 
1407 void Assembler::decl(Address dst) {
1408   // Don't use it directly. Use MacroAssembler::decrement() instead.
1409   InstructionMark im(this);
1410   prefix(dst);
1411   emit_int8((unsigned char)0xFF);
1412   emit_operand(rcx, dst);
1413 }
1414 
1415 void Assembler::divsd(XMMRegister dst, Address src) {
1416   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1417   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1418 }
1419 
1420 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1421   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1422   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F2);
1423 }
1424 
1425 void Assembler::divss(XMMRegister dst, Address src) {
1426   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1427   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1428 }
1429 
1430 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1431   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1432   emit_simd_arith(0x5E, dst, src, VEX_SIMD_F3);
1433 }
1434 
1435 void Assembler::emms() {
1436   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
1437   emit_int8(0x0F);
1438   emit_int8(0x77);
1439 }
1440 
1441 void Assembler::hlt() {
1442   emit_int8((unsigned char)0xF4);
1443 }
1444 
1445 void Assembler::idivl(Register src) {
1446   int encode = prefix_and_encode(src->encoding());
1447   emit_int8((unsigned char)0xF7);
1448   emit_int8((unsigned char)(0xF8 | encode));
1449 }
1450 
1451 void Assembler::divl(Register src) { // Unsigned
1452   int encode = prefix_and_encode(src->encoding());
1453   emit_int8((unsigned char)0xF7);
1454   emit_int8((unsigned char)(0xF0 | encode));
1455 }
1456 
1457 void Assembler::imull(Register dst, Register src) {
1458   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1459   emit_int8(0x0F);
1460   emit_int8((unsigned char)0xAF);
1461   emit_int8((unsigned char)(0xC0 | encode));
1462 }
1463 
1464 
1465 void Assembler::imull(Register dst, Register src, int value) {
1466   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1467   if (is8bit(value)) {
1468     emit_int8(0x6B);
1469     emit_int8((unsigned char)(0xC0 | encode));
1470     emit_int8(value & 0xFF);
1471   } else {
1472     emit_int8(0x69);
1473     emit_int8((unsigned char)(0xC0 | encode));
1474     emit_int32(value);
1475   }
1476 }
1477 
1478 void Assembler::imull(Register dst, Address src) {
1479   InstructionMark im(this);
1480   prefix(src, dst);
1481   emit_int8(0x0F);
1482   emit_int8((unsigned char) 0xAF);
1483   emit_operand(dst, src);
1484 }
1485 
1486 
1487 void Assembler::incl(Address dst) {
1488   // Don't use it directly. Use MacroAssembler::increment() instead.
1489   InstructionMark im(this);
1490   prefix(dst);
1491   emit_int8((unsigned char)0xFF);
1492   emit_operand(rax, dst);
1493 }
1494 
1495 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
1496   InstructionMark im(this);
1497   assert((0 <= cc) && (cc < 16), "illegal cc");
1498   if (L.is_bound()) {
1499     address dst = target(L);
1500     assert(dst != NULL, "jcc most probably wrong");
1501 
1502     const int short_size = 2;
1503     const int long_size = 6;
1504     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
1505     if (maybe_short && is8bit(offs - short_size)) {
1506       // 0111 tttn #8-bit disp
1507       emit_int8(0x70 | cc);
1508       emit_int8((offs - short_size) & 0xFF);
1509     } else {
1510       // 0000 1111 1000 tttn #32-bit disp
1511       assert(is_simm32(offs - long_size),
1512              "must be 32bit offset (call4)");
1513       emit_int8(0x0F);
1514       emit_int8((unsigned char)(0x80 | cc));
1515       emit_int32(offs - long_size);
1516     }
1517   } else {
1518     // Note: could eliminate cond. jumps to this jump if condition
1519     //       is the same however, seems to be rather unlikely case.
1520     // Note: use jccb() if label to be bound is very close to get
1521     //       an 8-bit displacement
1522     L.add_patch_at(code(), locator());
1523     emit_int8(0x0F);
1524     emit_int8((unsigned char)(0x80 | cc));
1525     emit_int32(0);
1526   }
1527 }
1528 
1529 void Assembler::jccb(Condition cc, Label& L) {
1530   if (L.is_bound()) {
1531     const int short_size = 2;
1532     address entry = target(L);
1533 #ifdef ASSERT
1534     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1535     intptr_t delta = short_branch_delta();
1536     if (delta != 0) {
1537       dist += (dist < 0 ? (-delta) :delta);
1538     }
1539     assert(is8bit(dist), "Dispacement too large for a short jmp");
1540 #endif
1541     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
1542     // 0111 tttn #8-bit disp
1543     emit_int8(0x70 | cc);
1544     emit_int8((offs - short_size) & 0xFF);
1545   } else {
1546     InstructionMark im(this);
1547     L.add_patch_at(code(), locator());
1548     emit_int8(0x70 | cc);
1549     emit_int8(0);
1550   }
1551 }
1552 
1553 void Assembler::jmp(Address adr) {
1554   InstructionMark im(this);
1555   prefix(adr);
1556   emit_int8((unsigned char)0xFF);
1557   emit_operand(rsp, adr);
1558 }
1559 
1560 void Assembler::jmp(Label& L, bool maybe_short) {
1561   if (L.is_bound()) {
1562     address entry = target(L);
1563     assert(entry != NULL, "jmp most probably wrong");
1564     InstructionMark im(this);
1565     const int short_size = 2;
1566     const int long_size = 5;
1567     intptr_t offs = entry - pc();
1568     if (maybe_short && is8bit(offs - short_size)) {
1569       emit_int8((unsigned char)0xEB);
1570       emit_int8((offs - short_size) & 0xFF);
1571     } else {
1572       emit_int8((unsigned char)0xE9);
1573       emit_int32(offs - long_size);
1574     }
1575   } else {
1576     // By default, forward jumps are always 32-bit displacements, since
1577     // we can't yet know where the label will be bound.  If you're sure that
1578     // the forward jump will not run beyond 256 bytes, use jmpb to
1579     // force an 8-bit displacement.
1580     InstructionMark im(this);
1581     L.add_patch_at(code(), locator());
1582     emit_int8((unsigned char)0xE9);
1583     emit_int32(0);
1584   }
1585 }
1586 
1587 void Assembler::jmp(Register entry) {
1588   int encode = prefix_and_encode(entry->encoding());
1589   emit_int8((unsigned char)0xFF);
1590   emit_int8((unsigned char)(0xE0 | encode));
1591 }
1592 
1593 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
1594   InstructionMark im(this);
1595   emit_int8((unsigned char)0xE9);
1596   assert(dest != NULL, "must have a target");
1597   intptr_t disp = dest - (pc() + sizeof(int32_t));
1598   assert(is_simm32(disp), "must be 32bit offset (jmp)");
1599   emit_data(disp, rspec.reloc(), call32_operand);
1600 }
1601 
1602 void Assembler::jmpb(Label& L) {
1603   if (L.is_bound()) {
1604     const int short_size = 2;
1605     address entry = target(L);
1606     assert(entry != NULL, "jmp most probably wrong");
1607 #ifdef ASSERT
1608     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
1609     intptr_t delta = short_branch_delta();
1610     if (delta != 0) {
1611       dist += (dist < 0 ? (-delta) :delta);
1612     }
1613     assert(is8bit(dist), "Dispacement too large for a short jmp");
1614 #endif
1615     intptr_t offs = entry - pc();
1616     emit_int8((unsigned char)0xEB);
1617     emit_int8((offs - short_size) & 0xFF);
1618   } else {
1619     InstructionMark im(this);
1620     L.add_patch_at(code(), locator());
1621     emit_int8((unsigned char)0xEB);
1622     emit_int8(0);
1623   }
1624 }
1625 
1626 void Assembler::ldmxcsr( Address src) {
1627   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1628   InstructionMark im(this);
1629   prefix(src);
1630   emit_int8(0x0F);
1631   emit_int8((unsigned char)0xAE);
1632   emit_operand(as_Register(2), src);
1633 }
1634 
1635 void Assembler::leal(Register dst, Address src) {
1636   InstructionMark im(this);
1637 #ifdef _LP64
1638   emit_int8(0x67); // addr32
1639   prefix(src, dst);
1640 #endif // LP64
1641   emit_int8((unsigned char)0x8D);
1642   emit_operand(dst, src);
1643 }
1644 
1645 void Assembler::lfence() {
1646   emit_int8(0x0F);
1647   emit_int8((unsigned char)0xAE);
1648   emit_int8((unsigned char)0xE8);
1649 }
1650 
1651 void Assembler::lock() {
1652   emit_int8((unsigned char)0xF0);
1653 }
1654 
1655 void Assembler::lzcntl(Register dst, Register src) {
1656   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
1657   emit_int8((unsigned char)0xF3);
1658   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1659   emit_int8(0x0F);
1660   emit_int8((unsigned char)0xBD);
1661   emit_int8((unsigned char)(0xC0 | encode));
1662 }
1663 
1664 // Emit mfence instruction
1665 void Assembler::mfence() {
1666   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
1667   emit_int8(0x0F);
1668   emit_int8((unsigned char)0xAE);
1669   emit_int8((unsigned char)0xF0);
1670 }
1671 
1672 void Assembler::mov(Register dst, Register src) {
1673   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
1674 }
1675 
1676 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
1677   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1678   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_66);
1679 }
1680 
1681 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
1682   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1683   emit_simd_arith_nonds(0x28, dst, src, VEX_SIMD_NONE);
1684 }
1685 
1686 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
1687   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1688   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE);
1689   emit_int8(0x16);
1690   emit_int8((unsigned char)(0xC0 | encode));
1691 }
1692 
1693 void Assembler::movb(Register dst, Address src) {
1694   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
1695   InstructionMark im(this);
1696   prefix(src, dst, true);
1697   emit_int8((unsigned char)0x8A);
1698   emit_operand(dst, src);
1699 }
1700 
1701 
1702 void Assembler::movb(Address dst, int imm8) {
1703   InstructionMark im(this);
1704    prefix(dst);
1705   emit_int8((unsigned char)0xC6);
1706   emit_operand(rax, dst, 1);
1707   emit_int8(imm8);
1708 }
1709 
1710 
1711 void Assembler::movb(Address dst, Register src) {
1712   assert(src->has_byte_register(), "must have byte register");
1713   InstructionMark im(this);
1714   prefix(dst, src, true);
1715   emit_int8((unsigned char)0x88);
1716   emit_operand(src, dst);
1717 }
1718 
1719 void Assembler::movdl(XMMRegister dst, Register src) {
1720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1721   int encode = simd_prefix_and_encode(dst, src, VEX_SIMD_66);
1722   emit_int8(0x6E);
1723   emit_int8((unsigned char)(0xC0 | encode));
1724 }
1725 
1726 void Assembler::movdl(Register dst, XMMRegister src) {
1727   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1728   // swap src/dst to get correct prefix
1729   int encode = simd_prefix_and_encode(src, dst, VEX_SIMD_66);
1730   emit_int8(0x7E);
1731   emit_int8((unsigned char)(0xC0 | encode));
1732 }
1733 
1734 void Assembler::movdl(XMMRegister dst, Address src) {
1735   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1736   InstructionMark im(this);
1737   simd_prefix(dst, src, VEX_SIMD_66);
1738   emit_int8(0x6E);
1739   emit_operand(dst, src);
1740 }
1741 
1742 void Assembler::movdl(Address dst, XMMRegister src) {
1743   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1744   InstructionMark im(this);
1745   simd_prefix(dst, src, VEX_SIMD_66);
1746   emit_int8(0x7E);
1747   emit_operand(src, dst);
1748 }
1749 
1750 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
1751   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1752   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1753 }
1754 
1755 void Assembler::movdqa(XMMRegister dst, Address src) {
1756   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1757   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_66);
1758 }
1759 
1760 void Assembler::movdqu(XMMRegister dst, Address src) {
1761   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1762   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1763 }
1764 
1765 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
1766   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1767   emit_simd_arith_nonds(0x6F, dst, src, VEX_SIMD_F3);
1768 }
1769 
1770 void Assembler::movdqu(Address dst, XMMRegister src) {
1771   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1772   InstructionMark im(this);
1773   simd_prefix(dst, src, VEX_SIMD_F3);
1774   emit_int8(0x7F);
1775   emit_operand(src, dst);
1776 }
1777 
1778 // Move Unaligned 256bit Vector
1779 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
1780   assert(UseAVX > 0, "");
1781   bool vector256 = true;
1782   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1783   emit_int8(0x6F);
1784   emit_int8((unsigned char)(0xC0 | encode));
1785 }
1786 
1787 void Assembler::vmovdqu(XMMRegister dst, Address src) {
1788   assert(UseAVX > 0, "");
1789   InstructionMark im(this);
1790   bool vector256 = true;
1791   vex_prefix(dst, xnoreg, src, VEX_SIMD_F3, vector256);
1792   emit_int8(0x6F);
1793   emit_operand(dst, src);
1794 }
1795 
1796 void Assembler::vmovdqu(Address dst, XMMRegister src) {
1797   assert(UseAVX > 0, "");
1798   InstructionMark im(this);
1799   bool vector256 = true;
1800   // swap src<->dst for encoding
1801   assert(src != xnoreg, "sanity");
1802   vex_prefix(src, xnoreg, dst, VEX_SIMD_F3, vector256);
1803   emit_int8(0x7F);
1804   emit_operand(src, dst);
1805 }
1806 
1807 // Uses zero extension on 64bit
1808 
1809 void Assembler::movl(Register dst, int32_t imm32) {
1810   int encode = prefix_and_encode(dst->encoding());
1811   emit_int8((unsigned char)(0xB8 | encode));
1812   emit_int32(imm32);
1813 }
1814 
1815 void Assembler::movl(Register dst, Register src) {
1816   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1817   emit_int8((unsigned char)0x8B);
1818   emit_int8((unsigned char)(0xC0 | encode));
1819 }
1820 
1821 void Assembler::movl(Register dst, Address src) {
1822   InstructionMark im(this);
1823   prefix(src, dst);
1824   emit_int8((unsigned char)0x8B);
1825   emit_operand(dst, src);
1826 }
1827 
1828 void Assembler::movl(Address dst, int32_t imm32) {
1829   InstructionMark im(this);
1830   prefix(dst);
1831   emit_int8((unsigned char)0xC7);
1832   emit_operand(rax, dst, 4);
1833   emit_int32(imm32);
1834 }
1835 
1836 void Assembler::movl(Address dst, Register src) {
1837   InstructionMark im(this);
1838   prefix(dst, src);
1839   emit_int8((unsigned char)0x89);
1840   emit_operand(src, dst);
1841 }
1842 
1843 // New cpus require to use movsd and movss to avoid partial register stall
1844 // when loading from memory. But for old Opteron use movlpd instead of movsd.
1845 // The selection is done in MacroAssembler::movdbl() and movflt().
1846 void Assembler::movlpd(XMMRegister dst, Address src) {
1847   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1848   emit_simd_arith(0x12, dst, src, VEX_SIMD_66);
1849 }
1850 
1851 void Assembler::movq( MMXRegister dst, Address src ) {
1852   assert( VM_Version::supports_mmx(), "" );
1853   emit_int8(0x0F);
1854   emit_int8(0x6F);
1855   emit_operand(dst, src);
1856 }
1857 
1858 void Assembler::movq( Address dst, MMXRegister src ) {
1859   assert( VM_Version::supports_mmx(), "" );
1860   emit_int8(0x0F);
1861   emit_int8(0x7F);
1862   // workaround gcc (3.2.1-7a) bug
1863   // In that version of gcc with only an emit_operand(MMX, Address)
1864   // gcc will tail jump and try and reverse the parameters completely
1865   // obliterating dst in the process. By having a version available
1866   // that doesn't need to swap the args at the tail jump the bug is
1867   // avoided.
1868   emit_operand(dst, src);
1869 }
1870 
1871 void Assembler::movq(XMMRegister dst, Address src) {
1872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1873   InstructionMark im(this);
1874   simd_prefix(dst, src, VEX_SIMD_F3);
1875   emit_int8(0x7E);
1876   emit_operand(dst, src);
1877 }
1878 
1879 void Assembler::movq(Address dst, XMMRegister src) {
1880   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1881   InstructionMark im(this);
1882   simd_prefix(dst, src, VEX_SIMD_66);
1883   emit_int8((unsigned char)0xD6);
1884   emit_operand(src, dst);
1885 }
1886 
1887 void Assembler::movsbl(Register dst, Address src) { // movsxb
1888   InstructionMark im(this);
1889   prefix(src, dst);
1890   emit_int8(0x0F);
1891   emit_int8((unsigned char)0xBE);
1892   emit_operand(dst, src);
1893 }
1894 
1895 void Assembler::movsbl(Register dst, Register src) { // movsxb
1896   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1897   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1898   emit_int8(0x0F);
1899   emit_int8((unsigned char)0xBE);
1900   emit_int8((unsigned char)(0xC0 | encode));
1901 }
1902 
1903 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
1904   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1905   emit_simd_arith(0x10, dst, src, VEX_SIMD_F2);
1906 }
1907 
1908 void Assembler::movsd(XMMRegister dst, Address src) {
1909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1910   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F2);
1911 }
1912 
1913 void Assembler::movsd(Address dst, XMMRegister src) {
1914   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1915   InstructionMark im(this);
1916   simd_prefix(dst, src, VEX_SIMD_F2);
1917   emit_int8(0x11);
1918   emit_operand(src, dst);
1919 }
1920 
1921 void Assembler::movss(XMMRegister dst, XMMRegister src) {
1922   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1923   emit_simd_arith(0x10, dst, src, VEX_SIMD_F3);
1924 }
1925 
1926 void Assembler::movss(XMMRegister dst, Address src) {
1927   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1928   emit_simd_arith_nonds(0x10, dst, src, VEX_SIMD_F3);
1929 }
1930 
1931 void Assembler::movss(Address dst, XMMRegister src) {
1932   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1933   InstructionMark im(this);
1934   simd_prefix(dst, src, VEX_SIMD_F3);
1935   emit_int8(0x11);
1936   emit_operand(src, dst);
1937 }
1938 
1939 void Assembler::movswl(Register dst, Address src) { // movsxw
1940   InstructionMark im(this);
1941   prefix(src, dst);
1942   emit_int8(0x0F);
1943   emit_int8((unsigned char)0xBF);
1944   emit_operand(dst, src);
1945 }
1946 
1947 void Assembler::movswl(Register dst, Register src) { // movsxw
1948   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1949   emit_int8(0x0F);
1950   emit_int8((unsigned char)0xBF);
1951   emit_int8((unsigned char)(0xC0 | encode));
1952 }
1953 
1954 void Assembler::movw(Address dst, int imm16) {
1955   InstructionMark im(this);
1956 
1957   emit_int8(0x66); // switch to 16-bit mode
1958   prefix(dst);
1959   emit_int8((unsigned char)0xC7);
1960   emit_operand(rax, dst, 2);
1961   emit_int16(imm16);
1962 }
1963 
1964 void Assembler::movw(Register dst, Address src) {
1965   InstructionMark im(this);
1966   emit_int8(0x66);
1967   prefix(src, dst);
1968   emit_int8((unsigned char)0x8B);
1969   emit_operand(dst, src);
1970 }
1971 
1972 void Assembler::movw(Address dst, Register src) {
1973   InstructionMark im(this);
1974   emit_int8(0x66);
1975   prefix(dst, src);
1976   emit_int8((unsigned char)0x89);
1977   emit_operand(src, dst);
1978 }
1979 
1980 void Assembler::movzbl(Register dst, Address src) { // movzxb
1981   InstructionMark im(this);
1982   prefix(src, dst);
1983   emit_int8(0x0F);
1984   emit_int8((unsigned char)0xB6);
1985   emit_operand(dst, src);
1986 }
1987 
1988 void Assembler::movzbl(Register dst, Register src) { // movzxb
1989   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
1990   int encode = prefix_and_encode(dst->encoding(), src->encoding(), true);
1991   emit_int8(0x0F);
1992   emit_int8((unsigned char)0xB6);
1993   emit_int8(0xC0 | encode);
1994 }
1995 
1996 void Assembler::movzwl(Register dst, Address src) { // movzxw
1997   InstructionMark im(this);
1998   prefix(src, dst);
1999   emit_int8(0x0F);
2000   emit_int8((unsigned char)0xB7);
2001   emit_operand(dst, src);
2002 }
2003 
2004 void Assembler::movzwl(Register dst, Register src) { // movzxw
2005   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2006   emit_int8(0x0F);
2007   emit_int8((unsigned char)0xB7);
2008   emit_int8(0xC0 | encode);
2009 }
2010 
2011 void Assembler::mull(Address src) {
2012   InstructionMark im(this);
2013   prefix(src);
2014   emit_int8((unsigned char)0xF7);
2015   emit_operand(rsp, src);
2016 }
2017 
2018 void Assembler::mull(Register src) {
2019   int encode = prefix_and_encode(src->encoding());
2020   emit_int8((unsigned char)0xF7);
2021   emit_int8((unsigned char)(0xE0 | encode));
2022 }
2023 
2024 void Assembler::mulsd(XMMRegister dst, Address src) {
2025   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2026   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2027 }
2028 
2029 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2030   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2031   emit_simd_arith(0x59, dst, src, VEX_SIMD_F2);
2032 }
2033 
2034 void Assembler::mulss(XMMRegister dst, Address src) {
2035   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2036   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2037 }
2038 
2039 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2040   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2041   emit_simd_arith(0x59, dst, src, VEX_SIMD_F3);
2042 }
2043 
2044 void Assembler::negl(Register dst) {
2045   int encode = prefix_and_encode(dst->encoding());
2046   emit_int8((unsigned char)0xF7);
2047   emit_int8((unsigned char)(0xD8 | encode));
2048 }
2049 
2050 void Assembler::nop(int i) {
2051 #ifdef ASSERT
2052   assert(i > 0, " ");
2053   // The fancy nops aren't currently recognized by debuggers making it a
2054   // pain to disassemble code while debugging. If asserts are on clearly
2055   // speed is not an issue so simply use the single byte traditional nop
2056   // to do alignment.
2057 
2058   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2059   return;
2060 
2061 #endif // ASSERT
2062 
2063   if (UseAddressNop && VM_Version::is_intel()) {
2064     //
2065     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2066     //  1: 0x90
2067     //  2: 0x66 0x90
2068     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2069     //  4: 0x0F 0x1F 0x40 0x00
2070     //  5: 0x0F 0x1F 0x44 0x00 0x00
2071     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2072     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2073     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2074     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2075     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2076     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2077 
2078     // The rest coding is Intel specific - don't use consecutive address nops
2079 
2080     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2081     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2082     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2083     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2084 
2085     while(i >= 15) {
2086       // For Intel don't generate consecutive addess nops (mix with regular nops)
2087       i -= 15;
2088       emit_int8(0x66);   // size prefix
2089       emit_int8(0x66);   // size prefix
2090       emit_int8(0x66);   // size prefix
2091       addr_nop_8();
2092       emit_int8(0x66);   // size prefix
2093       emit_int8(0x66);   // size prefix
2094       emit_int8(0x66);   // size prefix
2095       emit_int8((unsigned char)0x90);
2096                          // nop
2097     }
2098     switch (i) {
2099       case 14:
2100         emit_int8(0x66); // size prefix
2101       case 13:
2102         emit_int8(0x66); // size prefix
2103       case 12:
2104         addr_nop_8();
2105         emit_int8(0x66); // size prefix
2106         emit_int8(0x66); // size prefix
2107         emit_int8(0x66); // size prefix
2108         emit_int8((unsigned char)0x90);
2109                          // nop
2110         break;
2111       case 11:
2112         emit_int8(0x66); // size prefix
2113       case 10:
2114         emit_int8(0x66); // size prefix
2115       case 9:
2116         emit_int8(0x66); // size prefix
2117       case 8:
2118         addr_nop_8();
2119         break;
2120       case 7:
2121         addr_nop_7();
2122         break;
2123       case 6:
2124         emit_int8(0x66); // size prefix
2125       case 5:
2126         addr_nop_5();
2127         break;
2128       case 4:
2129         addr_nop_4();
2130         break;
2131       case 3:
2132         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2133         emit_int8(0x66); // size prefix
2134       case 2:
2135         emit_int8(0x66); // size prefix
2136       case 1:
2137         emit_int8((unsigned char)0x90);
2138                          // nop
2139         break;
2140       default:
2141         assert(i == 0, " ");
2142     }
2143     return;
2144   }
2145   if (UseAddressNop && VM_Version::is_amd()) {
2146     //
2147     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
2148     //  1: 0x90
2149     //  2: 0x66 0x90
2150     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2151     //  4: 0x0F 0x1F 0x40 0x00
2152     //  5: 0x0F 0x1F 0x44 0x00 0x00
2153     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2154     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2155     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2156     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2157     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2158     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2159 
2160     // The rest coding is AMD specific - use consecutive address nops
2161 
2162     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2163     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
2164     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2165     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2166     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2167     //     Size prefixes (0x66) are added for larger sizes
2168 
2169     while(i >= 22) {
2170       i -= 11;
2171       emit_int8(0x66); // size prefix
2172       emit_int8(0x66); // size prefix
2173       emit_int8(0x66); // size prefix
2174       addr_nop_8();
2175     }
2176     // Generate first nop for size between 21-12
2177     switch (i) {
2178       case 21:
2179         i -= 1;
2180         emit_int8(0x66); // size prefix
2181       case 20:
2182       case 19:
2183         i -= 1;
2184         emit_int8(0x66); // size prefix
2185       case 18:
2186       case 17:
2187         i -= 1;
2188         emit_int8(0x66); // size prefix
2189       case 16:
2190       case 15:
2191         i -= 8;
2192         addr_nop_8();
2193         break;
2194       case 14:
2195       case 13:
2196         i -= 7;
2197         addr_nop_7();
2198         break;
2199       case 12:
2200         i -= 6;
2201         emit_int8(0x66); // size prefix
2202         addr_nop_5();
2203         break;
2204       default:
2205         assert(i < 12, " ");
2206     }
2207 
2208     // Generate second nop for size between 11-1
2209     switch (i) {
2210       case 11:
2211         emit_int8(0x66); // size prefix
2212       case 10:
2213         emit_int8(0x66); // size prefix
2214       case 9:
2215         emit_int8(0x66); // size prefix
2216       case 8:
2217         addr_nop_8();
2218         break;
2219       case 7:
2220         addr_nop_7();
2221         break;
2222       case 6:
2223         emit_int8(0x66); // size prefix
2224       case 5:
2225         addr_nop_5();
2226         break;
2227       case 4:
2228         addr_nop_4();
2229         break;
2230       case 3:
2231         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
2232         emit_int8(0x66); // size prefix
2233       case 2:
2234         emit_int8(0x66); // size prefix
2235       case 1:
2236         emit_int8((unsigned char)0x90);
2237                          // nop
2238         break;
2239       default:
2240         assert(i == 0, " ");
2241     }
2242     return;
2243   }
2244 
2245   // Using nops with size prefixes "0x66 0x90".
2246   // From AMD Optimization Guide:
2247   //  1: 0x90
2248   //  2: 0x66 0x90
2249   //  3: 0x66 0x66 0x90
2250   //  4: 0x66 0x66 0x66 0x90
2251   //  5: 0x66 0x66 0x90 0x66 0x90
2252   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
2253   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
2254   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
2255   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2256   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
2257   //
2258   while(i > 12) {
2259     i -= 4;
2260     emit_int8(0x66); // size prefix
2261     emit_int8(0x66);
2262     emit_int8(0x66);
2263     emit_int8((unsigned char)0x90);
2264                      // nop
2265   }
2266   // 1 - 12 nops
2267   if(i > 8) {
2268     if(i > 9) {
2269       i -= 1;
2270       emit_int8(0x66);
2271     }
2272     i -= 3;
2273     emit_int8(0x66);
2274     emit_int8(0x66);
2275     emit_int8((unsigned char)0x90);
2276   }
2277   // 1 - 8 nops
2278   if(i > 4) {
2279     if(i > 6) {
2280       i -= 1;
2281       emit_int8(0x66);
2282     }
2283     i -= 3;
2284     emit_int8(0x66);
2285     emit_int8(0x66);
2286     emit_int8((unsigned char)0x90);
2287   }
2288   switch (i) {
2289     case 4:
2290       emit_int8(0x66);
2291     case 3:
2292       emit_int8(0x66);
2293     case 2:
2294       emit_int8(0x66);
2295     case 1:
2296       emit_int8((unsigned char)0x90);
2297       break;
2298     default:
2299       assert(i == 0, " ");
2300   }
2301 }
2302 
2303 void Assembler::notl(Register dst) {
2304   int encode = prefix_and_encode(dst->encoding());
2305   emit_int8((unsigned char)0xF7);
2306   emit_int8((unsigned char)(0xD0 | encode));
2307 }
2308 
2309 void Assembler::orl(Address dst, int32_t imm32) {
2310   InstructionMark im(this);
2311   prefix(dst);
2312   emit_arith_operand(0x81, rcx, dst, imm32);
2313 }
2314 
2315 void Assembler::orl(Register dst, int32_t imm32) {
2316   prefix(dst);
2317   emit_arith(0x81, 0xC8, dst, imm32);
2318 }
2319 
2320 void Assembler::orl(Register dst, Address src) {
2321   InstructionMark im(this);
2322   prefix(src, dst);
2323   emit_int8(0x0B);
2324   emit_operand(dst, src);
2325 }
2326 
2327 void Assembler::orl(Register dst, Register src) {
2328   (void) prefix_and_encode(dst->encoding(), src->encoding());
2329   emit_arith(0x0B, 0xC0, dst, src);
2330 }
2331 
2332 void Assembler::packuswb(XMMRegister dst, Address src) {
2333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2334   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2335   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2336 }
2337 
2338 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
2339   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2340   emit_simd_arith(0x67, dst, src, VEX_SIMD_66);
2341 }
2342 
2343 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
2344   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
2345   emit_vex_arith(0x67, dst, nds, src, VEX_SIMD_66, vector256);
2346 }
2347 
2348 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, bool vector256) {
2349   assert(VM_Version::supports_avx2(), "");
2350   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true, vector256);
2351   emit_int8(0x00);
2352   emit_int8(0xC0 | encode);
2353   emit_int8(imm8);
2354 }
2355 
2356 void Assembler::pause() {
2357   emit_int8((unsigned char)0xF3);
2358   emit_int8((unsigned char)0x90);
2359 }
2360 
2361 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
2362   assert(VM_Version::supports_sse4_2(), "");
2363   InstructionMark im(this);
2364   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2365   emit_int8(0x61);
2366   emit_operand(dst, src);
2367   emit_int8(imm8);
2368 }
2369 
2370 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
2371   assert(VM_Version::supports_sse4_2(), "");
2372   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
2373   emit_int8(0x61);
2374   emit_int8((unsigned char)(0xC0 | encode));
2375   emit_int8(imm8);
2376 }
2377 
2378 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
2379   assert(VM_Version::supports_sse4_1(), "");
2380   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2381   emit_int8(0x16);
2382   emit_int8((unsigned char)(0xC0 | encode));
2383   emit_int8(imm8);
2384 }
2385 
2386 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
2387   assert(VM_Version::supports_sse4_1(), "");
2388   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2389   emit_int8(0x16);
2390   emit_int8((unsigned char)(0xC0 | encode));
2391   emit_int8(imm8);
2392 }
2393 
2394 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
2395   assert(VM_Version::supports_sse4_1(), "");
2396   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, false);
2397   emit_int8(0x22);
2398   emit_int8((unsigned char)(0xC0 | encode));
2399   emit_int8(imm8);
2400 }
2401 
2402 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
2403   assert(VM_Version::supports_sse4_1(), "");
2404   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, true);
2405   emit_int8(0x22);
2406   emit_int8((unsigned char)(0xC0 | encode));
2407   emit_int8(imm8);
2408 }
2409 
2410 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
2411   assert(VM_Version::supports_sse4_1(), "");
2412   InstructionMark im(this);
2413   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2414   emit_int8(0x30);
2415   emit_operand(dst, src);
2416 }
2417 
2418 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
2419   assert(VM_Version::supports_sse4_1(), "");
2420   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2421   emit_int8(0x30);
2422   emit_int8((unsigned char)(0xC0 | encode));
2423 }
2424 
2425 // generic
2426 void Assembler::pop(Register dst) {
2427   int encode = prefix_and_encode(dst->encoding());
2428   emit_int8(0x58 | encode);
2429 }
2430 
2431 void Assembler::popcntl(Register dst, Address src) {
2432   assert(VM_Version::supports_popcnt(), "must support");
2433   InstructionMark im(this);
2434   emit_int8((unsigned char)0xF3);
2435   prefix(src, dst);
2436   emit_int8(0x0F);
2437   emit_int8((unsigned char)0xB8);
2438   emit_operand(dst, src);
2439 }
2440 
2441 void Assembler::popcntl(Register dst, Register src) {
2442   assert(VM_Version::supports_popcnt(), "must support");
2443   emit_int8((unsigned char)0xF3);
2444   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2445   emit_int8(0x0F);
2446   emit_int8((unsigned char)0xB8);
2447   emit_int8((unsigned char)(0xC0 | encode));
2448 }
2449 
2450 void Assembler::popf() {
2451   emit_int8((unsigned char)0x9D);
2452 }
2453 
2454 #ifndef _LP64 // no 32bit push/pop on amd64
2455 void Assembler::popl(Address dst) {
2456   // NOTE: this will adjust stack by 8byte on 64bits
2457   InstructionMark im(this);
2458   prefix(dst);
2459   emit_int8((unsigned char)0x8F);
2460   emit_operand(rax, dst);
2461 }
2462 #endif
2463 
2464 void Assembler::prefetch_prefix(Address src) {
2465   prefix(src);
2466   emit_int8(0x0F);
2467 }
2468 
2469 void Assembler::prefetchnta(Address src) {
2470   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2471   InstructionMark im(this);
2472   prefetch_prefix(src);
2473   emit_int8(0x18);
2474   emit_operand(rax, src); // 0, src
2475 }
2476 
2477 void Assembler::prefetchr(Address src) {
2478   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2479   InstructionMark im(this);
2480   prefetch_prefix(src);
2481   emit_int8(0x0D);
2482   emit_operand(rax, src); // 0, src
2483 }
2484 
2485 void Assembler::prefetcht0(Address src) {
2486   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2487   InstructionMark im(this);
2488   prefetch_prefix(src);
2489   emit_int8(0x18);
2490   emit_operand(rcx, src); // 1, src
2491 }
2492 
2493 void Assembler::prefetcht1(Address src) {
2494   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2495   InstructionMark im(this);
2496   prefetch_prefix(src);
2497   emit_int8(0x18);
2498   emit_operand(rdx, src); // 2, src
2499 }
2500 
2501 void Assembler::prefetcht2(Address src) {
2502   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
2503   InstructionMark im(this);
2504   prefetch_prefix(src);
2505   emit_int8(0x18);
2506   emit_operand(rbx, src); // 3, src
2507 }
2508 
2509 void Assembler::prefetchw(Address src) {
2510   assert(VM_Version::supports_3dnow_prefetch(), "must support");
2511   InstructionMark im(this);
2512   prefetch_prefix(src);
2513   emit_int8(0x0D);
2514   emit_operand(rcx, src); // 1, src
2515 }
2516 
2517 void Assembler::prefix(Prefix p) {
2518   emit_int8(p);
2519 }
2520 
2521 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
2522   assert(VM_Version::supports_ssse3(), "");
2523   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2524   emit_int8(0x00);
2525   emit_int8((unsigned char)(0xC0 | encode));
2526 }
2527 
2528 void Assembler::pshufb(XMMRegister dst, Address src) {
2529   assert(VM_Version::supports_ssse3(), "");
2530   InstructionMark im(this);
2531   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2532   emit_int8(0x00);
2533   emit_operand(dst, src);
2534 }
2535 
2536 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
2537   assert(isByte(mode), "invalid value");
2538   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2539   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_66);
2540   emit_int8(mode & 0xFF);
2541 
2542 }
2543 
2544 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
2545   assert(isByte(mode), "invalid value");
2546   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2547   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2548   InstructionMark im(this);
2549   simd_prefix(dst, src, VEX_SIMD_66);
2550   emit_int8(0x70);
2551   emit_operand(dst, src);
2552   emit_int8(mode & 0xFF);
2553 }
2554 
2555 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
2556   assert(isByte(mode), "invalid value");
2557   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2558   emit_simd_arith_nonds(0x70, dst, src, VEX_SIMD_F2);
2559   emit_int8(mode & 0xFF);
2560 }
2561 
2562 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
2563   assert(isByte(mode), "invalid value");
2564   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2565   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2566   InstructionMark im(this);
2567   simd_prefix(dst, src, VEX_SIMD_F2);
2568   emit_int8(0x70);
2569   emit_operand(dst, src);
2570   emit_int8(mode & 0xFF);
2571 }
2572 
2573 void Assembler::psrldq(XMMRegister dst, int shift) {
2574   // Shift 128 bit value in xmm register by number of bytes.
2575   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2576   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66);
2577   emit_int8(0x73);
2578   emit_int8((unsigned char)(0xC0 | encode));
2579   emit_int8(shift);
2580 }
2581 
2582 void Assembler::ptest(XMMRegister dst, Address src) {
2583   assert(VM_Version::supports_sse4_1(), "");
2584   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2585   InstructionMark im(this);
2586   simd_prefix(dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2587   emit_int8(0x17);
2588   emit_operand(dst, src);
2589 }
2590 
2591 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
2592   assert(VM_Version::supports_sse4_1(), "");
2593   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
2594   emit_int8(0x17);
2595   emit_int8((unsigned char)(0xC0 | encode));
2596 }
2597 
2598 void Assembler::vptest(XMMRegister dst, Address src) {
2599   assert(VM_Version::supports_avx(), "");
2600   InstructionMark im(this);
2601   bool vector256 = true;
2602   assert(dst != xnoreg, "sanity");
2603   int dst_enc = dst->encoding();
2604   // swap src<->dst for encoding
2605   vex_prefix(src, 0, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
2606   emit_int8(0x17);
2607   emit_operand(dst, src);
2608 }
2609 
2610 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
2611   assert(VM_Version::supports_avx(), "");
2612   bool vector256 = true;
2613   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
2614   emit_int8(0x17);
2615   emit_int8((unsigned char)(0xC0 | encode));
2616 }
2617 
2618 void Assembler::punpcklbw(XMMRegister dst, Address src) {
2619   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2620   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2621   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2622 }
2623 
2624 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
2625   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2626   emit_simd_arith(0x60, dst, src, VEX_SIMD_66);
2627 }
2628 
2629 void Assembler::punpckldq(XMMRegister dst, Address src) {
2630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2631   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
2632   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2633 }
2634 
2635 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
2636   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2637   emit_simd_arith(0x62, dst, src, VEX_SIMD_66);
2638 }
2639 
2640 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
2641   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2642   emit_simd_arith(0x6C, dst, src, VEX_SIMD_66);
2643 }
2644 
2645 void Assembler::push(int32_t imm32) {
2646   // in 64bits we push 64bits onto the stack but only
2647   // take a 32bit immediate
2648   emit_int8(0x68);
2649   emit_int32(imm32);
2650 }
2651 
2652 void Assembler::push(Register src) {
2653   int encode = prefix_and_encode(src->encoding());
2654 
2655   emit_int8(0x50 | encode);
2656 }
2657 
2658 void Assembler::pushf() {
2659   emit_int8((unsigned char)0x9C);
2660 }
2661 
2662 #ifndef _LP64 // no 32bit push/pop on amd64
2663 void Assembler::pushl(Address src) {
2664   // Note this will push 64bit on 64bit
2665   InstructionMark im(this);
2666   prefix(src);
2667   emit_int8((unsigned char)0xFF);
2668   emit_operand(rsi, src);
2669 }
2670 #endif
2671 
2672 void Assembler::rcll(Register dst, int imm8) {
2673   assert(isShiftCount(imm8), "illegal shift count");
2674   int encode = prefix_and_encode(dst->encoding());
2675   if (imm8 == 1) {
2676     emit_int8((unsigned char)0xD1);
2677     emit_int8((unsigned char)(0xD0 | encode));
2678   } else {
2679     emit_int8((unsigned char)0xC1);
2680     emit_int8((unsigned char)0xD0 | encode);
2681     emit_int8(imm8);
2682   }
2683 }
2684 
2685 void Assembler::rdtsc() {
2686   emit_int8((unsigned char)0x0F);
2687   emit_int8((unsigned char)0x31);
2688 }
2689 
2690 // copies data from [esi] to [edi] using rcx pointer sized words
2691 // generic
2692 void Assembler::rep_mov() {
2693   emit_int8((unsigned char)0xF3);
2694   // MOVSQ
2695   LP64_ONLY(prefix(REX_W));
2696   emit_int8((unsigned char)0xA5);
2697 }
2698 
2699 // sets rcx bytes with rax, value at [edi]
2700 void Assembler::rep_stosb() {
2701   emit_int8((unsigned char)0xF3); // REP
2702   LP64_ONLY(prefix(REX_W));
2703   emit_int8((unsigned char)0xAA); // STOSB
2704 }
2705 
2706 // sets rcx pointer sized words with rax, value at [edi]
2707 // generic
2708 void Assembler::rep_stos() {
2709   emit_int8((unsigned char)0xF3); // REP
2710   LP64_ONLY(prefix(REX_W));       // LP64:STOSQ, LP32:STOSD
2711   emit_int8((unsigned char)0xAB);
2712 }
2713 
2714 // scans rcx pointer sized words at [edi] for occurance of rax,
2715 // generic
2716 void Assembler::repne_scan() { // repne_scan
2717   emit_int8((unsigned char)0xF2);
2718   // SCASQ
2719   LP64_ONLY(prefix(REX_W));
2720   emit_int8((unsigned char)0xAF);
2721 }
2722 
2723 #ifdef _LP64
2724 // scans rcx 4 byte words at [edi] for occurance of rax,
2725 // generic
2726 void Assembler::repne_scanl() { // repne_scan
2727   emit_int8((unsigned char)0xF2);
2728   // SCASL
2729   emit_int8((unsigned char)0xAF);
2730 }
2731 #endif
2732 
2733 void Assembler::ret(int imm16) {
2734   if (imm16 == 0) {
2735     emit_int8((unsigned char)0xC3);
2736   } else {
2737     emit_int8((unsigned char)0xC2);
2738     emit_int16(imm16);
2739   }
2740 }
2741 
2742 void Assembler::sahf() {
2743 #ifdef _LP64
2744   // Not supported in 64bit mode
2745   ShouldNotReachHere();
2746 #endif
2747   emit_int8((unsigned char)0x9E);
2748 }
2749 
2750 void Assembler::sarl(Register dst, int imm8) {
2751   int encode = prefix_and_encode(dst->encoding());
2752   assert(isShiftCount(imm8), "illegal shift count");
2753   if (imm8 == 1) {
2754     emit_int8((unsigned char)0xD1);
2755     emit_int8((unsigned char)(0xF8 | encode));
2756   } else {
2757     emit_int8((unsigned char)0xC1);
2758     emit_int8((unsigned char)(0xF8 | encode));
2759     emit_int8(imm8);
2760   }
2761 }
2762 
2763 void Assembler::sarl(Register dst) {
2764   int encode = prefix_and_encode(dst->encoding());
2765   emit_int8((unsigned char)0xD3);
2766   emit_int8((unsigned char)(0xF8 | encode));
2767 }
2768 
2769 void Assembler::sbbl(Address dst, int32_t imm32) {
2770   InstructionMark im(this);
2771   prefix(dst);
2772   emit_arith_operand(0x81, rbx, dst, imm32);
2773 }
2774 
2775 void Assembler::sbbl(Register dst, int32_t imm32) {
2776   prefix(dst);
2777   emit_arith(0x81, 0xD8, dst, imm32);
2778 }
2779 
2780 
2781 void Assembler::sbbl(Register dst, Address src) {
2782   InstructionMark im(this);
2783   prefix(src, dst);
2784   emit_int8(0x1B);
2785   emit_operand(dst, src);
2786 }
2787 
2788 void Assembler::sbbl(Register dst, Register src) {
2789   (void) prefix_and_encode(dst->encoding(), src->encoding());
2790   emit_arith(0x1B, 0xC0, dst, src);
2791 }
2792 
2793 void Assembler::setb(Condition cc, Register dst) {
2794   assert(0 <= cc && cc < 16, "illegal cc");
2795   int encode = prefix_and_encode(dst->encoding(), true);
2796   emit_int8(0x0F);
2797   emit_int8((unsigned char)0x90 | cc);
2798   emit_int8((unsigned char)(0xC0 | encode));
2799 }
2800 
2801 void Assembler::shll(Register dst, int imm8) {
2802   assert(isShiftCount(imm8), "illegal shift count");
2803   int encode = prefix_and_encode(dst->encoding());
2804   if (imm8 == 1 ) {
2805     emit_int8((unsigned char)0xD1);
2806     emit_int8((unsigned char)(0xE0 | encode));
2807   } else {
2808     emit_int8((unsigned char)0xC1);
2809     emit_int8((unsigned char)(0xE0 | encode));
2810     emit_int8(imm8);
2811   }
2812 }
2813 
2814 void Assembler::shll(Register dst) {
2815   int encode = prefix_and_encode(dst->encoding());
2816   emit_int8((unsigned char)0xD3);
2817   emit_int8((unsigned char)(0xE0 | encode));
2818 }
2819 
2820 void Assembler::shrl(Register dst, int imm8) {
2821   assert(isShiftCount(imm8), "illegal shift count");
2822   int encode = prefix_and_encode(dst->encoding());
2823   emit_int8((unsigned char)0xC1);
2824   emit_int8((unsigned char)(0xE8 | encode));
2825   emit_int8(imm8);
2826 }
2827 
2828 void Assembler::shrl(Register dst) {
2829   int encode = prefix_and_encode(dst->encoding());
2830   emit_int8((unsigned char)0xD3);
2831   emit_int8((unsigned char)(0xE8 | encode));
2832 }
2833 
2834 // copies a single word from [esi] to [edi]
2835 void Assembler::smovl() {
2836   emit_int8((unsigned char)0xA5);
2837 }
2838 
2839 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
2840   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2841   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2842 }
2843 
2844 void Assembler::sqrtsd(XMMRegister dst, Address src) {
2845   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2846   emit_simd_arith(0x51, dst, src, VEX_SIMD_F2);
2847 }
2848 
2849 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
2850   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2851   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2852 }
2853 
2854 void Assembler::std() {
2855   emit_int8((unsigned char)0xFD);
2856 }
2857 
2858 void Assembler::sqrtss(XMMRegister dst, Address src) {
2859   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2860   emit_simd_arith(0x51, dst, src, VEX_SIMD_F3);
2861 }
2862 
2863 void Assembler::stmxcsr( Address dst) {
2864   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2865   InstructionMark im(this);
2866   prefix(dst);
2867   emit_int8(0x0F);
2868   emit_int8((unsigned char)0xAE);
2869   emit_operand(as_Register(3), dst);
2870 }
2871 
2872 void Assembler::subl(Address dst, int32_t imm32) {
2873   InstructionMark im(this);
2874   prefix(dst);
2875   emit_arith_operand(0x81, rbp, dst, imm32);
2876 }
2877 
2878 void Assembler::subl(Address dst, Register src) {
2879   InstructionMark im(this);
2880   prefix(dst, src);
2881   emit_int8(0x29);
2882   emit_operand(src, dst);
2883 }
2884 
2885 void Assembler::subl(Register dst, int32_t imm32) {
2886   prefix(dst);
2887   emit_arith(0x81, 0xE8, dst, imm32);
2888 }
2889 
2890 // Force generation of a 4 byte immediate value even if it fits into 8bit
2891 void Assembler::subl_imm32(Register dst, int32_t imm32) {
2892   prefix(dst);
2893   emit_arith_imm32(0x81, 0xE8, dst, imm32);
2894 }
2895 
2896 void Assembler::subl(Register dst, Address src) {
2897   InstructionMark im(this);
2898   prefix(src, dst);
2899   emit_int8(0x2B);
2900   emit_operand(dst, src);
2901 }
2902 
2903 void Assembler::subl(Register dst, Register src) {
2904   (void) prefix_and_encode(dst->encoding(), src->encoding());
2905   emit_arith(0x2B, 0xC0, dst, src);
2906 }
2907 
2908 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
2909   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2910   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2911 }
2912 
2913 void Assembler::subsd(XMMRegister dst, Address src) {
2914   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2915   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F2);
2916 }
2917 
2918 void Assembler::subss(XMMRegister dst, XMMRegister src) {
2919   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2920   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2921 }
2922 
2923 void Assembler::subss(XMMRegister dst, Address src) {
2924   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2925   emit_simd_arith(0x5C, dst, src, VEX_SIMD_F3);
2926 }
2927 
2928 void Assembler::testb(Register dst, int imm8) {
2929   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2930   (void) prefix_and_encode(dst->encoding(), true);
2931   emit_arith_b(0xF6, 0xC0, dst, imm8);
2932 }
2933 
2934 void Assembler::testl(Register dst, int32_t imm32) {
2935   // not using emit_arith because test
2936   // doesn't support sign-extension of
2937   // 8bit operands
2938   int encode = dst->encoding();
2939   if (encode == 0) {
2940     emit_int8((unsigned char)0xA9);
2941   } else {
2942     encode = prefix_and_encode(encode);
2943     emit_int8((unsigned char)0xF7);
2944     emit_int8((unsigned char)(0xC0 | encode));
2945   }
2946   emit_int32(imm32);
2947 }
2948 
2949 void Assembler::testl(Register dst, Register src) {
2950   (void) prefix_and_encode(dst->encoding(), src->encoding());
2951   emit_arith(0x85, 0xC0, dst, src);
2952 }
2953 
2954 void Assembler::testl(Register dst, Address  src) {
2955   InstructionMark im(this);
2956   prefix(src, dst);
2957   emit_int8((unsigned char)0x85);
2958   emit_operand(dst, src);
2959 }
2960 
2961 void Assembler::tzcntl(Register dst, Register src) {
2962   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2963   emit_int8((unsigned char)0xF3);
2964   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2965   emit_int8(0x0F);
2966   emit_int8((unsigned char)0xBC);
2967   emit_int8((unsigned char)0xC0 | encode);
2968 }
2969 
2970 void Assembler::tzcntq(Register dst, Register src) {
2971   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
2972   emit_int8((unsigned char)0xF3);
2973   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
2974   emit_int8(0x0F);
2975   emit_int8((unsigned char)0xBC);
2976   emit_int8((unsigned char)(0xC0 | encode));
2977 }
2978 
2979 void Assembler::ucomisd(XMMRegister dst, Address src) {
2980   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2981   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2982 }
2983 
2984 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
2985   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2986   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_66);
2987 }
2988 
2989 void Assembler::ucomiss(XMMRegister dst, Address src) {
2990   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2991   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2992 }
2993 
2994 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
2995   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2996   emit_simd_arith_nonds(0x2E, dst, src, VEX_SIMD_NONE);
2997 }
2998 
2999 void Assembler::xabort(int8_t imm8) {
3000   emit_int8((unsigned char)0xC6);
3001   emit_int8((unsigned char)0xF8);
3002   emit_int8((unsigned char)(imm8 & 0xFF));
3003 }
3004 
3005 void Assembler::xaddl(Address dst, Register src) {
3006   InstructionMark im(this);
3007   prefix(dst, src);
3008   emit_int8(0x0F);
3009   emit_int8((unsigned char)0xC1);
3010   emit_operand(src, dst);
3011 }
3012 
3013 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
3014   InstructionMark im(this);
3015   relocate(rtype);
3016   if (abort.is_bound()) {
3017     address entry = target(abort);
3018     assert(entry != NULL, "abort entry NULL");
3019     intptr_t offset = entry - pc();
3020     emit_int8((unsigned char)0xC7);
3021     emit_int8((unsigned char)0xF8);
3022     emit_int32(offset - 6); // 2 opcode + 4 address
3023   } else {
3024     abort.add_patch_at(code(), locator());
3025     emit_int8((unsigned char)0xC7);
3026     emit_int8((unsigned char)0xF8);
3027     emit_int32(0);
3028   }
3029 }
3030 
3031 void Assembler::xchgl(Register dst, Address src) { // xchg
3032   InstructionMark im(this);
3033   prefix(src, dst);
3034   emit_int8((unsigned char)0x87);
3035   emit_operand(dst, src);
3036 }
3037 
3038 void Assembler::xchgl(Register dst, Register src) {
3039   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3040   emit_int8((unsigned char)0x87);
3041   emit_int8((unsigned char)(0xC0 | encode));
3042 }
3043 
3044 void Assembler::xend() {
3045   emit_int8((unsigned char)0x0F);
3046   emit_int8((unsigned char)0x01);
3047   emit_int8((unsigned char)0xD5);
3048 }
3049 
3050 void Assembler::xgetbv() {
3051   emit_int8(0x0F);
3052   emit_int8(0x01);
3053   emit_int8((unsigned char)0xD0);
3054 }
3055 
3056 void Assembler::xorl(Register dst, int32_t imm32) {
3057   prefix(dst);
3058   emit_arith(0x81, 0xF0, dst, imm32);
3059 }
3060 
3061 void Assembler::xorl(Register dst, Address src) {
3062   InstructionMark im(this);
3063   prefix(src, dst);
3064   emit_int8(0x33);
3065   emit_operand(dst, src);
3066 }
3067 
3068 void Assembler::xorl(Register dst, Register src) {
3069   (void) prefix_and_encode(dst->encoding(), src->encoding());
3070   emit_arith(0x33, 0xC0, dst, src);
3071 }
3072 
3073 
3074 // AVX 3-operands scalar float-point arithmetic instructions
3075 
3076 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
3077   assert(VM_Version::supports_avx(), "");
3078   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3079 }
3080 
3081 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3082   assert(VM_Version::supports_avx(), "");
3083   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3084 }
3085 
3086 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
3087   assert(VM_Version::supports_avx(), "");
3088   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3089 }
3090 
3091 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3092   assert(VM_Version::supports_avx(), "");
3093   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3094 }
3095 
3096 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
3097   assert(VM_Version::supports_avx(), "");
3098   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3099 }
3100 
3101 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3102   assert(VM_Version::supports_avx(), "");
3103   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3104 }
3105 
3106 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
3107   assert(VM_Version::supports_avx(), "");
3108   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3109 }
3110 
3111 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3112   assert(VM_Version::supports_avx(), "");
3113   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3114 }
3115 
3116 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
3117   assert(VM_Version::supports_avx(), "");
3118   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3119 }
3120 
3121 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3122   assert(VM_Version::supports_avx(), "");
3123   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3124 }
3125 
3126 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
3127   assert(VM_Version::supports_avx(), "");
3128   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3129 }
3130 
3131 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3132   assert(VM_Version::supports_avx(), "");
3133   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3134 }
3135 
3136 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
3137   assert(VM_Version::supports_avx(), "");
3138   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3139 }
3140 
3141 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3142   assert(VM_Version::supports_avx(), "");
3143   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F2, /* vector256 */ false);
3144 }
3145 
3146 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
3147   assert(VM_Version::supports_avx(), "");
3148   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3149 }
3150 
3151 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3152   assert(VM_Version::supports_avx(), "");
3153   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_F3, /* vector256 */ false);
3154 }
3155 
3156 //====================VECTOR ARITHMETIC=====================================
3157 
3158 // Float-point vector arithmetic
3159 
3160 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
3161   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3162   emit_simd_arith(0x58, dst, src, VEX_SIMD_66);
3163 }
3164 
3165 void Assembler::addps(XMMRegister dst, XMMRegister src) {
3166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3167   emit_simd_arith(0x58, dst, src, VEX_SIMD_NONE);
3168 }
3169 
3170 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3171   assert(VM_Version::supports_avx(), "");
3172   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3173 }
3174 
3175 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3176   assert(VM_Version::supports_avx(), "");
3177   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3178 }
3179 
3180 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3181   assert(VM_Version::supports_avx(), "");
3182   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_66, vector256);
3183 }
3184 
3185 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3186   assert(VM_Version::supports_avx(), "");
3187   emit_vex_arith(0x58, dst, nds, src, VEX_SIMD_NONE, vector256);
3188 }
3189 
3190 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
3191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3192   emit_simd_arith(0x5C, dst, src, VEX_SIMD_66);
3193 }
3194 
3195 void Assembler::subps(XMMRegister dst, XMMRegister src) {
3196   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3197   emit_simd_arith(0x5C, dst, src, VEX_SIMD_NONE);
3198 }
3199 
3200 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3201   assert(VM_Version::supports_avx(), "");
3202   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3203 }
3204 
3205 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3206   assert(VM_Version::supports_avx(), "");
3207   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3208 }
3209 
3210 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3211   assert(VM_Version::supports_avx(), "");
3212   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_66, vector256);
3213 }
3214 
3215 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3216   assert(VM_Version::supports_avx(), "");
3217   emit_vex_arith(0x5C, dst, nds, src, VEX_SIMD_NONE, vector256);
3218 }
3219 
3220 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
3221   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3222   emit_simd_arith(0x59, dst, src, VEX_SIMD_66);
3223 }
3224 
3225 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
3226   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3227   emit_simd_arith(0x59, dst, src, VEX_SIMD_NONE);
3228 }
3229 
3230 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3231   assert(VM_Version::supports_avx(), "");
3232   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3233 }
3234 
3235 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3236   assert(VM_Version::supports_avx(), "");
3237   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3238 }
3239 
3240 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3241   assert(VM_Version::supports_avx(), "");
3242   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_66, vector256);
3243 }
3244 
3245 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3246   assert(VM_Version::supports_avx(), "");
3247   emit_vex_arith(0x59, dst, nds, src, VEX_SIMD_NONE, vector256);
3248 }
3249 
3250 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
3251   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3252   emit_simd_arith(0x5E, dst, src, VEX_SIMD_66);
3253 }
3254 
3255 void Assembler::divps(XMMRegister dst, XMMRegister src) {
3256   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3257   emit_simd_arith(0x5E, dst, src, VEX_SIMD_NONE);
3258 }
3259 
3260 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3261   assert(VM_Version::supports_avx(), "");
3262   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3263 }
3264 
3265 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3266   assert(VM_Version::supports_avx(), "");
3267   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3268 }
3269 
3270 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3271   assert(VM_Version::supports_avx(), "");
3272   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_66, vector256);
3273 }
3274 
3275 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3276   assert(VM_Version::supports_avx(), "");
3277   emit_vex_arith(0x5E, dst, nds, src, VEX_SIMD_NONE, vector256);
3278 }
3279 
3280 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
3281   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3282   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3283 }
3284 
3285 void Assembler::andps(XMMRegister dst, XMMRegister src) {
3286   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3287   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3288 }
3289 
3290 void Assembler::andps(XMMRegister dst, Address src) {
3291   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3292   emit_simd_arith(0x54, dst, src, VEX_SIMD_NONE);
3293 }
3294 
3295 void Assembler::andpd(XMMRegister dst, Address src) {
3296   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3297   emit_simd_arith(0x54, dst, src, VEX_SIMD_66);
3298 }
3299 
3300 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3301   assert(VM_Version::supports_avx(), "");
3302   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3303 }
3304 
3305 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3306   assert(VM_Version::supports_avx(), "");
3307   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3308 }
3309 
3310 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3311   assert(VM_Version::supports_avx(), "");
3312   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_66, vector256);
3313 }
3314 
3315 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3316   assert(VM_Version::supports_avx(), "");
3317   emit_vex_arith(0x54, dst, nds, src, VEX_SIMD_NONE, vector256);
3318 }
3319 
3320 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
3321   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3322   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3323 }
3324 
3325 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
3326   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3327   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3328 }
3329 
3330 void Assembler::xorpd(XMMRegister dst, Address src) {
3331   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3332   emit_simd_arith(0x57, dst, src, VEX_SIMD_66);
3333 }
3334 
3335 void Assembler::xorps(XMMRegister dst, Address src) {
3336   NOT_LP64(assert(VM_Version::supports_sse(), ""));
3337   emit_simd_arith(0x57, dst, src, VEX_SIMD_NONE);
3338 }
3339 
3340 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3341   assert(VM_Version::supports_avx(), "");
3342   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3343 }
3344 
3345 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3346   assert(VM_Version::supports_avx(), "");
3347   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3348 }
3349 
3350 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3351   assert(VM_Version::supports_avx(), "");
3352   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_66, vector256);
3353 }
3354 
3355 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3356   assert(VM_Version::supports_avx(), "");
3357   emit_vex_arith(0x57, dst, nds, src, VEX_SIMD_NONE, vector256);
3358 }
3359 
3360 
3361 // Integer vector arithmetic
3362 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3363   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3364   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3365   emit_int8(0x01);
3366   emit_int8((unsigned char)(0xC0 | encode));
3367 }
3368 
3369 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3370   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3371   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3372   emit_int8(0x02);
3373   emit_int8((unsigned char)(0xC0 | encode));
3374 }
3375 
3376 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
3377   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3378   emit_simd_arith(0xFC, dst, src, VEX_SIMD_66);
3379 }
3380 
3381 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
3382   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3383   emit_simd_arith(0xFD, dst, src, VEX_SIMD_66);
3384 }
3385 
3386 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
3387   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3388   emit_simd_arith(0xFE, dst, src, VEX_SIMD_66);
3389 }
3390 
3391 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
3392   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3393   emit_simd_arith(0xD4, dst, src, VEX_SIMD_66);
3394 }
3395 
3396 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
3397   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
3398   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3399   emit_int8(0x01);
3400   emit_int8((unsigned char)(0xC0 | encode));
3401 }
3402 
3403 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
3404   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
3405   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3406   emit_int8(0x02);
3407   emit_int8((unsigned char)(0xC0 | encode));
3408 }
3409 
3410 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3411   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3412   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3413 }
3414 
3415 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3416   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3417   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3418 }
3419 
3420 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3421   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3422   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3423 }
3424 
3425 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3426   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3427   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3428 }
3429 
3430 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3431   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3432   emit_vex_arith(0xFC, dst, nds, src, VEX_SIMD_66, vector256);
3433 }
3434 
3435 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3436   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3437   emit_vex_arith(0xFD, dst, nds, src, VEX_SIMD_66, vector256);
3438 }
3439 
3440 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3441   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3442   emit_vex_arith(0xFE, dst, nds, src, VEX_SIMD_66, vector256);
3443 }
3444 
3445 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3446   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3447   emit_vex_arith(0xD4, dst, nds, src, VEX_SIMD_66, vector256);
3448 }
3449 
3450 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
3451   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3452   emit_simd_arith(0xF8, dst, src, VEX_SIMD_66);
3453 }
3454 
3455 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
3456   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3457   emit_simd_arith(0xF9, dst, src, VEX_SIMD_66);
3458 }
3459 
3460 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
3461   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3462   emit_simd_arith(0xFA, dst, src, VEX_SIMD_66);
3463 }
3464 
3465 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
3466   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3467   emit_simd_arith(0xFB, dst, src, VEX_SIMD_66);
3468 }
3469 
3470 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3471   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3472   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3473 }
3474 
3475 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3476   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3477   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3478 }
3479 
3480 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3481   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3482   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3483 }
3484 
3485 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3486   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3487   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3488 }
3489 
3490 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3491   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3492   emit_vex_arith(0xF8, dst, nds, src, VEX_SIMD_66, vector256);
3493 }
3494 
3495 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3496   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3497   emit_vex_arith(0xF9, dst, nds, src, VEX_SIMD_66, vector256);
3498 }
3499 
3500 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3501   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3502   emit_vex_arith(0xFA, dst, nds, src, VEX_SIMD_66, vector256);
3503 }
3504 
3505 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3506   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3507   emit_vex_arith(0xFB, dst, nds, src, VEX_SIMD_66, vector256);
3508 }
3509 
3510 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
3511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3512   emit_simd_arith(0xD5, dst, src, VEX_SIMD_66);
3513 }
3514 
3515 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
3516   assert(VM_Version::supports_sse4_1(), "");
3517   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38);
3518   emit_int8(0x40);
3519   emit_int8((unsigned char)(0xC0 | encode));
3520 }
3521 
3522 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3523   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3524   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3525 }
3526 
3527 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3528   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3529   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3530   emit_int8(0x40);
3531   emit_int8((unsigned char)(0xC0 | encode));
3532 }
3533 
3534 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3535   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3536   emit_vex_arith(0xD5, dst, nds, src, VEX_SIMD_66, vector256);
3537 }
3538 
3539 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3540   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3541   InstructionMark im(this);
3542   int dst_enc = dst->encoding();
3543   int nds_enc = nds->is_valid() ? nds->encoding() : 0;
3544   vex_prefix(src, nds_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, false, vector256);
3545   emit_int8(0x40);
3546   emit_operand(dst, src);
3547 }
3548 
3549 // Shift packed integers left by specified number of bits.
3550 void Assembler::psllw(XMMRegister dst, int shift) {
3551   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3552   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3553   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3554   emit_int8(0x71);
3555   emit_int8((unsigned char)(0xC0 | encode));
3556   emit_int8(shift & 0xFF);
3557 }
3558 
3559 void Assembler::pslld(XMMRegister dst, int shift) {
3560   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3561   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3562   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3563   emit_int8(0x72);
3564   emit_int8((unsigned char)(0xC0 | encode));
3565   emit_int8(shift & 0xFF);
3566 }
3567 
3568 void Assembler::psllq(XMMRegister dst, int shift) {
3569   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3570   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3571   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66);
3572   emit_int8(0x73);
3573   emit_int8((unsigned char)(0xC0 | encode));
3574   emit_int8(shift & 0xFF);
3575 }
3576 
3577 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
3578   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3579   emit_simd_arith(0xF1, dst, shift, VEX_SIMD_66);
3580 }
3581 
3582 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
3583   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3584   emit_simd_arith(0xF2, dst, shift, VEX_SIMD_66);
3585 }
3586 
3587 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
3588   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3589   emit_simd_arith(0xF3, dst, shift, VEX_SIMD_66);
3590 }
3591 
3592 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3593   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3594   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
3595   emit_vex_arith(0x71, xmm6, dst, src, VEX_SIMD_66, vector256);
3596   emit_int8(shift & 0xFF);
3597 }
3598 
3599 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3600   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3601   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
3602   emit_vex_arith(0x72, xmm6, dst, src, VEX_SIMD_66, vector256);
3603   emit_int8(shift & 0xFF);
3604 }
3605 
3606 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3607   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3608   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
3609   emit_vex_arith(0x73, xmm6, dst, src, VEX_SIMD_66, vector256);
3610   emit_int8(shift & 0xFF);
3611 }
3612 
3613 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3614   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3615   emit_vex_arith(0xF1, dst, src, shift, VEX_SIMD_66, vector256);
3616 }
3617 
3618 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3619   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3620   emit_vex_arith(0xF2, dst, src, shift, VEX_SIMD_66, vector256);
3621 }
3622 
3623 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3624   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3625   emit_vex_arith(0xF3, dst, src, shift, VEX_SIMD_66, vector256);
3626 }
3627 
3628 // Shift packed integers logically right by specified number of bits.
3629 void Assembler::psrlw(XMMRegister dst, int shift) {
3630   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3631   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
3632   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3633   emit_int8(0x71);
3634   emit_int8((unsigned char)(0xC0 | encode));
3635   emit_int8(shift & 0xFF);
3636 }
3637 
3638 void Assembler::psrld(XMMRegister dst, int shift) {
3639   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3640   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
3641   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3642   emit_int8(0x72);
3643   emit_int8((unsigned char)(0xC0 | encode));
3644   emit_int8(shift & 0xFF);
3645 }
3646 
3647 void Assembler::psrlq(XMMRegister dst, int shift) {
3648   // Do not confuse it with psrldq SSE2 instruction which
3649   // shifts 128 bit value in xmm register by number of bytes.
3650   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3651   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3652   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66);
3653   emit_int8(0x73);
3654   emit_int8((unsigned char)(0xC0 | encode));
3655   emit_int8(shift & 0xFF);
3656 }
3657 
3658 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
3659   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3660   emit_simd_arith(0xD1, dst, shift, VEX_SIMD_66);
3661 }
3662 
3663 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
3664   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3665   emit_simd_arith(0xD2, dst, shift, VEX_SIMD_66);
3666 }
3667 
3668 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
3669   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3670   emit_simd_arith(0xD3, dst, shift, VEX_SIMD_66);
3671 }
3672 
3673 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3674   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3675   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3676   emit_vex_arith(0x71, xmm2, dst, src, VEX_SIMD_66, vector256);
3677   emit_int8(shift & 0xFF);
3678 }
3679 
3680 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3681   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3682   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3683   emit_vex_arith(0x72, xmm2, dst, src, VEX_SIMD_66, vector256);
3684   emit_int8(shift & 0xFF);
3685 }
3686 
3687 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3688   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3689   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
3690   emit_vex_arith(0x73, xmm2, dst, src, VEX_SIMD_66, vector256);
3691   emit_int8(shift & 0xFF);
3692 }
3693 
3694 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3695   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3696   emit_vex_arith(0xD1, dst, src, shift, VEX_SIMD_66, vector256);
3697 }
3698 
3699 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3700   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3701   emit_vex_arith(0xD2, dst, src, shift, VEX_SIMD_66, vector256);
3702 }
3703 
3704 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3705   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3706   emit_vex_arith(0xD3, dst, src, shift, VEX_SIMD_66, vector256);
3707 }
3708 
3709 // Shift packed integers arithmetically right by specified number of bits.
3710 void Assembler::psraw(XMMRegister dst, int shift) {
3711   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3712   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3713   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3714   emit_int8(0x71);
3715   emit_int8((unsigned char)(0xC0 | encode));
3716   emit_int8(shift & 0xFF);
3717 }
3718 
3719 void Assembler::psrad(XMMRegister dst, int shift) {
3720   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3721   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
3722   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66);
3723   emit_int8(0x72);
3724   emit_int8((unsigned char)(0xC0 | encode));
3725   emit_int8(shift & 0xFF);
3726 }
3727 
3728 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
3729   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3730   emit_simd_arith(0xE1, dst, shift, VEX_SIMD_66);
3731 }
3732 
3733 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
3734   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3735   emit_simd_arith(0xE2, dst, shift, VEX_SIMD_66);
3736 }
3737 
3738 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3739   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3740   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3741   emit_vex_arith(0x71, xmm4, dst, src, VEX_SIMD_66, vector256);
3742   emit_int8(shift & 0xFF);
3743 }
3744 
3745 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, bool vector256) {
3746   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3747   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
3748   emit_vex_arith(0x72, xmm4, dst, src, VEX_SIMD_66, vector256);
3749   emit_int8(shift & 0xFF);
3750 }
3751 
3752 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3753   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3754   emit_vex_arith(0xE1, dst, src, shift, VEX_SIMD_66, vector256);
3755 }
3756 
3757 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, bool vector256) {
3758   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3759   emit_vex_arith(0xE2, dst, src, shift, VEX_SIMD_66, vector256);
3760 }
3761 
3762 
3763 // AND packed integers
3764 void Assembler::pand(XMMRegister dst, XMMRegister src) {
3765   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3766   emit_simd_arith(0xDB, dst, src, VEX_SIMD_66);
3767 }
3768 
3769 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3770   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3771   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3772 }
3773 
3774 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3775   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3776   emit_vex_arith(0xDB, dst, nds, src, VEX_SIMD_66, vector256);
3777 }
3778 
3779 void Assembler::por(XMMRegister dst, XMMRegister src) {
3780   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3781   emit_simd_arith(0xEB, dst, src, VEX_SIMD_66);
3782 }
3783 
3784 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3785   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3786   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3787 }
3788 
3789 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3790   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3791   emit_vex_arith(0xEB, dst, nds, src, VEX_SIMD_66, vector256);
3792 }
3793 
3794 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
3795   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3796   emit_simd_arith(0xEF, dst, src, VEX_SIMD_66);
3797 }
3798 
3799 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, bool vector256) {
3800   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3801   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3802 }
3803 
3804 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, bool vector256) {
3805   assert(VM_Version::supports_avx() && !vector256 || VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
3806   emit_vex_arith(0xEF, dst, nds, src, VEX_SIMD_66, vector256);
3807 }
3808 
3809 
3810 void Assembler::vinsertf128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3811   assert(VM_Version::supports_avx(), "");
3812   bool vector256 = true;
3813   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3814   emit_int8(0x18);
3815   emit_int8((unsigned char)(0xC0 | encode));
3816   // 0x00 - insert into lower 128 bits
3817   // 0x01 - insert into upper 128 bits
3818   emit_int8(0x01);
3819 }
3820 
3821 void Assembler::vinsertf128h(XMMRegister dst, Address src) {
3822   assert(VM_Version::supports_avx(), "");
3823   InstructionMark im(this);
3824   bool vector256 = true;
3825   assert(dst != xnoreg, "sanity");
3826   int dst_enc = dst->encoding();
3827   // swap src<->dst for encoding
3828   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3829   emit_int8(0x18);
3830   emit_operand(dst, src);
3831   // 0x01 - insert into upper 128 bits
3832   emit_int8(0x01);
3833 }
3834 
3835 void Assembler::vextractf128h(XMMRegister dst, XMMRegister src) {
3836   assert(VM_Version::supports_avx(), "");
3837   bool vector256 = true;
3838   int encode = vex_prefix_and_encode(src, xnoreg, dst, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3839   emit_int8(0x19);
3840   emit_int8((unsigned char)(0xC0 | encode));
3841   // 0x00 - insert into lower 128 bits
3842   // 0x01 - insert into upper 128 bits
3843   emit_int8(0x01);
3844 }
3845 
3846 void Assembler::vextractf128h(Address dst, XMMRegister src) {
3847   assert(VM_Version::supports_avx(), "");
3848   InstructionMark im(this);
3849   bool vector256 = true;
3850   assert(src != xnoreg, "sanity");
3851   int src_enc = src->encoding();
3852   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3853   emit_int8(0x19);
3854   emit_operand(src, dst);
3855   // 0x01 - extract from upper 128 bits
3856   emit_int8(0x01);
3857 }
3858 
3859 void Assembler::vinserti128h(XMMRegister dst, XMMRegister nds, XMMRegister src) {
3860   assert(VM_Version::supports_avx2(), "");
3861   bool vector256 = true;
3862   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3863   emit_int8(0x38);
3864   emit_int8((unsigned char)(0xC0 | encode));
3865   // 0x00 - insert into lower 128 bits
3866   // 0x01 - insert into upper 128 bits
3867   emit_int8(0x01);
3868 }
3869 
3870 void Assembler::vinserti128h(XMMRegister dst, Address src) {
3871   assert(VM_Version::supports_avx2(), "");
3872   InstructionMark im(this);
3873   bool vector256 = true;
3874   assert(dst != xnoreg, "sanity");
3875   int dst_enc = dst->encoding();
3876   // swap src<->dst for encoding
3877   vex_prefix(src, dst_enc, dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3878   emit_int8(0x38);
3879   emit_operand(dst, src);
3880   // 0x01 - insert into upper 128 bits
3881   emit_int8(0x01);
3882 }
3883 
3884 void Assembler::vextracti128h(Address dst, XMMRegister src) {
3885   assert(VM_Version::supports_avx2(), "");
3886   InstructionMark im(this);
3887   bool vector256 = true;
3888   assert(src != xnoreg, "sanity");
3889   int src_enc = src->encoding();
3890   vex_prefix(dst, 0, src_enc, VEX_SIMD_66, VEX_OPCODE_0F_3A, false, vector256);
3891   emit_int8(0x39);
3892   emit_operand(src, dst);
3893   // 0x01 - extract from upper 128 bits
3894   emit_int8(0x01);
3895 }
3896 
3897 // duplicate 4-bytes integer data from src into 8 locations in dest
3898 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src) {
3899   assert(VM_Version::supports_avx2(), "");
3900   bool vector256 = true;
3901   int encode = vex_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_38);
3902   emit_int8(0x58);
3903   emit_int8((unsigned char)(0xC0 | encode));
3904 }
3905 
3906 // Carry-Less Multiplication Quadword
3907 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
3908   assert(VM_Version::supports_clmul(), "");
3909   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A);
3910   emit_int8(0x44);
3911   emit_int8((unsigned char)(0xC0 | encode));
3912   emit_int8((unsigned char)mask);
3913 }
3914 
3915 // Carry-Less Multiplication Quadword
3916 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
3917   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
3918   bool vector256 = false;
3919   int encode = vex_prefix_and_encode(dst, nds, src, VEX_SIMD_66, vector256, VEX_OPCODE_0F_3A);
3920   emit_int8(0x44);
3921   emit_int8((unsigned char)(0xC0 | encode));
3922   emit_int8((unsigned char)mask);
3923 }
3924 
3925 void Assembler::vzeroupper() {
3926   assert(VM_Version::supports_avx(), "");
3927   (void)vex_prefix_and_encode(xmm0, xmm0, xmm0, VEX_SIMD_NONE);
3928   emit_int8(0x77);
3929 }
3930 
3931 
3932 #ifndef _LP64
3933 // 32bit only pieces of the assembler
3934 
3935 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
3936   // NO PREFIX AS NEVER 64BIT
3937   InstructionMark im(this);
3938   emit_int8((unsigned char)0x81);
3939   emit_int8((unsigned char)(0xF8 | src1->encoding()));
3940   emit_data(imm32, rspec, 0);
3941 }
3942 
3943 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
3944   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
3945   InstructionMark im(this);
3946   emit_int8((unsigned char)0x81);
3947   emit_operand(rdi, src1);
3948   emit_data(imm32, rspec, 0);
3949 }
3950 
3951 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
3952 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
3953 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
3954 void Assembler::cmpxchg8(Address adr) {
3955   InstructionMark im(this);
3956   emit_int8(0x0F);
3957   emit_int8((unsigned char)0xC7);
3958   emit_operand(rcx, adr);
3959 }
3960 
3961 void Assembler::decl(Register dst) {
3962   // Don't use it directly. Use MacroAssembler::decrementl() instead.
3963  emit_int8(0x48 | dst->encoding());
3964 }
3965 
3966 #endif // _LP64
3967 
3968 // 64bit typically doesn't use the x87 but needs to for the trig funcs
3969 
3970 void Assembler::fabs() {
3971   emit_int8((unsigned char)0xD9);
3972   emit_int8((unsigned char)0xE1);
3973 }
3974 
3975 void Assembler::fadd(int i) {
3976   emit_farith(0xD8, 0xC0, i);
3977 }
3978 
3979 void Assembler::fadd_d(Address src) {
3980   InstructionMark im(this);
3981   emit_int8((unsigned char)0xDC);
3982   emit_operand32(rax, src);
3983 }
3984 
3985 void Assembler::fadd_s(Address src) {
3986   InstructionMark im(this);
3987   emit_int8((unsigned char)0xD8);
3988   emit_operand32(rax, src);
3989 }
3990 
3991 void Assembler::fadda(int i) {
3992   emit_farith(0xDC, 0xC0, i);
3993 }
3994 
3995 void Assembler::faddp(int i) {
3996   emit_farith(0xDE, 0xC0, i);
3997 }
3998 
3999 void Assembler::fchs() {
4000   emit_int8((unsigned char)0xD9);
4001   emit_int8((unsigned char)0xE0);
4002 }
4003 
4004 void Assembler::fcom(int i) {
4005   emit_farith(0xD8, 0xD0, i);
4006 }
4007 
4008 void Assembler::fcomp(int i) {
4009   emit_farith(0xD8, 0xD8, i);
4010 }
4011 
4012 void Assembler::fcomp_d(Address src) {
4013   InstructionMark im(this);
4014   emit_int8((unsigned char)0xDC);
4015   emit_operand32(rbx, src);
4016 }
4017 
4018 void Assembler::fcomp_s(Address src) {
4019   InstructionMark im(this);
4020   emit_int8((unsigned char)0xD8);
4021   emit_operand32(rbx, src);
4022 }
4023 
4024 void Assembler::fcompp() {
4025   emit_int8((unsigned char)0xDE);
4026   emit_int8((unsigned char)0xD9);
4027 }
4028 
4029 void Assembler::fcos() {
4030   emit_int8((unsigned char)0xD9);
4031   emit_int8((unsigned char)0xFF);
4032 }
4033 
4034 void Assembler::fdecstp() {
4035   emit_int8((unsigned char)0xD9);
4036   emit_int8((unsigned char)0xF6);
4037 }
4038 
4039 void Assembler::fdiv(int i) {
4040   emit_farith(0xD8, 0xF0, i);
4041 }
4042 
4043 void Assembler::fdiv_d(Address src) {
4044   InstructionMark im(this);
4045   emit_int8((unsigned char)0xDC);
4046   emit_operand32(rsi, src);
4047 }
4048 
4049 void Assembler::fdiv_s(Address src) {
4050   InstructionMark im(this);
4051   emit_int8((unsigned char)0xD8);
4052   emit_operand32(rsi, src);
4053 }
4054 
4055 void Assembler::fdiva(int i) {
4056   emit_farith(0xDC, 0xF8, i);
4057 }
4058 
4059 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
4060 //       is erroneous for some of the floating-point instructions below.
4061 
4062 void Assembler::fdivp(int i) {
4063   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
4064 }
4065 
4066 void Assembler::fdivr(int i) {
4067   emit_farith(0xD8, 0xF8, i);
4068 }
4069 
4070 void Assembler::fdivr_d(Address src) {
4071   InstructionMark im(this);
4072   emit_int8((unsigned char)0xDC);
4073   emit_operand32(rdi, src);
4074 }
4075 
4076 void Assembler::fdivr_s(Address src) {
4077   InstructionMark im(this);
4078   emit_int8((unsigned char)0xD8);
4079   emit_operand32(rdi, src);
4080 }
4081 
4082 void Assembler::fdivra(int i) {
4083   emit_farith(0xDC, 0xF0, i);
4084 }
4085 
4086 void Assembler::fdivrp(int i) {
4087   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
4088 }
4089 
4090 void Assembler::ffree(int i) {
4091   emit_farith(0xDD, 0xC0, i);
4092 }
4093 
4094 void Assembler::fild_d(Address adr) {
4095   InstructionMark im(this);
4096   emit_int8((unsigned char)0xDF);
4097   emit_operand32(rbp, adr);
4098 }
4099 
4100 void Assembler::fild_s(Address adr) {
4101   InstructionMark im(this);
4102   emit_int8((unsigned char)0xDB);
4103   emit_operand32(rax, adr);
4104 }
4105 
4106 void Assembler::fincstp() {
4107   emit_int8((unsigned char)0xD9);
4108   emit_int8((unsigned char)0xF7);
4109 }
4110 
4111 void Assembler::finit() {
4112   emit_int8((unsigned char)0x9B);
4113   emit_int8((unsigned char)0xDB);
4114   emit_int8((unsigned char)0xE3);
4115 }
4116 
4117 void Assembler::fist_s(Address adr) {
4118   InstructionMark im(this);
4119   emit_int8((unsigned char)0xDB);
4120   emit_operand32(rdx, adr);
4121 }
4122 
4123 void Assembler::fistp_d(Address adr) {
4124   InstructionMark im(this);
4125   emit_int8((unsigned char)0xDF);
4126   emit_operand32(rdi, adr);
4127 }
4128 
4129 void Assembler::fistp_s(Address adr) {
4130   InstructionMark im(this);
4131   emit_int8((unsigned char)0xDB);
4132   emit_operand32(rbx, adr);
4133 }
4134 
4135 void Assembler::fld1() {
4136   emit_int8((unsigned char)0xD9);
4137   emit_int8((unsigned char)0xE8);
4138 }
4139 
4140 void Assembler::fld_d(Address adr) {
4141   InstructionMark im(this);
4142   emit_int8((unsigned char)0xDD);
4143   emit_operand32(rax, adr);
4144 }
4145 
4146 void Assembler::fld_s(Address adr) {
4147   InstructionMark im(this);
4148   emit_int8((unsigned char)0xD9);
4149   emit_operand32(rax, adr);
4150 }
4151 
4152 
4153 void Assembler::fld_s(int index) {
4154   emit_farith(0xD9, 0xC0, index);
4155 }
4156 
4157 void Assembler::fld_x(Address adr) {
4158   InstructionMark im(this);
4159   emit_int8((unsigned char)0xDB);
4160   emit_operand32(rbp, adr);
4161 }
4162 
4163 void Assembler::fldcw(Address src) {
4164   InstructionMark im(this);
4165   emit_int8((unsigned char)0xD9);
4166   emit_operand32(rbp, src);
4167 }
4168 
4169 void Assembler::fldenv(Address src) {
4170   InstructionMark im(this);
4171   emit_int8((unsigned char)0xD9);
4172   emit_operand32(rsp, src);
4173 }
4174 
4175 void Assembler::fldlg2() {
4176   emit_int8((unsigned char)0xD9);
4177   emit_int8((unsigned char)0xEC);
4178 }
4179 
4180 void Assembler::fldln2() {
4181   emit_int8((unsigned char)0xD9);
4182   emit_int8((unsigned char)0xED);
4183 }
4184 
4185 void Assembler::fldz() {
4186   emit_int8((unsigned char)0xD9);
4187   emit_int8((unsigned char)0xEE);
4188 }
4189 
4190 void Assembler::flog() {
4191   fldln2();
4192   fxch();
4193   fyl2x();
4194 }
4195 
4196 void Assembler::flog10() {
4197   fldlg2();
4198   fxch();
4199   fyl2x();
4200 }
4201 
4202 void Assembler::fmul(int i) {
4203   emit_farith(0xD8, 0xC8, i);
4204 }
4205 
4206 void Assembler::fmul_d(Address src) {
4207   InstructionMark im(this);
4208   emit_int8((unsigned char)0xDC);
4209   emit_operand32(rcx, src);
4210 }
4211 
4212 void Assembler::fmul_s(Address src) {
4213   InstructionMark im(this);
4214   emit_int8((unsigned char)0xD8);
4215   emit_operand32(rcx, src);
4216 }
4217 
4218 void Assembler::fmula(int i) {
4219   emit_farith(0xDC, 0xC8, i);
4220 }
4221 
4222 void Assembler::fmulp(int i) {
4223   emit_farith(0xDE, 0xC8, i);
4224 }
4225 
4226 void Assembler::fnsave(Address dst) {
4227   InstructionMark im(this);
4228   emit_int8((unsigned char)0xDD);
4229   emit_operand32(rsi, dst);
4230 }
4231 
4232 void Assembler::fnstcw(Address src) {
4233   InstructionMark im(this);
4234   emit_int8((unsigned char)0x9B);
4235   emit_int8((unsigned char)0xD9);
4236   emit_operand32(rdi, src);
4237 }
4238 
4239 void Assembler::fnstsw_ax() {
4240   emit_int8((unsigned char)0xDF);
4241   emit_int8((unsigned char)0xE0);
4242 }
4243 
4244 void Assembler::fprem() {
4245   emit_int8((unsigned char)0xD9);
4246   emit_int8((unsigned char)0xF8);
4247 }
4248 
4249 void Assembler::fprem1() {
4250   emit_int8((unsigned char)0xD9);
4251   emit_int8((unsigned char)0xF5);
4252 }
4253 
4254 void Assembler::frstor(Address src) {
4255   InstructionMark im(this);
4256   emit_int8((unsigned char)0xDD);
4257   emit_operand32(rsp, src);
4258 }
4259 
4260 void Assembler::fsin() {
4261   emit_int8((unsigned char)0xD9);
4262   emit_int8((unsigned char)0xFE);
4263 }
4264 
4265 void Assembler::fsqrt() {
4266   emit_int8((unsigned char)0xD9);
4267   emit_int8((unsigned char)0xFA);
4268 }
4269 
4270 void Assembler::fst_d(Address adr) {
4271   InstructionMark im(this);
4272   emit_int8((unsigned char)0xDD);
4273   emit_operand32(rdx, adr);
4274 }
4275 
4276 void Assembler::fst_s(Address adr) {
4277   InstructionMark im(this);
4278   emit_int8((unsigned char)0xD9);
4279   emit_operand32(rdx, adr);
4280 }
4281 
4282 void Assembler::fstp_d(Address adr) {
4283   InstructionMark im(this);
4284   emit_int8((unsigned char)0xDD);
4285   emit_operand32(rbx, adr);
4286 }
4287 
4288 void Assembler::fstp_d(int index) {
4289   emit_farith(0xDD, 0xD8, index);
4290 }
4291 
4292 void Assembler::fstp_s(Address adr) {
4293   InstructionMark im(this);
4294   emit_int8((unsigned char)0xD9);
4295   emit_operand32(rbx, adr);
4296 }
4297 
4298 void Assembler::fstp_x(Address adr) {
4299   InstructionMark im(this);
4300   emit_int8((unsigned char)0xDB);
4301   emit_operand32(rdi, adr);
4302 }
4303 
4304 void Assembler::fsub(int i) {
4305   emit_farith(0xD8, 0xE0, i);
4306 }
4307 
4308 void Assembler::fsub_d(Address src) {
4309   InstructionMark im(this);
4310   emit_int8((unsigned char)0xDC);
4311   emit_operand32(rsp, src);
4312 }
4313 
4314 void Assembler::fsub_s(Address src) {
4315   InstructionMark im(this);
4316   emit_int8((unsigned char)0xD8);
4317   emit_operand32(rsp, src);
4318 }
4319 
4320 void Assembler::fsuba(int i) {
4321   emit_farith(0xDC, 0xE8, i);
4322 }
4323 
4324 void Assembler::fsubp(int i) {
4325   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
4326 }
4327 
4328 void Assembler::fsubr(int i) {
4329   emit_farith(0xD8, 0xE8, i);
4330 }
4331 
4332 void Assembler::fsubr_d(Address src) {
4333   InstructionMark im(this);
4334   emit_int8((unsigned char)0xDC);
4335   emit_operand32(rbp, src);
4336 }
4337 
4338 void Assembler::fsubr_s(Address src) {
4339   InstructionMark im(this);
4340   emit_int8((unsigned char)0xD8);
4341   emit_operand32(rbp, src);
4342 }
4343 
4344 void Assembler::fsubra(int i) {
4345   emit_farith(0xDC, 0xE0, i);
4346 }
4347 
4348 void Assembler::fsubrp(int i) {
4349   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
4350 }
4351 
4352 void Assembler::ftan() {
4353   emit_int8((unsigned char)0xD9);
4354   emit_int8((unsigned char)0xF2);
4355   emit_int8((unsigned char)0xDD);
4356   emit_int8((unsigned char)0xD8);
4357 }
4358 
4359 void Assembler::ftst() {
4360   emit_int8((unsigned char)0xD9);
4361   emit_int8((unsigned char)0xE4);
4362 }
4363 
4364 void Assembler::fucomi(int i) {
4365   // make sure the instruction is supported (introduced for P6, together with cmov)
4366   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4367   emit_farith(0xDB, 0xE8, i);
4368 }
4369 
4370 void Assembler::fucomip(int i) {
4371   // make sure the instruction is supported (introduced for P6, together with cmov)
4372   guarantee(VM_Version::supports_cmov(), "illegal instruction");
4373   emit_farith(0xDF, 0xE8, i);
4374 }
4375 
4376 void Assembler::fwait() {
4377   emit_int8((unsigned char)0x9B);
4378 }
4379 
4380 void Assembler::fxch(int i) {
4381   emit_farith(0xD9, 0xC8, i);
4382 }
4383 
4384 void Assembler::fyl2x() {
4385   emit_int8((unsigned char)0xD9);
4386   emit_int8((unsigned char)0xF1);
4387 }
4388 
4389 void Assembler::frndint() {
4390   emit_int8((unsigned char)0xD9);
4391   emit_int8((unsigned char)0xFC);
4392 }
4393 
4394 void Assembler::f2xm1() {
4395   emit_int8((unsigned char)0xD9);
4396   emit_int8((unsigned char)0xF0);
4397 }
4398 
4399 void Assembler::fldl2e() {
4400   emit_int8((unsigned char)0xD9);
4401   emit_int8((unsigned char)0xEA);
4402 }
4403 
4404 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
4405 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
4406 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
4407 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
4408 
4409 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
4410 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4411   if (pre > 0) {
4412     emit_int8(simd_pre[pre]);
4413   }
4414   if (rex_w) {
4415     prefixq(adr, xreg);
4416   } else {
4417     prefix(adr, xreg);
4418   }
4419   if (opc > 0) {
4420     emit_int8(0x0F);
4421     int opc2 = simd_opc[opc];
4422     if (opc2 > 0) {
4423       emit_int8(opc2);
4424     }
4425   }
4426 }
4427 
4428 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
4429   if (pre > 0) {
4430     emit_int8(simd_pre[pre]);
4431   }
4432   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) :
4433                           prefix_and_encode(dst_enc, src_enc);
4434   if (opc > 0) {
4435     emit_int8(0x0F);
4436     int opc2 = simd_opc[opc];
4437     if (opc2 > 0) {
4438       emit_int8(opc2);
4439     }
4440   }
4441   return encode;
4442 }
4443 
4444 
4445 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, bool vex_w, int nds_enc, VexSimdPrefix pre, VexOpcode opc, bool vector256) {
4446   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
4447     prefix(VEX_3bytes);
4448 
4449     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
4450     byte1 = (~byte1) & 0xE0;
4451     byte1 |= opc;
4452     emit_int8(byte1);
4453 
4454     int byte2 = ((~nds_enc) & 0xf) << 3;
4455     byte2 |= (vex_w ? VEX_W : 0) | (vector256 ? 4 : 0) | pre;
4456     emit_int8(byte2);
4457   } else {
4458     prefix(VEX_2bytes);
4459 
4460     int byte1 = vex_r ? VEX_R : 0;
4461     byte1 = (~byte1) & 0x80;
4462     byte1 |= ((~nds_enc) & 0xf) << 3;
4463     byte1 |= (vector256 ? 4 : 0) | pre;
4464     emit_int8(byte1);
4465   }
4466 }
4467 
4468 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256){
4469   bool vex_r = (xreg_enc >= 8);
4470   bool vex_b = adr.base_needs_rex();
4471   bool vex_x = adr.index_needs_rex();
4472   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4473 }
4474 
4475 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool vex_w, bool vector256) {
4476   bool vex_r = (dst_enc >= 8);
4477   bool vex_b = (src_enc >= 8);
4478   bool vex_x = false;
4479   vex_prefix(vex_r, vex_b, vex_x, vex_w, nds_enc, pre, opc, vector256);
4480   return (((dst_enc & 7) << 3) | (src_enc & 7));
4481 }
4482 
4483 
4484 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4485   if (UseAVX > 0) {
4486     int xreg_enc = xreg->encoding();
4487     int  nds_enc = nds->is_valid() ? nds->encoding() : 0;
4488     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, rex_w, vector256);
4489   } else {
4490     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
4491     rex_prefix(adr, xreg, pre, opc, rex_w);
4492   }
4493 }
4494 
4495 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre, VexOpcode opc, bool rex_w, bool vector256) {
4496   int dst_enc = dst->encoding();
4497   int src_enc = src->encoding();
4498   if (UseAVX > 0) {
4499     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
4500     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, rex_w, vector256);
4501   } else {
4502     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
4503     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, rex_w);
4504   }
4505 }
4506 
4507 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4508   InstructionMark im(this);
4509   simd_prefix(dst, dst, src, pre);
4510   emit_int8(opcode);
4511   emit_operand(dst, src);
4512 }
4513 
4514 void Assembler::emit_simd_arith(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4515   int encode = simd_prefix_and_encode(dst, dst, src, pre);
4516   emit_int8(opcode);
4517   emit_int8((unsigned char)(0xC0 | encode));
4518 }
4519 
4520 // Versions with no second source register (non-destructive source).
4521 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, Address src, VexSimdPrefix pre) {
4522   InstructionMark im(this);
4523   simd_prefix(dst, xnoreg, src, pre);
4524   emit_int8(opcode);
4525   emit_operand(dst, src);
4526 }
4527 
4528 void Assembler::emit_simd_arith_nonds(int opcode, XMMRegister dst, XMMRegister src, VexSimdPrefix pre) {
4529   int encode = simd_prefix_and_encode(dst, xnoreg, src, pre);
4530   emit_int8(opcode);
4531   emit_int8((unsigned char)(0xC0 | encode));
4532 }
4533 
4534 // 3-operands AVX instructions
4535 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4536                                Address src, VexSimdPrefix pre, bool vector256) {
4537   InstructionMark im(this);
4538   vex_prefix(dst, nds, src, pre, vector256);
4539   emit_int8(opcode);
4540   emit_operand(dst, src);
4541 }
4542 
4543 void Assembler::emit_vex_arith(int opcode, XMMRegister dst, XMMRegister nds,
4544                                XMMRegister src, VexSimdPrefix pre, bool vector256) {
4545   int encode = vex_prefix_and_encode(dst, nds, src, pre, vector256);
4546   emit_int8(opcode);
4547   emit_int8((unsigned char)(0xC0 | encode));
4548 }
4549 
4550 #ifndef _LP64
4551 
4552 void Assembler::incl(Register dst) {
4553   // Don't use it directly. Use MacroAssembler::incrementl() instead.
4554   emit_int8(0x40 | dst->encoding());
4555 }
4556 
4557 void Assembler::lea(Register dst, Address src) {
4558   leal(dst, src);
4559 }
4560 
4561 void Assembler::mov_literal32(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
4562   InstructionMark im(this);
4563   emit_int8((unsigned char)0xC7);
4564   emit_operand(rax, dst);
4565   emit_data((int)imm32, rspec, 0);
4566 }
4567 
4568 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
4569   InstructionMark im(this);
4570   int encode = prefix_and_encode(dst->encoding());
4571   emit_int8((unsigned char)(0xB8 | encode));
4572   emit_data((int)imm32, rspec, 0);
4573 }
4574 
4575 void Assembler::popa() { // 32bit
4576   emit_int8(0x61);
4577 }
4578 
4579 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
4580   InstructionMark im(this);
4581   emit_int8(0x68);
4582   emit_data(imm32, rspec, 0);
4583 }
4584 
4585 void Assembler::pusha() { // 32bit
4586   emit_int8(0x60);
4587 }
4588 
4589 void Assembler::set_byte_if_not_zero(Register dst) {
4590   emit_int8(0x0F);
4591   emit_int8((unsigned char)0x95);
4592   emit_int8((unsigned char)(0xE0 | dst->encoding()));
4593 }
4594 
4595 void Assembler::shldl(Register dst, Register src) {
4596   emit_int8(0x0F);
4597   emit_int8((unsigned char)0xA5);
4598   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4599 }
4600 
4601 void Assembler::shrdl(Register dst, Register src) {
4602   emit_int8(0x0F);
4603   emit_int8((unsigned char)0xAD);
4604   emit_int8((unsigned char)(0xC0 | src->encoding() << 3 | dst->encoding()));
4605 }
4606 
4607 #else // LP64
4608 
4609 void Assembler::set_byte_if_not_zero(Register dst) {
4610   int enc = prefix_and_encode(dst->encoding(), true);
4611   emit_int8(0x0F);
4612   emit_int8((unsigned char)0x95);
4613   emit_int8((unsigned char)(0xE0 | enc));
4614 }
4615 
4616 // 64bit only pieces of the assembler
4617 // This should only be used by 64bit instructions that can use rip-relative
4618 // it cannot be used by instructions that want an immediate value.
4619 
4620 bool Assembler::reachable(AddressLiteral adr) {
4621   int64_t disp;
4622   // None will force a 64bit literal to the code stream. Likely a placeholder
4623   // for something that will be patched later and we need to certain it will
4624   // always be reachable.
4625   if (adr.reloc() == relocInfo::none) {
4626     return false;
4627   }
4628   if (adr.reloc() == relocInfo::internal_word_type) {
4629     // This should be rip relative and easily reachable.
4630     return true;
4631   }
4632   if (adr.reloc() == relocInfo::virtual_call_type ||
4633       adr.reloc() == relocInfo::opt_virtual_call_type ||
4634       adr.reloc() == relocInfo::static_call_type ||
4635       adr.reloc() == relocInfo::static_stub_type ) {
4636     // This should be rip relative within the code cache and easily
4637     // reachable until we get huge code caches. (At which point
4638     // ic code is going to have issues).
4639     return true;
4640   }
4641   if (adr.reloc() != relocInfo::external_word_type &&
4642       adr.reloc() != relocInfo::poll_return_type &&  // these are really external_word but need special
4643       adr.reloc() != relocInfo::poll_type &&         // relocs to identify them
4644       adr.reloc() != relocInfo::runtime_call_type ) {
4645     return false;
4646   }
4647 
4648   // Stress the correction code
4649   if (ForceUnreachable) {
4650     // Must be runtimecall reloc, see if it is in the codecache
4651     // Flipping stuff in the codecache to be unreachable causes issues
4652     // with things like inline caches where the additional instructions
4653     // are not handled.
4654     if (CodeCache::find_blob(adr._target) == NULL) {
4655       return false;
4656     }
4657   }
4658   // For external_word_type/runtime_call_type if it is reachable from where we
4659   // are now (possibly a temp buffer) and where we might end up
4660   // anywhere in the codeCache then we are always reachable.
4661   // This would have to change if we ever save/restore shared code
4662   // to be more pessimistic.
4663   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
4664   if (!is_simm32(disp)) return false;
4665   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
4666   if (!is_simm32(disp)) return false;
4667 
4668   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
4669 
4670   // Because rip relative is a disp + address_of_next_instruction and we
4671   // don't know the value of address_of_next_instruction we apply a fudge factor
4672   // to make sure we will be ok no matter the size of the instruction we get placed into.
4673   // We don't have to fudge the checks above here because they are already worst case.
4674 
4675   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
4676   // + 4 because better safe than sorry.
4677   const int fudge = 12 + 4;
4678   if (disp < 0) {
4679     disp -= fudge;
4680   } else {
4681     disp += fudge;
4682   }
4683   return is_simm32(disp);
4684 }
4685 
4686 // Check if the polling page is not reachable from the code cache using rip-relative
4687 // addressing.
4688 bool Assembler::is_polling_page_far() {
4689   intptr_t addr = (intptr_t)os::get_polling_page();
4690   return ForceUnreachable ||
4691          !is_simm32(addr - (intptr_t)CodeCache::low_bound()) ||
4692          !is_simm32(addr - (intptr_t)CodeCache::high_bound());
4693 }
4694 
4695 void Assembler::emit_data64(jlong data,
4696                             relocInfo::relocType rtype,
4697                             int format) {
4698   if (rtype == relocInfo::none) {
4699     emit_int64(data);
4700   } else {
4701     emit_data64(data, Relocation::spec_simple(rtype), format);
4702   }
4703 }
4704 
4705 void Assembler::emit_data64(jlong data,
4706                             RelocationHolder const& rspec,
4707                             int format) {
4708   assert(imm_operand == 0, "default format must be immediate in this file");
4709   assert(imm_operand == format, "must be immediate");
4710   assert(inst_mark() != NULL, "must be inside InstructionMark");
4711   // Do not use AbstractAssembler::relocate, which is not intended for
4712   // embedded words.  Instead, relocate to the enclosing instruction.
4713   code_section()->relocate(inst_mark(), rspec, format);
4714 #ifdef ASSERT
4715   check_relocation(rspec, format);
4716 #endif
4717   emit_int64(data);
4718 }
4719 
4720 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
4721   if (reg_enc >= 8) {
4722     prefix(REX_B);
4723     reg_enc -= 8;
4724   } else if (byteinst && reg_enc >= 4) {
4725     prefix(REX);
4726   }
4727   return reg_enc;
4728 }
4729 
4730 int Assembler::prefixq_and_encode(int reg_enc) {
4731   if (reg_enc < 8) {
4732     prefix(REX_W);
4733   } else {
4734     prefix(REX_WB);
4735     reg_enc -= 8;
4736   }
4737   return reg_enc;
4738 }
4739 
4740 int Assembler::prefix_and_encode(int dst_enc, int src_enc, bool byteinst) {
4741   if (dst_enc < 8) {
4742     if (src_enc >= 8) {
4743       prefix(REX_B);
4744       src_enc -= 8;
4745     } else if (byteinst && src_enc >= 4) {
4746       prefix(REX);
4747     }
4748   } else {
4749     if (src_enc < 8) {
4750       prefix(REX_R);
4751     } else {
4752       prefix(REX_RB);
4753       src_enc -= 8;
4754     }
4755     dst_enc -= 8;
4756   }
4757   return dst_enc << 3 | src_enc;
4758 }
4759 
4760 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
4761   if (dst_enc < 8) {
4762     if (src_enc < 8) {
4763       prefix(REX_W);
4764     } else {
4765       prefix(REX_WB);
4766       src_enc -= 8;
4767     }
4768   } else {
4769     if (src_enc < 8) {
4770       prefix(REX_WR);
4771     } else {
4772       prefix(REX_WRB);
4773       src_enc -= 8;
4774     }
4775     dst_enc -= 8;
4776   }
4777   return dst_enc << 3 | src_enc;
4778 }
4779 
4780 void Assembler::prefix(Register reg) {
4781   if (reg->encoding() >= 8) {
4782     prefix(REX_B);
4783   }
4784 }
4785 
4786 void Assembler::prefix(Address adr) {
4787   if (adr.base_needs_rex()) {
4788     if (adr.index_needs_rex()) {
4789       prefix(REX_XB);
4790     } else {
4791       prefix(REX_B);
4792     }
4793   } else {
4794     if (adr.index_needs_rex()) {
4795       prefix(REX_X);
4796     }
4797   }
4798 }
4799 
4800 void Assembler::prefixq(Address adr) {
4801   if (adr.base_needs_rex()) {
4802     if (adr.index_needs_rex()) {
4803       prefix(REX_WXB);
4804     } else {
4805       prefix(REX_WB);
4806     }
4807   } else {
4808     if (adr.index_needs_rex()) {
4809       prefix(REX_WX);
4810     } else {
4811       prefix(REX_W);
4812     }
4813   }
4814 }
4815 
4816 
4817 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
4818   if (reg->encoding() < 8) {
4819     if (adr.base_needs_rex()) {
4820       if (adr.index_needs_rex()) {
4821         prefix(REX_XB);
4822       } else {
4823         prefix(REX_B);
4824       }
4825     } else {
4826       if (adr.index_needs_rex()) {
4827         prefix(REX_X);
4828       } else if (byteinst && reg->encoding() >= 4 ) {
4829         prefix(REX);
4830       }
4831     }
4832   } else {
4833     if (adr.base_needs_rex()) {
4834       if (adr.index_needs_rex()) {
4835         prefix(REX_RXB);
4836       } else {
4837         prefix(REX_RB);
4838       }
4839     } else {
4840       if (adr.index_needs_rex()) {
4841         prefix(REX_RX);
4842       } else {
4843         prefix(REX_R);
4844       }
4845     }
4846   }
4847 }
4848 
4849 void Assembler::prefixq(Address adr, Register src) {
4850   if (src->encoding() < 8) {
4851     if (adr.base_needs_rex()) {
4852       if (adr.index_needs_rex()) {
4853         prefix(REX_WXB);
4854       } else {
4855         prefix(REX_WB);
4856       }
4857     } else {
4858       if (adr.index_needs_rex()) {
4859         prefix(REX_WX);
4860       } else {
4861         prefix(REX_W);
4862       }
4863     }
4864   } else {
4865     if (adr.base_needs_rex()) {
4866       if (adr.index_needs_rex()) {
4867         prefix(REX_WRXB);
4868       } else {
4869         prefix(REX_WRB);
4870       }
4871     } else {
4872       if (adr.index_needs_rex()) {
4873         prefix(REX_WRX);
4874       } else {
4875         prefix(REX_WR);
4876       }
4877     }
4878   }
4879 }
4880 
4881 void Assembler::prefix(Address adr, XMMRegister reg) {
4882   if (reg->encoding() < 8) {
4883     if (adr.base_needs_rex()) {
4884       if (adr.index_needs_rex()) {
4885         prefix(REX_XB);
4886       } else {
4887         prefix(REX_B);
4888       }
4889     } else {
4890       if (adr.index_needs_rex()) {
4891         prefix(REX_X);
4892       }
4893     }
4894   } else {
4895     if (adr.base_needs_rex()) {
4896       if (adr.index_needs_rex()) {
4897         prefix(REX_RXB);
4898       } else {
4899         prefix(REX_RB);
4900       }
4901     } else {
4902       if (adr.index_needs_rex()) {
4903         prefix(REX_RX);
4904       } else {
4905         prefix(REX_R);
4906       }
4907     }
4908   }
4909 }
4910 
4911 void Assembler::prefixq(Address adr, XMMRegister src) {
4912   if (src->encoding() < 8) {
4913     if (adr.base_needs_rex()) {
4914       if (adr.index_needs_rex()) {
4915         prefix(REX_WXB);
4916       } else {
4917         prefix(REX_WB);
4918       }
4919     } else {
4920       if (adr.index_needs_rex()) {
4921         prefix(REX_WX);
4922       } else {
4923         prefix(REX_W);
4924       }
4925     }
4926   } else {
4927     if (adr.base_needs_rex()) {
4928       if (adr.index_needs_rex()) {
4929         prefix(REX_WRXB);
4930       } else {
4931         prefix(REX_WRB);
4932       }
4933     } else {
4934       if (adr.index_needs_rex()) {
4935         prefix(REX_WRX);
4936       } else {
4937         prefix(REX_WR);
4938       }
4939     }
4940   }
4941 }
4942 
4943 void Assembler::adcq(Register dst, int32_t imm32) {
4944   (void) prefixq_and_encode(dst->encoding());
4945   emit_arith(0x81, 0xD0, dst, imm32);
4946 }
4947 
4948 void Assembler::adcq(Register dst, Address src) {
4949   InstructionMark im(this);
4950   prefixq(src, dst);
4951   emit_int8(0x13);
4952   emit_operand(dst, src);
4953 }
4954 
4955 void Assembler::adcq(Register dst, Register src) {
4956   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4957   emit_arith(0x13, 0xC0, dst, src);
4958 }
4959 
4960 void Assembler::addq(Address dst, int32_t imm32) {
4961   InstructionMark im(this);
4962   prefixq(dst);
4963   emit_arith_operand(0x81, rax, dst,imm32);
4964 }
4965 
4966 void Assembler::addq(Address dst, Register src) {
4967   InstructionMark im(this);
4968   prefixq(dst, src);
4969   emit_int8(0x01);
4970   emit_operand(src, dst);
4971 }
4972 
4973 void Assembler::addq(Register dst, int32_t imm32) {
4974   (void) prefixq_and_encode(dst->encoding());
4975   emit_arith(0x81, 0xC0, dst, imm32);
4976 }
4977 
4978 void Assembler::addq(Register dst, Address src) {
4979   InstructionMark im(this);
4980   prefixq(src, dst);
4981   emit_int8(0x03);
4982   emit_operand(dst, src);
4983 }
4984 
4985 void Assembler::addq(Register dst, Register src) {
4986   (void) prefixq_and_encode(dst->encoding(), src->encoding());
4987   emit_arith(0x03, 0xC0, dst, src);
4988 }
4989 
4990 void Assembler::adcxq(Register dst, Register src) {
4991   //assert(VM_Version::supports_adx(), "adx instructions not supported");
4992   emit_int8((unsigned char)0x66);
4993   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4994   emit_int8(0x0F);
4995   emit_int8(0x38);
4996   emit_int8((unsigned char)0xF6);
4997   emit_int8((unsigned char)(0xC0 | encode));
4998 }
4999 
5000 void Assembler::adoxq(Register dst, Register src) {
5001   //assert(VM_Version::supports_adx(), "adx instructions not supported");
5002   emit_int8((unsigned char)0xF3);
5003   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5004   emit_int8(0x0F);
5005   emit_int8(0x38);
5006   emit_int8((unsigned char)0xF6);
5007   emit_int8((unsigned char)(0xC0 | encode));
5008 }
5009 
5010 void Assembler::andq(Address dst, int32_t imm32) {
5011   InstructionMark im(this);
5012   prefixq(dst);
5013   emit_int8((unsigned char)0x81);
5014   emit_operand(rsp, dst, 4);
5015   emit_int32(imm32);
5016 }
5017 
5018 void Assembler::andq(Register dst, int32_t imm32) {
5019   (void) prefixq_and_encode(dst->encoding());
5020   emit_arith(0x81, 0xE0, dst, imm32);
5021 }
5022 
5023 void Assembler::andq(Register dst, Address src) {
5024   InstructionMark im(this);
5025   prefixq(src, dst);
5026   emit_int8(0x23);
5027   emit_operand(dst, src);
5028 }
5029 
5030 void Assembler::andq(Register dst, Register src) {
5031   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5032   emit_arith(0x23, 0xC0, dst, src);
5033 }
5034 
5035 void Assembler::andnq(Register dst, Register src1, Register src2) {
5036   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5037   int encode = vex_prefix_0F38_and_encode_q(dst, src1, src2);
5038   emit_int8((unsigned char)0xF2);
5039   emit_int8((unsigned char)(0xC0 | encode));
5040 }
5041 
5042 void Assembler::andnq(Register dst, Register src1, Address src2) {
5043   InstructionMark im(this);
5044   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5045   vex_prefix_0F38_q(dst, src1, src2);
5046   emit_int8((unsigned char)0xF2);
5047   emit_operand(dst, src2);
5048 }
5049 
5050 void Assembler::bsfq(Register dst, Register src) {
5051   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5052   emit_int8(0x0F);
5053   emit_int8((unsigned char)0xBC);
5054   emit_int8((unsigned char)(0xC0 | encode));
5055 }
5056 
5057 void Assembler::bsrq(Register dst, Register src) {
5058   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5059   emit_int8(0x0F);
5060   emit_int8((unsigned char)0xBD);
5061   emit_int8((unsigned char)(0xC0 | encode));
5062 }
5063 
5064 void Assembler::bswapq(Register reg) {
5065   int encode = prefixq_and_encode(reg->encoding());
5066   emit_int8(0x0F);
5067   emit_int8((unsigned char)(0xC8 | encode));
5068 }
5069 
5070 void Assembler::blsiq(Register dst, Register src) {
5071   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5072   int encode = vex_prefix_0F38_and_encode_q(rbx, dst, src);
5073   emit_int8((unsigned char)0xF3);
5074   emit_int8((unsigned char)(0xC0 | encode));
5075 }
5076 
5077 void Assembler::blsiq(Register dst, Address src) {
5078   InstructionMark im(this);
5079   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5080   vex_prefix_0F38_q(rbx, dst, src);
5081   emit_int8((unsigned char)0xF3);
5082   emit_operand(rbx, src);
5083 }
5084 
5085 void Assembler::blsmskq(Register dst, Register src) {
5086   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5087   int encode = vex_prefix_0F38_and_encode_q(rdx, dst, src);
5088   emit_int8((unsigned char)0xF3);
5089   emit_int8((unsigned char)(0xC0 | encode));
5090 }
5091 
5092 void Assembler::blsmskq(Register dst, Address src) {
5093   InstructionMark im(this);
5094   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5095   vex_prefix_0F38_q(rdx, dst, src);
5096   emit_int8((unsigned char)0xF3);
5097   emit_operand(rdx, src);
5098 }
5099 
5100 void Assembler::blsrq(Register dst, Register src) {
5101   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5102   int encode = vex_prefix_0F38_and_encode_q(rcx, dst, src);
5103   emit_int8((unsigned char)0xF3);
5104   emit_int8((unsigned char)(0xC0 | encode));
5105 }
5106 
5107 void Assembler::blsrq(Register dst, Address src) {
5108   InstructionMark im(this);
5109   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
5110   vex_prefix_0F38_q(rcx, dst, src);
5111   emit_int8((unsigned char)0xF3);
5112   emit_operand(rcx, src);
5113 }
5114 
5115 void Assembler::cdqq() {
5116   prefix(REX_W);
5117   emit_int8((unsigned char)0x99);
5118 }
5119 
5120 void Assembler::clflush(Address adr) {
5121   prefix(adr);
5122   emit_int8(0x0F);
5123   emit_int8((unsigned char)0xAE);
5124   emit_operand(rdi, adr);
5125 }
5126 
5127 void Assembler::cmovq(Condition cc, Register dst, Register src) {
5128   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5129   emit_int8(0x0F);
5130   emit_int8(0x40 | cc);
5131   emit_int8((unsigned char)(0xC0 | encode));
5132 }
5133 
5134 void Assembler::cmovq(Condition cc, Register dst, Address src) {
5135   InstructionMark im(this);
5136   prefixq(src, dst);
5137   emit_int8(0x0F);
5138   emit_int8(0x40 | cc);
5139   emit_operand(dst, src);
5140 }
5141 
5142 void Assembler::cmpq(Address dst, int32_t imm32) {
5143   InstructionMark im(this);
5144   prefixq(dst);
5145   emit_int8((unsigned char)0x81);
5146   emit_operand(rdi, dst, 4);
5147   emit_int32(imm32);
5148 }
5149 
5150 void Assembler::cmpq(Register dst, int32_t imm32) {
5151   (void) prefixq_and_encode(dst->encoding());
5152   emit_arith(0x81, 0xF8, dst, imm32);
5153 }
5154 
5155 void Assembler::cmpq(Address dst, Register src) {
5156   InstructionMark im(this);
5157   prefixq(dst, src);
5158   emit_int8(0x3B);
5159   emit_operand(src, dst);
5160 }
5161 
5162 void Assembler::cmpq(Register dst, Register src) {
5163   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5164   emit_arith(0x3B, 0xC0, dst, src);
5165 }
5166 
5167 void Assembler::cmpq(Register dst, Address  src) {
5168   InstructionMark im(this);
5169   prefixq(src, dst);
5170   emit_int8(0x3B);
5171   emit_operand(dst, src);
5172 }
5173 
5174 void Assembler::cmpxchgq(Register reg, Address adr) {
5175   InstructionMark im(this);
5176   prefixq(adr, reg);
5177   emit_int8(0x0F);
5178   emit_int8((unsigned char)0xB1);
5179   emit_operand(reg, adr);
5180 }
5181 
5182 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
5183   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5184   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F2);
5185   emit_int8(0x2A);
5186   emit_int8((unsigned char)(0xC0 | encode));
5187 }
5188 
5189 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
5190   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5191   InstructionMark im(this);
5192   simd_prefix_q(dst, dst, src, VEX_SIMD_F2);
5193   emit_int8(0x2A);
5194   emit_operand(dst, src);
5195 }
5196 
5197 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
5198   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5199   int encode = simd_prefix_and_encode_q(dst, dst, src, VEX_SIMD_F3);
5200   emit_int8(0x2A);
5201   emit_int8((unsigned char)(0xC0 | encode));
5202 }
5203 
5204 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
5205   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5206   InstructionMark im(this);
5207   simd_prefix_q(dst, dst, src, VEX_SIMD_F3);
5208   emit_int8(0x2A);
5209   emit_operand(dst, src);
5210 }
5211 
5212 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
5213   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5214   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F2);
5215   emit_int8(0x2C);
5216   emit_int8((unsigned char)(0xC0 | encode));
5217 }
5218 
5219 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
5220   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5221   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_F3);
5222   emit_int8(0x2C);
5223   emit_int8((unsigned char)(0xC0 | encode));
5224 }
5225 
5226 void Assembler::decl(Register dst) {
5227   // Don't use it directly. Use MacroAssembler::decrementl() instead.
5228   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
5229   int encode = prefix_and_encode(dst->encoding());
5230   emit_int8((unsigned char)0xFF);
5231   emit_int8((unsigned char)(0xC8 | encode));
5232 }
5233 
5234 void Assembler::decq(Register dst) {
5235   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5236   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5237   int encode = prefixq_and_encode(dst->encoding());
5238   emit_int8((unsigned char)0xFF);
5239   emit_int8(0xC8 | encode);
5240 }
5241 
5242 void Assembler::decq(Address dst) {
5243   // Don't use it directly. Use MacroAssembler::decrementq() instead.
5244   InstructionMark im(this);
5245   prefixq(dst);
5246   emit_int8((unsigned char)0xFF);
5247   emit_operand(rcx, dst);
5248 }
5249 
5250 void Assembler::fxrstor(Address src) {
5251   prefixq(src);
5252   emit_int8(0x0F);
5253   emit_int8((unsigned char)0xAE);
5254   emit_operand(as_Register(1), src);
5255 }
5256 
5257 void Assembler::fxsave(Address dst) {
5258   prefixq(dst);
5259   emit_int8(0x0F);
5260   emit_int8((unsigned char)0xAE);
5261   emit_operand(as_Register(0), dst);
5262 }
5263 
5264 void Assembler::idivq(Register src) {
5265   int encode = prefixq_and_encode(src->encoding());
5266   emit_int8((unsigned char)0xF7);
5267   emit_int8((unsigned char)(0xF8 | encode));
5268 }
5269 
5270 void Assembler::imulq(Register dst, Register src) {
5271   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5272   emit_int8(0x0F);
5273   emit_int8((unsigned char)0xAF);
5274   emit_int8((unsigned char)(0xC0 | encode));
5275 }
5276 
5277 void Assembler::imulq(Register dst, Register src, int value) {
5278   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5279   if (is8bit(value)) {
5280     emit_int8(0x6B);
5281     emit_int8((unsigned char)(0xC0 | encode));
5282     emit_int8(value & 0xFF);
5283   } else {
5284     emit_int8(0x69);
5285     emit_int8((unsigned char)(0xC0 | encode));
5286     emit_int32(value);
5287   }
5288 }
5289 
5290 void Assembler::imulq(Register dst, Address src) {
5291   InstructionMark im(this);
5292   prefixq(src, dst);
5293   emit_int8(0x0F);
5294   emit_int8((unsigned char) 0xAF);
5295   emit_operand(dst, src);
5296 }
5297 
5298 void Assembler::incl(Register dst) {
5299   // Don't use it directly. Use MacroAssembler::incrementl() instead.
5300   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5301   int encode = prefix_and_encode(dst->encoding());
5302   emit_int8((unsigned char)0xFF);
5303   emit_int8((unsigned char)(0xC0 | encode));
5304 }
5305 
5306 void Assembler::incq(Register dst) {
5307   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5308   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
5309   int encode = prefixq_and_encode(dst->encoding());
5310   emit_int8((unsigned char)0xFF);
5311   emit_int8((unsigned char)(0xC0 | encode));
5312 }
5313 
5314 void Assembler::incq(Address dst) {
5315   // Don't use it directly. Use MacroAssembler::incrementq() instead.
5316   InstructionMark im(this);
5317   prefixq(dst);
5318   emit_int8((unsigned char)0xFF);
5319   emit_operand(rax, dst);
5320 }
5321 
5322 void Assembler::lea(Register dst, Address src) {
5323   leaq(dst, src);
5324 }
5325 
5326 void Assembler::leaq(Register dst, Address src) {
5327   InstructionMark im(this);
5328   prefixq(src, dst);
5329   emit_int8((unsigned char)0x8D);
5330   emit_operand(dst, src);
5331 }
5332 
5333 void Assembler::mov64(Register dst, int64_t imm64) {
5334   InstructionMark im(this);
5335   int encode = prefixq_and_encode(dst->encoding());
5336   emit_int8((unsigned char)(0xB8 | encode));
5337   emit_int64(imm64);
5338 }
5339 
5340 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
5341   InstructionMark im(this);
5342   int encode = prefixq_and_encode(dst->encoding());
5343   emit_int8(0xB8 | encode);
5344   emit_data64(imm64, rspec);
5345 }
5346 
5347 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
5348   InstructionMark im(this);
5349   int encode = prefix_and_encode(dst->encoding());
5350   emit_int8((unsigned char)(0xB8 | encode));
5351   emit_data((int)imm32, rspec, narrow_oop_operand);
5352 }
5353 
5354 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
5355   InstructionMark im(this);
5356   prefix(dst);
5357   emit_int8((unsigned char)0xC7);
5358   emit_operand(rax, dst, 4);
5359   emit_data((int)imm32, rspec, narrow_oop_operand);
5360 }
5361 
5362 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
5363   InstructionMark im(this);
5364   int encode = prefix_and_encode(src1->encoding());
5365   emit_int8((unsigned char)0x81);
5366   emit_int8((unsigned char)(0xF8 | encode));
5367   emit_data((int)imm32, rspec, narrow_oop_operand);
5368 }
5369 
5370 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
5371   InstructionMark im(this);
5372   prefix(src1);
5373   emit_int8((unsigned char)0x81);
5374   emit_operand(rax, src1, 4);
5375   emit_data((int)imm32, rspec, narrow_oop_operand);
5376 }
5377 
5378 void Assembler::lzcntq(Register dst, Register src) {
5379   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
5380   emit_int8((unsigned char)0xF3);
5381   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5382   emit_int8(0x0F);
5383   emit_int8((unsigned char)0xBD);
5384   emit_int8((unsigned char)(0xC0 | encode));
5385 }
5386 
5387 void Assembler::movdq(XMMRegister dst, Register src) {
5388   // table D-1 says MMX/SSE2
5389   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5390   int encode = simd_prefix_and_encode_q(dst, src, VEX_SIMD_66);
5391   emit_int8(0x6E);
5392   emit_int8((unsigned char)(0xC0 | encode));
5393 }
5394 
5395 void Assembler::movdq(Register dst, XMMRegister src) {
5396   // table D-1 says MMX/SSE2
5397   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5398   // swap src/dst to get correct prefix
5399   int encode = simd_prefix_and_encode_q(src, dst, VEX_SIMD_66);
5400   emit_int8(0x7E);
5401   emit_int8((unsigned char)(0xC0 | encode));
5402 }
5403 
5404 void Assembler::movq(Register dst, Register src) {
5405   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5406   emit_int8((unsigned char)0x8B);
5407   emit_int8((unsigned char)(0xC0 | encode));
5408 }
5409 
5410 void Assembler::movq(Register dst, Address src) {
5411   InstructionMark im(this);
5412   prefixq(src, dst);
5413   emit_int8((unsigned char)0x8B);
5414   emit_operand(dst, src);
5415 }
5416 
5417 void Assembler::movq(Address dst, Register src) {
5418   InstructionMark im(this);
5419   prefixq(dst, src);
5420   emit_int8((unsigned char)0x89);
5421   emit_operand(src, dst);
5422 }
5423 
5424 void Assembler::movsbq(Register dst, Address src) {
5425   InstructionMark im(this);
5426   prefixq(src, dst);
5427   emit_int8(0x0F);
5428   emit_int8((unsigned char)0xBE);
5429   emit_operand(dst, src);
5430 }
5431 
5432 void Assembler::movsbq(Register dst, Register src) {
5433   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5434   emit_int8(0x0F);
5435   emit_int8((unsigned char)0xBE);
5436   emit_int8((unsigned char)(0xC0 | encode));
5437 }
5438 
5439 void Assembler::movslq(Register dst, int32_t imm32) {
5440   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
5441   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
5442   // as a result we shouldn't use until tested at runtime...
5443   ShouldNotReachHere();
5444   InstructionMark im(this);
5445   int encode = prefixq_and_encode(dst->encoding());
5446   emit_int8((unsigned char)(0xC7 | encode));
5447   emit_int32(imm32);
5448 }
5449 
5450 void Assembler::movslq(Address dst, int32_t imm32) {
5451   assert(is_simm32(imm32), "lost bits");
5452   InstructionMark im(this);
5453   prefixq(dst);
5454   emit_int8((unsigned char)0xC7);
5455   emit_operand(rax, dst, 4);
5456   emit_int32(imm32);
5457 }
5458 
5459 void Assembler::movslq(Register dst, Address src) {
5460   InstructionMark im(this);
5461   prefixq(src, dst);
5462   emit_int8(0x63);
5463   emit_operand(dst, src);
5464 }
5465 
5466 void Assembler::movslq(Register dst, Register src) {
5467   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5468   emit_int8(0x63);
5469   emit_int8((unsigned char)(0xC0 | encode));
5470 }
5471 
5472 void Assembler::movswq(Register dst, Address src) {
5473   InstructionMark im(this);
5474   prefixq(src, dst);
5475   emit_int8(0x0F);
5476   emit_int8((unsigned char)0xBF);
5477   emit_operand(dst, src);
5478 }
5479 
5480 void Assembler::movswq(Register dst, Register src) {
5481   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5482   emit_int8((unsigned char)0x0F);
5483   emit_int8((unsigned char)0xBF);
5484   emit_int8((unsigned char)(0xC0 | encode));
5485 }
5486 
5487 void Assembler::movzbq(Register dst, Address src) {
5488   InstructionMark im(this);
5489   prefixq(src, dst);
5490   emit_int8((unsigned char)0x0F);
5491   emit_int8((unsigned char)0xB6);
5492   emit_operand(dst, src);
5493 }
5494 
5495 void Assembler::movzbq(Register dst, Register src) {
5496   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5497   emit_int8(0x0F);
5498   emit_int8((unsigned char)0xB6);
5499   emit_int8(0xC0 | encode);
5500 }
5501 
5502 void Assembler::movzwq(Register dst, Address src) {
5503   InstructionMark im(this);
5504   prefixq(src, dst);
5505   emit_int8((unsigned char)0x0F);
5506   emit_int8((unsigned char)0xB7);
5507   emit_operand(dst, src);
5508 }
5509 
5510 void Assembler::movzwq(Register dst, Register src) {
5511   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5512   emit_int8((unsigned char)0x0F);
5513   emit_int8((unsigned char)0xB7);
5514   emit_int8((unsigned char)(0xC0 | encode));
5515 }
5516 
5517 void Assembler::mulq(Address src) {
5518   InstructionMark im(this);
5519   prefixq(src);
5520   emit_int8((unsigned char)0xF7);
5521   emit_operand(rsp, src);
5522 }
5523 
5524 void Assembler::mulq(Register src) {
5525   int encode = prefixq_and_encode(src->encoding());
5526   emit_int8((unsigned char)0xF7);
5527   emit_int8((unsigned char)(0xE0 | encode));
5528 }
5529 
5530 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
5531   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
5532   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, true, false);
5533   emit_int8((unsigned char)0xF6);
5534   emit_int8((unsigned char)(0xC0 | encode));
5535 }
5536 
5537 void Assembler::negq(Register dst) {
5538   int encode = prefixq_and_encode(dst->encoding());
5539   emit_int8((unsigned char)0xF7);
5540   emit_int8((unsigned char)(0xD8 | encode));
5541 }
5542 
5543 void Assembler::notq(Register dst) {
5544   int encode = prefixq_and_encode(dst->encoding());
5545   emit_int8((unsigned char)0xF7);
5546   emit_int8((unsigned char)(0xD0 | encode));
5547 }
5548 
5549 void Assembler::orq(Address dst, int32_t imm32) {
5550   InstructionMark im(this);
5551   prefixq(dst);
5552   emit_int8((unsigned char)0x81);
5553   emit_operand(rcx, dst, 4);
5554   emit_int32(imm32);
5555 }
5556 
5557 void Assembler::orq(Register dst, int32_t imm32) {
5558   (void) prefixq_and_encode(dst->encoding());
5559   emit_arith(0x81, 0xC8, dst, imm32);
5560 }
5561 
5562 void Assembler::orq(Register dst, Address src) {
5563   InstructionMark im(this);
5564   prefixq(src, dst);
5565   emit_int8(0x0B);
5566   emit_operand(dst, src);
5567 }
5568 
5569 void Assembler::orq(Register dst, Register src) {
5570   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5571   emit_arith(0x0B, 0xC0, dst, src);
5572 }
5573 
5574 void Assembler::popa() { // 64bit
5575   movq(r15, Address(rsp, 0));
5576   movq(r14, Address(rsp, wordSize));
5577   movq(r13, Address(rsp, 2 * wordSize));
5578   movq(r12, Address(rsp, 3 * wordSize));
5579   movq(r11, Address(rsp, 4 * wordSize));
5580   movq(r10, Address(rsp, 5 * wordSize));
5581   movq(r9,  Address(rsp, 6 * wordSize));
5582   movq(r8,  Address(rsp, 7 * wordSize));
5583   movq(rdi, Address(rsp, 8 * wordSize));
5584   movq(rsi, Address(rsp, 9 * wordSize));
5585   movq(rbp, Address(rsp, 10 * wordSize));
5586   // skip rsp
5587   movq(rbx, Address(rsp, 12 * wordSize));
5588   movq(rdx, Address(rsp, 13 * wordSize));
5589   movq(rcx, Address(rsp, 14 * wordSize));
5590   movq(rax, Address(rsp, 15 * wordSize));
5591 
5592   addq(rsp, 16 * wordSize);
5593 }
5594 
5595 void Assembler::popcntq(Register dst, Address src) {
5596   assert(VM_Version::supports_popcnt(), "must support");
5597   InstructionMark im(this);
5598   emit_int8((unsigned char)0xF3);
5599   prefixq(src, dst);
5600   emit_int8((unsigned char)0x0F);
5601   emit_int8((unsigned char)0xB8);
5602   emit_operand(dst, src);
5603 }
5604 
5605 void Assembler::popcntq(Register dst, Register src) {
5606   assert(VM_Version::supports_popcnt(), "must support");
5607   emit_int8((unsigned char)0xF3);
5608   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5609   emit_int8((unsigned char)0x0F);
5610   emit_int8((unsigned char)0xB8);
5611   emit_int8((unsigned char)(0xC0 | encode));
5612 }
5613 
5614 void Assembler::popq(Address dst) {
5615   InstructionMark im(this);
5616   prefixq(dst);
5617   emit_int8((unsigned char)0x8F);
5618   emit_operand(rax, dst);
5619 }
5620 
5621 void Assembler::pusha() { // 64bit
5622   // we have to store original rsp.  ABI says that 128 bytes
5623   // below rsp are local scratch.
5624   movq(Address(rsp, -5 * wordSize), rsp);
5625 
5626   subq(rsp, 16 * wordSize);
5627 
5628   movq(Address(rsp, 15 * wordSize), rax);
5629   movq(Address(rsp, 14 * wordSize), rcx);
5630   movq(Address(rsp, 13 * wordSize), rdx);
5631   movq(Address(rsp, 12 * wordSize), rbx);
5632   // skip rsp
5633   movq(Address(rsp, 10 * wordSize), rbp);
5634   movq(Address(rsp, 9 * wordSize), rsi);
5635   movq(Address(rsp, 8 * wordSize), rdi);
5636   movq(Address(rsp, 7 * wordSize), r8);
5637   movq(Address(rsp, 6 * wordSize), r9);
5638   movq(Address(rsp, 5 * wordSize), r10);
5639   movq(Address(rsp, 4 * wordSize), r11);
5640   movq(Address(rsp, 3 * wordSize), r12);
5641   movq(Address(rsp, 2 * wordSize), r13);
5642   movq(Address(rsp, wordSize), r14);
5643   movq(Address(rsp, 0), r15);
5644 }
5645 
5646 void Assembler::pushq(Address src) {
5647   InstructionMark im(this);
5648   prefixq(src);
5649   emit_int8((unsigned char)0xFF);
5650   emit_operand(rsi, src);
5651 }
5652 
5653 void Assembler::rclq(Register dst, int imm8) {
5654   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5655   int encode = prefixq_and_encode(dst->encoding());
5656   if (imm8 == 1) {
5657     emit_int8((unsigned char)0xD1);
5658     emit_int8((unsigned char)(0xD0 | encode));
5659   } else {
5660     emit_int8((unsigned char)0xC1);
5661     emit_int8((unsigned char)(0xD0 | encode));
5662     emit_int8(imm8);
5663   }
5664 }
5665 
5666 void Assembler::rorq(Register dst, int imm8) {
5667   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5668   int encode = prefixq_and_encode(dst->encoding());
5669   if (imm8 == 1) {
5670     emit_int8((unsigned char)0xD1);
5671     emit_int8((unsigned char)(0xC8 | encode));
5672   } else {
5673     emit_int8((unsigned char)0xC1);
5674     emit_int8((unsigned char)(0xc8 | encode));
5675     emit_int8(imm8);
5676   }
5677 }
5678 
5679 void Assembler::rorxq(Register dst, Register src, int imm8) {
5680   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
5681   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, true, false);
5682   emit_int8((unsigned char)0xF0);
5683   emit_int8((unsigned char)(0xC0 | encode));
5684   emit_int8(imm8);
5685 }
5686 
5687 void Assembler::sarq(Register dst, int imm8) {
5688   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5689   int encode = prefixq_and_encode(dst->encoding());
5690   if (imm8 == 1) {
5691     emit_int8((unsigned char)0xD1);
5692     emit_int8((unsigned char)(0xF8 | encode));
5693   } else {
5694     emit_int8((unsigned char)0xC1);
5695     emit_int8((unsigned char)(0xF8 | encode));
5696     emit_int8(imm8);
5697   }
5698 }
5699 
5700 void Assembler::sarq(Register dst) {
5701   int encode = prefixq_and_encode(dst->encoding());
5702   emit_int8((unsigned char)0xD3);
5703   emit_int8((unsigned char)(0xF8 | encode));
5704 }
5705 
5706 void Assembler::sbbq(Address dst, int32_t imm32) {
5707   InstructionMark im(this);
5708   prefixq(dst);
5709   emit_arith_operand(0x81, rbx, dst, imm32);
5710 }
5711 
5712 void Assembler::sbbq(Register dst, int32_t imm32) {
5713   (void) prefixq_and_encode(dst->encoding());
5714   emit_arith(0x81, 0xD8, dst, imm32);
5715 }
5716 
5717 void Assembler::sbbq(Register dst, Address src) {
5718   InstructionMark im(this);
5719   prefixq(src, dst);
5720   emit_int8(0x1B);
5721   emit_operand(dst, src);
5722 }
5723 
5724 void Assembler::sbbq(Register dst, Register src) {
5725   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5726   emit_arith(0x1B, 0xC0, dst, src);
5727 }
5728 
5729 void Assembler::shlq(Register dst, int imm8) {
5730   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5731   int encode = prefixq_and_encode(dst->encoding());
5732   if (imm8 == 1) {
5733     emit_int8((unsigned char)0xD1);
5734     emit_int8((unsigned char)(0xE0 | encode));
5735   } else {
5736     emit_int8((unsigned char)0xC1);
5737     emit_int8((unsigned char)(0xE0 | encode));
5738     emit_int8(imm8);
5739   }
5740 }
5741 
5742 void Assembler::shlq(Register dst) {
5743   int encode = prefixq_and_encode(dst->encoding());
5744   emit_int8((unsigned char)0xD3);
5745   emit_int8((unsigned char)(0xE0 | encode));
5746 }
5747 
5748 void Assembler::shrq(Register dst, int imm8) {
5749   assert(isShiftCount(imm8 >> 1), "illegal shift count");
5750   int encode = prefixq_and_encode(dst->encoding());
5751   emit_int8((unsigned char)0xC1);
5752   emit_int8((unsigned char)(0xE8 | encode));
5753   emit_int8(imm8);
5754 }
5755 
5756 void Assembler::shrq(Register dst) {
5757   int encode = prefixq_and_encode(dst->encoding());
5758   emit_int8((unsigned char)0xD3);
5759   emit_int8(0xE8 | encode);
5760 }
5761 
5762 void Assembler::subq(Address dst, int32_t imm32) {
5763   InstructionMark im(this);
5764   prefixq(dst);
5765   emit_arith_operand(0x81, rbp, dst, imm32);
5766 }
5767 
5768 void Assembler::subq(Address dst, Register src) {
5769   InstructionMark im(this);
5770   prefixq(dst, src);
5771   emit_int8(0x29);
5772   emit_operand(src, dst);
5773 }
5774 
5775 void Assembler::subq(Register dst, int32_t imm32) {
5776   (void) prefixq_and_encode(dst->encoding());
5777   emit_arith(0x81, 0xE8, dst, imm32);
5778 }
5779 
5780 // Force generation of a 4 byte immediate value even if it fits into 8bit
5781 void Assembler::subq_imm32(Register dst, int32_t imm32) {
5782   (void) prefixq_and_encode(dst->encoding());
5783   emit_arith_imm32(0x81, 0xE8, dst, imm32);
5784 }
5785 
5786 void Assembler::subq(Register dst, Address src) {
5787   InstructionMark im(this);
5788   prefixq(src, dst);
5789   emit_int8(0x2B);
5790   emit_operand(dst, src);
5791 }
5792 
5793 void Assembler::subq(Register dst, Register src) {
5794   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5795   emit_arith(0x2B, 0xC0, dst, src);
5796 }
5797 
5798 void Assembler::testq(Register dst, int32_t imm32) {
5799   // not using emit_arith because test
5800   // doesn't support sign-extension of
5801   // 8bit operands
5802   int encode = dst->encoding();
5803   if (encode == 0) {
5804     prefix(REX_W);
5805     emit_int8((unsigned char)0xA9);
5806   } else {
5807     encode = prefixq_and_encode(encode);
5808     emit_int8((unsigned char)0xF7);
5809     emit_int8((unsigned char)(0xC0 | encode));
5810   }
5811   emit_int32(imm32);
5812 }
5813 
5814 void Assembler::testq(Register dst, Register src) {
5815   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5816   emit_arith(0x85, 0xC0, dst, src);
5817 }
5818 
5819 void Assembler::xaddq(Address dst, Register src) {
5820   InstructionMark im(this);
5821   prefixq(dst, src);
5822   emit_int8(0x0F);
5823   emit_int8((unsigned char)0xC1);
5824   emit_operand(src, dst);
5825 }
5826 
5827 void Assembler::xchgq(Register dst, Address src) {
5828   InstructionMark im(this);
5829   prefixq(src, dst);
5830   emit_int8((unsigned char)0x87);
5831   emit_operand(dst, src);
5832 }
5833 
5834 void Assembler::xchgq(Register dst, Register src) {
5835   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
5836   emit_int8((unsigned char)0x87);
5837   emit_int8((unsigned char)(0xc0 | encode));
5838 }
5839 
5840 void Assembler::xorq(Register dst, Register src) {
5841   (void) prefixq_and_encode(dst->encoding(), src->encoding());
5842   emit_arith(0x33, 0xC0, dst, src);
5843 }
5844 
5845 void Assembler::xorq(Register dst, Address src) {
5846   InstructionMark im(this);
5847   prefixq(src, dst);
5848   emit_int8(0x33);
5849   emit_operand(dst, src);
5850 }
5851 
5852 #endif // !LP64