1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "prims/methodHandles.hpp"
  35 #include "runtime/biasedLocking.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/objectMonitor.hpp"
  38 #include "runtime/os.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 #include "runtime/stubRoutines.hpp"
  41 #include "utilities/macros.hpp"
  42 #if INCLUDE_ALL_GCS
  43 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  44 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  45 #include "gc_implementation/g1/heapRegion.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 #ifdef PRODUCT
  49 #define BLOCK_COMMENT(str) /* nothing */
  50 #define STOP(error) stop(error)
  51 #else
  52 #define BLOCK_COMMENT(str) block_comment(str)
  53 #define STOP(error) block_comment(error); stop(error)
  54 #endif
  55 
  56 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  57 
  58 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  59 
  60 #ifdef ASSERT
  61 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  62 #endif
  63 
  64 static Assembler::Condition reverse[] = {
  65     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  66     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  67     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  68     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  69     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  70     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  71     Assembler::above          /* belowEqual    = 0x6 */ ,
  72     Assembler::belowEqual     /* above         = 0x7 */ ,
  73     Assembler::positive       /* negative      = 0x8 */ ,
  74     Assembler::negative       /* positive      = 0x9 */ ,
  75     Assembler::noParity       /* parity        = 0xa */ ,
  76     Assembler::parity         /* noParity      = 0xb */ ,
  77     Assembler::greaterEqual   /* less          = 0xc */ ,
  78     Assembler::less           /* greaterEqual  = 0xd */ ,
  79     Assembler::greater        /* lessEqual     = 0xe */ ,
  80     Assembler::lessEqual      /* greater       = 0xf, */
  81 
  82 };
  83 
  84 
  85 // Implementation of MacroAssembler
  86 
  87 // First all the versions that have distinct versions depending on 32/64 bit
  88 // Unless the difference is trivial (1 line or so).
  89 
  90 #ifndef _LP64
  91 
  92 // 32bit versions
  93 
  94 Address MacroAssembler::as_Address(AddressLiteral adr) {
  95   return Address(adr.target(), adr.rspec());
  96 }
  97 
  98 Address MacroAssembler::as_Address(ArrayAddress adr) {
  99   return Address::make_array(adr);
 100 }
 101 
 102 void MacroAssembler::call_VM_leaf_base(address entry_point,
 103                                        int number_of_arguments) {
 104   call(RuntimeAddress(entry_point));
 105   increment(rsp, number_of_arguments * wordSize);
 106 }
 107 
 108 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 109   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 110 }
 111 
 112 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 117   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::extend_sign(Register hi, Register lo) {
 125   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 126   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 127     cdql();
 128   } else {
 129     movl(hi, lo);
 130     sarl(hi, 31);
 131   }
 132 }
 133 
 134 void MacroAssembler::jC2(Register tmp, Label& L) {
 135   // set parity bit if FPU flag C2 is set (via rax)
 136   save_rax(tmp);
 137   fwait(); fnstsw_ax();
 138   sahf();
 139   restore_rax(tmp);
 140   // branch
 141   jcc(Assembler::parity, L);
 142 }
 143 
 144 void MacroAssembler::jnC2(Register tmp, Label& L) {
 145   // set parity bit if FPU flag C2 is set (via rax)
 146   save_rax(tmp);
 147   fwait(); fnstsw_ax();
 148   sahf();
 149   restore_rax(tmp);
 150   // branch
 151   jcc(Assembler::noParity, L);
 152 }
 153 
 154 // 32bit can do a case table jump in one instruction but we no longer allow the base
 155 // to be installed in the Address class
 156 void MacroAssembler::jump(ArrayAddress entry) {
 157   jmp(as_Address(entry));
 158 }
 159 
 160 // Note: y_lo will be destroyed
 161 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 162   // Long compare for Java (semantics as described in JVM spec.)
 163   Label high, low, done;
 164 
 165   cmpl(x_hi, y_hi);
 166   jcc(Assembler::less, low);
 167   jcc(Assembler::greater, high);
 168   // x_hi is the return register
 169   xorl(x_hi, x_hi);
 170   cmpl(x_lo, y_lo);
 171   jcc(Assembler::below, low);
 172   jcc(Assembler::equal, done);
 173 
 174   bind(high);
 175   xorl(x_hi, x_hi);
 176   increment(x_hi);
 177   jmp(done);
 178 
 179   bind(low);
 180   xorl(x_hi, x_hi);
 181   decrementl(x_hi);
 182 
 183   bind(done);
 184 }
 185 
 186 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 187     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 188 }
 189 
 190 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 191   // leal(dst, as_Address(adr));
 192   // see note in movl as to why we must use a move
 193   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 194 }
 195 
 196 void MacroAssembler::leave() {
 197   mov(rsp, rbp);
 198   pop(rbp);
 199 }
 200 
 201 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 202   // Multiplication of two Java long values stored on the stack
 203   // as illustrated below. Result is in rdx:rax.
 204   //
 205   // rsp ---> [  ??  ] \               \
 206   //            ....    | y_rsp_offset  |
 207   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 208   //          [ y_hi ]                  | (in bytes)
 209   //            ....                    |
 210   //          [ x_lo ]                 /
 211   //          [ x_hi ]
 212   //            ....
 213   //
 214   // Basic idea: lo(result) = lo(x_lo * y_lo)
 215   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 216   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 217   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 218   Label quick;
 219   // load x_hi, y_hi and check if quick
 220   // multiplication is possible
 221   movl(rbx, x_hi);
 222   movl(rcx, y_hi);
 223   movl(rax, rbx);
 224   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 225   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 226   // do full multiplication
 227   // 1st step
 228   mull(y_lo);                                    // x_hi * y_lo
 229   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 230   // 2nd step
 231   movl(rax, x_lo);
 232   mull(rcx);                                     // x_lo * y_hi
 233   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 234   // 3rd step
 235   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 236   movl(rax, x_lo);
 237   mull(y_lo);                                    // x_lo * y_lo
 238   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 239 }
 240 
 241 void MacroAssembler::lneg(Register hi, Register lo) {
 242   negl(lo);
 243   adcl(hi, 0);
 244   negl(hi);
 245 }
 246 
 247 void MacroAssembler::lshl(Register hi, Register lo) {
 248   // Java shift left long support (semantics as described in JVM spec., p.305)
 249   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 250   // shift value is in rcx !
 251   assert(hi != rcx, "must not use rcx");
 252   assert(lo != rcx, "must not use rcx");
 253   const Register s = rcx;                        // shift count
 254   const int      n = BitsPerWord;
 255   Label L;
 256   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 257   cmpl(s, n);                                    // if (s < n)
 258   jcc(Assembler::less, L);                       // else (s >= n)
 259   movl(hi, lo);                                  // x := x << n
 260   xorl(lo, lo);
 261   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 262   bind(L);                                       // s (mod n) < n
 263   shldl(hi, lo);                                 // x := x << s
 264   shll(lo);
 265 }
 266 
 267 
 268 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 269   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 270   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 271   assert(hi != rcx, "must not use rcx");
 272   assert(lo != rcx, "must not use rcx");
 273   const Register s = rcx;                        // shift count
 274   const int      n = BitsPerWord;
 275   Label L;
 276   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 277   cmpl(s, n);                                    // if (s < n)
 278   jcc(Assembler::less, L);                       // else (s >= n)
 279   movl(lo, hi);                                  // x := x >> n
 280   if (sign_extension) sarl(hi, 31);
 281   else                xorl(hi, hi);
 282   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 283   bind(L);                                       // s (mod n) < n
 284   shrdl(lo, hi);                                 // x := x >> s
 285   if (sign_extension) sarl(hi);
 286   else                shrl(hi);
 287 }
 288 
 289 void MacroAssembler::movoop(Register dst, jobject obj) {
 290   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 291 }
 292 
 293 void MacroAssembler::movoop(Address dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 298   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 306   // scratch register is not used,
 307   // it is defined to match parameters of 64-bit version of this method.
 308   if (src.is_lval()) {
 309     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 310   } else {
 311     movl(dst, as_Address(src));
 312   }
 313 }
 314 
 315 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 316   movl(as_Address(dst), src);
 317 }
 318 
 319 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 320   movl(dst, as_Address(src));
 321 }
 322 
 323 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 324 void MacroAssembler::movptr(Address dst, intptr_t src) {
 325   movl(dst, src);
 326 }
 327 
 328 
 329 void MacroAssembler::pop_callee_saved_registers() {
 330   pop(rcx);
 331   pop(rdx);
 332   pop(rdi);
 333   pop(rsi);
 334 }
 335 
 336 void MacroAssembler::pop_fTOS() {
 337   fld_d(Address(rsp, 0));
 338   addl(rsp, 2 * wordSize);
 339 }
 340 
 341 void MacroAssembler::push_callee_saved_registers() {
 342   push(rsi);
 343   push(rdi);
 344   push(rdx);
 345   push(rcx);
 346 }
 347 
 348 void MacroAssembler::push_fTOS() {
 349   subl(rsp, 2 * wordSize);
 350   fstp_d(Address(rsp, 0));
 351 }
 352 
 353 
 354 void MacroAssembler::pushoop(jobject obj) {
 355   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 356 }
 357 
 358 void MacroAssembler::pushklass(Metadata* obj) {
 359   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushptr(AddressLiteral src) {
 363   if (src.is_lval()) {
 364     push_literal32((int32_t)src.target(), src.rspec());
 365   } else {
 366     pushl(as_Address(src));
 367   }
 368 }
 369 
 370 void MacroAssembler::set_word_if_not_zero(Register dst) {
 371   xorl(dst, dst);
 372   set_byte_if_not_zero(dst);
 373 }
 374 
 375 static void pass_arg0(MacroAssembler* masm, Register arg) {
 376   masm->push(arg);
 377 }
 378 
 379 static void pass_arg1(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg2(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg3(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 #ifndef PRODUCT
 392 extern "C" void findpc(intptr_t x);
 393 #endif
 394 
 395 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 396   // In order to get locks to work, we need to fake a in_VM state
 397   JavaThread* thread = JavaThread::current();
 398   JavaThreadState saved_state = thread->thread_state();
 399   thread->set_thread_state(_thread_in_vm);
 400   if (ShowMessageBoxOnError) {
 401     JavaThread* thread = JavaThread::current();
 402     JavaThreadState saved_state = thread->thread_state();
 403     thread->set_thread_state(_thread_in_vm);
 404     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 405       ttyLocker ttyl;
 406       BytecodeCounter::print();
 407     }
 408     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 409     // This is the value of eip which points to where verify_oop will return.
 410     if (os::message_box(msg, "Execution stopped, print registers?")) {
 411       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 412       BREAKPOINT;
 413     }
 414   } else {
 415     ttyLocker ttyl;
 416     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 417   }
 418   // Don't assert holding the ttyLock
 419     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 420   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 421 }
 422 
 423 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 424   ttyLocker ttyl;
 425   FlagSetting fs(Debugging, true);
 426   tty->print_cr("eip = 0x%08x", eip);
 427 #ifndef PRODUCT
 428   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 429     tty->cr();
 430     findpc(eip);
 431     tty->cr();
 432   }
 433 #endif
 434 #define PRINT_REG(rax) \
 435   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 436   PRINT_REG(rax);
 437   PRINT_REG(rbx);
 438   PRINT_REG(rcx);
 439   PRINT_REG(rdx);
 440   PRINT_REG(rdi);
 441   PRINT_REG(rsi);
 442   PRINT_REG(rbp);
 443   PRINT_REG(rsp);
 444 #undef PRINT_REG
 445   // Print some words near top of staack.
 446   int* dump_sp = (int*) rsp;
 447   for (int col1 = 0; col1 < 8; col1++) {
 448     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 449     os::print_location(tty, *dump_sp++);
 450   }
 451   for (int row = 0; row < 16; row++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     for (int col = 0; col < 8; col++) {
 454       tty->print(" 0x%08x", *dump_sp++);
 455     }
 456     tty->cr();
 457   }
 458   // Print some instructions around pc:
 459   Disassembler::decode((address)eip-64, (address)eip);
 460   tty->print_cr("--------");
 461   Disassembler::decode((address)eip, (address)eip+32);
 462 }
 463 
 464 void MacroAssembler::stop(const char* msg) {
 465   ExternalAddress message((address)msg);
 466   // push address of message
 467   pushptr(message.addr());
 468   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 469   pusha();                                            // push registers
 470   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 471   hlt();
 472 }
 473 
 474 void MacroAssembler::warn(const char* msg) {
 475   push_CPU_state();
 476 
 477   ExternalAddress message((address) msg);
 478   // push address of message
 479   pushptr(message.addr());
 480 
 481   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 482   addl(rsp, wordSize);       // discard argument
 483   pop_CPU_state();
 484 }
 485 
 486 void MacroAssembler::print_state() {
 487   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 488   pusha();                                            // push registers
 489 
 490   push_CPU_state();
 491   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 492   pop_CPU_state();
 493 
 494   popa();
 495   addl(rsp, wordSize);
 496 }
 497 
 498 #else // _LP64
 499 
 500 // 64 bit versions
 501 
 502 Address MacroAssembler::as_Address(AddressLiteral adr) {
 503   // amd64 always does this as a pc-rel
 504   // we can be absolute or disp based on the instruction type
 505   // jmp/call are displacements others are absolute
 506   assert(!adr.is_lval(), "must be rval");
 507   assert(reachable(adr), "must be");
 508   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 509 
 510 }
 511 
 512 Address MacroAssembler::as_Address(ArrayAddress adr) {
 513   AddressLiteral base = adr.base();
 514   lea(rscratch1, base);
 515   Address index = adr.index();
 516   assert(index._disp == 0, "must not have disp"); // maybe it can?
 517   Address array(rscratch1, index._index, index._scale, index._disp);
 518   return array;
 519 }
 520 
 521 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 522   Label L, E;
 523 
 524 #ifdef _WIN64
 525   // Windows always allocates space for it's register args
 526   assert(num_args <= 4, "only register arguments supported");
 527   subq(rsp,  frame::arg_reg_save_area_bytes);
 528 #endif
 529 
 530   // Align stack if necessary
 531   testl(rsp, 15);
 532   jcc(Assembler::zero, L);
 533 
 534   subq(rsp, 8);
 535   {
 536     call(RuntimeAddress(entry_point));
 537   }
 538   addq(rsp, 8);
 539   jmp(E);
 540 
 541   bind(L);
 542   {
 543     call(RuntimeAddress(entry_point));
 544   }
 545 
 546   bind(E);
 547 
 548 #ifdef _WIN64
 549   // restore stack pointer
 550   addq(rsp, frame::arg_reg_save_area_bytes);
 551 #endif
 552 
 553 }
 554 
 555 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 556   assert(!src2.is_lval(), "should use cmpptr");
 557 
 558   if (reachable(src2)) {
 559     cmpq(src1, as_Address(src2));
 560   } else {
 561     lea(rscratch1, src2);
 562     Assembler::cmpq(src1, Address(rscratch1, 0));
 563   }
 564 }
 565 
 566 int MacroAssembler::corrected_idivq(Register reg) {
 567   // Full implementation of Java ldiv and lrem; checks for special
 568   // case as described in JVM spec., p.243 & p.271.  The function
 569   // returns the (pc) offset of the idivl instruction - may be needed
 570   // for implicit exceptions.
 571   //
 572   //         normal case                           special case
 573   //
 574   // input : rax: dividend                         min_long
 575   //         reg: divisor   (may not be eax/edx)   -1
 576   //
 577   // output: rax: quotient  (= rax idiv reg)       min_long
 578   //         rdx: remainder (= rax irem reg)       0
 579   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 580   static const int64_t min_long = 0x8000000000000000;
 581   Label normal_case, special_case;
 582 
 583   // check for special case
 584   cmp64(rax, ExternalAddress((address) &min_long));
 585   jcc(Assembler::notEqual, normal_case);
 586   xorl(rdx, rdx); // prepare rdx for possible special case (where
 587                   // remainder = 0)
 588   cmpq(reg, -1);
 589   jcc(Assembler::equal, special_case);
 590 
 591   // handle normal case
 592   bind(normal_case);
 593   cdqq();
 594   int idivq_offset = offset();
 595   idivq(reg);
 596 
 597   // normal and special case exit
 598   bind(special_case);
 599 
 600   return idivq_offset;
 601 }
 602 
 603 void MacroAssembler::decrementq(Register reg, int value) {
 604   if (value == min_jint) { subq(reg, value); return; }
 605   if (value <  0) { incrementq(reg, -value); return; }
 606   if (value == 0) {                        ; return; }
 607   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 608   /* else */      { subq(reg, value)       ; return; }
 609 }
 610 
 611 void MacroAssembler::decrementq(Address dst, int value) {
 612   if (value == min_jint) { subq(dst, value); return; }
 613   if (value <  0) { incrementq(dst, -value); return; }
 614   if (value == 0) {                        ; return; }
 615   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 616   /* else */      { subq(dst, value)       ; return; }
 617 }
 618 
 619 void MacroAssembler::incrementq(AddressLiteral dst) {
 620   if (reachable(dst)) {
 621     incrementq(as_Address(dst));
 622   } else {
 623     lea(rscratch1, dst);
 624     incrementq(Address(rscratch1, 0));
 625   }
 626 }
 627 
 628 void MacroAssembler::incrementq(Register reg, int value) {
 629   if (value == min_jint) { addq(reg, value); return; }
 630   if (value <  0) { decrementq(reg, -value); return; }
 631   if (value == 0) {                        ; return; }
 632   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 633   /* else */      { addq(reg, value)       ; return; }
 634 }
 635 
 636 void MacroAssembler::incrementq(Address dst, int value) {
 637   if (value == min_jint) { addq(dst, value); return; }
 638   if (value <  0) { decrementq(dst, -value); return; }
 639   if (value == 0) {                        ; return; }
 640   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 641   /* else */      { addq(dst, value)       ; return; }
 642 }
 643 
 644 // 32bit can do a case table jump in one instruction but we no longer allow the base
 645 // to be installed in the Address class
 646 void MacroAssembler::jump(ArrayAddress entry) {
 647   lea(rscratch1, entry.base());
 648   Address dispatch = entry.index();
 649   assert(dispatch._base == noreg, "must be");
 650   dispatch._base = rscratch1;
 651   jmp(dispatch);
 652 }
 653 
 654 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 655   ShouldNotReachHere(); // 64bit doesn't use two regs
 656   cmpq(x_lo, y_lo);
 657 }
 658 
 659 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 660     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 661 }
 662 
 663 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 664   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 665   movptr(dst, rscratch1);
 666 }
 667 
 668 void MacroAssembler::leave() {
 669   // %%% is this really better? Why not on 32bit too?
 670   emit_int8((unsigned char)0xC9); // LEAVE
 671 }
 672 
 673 void MacroAssembler::lneg(Register hi, Register lo) {
 674   ShouldNotReachHere(); // 64bit doesn't use two regs
 675   negq(lo);
 676 }
 677 
 678 void MacroAssembler::movoop(Register dst, jobject obj) {
 679   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 680 }
 681 
 682 void MacroAssembler::movoop(Address dst, jobject obj) {
 683   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684   movq(dst, rscratch1);
 685 }
 686 
 687 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 688   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 692   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693   movq(dst, rscratch1);
 694 }
 695 
 696 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 697   if (src.is_lval()) {
 698     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 699   } else {
 700     if (reachable(src)) {
 701       movq(dst, as_Address(src));
 702     } else {
 703       lea(scratch, src);
 704       movq(dst, Address(scratch, 0));
 705     }
 706   }
 707 }
 708 
 709 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 710   movq(as_Address(dst), src);
 711 }
 712 
 713 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 714   movq(dst, as_Address(src));
 715 }
 716 
 717 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 718 void MacroAssembler::movptr(Address dst, intptr_t src) {
 719   mov64(rscratch1, src);
 720   movq(dst, rscratch1);
 721 }
 722 
 723 // These are mostly for initializing NULL
 724 void MacroAssembler::movptr(Address dst, int32_t src) {
 725   movslq(dst, src);
 726 }
 727 
 728 void MacroAssembler::movptr(Register dst, int32_t src) {
 729   mov64(dst, (intptr_t)src);
 730 }
 731 
 732 void MacroAssembler::pushoop(jobject obj) {
 733   movoop(rscratch1, obj);
 734   push(rscratch1);
 735 }
 736 
 737 void MacroAssembler::pushklass(Metadata* obj) {
 738   mov_metadata(rscratch1, obj);
 739   push(rscratch1);
 740 }
 741 
 742 void MacroAssembler::pushptr(AddressLiteral src) {
 743   lea(rscratch1, src);
 744   if (src.is_lval()) {
 745     push(rscratch1);
 746   } else {
 747     pushq(Address(rscratch1, 0));
 748   }
 749 }
 750 
 751 void MacroAssembler::reset_last_Java_frame(bool clear_fp,
 752                                            bool clear_pc) {
 753   // we must set sp to zero to clear frame
 754   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 755   // must clear fp, so that compiled frames are not confused; it is
 756   // possible that we need it only for debugging
 757   if (clear_fp) {
 758     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 759   }
 760 
 761   if (clear_pc) {
 762     movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 763   }
 764 }
 765 
 766 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 767                                          Register last_java_fp,
 768                                          address  last_java_pc) {
 769   // determine last_java_sp register
 770   if (!last_java_sp->is_valid()) {
 771     last_java_sp = rsp;
 772   }
 773 
 774   // last_java_fp is optional
 775   if (last_java_fp->is_valid()) {
 776     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 777            last_java_fp);
 778   }
 779 
 780   // last_java_pc is optional
 781   if (last_java_pc != NULL) {
 782     Address java_pc(r15_thread,
 783                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 784     lea(rscratch1, InternalAddress(last_java_pc));
 785     movptr(java_pc, rscratch1);
 786   }
 787 
 788   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 789 }
 790 
 791 static void pass_arg0(MacroAssembler* masm, Register arg) {
 792   if (c_rarg0 != arg ) {
 793     masm->mov(c_rarg0, arg);
 794   }
 795 }
 796 
 797 static void pass_arg1(MacroAssembler* masm, Register arg) {
 798   if (c_rarg1 != arg ) {
 799     masm->mov(c_rarg1, arg);
 800   }
 801 }
 802 
 803 static void pass_arg2(MacroAssembler* masm, Register arg) {
 804   if (c_rarg2 != arg ) {
 805     masm->mov(c_rarg2, arg);
 806   }
 807 }
 808 
 809 static void pass_arg3(MacroAssembler* masm, Register arg) {
 810   if (c_rarg3 != arg ) {
 811     masm->mov(c_rarg3, arg);
 812   }
 813 }
 814 
 815 void MacroAssembler::stop(const char* msg) {
 816   address rip = pc();
 817   pusha(); // get regs on stack
 818   lea(c_rarg0, ExternalAddress((address) msg));
 819   lea(c_rarg1, InternalAddress(rip));
 820   movq(c_rarg2, rsp); // pass pointer to regs array
 821   andq(rsp, -16); // align stack as required by ABI
 822   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 823   hlt();
 824 }
 825 
 826 void MacroAssembler::warn(const char* msg) {
 827   push(rbp);
 828   movq(rbp, rsp);
 829   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 830   push_CPU_state();   // keeps alignment at 16 bytes
 831   lea(c_rarg0, ExternalAddress((address) msg));
 832   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 833   pop_CPU_state();
 834   mov(rsp, rbp);
 835   pop(rbp);
 836 }
 837 
 838 void MacroAssembler::print_state() {
 839   address rip = pc();
 840   pusha();            // get regs on stack
 841   push(rbp);
 842   movq(rbp, rsp);
 843   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 844   push_CPU_state();   // keeps alignment at 16 bytes
 845 
 846   lea(c_rarg0, InternalAddress(rip));
 847   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 848   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 849 
 850   pop_CPU_state();
 851   mov(rsp, rbp);
 852   pop(rbp);
 853   popa();
 854 }
 855 
 856 #ifndef PRODUCT
 857 extern "C" void findpc(intptr_t x);
 858 #endif
 859 
 860 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 861   // In order to get locks to work, we need to fake a in_VM state
 862   if (ShowMessageBoxOnError) {
 863     JavaThread* thread = JavaThread::current();
 864     JavaThreadState saved_state = thread->thread_state();
 865     thread->set_thread_state(_thread_in_vm);
 866 #ifndef PRODUCT
 867     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 868       ttyLocker ttyl;
 869       BytecodeCounter::print();
 870     }
 871 #endif
 872     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 873     // XXX correct this offset for amd64
 874     // This is the value of eip which points to where verify_oop will return.
 875     if (os::message_box(msg, "Execution stopped, print registers?")) {
 876       print_state64(pc, regs);
 877       BREAKPOINT;
 878       assert(false, "start up GDB");
 879     }
 880     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 881   } else {
 882     ttyLocker ttyl;
 883     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 884                     msg);
 885     assert(false, err_msg("DEBUG MESSAGE: %s", msg));
 886   }
 887 }
 888 
 889 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 890   ttyLocker ttyl;
 891   FlagSetting fs(Debugging, true);
 892   tty->print_cr("rip = 0x%016lx", pc);
 893 #ifndef PRODUCT
 894   tty->cr();
 895   findpc(pc);
 896   tty->cr();
 897 #endif
 898 #define PRINT_REG(rax, value) \
 899   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 900   PRINT_REG(rax, regs[15]);
 901   PRINT_REG(rbx, regs[12]);
 902   PRINT_REG(rcx, regs[14]);
 903   PRINT_REG(rdx, regs[13]);
 904   PRINT_REG(rdi, regs[8]);
 905   PRINT_REG(rsi, regs[9]);
 906   PRINT_REG(rbp, regs[10]);
 907   PRINT_REG(rsp, regs[11]);
 908   PRINT_REG(r8 , regs[7]);
 909   PRINT_REG(r9 , regs[6]);
 910   PRINT_REG(r10, regs[5]);
 911   PRINT_REG(r11, regs[4]);
 912   PRINT_REG(r12, regs[3]);
 913   PRINT_REG(r13, regs[2]);
 914   PRINT_REG(r14, regs[1]);
 915   PRINT_REG(r15, regs[0]);
 916 #undef PRINT_REG
 917   // Print some words near top of staack.
 918   int64_t* rsp = (int64_t*) regs[11];
 919   int64_t* dump_sp = rsp;
 920   for (int col1 = 0; col1 < 8; col1++) {
 921     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 922     os::print_location(tty, *dump_sp++);
 923   }
 924   for (int row = 0; row < 25; row++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     for (int col = 0; col < 4; col++) {
 927       tty->print(" 0x%016lx", *dump_sp++);
 928     }
 929     tty->cr();
 930   }
 931   // Print some instructions around pc:
 932   Disassembler::decode((address)pc-64, (address)pc);
 933   tty->print_cr("--------");
 934   Disassembler::decode((address)pc, (address)pc+32);
 935 }
 936 
 937 #endif // _LP64
 938 
 939 // Now versions that are common to 32/64 bit
 940 
 941 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 942   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 943 }
 944 
 945 void MacroAssembler::addptr(Register dst, Register src) {
 946   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 947 }
 948 
 949 void MacroAssembler::addptr(Address dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 954   if (reachable(src)) {
 955     Assembler::addsd(dst, as_Address(src));
 956   } else {
 957     lea(rscratch1, src);
 958     Assembler::addsd(dst, Address(rscratch1, 0));
 959   }
 960 }
 961 
 962 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 963   if (reachable(src)) {
 964     addss(dst, as_Address(src));
 965   } else {
 966     lea(rscratch1, src);
 967     addss(dst, Address(rscratch1, 0));
 968   }
 969 }
 970 
 971 void MacroAssembler::align(int modulus) {
 972   if (offset() % modulus != 0) {
 973     nop(modulus - (offset() % modulus));
 974   }
 975 }
 976 
 977 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 978   // Used in sign-masking with aligned address.
 979   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 980   if (reachable(src)) {
 981     Assembler::andpd(dst, as_Address(src));
 982   } else {
 983     lea(rscratch1, src);
 984     Assembler::andpd(dst, Address(rscratch1, 0));
 985   }
 986 }
 987 
 988 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
 989   // Used in sign-masking with aligned address.
 990   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 991   if (reachable(src)) {
 992     Assembler::andps(dst, as_Address(src));
 993   } else {
 994     lea(rscratch1, src);
 995     Assembler::andps(dst, Address(rscratch1, 0));
 996   }
 997 }
 998 
 999 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1000   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1001 }
1002 
1003 void MacroAssembler::atomic_incl(Address counter_addr) {
1004   if (os::is_MP())
1005     lock();
1006   incrementl(counter_addr);
1007 }
1008 
1009 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1010   if (reachable(counter_addr)) {
1011     atomic_incl(as_Address(counter_addr));
1012   } else {
1013     lea(scr, counter_addr);
1014     atomic_incl(Address(scr, 0));
1015   }
1016 }
1017 
1018 #ifdef _LP64
1019 void MacroAssembler::atomic_incq(Address counter_addr) {
1020   if (os::is_MP())
1021     lock();
1022   incrementq(counter_addr);
1023 }
1024 
1025 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1026   if (reachable(counter_addr)) {
1027     atomic_incq(as_Address(counter_addr));
1028   } else {
1029     lea(scr, counter_addr);
1030     atomic_incq(Address(scr, 0));
1031   }
1032 }
1033 #endif
1034 
1035 // Writes to stack successive pages until offset reached to check for
1036 // stack overflow + shadow pages.  This clobbers tmp.
1037 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1038   movptr(tmp, rsp);
1039   // Bang stack for total size given plus shadow page size.
1040   // Bang one page at a time because large size can bang beyond yellow and
1041   // red zones.
1042   Label loop;
1043   bind(loop);
1044   movl(Address(tmp, (-os::vm_page_size())), size );
1045   subptr(tmp, os::vm_page_size());
1046   subl(size, os::vm_page_size());
1047   jcc(Assembler::greater, loop);
1048 
1049   // Bang down shadow pages too.
1050   // At this point, (tmp-0) is the last address touched, so don't
1051   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1052   // was post-decremented.)  Skip this address by starting at i=1, and
1053   // touch a few more pages below.  N.B.  It is important to touch all
1054   // the way down to and including i=StackShadowPages.
1055   for (int i = 1; i < StackShadowPages; i++) {
1056     // this could be any sized move but this is can be a debugging crumb
1057     // so the bigger the better.
1058     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1059   }
1060 }
1061 
1062 int MacroAssembler::biased_locking_enter(Register lock_reg,
1063                                          Register obj_reg,
1064                                          Register swap_reg,
1065                                          Register tmp_reg,
1066                                          bool swap_reg_contains_mark,
1067                                          Label& done,
1068                                          Label* slow_case,
1069                                          BiasedLockingCounters* counters) {
1070   assert(UseBiasedLocking, "why call this otherwise?");
1071   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1072   LP64_ONLY( assert(tmp_reg != noreg, "tmp_reg must be supplied"); )
1073   bool need_tmp_reg = false;
1074   if (tmp_reg == noreg) {
1075     need_tmp_reg = true;
1076     tmp_reg = lock_reg;
1077     assert_different_registers(lock_reg, obj_reg, swap_reg);
1078   } else {
1079     assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1080   }
1081   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1082   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1083   Address saved_mark_addr(lock_reg, 0);
1084 
1085   if (PrintBiasedLockingStatistics && counters == NULL) {
1086     counters = BiasedLocking::counters();
1087   }
1088   // Biased locking
1089   // See whether the lock is currently biased toward our thread and
1090   // whether the epoch is still valid
1091   // Note that the runtime guarantees sufficient alignment of JavaThread
1092   // pointers to allow age to be placed into low bits
1093   // First check to see whether biasing is even enabled for this object
1094   Label cas_label;
1095   int null_check_offset = -1;
1096   if (!swap_reg_contains_mark) {
1097     null_check_offset = offset();
1098     movptr(swap_reg, mark_addr);
1099   }
1100   if (need_tmp_reg) {
1101     push(tmp_reg);
1102   }
1103   movptr(tmp_reg, swap_reg);
1104   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1105   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1106   if (need_tmp_reg) {
1107     pop(tmp_reg);
1108   }
1109   jcc(Assembler::notEqual, cas_label);
1110   // The bias pattern is present in the object's header. Need to check
1111   // whether the bias owner and the epoch are both still current.
1112 #ifndef _LP64
1113   // Note that because there is no current thread register on x86_32 we
1114   // need to store off the mark word we read out of the object to
1115   // avoid reloading it and needing to recheck invariants below. This
1116   // store is unfortunate but it makes the overall code shorter and
1117   // simpler.
1118   movptr(saved_mark_addr, swap_reg);
1119 #endif
1120   if (need_tmp_reg) {
1121     push(tmp_reg);
1122   }
1123   if (swap_reg_contains_mark) {
1124     null_check_offset = offset();
1125   }
1126   load_prototype_header(tmp_reg, obj_reg);
1127 #ifdef _LP64
1128   orptr(tmp_reg, r15_thread);
1129   xorptr(tmp_reg, swap_reg);
1130   Register header_reg = tmp_reg;
1131 #else
1132   xorptr(tmp_reg, swap_reg);
1133   get_thread(swap_reg);
1134   xorptr(swap_reg, tmp_reg);
1135   Register header_reg = swap_reg;
1136 #endif
1137   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1138   if (need_tmp_reg) {
1139     pop(tmp_reg);
1140   }
1141   if (counters != NULL) {
1142     cond_inc32(Assembler::zero,
1143                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1144   }
1145   jcc(Assembler::equal, done);
1146 
1147   Label try_revoke_bias;
1148   Label try_rebias;
1149 
1150   // At this point we know that the header has the bias pattern and
1151   // that we are not the bias owner in the current epoch. We need to
1152   // figure out more details about the state of the header in order to
1153   // know what operations can be legally performed on the object's
1154   // header.
1155 
1156   // If the low three bits in the xor result aren't clear, that means
1157   // the prototype header is no longer biased and we have to revoke
1158   // the bias on this object.
1159   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1160   jccb(Assembler::notZero, try_revoke_bias);
1161 
1162   // Biasing is still enabled for this data type. See whether the
1163   // epoch of the current bias is still valid, meaning that the epoch
1164   // bits of the mark word are equal to the epoch bits of the
1165   // prototype header. (Note that the prototype header's epoch bits
1166   // only change at a safepoint.) If not, attempt to rebias the object
1167   // toward the current thread. Note that we must be absolutely sure
1168   // that the current epoch is invalid in order to do this because
1169   // otherwise the manipulations it performs on the mark word are
1170   // illegal.
1171   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1172   jccb(Assembler::notZero, try_rebias);
1173 
1174   // The epoch of the current bias is still valid but we know nothing
1175   // about the owner; it might be set or it might be clear. Try to
1176   // acquire the bias of the object using an atomic operation. If this
1177   // fails we will go in to the runtime to revoke the object's bias.
1178   // Note that we first construct the presumed unbiased header so we
1179   // don't accidentally blow away another thread's valid bias.
1180   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1181   andptr(swap_reg,
1182          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1183   if (need_tmp_reg) {
1184     push(tmp_reg);
1185   }
1186 #ifdef _LP64
1187   movptr(tmp_reg, swap_reg);
1188   orptr(tmp_reg, r15_thread);
1189 #else
1190   get_thread(tmp_reg);
1191   orptr(tmp_reg, swap_reg);
1192 #endif
1193   if (os::is_MP()) {
1194     lock();
1195   }
1196   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1197   if (need_tmp_reg) {
1198     pop(tmp_reg);
1199   }
1200   // If the biasing toward our thread failed, this means that
1201   // another thread succeeded in biasing it toward itself and we
1202   // need to revoke that bias. The revocation will occur in the
1203   // interpreter runtime in the slow case.
1204   if (counters != NULL) {
1205     cond_inc32(Assembler::zero,
1206                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1207   }
1208   if (slow_case != NULL) {
1209     jcc(Assembler::notZero, *slow_case);
1210   }
1211   jmp(done);
1212 
1213   bind(try_rebias);
1214   // At this point we know the epoch has expired, meaning that the
1215   // current "bias owner", if any, is actually invalid. Under these
1216   // circumstances _only_, we are allowed to use the current header's
1217   // value as the comparison value when doing the cas to acquire the
1218   // bias in the current epoch. In other words, we allow transfer of
1219   // the bias from one thread to another directly in this situation.
1220   //
1221   // FIXME: due to a lack of registers we currently blow away the age
1222   // bits in this situation. Should attempt to preserve them.
1223   if (need_tmp_reg) {
1224     push(tmp_reg);
1225   }
1226   load_prototype_header(tmp_reg, obj_reg);
1227 #ifdef _LP64
1228   orptr(tmp_reg, r15_thread);
1229 #else
1230   get_thread(swap_reg);
1231   orptr(tmp_reg, swap_reg);
1232   movptr(swap_reg, saved_mark_addr);
1233 #endif
1234   if (os::is_MP()) {
1235     lock();
1236   }
1237   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1238   if (need_tmp_reg) {
1239     pop(tmp_reg);
1240   }
1241   // If the biasing toward our thread failed, then another thread
1242   // succeeded in biasing it toward itself and we need to revoke that
1243   // bias. The revocation will occur in the runtime in the slow case.
1244   if (counters != NULL) {
1245     cond_inc32(Assembler::zero,
1246                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1247   }
1248   if (slow_case != NULL) {
1249     jcc(Assembler::notZero, *slow_case);
1250   }
1251   jmp(done);
1252 
1253   bind(try_revoke_bias);
1254   // The prototype mark in the klass doesn't have the bias bit set any
1255   // more, indicating that objects of this data type are not supposed
1256   // to be biased any more. We are going to try to reset the mark of
1257   // this object to the prototype value and fall through to the
1258   // CAS-based locking scheme. Note that if our CAS fails, it means
1259   // that another thread raced us for the privilege of revoking the
1260   // bias of this particular object, so it's okay to continue in the
1261   // normal locking code.
1262   //
1263   // FIXME: due to a lack of registers we currently blow away the age
1264   // bits in this situation. Should attempt to preserve them.
1265   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1266   if (need_tmp_reg) {
1267     push(tmp_reg);
1268   }
1269   load_prototype_header(tmp_reg, obj_reg);
1270   if (os::is_MP()) {
1271     lock();
1272   }
1273   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1274   if (need_tmp_reg) {
1275     pop(tmp_reg);
1276   }
1277   // Fall through to the normal CAS-based lock, because no matter what
1278   // the result of the above CAS, some thread must have succeeded in
1279   // removing the bias bit from the object's header.
1280   if (counters != NULL) {
1281     cond_inc32(Assembler::zero,
1282                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1283   }
1284 
1285   bind(cas_label);
1286 
1287   return null_check_offset;
1288 }
1289 
1290 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1291   assert(UseBiasedLocking, "why call this otherwise?");
1292 
1293   // Check for biased locking unlock case, which is a no-op
1294   // Note: we do not have to check the thread ID for two reasons.
1295   // First, the interpreter checks for IllegalMonitorStateException at
1296   // a higher level. Second, if the bias was revoked while we held the
1297   // lock, the object could not be rebiased toward another thread, so
1298   // the bias bit would be clear.
1299   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1300   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1301   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1302   jcc(Assembler::equal, done);
1303 }
1304 
1305 #ifdef COMPILER2
1306 
1307 #if INCLUDE_RTM_OPT
1308 
1309 // Update rtm_counters based on abort status
1310 // input: abort_status
1311 //        rtm_counters (RTMLockingCounters*)
1312 // flags are killed
1313 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1314 
1315   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1316   if (PrintPreciseRTMLockingStatistics) {
1317     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1318       Label check_abort;
1319       testl(abort_status, (1<<i));
1320       jccb(Assembler::equal, check_abort);
1321       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1322       bind(check_abort);
1323     }
1324   }
1325 }
1326 
1327 // Branch if (random & (count-1) != 0), count is 2^n
1328 // tmp, scr and flags are killed
1329 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1330   assert(tmp == rax, "");
1331   assert(scr == rdx, "");
1332   rdtsc(); // modifies EDX:EAX
1333   andptr(tmp, count-1);
1334   jccb(Assembler::notZero, brLabel);
1335 }
1336 
1337 // Perform abort ratio calculation, set no_rtm bit if high ratio
1338 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1339 // tmpReg, rtm_counters_Reg and flags are killed
1340 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1341                                                  Register rtm_counters_Reg,
1342                                                  RTMLockingCounters* rtm_counters,
1343                                                  Metadata* method_data) {
1344   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1345 
1346   if (RTMLockingCalculationDelay > 0) {
1347     // Delay calculation
1348     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1349     testptr(tmpReg, tmpReg);
1350     jccb(Assembler::equal, L_done);
1351   }
1352   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1353   //   Aborted transactions = abort_count * 100
1354   //   All transactions = total_count *  RTMTotalCountIncrRate
1355   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1356 
1357   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1358   cmpptr(tmpReg, RTMAbortThreshold);
1359   jccb(Assembler::below, L_check_always_rtm2);
1360   imulptr(tmpReg, tmpReg, 100);
1361 
1362   Register scrReg = rtm_counters_Reg;
1363   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1364   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1365   imulptr(scrReg, scrReg, RTMAbortRatio);
1366   cmpptr(tmpReg, scrReg);
1367   jccb(Assembler::below, L_check_always_rtm1);
1368   if (method_data != NULL) {
1369     // set rtm_state to "no rtm" in MDO
1370     mov_metadata(tmpReg, method_data);
1371     if (os::is_MP()) {
1372       lock();
1373     }
1374     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1375   }
1376   jmpb(L_done);
1377   bind(L_check_always_rtm1);
1378   // Reload RTMLockingCounters* address
1379   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1380   bind(L_check_always_rtm2);
1381   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1382   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1383   jccb(Assembler::below, L_done);
1384   if (method_data != NULL) {
1385     // set rtm_state to "always rtm" in MDO
1386     mov_metadata(tmpReg, method_data);
1387     if (os::is_MP()) {
1388       lock();
1389     }
1390     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1391   }
1392   bind(L_done);
1393 }
1394 
1395 // Update counters and perform abort ratio calculation
1396 // input:  abort_status_Reg
1397 // rtm_counters_Reg, flags are killed
1398 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1399                                    Register rtm_counters_Reg,
1400                                    RTMLockingCounters* rtm_counters,
1401                                    Metadata* method_data,
1402                                    bool profile_rtm) {
1403 
1404   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1405   // update rtm counters based on rax value at abort
1406   // reads abort_status_Reg, updates flags
1407   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1408   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1409   if (profile_rtm) {
1410     // Save abort status because abort_status_Reg is used by following code.
1411     if (RTMRetryCount > 0) {
1412       push(abort_status_Reg);
1413     }
1414     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1415     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1416     // restore abort status
1417     if (RTMRetryCount > 0) {
1418       pop(abort_status_Reg);
1419     }
1420   }
1421 }
1422 
1423 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1424 // inputs: retry_count_Reg
1425 //       : abort_status_Reg
1426 // output: retry_count_Reg decremented by 1
1427 // flags are killed
1428 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1429   Label doneRetry;
1430   assert(abort_status_Reg == rax, "");
1431   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1432   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1433   // if reason is in 0x6 and retry count != 0 then retry
1434   andptr(abort_status_Reg, 0x6);
1435   jccb(Assembler::zero, doneRetry);
1436   testl(retry_count_Reg, retry_count_Reg);
1437   jccb(Assembler::zero, doneRetry);
1438   pause();
1439   decrementl(retry_count_Reg);
1440   jmp(retryLabel);
1441   bind(doneRetry);
1442 }
1443 
1444 // Spin and retry if lock is busy,
1445 // inputs: box_Reg (monitor address)
1446 //       : retry_count_Reg
1447 // output: retry_count_Reg decremented by 1
1448 //       : clear z flag if retry count exceeded
1449 // tmp_Reg, scr_Reg, flags are killed
1450 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1451                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1452   Label SpinLoop, SpinExit, doneRetry;
1453   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1454 
1455   testl(retry_count_Reg, retry_count_Reg);
1456   jccb(Assembler::zero, doneRetry);
1457   decrementl(retry_count_Reg);
1458   movptr(scr_Reg, RTMSpinLoopCount);
1459 
1460   bind(SpinLoop);
1461   pause();
1462   decrementl(scr_Reg);
1463   jccb(Assembler::lessEqual, SpinExit);
1464   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1465   testptr(tmp_Reg, tmp_Reg);
1466   jccb(Assembler::notZero, SpinLoop);
1467 
1468   bind(SpinExit);
1469   jmp(retryLabel);
1470   bind(doneRetry);
1471   incrementl(retry_count_Reg); // clear z flag
1472 }
1473 
1474 // Use RTM for normal stack locks
1475 // Input: objReg (object to lock)
1476 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1477                                        Register retry_on_abort_count_Reg,
1478                                        RTMLockingCounters* stack_rtm_counters,
1479                                        Metadata* method_data, bool profile_rtm,
1480                                        Label& DONE_LABEL, Label& IsInflated) {
1481   assert(UseRTMForStackLocks, "why call this otherwise?");
1482   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1483   assert(tmpReg == rax, "");
1484   assert(scrReg == rdx, "");
1485   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1486 
1487   if (RTMRetryCount > 0) {
1488     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1489     bind(L_rtm_retry);
1490   }
1491   movptr(tmpReg, Address(objReg, 0));
1492   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1493   jcc(Assembler::notZero, IsInflated);
1494 
1495   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1496     Label L_noincrement;
1497     if (RTMTotalCountIncrRate > 1) {
1498       // tmpReg, scrReg and flags are killed
1499       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1500     }
1501     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1502     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1503     bind(L_noincrement);
1504   }
1505   xbegin(L_on_abort);
1506   movptr(tmpReg, Address(objReg, 0));       // fetch markword
1507   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1508   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1509   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1510 
1511   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1512   if (UseRTMXendForLockBusy) {
1513     xend();
1514     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1515     jmp(L_decrement_retry);
1516   }
1517   else {
1518     xabort(0);
1519   }
1520   bind(L_on_abort);
1521   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1522     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1523   }
1524   bind(L_decrement_retry);
1525   if (RTMRetryCount > 0) {
1526     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1527     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1528   }
1529 }
1530 
1531 // Use RTM for inflating locks
1532 // inputs: objReg (object to lock)
1533 //         boxReg (on-stack box address (displaced header location) - KILLED)
1534 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1535 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1536                                           Register scrReg, Register retry_on_busy_count_Reg,
1537                                           Register retry_on_abort_count_Reg,
1538                                           RTMLockingCounters* rtm_counters,
1539                                           Metadata* method_data, bool profile_rtm,
1540                                           Label& DONE_LABEL) {
1541   assert(UseRTMLocking, "why call this otherwise?");
1542   assert(tmpReg == rax, "");
1543   assert(scrReg == rdx, "");
1544   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1545   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1546 
1547   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1548   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1549   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1550 
1551   if (RTMRetryCount > 0) {
1552     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1553     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1554     bind(L_rtm_retry);
1555   }
1556   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1557     Label L_noincrement;
1558     if (RTMTotalCountIncrRate > 1) {
1559       // tmpReg, scrReg and flags are killed
1560       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1561     }
1562     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1563     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1564     bind(L_noincrement);
1565   }
1566   xbegin(L_on_abort);
1567   movptr(tmpReg, Address(objReg, 0));
1568   movptr(tmpReg, Address(tmpReg, owner_offset));
1569   testptr(tmpReg, tmpReg);
1570   jcc(Assembler::zero, DONE_LABEL);
1571   if (UseRTMXendForLockBusy) {
1572     xend();
1573     jmp(L_decrement_retry);
1574   }
1575   else {
1576     xabort(0);
1577   }
1578   bind(L_on_abort);
1579   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1580   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1581     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1582   }
1583   if (RTMRetryCount > 0) {
1584     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1585     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1586   }
1587 
1588   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1589   testptr(tmpReg, tmpReg) ;
1590   jccb(Assembler::notZero, L_decrement_retry) ;
1591 
1592   // Appears unlocked - try to swing _owner from null to non-null.
1593   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1594 #ifdef _LP64
1595   Register threadReg = r15_thread;
1596 #else
1597   get_thread(scrReg);
1598   Register threadReg = scrReg;
1599 #endif
1600   if (os::is_MP()) {
1601     lock();
1602   }
1603   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1604 
1605   if (RTMRetryCount > 0) {
1606     // success done else retry
1607     jccb(Assembler::equal, DONE_LABEL) ;
1608     bind(L_decrement_retry);
1609     // Spin and retry if lock is busy.
1610     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1611   }
1612   else {
1613     bind(L_decrement_retry);
1614   }
1615 }
1616 
1617 #endif //  INCLUDE_RTM_OPT
1618 
1619 // Fast_Lock and Fast_Unlock used by C2
1620 
1621 // Because the transitions from emitted code to the runtime
1622 // monitorenter/exit helper stubs are so slow it's critical that
1623 // we inline both the stack-locking fast-path and the inflated fast path.
1624 //
1625 // See also: cmpFastLock and cmpFastUnlock.
1626 //
1627 // What follows is a specialized inline transliteration of the code
1628 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1629 // another option would be to emit TrySlowEnter and TrySlowExit methods
1630 // at startup-time.  These methods would accept arguments as
1631 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1632 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1633 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1634 // In practice, however, the # of lock sites is bounded and is usually small.
1635 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1636 // if the processor uses simple bimodal branch predictors keyed by EIP
1637 // Since the helper routines would be called from multiple synchronization
1638 // sites.
1639 //
1640 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1641 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1642 // to those specialized methods.  That'd give us a mostly platform-independent
1643 // implementation that the JITs could optimize and inline at their pleasure.
1644 // Done correctly, the only time we'd need to cross to native could would be
1645 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1646 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1647 // (b) explicit barriers or fence operations.
1648 //
1649 // TODO:
1650 //
1651 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1652 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1653 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1654 //    the lock operators would typically be faster than reifying Self.
1655 //
1656 // *  Ideally I'd define the primitives as:
1657 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1658 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1659 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1660 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1661 //    Furthermore the register assignments are overconstrained, possibly resulting in
1662 //    sub-optimal code near the synchronization site.
1663 //
1664 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1665 //    Alternately, use a better sp-proximity test.
1666 //
1667 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1668 //    Either one is sufficient to uniquely identify a thread.
1669 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1670 //
1671 // *  Intrinsify notify() and notifyAll() for the common cases where the
1672 //    object is locked by the calling thread but the waitlist is empty.
1673 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1674 //
1675 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1676 //    But beware of excessive branch density on AMD Opterons.
1677 //
1678 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1679 //    or failure of the fast-path.  If the fast-path fails then we pass
1680 //    control to the slow-path, typically in C.  In Fast_Lock and
1681 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1682 //    will emit a conditional branch immediately after the node.
1683 //    So we have branches to branches and lots of ICC.ZF games.
1684 //    Instead, it might be better to have C2 pass a "FailureLabel"
1685 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1686 //    will drop through the node.  ICC.ZF is undefined at exit.
1687 //    In the case of failure, the node will branch directly to the
1688 //    FailureLabel
1689 
1690 
1691 // obj: object to lock
1692 // box: on-stack box address (displaced header location) - KILLED
1693 // rax,: tmp -- KILLED
1694 // scr: tmp -- KILLED
1695 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1696                                Register scrReg, Register cx1Reg, Register cx2Reg,
1697                                BiasedLockingCounters* counters,
1698                                RTMLockingCounters* rtm_counters,
1699                                RTMLockingCounters* stack_rtm_counters,
1700                                Metadata* method_data,
1701                                bool use_rtm, bool profile_rtm) {
1702   // Ensure the register assignents are disjoint
1703   assert(tmpReg == rax, "");
1704 
1705   if (use_rtm) {
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1707   } else {
1708     assert(cx1Reg == noreg, "");
1709     assert(cx2Reg == noreg, "");
1710     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1711   }
1712 
1713   if (counters != NULL) {
1714     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1715   }
1716   if (EmitSync & 1) {
1717       // set box->dhw = markOopDesc::unused_mark()
1718       // Force all sync thru slow-path: slow_enter() and slow_exit()
1719       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1720       cmpptr (rsp, (int32_t)NULL_WORD);
1721   } else {
1722     // Possible cases that we'll encounter in fast_lock
1723     // ------------------------------------------------
1724     // * Inflated
1725     //    -- unlocked
1726     //    -- Locked
1727     //       = by self
1728     //       = by other
1729     // * biased
1730     //    -- by Self
1731     //    -- by other
1732     // * neutral
1733     // * stack-locked
1734     //    -- by self
1735     //       = sp-proximity test hits
1736     //       = sp-proximity test generates false-negative
1737     //    -- by other
1738     //
1739 
1740     Label IsInflated, DONE_LABEL;
1741 
1742     // it's stack-locked, biased or neutral
1743     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1744     // order to reduce the number of conditional branches in the most common cases.
1745     // Beware -- there's a subtle invariant that fetch of the markword
1746     // at [FETCH], below, will never observe a biased encoding (*101b).
1747     // If this invariant is not held we risk exclusion (safety) failure.
1748     if (UseBiasedLocking && !UseOptoBiasInlining) {
1749       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1750     }
1751 
1752 #if INCLUDE_RTM_OPT
1753     if (UseRTMForStackLocks && use_rtm) {
1754       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1755                         stack_rtm_counters, method_data, profile_rtm,
1756                         DONE_LABEL, IsInflated);
1757     }
1758 #endif // INCLUDE_RTM_OPT
1759 
1760     movptr(tmpReg, Address(objReg, 0));          // [FETCH]
1761     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1762     jccb(Assembler::notZero, IsInflated);
1763 
1764     // Attempt stack-locking ...
1765     orptr (tmpReg, markOopDesc::unlocked_value);
1766     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1767     if (os::is_MP()) {
1768       lock();
1769     }
1770     cmpxchgptr(boxReg, Address(objReg, 0));      // Updates tmpReg
1771     if (counters != NULL) {
1772       cond_inc32(Assembler::equal,
1773                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1774     }
1775     jcc(Assembler::equal, DONE_LABEL);           // Success
1776 
1777     // Recursive locking.
1778     // The object is stack-locked: markword contains stack pointer to BasicLock.
1779     // Locked by current thread if difference with current SP is less than one page.
1780     subptr(tmpReg, rsp);
1781     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1782     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1783     movptr(Address(boxReg, 0), tmpReg);
1784     if (counters != NULL) {
1785       cond_inc32(Assembler::equal,
1786                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1787     }
1788     jmp(DONE_LABEL);
1789 
1790     bind(IsInflated);
1791     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1792 
1793 #if INCLUDE_RTM_OPT
1794     // Use the same RTM locking code in 32- and 64-bit VM.
1795     if (use_rtm) {
1796       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1797                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1798     } else {
1799 #endif // INCLUDE_RTM_OPT
1800 
1801 #ifndef _LP64
1802     // The object is inflated.
1803 
1804     // boxReg refers to the on-stack BasicLock in the current frame.
1805     // We'd like to write:
1806     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1807     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1808     // additional latency as we have another ST in the store buffer that must drain.
1809 
1810     if (EmitSync & 8192) {
1811        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1812        get_thread (scrReg);
1813        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1814        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1815        if (os::is_MP()) {
1816          lock();
1817        }
1818        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1819     } else
1820     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1821        movptr(scrReg, boxReg);
1822        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1823 
1824        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1825        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1826           // prefetchw [eax + Offset(_owner)-2]
1827           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1828        }
1829 
1830        if ((EmitSync & 64) == 0) {
1831          // Optimistic form: consider XORL tmpReg,tmpReg
1832          movptr(tmpReg, NULL_WORD);
1833        } else {
1834          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1835          // Test-And-CAS instead of CAS
1836          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1837          testptr(tmpReg, tmpReg);                   // Locked ?
1838          jccb  (Assembler::notZero, DONE_LABEL);
1839        }
1840 
1841        // Appears unlocked - try to swing _owner from null to non-null.
1842        // Ideally, I'd manifest "Self" with get_thread and then attempt
1843        // to CAS the register containing Self into m->Owner.
1844        // But we don't have enough registers, so instead we can either try to CAS
1845        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1846        // we later store "Self" into m->Owner.  Transiently storing a stack address
1847        // (rsp or the address of the box) into  m->owner is harmless.
1848        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1849        if (os::is_MP()) {
1850          lock();
1851        }
1852        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1853        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1854        jccb  (Assembler::notZero, DONE_LABEL);
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, 0));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, 0));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        jccb  (Assembler::notEqual, LSuccess);
2124        // Since we're low on registers we installed rsp as a placeholding in _owner.
2125        // Now install Self over rsp.  This is safe as we're transitioning from
2126        // non-null to non=null
2127        get_thread (boxReg);
2128        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2129        // Intentional fall-through into LGoSlowPath ...
2130 
2131        bind  (LGoSlowPath);
2132        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2133        jmpb  (DONE_LABEL);
2134 
2135        bind  (LSuccess);
2136        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2137        jmpb  (DONE_LABEL);
2138     }
2139 
2140     bind (Stacked);
2141     // It's not inflated and it's not recursively stack-locked and it's not biased.
2142     // It must be stack-locked.
2143     // Try to reset the header to displaced header.
2144     // The "box" value on the stack is stable, so we can reload
2145     // and be assured we observe the same value as above.
2146     movptr(tmpReg, Address(boxReg, 0));
2147     if (os::is_MP()) {
2148       lock();
2149     }
2150     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2151     // Intention fall-thru into DONE_LABEL
2152 
2153     // DONE_LABEL is a hot target - we'd really like to place it at the
2154     // start of cache line by padding with NOPs.
2155     // See the AMD and Intel software optimization manuals for the
2156     // most efficient "long" NOP encodings.
2157     // Unfortunately none of our alignment mechanisms suffice.
2158     if ((EmitSync & 65536) == 0) {
2159        bind (CheckSucc);
2160     }
2161 #else // _LP64
2162     // It's inflated
2163     if (EmitSync & 1024) {
2164       // Emit code to check that _owner == Self
2165       // We could fold the _owner test into subsequent code more efficiently
2166       // than using a stand-alone check, but since _owner checking is off by
2167       // default we don't bother. We also might consider predicating the
2168       // _owner==Self check on Xcheck:jni or running on a debug build.
2169       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2170       xorptr(boxReg, r15_thread);
2171     } else {
2172       xorptr(boxReg, boxReg);
2173     }
2174     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2175     jccb  (Assembler::notZero, DONE_LABEL);
2176     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2178     jccb  (Assembler::notZero, CheckSucc);
2179     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2180     jmpb  (DONE_LABEL);
2181 
2182     if ((EmitSync & 65536) == 0) {
2183       // Try to avoid passing control into the slow_path ...
2184       Label LSuccess, LGoSlowPath ;
2185       bind  (CheckSucc);
2186 
2187       // The following optional optimization can be elided if necessary
2188       // Effectively: if (succ == null) goto SlowPath
2189       // The code reduces the window for a race, however,
2190       // and thus benefits performance.
2191       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2192       jccb  (Assembler::zero, LGoSlowPath);
2193 
2194       if ((EmitSync & 16) && os::is_MP()) {
2195         orptr(boxReg, boxReg);
2196         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2197       } else {
2198         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2199         if (os::is_MP()) {
2200           // Memory barrier/fence
2201           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2202           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2203           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2204           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2205           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2206           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2207           lock(); addl(Address(rsp, 0), 0);
2208         }
2209       }
2210       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2211       jccb  (Assembler::notZero, LSuccess);
2212 
2213       // Rare inopportune interleaving - race.
2214       // The successor vanished in the small window above.
2215       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2216       // We need to ensure progress and succession.
2217       // Try to reacquire the lock.
2218       // If that fails then the new owner is responsible for succession and this
2219       // thread needs to take no further action and can exit via the fast path (success).
2220       // If the re-acquire succeeds then pass control into the slow path.
2221       // As implemented, this latter mode is horrible because we generated more
2222       // coherence traffic on the lock *and* artifically extended the critical section
2223       // length while by virtue of passing control into the slow path.
2224 
2225       // box is really RAX -- the following CMPXCHG depends on that binding
2226       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2227       movptr(boxReg, (int32_t)NULL_WORD);
2228       if (os::is_MP()) { lock(); }
2229       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2230       jccb  (Assembler::notEqual, LSuccess);
2231       // Intentional fall-through into slow-path
2232 
2233       bind  (LGoSlowPath);
2234       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2235       jmpb  (DONE_LABEL);
2236 
2237       bind  (LSuccess);
2238       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2239       jmpb  (DONE_LABEL);
2240     }
2241 
2242     bind  (Stacked);
2243     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2244     if (os::is_MP()) { lock(); }
2245     cmpxchgptr(tmpReg, Address(objReg, 0)); // Uses RAX which is box
2246 
2247     if (EmitSync & 65536) {
2248        bind (CheckSucc);
2249     }
2250 #endif
2251     bind(DONE_LABEL);
2252   }
2253 }
2254 #endif // COMPILER2
2255 
2256 void MacroAssembler::c2bool(Register x) {
2257   // implements x == 0 ? 0 : 1
2258   // note: must only look at least-significant byte of x
2259   //       since C-style booleans are stored in one byte
2260   //       only! (was bug)
2261   andl(x, 0xFF);
2262   setb(Assembler::notZero, x);
2263 }
2264 
2265 // Wouldn't need if AddressLiteral version had new name
2266 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2267   Assembler::call(L, rtype);
2268 }
2269 
2270 void MacroAssembler::call(Register entry) {
2271   Assembler::call(entry);
2272 }
2273 
2274 void MacroAssembler::call(AddressLiteral entry) {
2275   if (reachable(entry)) {
2276     Assembler::call_literal(entry.target(), entry.rspec());
2277   } else {
2278     lea(rscratch1, entry);
2279     Assembler::call(rscratch1);
2280   }
2281 }
2282 
2283 void MacroAssembler::ic_call(address entry) {
2284   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2285   movptr(rax, (intptr_t)Universe::non_oop_word());
2286   call(AddressLiteral(entry, rh));
2287 }
2288 
2289 // Implementation of call_VM versions
2290 
2291 void MacroAssembler::call_VM(Register oop_result,
2292                              address entry_point,
2293                              bool check_exceptions) {
2294   Label C, E;
2295   call(C, relocInfo::none);
2296   jmp(E);
2297 
2298   bind(C);
2299   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2300   ret(0);
2301 
2302   bind(E);
2303 }
2304 
2305 void MacroAssembler::call_VM(Register oop_result,
2306                              address entry_point,
2307                              Register arg_1,
2308                              bool check_exceptions) {
2309   Label C, E;
2310   call(C, relocInfo::none);
2311   jmp(E);
2312 
2313   bind(C);
2314   pass_arg1(this, arg_1);
2315   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2316   ret(0);
2317 
2318   bind(E);
2319 }
2320 
2321 void MacroAssembler::call_VM(Register oop_result,
2322                              address entry_point,
2323                              Register arg_1,
2324                              Register arg_2,
2325                              bool check_exceptions) {
2326   Label C, E;
2327   call(C, relocInfo::none);
2328   jmp(E);
2329 
2330   bind(C);
2331 
2332   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2333 
2334   pass_arg2(this, arg_2);
2335   pass_arg1(this, arg_1);
2336   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2337   ret(0);
2338 
2339   bind(E);
2340 }
2341 
2342 void MacroAssembler::call_VM(Register oop_result,
2343                              address entry_point,
2344                              Register arg_1,
2345                              Register arg_2,
2346                              Register arg_3,
2347                              bool check_exceptions) {
2348   Label C, E;
2349   call(C, relocInfo::none);
2350   jmp(E);
2351 
2352   bind(C);
2353 
2354   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2355   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2356   pass_arg3(this, arg_3);
2357 
2358   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2359   pass_arg2(this, arg_2);
2360 
2361   pass_arg1(this, arg_1);
2362   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2363   ret(0);
2364 
2365   bind(E);
2366 }
2367 
2368 void MacroAssembler::call_VM(Register oop_result,
2369                              Register last_java_sp,
2370                              address entry_point,
2371                              int number_of_arguments,
2372                              bool check_exceptions) {
2373   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2374   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2375 }
2376 
2377 void MacroAssembler::call_VM(Register oop_result,
2378                              Register last_java_sp,
2379                              address entry_point,
2380                              Register arg_1,
2381                              bool check_exceptions) {
2382   pass_arg1(this, arg_1);
2383   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2384 }
2385 
2386 void MacroAssembler::call_VM(Register oop_result,
2387                              Register last_java_sp,
2388                              address entry_point,
2389                              Register arg_1,
2390                              Register arg_2,
2391                              bool check_exceptions) {
2392 
2393   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2394   pass_arg2(this, arg_2);
2395   pass_arg1(this, arg_1);
2396   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2397 }
2398 
2399 void MacroAssembler::call_VM(Register oop_result,
2400                              Register last_java_sp,
2401                              address entry_point,
2402                              Register arg_1,
2403                              Register arg_2,
2404                              Register arg_3,
2405                              bool check_exceptions) {
2406   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2407   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2408   pass_arg3(this, arg_3);
2409   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2410   pass_arg2(this, arg_2);
2411   pass_arg1(this, arg_1);
2412   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2413 }
2414 
2415 void MacroAssembler::super_call_VM(Register oop_result,
2416                                    Register last_java_sp,
2417                                    address entry_point,
2418                                    int number_of_arguments,
2419                                    bool check_exceptions) {
2420   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2421   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2422 }
2423 
2424 void MacroAssembler::super_call_VM(Register oop_result,
2425                                    Register last_java_sp,
2426                                    address entry_point,
2427                                    Register arg_1,
2428                                    bool check_exceptions) {
2429   pass_arg1(this, arg_1);
2430   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2431 }
2432 
2433 void MacroAssembler::super_call_VM(Register oop_result,
2434                                    Register last_java_sp,
2435                                    address entry_point,
2436                                    Register arg_1,
2437                                    Register arg_2,
2438                                    bool check_exceptions) {
2439 
2440   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2441   pass_arg2(this, arg_2);
2442   pass_arg1(this, arg_1);
2443   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2444 }
2445 
2446 void MacroAssembler::super_call_VM(Register oop_result,
2447                                    Register last_java_sp,
2448                                    address entry_point,
2449                                    Register arg_1,
2450                                    Register arg_2,
2451                                    Register arg_3,
2452                                    bool check_exceptions) {
2453   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2454   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2455   pass_arg3(this, arg_3);
2456   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2457   pass_arg2(this, arg_2);
2458   pass_arg1(this, arg_1);
2459   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2460 }
2461 
2462 void MacroAssembler::call_VM_base(Register oop_result,
2463                                   Register java_thread,
2464                                   Register last_java_sp,
2465                                   address  entry_point,
2466                                   int      number_of_arguments,
2467                                   bool     check_exceptions) {
2468   // determine java_thread register
2469   if (!java_thread->is_valid()) {
2470 #ifdef _LP64
2471     java_thread = r15_thread;
2472 #else
2473     java_thread = rdi;
2474     get_thread(java_thread);
2475 #endif // LP64
2476   }
2477   // determine last_java_sp register
2478   if (!last_java_sp->is_valid()) {
2479     last_java_sp = rsp;
2480   }
2481   // debugging support
2482   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2483   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2484 #ifdef ASSERT
2485   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2486   // r12 is the heapbase.
2487   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2488 #endif // ASSERT
2489 
2490   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2491   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2492 
2493   // push java thread (becomes first argument of C function)
2494 
2495   NOT_LP64(push(java_thread); number_of_arguments++);
2496   LP64_ONLY(mov(c_rarg0, r15_thread));
2497 
2498   // set last Java frame before call
2499   assert(last_java_sp != rbp, "can't use ebp/rbp");
2500 
2501   // Only interpreter should have to set fp
2502   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2503 
2504   // do the call, remove parameters
2505   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2506 
2507   // restore the thread (cannot use the pushed argument since arguments
2508   // may be overwritten by C code generated by an optimizing compiler);
2509   // however can use the register value directly if it is callee saved.
2510   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2511     // rdi & rsi (also r15) are callee saved -> nothing to do
2512 #ifdef ASSERT
2513     guarantee(java_thread != rax, "change this code");
2514     push(rax);
2515     { Label L;
2516       get_thread(rax);
2517       cmpptr(java_thread, rax);
2518       jcc(Assembler::equal, L);
2519       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2520       bind(L);
2521     }
2522     pop(rax);
2523 #endif
2524   } else {
2525     get_thread(java_thread);
2526   }
2527   // reset last Java frame
2528   // Only interpreter should have to clear fp
2529   reset_last_Java_frame(java_thread, true, false);
2530 
2531 #ifndef CC_INTERP
2532    // C++ interp handles this in the interpreter
2533   check_and_handle_popframe(java_thread);
2534   check_and_handle_earlyret(java_thread);
2535 #endif /* CC_INTERP */
2536 
2537   if (check_exceptions) {
2538     // check for pending exceptions (java_thread is set upon return)
2539     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2540 #ifndef _LP64
2541     jump_cc(Assembler::notEqual,
2542             RuntimeAddress(StubRoutines::forward_exception_entry()));
2543 #else
2544     // This used to conditionally jump to forward_exception however it is
2545     // possible if we relocate that the branch will not reach. So we must jump
2546     // around so we can always reach
2547 
2548     Label ok;
2549     jcc(Assembler::equal, ok);
2550     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2551     bind(ok);
2552 #endif // LP64
2553   }
2554 
2555   // get oop result if there is one and reset the value in the thread
2556   if (oop_result->is_valid()) {
2557     get_vm_result(oop_result, java_thread);
2558   }
2559 }
2560 
2561 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2562 
2563   // Calculate the value for last_Java_sp
2564   // somewhat subtle. call_VM does an intermediate call
2565   // which places a return address on the stack just under the
2566   // stack pointer as the user finsihed with it. This allows
2567   // use to retrieve last_Java_pc from last_Java_sp[-1].
2568   // On 32bit we then have to push additional args on the stack to accomplish
2569   // the actual requested call. On 64bit call_VM only can use register args
2570   // so the only extra space is the return address that call_VM created.
2571   // This hopefully explains the calculations here.
2572 
2573 #ifdef _LP64
2574   // We've pushed one address, correct last_Java_sp
2575   lea(rax, Address(rsp, wordSize));
2576 #else
2577   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2578 #endif // LP64
2579 
2580   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2581 
2582 }
2583 
2584 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2585   call_VM_leaf_base(entry_point, number_of_arguments);
2586 }
2587 
2588 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2589   pass_arg0(this, arg_0);
2590   call_VM_leaf(entry_point, 1);
2591 }
2592 
2593 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2594 
2595   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2596   pass_arg1(this, arg_1);
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 2);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2602   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2603   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2604   pass_arg2(this, arg_2);
2605   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2606   pass_arg1(this, arg_1);
2607   pass_arg0(this, arg_0);
2608   call_VM_leaf(entry_point, 3);
2609 }
2610 
2611 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2612   pass_arg0(this, arg_0);
2613   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2614 }
2615 
2616 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2617 
2618   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2619   pass_arg1(this, arg_1);
2620   pass_arg0(this, arg_0);
2621   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2622 }
2623 
2624 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2625   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2626   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2627   pass_arg2(this, arg_2);
2628   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2629   pass_arg1(this, arg_1);
2630   pass_arg0(this, arg_0);
2631   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2632 }
2633 
2634 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2635   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2636   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2637   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2638   pass_arg3(this, arg_3);
2639   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2640   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2641   pass_arg2(this, arg_2);
2642   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2643   pass_arg1(this, arg_1);
2644   pass_arg0(this, arg_0);
2645   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2646 }
2647 
2648 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2649   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2650   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2651   verify_oop(oop_result, "broken oop in call_VM_base");
2652 }
2653 
2654 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2655   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2656   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2657 }
2658 
2659 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2660 }
2661 
2662 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2663 }
2664 
2665 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2666   if (reachable(src1)) {
2667     cmpl(as_Address(src1), imm);
2668   } else {
2669     lea(rscratch1, src1);
2670     cmpl(Address(rscratch1, 0), imm);
2671   }
2672 }
2673 
2674 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2675   assert(!src2.is_lval(), "use cmpptr");
2676   if (reachable(src2)) {
2677     cmpl(src1, as_Address(src2));
2678   } else {
2679     lea(rscratch1, src2);
2680     cmpl(src1, Address(rscratch1, 0));
2681   }
2682 }
2683 
2684 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2685   Assembler::cmpl(src1, imm);
2686 }
2687 
2688 void MacroAssembler::cmp32(Register src1, Address src2) {
2689   Assembler::cmpl(src1, src2);
2690 }
2691 
2692 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2693   ucomisd(opr1, opr2);
2694 
2695   Label L;
2696   if (unordered_is_less) {
2697     movl(dst, -1);
2698     jcc(Assembler::parity, L);
2699     jcc(Assembler::below , L);
2700     movl(dst, 0);
2701     jcc(Assembler::equal , L);
2702     increment(dst);
2703   } else { // unordered is greater
2704     movl(dst, 1);
2705     jcc(Assembler::parity, L);
2706     jcc(Assembler::above , L);
2707     movl(dst, 0);
2708     jcc(Assembler::equal , L);
2709     decrementl(dst);
2710   }
2711   bind(L);
2712 }
2713 
2714 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2715   ucomiss(opr1, opr2);
2716 
2717   Label L;
2718   if (unordered_is_less) {
2719     movl(dst, -1);
2720     jcc(Assembler::parity, L);
2721     jcc(Assembler::below , L);
2722     movl(dst, 0);
2723     jcc(Assembler::equal , L);
2724     increment(dst);
2725   } else { // unordered is greater
2726     movl(dst, 1);
2727     jcc(Assembler::parity, L);
2728     jcc(Assembler::above , L);
2729     movl(dst, 0);
2730     jcc(Assembler::equal , L);
2731     decrementl(dst);
2732   }
2733   bind(L);
2734 }
2735 
2736 
2737 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2738   if (reachable(src1)) {
2739     cmpb(as_Address(src1), imm);
2740   } else {
2741     lea(rscratch1, src1);
2742     cmpb(Address(rscratch1, 0), imm);
2743   }
2744 }
2745 
2746 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2747 #ifdef _LP64
2748   if (src2.is_lval()) {
2749     movptr(rscratch1, src2);
2750     Assembler::cmpq(src1, rscratch1);
2751   } else if (reachable(src2)) {
2752     cmpq(src1, as_Address(src2));
2753   } else {
2754     lea(rscratch1, src2);
2755     Assembler::cmpq(src1, Address(rscratch1, 0));
2756   }
2757 #else
2758   if (src2.is_lval()) {
2759     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2760   } else {
2761     cmpl(src1, as_Address(src2));
2762   }
2763 #endif // _LP64
2764 }
2765 
2766 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2767   assert(src2.is_lval(), "not a mem-mem compare");
2768 #ifdef _LP64
2769   // moves src2's literal address
2770   movptr(rscratch1, src2);
2771   Assembler::cmpq(src1, rscratch1);
2772 #else
2773   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2774 #endif // _LP64
2775 }
2776 
2777 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2778   if (reachable(adr)) {
2779     if (os::is_MP())
2780       lock();
2781     cmpxchgptr(reg, as_Address(adr));
2782   } else {
2783     lea(rscratch1, adr);
2784     if (os::is_MP())
2785       lock();
2786     cmpxchgptr(reg, Address(rscratch1, 0));
2787   }
2788 }
2789 
2790 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2791   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2792 }
2793 
2794 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2795   if (reachable(src)) {
2796     Assembler::comisd(dst, as_Address(src));
2797   } else {
2798     lea(rscratch1, src);
2799     Assembler::comisd(dst, Address(rscratch1, 0));
2800   }
2801 }
2802 
2803 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2804   if (reachable(src)) {
2805     Assembler::comiss(dst, as_Address(src));
2806   } else {
2807     lea(rscratch1, src);
2808     Assembler::comiss(dst, Address(rscratch1, 0));
2809   }
2810 }
2811 
2812 
2813 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2814   Condition negated_cond = negate_condition(cond);
2815   Label L;
2816   jcc(negated_cond, L);
2817   pushf(); // Preserve flags
2818   atomic_incl(counter_addr);
2819   popf();
2820   bind(L);
2821 }
2822 
2823 int MacroAssembler::corrected_idivl(Register reg) {
2824   // Full implementation of Java idiv and irem; checks for
2825   // special case as described in JVM spec., p.243 & p.271.
2826   // The function returns the (pc) offset of the idivl
2827   // instruction - may be needed for implicit exceptions.
2828   //
2829   //         normal case                           special case
2830   //
2831   // input : rax,: dividend                         min_int
2832   //         reg: divisor   (may not be rax,/rdx)   -1
2833   //
2834   // output: rax,: quotient  (= rax, idiv reg)       min_int
2835   //         rdx: remainder (= rax, irem reg)       0
2836   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2837   const int min_int = 0x80000000;
2838   Label normal_case, special_case;
2839 
2840   // check for special case
2841   cmpl(rax, min_int);
2842   jcc(Assembler::notEqual, normal_case);
2843   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2844   cmpl(reg, -1);
2845   jcc(Assembler::equal, special_case);
2846 
2847   // handle normal case
2848   bind(normal_case);
2849   cdql();
2850   int idivl_offset = offset();
2851   idivl(reg);
2852 
2853   // normal and special case exit
2854   bind(special_case);
2855 
2856   return idivl_offset;
2857 }
2858 
2859 
2860 
2861 void MacroAssembler::decrementl(Register reg, int value) {
2862   if (value == min_jint) {subl(reg, value) ; return; }
2863   if (value <  0) { incrementl(reg, -value); return; }
2864   if (value == 0) {                        ; return; }
2865   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2866   /* else */      { subl(reg, value)       ; return; }
2867 }
2868 
2869 void MacroAssembler::decrementl(Address dst, int value) {
2870   if (value == min_jint) {subl(dst, value) ; return; }
2871   if (value <  0) { incrementl(dst, -value); return; }
2872   if (value == 0) {                        ; return; }
2873   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2874   /* else */      { subl(dst, value)       ; return; }
2875 }
2876 
2877 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2878   assert (shift_value > 0, "illegal shift value");
2879   Label _is_positive;
2880   testl (reg, reg);
2881   jcc (Assembler::positive, _is_positive);
2882   int offset = (1 << shift_value) - 1 ;
2883 
2884   if (offset == 1) {
2885     incrementl(reg);
2886   } else {
2887     addl(reg, offset);
2888   }
2889 
2890   bind (_is_positive);
2891   sarl(reg, shift_value);
2892 }
2893 
2894 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2895   if (reachable(src)) {
2896     Assembler::divsd(dst, as_Address(src));
2897   } else {
2898     lea(rscratch1, src);
2899     Assembler::divsd(dst, Address(rscratch1, 0));
2900   }
2901 }
2902 
2903 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2904   if (reachable(src)) {
2905     Assembler::divss(dst, as_Address(src));
2906   } else {
2907     lea(rscratch1, src);
2908     Assembler::divss(dst, Address(rscratch1, 0));
2909   }
2910 }
2911 
2912 // !defined(COMPILER2) is because of stupid core builds
2913 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2)
2914 void MacroAssembler::empty_FPU_stack() {
2915   if (VM_Version::supports_mmx()) {
2916     emms();
2917   } else {
2918     for (int i = 8; i-- > 0; ) ffree(i);
2919   }
2920 }
2921 #endif // !LP64 || C1 || !C2
2922 
2923 
2924 // Defines obj, preserves var_size_in_bytes
2925 void MacroAssembler::eden_allocate(Register obj,
2926                                    Register var_size_in_bytes,
2927                                    int con_size_in_bytes,
2928                                    Register t1,
2929                                    Label& slow_case) {
2930   assert(obj == rax, "obj must be in rax, for cmpxchg");
2931   assert_different_registers(obj, var_size_in_bytes, t1);
2932   if (!Universe::heap()->supports_inline_contig_alloc()) {
2933     jmp(slow_case);
2934   } else {
2935     Register end = t1;
2936     Label retry;
2937     bind(retry);
2938     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2939     movptr(obj, heap_top);
2940     if (var_size_in_bytes == noreg) {
2941       lea(end, Address(obj, con_size_in_bytes));
2942     } else {
2943       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2944     }
2945     // if end < obj then we wrapped around => object too long => slow case
2946     cmpptr(end, obj);
2947     jcc(Assembler::below, slow_case);
2948     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2949     jcc(Assembler::above, slow_case);
2950     // Compare obj with the top addr, and if still equal, store the new top addr in
2951     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2952     // it otherwise. Use lock prefix for atomicity on MPs.
2953     locked_cmpxchgptr(end, heap_top);
2954     jcc(Assembler::notEqual, retry);
2955   }
2956 }
2957 
2958 void MacroAssembler::enter() {
2959   push(rbp);
2960   mov(rbp, rsp);
2961 }
2962 
2963 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2964 void MacroAssembler::fat_nop() {
2965   if (UseAddressNop) {
2966     addr_nop_5();
2967   } else {
2968     emit_int8(0x26); // es:
2969     emit_int8(0x2e); // cs:
2970     emit_int8(0x64); // fs:
2971     emit_int8(0x65); // gs:
2972     emit_int8((unsigned char)0x90);
2973   }
2974 }
2975 
2976 void MacroAssembler::fcmp(Register tmp) {
2977   fcmp(tmp, 1, true, true);
2978 }
2979 
2980 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2981   assert(!pop_right || pop_left, "usage error");
2982   if (VM_Version::supports_cmov()) {
2983     assert(tmp == noreg, "unneeded temp");
2984     if (pop_left) {
2985       fucomip(index);
2986     } else {
2987       fucomi(index);
2988     }
2989     if (pop_right) {
2990       fpop();
2991     }
2992   } else {
2993     assert(tmp != noreg, "need temp");
2994     if (pop_left) {
2995       if (pop_right) {
2996         fcompp();
2997       } else {
2998         fcomp(index);
2999       }
3000     } else {
3001       fcom(index);
3002     }
3003     // convert FPU condition into eflags condition via rax,
3004     save_rax(tmp);
3005     fwait(); fnstsw_ax();
3006     sahf();
3007     restore_rax(tmp);
3008   }
3009   // condition codes set as follows:
3010   //
3011   // CF (corresponds to C0) if x < y
3012   // PF (corresponds to C2) if unordered
3013   // ZF (corresponds to C3) if x = y
3014 }
3015 
3016 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3017   fcmp2int(dst, unordered_is_less, 1, true, true);
3018 }
3019 
3020 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3021   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3022   Label L;
3023   if (unordered_is_less) {
3024     movl(dst, -1);
3025     jcc(Assembler::parity, L);
3026     jcc(Assembler::below , L);
3027     movl(dst, 0);
3028     jcc(Assembler::equal , L);
3029     increment(dst);
3030   } else { // unordered is greater
3031     movl(dst, 1);
3032     jcc(Assembler::parity, L);
3033     jcc(Assembler::above , L);
3034     movl(dst, 0);
3035     jcc(Assembler::equal , L);
3036     decrementl(dst);
3037   }
3038   bind(L);
3039 }
3040 
3041 void MacroAssembler::fld_d(AddressLiteral src) {
3042   fld_d(as_Address(src));
3043 }
3044 
3045 void MacroAssembler::fld_s(AddressLiteral src) {
3046   fld_s(as_Address(src));
3047 }
3048 
3049 void MacroAssembler::fld_x(AddressLiteral src) {
3050   Assembler::fld_x(as_Address(src));
3051 }
3052 
3053 void MacroAssembler::fldcw(AddressLiteral src) {
3054   Assembler::fldcw(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::pow_exp_core_encoding() {
3058   // kills rax, rcx, rdx
3059   subptr(rsp,sizeof(jdouble));
3060   // computes 2^X. Stack: X ...
3061   // f2xm1 computes 2^X-1 but only operates on -1<=X<=1. Get int(X) and
3062   // keep it on the thread's stack to compute 2^int(X) later
3063   // then compute 2^(X-int(X)) as (2^(X-int(X)-1+1)
3064   // final result is obtained with: 2^X = 2^int(X) * 2^(X-int(X))
3065   fld_s(0);                 // Stack: X X ...
3066   frndint();                // Stack: int(X) X ...
3067   fsuba(1);                 // Stack: int(X) X-int(X) ...
3068   fistp_s(Address(rsp,0));  // move int(X) as integer to thread's stack. Stack: X-int(X) ...
3069   f2xm1();                  // Stack: 2^(X-int(X))-1 ...
3070   fld1();                   // Stack: 1 2^(X-int(X))-1 ...
3071   faddp(1);                 // Stack: 2^(X-int(X))
3072   // computes 2^(int(X)): add exponent bias (1023) to int(X), then
3073   // shift int(X)+1023 to exponent position.
3074   // Exponent is limited to 11 bits if int(X)+1023 does not fit in 11
3075   // bits, set result to NaN. 0x000 and 0x7FF are reserved exponent
3076   // values so detect them and set result to NaN.
3077   movl(rax,Address(rsp,0));
3078   movl(rcx, -2048); // 11 bit mask and valid NaN binary encoding
3079   addl(rax, 1023);
3080   movl(rdx,rax);
3081   shll(rax,20);
3082   // Check that 0 < int(X)+1023 < 2047. Otherwise set rax to NaN.
3083   addl(rdx,1);
3084   // Check that 1 < int(X)+1023+1 < 2048
3085   // in 3 steps:
3086   // 1- (int(X)+1023+1)&-2048 == 0 => 0 <= int(X)+1023+1 < 2048
3087   // 2- (int(X)+1023+1)&-2048 != 0
3088   // 3- (int(X)+1023+1)&-2048 != 1
3089   // Do 2- first because addl just updated the flags.
3090   cmov32(Assembler::equal,rax,rcx);
3091   cmpl(rdx,1);
3092   cmov32(Assembler::equal,rax,rcx);
3093   testl(rdx,rcx);
3094   cmov32(Assembler::notEqual,rax,rcx);
3095   movl(Address(rsp,4),rax);
3096   movl(Address(rsp,0),0);
3097   fmul_d(Address(rsp,0));   // Stack: 2^X ...
3098   addptr(rsp,sizeof(jdouble));
3099 }
3100 
3101 void MacroAssembler::increase_precision() {
3102   subptr(rsp, BytesPerWord);
3103   fnstcw(Address(rsp, 0));
3104   movl(rax, Address(rsp, 0));
3105   orl(rax, 0x300);
3106   push(rax);
3107   fldcw(Address(rsp, 0));
3108   pop(rax);
3109 }
3110 
3111 void MacroAssembler::restore_precision() {
3112   fldcw(Address(rsp, 0));
3113   addptr(rsp, BytesPerWord);
3114 }
3115 
3116 void MacroAssembler::fast_pow() {
3117   // computes X^Y = 2^(Y * log2(X))
3118   // if fast computation is not possible, result is NaN. Requires
3119   // fallback from user of this macro.
3120   // increase precision for intermediate steps of the computation
3121   BLOCK_COMMENT("fast_pow {");
3122   increase_precision();
3123   fyl2x();                 // Stack: (Y*log2(X)) ...
3124   pow_exp_core_encoding(); // Stack: exp(X) ...
3125   restore_precision();
3126   BLOCK_COMMENT("} fast_pow");
3127 }
3128 
3129 void MacroAssembler::fast_exp() {
3130   // computes exp(X) = 2^(X * log2(e))
3131   // if fast computation is not possible, result is NaN. Requires
3132   // fallback from user of this macro.
3133   // increase precision for intermediate steps of the computation
3134   increase_precision();
3135   fldl2e();                // Stack: log2(e) X ...
3136   fmulp(1);                // Stack: (X*log2(e)) ...
3137   pow_exp_core_encoding(); // Stack: exp(X) ...
3138   restore_precision();
3139 }
3140 
3141 void MacroAssembler::pow_or_exp(bool is_exp, int num_fpu_regs_in_use) {
3142   // kills rax, rcx, rdx
3143   // pow and exp needs 2 extra registers on the fpu stack.
3144   Label slow_case, done;
3145   Register tmp = noreg;
3146   if (!VM_Version::supports_cmov()) {
3147     // fcmp needs a temporary so preserve rdx,
3148     tmp = rdx;
3149   }
3150   Register tmp2 = rax;
3151   Register tmp3 = rcx;
3152 
3153   if (is_exp) {
3154     // Stack: X
3155     fld_s(0);                   // duplicate argument for runtime call. Stack: X X
3156     fast_exp();                 // Stack: exp(X) X
3157     fcmp(tmp, 0, false, false); // Stack: exp(X) X
3158     // exp(X) not equal to itself: exp(X) is NaN go to slow case.
3159     jcc(Assembler::parity, slow_case);
3160     // get rid of duplicate argument. Stack: exp(X)
3161     if (num_fpu_regs_in_use > 0) {
3162       fxch();
3163       fpop();
3164     } else {
3165       ffree(1);
3166     }
3167     jmp(done);
3168   } else {
3169     // Stack: X Y
3170     Label x_negative, y_not_2;
3171 
3172     static double two = 2.0;
3173     ExternalAddress two_addr((address)&two);
3174 
3175     // constant maybe too far on 64 bit
3176     lea(tmp2, two_addr);
3177     fld_d(Address(tmp2, 0));    // Stack: 2 X Y
3178     fcmp(tmp, 2, true, false);  // Stack: X Y
3179     jcc(Assembler::parity, y_not_2);
3180     jcc(Assembler::notEqual, y_not_2);
3181 
3182     fxch(); fpop();             // Stack: X
3183     fmul(0);                    // Stack: X*X
3184 
3185     jmp(done);
3186 
3187     bind(y_not_2);
3188 
3189     fldz();                     // Stack: 0 X Y
3190     fcmp(tmp, 1, true, false);  // Stack: X Y
3191     jcc(Assembler::above, x_negative);
3192 
3193     // X >= 0
3194 
3195     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3196     fld_s(1);                   // Stack: X Y X Y
3197     fast_pow();                 // Stack: X^Y X Y
3198     fcmp(tmp, 0, false, false); // Stack: X^Y X Y
3199     // X^Y not equal to itself: X^Y is NaN go to slow case.
3200     jcc(Assembler::parity, slow_case);
3201     // get rid of duplicate arguments. Stack: X^Y
3202     if (num_fpu_regs_in_use > 0) {
3203       fxch(); fpop();
3204       fxch(); fpop();
3205     } else {
3206       ffree(2);
3207       ffree(1);
3208     }
3209     jmp(done);
3210 
3211     // X <= 0
3212     bind(x_negative);
3213 
3214     fld_s(1);                   // Stack: Y X Y
3215     frndint();                  // Stack: int(Y) X Y
3216     fcmp(tmp, 2, false, false); // Stack: int(Y) X Y
3217     jcc(Assembler::notEqual, slow_case);
3218 
3219     subptr(rsp, 8);
3220 
3221     // For X^Y, when X < 0, Y has to be an integer and the final
3222     // result depends on whether it's odd or even. We just checked
3223     // that int(Y) == Y.  We move int(Y) to gp registers as a 64 bit
3224     // integer to test its parity. If int(Y) is huge and doesn't fit
3225     // in the 64 bit integer range, the integer indefinite value will
3226     // end up in the gp registers. Huge numbers are all even, the
3227     // integer indefinite number is even so it's fine.
3228 
3229 #ifdef ASSERT
3230     // Let's check we don't end up with an integer indefinite number
3231     // when not expected. First test for huge numbers: check whether
3232     // int(Y)+1 == int(Y) which is true for very large numbers and
3233     // those are all even. A 64 bit integer is guaranteed to not
3234     // overflow for numbers where y+1 != y (when precision is set to
3235     // double precision).
3236     Label y_not_huge;
3237 
3238     fld1();                     // Stack: 1 int(Y) X Y
3239     fadd(1);                    // Stack: 1+int(Y) int(Y) X Y
3240 
3241 #ifdef _LP64
3242     // trip to memory to force the precision down from double extended
3243     // precision
3244     fstp_d(Address(rsp, 0));
3245     fld_d(Address(rsp, 0));
3246 #endif
3247 
3248     fcmp(tmp, 1, true, false);  // Stack: int(Y) X Y
3249 #endif
3250 
3251     // move int(Y) as 64 bit integer to thread's stack
3252     fistp_d(Address(rsp,0));    // Stack: X Y
3253 
3254 #ifdef ASSERT
3255     jcc(Assembler::notEqual, y_not_huge);
3256 
3257     // Y is huge so we know it's even. It may not fit in a 64 bit
3258     // integer and we don't want the debug code below to see the
3259     // integer indefinite value so overwrite int(Y) on the thread's
3260     // stack with 0.
3261     movl(Address(rsp, 0), 0);
3262     movl(Address(rsp, 4), 0);
3263 
3264     bind(y_not_huge);
3265 #endif
3266 
3267     fld_s(1);                   // duplicate arguments for runtime call. Stack: Y X Y
3268     fld_s(1);                   // Stack: X Y X Y
3269     fabs();                     // Stack: abs(X) Y X Y
3270     fast_pow();                 // Stack: abs(X)^Y X Y
3271     fcmp(tmp, 0, false, false); // Stack: abs(X)^Y X Y
3272     // abs(X)^Y not equal to itself: abs(X)^Y is NaN go to slow case.
3273 
3274     pop(tmp2);
3275     NOT_LP64(pop(tmp3));
3276     jcc(Assembler::parity, slow_case);
3277 
3278 #ifdef ASSERT
3279     // Check that int(Y) is not integer indefinite value (int
3280     // overflow). Shouldn't happen because for values that would
3281     // overflow, 1+int(Y)==Y which was tested earlier.
3282 #ifndef _LP64
3283     {
3284       Label integer;
3285       testl(tmp2, tmp2);
3286       jcc(Assembler::notZero, integer);
3287       cmpl(tmp3, 0x80000000);
3288       jcc(Assembler::notZero, integer);
3289       STOP("integer indefinite value shouldn't be seen here");
3290       bind(integer);
3291     }
3292 #else
3293     {
3294       Label integer;
3295       mov(tmp3, tmp2); // preserve tmp2 for parity check below
3296       shlq(tmp3, 1);
3297       jcc(Assembler::carryClear, integer);
3298       jcc(Assembler::notZero, integer);
3299       STOP("integer indefinite value shouldn't be seen here");
3300       bind(integer);
3301     }
3302 #endif
3303 #endif
3304 
3305     // get rid of duplicate arguments. Stack: X^Y
3306     if (num_fpu_regs_in_use > 0) {
3307       fxch(); fpop();
3308       fxch(); fpop();
3309     } else {
3310       ffree(2);
3311       ffree(1);
3312     }
3313 
3314     testl(tmp2, 1);
3315     jcc(Assembler::zero, done); // X <= 0, Y even: X^Y = abs(X)^Y
3316     // X <= 0, Y even: X^Y = -abs(X)^Y
3317 
3318     fchs();                     // Stack: -abs(X)^Y Y
3319     jmp(done);
3320   }
3321 
3322   // slow case: runtime call
3323   bind(slow_case);
3324 
3325   fpop();                       // pop incorrect result or int(Y)
3326 
3327   fp_runtime_fallback(is_exp ? CAST_FROM_FN_PTR(address, SharedRuntime::dexp) : CAST_FROM_FN_PTR(address, SharedRuntime::dpow),
3328                       is_exp ? 1 : 2, num_fpu_regs_in_use);
3329 
3330   // Come here with result in F-TOS
3331   bind(done);
3332 }
3333 
3334 void MacroAssembler::fpop() {
3335   ffree();
3336   fincstp();
3337 }
3338 
3339 void MacroAssembler::fremr(Register tmp) {
3340   save_rax(tmp);
3341   { Label L;
3342     bind(L);
3343     fprem();
3344     fwait(); fnstsw_ax();
3345 #ifdef _LP64
3346     testl(rax, 0x400);
3347     jcc(Assembler::notEqual, L);
3348 #else
3349     sahf();
3350     jcc(Assembler::parity, L);
3351 #endif // _LP64
3352   }
3353   restore_rax(tmp);
3354   // Result is in ST0.
3355   // Note: fxch & fpop to get rid of ST1
3356   // (otherwise FPU stack could overflow eventually)
3357   fxch(1);
3358   fpop();
3359 }
3360 
3361 
3362 void MacroAssembler::incrementl(AddressLiteral dst) {
3363   if (reachable(dst)) {
3364     incrementl(as_Address(dst));
3365   } else {
3366     lea(rscratch1, dst);
3367     incrementl(Address(rscratch1, 0));
3368   }
3369 }
3370 
3371 void MacroAssembler::incrementl(ArrayAddress dst) {
3372   incrementl(as_Address(dst));
3373 }
3374 
3375 void MacroAssembler::incrementl(Register reg, int value) {
3376   if (value == min_jint) {addl(reg, value) ; return; }
3377   if (value <  0) { decrementl(reg, -value); return; }
3378   if (value == 0) {                        ; return; }
3379   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3380   /* else */      { addl(reg, value)       ; return; }
3381 }
3382 
3383 void MacroAssembler::incrementl(Address dst, int value) {
3384   if (value == min_jint) {addl(dst, value) ; return; }
3385   if (value <  0) { decrementl(dst, -value); return; }
3386   if (value == 0) {                        ; return; }
3387   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3388   /* else */      { addl(dst, value)       ; return; }
3389 }
3390 
3391 void MacroAssembler::jump(AddressLiteral dst) {
3392   if (reachable(dst)) {
3393     jmp_literal(dst.target(), dst.rspec());
3394   } else {
3395     lea(rscratch1, dst);
3396     jmp(rscratch1);
3397   }
3398 }
3399 
3400 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3401   if (reachable(dst)) {
3402     InstructionMark im(this);
3403     relocate(dst.reloc());
3404     const int short_size = 2;
3405     const int long_size = 6;
3406     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3407     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3408       // 0111 tttn #8-bit disp
3409       emit_int8(0x70 | cc);
3410       emit_int8((offs - short_size) & 0xFF);
3411     } else {
3412       // 0000 1111 1000 tttn #32-bit disp
3413       emit_int8(0x0F);
3414       emit_int8((unsigned char)(0x80 | cc));
3415       emit_int32(offs - long_size);
3416     }
3417   } else {
3418 #ifdef ASSERT
3419     warning("reversing conditional branch");
3420 #endif /* ASSERT */
3421     Label skip;
3422     jccb(reverse[cc], skip);
3423     lea(rscratch1, dst);
3424     Assembler::jmp(rscratch1);
3425     bind(skip);
3426   }
3427 }
3428 
3429 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3430   if (reachable(src)) {
3431     Assembler::ldmxcsr(as_Address(src));
3432   } else {
3433     lea(rscratch1, src);
3434     Assembler::ldmxcsr(Address(rscratch1, 0));
3435   }
3436 }
3437 
3438 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3439   int off;
3440   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3441     off = offset();
3442     movsbl(dst, src); // movsxb
3443   } else {
3444     off = load_unsigned_byte(dst, src);
3445     shll(dst, 24);
3446     sarl(dst, 24);
3447   }
3448   return off;
3449 }
3450 
3451 // Note: load_signed_short used to be called load_signed_word.
3452 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3453 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3454 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3455 int MacroAssembler::load_signed_short(Register dst, Address src) {
3456   int off;
3457   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3458     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3459     // version but this is what 64bit has always done. This seems to imply
3460     // that users are only using 32bits worth.
3461     off = offset();
3462     movswl(dst, src); // movsxw
3463   } else {
3464     off = load_unsigned_short(dst, src);
3465     shll(dst, 16);
3466     sarl(dst, 16);
3467   }
3468   return off;
3469 }
3470 
3471 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3472   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3473   // and "3.9 Partial Register Penalties", p. 22).
3474   int off;
3475   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3476     off = offset();
3477     movzbl(dst, src); // movzxb
3478   } else {
3479     xorl(dst, dst);
3480     off = offset();
3481     movb(dst, src);
3482   }
3483   return off;
3484 }
3485 
3486 // Note: load_unsigned_short used to be called load_unsigned_word.
3487 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3488   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3489   // and "3.9 Partial Register Penalties", p. 22).
3490   int off;
3491   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3492     off = offset();
3493     movzwl(dst, src); // movzxw
3494   } else {
3495     xorl(dst, dst);
3496     off = offset();
3497     movw(dst, src);
3498   }
3499   return off;
3500 }
3501 
3502 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3503   switch (size_in_bytes) {
3504 #ifndef _LP64
3505   case  8:
3506     assert(dst2 != noreg, "second dest register required");
3507     movl(dst,  src);
3508     movl(dst2, src.plus_disp(BytesPerInt));
3509     break;
3510 #else
3511   case  8:  movq(dst, src); break;
3512 #endif
3513   case  4:  movl(dst, src); break;
3514   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3515   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3516   default:  ShouldNotReachHere();
3517   }
3518 }
3519 
3520 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3521   switch (size_in_bytes) {
3522 #ifndef _LP64
3523   case  8:
3524     assert(src2 != noreg, "second source register required");
3525     movl(dst,                        src);
3526     movl(dst.plus_disp(BytesPerInt), src2);
3527     break;
3528 #else
3529   case  8:  movq(dst, src); break;
3530 #endif
3531   case  4:  movl(dst, src); break;
3532   case  2:  movw(dst, src); break;
3533   case  1:  movb(dst, src); break;
3534   default:  ShouldNotReachHere();
3535   }
3536 }
3537 
3538 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3539   if (reachable(dst)) {
3540     movl(as_Address(dst), src);
3541   } else {
3542     lea(rscratch1, dst);
3543     movl(Address(rscratch1, 0), src);
3544   }
3545 }
3546 
3547 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3548   if (reachable(src)) {
3549     movl(dst, as_Address(src));
3550   } else {
3551     lea(rscratch1, src);
3552     movl(dst, Address(rscratch1, 0));
3553   }
3554 }
3555 
3556 // C++ bool manipulation
3557 
3558 void MacroAssembler::movbool(Register dst, Address src) {
3559   if(sizeof(bool) == 1)
3560     movb(dst, src);
3561   else if(sizeof(bool) == 2)
3562     movw(dst, src);
3563   else if(sizeof(bool) == 4)
3564     movl(dst, src);
3565   else
3566     // unsupported
3567     ShouldNotReachHere();
3568 }
3569 
3570 void MacroAssembler::movbool(Address dst, bool boolconst) {
3571   if(sizeof(bool) == 1)
3572     movb(dst, (int) boolconst);
3573   else if(sizeof(bool) == 2)
3574     movw(dst, (int) boolconst);
3575   else if(sizeof(bool) == 4)
3576     movl(dst, (int) boolconst);
3577   else
3578     // unsupported
3579     ShouldNotReachHere();
3580 }
3581 
3582 void MacroAssembler::movbool(Address dst, Register src) {
3583   if(sizeof(bool) == 1)
3584     movb(dst, src);
3585   else if(sizeof(bool) == 2)
3586     movw(dst, src);
3587   else if(sizeof(bool) == 4)
3588     movl(dst, src);
3589   else
3590     // unsupported
3591     ShouldNotReachHere();
3592 }
3593 
3594 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3595   movb(as_Address(dst), src);
3596 }
3597 
3598 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3599   if (reachable(src)) {
3600     movdl(dst, as_Address(src));
3601   } else {
3602     lea(rscratch1, src);
3603     movdl(dst, Address(rscratch1, 0));
3604   }
3605 }
3606 
3607 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3608   if (reachable(src)) {
3609     movq(dst, as_Address(src));
3610   } else {
3611     lea(rscratch1, src);
3612     movq(dst, Address(rscratch1, 0));
3613   }
3614 }
3615 
3616 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3617   if (reachable(src)) {
3618     if (UseXmmLoadAndClearUpper) {
3619       movsd (dst, as_Address(src));
3620     } else {
3621       movlpd(dst, as_Address(src));
3622     }
3623   } else {
3624     lea(rscratch1, src);
3625     if (UseXmmLoadAndClearUpper) {
3626       movsd (dst, Address(rscratch1, 0));
3627     } else {
3628       movlpd(dst, Address(rscratch1, 0));
3629     }
3630   }
3631 }
3632 
3633 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3634   if (reachable(src)) {
3635     movss(dst, as_Address(src));
3636   } else {
3637     lea(rscratch1, src);
3638     movss(dst, Address(rscratch1, 0));
3639   }
3640 }
3641 
3642 void MacroAssembler::movptr(Register dst, Register src) {
3643   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3644 }
3645 
3646 void MacroAssembler::movptr(Register dst, Address src) {
3647   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3648 }
3649 
3650 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3651 void MacroAssembler::movptr(Register dst, intptr_t src) {
3652   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3653 }
3654 
3655 void MacroAssembler::movptr(Address dst, Register src) {
3656   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3657 }
3658 
3659 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src) {
3660   if (reachable(src)) {
3661     Assembler::movdqu(dst, as_Address(src));
3662   } else {
3663     lea(rscratch1, src);
3664     Assembler::movdqu(dst, Address(rscratch1, 0));
3665   }
3666 }
3667 
3668 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3669   if (reachable(src)) {
3670     Assembler::movdqa(dst, as_Address(src));
3671   } else {
3672     lea(rscratch1, src);
3673     Assembler::movdqa(dst, Address(rscratch1, 0));
3674   }
3675 }
3676 
3677 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3678   if (reachable(src)) {
3679     Assembler::movsd(dst, as_Address(src));
3680   } else {
3681     lea(rscratch1, src);
3682     Assembler::movsd(dst, Address(rscratch1, 0));
3683   }
3684 }
3685 
3686 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3687   if (reachable(src)) {
3688     Assembler::movss(dst, as_Address(src));
3689   } else {
3690     lea(rscratch1, src);
3691     Assembler::movss(dst, Address(rscratch1, 0));
3692   }
3693 }
3694 
3695 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3696   if (reachable(src)) {
3697     Assembler::mulsd(dst, as_Address(src));
3698   } else {
3699     lea(rscratch1, src);
3700     Assembler::mulsd(dst, Address(rscratch1, 0));
3701   }
3702 }
3703 
3704 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3705   if (reachable(src)) {
3706     Assembler::mulss(dst, as_Address(src));
3707   } else {
3708     lea(rscratch1, src);
3709     Assembler::mulss(dst, Address(rscratch1, 0));
3710   }
3711 }
3712 
3713 void MacroAssembler::null_check(Register reg, int offset) {
3714   if (needs_explicit_null_check(offset)) {
3715     // provoke OS NULL exception if reg = NULL by
3716     // accessing M[reg] w/o changing any (non-CC) registers
3717     // NOTE: cmpl is plenty here to provoke a segv
3718     cmpptr(rax, Address(reg, 0));
3719     // Note: should probably use testl(rax, Address(reg, 0));
3720     //       may be shorter code (however, this version of
3721     //       testl needs to be implemented first)
3722   } else {
3723     // nothing to do, (later) access of M[reg + offset]
3724     // will provoke OS NULL exception if reg = NULL
3725   }
3726 }
3727 
3728 void MacroAssembler::os_breakpoint() {
3729   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3730   // (e.g., MSVC can't call ps() otherwise)
3731   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3732 }
3733 
3734 void MacroAssembler::pop_CPU_state() {
3735   pop_FPU_state();
3736   pop_IU_state();
3737 }
3738 
3739 void MacroAssembler::pop_FPU_state() {
3740   NOT_LP64(frstor(Address(rsp, 0));)
3741   LP64_ONLY(fxrstor(Address(rsp, 0));)
3742   addptr(rsp, FPUStateSizeInWords * wordSize);
3743 }
3744 
3745 void MacroAssembler::pop_IU_state() {
3746   popa();
3747   LP64_ONLY(addq(rsp, 8));
3748   popf();
3749 }
3750 
3751 // Save Integer and Float state
3752 // Warning: Stack must be 16 byte aligned (64bit)
3753 void MacroAssembler::push_CPU_state() {
3754   push_IU_state();
3755   push_FPU_state();
3756 }
3757 
3758 void MacroAssembler::push_FPU_state() {
3759   subptr(rsp, FPUStateSizeInWords * wordSize);
3760 #ifndef _LP64
3761   fnsave(Address(rsp, 0));
3762   fwait();
3763 #else
3764   fxsave(Address(rsp, 0));
3765 #endif // LP64
3766 }
3767 
3768 void MacroAssembler::push_IU_state() {
3769   // Push flags first because pusha kills them
3770   pushf();
3771   // Make sure rsp stays 16-byte aligned
3772   LP64_ONLY(subq(rsp, 8));
3773   pusha();
3774 }
3775 
3776 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp, bool clear_pc) {
3777   // determine java_thread register
3778   if (!java_thread->is_valid()) {
3779     java_thread = rdi;
3780     get_thread(java_thread);
3781   }
3782   // we must set sp to zero to clear frame
3783   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3784   if (clear_fp) {
3785     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3786   }
3787 
3788   if (clear_pc)
3789     movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3790 
3791 }
3792 
3793 void MacroAssembler::restore_rax(Register tmp) {
3794   if (tmp == noreg) pop(rax);
3795   else if (tmp != rax) mov(rax, tmp);
3796 }
3797 
3798 void MacroAssembler::round_to(Register reg, int modulus) {
3799   addptr(reg, modulus - 1);
3800   andptr(reg, -modulus);
3801 }
3802 
3803 void MacroAssembler::save_rax(Register tmp) {
3804   if (tmp == noreg) push(rax);
3805   else if (tmp != rax) mov(tmp, rax);
3806 }
3807 
3808 // Write serialization page so VM thread can do a pseudo remote membar.
3809 // We use the current thread pointer to calculate a thread specific
3810 // offset to write to within the page. This minimizes bus traffic
3811 // due to cache line collision.
3812 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3813   movl(tmp, thread);
3814   shrl(tmp, os::get_serialize_page_shift_count());
3815   andl(tmp, (os::vm_page_size() - sizeof(int)));
3816 
3817   Address index(noreg, tmp, Address::times_1);
3818   ExternalAddress page(os::get_memory_serialize_page());
3819 
3820   // Size of store must match masking code above
3821   movl(as_Address(ArrayAddress(page, index)), tmp);
3822 }
3823 
3824 // Calls to C land
3825 //
3826 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3827 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3828 // has to be reset to 0. This is required to allow proper stack traversal.
3829 void MacroAssembler::set_last_Java_frame(Register java_thread,
3830                                          Register last_java_sp,
3831                                          Register last_java_fp,
3832                                          address  last_java_pc) {
3833   // determine java_thread register
3834   if (!java_thread->is_valid()) {
3835     java_thread = rdi;
3836     get_thread(java_thread);
3837   }
3838   // determine last_java_sp register
3839   if (!last_java_sp->is_valid()) {
3840     last_java_sp = rsp;
3841   }
3842 
3843   // last_java_fp is optional
3844 
3845   if (last_java_fp->is_valid()) {
3846     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3847   }
3848 
3849   // last_java_pc is optional
3850 
3851   if (last_java_pc != NULL) {
3852     lea(Address(java_thread,
3853                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3854         InternalAddress(last_java_pc));
3855 
3856   }
3857   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3858 }
3859 
3860 void MacroAssembler::shlptr(Register dst, int imm8) {
3861   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3862 }
3863 
3864 void MacroAssembler::shrptr(Register dst, int imm8) {
3865   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3866 }
3867 
3868 void MacroAssembler::sign_extend_byte(Register reg) {
3869   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3870     movsbl(reg, reg); // movsxb
3871   } else {
3872     shll(reg, 24);
3873     sarl(reg, 24);
3874   }
3875 }
3876 
3877 void MacroAssembler::sign_extend_short(Register reg) {
3878   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3879     movswl(reg, reg); // movsxw
3880   } else {
3881     shll(reg, 16);
3882     sarl(reg, 16);
3883   }
3884 }
3885 
3886 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3887   assert(reachable(src), "Address should be reachable");
3888   testl(dst, as_Address(src));
3889 }
3890 
3891 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
3892   if (reachable(src)) {
3893     Assembler::sqrtsd(dst, as_Address(src));
3894   } else {
3895     lea(rscratch1, src);
3896     Assembler::sqrtsd(dst, Address(rscratch1, 0));
3897   }
3898 }
3899 
3900 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
3901   if (reachable(src)) {
3902     Assembler::sqrtss(dst, as_Address(src));
3903   } else {
3904     lea(rscratch1, src);
3905     Assembler::sqrtss(dst, Address(rscratch1, 0));
3906   }
3907 }
3908 
3909 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
3910   if (reachable(src)) {
3911     Assembler::subsd(dst, as_Address(src));
3912   } else {
3913     lea(rscratch1, src);
3914     Assembler::subsd(dst, Address(rscratch1, 0));
3915   }
3916 }
3917 
3918 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
3919   if (reachable(src)) {
3920     Assembler::subss(dst, as_Address(src));
3921   } else {
3922     lea(rscratch1, src);
3923     Assembler::subss(dst, Address(rscratch1, 0));
3924   }
3925 }
3926 
3927 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
3928   if (reachable(src)) {
3929     Assembler::ucomisd(dst, as_Address(src));
3930   } else {
3931     lea(rscratch1, src);
3932     Assembler::ucomisd(dst, Address(rscratch1, 0));
3933   }
3934 }
3935 
3936 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
3937   if (reachable(src)) {
3938     Assembler::ucomiss(dst, as_Address(src));
3939   } else {
3940     lea(rscratch1, src);
3941     Assembler::ucomiss(dst, Address(rscratch1, 0));
3942   }
3943 }
3944 
3945 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
3946   // Used in sign-bit flipping with aligned address.
3947   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3948   if (reachable(src)) {
3949     Assembler::xorpd(dst, as_Address(src));
3950   } else {
3951     lea(rscratch1, src);
3952     Assembler::xorpd(dst, Address(rscratch1, 0));
3953   }
3954 }
3955 
3956 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
3957   // Used in sign-bit flipping with aligned address.
3958   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
3959   if (reachable(src)) {
3960     Assembler::xorps(dst, as_Address(src));
3961   } else {
3962     lea(rscratch1, src);
3963     Assembler::xorps(dst, Address(rscratch1, 0));
3964   }
3965 }
3966 
3967 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
3968   // Used in sign-bit flipping with aligned address.
3969   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
3970   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
3971   if (reachable(src)) {
3972     Assembler::pshufb(dst, as_Address(src));
3973   } else {
3974     lea(rscratch1, src);
3975     Assembler::pshufb(dst, Address(rscratch1, 0));
3976   }
3977 }
3978 
3979 // AVX 3-operands instructions
3980 
3981 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3982   if (reachable(src)) {
3983     vaddsd(dst, nds, as_Address(src));
3984   } else {
3985     lea(rscratch1, src);
3986     vaddsd(dst, nds, Address(rscratch1, 0));
3987   }
3988 }
3989 
3990 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
3991   if (reachable(src)) {
3992     vaddss(dst, nds, as_Address(src));
3993   } else {
3994     lea(rscratch1, src);
3995     vaddss(dst, nds, Address(rscratch1, 0));
3996   }
3997 }
3998 
3999 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4000   if (reachable(src)) {
4001     vandpd(dst, nds, as_Address(src), vector256);
4002   } else {
4003     lea(rscratch1, src);
4004     vandpd(dst, nds, Address(rscratch1, 0), vector256);
4005   }
4006 }
4007 
4008 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4009   if (reachable(src)) {
4010     vandps(dst, nds, as_Address(src), vector256);
4011   } else {
4012     lea(rscratch1, src);
4013     vandps(dst, nds, Address(rscratch1, 0), vector256);
4014   }
4015 }
4016 
4017 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4018   if (reachable(src)) {
4019     vdivsd(dst, nds, as_Address(src));
4020   } else {
4021     lea(rscratch1, src);
4022     vdivsd(dst, nds, Address(rscratch1, 0));
4023   }
4024 }
4025 
4026 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4027   if (reachable(src)) {
4028     vdivss(dst, nds, as_Address(src));
4029   } else {
4030     lea(rscratch1, src);
4031     vdivss(dst, nds, Address(rscratch1, 0));
4032   }
4033 }
4034 
4035 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4036   if (reachable(src)) {
4037     vmulsd(dst, nds, as_Address(src));
4038   } else {
4039     lea(rscratch1, src);
4040     vmulsd(dst, nds, Address(rscratch1, 0));
4041   }
4042 }
4043 
4044 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4045   if (reachable(src)) {
4046     vmulss(dst, nds, as_Address(src));
4047   } else {
4048     lea(rscratch1, src);
4049     vmulss(dst, nds, Address(rscratch1, 0));
4050   }
4051 }
4052 
4053 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4054   if (reachable(src)) {
4055     vsubsd(dst, nds, as_Address(src));
4056   } else {
4057     lea(rscratch1, src);
4058     vsubsd(dst, nds, Address(rscratch1, 0));
4059   }
4060 }
4061 
4062 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4063   if (reachable(src)) {
4064     vsubss(dst, nds, as_Address(src));
4065   } else {
4066     lea(rscratch1, src);
4067     vsubss(dst, nds, Address(rscratch1, 0));
4068   }
4069 }
4070 
4071 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4072   if (reachable(src)) {
4073     vxorpd(dst, nds, as_Address(src), vector256);
4074   } else {
4075     lea(rscratch1, src);
4076     vxorpd(dst, nds, Address(rscratch1, 0), vector256);
4077   }
4078 }
4079 
4080 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, bool vector256) {
4081   if (reachable(src)) {
4082     vxorps(dst, nds, as_Address(src), vector256);
4083   } else {
4084     lea(rscratch1, src);
4085     vxorps(dst, nds, Address(rscratch1, 0), vector256);
4086   }
4087 }
4088 
4089 
4090 //////////////////////////////////////////////////////////////////////////////////
4091 #if INCLUDE_ALL_GCS
4092 
4093 void MacroAssembler::g1_write_barrier_pre(Register obj,
4094                                           Register pre_val,
4095                                           Register thread,
4096                                           Register tmp,
4097                                           bool tosca_live,
4098                                           bool expand_call) {
4099 
4100   // If expand_call is true then we expand the call_VM_leaf macro
4101   // directly to skip generating the check by
4102   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
4103 
4104 #ifdef _LP64
4105   assert(thread == r15_thread, "must be");
4106 #endif // _LP64
4107 
4108   Label done;
4109   Label runtime;
4110 
4111   assert(pre_val != noreg, "check this code");
4112 
4113   if (obj != noreg) {
4114     assert_different_registers(obj, pre_val, tmp);
4115     assert(pre_val != rax, "check this code");
4116   }
4117 
4118   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4119                                        PtrQueue::byte_offset_of_active()));
4120   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4121                                        PtrQueue::byte_offset_of_index()));
4122   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
4123                                        PtrQueue::byte_offset_of_buf()));
4124 
4125 
4126   // Is marking active?
4127   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
4128     cmpl(in_progress, 0);
4129   } else {
4130     assert(in_bytes(PtrQueue::byte_width_of_active()) == 1, "Assumption");
4131     cmpb(in_progress, 0);
4132   }
4133   jcc(Assembler::equal, done);
4134 
4135   // Do we need to load the previous value?
4136   if (obj != noreg) {
4137     load_heap_oop(pre_val, Address(obj, 0));
4138   }
4139 
4140   // Is the previous value null?
4141   cmpptr(pre_val, (int32_t) NULL_WORD);
4142   jcc(Assembler::equal, done);
4143 
4144   // Can we store original value in the thread's buffer?
4145   // Is index == 0?
4146   // (The index field is typed as size_t.)
4147 
4148   movptr(tmp, index);                   // tmp := *index_adr
4149   cmpptr(tmp, 0);                       // tmp == 0?
4150   jcc(Assembler::equal, runtime);       // If yes, goto runtime
4151 
4152   subptr(tmp, wordSize);                // tmp := tmp - wordSize
4153   movptr(index, tmp);                   // *index_adr := tmp
4154   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
4155 
4156   // Record the previous value
4157   movptr(Address(tmp, 0), pre_val);
4158   jmp(done);
4159 
4160   bind(runtime);
4161   // save the live input values
4162   if(tosca_live) push(rax);
4163 
4164   if (obj != noreg && obj != rax)
4165     push(obj);
4166 
4167   if (pre_val != rax)
4168     push(pre_val);
4169 
4170   // Calling the runtime using the regular call_VM_leaf mechanism generates
4171   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
4172   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
4173   //
4174   // If we care generating the pre-barrier without a frame (e.g. in the
4175   // intrinsified Reference.get() routine) then ebp might be pointing to
4176   // the caller frame and so this check will most likely fail at runtime.
4177   //
4178   // Expanding the call directly bypasses the generation of the check.
4179   // So when we do not have have a full interpreter frame on the stack
4180   // expand_call should be passed true.
4181 
4182   NOT_LP64( push(thread); )
4183 
4184   if (expand_call) {
4185     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
4186     pass_arg1(this, thread);
4187     pass_arg0(this, pre_val);
4188     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
4189   } else {
4190     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
4191   }
4192 
4193   NOT_LP64( pop(thread); )
4194 
4195   // save the live input values
4196   if (pre_val != rax)
4197     pop(pre_val);
4198 
4199   if (obj != noreg && obj != rax)
4200     pop(obj);
4201 
4202   if(tosca_live) pop(rax);
4203 
4204   bind(done);
4205 }
4206 
4207 void MacroAssembler::g1_write_barrier_post(Register store_addr,
4208                                            Register new_val,
4209                                            Register thread,
4210                                            Register tmp,
4211                                            Register tmp2) {
4212 #ifdef _LP64
4213   assert(thread == r15_thread, "must be");
4214 #endif // _LP64
4215 
4216   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4217                                        PtrQueue::byte_offset_of_index()));
4218   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
4219                                        PtrQueue::byte_offset_of_buf()));
4220 
4221   CardTableModRefBS* ct =
4222     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
4223   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4224 
4225   Label done;
4226   Label runtime;
4227 
4228   // Does store cross heap regions?
4229 
4230   movptr(tmp, store_addr);
4231   xorptr(tmp, new_val);
4232   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
4233   jcc(Assembler::equal, done);
4234 
4235   // crosses regions, storing NULL?
4236 
4237   cmpptr(new_val, (int32_t) NULL_WORD);
4238   jcc(Assembler::equal, done);
4239 
4240   // storing region crossing non-NULL, is card already dirty?
4241 
4242   const Register card_addr = tmp;
4243   const Register cardtable = tmp2;
4244 
4245   movptr(card_addr, store_addr);
4246   shrptr(card_addr, CardTableModRefBS::card_shift);
4247   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
4248   // a valid address and therefore is not properly handled by the relocation code.
4249   movptr(cardtable, (intptr_t)ct->byte_map_base);
4250   addptr(card_addr, cardtable);
4251 
4252   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
4253   jcc(Assembler::equal, done);
4254 
4255   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
4256   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4257   jcc(Assembler::equal, done);
4258 
4259 
4260   // storing a region crossing, non-NULL oop, card is clean.
4261   // dirty card and log.
4262 
4263   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
4264 
4265   cmpl(queue_index, 0);
4266   jcc(Assembler::equal, runtime);
4267   subl(queue_index, wordSize);
4268   movptr(tmp2, buffer);
4269 #ifdef _LP64
4270   movslq(rscratch1, queue_index);
4271   addq(tmp2, rscratch1);
4272   movq(Address(tmp2, 0), card_addr);
4273 #else
4274   addl(tmp2, queue_index);
4275   movl(Address(tmp2, 0), card_addr);
4276 #endif
4277   jmp(done);
4278 
4279   bind(runtime);
4280   // save the live input values
4281   push(store_addr);
4282   push(new_val);
4283 #ifdef _LP64
4284   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
4285 #else
4286   push(thread);
4287   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
4288   pop(thread);
4289 #endif
4290   pop(new_val);
4291   pop(store_addr);
4292 
4293   bind(done);
4294 }
4295 
4296 #endif // INCLUDE_ALL_GCS
4297 //////////////////////////////////////////////////////////////////////////////////
4298 
4299 
4300 void MacroAssembler::store_check(Register obj) {
4301   // Does a store check for the oop in register obj. The content of
4302   // register obj is destroyed afterwards.
4303   store_check_part_1(obj);
4304   store_check_part_2(obj);
4305 }
4306 
4307 void MacroAssembler::store_check(Register obj, Address dst) {
4308   store_check(obj);
4309 }
4310 
4311 
4312 // split the store check operation so that other instructions can be scheduled inbetween
4313 void MacroAssembler::store_check_part_1(Register obj) {
4314   BarrierSet* bs = Universe::heap()->barrier_set();
4315   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4316   shrptr(obj, CardTableModRefBS::card_shift);
4317 }
4318 
4319 void MacroAssembler::store_check_part_2(Register obj) {
4320   BarrierSet* bs = Universe::heap()->barrier_set();
4321   assert(bs->kind() == BarrierSet::CardTableModRef, "Wrong barrier set kind");
4322   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
4323   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
4324 
4325   // The calculation for byte_map_base is as follows:
4326   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
4327   // So this essentially converts an address to a displacement and it will
4328   // never need to be relocated. On 64bit however the value may be too
4329   // large for a 32bit displacement.
4330   intptr_t disp = (intptr_t) ct->byte_map_base;
4331   if (is_simm32(disp)) {
4332     Address cardtable(noreg, obj, Address::times_1, disp);
4333     movb(cardtable, 0);
4334   } else {
4335     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
4336     // displacement and done in a single instruction given favorable mapping and a
4337     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
4338     // entry and that entry is not properly handled by the relocation code.
4339     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
4340     Address index(noreg, obj, Address::times_1);
4341     movb(as_Address(ArrayAddress(cardtable, index)), 0);
4342   }
4343 }
4344 
4345 void MacroAssembler::subptr(Register dst, int32_t imm32) {
4346   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
4347 }
4348 
4349 // Force generation of a 4 byte immediate value even if it fits into 8bit
4350 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
4351   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
4352 }
4353 
4354 void MacroAssembler::subptr(Register dst, Register src) {
4355   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
4356 }
4357 
4358 // C++ bool manipulation
4359 void MacroAssembler::testbool(Register dst) {
4360   if(sizeof(bool) == 1)
4361     testb(dst, 0xff);
4362   else if(sizeof(bool) == 2) {
4363     // testw implementation needed for two byte bools
4364     ShouldNotReachHere();
4365   } else if(sizeof(bool) == 4)
4366     testl(dst, dst);
4367   else
4368     // unsupported
4369     ShouldNotReachHere();
4370 }
4371 
4372 void MacroAssembler::testptr(Register dst, Register src) {
4373   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
4374 }
4375 
4376 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
4377 void MacroAssembler::tlab_allocate(Register obj,
4378                                    Register var_size_in_bytes,
4379                                    int con_size_in_bytes,
4380                                    Register t1,
4381                                    Register t2,
4382                                    Label& slow_case) {
4383   assert_different_registers(obj, t1, t2);
4384   assert_different_registers(obj, var_size_in_bytes, t1);
4385   Register end = t2;
4386   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
4387 
4388   verify_tlab();
4389 
4390   NOT_LP64(get_thread(thread));
4391 
4392   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
4393   if (var_size_in_bytes == noreg) {
4394     lea(end, Address(obj, con_size_in_bytes));
4395   } else {
4396     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
4397   }
4398   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
4399   jcc(Assembler::above, slow_case);
4400 
4401   // update the tlab top pointer
4402   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
4403 
4404   // recover var_size_in_bytes if necessary
4405   if (var_size_in_bytes == end) {
4406     subptr(var_size_in_bytes, obj);
4407   }
4408   verify_tlab();
4409 }
4410 
4411 // Preserves rbx, and rdx.
4412 Register MacroAssembler::tlab_refill(Label& retry,
4413                                      Label& try_eden,
4414                                      Label& slow_case) {
4415   Register top = rax;
4416   Register t1  = rcx;
4417   Register t2  = rsi;
4418   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
4419   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
4420   Label do_refill, discard_tlab;
4421 
4422   if (!Universe::heap()->supports_inline_contig_alloc()) {
4423     // No allocation in the shared eden.
4424     jmp(slow_case);
4425   }
4426 
4427   NOT_LP64(get_thread(thread_reg));
4428 
4429   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
4430   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
4431 
4432   // calculate amount of free space
4433   subptr(t1, top);
4434   shrptr(t1, LogHeapWordSize);
4435 
4436   // Retain tlab and allocate object in shared space if
4437   // the amount free in the tlab is too large to discard.
4438   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
4439   jcc(Assembler::lessEqual, discard_tlab);
4440 
4441   // Retain
4442   // %%% yuck as movptr...
4443   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
4444   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
4445   if (TLABStats) {
4446     // increment number of slow_allocations
4447     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
4448   }
4449   jmp(try_eden);
4450 
4451   bind(discard_tlab);
4452   if (TLABStats) {
4453     // increment number of refills
4454     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
4455     // accumulate wastage -- t1 is amount free in tlab
4456     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
4457   }
4458 
4459   // if tlab is currently allocated (top or end != null) then
4460   // fill [top, end + alignment_reserve) with array object
4461   testptr(top, top);
4462   jcc(Assembler::zero, do_refill);
4463 
4464   // set up the mark word
4465   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
4466   // set the length to the remaining space
4467   subptr(t1, typeArrayOopDesc::header_size(T_INT));
4468   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
4469   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
4470   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
4471   // set klass to intArrayKlass
4472   // dubious reloc why not an oop reloc?
4473   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
4474   // store klass last.  concurrent gcs assumes klass length is valid if
4475   // klass field is not null.
4476   store_klass(top, t1);
4477 
4478   movptr(t1, top);
4479   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
4480   incr_allocated_bytes(thread_reg, t1, 0);
4481 
4482   // refill the tlab with an eden allocation
4483   bind(do_refill);
4484   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4485   shlptr(t1, LogHeapWordSize);
4486   // allocate new tlab, address returned in top
4487   eden_allocate(top, t1, 0, t2, slow_case);
4488 
4489   // Check that t1 was preserved in eden_allocate.
4490 #ifdef ASSERT
4491   if (UseTLAB) {
4492     Label ok;
4493     Register tsize = rsi;
4494     assert_different_registers(tsize, thread_reg, t1);
4495     push(tsize);
4496     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
4497     shlptr(tsize, LogHeapWordSize);
4498     cmpptr(t1, tsize);
4499     jcc(Assembler::equal, ok);
4500     STOP("assert(t1 != tlab size)");
4501     should_not_reach_here();
4502 
4503     bind(ok);
4504     pop(tsize);
4505   }
4506 #endif
4507   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
4508   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
4509   addptr(top, t1);
4510   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
4511   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
4512   verify_tlab();
4513   jmp(retry);
4514 
4515   return thread_reg; // for use by caller
4516 }
4517 
4518 void MacroAssembler::incr_allocated_bytes(Register thread,
4519                                           Register var_size_in_bytes,
4520                                           int con_size_in_bytes,
4521                                           Register t1) {
4522   if (!thread->is_valid()) {
4523 #ifdef _LP64
4524     thread = r15_thread;
4525 #else
4526     assert(t1->is_valid(), "need temp reg");
4527     thread = t1;
4528     get_thread(thread);
4529 #endif
4530   }
4531 
4532 #ifdef _LP64
4533   if (var_size_in_bytes->is_valid()) {
4534     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4535   } else {
4536     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4537   }
4538 #else
4539   if (var_size_in_bytes->is_valid()) {
4540     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
4541   } else {
4542     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
4543   }
4544   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
4545 #endif
4546 }
4547 
4548 void MacroAssembler::fp_runtime_fallback(address runtime_entry, int nb_args, int num_fpu_regs_in_use) {
4549   pusha();
4550 
4551   // if we are coming from c1, xmm registers may be live
4552   int off = 0;
4553   if (UseSSE == 1)  {
4554     subptr(rsp, sizeof(jdouble)*8);
4555     movflt(Address(rsp,off++*sizeof(jdouble)),xmm0);
4556     movflt(Address(rsp,off++*sizeof(jdouble)),xmm1);
4557     movflt(Address(rsp,off++*sizeof(jdouble)),xmm2);
4558     movflt(Address(rsp,off++*sizeof(jdouble)),xmm3);
4559     movflt(Address(rsp,off++*sizeof(jdouble)),xmm4);
4560     movflt(Address(rsp,off++*sizeof(jdouble)),xmm5);
4561     movflt(Address(rsp,off++*sizeof(jdouble)),xmm6);
4562     movflt(Address(rsp,off++*sizeof(jdouble)),xmm7);
4563   } else if (UseSSE >= 2)  {
4564 #ifdef COMPILER2
4565     if (MaxVectorSize > 16) {
4566       assert(UseAVX > 0, "256bit vectors are supported only with AVX");
4567       // Save upper half of YMM registes
4568       subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4569       vextractf128h(Address(rsp,  0),xmm0);
4570       vextractf128h(Address(rsp, 16),xmm1);
4571       vextractf128h(Address(rsp, 32),xmm2);
4572       vextractf128h(Address(rsp, 48),xmm3);
4573       vextractf128h(Address(rsp, 64),xmm4);
4574       vextractf128h(Address(rsp, 80),xmm5);
4575       vextractf128h(Address(rsp, 96),xmm6);
4576       vextractf128h(Address(rsp,112),xmm7);
4577 #ifdef _LP64
4578       vextractf128h(Address(rsp,128),xmm8);
4579       vextractf128h(Address(rsp,144),xmm9);
4580       vextractf128h(Address(rsp,160),xmm10);
4581       vextractf128h(Address(rsp,176),xmm11);
4582       vextractf128h(Address(rsp,192),xmm12);
4583       vextractf128h(Address(rsp,208),xmm13);
4584       vextractf128h(Address(rsp,224),xmm14);
4585       vextractf128h(Address(rsp,240),xmm15);
4586 #endif
4587     }
4588 #endif
4589     // Save whole 128bit (16 bytes) XMM regiters
4590     subptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4591     movdqu(Address(rsp,off++*16),xmm0);
4592     movdqu(Address(rsp,off++*16),xmm1);
4593     movdqu(Address(rsp,off++*16),xmm2);
4594     movdqu(Address(rsp,off++*16),xmm3);
4595     movdqu(Address(rsp,off++*16),xmm4);
4596     movdqu(Address(rsp,off++*16),xmm5);
4597     movdqu(Address(rsp,off++*16),xmm6);
4598     movdqu(Address(rsp,off++*16),xmm7);
4599 #ifdef _LP64
4600     movdqu(Address(rsp,off++*16),xmm8);
4601     movdqu(Address(rsp,off++*16),xmm9);
4602     movdqu(Address(rsp,off++*16),xmm10);
4603     movdqu(Address(rsp,off++*16),xmm11);
4604     movdqu(Address(rsp,off++*16),xmm12);
4605     movdqu(Address(rsp,off++*16),xmm13);
4606     movdqu(Address(rsp,off++*16),xmm14);
4607     movdqu(Address(rsp,off++*16),xmm15);
4608 #endif
4609   }
4610 
4611   // Preserve registers across runtime call
4612   int incoming_argument_and_return_value_offset = -1;
4613   if (num_fpu_regs_in_use > 1) {
4614     // Must preserve all other FPU regs (could alternatively convert
4615     // SharedRuntime::dsin, dcos etc. into assembly routines known not to trash
4616     // FPU state, but can not trust C compiler)
4617     NEEDS_CLEANUP;
4618     // NOTE that in this case we also push the incoming argument(s) to
4619     // the stack and restore it later; we also use this stack slot to
4620     // hold the return value from dsin, dcos etc.
4621     for (int i = 0; i < num_fpu_regs_in_use; i++) {
4622       subptr(rsp, sizeof(jdouble));
4623       fstp_d(Address(rsp, 0));
4624     }
4625     incoming_argument_and_return_value_offset = sizeof(jdouble)*(num_fpu_regs_in_use-1);
4626     for (int i = nb_args-1; i >= 0; i--) {
4627       fld_d(Address(rsp, incoming_argument_and_return_value_offset-i*sizeof(jdouble)));
4628     }
4629   }
4630 
4631   subptr(rsp, nb_args*sizeof(jdouble));
4632   for (int i = 0; i < nb_args; i++) {
4633     fstp_d(Address(rsp, i*sizeof(jdouble)));
4634   }
4635 
4636 #ifdef _LP64
4637   if (nb_args > 0) {
4638     movdbl(xmm0, Address(rsp, 0));
4639   }
4640   if (nb_args > 1) {
4641     movdbl(xmm1, Address(rsp, sizeof(jdouble)));
4642   }
4643   assert(nb_args <= 2, "unsupported number of args");
4644 #endif // _LP64
4645 
4646   // NOTE: we must not use call_VM_leaf here because that requires a
4647   // complete interpreter frame in debug mode -- same bug as 4387334
4648   // MacroAssembler::call_VM_leaf_base is perfectly safe and will
4649   // do proper 64bit abi
4650 
4651   NEEDS_CLEANUP;
4652   // Need to add stack banging before this runtime call if it needs to
4653   // be taken; however, there is no generic stack banging routine at
4654   // the MacroAssembler level
4655 
4656   MacroAssembler::call_VM_leaf_base(runtime_entry, 0);
4657 
4658 #ifdef _LP64
4659   movsd(Address(rsp, 0), xmm0);
4660   fld_d(Address(rsp, 0));
4661 #endif // _LP64
4662   addptr(rsp, sizeof(jdouble) * nb_args);
4663   if (num_fpu_regs_in_use > 1) {
4664     // Must save return value to stack and then restore entire FPU
4665     // stack except incoming arguments
4666     fstp_d(Address(rsp, incoming_argument_and_return_value_offset));
4667     for (int i = 0; i < num_fpu_regs_in_use - nb_args; i++) {
4668       fld_d(Address(rsp, 0));
4669       addptr(rsp, sizeof(jdouble));
4670     }
4671     fld_d(Address(rsp, (nb_args-1)*sizeof(jdouble)));
4672     addptr(rsp, sizeof(jdouble) * nb_args);
4673   }
4674 
4675   off = 0;
4676   if (UseSSE == 1)  {
4677     movflt(xmm0, Address(rsp,off++*sizeof(jdouble)));
4678     movflt(xmm1, Address(rsp,off++*sizeof(jdouble)));
4679     movflt(xmm2, Address(rsp,off++*sizeof(jdouble)));
4680     movflt(xmm3, Address(rsp,off++*sizeof(jdouble)));
4681     movflt(xmm4, Address(rsp,off++*sizeof(jdouble)));
4682     movflt(xmm5, Address(rsp,off++*sizeof(jdouble)));
4683     movflt(xmm6, Address(rsp,off++*sizeof(jdouble)));
4684     movflt(xmm7, Address(rsp,off++*sizeof(jdouble)));
4685     addptr(rsp, sizeof(jdouble)*8);
4686   } else if (UseSSE >= 2)  {
4687     // Restore whole 128bit (16 bytes) XMM regiters
4688     movdqu(xmm0, Address(rsp,off++*16));
4689     movdqu(xmm1, Address(rsp,off++*16));
4690     movdqu(xmm2, Address(rsp,off++*16));
4691     movdqu(xmm3, Address(rsp,off++*16));
4692     movdqu(xmm4, Address(rsp,off++*16));
4693     movdqu(xmm5, Address(rsp,off++*16));
4694     movdqu(xmm6, Address(rsp,off++*16));
4695     movdqu(xmm7, Address(rsp,off++*16));
4696 #ifdef _LP64
4697     movdqu(xmm8, Address(rsp,off++*16));
4698     movdqu(xmm9, Address(rsp,off++*16));
4699     movdqu(xmm10, Address(rsp,off++*16));
4700     movdqu(xmm11, Address(rsp,off++*16));
4701     movdqu(xmm12, Address(rsp,off++*16));
4702     movdqu(xmm13, Address(rsp,off++*16));
4703     movdqu(xmm14, Address(rsp,off++*16));
4704     movdqu(xmm15, Address(rsp,off++*16));
4705 #endif
4706     addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4707 #ifdef COMPILER2
4708     if (MaxVectorSize > 16) {
4709       // Restore upper half of YMM registes.
4710       vinsertf128h(xmm0, Address(rsp,  0));
4711       vinsertf128h(xmm1, Address(rsp, 16));
4712       vinsertf128h(xmm2, Address(rsp, 32));
4713       vinsertf128h(xmm3, Address(rsp, 48));
4714       vinsertf128h(xmm4, Address(rsp, 64));
4715       vinsertf128h(xmm5, Address(rsp, 80));
4716       vinsertf128h(xmm6, Address(rsp, 96));
4717       vinsertf128h(xmm7, Address(rsp,112));
4718 #ifdef _LP64
4719       vinsertf128h(xmm8, Address(rsp,128));
4720       vinsertf128h(xmm9, Address(rsp,144));
4721       vinsertf128h(xmm10, Address(rsp,160));
4722       vinsertf128h(xmm11, Address(rsp,176));
4723       vinsertf128h(xmm12, Address(rsp,192));
4724       vinsertf128h(xmm13, Address(rsp,208));
4725       vinsertf128h(xmm14, Address(rsp,224));
4726       vinsertf128h(xmm15, Address(rsp,240));
4727 #endif
4728       addptr(rsp, 16 * LP64_ONLY(16) NOT_LP64(8));
4729     }
4730 #endif
4731   }
4732   popa();
4733 }
4734 
4735 static const double     pi_4 =  0.7853981633974483;
4736 
4737 void MacroAssembler::trigfunc(char trig, int num_fpu_regs_in_use) {
4738   // A hand-coded argument reduction for values in fabs(pi/4, pi/2)
4739   // was attempted in this code; unfortunately it appears that the
4740   // switch to 80-bit precision and back causes this to be
4741   // unprofitable compared with simply performing a runtime call if
4742   // the argument is out of the (-pi/4, pi/4) range.
4743 
4744   Register tmp = noreg;
4745   if (!VM_Version::supports_cmov()) {
4746     // fcmp needs a temporary so preserve rbx,
4747     tmp = rbx;
4748     push(tmp);
4749   }
4750 
4751   Label slow_case, done;
4752 
4753   ExternalAddress pi4_adr = (address)&pi_4;
4754   if (reachable(pi4_adr)) {
4755     // x ?<= pi/4
4756     fld_d(pi4_adr);
4757     fld_s(1);                // Stack:  X  PI/4  X
4758     fabs();                  // Stack: |X| PI/4  X
4759     fcmp(tmp);
4760     jcc(Assembler::above, slow_case);
4761 
4762     // fastest case: -pi/4 <= x <= pi/4
4763     switch(trig) {
4764     case 's':
4765       fsin();
4766       break;
4767     case 'c':
4768       fcos();
4769       break;
4770     case 't':
4771       ftan();
4772       break;
4773     default:
4774       assert(false, "bad intrinsic");
4775       break;
4776     }
4777     jmp(done);
4778   }
4779 
4780   // slow case: runtime call
4781   bind(slow_case);
4782 
4783   switch(trig) {
4784   case 's':
4785     {
4786       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), 1, num_fpu_regs_in_use);
4787     }
4788     break;
4789   case 'c':
4790     {
4791       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), 1, num_fpu_regs_in_use);
4792     }
4793     break;
4794   case 't':
4795     {
4796       fp_runtime_fallback(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), 1, num_fpu_regs_in_use);
4797     }
4798     break;
4799   default:
4800     assert(false, "bad intrinsic");
4801     break;
4802   }
4803 
4804   // Come here with result in F-TOS
4805   bind(done);
4806 
4807   if (tmp != noreg) {
4808     pop(tmp);
4809   }
4810 }
4811 
4812 
4813 // Look up the method for a megamorphic invokeinterface call.
4814 // The target method is determined by <intf_klass, itable_index>.
4815 // The receiver klass is in recv_klass.
4816 // On success, the result will be in method_result, and execution falls through.
4817 // On failure, execution transfers to the given label.
4818 void MacroAssembler::lookup_interface_method(Register recv_klass,
4819                                              Register intf_klass,
4820                                              RegisterOrConstant itable_index,
4821                                              Register method_result,
4822                                              Register scan_temp,
4823                                              Label& L_no_such_interface) {
4824   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
4825   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
4826          "caller must use same register for non-constant itable index as for method");
4827 
4828   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
4829   int vtable_base = InstanceKlass::vtable_start_offset() * wordSize;
4830   int itentry_off = itableMethodEntry::method_offset_in_bytes();
4831   int scan_step   = itableOffsetEntry::size() * wordSize;
4832   int vte_size    = vtableEntry::size() * wordSize;
4833   Address::ScaleFactor times_vte_scale = Address::times_ptr;
4834   assert(vte_size == wordSize, "else adjust times_vte_scale");
4835 
4836   movl(scan_temp, Address(recv_klass, InstanceKlass::vtable_length_offset() * wordSize));
4837 
4838   // %%% Could store the aligned, prescaled offset in the klassoop.
4839   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
4840   if (HeapWordsPerLong > 1) {
4841     // Round up to align_object_offset boundary
4842     // see code for InstanceKlass::start_of_itable!
4843     round_to(scan_temp, BytesPerLong);
4844   }
4845 
4846   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
4847   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
4848   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
4849 
4850   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
4851   //   if (scan->interface() == intf) {
4852   //     result = (klass + scan->offset() + itable_index);
4853   //   }
4854   // }
4855   Label search, found_method;
4856 
4857   for (int peel = 1; peel >= 0; peel--) {
4858     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
4859     cmpptr(intf_klass, method_result);
4860 
4861     if (peel) {
4862       jccb(Assembler::equal, found_method);
4863     } else {
4864       jccb(Assembler::notEqual, search);
4865       // (invert the test to fall through to found_method...)
4866     }
4867 
4868     if (!peel)  break;
4869 
4870     bind(search);
4871 
4872     // Check that the previous entry is non-null.  A null entry means that
4873     // the receiver class doesn't implement the interface, and wasn't the
4874     // same as when the caller was compiled.
4875     testptr(method_result, method_result);
4876     jcc(Assembler::zero, L_no_such_interface);
4877     addptr(scan_temp, scan_step);
4878   }
4879 
4880   bind(found_method);
4881 
4882   // Got a hit.
4883   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
4884   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
4885 }
4886 
4887 
4888 // virtual method calling
4889 void MacroAssembler::lookup_virtual_method(Register recv_klass,
4890                                            RegisterOrConstant vtable_index,
4891                                            Register method_result) {
4892   const int base = InstanceKlass::vtable_start_offset() * wordSize;
4893   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
4894   Address vtable_entry_addr(recv_klass,
4895                             vtable_index, Address::times_ptr,
4896                             base + vtableEntry::method_offset_in_bytes());
4897   movptr(method_result, vtable_entry_addr);
4898 }
4899 
4900 
4901 void MacroAssembler::check_klass_subtype(Register sub_klass,
4902                            Register super_klass,
4903                            Register temp_reg,
4904                            Label& L_success) {
4905   Label L_failure;
4906   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
4907   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
4908   bind(L_failure);
4909 }
4910 
4911 
4912 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
4913                                                    Register super_klass,
4914                                                    Register temp_reg,
4915                                                    Label* L_success,
4916                                                    Label* L_failure,
4917                                                    Label* L_slow_path,
4918                                         RegisterOrConstant super_check_offset) {
4919   assert_different_registers(sub_klass, super_klass, temp_reg);
4920   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
4921   if (super_check_offset.is_register()) {
4922     assert_different_registers(sub_klass, super_klass,
4923                                super_check_offset.as_register());
4924   } else if (must_load_sco) {
4925     assert(temp_reg != noreg, "supply either a temp or a register offset");
4926   }
4927 
4928   Label L_fallthrough;
4929   int label_nulls = 0;
4930   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
4931   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
4932   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
4933   assert(label_nulls <= 1, "at most one NULL in the batch");
4934 
4935   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
4936   int sco_offset = in_bytes(Klass::super_check_offset_offset());
4937   Address super_check_offset_addr(super_klass, sco_offset);
4938 
4939   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
4940   // range of a jccb.  If this routine grows larger, reconsider at
4941   // least some of these.
4942 #define local_jcc(assembler_cond, label)                                \
4943   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
4944   else                             jcc( assembler_cond, label) /*omit semi*/
4945 
4946   // Hacked jmp, which may only be used just before L_fallthrough.
4947 #define final_jmp(label)                                                \
4948   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
4949   else                            jmp(label)                /*omit semi*/
4950 
4951   // If the pointers are equal, we are done (e.g., String[] elements).
4952   // This self-check enables sharing of secondary supertype arrays among
4953   // non-primary types such as array-of-interface.  Otherwise, each such
4954   // type would need its own customized SSA.
4955   // We move this check to the front of the fast path because many
4956   // type checks are in fact trivially successful in this manner,
4957   // so we get a nicely predicted branch right at the start of the check.
4958   cmpptr(sub_klass, super_klass);
4959   local_jcc(Assembler::equal, *L_success);
4960 
4961   // Check the supertype display:
4962   if (must_load_sco) {
4963     // Positive movl does right thing on LP64.
4964     movl(temp_reg, super_check_offset_addr);
4965     super_check_offset = RegisterOrConstant(temp_reg);
4966   }
4967   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
4968   cmpptr(super_klass, super_check_addr); // load displayed supertype
4969 
4970   // This check has worked decisively for primary supers.
4971   // Secondary supers are sought in the super_cache ('super_cache_addr').
4972   // (Secondary supers are interfaces and very deeply nested subtypes.)
4973   // This works in the same check above because of a tricky aliasing
4974   // between the super_cache and the primary super display elements.
4975   // (The 'super_check_addr' can address either, as the case requires.)
4976   // Note that the cache is updated below if it does not help us find
4977   // what we need immediately.
4978   // So if it was a primary super, we can just fail immediately.
4979   // Otherwise, it's the slow path for us (no success at this point).
4980 
4981   if (super_check_offset.is_register()) {
4982     local_jcc(Assembler::equal, *L_success);
4983     cmpl(super_check_offset.as_register(), sc_offset);
4984     if (L_failure == &L_fallthrough) {
4985       local_jcc(Assembler::equal, *L_slow_path);
4986     } else {
4987       local_jcc(Assembler::notEqual, *L_failure);
4988       final_jmp(*L_slow_path);
4989     }
4990   } else if (super_check_offset.as_constant() == sc_offset) {
4991     // Need a slow path; fast failure is impossible.
4992     if (L_slow_path == &L_fallthrough) {
4993       local_jcc(Assembler::equal, *L_success);
4994     } else {
4995       local_jcc(Assembler::notEqual, *L_slow_path);
4996       final_jmp(*L_success);
4997     }
4998   } else {
4999     // No slow path; it's a fast decision.
5000     if (L_failure == &L_fallthrough) {
5001       local_jcc(Assembler::equal, *L_success);
5002     } else {
5003       local_jcc(Assembler::notEqual, *L_failure);
5004       final_jmp(*L_success);
5005     }
5006   }
5007 
5008   bind(L_fallthrough);
5009 
5010 #undef local_jcc
5011 #undef final_jmp
5012 }
5013 
5014 
5015 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5016                                                    Register super_klass,
5017                                                    Register temp_reg,
5018                                                    Register temp2_reg,
5019                                                    Label* L_success,
5020                                                    Label* L_failure,
5021                                                    bool set_cond_codes) {
5022   assert_different_registers(sub_klass, super_klass, temp_reg);
5023   if (temp2_reg != noreg)
5024     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5025 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5026 
5027   Label L_fallthrough;
5028   int label_nulls = 0;
5029   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5030   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5031   assert(label_nulls <= 1, "at most one NULL in the batch");
5032 
5033   // a couple of useful fields in sub_klass:
5034   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5035   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5036   Address secondary_supers_addr(sub_klass, ss_offset);
5037   Address super_cache_addr(     sub_klass, sc_offset);
5038 
5039   // Do a linear scan of the secondary super-klass chain.
5040   // This code is rarely used, so simplicity is a virtue here.
5041   // The repne_scan instruction uses fixed registers, which we must spill.
5042   // Don't worry too much about pre-existing connections with the input regs.
5043 
5044   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5045   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5046 
5047   // Get super_klass value into rax (even if it was in rdi or rcx).
5048   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5049   if (super_klass != rax || UseCompressedOops) {
5050     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5051     mov(rax, super_klass);
5052   }
5053   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5054   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5055 
5056 #ifndef PRODUCT
5057   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5058   ExternalAddress pst_counter_addr((address) pst_counter);
5059   NOT_LP64(  incrementl(pst_counter_addr) );
5060   LP64_ONLY( lea(rcx, pst_counter_addr) );
5061   LP64_ONLY( incrementl(Address(rcx, 0)) );
5062 #endif //PRODUCT
5063 
5064   // We will consult the secondary-super array.
5065   movptr(rdi, secondary_supers_addr);
5066   // Load the array length.  (Positive movl does right thing on LP64.)
5067   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5068   // Skip to start of data.
5069   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5070 
5071   // Scan RCX words at [RDI] for an occurrence of RAX.
5072   // Set NZ/Z based on last compare.
5073   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5074   // not change flags (only scas instruction which is repeated sets flags).
5075   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5076 
5077     testptr(rax,rax); // Set Z = 0
5078     repne_scan();
5079 
5080   // Unspill the temp. registers:
5081   if (pushed_rdi)  pop(rdi);
5082   if (pushed_rcx)  pop(rcx);
5083   if (pushed_rax)  pop(rax);
5084 
5085   if (set_cond_codes) {
5086     // Special hack for the AD files:  rdi is guaranteed non-zero.
5087     assert(!pushed_rdi, "rdi must be left non-NULL");
5088     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5089   }
5090 
5091   if (L_failure == &L_fallthrough)
5092         jccb(Assembler::notEqual, *L_failure);
5093   else  jcc(Assembler::notEqual, *L_failure);
5094 
5095   // Success.  Cache the super we found and proceed in triumph.
5096   movptr(super_cache_addr, super_klass);
5097 
5098   if (L_success != &L_fallthrough) {
5099     jmp(*L_success);
5100   }
5101 
5102 #undef IS_A_TEMP
5103 
5104   bind(L_fallthrough);
5105 }
5106 
5107 
5108 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5109   if (VM_Version::supports_cmov()) {
5110     cmovl(cc, dst, src);
5111   } else {
5112     Label L;
5113     jccb(negate_condition(cc), L);
5114     movl(dst, src);
5115     bind(L);
5116   }
5117 }
5118 
5119 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
5120   if (VM_Version::supports_cmov()) {
5121     cmovl(cc, dst, src);
5122   } else {
5123     Label L;
5124     jccb(negate_condition(cc), L);
5125     movl(dst, src);
5126     bind(L);
5127   }
5128 }
5129 
5130 void MacroAssembler::verify_oop(Register reg, const char* s) {
5131   if (!VerifyOops) return;
5132 
5133   // Pass register number to verify_oop_subroutine
5134   const char* b = NULL;
5135   {
5136     ResourceMark rm;
5137     stringStream ss;
5138     ss.print("verify_oop: %s: %s", reg->name(), s);
5139     b = code_string(ss.as_string());
5140   }
5141   BLOCK_COMMENT("verify_oop {");
5142 #ifdef _LP64
5143   push(rscratch1);                    // save r10, trashed by movptr()
5144 #endif
5145   push(rax);                          // save rax,
5146   push(reg);                          // pass register argument
5147   ExternalAddress buffer((address) b);
5148   // avoid using pushptr, as it modifies scratch registers
5149   // and our contract is not to modify anything
5150   movptr(rax, buffer.addr());
5151   push(rax);
5152   // call indirectly to solve generation ordering problem
5153   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5154   call(rax);
5155   // Caller pops the arguments (oop, message) and restores rax, r10
5156   BLOCK_COMMENT("} verify_oop");
5157 }
5158 
5159 
5160 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
5161                                                       Register tmp,
5162                                                       int offset) {
5163   intptr_t value = *delayed_value_addr;
5164   if (value != 0)
5165     return RegisterOrConstant(value + offset);
5166 
5167   // load indirectly to solve generation ordering problem
5168   movptr(tmp, ExternalAddress((address) delayed_value_addr));
5169 
5170 #ifdef ASSERT
5171   { Label L;
5172     testptr(tmp, tmp);
5173     if (WizardMode) {
5174       const char* buf = NULL;
5175       {
5176         ResourceMark rm;
5177         stringStream ss;
5178         ss.print("DelayedValue="INTPTR_FORMAT, delayed_value_addr[1]);
5179         buf = code_string(ss.as_string());
5180       }
5181       jcc(Assembler::notZero, L);
5182       STOP(buf);
5183     } else {
5184       jccb(Assembler::notZero, L);
5185       hlt();
5186     }
5187     bind(L);
5188   }
5189 #endif
5190 
5191   if (offset != 0)
5192     addptr(tmp, offset);
5193 
5194   return RegisterOrConstant(tmp);
5195 }
5196 
5197 
5198 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
5199                                          int extra_slot_offset) {
5200   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
5201   int stackElementSize = Interpreter::stackElementSize;
5202   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
5203 #ifdef ASSERT
5204   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
5205   assert(offset1 - offset == stackElementSize, "correct arithmetic");
5206 #endif
5207   Register             scale_reg    = noreg;
5208   Address::ScaleFactor scale_factor = Address::no_scale;
5209   if (arg_slot.is_constant()) {
5210     offset += arg_slot.as_constant() * stackElementSize;
5211   } else {
5212     scale_reg    = arg_slot.as_register();
5213     scale_factor = Address::times(stackElementSize);
5214   }
5215   offset += wordSize;           // return PC is on stack
5216   return Address(rsp, scale_reg, scale_factor, offset);
5217 }
5218 
5219 
5220 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
5221   if (!VerifyOops) return;
5222 
5223   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
5224   // Pass register number to verify_oop_subroutine
5225   const char* b = NULL;
5226   {
5227     ResourceMark rm;
5228     stringStream ss;
5229     ss.print("verify_oop_addr: %s", s);
5230     b = code_string(ss.as_string());
5231   }
5232 #ifdef _LP64
5233   push(rscratch1);                    // save r10, trashed by movptr()
5234 #endif
5235   push(rax);                          // save rax,
5236   // addr may contain rsp so we will have to adjust it based on the push
5237   // we just did (and on 64 bit we do two pushes)
5238   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
5239   // stores rax into addr which is backwards of what was intended.
5240   if (addr.uses(rsp)) {
5241     lea(rax, addr);
5242     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
5243   } else {
5244     pushptr(addr);
5245   }
5246 
5247   ExternalAddress buffer((address) b);
5248   // pass msg argument
5249   // avoid using pushptr, as it modifies scratch registers
5250   // and our contract is not to modify anything
5251   movptr(rax, buffer.addr());
5252   push(rax);
5253 
5254   // call indirectly to solve generation ordering problem
5255   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
5256   call(rax);
5257   // Caller pops the arguments (addr, message) and restores rax, r10.
5258 }
5259 
5260 void MacroAssembler::verify_tlab() {
5261 #ifdef ASSERT
5262   if (UseTLAB && VerifyOops) {
5263     Label next, ok;
5264     Register t1 = rsi;
5265     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
5266 
5267     push(t1);
5268     NOT_LP64(push(thread_reg));
5269     NOT_LP64(get_thread(thread_reg));
5270 
5271     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5272     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5273     jcc(Assembler::aboveEqual, next);
5274     STOP("assert(top >= start)");
5275     should_not_reach_here();
5276 
5277     bind(next);
5278     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5279     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5280     jcc(Assembler::aboveEqual, ok);
5281     STOP("assert(top <= end)");
5282     should_not_reach_here();
5283 
5284     bind(ok);
5285     NOT_LP64(pop(thread_reg));
5286     pop(t1);
5287   }
5288 #endif
5289 }
5290 
5291 class ControlWord {
5292  public:
5293   int32_t _value;
5294 
5295   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
5296   int  precision_control() const       { return  (_value >>  8) & 3      ; }
5297   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5298   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5299   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5300   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5301   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5302   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5303 
5304   void print() const {
5305     // rounding control
5306     const char* rc;
5307     switch (rounding_control()) {
5308       case 0: rc = "round near"; break;
5309       case 1: rc = "round down"; break;
5310       case 2: rc = "round up  "; break;
5311       case 3: rc = "chop      "; break;
5312     };
5313     // precision control
5314     const char* pc;
5315     switch (precision_control()) {
5316       case 0: pc = "24 bits "; break;
5317       case 1: pc = "reserved"; break;
5318       case 2: pc = "53 bits "; break;
5319       case 3: pc = "64 bits "; break;
5320     };
5321     // flags
5322     char f[9];
5323     f[0] = ' ';
5324     f[1] = ' ';
5325     f[2] = (precision   ()) ? 'P' : 'p';
5326     f[3] = (underflow   ()) ? 'U' : 'u';
5327     f[4] = (overflow    ()) ? 'O' : 'o';
5328     f[5] = (zero_divide ()) ? 'Z' : 'z';
5329     f[6] = (denormalized()) ? 'D' : 'd';
5330     f[7] = (invalid     ()) ? 'I' : 'i';
5331     f[8] = '\x0';
5332     // output
5333     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
5334   }
5335 
5336 };
5337 
5338 class StatusWord {
5339  public:
5340   int32_t _value;
5341 
5342   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
5343   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
5344   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
5345   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
5346   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
5347   int  top() const                     { return  (_value >> 11) & 7      ; }
5348   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
5349   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
5350   bool precision() const               { return ((_value >>  5) & 1) != 0; }
5351   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
5352   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
5353   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
5354   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
5355   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
5356 
5357   void print() const {
5358     // condition codes
5359     char c[5];
5360     c[0] = (C3()) ? '3' : '-';
5361     c[1] = (C2()) ? '2' : '-';
5362     c[2] = (C1()) ? '1' : '-';
5363     c[3] = (C0()) ? '0' : '-';
5364     c[4] = '\x0';
5365     // flags
5366     char f[9];
5367     f[0] = (error_status()) ? 'E' : '-';
5368     f[1] = (stack_fault ()) ? 'S' : '-';
5369     f[2] = (precision   ()) ? 'P' : '-';
5370     f[3] = (underflow   ()) ? 'U' : '-';
5371     f[4] = (overflow    ()) ? 'O' : '-';
5372     f[5] = (zero_divide ()) ? 'Z' : '-';
5373     f[6] = (denormalized()) ? 'D' : '-';
5374     f[7] = (invalid     ()) ? 'I' : '-';
5375     f[8] = '\x0';
5376     // output
5377     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
5378   }
5379 
5380 };
5381 
5382 class TagWord {
5383  public:
5384   int32_t _value;
5385 
5386   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
5387 
5388   void print() const {
5389     printf("%04x", _value & 0xFFFF);
5390   }
5391 
5392 };
5393 
5394 class FPU_Register {
5395  public:
5396   int32_t _m0;
5397   int32_t _m1;
5398   int16_t _ex;
5399 
5400   bool is_indefinite() const           {
5401     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
5402   }
5403 
5404   void print() const {
5405     char  sign = (_ex < 0) ? '-' : '+';
5406     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
5407     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
5408   };
5409 
5410 };
5411 
5412 class FPU_State {
5413  public:
5414   enum {
5415     register_size       = 10,
5416     number_of_registers =  8,
5417     register_mask       =  7
5418   };
5419 
5420   ControlWord  _control_word;
5421   StatusWord   _status_word;
5422   TagWord      _tag_word;
5423   int32_t      _error_offset;
5424   int32_t      _error_selector;
5425   int32_t      _data_offset;
5426   int32_t      _data_selector;
5427   int8_t       _register[register_size * number_of_registers];
5428 
5429   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
5430   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
5431 
5432   const char* tag_as_string(int tag) const {
5433     switch (tag) {
5434       case 0: return "valid";
5435       case 1: return "zero";
5436       case 2: return "special";
5437       case 3: return "empty";
5438     }
5439     ShouldNotReachHere();
5440     return NULL;
5441   }
5442 
5443   void print() const {
5444     // print computation registers
5445     { int t = _status_word.top();
5446       for (int i = 0; i < number_of_registers; i++) {
5447         int j = (i - t) & register_mask;
5448         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
5449         st(j)->print();
5450         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
5451       }
5452     }
5453     printf("\n");
5454     // print control registers
5455     printf("ctrl = "); _control_word.print(); printf("\n");
5456     printf("stat = "); _status_word .print(); printf("\n");
5457     printf("tags = "); _tag_word    .print(); printf("\n");
5458   }
5459 
5460 };
5461 
5462 class Flag_Register {
5463  public:
5464   int32_t _value;
5465 
5466   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
5467   bool direction() const               { return ((_value >> 10) & 1) != 0; }
5468   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
5469   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
5470   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
5471   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
5472   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
5473 
5474   void print() const {
5475     // flags
5476     char f[8];
5477     f[0] = (overflow       ()) ? 'O' : '-';
5478     f[1] = (direction      ()) ? 'D' : '-';
5479     f[2] = (sign           ()) ? 'S' : '-';
5480     f[3] = (zero           ()) ? 'Z' : '-';
5481     f[4] = (auxiliary_carry()) ? 'A' : '-';
5482     f[5] = (parity         ()) ? 'P' : '-';
5483     f[6] = (carry          ()) ? 'C' : '-';
5484     f[7] = '\x0';
5485     // output
5486     printf("%08x  flags = %s", _value, f);
5487   }
5488 
5489 };
5490 
5491 class IU_Register {
5492  public:
5493   int32_t _value;
5494 
5495   void print() const {
5496     printf("%08x  %11d", _value, _value);
5497   }
5498 
5499 };
5500 
5501 class IU_State {
5502  public:
5503   Flag_Register _eflags;
5504   IU_Register   _rdi;
5505   IU_Register   _rsi;
5506   IU_Register   _rbp;
5507   IU_Register   _rsp;
5508   IU_Register   _rbx;
5509   IU_Register   _rdx;
5510   IU_Register   _rcx;
5511   IU_Register   _rax;
5512 
5513   void print() const {
5514     // computation registers
5515     printf("rax,  = "); _rax.print(); printf("\n");
5516     printf("rbx,  = "); _rbx.print(); printf("\n");
5517     printf("rcx  = "); _rcx.print(); printf("\n");
5518     printf("rdx  = "); _rdx.print(); printf("\n");
5519     printf("rdi  = "); _rdi.print(); printf("\n");
5520     printf("rsi  = "); _rsi.print(); printf("\n");
5521     printf("rbp,  = "); _rbp.print(); printf("\n");
5522     printf("rsp  = "); _rsp.print(); printf("\n");
5523     printf("\n");
5524     // control registers
5525     printf("flgs = "); _eflags.print(); printf("\n");
5526   }
5527 };
5528 
5529 
5530 class CPU_State {
5531  public:
5532   FPU_State _fpu_state;
5533   IU_State  _iu_state;
5534 
5535   void print() const {
5536     printf("--------------------------------------------------\n");
5537     _iu_state .print();
5538     printf("\n");
5539     _fpu_state.print();
5540     printf("--------------------------------------------------\n");
5541   }
5542 
5543 };
5544 
5545 
5546 static void _print_CPU_state(CPU_State* state) {
5547   state->print();
5548 };
5549 
5550 
5551 void MacroAssembler::print_CPU_state() {
5552   push_CPU_state();
5553   push(rsp);                // pass CPU state
5554   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
5555   addptr(rsp, wordSize);       // discard argument
5556   pop_CPU_state();
5557 }
5558 
5559 
5560 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
5561   static int counter = 0;
5562   FPU_State* fs = &state->_fpu_state;
5563   counter++;
5564   // For leaf calls, only verify that the top few elements remain empty.
5565   // We only need 1 empty at the top for C2 code.
5566   if( stack_depth < 0 ) {
5567     if( fs->tag_for_st(7) != 3 ) {
5568       printf("FPR7 not empty\n");
5569       state->print();
5570       assert(false, "error");
5571       return false;
5572     }
5573     return true;                // All other stack states do not matter
5574   }
5575 
5576   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
5577          "bad FPU control word");
5578 
5579   // compute stack depth
5580   int i = 0;
5581   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
5582   int d = i;
5583   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
5584   // verify findings
5585   if (i != FPU_State::number_of_registers) {
5586     // stack not contiguous
5587     printf("%s: stack not contiguous at ST%d\n", s, i);
5588     state->print();
5589     assert(false, "error");
5590     return false;
5591   }
5592   // check if computed stack depth corresponds to expected stack depth
5593   if (stack_depth < 0) {
5594     // expected stack depth is -stack_depth or less
5595     if (d > -stack_depth) {
5596       // too many elements on the stack
5597       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
5598       state->print();
5599       assert(false, "error");
5600       return false;
5601     }
5602   } else {
5603     // expected stack depth is stack_depth
5604     if (d != stack_depth) {
5605       // wrong stack depth
5606       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
5607       state->print();
5608       assert(false, "error");
5609       return false;
5610     }
5611   }
5612   // everything is cool
5613   return true;
5614 }
5615 
5616 
5617 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
5618   if (!VerifyFPU) return;
5619   push_CPU_state();
5620   push(rsp);                // pass CPU state
5621   ExternalAddress msg((address) s);
5622   // pass message string s
5623   pushptr(msg.addr());
5624   push(stack_depth);        // pass stack depth
5625   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
5626   addptr(rsp, 3 * wordSize);   // discard arguments
5627   // check for error
5628   { Label L;
5629     testl(rax, rax);
5630     jcc(Assembler::notZero, L);
5631     int3();                  // break if error condition
5632     bind(L);
5633   }
5634   pop_CPU_state();
5635 }
5636 
5637 void MacroAssembler::restore_cpu_control_state_after_jni() {
5638   // Either restore the MXCSR register after returning from the JNI Call
5639   // or verify that it wasn't changed (with -Xcheck:jni flag).
5640   if (VM_Version::supports_sse()) {
5641     if (RestoreMXCSROnJNICalls) {
5642       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
5643     } else if (CheckJNICalls) {
5644       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
5645     }
5646   }
5647   if (VM_Version::supports_avx()) {
5648     // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
5649     vzeroupper();
5650   }
5651 
5652 #ifndef _LP64
5653   // Either restore the x87 floating pointer control word after returning
5654   // from the JNI call or verify that it wasn't changed.
5655   if (CheckJNICalls) {
5656     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
5657   }
5658 #endif // _LP64
5659 }
5660 
5661 
5662 void MacroAssembler::load_klass(Register dst, Register src) {
5663 #ifdef _LP64
5664   if (UseCompressedClassPointers) {
5665     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5666     decode_klass_not_null(dst);
5667   } else
5668 #endif
5669     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
5670 }
5671 
5672 void MacroAssembler::load_prototype_header(Register dst, Register src) {
5673   load_klass(dst, src);
5674   movptr(dst, Address(dst, Klass::prototype_header_offset()));
5675 }
5676 
5677 void MacroAssembler::store_klass(Register dst, Register src) {
5678 #ifdef _LP64
5679   if (UseCompressedClassPointers) {
5680     encode_klass_not_null(src);
5681     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5682   } else
5683 #endif
5684     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
5685 }
5686 
5687 void MacroAssembler::load_heap_oop(Register dst, Address src) {
5688 #ifdef _LP64
5689   // FIXME: Must change all places where we try to load the klass.
5690   if (UseCompressedOops) {
5691     movl(dst, src);
5692     decode_heap_oop(dst);
5693   } else
5694 #endif
5695     movptr(dst, src);
5696 }
5697 
5698 // Doesn't do verfication, generates fixed size code
5699 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
5700 #ifdef _LP64
5701   if (UseCompressedOops) {
5702     movl(dst, src);
5703     decode_heap_oop_not_null(dst);
5704   } else
5705 #endif
5706     movptr(dst, src);
5707 }
5708 
5709 void MacroAssembler::store_heap_oop(Address dst, Register src) {
5710 #ifdef _LP64
5711   if (UseCompressedOops) {
5712     assert(!dst.uses(src), "not enough registers");
5713     encode_heap_oop(src);
5714     movl(dst, src);
5715   } else
5716 #endif
5717     movptr(dst, src);
5718 }
5719 
5720 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
5721   assert_different_registers(src1, tmp);
5722 #ifdef _LP64
5723   if (UseCompressedOops) {
5724     bool did_push = false;
5725     if (tmp == noreg) {
5726       tmp = rax;
5727       push(tmp);
5728       did_push = true;
5729       assert(!src2.uses(rsp), "can't push");
5730     }
5731     load_heap_oop(tmp, src2);
5732     cmpptr(src1, tmp);
5733     if (did_push)  pop(tmp);
5734   } else
5735 #endif
5736     cmpptr(src1, src2);
5737 }
5738 
5739 // Used for storing NULLs.
5740 void MacroAssembler::store_heap_oop_null(Address dst) {
5741 #ifdef _LP64
5742   if (UseCompressedOops) {
5743     movl(dst, (int32_t)NULL_WORD);
5744   } else {
5745     movslq(dst, (int32_t)NULL_WORD);
5746   }
5747 #else
5748   movl(dst, (int32_t)NULL_WORD);
5749 #endif
5750 }
5751 
5752 #ifdef _LP64
5753 void MacroAssembler::store_klass_gap(Register dst, Register src) {
5754   if (UseCompressedClassPointers) {
5755     // Store to klass gap in destination
5756     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
5757   }
5758 }
5759 
5760 #ifdef ASSERT
5761 void MacroAssembler::verify_heapbase(const char* msg) {
5762   assert (UseCompressedOops, "should be compressed");
5763   assert (Universe::heap() != NULL, "java heap should be initialized");
5764   if (CheckCompressedOops) {
5765     Label ok;
5766     push(rscratch1); // cmpptr trashes rscratch1
5767     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
5768     jcc(Assembler::equal, ok);
5769     STOP(msg);
5770     bind(ok);
5771     pop(rscratch1);
5772   }
5773 }
5774 #endif
5775 
5776 // Algorithm must match oop.inline.hpp encode_heap_oop.
5777 void MacroAssembler::encode_heap_oop(Register r) {
5778 #ifdef ASSERT
5779   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
5780 #endif
5781   verify_oop(r, "broken oop in encode_heap_oop");
5782   if (Universe::narrow_oop_base() == NULL) {
5783     if (Universe::narrow_oop_shift() != 0) {
5784       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5785       shrq(r, LogMinObjAlignmentInBytes);
5786     }
5787     return;
5788   }
5789   testq(r, r);
5790   cmovq(Assembler::equal, r, r12_heapbase);
5791   subq(r, r12_heapbase);
5792   shrq(r, LogMinObjAlignmentInBytes);
5793 }
5794 
5795 void MacroAssembler::encode_heap_oop_not_null(Register r) {
5796 #ifdef ASSERT
5797   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
5798   if (CheckCompressedOops) {
5799     Label ok;
5800     testq(r, r);
5801     jcc(Assembler::notEqual, ok);
5802     STOP("null oop passed to encode_heap_oop_not_null");
5803     bind(ok);
5804   }
5805 #endif
5806   verify_oop(r, "broken oop in encode_heap_oop_not_null");
5807   if (Universe::narrow_oop_base() != NULL) {
5808     subq(r, r12_heapbase);
5809   }
5810   if (Universe::narrow_oop_shift() != 0) {
5811     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5812     shrq(r, LogMinObjAlignmentInBytes);
5813   }
5814 }
5815 
5816 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
5817 #ifdef ASSERT
5818   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
5819   if (CheckCompressedOops) {
5820     Label ok;
5821     testq(src, src);
5822     jcc(Assembler::notEqual, ok);
5823     STOP("null oop passed to encode_heap_oop_not_null2");
5824     bind(ok);
5825   }
5826 #endif
5827   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
5828   if (dst != src) {
5829     movq(dst, src);
5830   }
5831   if (Universe::narrow_oop_base() != NULL) {
5832     subq(dst, r12_heapbase);
5833   }
5834   if (Universe::narrow_oop_shift() != 0) {
5835     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5836     shrq(dst, LogMinObjAlignmentInBytes);
5837   }
5838 }
5839 
5840 void  MacroAssembler::decode_heap_oop(Register r) {
5841 #ifdef ASSERT
5842   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
5843 #endif
5844   if (Universe::narrow_oop_base() == NULL) {
5845     if (Universe::narrow_oop_shift() != 0) {
5846       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5847       shlq(r, LogMinObjAlignmentInBytes);
5848     }
5849   } else {
5850     Label done;
5851     shlq(r, LogMinObjAlignmentInBytes);
5852     jccb(Assembler::equal, done);
5853     addq(r, r12_heapbase);
5854     bind(done);
5855   }
5856   verify_oop(r, "broken oop in decode_heap_oop");
5857 }
5858 
5859 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
5860   // Note: it will change flags
5861   assert (UseCompressedOops, "should only be used for compressed headers");
5862   assert (Universe::heap() != NULL, "java heap should be initialized");
5863   // Cannot assert, unverified entry point counts instructions (see .ad file)
5864   // vtableStubs also counts instructions in pd_code_size_limit.
5865   // Also do not verify_oop as this is called by verify_oop.
5866   if (Universe::narrow_oop_shift() != 0) {
5867     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5868     shlq(r, LogMinObjAlignmentInBytes);
5869     if (Universe::narrow_oop_base() != NULL) {
5870       addq(r, r12_heapbase);
5871     }
5872   } else {
5873     assert (Universe::narrow_oop_base() == NULL, "sanity");
5874   }
5875 }
5876 
5877 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
5878   // Note: it will change flags
5879   assert (UseCompressedOops, "should only be used for compressed headers");
5880   assert (Universe::heap() != NULL, "java heap should be initialized");
5881   // Cannot assert, unverified entry point counts instructions (see .ad file)
5882   // vtableStubs also counts instructions in pd_code_size_limit.
5883   // Also do not verify_oop as this is called by verify_oop.
5884   if (Universe::narrow_oop_shift() != 0) {
5885     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
5886     if (LogMinObjAlignmentInBytes == Address::times_8) {
5887       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
5888     } else {
5889       if (dst != src) {
5890         movq(dst, src);
5891       }
5892       shlq(dst, LogMinObjAlignmentInBytes);
5893       if (Universe::narrow_oop_base() != NULL) {
5894         addq(dst, r12_heapbase);
5895       }
5896     }
5897   } else {
5898     assert (Universe::narrow_oop_base() == NULL, "sanity");
5899     if (dst != src) {
5900       movq(dst, src);
5901     }
5902   }
5903 }
5904 
5905 void MacroAssembler::encode_klass_not_null(Register r) {
5906   if (Universe::narrow_klass_base() != NULL) {
5907     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5908     assert(r != r12_heapbase, "Encoding a klass in r12");
5909     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5910     subq(r, r12_heapbase);
5911   }
5912   if (Universe::narrow_klass_shift() != 0) {
5913     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5914     shrq(r, LogKlassAlignmentInBytes);
5915   }
5916   if (Universe::narrow_klass_base() != NULL) {
5917     reinit_heapbase();
5918   }
5919 }
5920 
5921 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
5922   if (dst == src) {
5923     encode_klass_not_null(src);
5924   } else {
5925     if (Universe::narrow_klass_base() != NULL) {
5926       mov64(dst, (int64_t)Universe::narrow_klass_base());
5927       negq(dst);
5928       addq(dst, src);
5929     } else {
5930       movptr(dst, src);
5931     }
5932     if (Universe::narrow_klass_shift() != 0) {
5933       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5934       shrq(dst, LogKlassAlignmentInBytes);
5935     }
5936   }
5937 }
5938 
5939 // Function instr_size_for_decode_klass_not_null() counts the instructions
5940 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
5941 // when (Universe::heap() != NULL).  Hence, if the instructions they
5942 // generate change, then this method needs to be updated.
5943 int MacroAssembler::instr_size_for_decode_klass_not_null() {
5944   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
5945   if (Universe::narrow_klass_base() != NULL) {
5946     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
5947     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
5948   } else {
5949     // longest load decode klass function, mov64, leaq
5950     return 16;
5951   }
5952 }
5953 
5954 // !!! If the instructions that get generated here change then function
5955 // instr_size_for_decode_klass_not_null() needs to get updated.
5956 void  MacroAssembler::decode_klass_not_null(Register r) {
5957   // Note: it will change flags
5958   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5959   assert(r != r12_heapbase, "Decoding a klass in r12");
5960   // Cannot assert, unverified entry point counts instructions (see .ad file)
5961   // vtableStubs also counts instructions in pd_code_size_limit.
5962   // Also do not verify_oop as this is called by verify_oop.
5963   if (Universe::narrow_klass_shift() != 0) {
5964     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5965     shlq(r, LogKlassAlignmentInBytes);
5966   }
5967   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
5968   if (Universe::narrow_klass_base() != NULL) {
5969     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
5970     addq(r, r12_heapbase);
5971     reinit_heapbase();
5972   }
5973 }
5974 
5975 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
5976   // Note: it will change flags
5977   assert (UseCompressedClassPointers, "should only be used for compressed headers");
5978   if (dst == src) {
5979     decode_klass_not_null(dst);
5980   } else {
5981     // Cannot assert, unverified entry point counts instructions (see .ad file)
5982     // vtableStubs also counts instructions in pd_code_size_limit.
5983     // Also do not verify_oop as this is called by verify_oop.
5984     mov64(dst, (int64_t)Universe::narrow_klass_base());
5985     if (Universe::narrow_klass_shift() != 0) {
5986       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
5987       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
5988       leaq(dst, Address(dst, src, Address::times_8, 0));
5989     } else {
5990       addq(dst, src);
5991     }
5992   }
5993 }
5994 
5995 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
5996   assert (UseCompressedOops, "should only be used for compressed headers");
5997   assert (Universe::heap() != NULL, "java heap should be initialized");
5998   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
5999   int oop_index = oop_recorder()->find_index(obj);
6000   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6001   mov_narrow_oop(dst, oop_index, rspec);
6002 }
6003 
6004 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6005   assert (UseCompressedOops, "should only be used for compressed headers");
6006   assert (Universe::heap() != NULL, "java heap should be initialized");
6007   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6008   int oop_index = oop_recorder()->find_index(obj);
6009   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6010   mov_narrow_oop(dst, oop_index, rspec);
6011 }
6012 
6013 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6014   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6015   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6016   int klass_index = oop_recorder()->find_index(k);
6017   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6018   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6019 }
6020 
6021 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6022   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6023   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6024   int klass_index = oop_recorder()->find_index(k);
6025   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6026   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6027 }
6028 
6029 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6030   assert (UseCompressedOops, "should only be used for compressed headers");
6031   assert (Universe::heap() != NULL, "java heap should be initialized");
6032   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6033   int oop_index = oop_recorder()->find_index(obj);
6034   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6035   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6036 }
6037 
6038 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6039   assert (UseCompressedOops, "should only be used for compressed headers");
6040   assert (Universe::heap() != NULL, "java heap should be initialized");
6041   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6042   int oop_index = oop_recorder()->find_index(obj);
6043   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6044   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6045 }
6046 
6047 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6048   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6049   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6050   int klass_index = oop_recorder()->find_index(k);
6051   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6052   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6053 }
6054 
6055 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6056   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6057   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6058   int klass_index = oop_recorder()->find_index(k);
6059   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6060   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6061 }
6062 
6063 void MacroAssembler::reinit_heapbase() {
6064   if (UseCompressedOops || UseCompressedClassPointers) {
6065     if (Universe::heap() != NULL) {
6066       if (Universe::narrow_oop_base() == NULL) {
6067         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6068       } else {
6069         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6070       }
6071     } else {
6072       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6073     }
6074   }
6075 }
6076 
6077 #endif // _LP64
6078 
6079 
6080 // C2 compiled method's prolog code.
6081 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6082 
6083   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6084   // NativeJump::patch_verified_entry will be able to patch out the entry
6085   // code safely. The push to verify stack depth is ok at 5 bytes,
6086   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6087   // stack bang then we must use the 6 byte frame allocation even if
6088   // we have no frame. :-(
6089   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6090 
6091   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6092   // Remove word for return addr
6093   framesize -= wordSize;
6094   stack_bang_size -= wordSize;
6095 
6096   // Calls to C2R adapters often do not accept exceptional returns.
6097   // We require that their callers must bang for them.  But be careful, because
6098   // some VM calls (such as call site linkage) can use several kilobytes of
6099   // stack.  But the stack safety zone should account for that.
6100   // See bugs 4446381, 4468289, 4497237.
6101   if (stack_bang_size > 0) {
6102     generate_stack_overflow_check(stack_bang_size);
6103 
6104     // We always push rbp, so that on return to interpreter rbp, will be
6105     // restored correctly and we can correct the stack.
6106     push(rbp);
6107     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6108     if (PreserveFramePointer) {
6109       mov(rbp, rsp);
6110     }
6111     // Remove word for ebp
6112     framesize -= wordSize;
6113 
6114     // Create frame
6115     if (framesize) {
6116       subptr(rsp, framesize);
6117     }
6118   } else {
6119     // Create frame (force generation of a 4 byte immediate value)
6120     subptr_imm32(rsp, framesize);
6121 
6122     // Save RBP register now.
6123     framesize -= wordSize;
6124     movptr(Address(rsp, framesize), rbp);
6125     // Save caller's stack pointer into RBP if the frame pointer is preserved.
6126     if (PreserveFramePointer) {
6127       movptr(rbp, rsp);
6128       addptr(rbp, framesize + wordSize);
6129     }
6130   }
6131 
6132   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
6133     framesize -= wordSize;
6134     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
6135   }
6136 
6137 #ifndef _LP64
6138   // If method sets FPU control word do it now
6139   if (fp_mode_24b) {
6140     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
6141   }
6142   if (UseSSE >= 2 && VerifyFPU) {
6143     verify_FPU(0, "FPU stack must be clean on entry");
6144   }
6145 #endif
6146 
6147 #ifdef ASSERT
6148   if (VerifyStackAtCalls) {
6149     Label L;
6150     push(rax);
6151     mov(rax, rsp);
6152     andptr(rax, StackAlignmentInBytes-1);
6153     cmpptr(rax, StackAlignmentInBytes-wordSize);
6154     pop(rax);
6155     jcc(Assembler::equal, L);
6156     STOP("Stack is not properly aligned!");
6157     bind(L);
6158   }
6159 #endif
6160 
6161 }
6162 
6163 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp) {
6164   // cnt - number of qwords (8-byte words).
6165   // base - start address, qword aligned.
6166   assert(base==rdi, "base register must be edi for rep stos");
6167   assert(tmp==rax,   "tmp register must be eax for rep stos");
6168   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
6169 
6170   xorptr(tmp, tmp);
6171   if (UseFastStosb) {
6172     shlptr(cnt,3); // convert to number of bytes
6173     rep_stosb();
6174   } else {
6175     NOT_LP64(shlptr(cnt,1);) // convert to number of dwords for 32-bit VM
6176     rep_stos();
6177   }
6178 }
6179 
6180 // IndexOf for constant substrings with size >= 8 chars
6181 // which don't need to be loaded through stack.
6182 void MacroAssembler::string_indexofC8(Register str1, Register str2,
6183                                       Register cnt1, Register cnt2,
6184                                       int int_cnt2,  Register result,
6185                                       XMMRegister vec, Register tmp) {
6186   ShortBranchVerifier sbv(this);
6187   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6188 
6189   // This method uses pcmpestri instruction with bound registers
6190   //   inputs:
6191   //     xmm - substring
6192   //     rax - substring length (elements count)
6193   //     mem - scanned string
6194   //     rdx - string length (elements count)
6195   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6196   //   outputs:
6197   //     rcx - matched index in string
6198   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6199 
6200   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
6201         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
6202         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
6203 
6204   // Note, inline_string_indexOf() generates checks:
6205   // if (substr.count > string.count) return -1;
6206   // if (substr.count == 0) return 0;
6207   assert(int_cnt2 >= 8, "this code isused only for cnt2 >= 8 chars");
6208 
6209   // Load substring.
6210   movdqu(vec, Address(str2, 0));
6211   movl(cnt2, int_cnt2);
6212   movptr(result, str1); // string addr
6213 
6214   if (int_cnt2 > 8) {
6215     jmpb(SCAN_TO_SUBSTR);
6216 
6217     // Reload substr for rescan, this code
6218     // is executed only for large substrings (> 8 chars)
6219     bind(RELOAD_SUBSTR);
6220     movdqu(vec, Address(str2, 0));
6221     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
6222 
6223     bind(RELOAD_STR);
6224     // We came here after the beginning of the substring was
6225     // matched but the rest of it was not so we need to search
6226     // again. Start from the next element after the previous match.
6227 
6228     // cnt2 is number of substring reminding elements and
6229     // cnt1 is number of string reminding elements when cmp failed.
6230     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
6231     subl(cnt1, cnt2);
6232     addl(cnt1, int_cnt2);
6233     movl(cnt2, int_cnt2); // Now restore cnt2
6234 
6235     decrementl(cnt1);     // Shift to next element
6236     cmpl(cnt1, cnt2);
6237     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6238 
6239     addptr(result, 2);
6240 
6241   } // (int_cnt2 > 8)
6242 
6243   // Scan string for start of substr in 16-byte vectors
6244   bind(SCAN_TO_SUBSTR);
6245   pcmpestri(vec, Address(result, 0), 0x0d);
6246   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6247   subl(cnt1, 8);
6248   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6249   cmpl(cnt1, cnt2);
6250   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6251   addptr(result, 16);
6252   jmpb(SCAN_TO_SUBSTR);
6253 
6254   // Found a potential substr
6255   bind(FOUND_CANDIDATE);
6256   // Matched whole vector if first element matched (tmp(rcx) == 0).
6257   if (int_cnt2 == 8) {
6258     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
6259   } else { // int_cnt2 > 8
6260     jccb(Assembler::overflow, FOUND_SUBSTR);
6261   }
6262   // After pcmpestri tmp(rcx) contains matched element index
6263   // Compute start addr of substr
6264   lea(result, Address(result, tmp, Address::times_2));
6265 
6266   // Make sure string is still long enough
6267   subl(cnt1, tmp);
6268   cmpl(cnt1, cnt2);
6269   if (int_cnt2 == 8) {
6270     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6271   } else { // int_cnt2 > 8
6272     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
6273   }
6274   // Left less then substring.
6275 
6276   bind(RET_NOT_FOUND);
6277   movl(result, -1);
6278   jmpb(EXIT);
6279 
6280   if (int_cnt2 > 8) {
6281     // This code is optimized for the case when whole substring
6282     // is matched if its head is matched.
6283     bind(MATCH_SUBSTR_HEAD);
6284     pcmpestri(vec, Address(result, 0), 0x0d);
6285     // Reload only string if does not match
6286     jccb(Assembler::noOverflow, RELOAD_STR); // OF == 0
6287 
6288     Label CONT_SCAN_SUBSTR;
6289     // Compare the rest of substring (> 8 chars).
6290     bind(FOUND_SUBSTR);
6291     // First 8 chars are already matched.
6292     negptr(cnt2);
6293     addptr(cnt2, 8);
6294 
6295     bind(SCAN_SUBSTR);
6296     subl(cnt1, 8);
6297     cmpl(cnt2, -8); // Do not read beyond substring
6298     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
6299     // Back-up strings to avoid reading beyond substring:
6300     // cnt1 = cnt1 - cnt2 + 8
6301     addl(cnt1, cnt2); // cnt2 is negative
6302     addl(cnt1, 8);
6303     movl(cnt2, 8); negptr(cnt2);
6304     bind(CONT_SCAN_SUBSTR);
6305     if (int_cnt2 < (int)G) {
6306       movdqu(vec, Address(str2, cnt2, Address::times_2, int_cnt2*2));
6307       pcmpestri(vec, Address(result, cnt2, Address::times_2, int_cnt2*2), 0x0d);
6308     } else {
6309       // calculate index in register to avoid integer overflow (int_cnt2*2)
6310       movl(tmp, int_cnt2);
6311       addptr(tmp, cnt2);
6312       movdqu(vec, Address(str2, tmp, Address::times_2, 0));
6313       pcmpestri(vec, Address(result, tmp, Address::times_2, 0), 0x0d);
6314     }
6315     // Need to reload strings pointers if not matched whole vector
6316     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6317     addptr(cnt2, 8);
6318     jcc(Assembler::negative, SCAN_SUBSTR);
6319     // Fall through if found full substring
6320 
6321   } // (int_cnt2 > 8)
6322 
6323   bind(RET_FOUND);
6324   // Found result if we matched full small substring.
6325   // Compute substr offset
6326   subptr(result, str1);
6327   shrl(result, 1); // index
6328   bind(EXIT);
6329 
6330 } // string_indexofC8
6331 
6332 // Small strings are loaded through stack if they cross page boundary.
6333 void MacroAssembler::string_indexof(Register str1, Register str2,
6334                                     Register cnt1, Register cnt2,
6335                                     int int_cnt2,  Register result,
6336                                     XMMRegister vec, Register tmp) {
6337   ShortBranchVerifier sbv(this);
6338   assert(UseSSE42Intrinsics, "SSE4.2 is required");
6339   //
6340   // int_cnt2 is length of small (< 8 chars) constant substring
6341   // or (-1) for non constant substring in which case its length
6342   // is in cnt2 register.
6343   //
6344   // Note, inline_string_indexOf() generates checks:
6345   // if (substr.count > string.count) return -1;
6346   // if (substr.count == 0) return 0;
6347   //
6348   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < 8), "should be != 0");
6349 
6350   // This method uses pcmpestri instruction with bound registers
6351   //   inputs:
6352   //     xmm - substring
6353   //     rax - substring length (elements count)
6354   //     mem - scanned string
6355   //     rdx - string length (elements count)
6356   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
6357   //   outputs:
6358   //     rcx - matched index in string
6359   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6360 
6361   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
6362         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
6363         FOUND_CANDIDATE;
6364 
6365   { //========================================================
6366     // We don't know where these strings are located
6367     // and we can't read beyond them. Load them through stack.
6368     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
6369 
6370     movptr(tmp, rsp); // save old SP
6371 
6372     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
6373       if (int_cnt2 == 1) {  // One char
6374         load_unsigned_short(result, Address(str2, 0));
6375         movdl(vec, result); // move 32 bits
6376       } else if (int_cnt2 == 2) { // Two chars
6377         movdl(vec, Address(str2, 0)); // move 32 bits
6378       } else if (int_cnt2 == 4) { // Four chars
6379         movq(vec, Address(str2, 0));  // move 64 bits
6380       } else { // cnt2 = { 3, 5, 6, 7 }
6381         // Array header size is 12 bytes in 32-bit VM
6382         // + 6 bytes for 3 chars == 18 bytes,
6383         // enough space to load vec and shift.
6384         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
6385         movdqu(vec, Address(str2, (int_cnt2*2)-16));
6386         psrldq(vec, 16-(int_cnt2*2));
6387       }
6388     } else { // not constant substring
6389       cmpl(cnt2, 8);
6390       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
6391 
6392       // We can read beyond string if srt+16 does not cross page boundary
6393       // since heaps are aligned and mapped by pages.
6394       assert(os::vm_page_size() < (int)G, "default page should be small");
6395       movl(result, str2); // We need only low 32 bits
6396       andl(result, (os::vm_page_size()-1));
6397       cmpl(result, (os::vm_page_size()-16));
6398       jccb(Assembler::belowEqual, CHECK_STR);
6399 
6400       // Move small strings to stack to allow load 16 bytes into vec.
6401       subptr(rsp, 16);
6402       int stk_offset = wordSize-2;
6403       push(cnt2);
6404 
6405       bind(COPY_SUBSTR);
6406       load_unsigned_short(result, Address(str2, cnt2, Address::times_2, -2));
6407       movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6408       decrement(cnt2);
6409       jccb(Assembler::notZero, COPY_SUBSTR);
6410 
6411       pop(cnt2);
6412       movptr(str2, rsp);  // New substring address
6413     } // non constant
6414 
6415     bind(CHECK_STR);
6416     cmpl(cnt1, 8);
6417     jccb(Assembler::aboveEqual, BIG_STRINGS);
6418 
6419     // Check cross page boundary.
6420     movl(result, str1); // We need only low 32 bits
6421     andl(result, (os::vm_page_size()-1));
6422     cmpl(result, (os::vm_page_size()-16));
6423     jccb(Assembler::belowEqual, BIG_STRINGS);
6424 
6425     subptr(rsp, 16);
6426     int stk_offset = -2;
6427     if (int_cnt2 < 0) { // not constant
6428       push(cnt2);
6429       stk_offset += wordSize;
6430     }
6431     movl(cnt2, cnt1);
6432 
6433     bind(COPY_STR);
6434     load_unsigned_short(result, Address(str1, cnt2, Address::times_2, -2));
6435     movw(Address(rsp, cnt2, Address::times_2, stk_offset), result);
6436     decrement(cnt2);
6437     jccb(Assembler::notZero, COPY_STR);
6438 
6439     if (int_cnt2 < 0) { // not constant
6440       pop(cnt2);
6441     }
6442     movptr(str1, rsp);  // New string address
6443 
6444     bind(BIG_STRINGS);
6445     // Load substring.
6446     if (int_cnt2 < 0) { // -1
6447       movdqu(vec, Address(str2, 0));
6448       push(cnt2);       // substr count
6449       push(str2);       // substr addr
6450       push(str1);       // string addr
6451     } else {
6452       // Small (< 8 chars) constant substrings are loaded already.
6453       movl(cnt2, int_cnt2);
6454     }
6455     push(tmp);  // original SP
6456 
6457   } // Finished loading
6458 
6459   //========================================================
6460   // Start search
6461   //
6462 
6463   movptr(result, str1); // string addr
6464 
6465   if (int_cnt2  < 0) {  // Only for non constant substring
6466     jmpb(SCAN_TO_SUBSTR);
6467 
6468     // SP saved at sp+0
6469     // String saved at sp+1*wordSize
6470     // Substr saved at sp+2*wordSize
6471     // Substr count saved at sp+3*wordSize
6472 
6473     // Reload substr for rescan, this code
6474     // is executed only for large substrings (> 8 chars)
6475     bind(RELOAD_SUBSTR);
6476     movptr(str2, Address(rsp, 2*wordSize));
6477     movl(cnt2, Address(rsp, 3*wordSize));
6478     movdqu(vec, Address(str2, 0));
6479     // We came here after the beginning of the substring was
6480     // matched but the rest of it was not so we need to search
6481     // again. Start from the next element after the previous match.
6482     subptr(str1, result); // Restore counter
6483     shrl(str1, 1);
6484     addl(cnt1, str1);
6485     decrementl(cnt1);   // Shift to next element
6486     cmpl(cnt1, cnt2);
6487     jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6488 
6489     addptr(result, 2);
6490   } // non constant
6491 
6492   // Scan string for start of substr in 16-byte vectors
6493   bind(SCAN_TO_SUBSTR);
6494   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
6495   pcmpestri(vec, Address(result, 0), 0x0d);
6496   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
6497   subl(cnt1, 8);
6498   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
6499   cmpl(cnt1, cnt2);
6500   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
6501   addptr(result, 16);
6502 
6503   bind(ADJUST_STR);
6504   cmpl(cnt1, 8); // Do not read beyond string
6505   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
6506   // Back-up string to avoid reading beyond string.
6507   lea(result, Address(result, cnt1, Address::times_2, -16));
6508   movl(cnt1, 8);
6509   jmpb(SCAN_TO_SUBSTR);
6510 
6511   // Found a potential substr
6512   bind(FOUND_CANDIDATE);
6513   // After pcmpestri tmp(rcx) contains matched element index
6514 
6515   // Make sure string is still long enough
6516   subl(cnt1, tmp);
6517   cmpl(cnt1, cnt2);
6518   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
6519   // Left less then substring.
6520 
6521   bind(RET_NOT_FOUND);
6522   movl(result, -1);
6523   jmpb(CLEANUP);
6524 
6525   bind(FOUND_SUBSTR);
6526   // Compute start addr of substr
6527   lea(result, Address(result, tmp, Address::times_2));
6528 
6529   if (int_cnt2 > 0) { // Constant substring
6530     // Repeat search for small substring (< 8 chars)
6531     // from new point without reloading substring.
6532     // Have to check that we don't read beyond string.
6533     cmpl(tmp, 8-int_cnt2);
6534     jccb(Assembler::greater, ADJUST_STR);
6535     // Fall through if matched whole substring.
6536   } else { // non constant
6537     assert(int_cnt2 == -1, "should be != 0");
6538 
6539     addl(tmp, cnt2);
6540     // Found result if we matched whole substring.
6541     cmpl(tmp, 8);
6542     jccb(Assembler::lessEqual, RET_FOUND);
6543 
6544     // Repeat search for small substring (<= 8 chars)
6545     // from new point 'str1' without reloading substring.
6546     cmpl(cnt2, 8);
6547     // Have to check that we don't read beyond string.
6548     jccb(Assembler::lessEqual, ADJUST_STR);
6549 
6550     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
6551     // Compare the rest of substring (> 8 chars).
6552     movptr(str1, result);
6553 
6554     cmpl(tmp, cnt2);
6555     // First 8 chars are already matched.
6556     jccb(Assembler::equal, CHECK_NEXT);
6557 
6558     bind(SCAN_SUBSTR);
6559     pcmpestri(vec, Address(str1, 0), 0x0d);
6560     // Need to reload strings pointers if not matched whole vector
6561     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
6562 
6563     bind(CHECK_NEXT);
6564     subl(cnt2, 8);
6565     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
6566     addptr(str1, 16);
6567     addptr(str2, 16);
6568     subl(cnt1, 8);
6569     cmpl(cnt2, 8); // Do not read beyond substring
6570     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
6571     // Back-up strings to avoid reading beyond substring.
6572     lea(str2, Address(str2, cnt2, Address::times_2, -16));
6573     lea(str1, Address(str1, cnt2, Address::times_2, -16));
6574     subl(cnt1, cnt2);
6575     movl(cnt2, 8);
6576     addl(cnt1, 8);
6577     bind(CONT_SCAN_SUBSTR);
6578     movdqu(vec, Address(str2, 0));
6579     jmpb(SCAN_SUBSTR);
6580 
6581     bind(RET_FOUND_LONG);
6582     movptr(str1, Address(rsp, wordSize));
6583   } // non constant
6584 
6585   bind(RET_FOUND);
6586   // Compute substr offset
6587   subptr(result, str1);
6588   shrl(result, 1); // index
6589 
6590   bind(CLEANUP);
6591   pop(rsp); // restore SP
6592 
6593 } // string_indexof
6594 
6595 // Compare strings.
6596 void MacroAssembler::string_compare(Register str1, Register str2,
6597                                     Register cnt1, Register cnt2, Register result,
6598                                     XMMRegister vec1) {
6599   ShortBranchVerifier sbv(this);
6600   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
6601 
6602   // Compute the minimum of the string lengths and the
6603   // difference of the string lengths (stack).
6604   // Do the conditional move stuff
6605   movl(result, cnt1);
6606   subl(cnt1, cnt2);
6607   push(cnt1);
6608   cmov32(Assembler::lessEqual, cnt2, result);
6609 
6610   // Is the minimum length zero?
6611   testl(cnt2, cnt2);
6612   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
6613 
6614   // Compare first characters
6615   load_unsigned_short(result, Address(str1, 0));
6616   load_unsigned_short(cnt1, Address(str2, 0));
6617   subl(result, cnt1);
6618   jcc(Assembler::notZero,  POP_LABEL);
6619   cmpl(cnt2, 1);
6620   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6621 
6622   // Check if the strings start at the same location.
6623   cmpptr(str1, str2);
6624   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
6625 
6626   Address::ScaleFactor scale = Address::times_2;
6627   int stride = 8;
6628 
6629   if (UseAVX >= 2 && UseSSE42Intrinsics) {
6630     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
6631     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
6632     Label COMPARE_TAIL_LONG;
6633     int pcmpmask = 0x19;
6634 
6635     // Setup to compare 16-chars (32-bytes) vectors,
6636     // start from first character again because it has aligned address.
6637     int stride2 = 16;
6638     int adr_stride  = stride  << scale;
6639 
6640     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6641     // rax and rdx are used by pcmpestri as elements counters
6642     movl(result, cnt2);
6643     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
6644     jcc(Assembler::zero, COMPARE_TAIL_LONG);
6645 
6646     // fast path : compare first 2 8-char vectors.
6647     bind(COMPARE_16_CHARS);
6648     movdqu(vec1, Address(str1, 0));
6649     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6650     jccb(Assembler::below, COMPARE_INDEX_CHAR);
6651 
6652     movdqu(vec1, Address(str1, adr_stride));
6653     pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
6654     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
6655     addl(cnt1, stride);
6656 
6657     // Compare the characters at index in cnt1
6658     bind(COMPARE_INDEX_CHAR); //cnt1 has the offset of the mismatching character
6659     load_unsigned_short(result, Address(str1, cnt1, scale));
6660     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6661     subl(result, cnt2);
6662     jmp(POP_LABEL);
6663 
6664     // Setup the registers to start vector comparison loop
6665     bind(COMPARE_WIDE_VECTORS);
6666     lea(str1, Address(str1, result, scale));
6667     lea(str2, Address(str2, result, scale));
6668     subl(result, stride2);
6669     subl(cnt2, stride2);
6670     jccb(Assembler::zero, COMPARE_WIDE_TAIL);
6671     negptr(result);
6672 
6673     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
6674     bind(COMPARE_WIDE_VECTORS_LOOP);
6675     vmovdqu(vec1, Address(str1, result, scale));
6676     vpxor(vec1, Address(str2, result, scale));
6677     vptest(vec1, vec1);
6678     jccb(Assembler::notZero, VECTOR_NOT_EQUAL);
6679     addptr(result, stride2);
6680     subl(cnt2, stride2);
6681     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
6682     // clean upper bits of YMM registers
6683     vpxor(vec1, vec1);
6684 
6685     // compare wide vectors tail
6686     bind(COMPARE_WIDE_TAIL);
6687     testptr(result, result);
6688     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6689 
6690     movl(result, stride2);
6691     movl(cnt2, result);
6692     negptr(result);
6693     jmpb(COMPARE_WIDE_VECTORS_LOOP);
6694 
6695     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
6696     bind(VECTOR_NOT_EQUAL);
6697     // clean upper bits of YMM registers
6698     vpxor(vec1, vec1);
6699     lea(str1, Address(str1, result, scale));
6700     lea(str2, Address(str2, result, scale));
6701     jmp(COMPARE_16_CHARS);
6702 
6703     // Compare tail chars, length between 1 to 15 chars
6704     bind(COMPARE_TAIL_LONG);
6705     movl(cnt2, result);
6706     cmpl(cnt2, stride);
6707     jccb(Assembler::less, COMPARE_SMALL_STR);
6708 
6709     movdqu(vec1, Address(str1, 0));
6710     pcmpestri(vec1, Address(str2, 0), pcmpmask);
6711     jcc(Assembler::below, COMPARE_INDEX_CHAR);
6712     subptr(cnt2, stride);
6713     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6714     lea(str1, Address(str1, result, scale));
6715     lea(str2, Address(str2, result, scale));
6716     negptr(cnt2);
6717     jmpb(WHILE_HEAD_LABEL);
6718 
6719     bind(COMPARE_SMALL_STR);
6720   } else if (UseSSE42Intrinsics) {
6721     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
6722     int pcmpmask = 0x19;
6723     // Setup to compare 8-char (16-byte) vectors,
6724     // start from first character again because it has aligned address.
6725     movl(result, cnt2);
6726     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
6727     jccb(Assembler::zero, COMPARE_TAIL);
6728 
6729     lea(str1, Address(str1, result, scale));
6730     lea(str2, Address(str2, result, scale));
6731     negptr(result);
6732 
6733     // pcmpestri
6734     //   inputs:
6735     //     vec1- substring
6736     //     rax - negative string length (elements count)
6737     //     mem - scanned string
6738     //     rdx - string length (elements count)
6739     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
6740     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
6741     //   outputs:
6742     //     rcx - first mismatched element index
6743     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
6744 
6745     bind(COMPARE_WIDE_VECTORS);
6746     movdqu(vec1, Address(str1, result, scale));
6747     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6748     // After pcmpestri cnt1(rcx) contains mismatched element index
6749 
6750     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
6751     addptr(result, stride);
6752     subptr(cnt2, stride);
6753     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
6754 
6755     // compare wide vectors tail
6756     testptr(result, result);
6757     jccb(Assembler::zero, LENGTH_DIFF_LABEL);
6758 
6759     movl(cnt2, stride);
6760     movl(result, stride);
6761     negptr(result);
6762     movdqu(vec1, Address(str1, result, scale));
6763     pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
6764     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
6765 
6766     // Mismatched characters in the vectors
6767     bind(VECTOR_NOT_EQUAL);
6768     addptr(cnt1, result);
6769     load_unsigned_short(result, Address(str1, cnt1, scale));
6770     load_unsigned_short(cnt2, Address(str2, cnt1, scale));
6771     subl(result, cnt2);
6772     jmpb(POP_LABEL);
6773 
6774     bind(COMPARE_TAIL); // limit is zero
6775     movl(cnt2, result);
6776     // Fallthru to tail compare
6777   }
6778   // Shift str2 and str1 to the end of the arrays, negate min
6779   lea(str1, Address(str1, cnt2, scale));
6780   lea(str2, Address(str2, cnt2, scale));
6781   decrementl(cnt2);  // first character was compared already
6782   negptr(cnt2);
6783 
6784   // Compare the rest of the elements
6785   bind(WHILE_HEAD_LABEL);
6786   load_unsigned_short(result, Address(str1, cnt2, scale, 0));
6787   load_unsigned_short(cnt1, Address(str2, cnt2, scale, 0));
6788   subl(result, cnt1);
6789   jccb(Assembler::notZero, POP_LABEL);
6790   increment(cnt2);
6791   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
6792 
6793   // Strings are equal up to min length.  Return the length difference.
6794   bind(LENGTH_DIFF_LABEL);
6795   pop(result);
6796   jmpb(DONE_LABEL);
6797 
6798   // Discard the stored length difference
6799   bind(POP_LABEL);
6800   pop(cnt1);
6801 
6802   // That's it
6803   bind(DONE_LABEL);
6804 }
6805 
6806 // Compare char[] arrays aligned to 4 bytes or substrings.
6807 void MacroAssembler::char_arrays_equals(bool is_array_equ, Register ary1, Register ary2,
6808                                         Register limit, Register result, Register chr,
6809                                         XMMRegister vec1, XMMRegister vec2) {
6810   ShortBranchVerifier sbv(this);
6811   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR;
6812 
6813   int length_offset  = arrayOopDesc::length_offset_in_bytes();
6814   int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
6815 
6816   // Check the input args
6817   cmpptr(ary1, ary2);
6818   jcc(Assembler::equal, TRUE_LABEL);
6819 
6820   if (is_array_equ) {
6821     // Need additional checks for arrays_equals.
6822     testptr(ary1, ary1);
6823     jcc(Assembler::zero, FALSE_LABEL);
6824     testptr(ary2, ary2);
6825     jcc(Assembler::zero, FALSE_LABEL);
6826 
6827     // Check the lengths
6828     movl(limit, Address(ary1, length_offset));
6829     cmpl(limit, Address(ary2, length_offset));
6830     jcc(Assembler::notEqual, FALSE_LABEL);
6831   }
6832 
6833   // count == 0
6834   testl(limit, limit);
6835   jcc(Assembler::zero, TRUE_LABEL);
6836 
6837   if (is_array_equ) {
6838     // Load array address
6839     lea(ary1, Address(ary1, base_offset));
6840     lea(ary2, Address(ary2, base_offset));
6841   }
6842 
6843   shll(limit, 1);      // byte count != 0
6844   movl(result, limit); // copy
6845 
6846   if (UseAVX >= 2) {
6847     // With AVX2, use 32-byte vector compare
6848     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6849 
6850     // Compare 32-byte vectors
6851     andl(result, 0x0000001e);  //   tail count (in bytes)
6852     andl(limit, 0xffffffe0);   // vector count (in bytes)
6853     jccb(Assembler::zero, COMPARE_TAIL);
6854 
6855     lea(ary1, Address(ary1, limit, Address::times_1));
6856     lea(ary2, Address(ary2, limit, Address::times_1));
6857     negptr(limit);
6858 
6859     bind(COMPARE_WIDE_VECTORS);
6860     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
6861     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
6862     vpxor(vec1, vec2);
6863 
6864     vptest(vec1, vec1);
6865     jccb(Assembler::notZero, FALSE_LABEL);
6866     addptr(limit, 32);
6867     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6868 
6869     testl(result, result);
6870     jccb(Assembler::zero, TRUE_LABEL);
6871 
6872     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
6873     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
6874     vpxor(vec1, vec2);
6875 
6876     vptest(vec1, vec1);
6877     jccb(Assembler::notZero, FALSE_LABEL);
6878     jmpb(TRUE_LABEL);
6879 
6880     bind(COMPARE_TAIL); // limit is zero
6881     movl(limit, result);
6882     // Fallthru to tail compare
6883   } else if (UseSSE42Intrinsics) {
6884     // With SSE4.2, use double quad vector compare
6885     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
6886 
6887     // Compare 16-byte vectors
6888     andl(result, 0x0000000e);  //   tail count (in bytes)
6889     andl(limit, 0xfffffff0);   // vector count (in bytes)
6890     jccb(Assembler::zero, COMPARE_TAIL);
6891 
6892     lea(ary1, Address(ary1, limit, Address::times_1));
6893     lea(ary2, Address(ary2, limit, Address::times_1));
6894     negptr(limit);
6895 
6896     bind(COMPARE_WIDE_VECTORS);
6897     movdqu(vec1, Address(ary1, limit, Address::times_1));
6898     movdqu(vec2, Address(ary2, limit, Address::times_1));
6899     pxor(vec1, vec2);
6900 
6901     ptest(vec1, vec1);
6902     jccb(Assembler::notZero, FALSE_LABEL);
6903     addptr(limit, 16);
6904     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
6905 
6906     testl(result, result);
6907     jccb(Assembler::zero, TRUE_LABEL);
6908 
6909     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
6910     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
6911     pxor(vec1, vec2);
6912 
6913     ptest(vec1, vec1);
6914     jccb(Assembler::notZero, FALSE_LABEL);
6915     jmpb(TRUE_LABEL);
6916 
6917     bind(COMPARE_TAIL); // limit is zero
6918     movl(limit, result);
6919     // Fallthru to tail compare
6920   }
6921 
6922   // Compare 4-byte vectors
6923   andl(limit, 0xfffffffc); // vector count (in bytes)
6924   jccb(Assembler::zero, COMPARE_CHAR);
6925 
6926   lea(ary1, Address(ary1, limit, Address::times_1));
6927   lea(ary2, Address(ary2, limit, Address::times_1));
6928   negptr(limit);
6929 
6930   bind(COMPARE_VECTORS);
6931   movl(chr, Address(ary1, limit, Address::times_1));
6932   cmpl(chr, Address(ary2, limit, Address::times_1));
6933   jccb(Assembler::notEqual, FALSE_LABEL);
6934   addptr(limit, 4);
6935   jcc(Assembler::notZero, COMPARE_VECTORS);
6936 
6937   // Compare trailing char (final 2 bytes), if any
6938   bind(COMPARE_CHAR);
6939   testl(result, 0x2);   // tail  char
6940   jccb(Assembler::zero, TRUE_LABEL);
6941   load_unsigned_short(chr, Address(ary1, 0));
6942   load_unsigned_short(limit, Address(ary2, 0));
6943   cmpl(chr, limit);
6944   jccb(Assembler::notEqual, FALSE_LABEL);
6945 
6946   bind(TRUE_LABEL);
6947   movl(result, 1);   // return true
6948   jmpb(DONE);
6949 
6950   bind(FALSE_LABEL);
6951   xorl(result, result); // return false
6952 
6953   // That's it
6954   bind(DONE);
6955   if (UseAVX >= 2) {
6956     // clean upper bits of YMM registers
6957     vpxor(vec1, vec1);
6958     vpxor(vec2, vec2);
6959   }
6960 }
6961 
6962 void MacroAssembler::generate_fill(BasicType t, bool aligned,
6963                                    Register to, Register value, Register count,
6964                                    Register rtmp, XMMRegister xtmp) {
6965   ShortBranchVerifier sbv(this);
6966   assert_different_registers(to, value, count, rtmp);
6967   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
6968   Label L_fill_2_bytes, L_fill_4_bytes;
6969 
6970   int shift = -1;
6971   switch (t) {
6972     case T_BYTE:
6973       shift = 2;
6974       break;
6975     case T_SHORT:
6976       shift = 1;
6977       break;
6978     case T_INT:
6979       shift = 0;
6980       break;
6981     default: ShouldNotReachHere();
6982   }
6983 
6984   if (t == T_BYTE) {
6985     andl(value, 0xff);
6986     movl(rtmp, value);
6987     shll(rtmp, 8);
6988     orl(value, rtmp);
6989   }
6990   if (t == T_SHORT) {
6991     andl(value, 0xffff);
6992   }
6993   if (t == T_BYTE || t == T_SHORT) {
6994     movl(rtmp, value);
6995     shll(rtmp, 16);
6996     orl(value, rtmp);
6997   }
6998 
6999   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
7000   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
7001   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
7002     // align source address at 4 bytes address boundary
7003     if (t == T_BYTE) {
7004       // One byte misalignment happens only for byte arrays
7005       testptr(to, 1);
7006       jccb(Assembler::zero, L_skip_align1);
7007       movb(Address(to, 0), value);
7008       increment(to);
7009       decrement(count);
7010       BIND(L_skip_align1);
7011     }
7012     // Two bytes misalignment happens only for byte and short (char) arrays
7013     testptr(to, 2);
7014     jccb(Assembler::zero, L_skip_align2);
7015     movw(Address(to, 0), value);
7016     addptr(to, 2);
7017     subl(count, 1<<(shift-1));
7018     BIND(L_skip_align2);
7019   }
7020   if (UseSSE < 2) {
7021     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7022     // Fill 32-byte chunks
7023     subl(count, 8 << shift);
7024     jcc(Assembler::less, L_check_fill_8_bytes);
7025     align(16);
7026 
7027     BIND(L_fill_32_bytes_loop);
7028 
7029     for (int i = 0; i < 32; i += 4) {
7030       movl(Address(to, i), value);
7031     }
7032 
7033     addptr(to, 32);
7034     subl(count, 8 << shift);
7035     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7036     BIND(L_check_fill_8_bytes);
7037     addl(count, 8 << shift);
7038     jccb(Assembler::zero, L_exit);
7039     jmpb(L_fill_8_bytes);
7040 
7041     //
7042     // length is too short, just fill qwords
7043     //
7044     BIND(L_fill_8_bytes_loop);
7045     movl(Address(to, 0), value);
7046     movl(Address(to, 4), value);
7047     addptr(to, 8);
7048     BIND(L_fill_8_bytes);
7049     subl(count, 1 << (shift + 1));
7050     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7051     // fall through to fill 4 bytes
7052   } else {
7053     Label L_fill_32_bytes;
7054     if (!UseUnalignedLoadStores) {
7055       // align to 8 bytes, we know we are 4 byte aligned to start
7056       testptr(to, 4);
7057       jccb(Assembler::zero, L_fill_32_bytes);
7058       movl(Address(to, 0), value);
7059       addptr(to, 4);
7060       subl(count, 1<<shift);
7061     }
7062     BIND(L_fill_32_bytes);
7063     {
7064       assert( UseSSE >= 2, "supported cpu only" );
7065       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
7066       movdl(xtmp, value);
7067       if (UseAVX >= 2 && UseUnalignedLoadStores) {
7068         // Fill 64-byte chunks
7069         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
7070         vpbroadcastd(xtmp, xtmp);
7071 
7072         subl(count, 16 << shift);
7073         jcc(Assembler::less, L_check_fill_32_bytes);
7074         align(16);
7075 
7076         BIND(L_fill_64_bytes_loop);
7077         vmovdqu(Address(to, 0), xtmp);
7078         vmovdqu(Address(to, 32), xtmp);
7079         addptr(to, 64);
7080         subl(count, 16 << shift);
7081         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
7082 
7083         BIND(L_check_fill_32_bytes);
7084         addl(count, 8 << shift);
7085         jccb(Assembler::less, L_check_fill_8_bytes);
7086         vmovdqu(Address(to, 0), xtmp);
7087         addptr(to, 32);
7088         subl(count, 8 << shift);
7089 
7090         BIND(L_check_fill_8_bytes);
7091         // clean upper bits of YMM registers
7092         movdl(xtmp, value);
7093         pshufd(xtmp, xtmp, 0);
7094       } else {
7095         // Fill 32-byte chunks
7096         pshufd(xtmp, xtmp, 0);
7097 
7098         subl(count, 8 << shift);
7099         jcc(Assembler::less, L_check_fill_8_bytes);
7100         align(16);
7101 
7102         BIND(L_fill_32_bytes_loop);
7103 
7104         if (UseUnalignedLoadStores) {
7105           movdqu(Address(to, 0), xtmp);
7106           movdqu(Address(to, 16), xtmp);
7107         } else {
7108           movq(Address(to, 0), xtmp);
7109           movq(Address(to, 8), xtmp);
7110           movq(Address(to, 16), xtmp);
7111           movq(Address(to, 24), xtmp);
7112         }
7113 
7114         addptr(to, 32);
7115         subl(count, 8 << shift);
7116         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
7117 
7118         BIND(L_check_fill_8_bytes);
7119       }
7120       addl(count, 8 << shift);
7121       jccb(Assembler::zero, L_exit);
7122       jmpb(L_fill_8_bytes);
7123 
7124       //
7125       // length is too short, just fill qwords
7126       //
7127       BIND(L_fill_8_bytes_loop);
7128       movq(Address(to, 0), xtmp);
7129       addptr(to, 8);
7130       BIND(L_fill_8_bytes);
7131       subl(count, 1 << (shift + 1));
7132       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
7133     }
7134   }
7135   // fill trailing 4 bytes
7136   BIND(L_fill_4_bytes);
7137   testl(count, 1<<shift);
7138   jccb(Assembler::zero, L_fill_2_bytes);
7139   movl(Address(to, 0), value);
7140   if (t == T_BYTE || t == T_SHORT) {
7141     addptr(to, 4);
7142     BIND(L_fill_2_bytes);
7143     // fill trailing 2 bytes
7144     testl(count, 1<<(shift-1));
7145     jccb(Assembler::zero, L_fill_byte);
7146     movw(Address(to, 0), value);
7147     if (t == T_BYTE) {
7148       addptr(to, 2);
7149       BIND(L_fill_byte);
7150       // fill trailing byte
7151       testl(count, 1);
7152       jccb(Assembler::zero, L_exit);
7153       movb(Address(to, 0), value);
7154     } else {
7155       BIND(L_fill_byte);
7156     }
7157   } else {
7158     BIND(L_fill_2_bytes);
7159   }
7160   BIND(L_exit);
7161 }
7162 
7163 // encode char[] to byte[] in ISO_8859_1
7164 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
7165                                       XMMRegister tmp1Reg, XMMRegister tmp2Reg,
7166                                       XMMRegister tmp3Reg, XMMRegister tmp4Reg,
7167                                       Register tmp5, Register result) {
7168   // rsi: src
7169   // rdi: dst
7170   // rdx: len
7171   // rcx: tmp5
7172   // rax: result
7173   ShortBranchVerifier sbv(this);
7174   assert_different_registers(src, dst, len, tmp5, result);
7175   Label L_done, L_copy_1_char, L_copy_1_char_exit;
7176 
7177   // set result
7178   xorl(result, result);
7179   // check for zero length
7180   testl(len, len);
7181   jcc(Assembler::zero, L_done);
7182   movl(result, len);
7183 
7184   // Setup pointers
7185   lea(src, Address(src, len, Address::times_2)); // char[]
7186   lea(dst, Address(dst, len, Address::times_1)); // byte[]
7187   negptr(len);
7188 
7189   if (UseSSE42Intrinsics || UseAVX >= 2) {
7190     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
7191     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
7192 
7193     if (UseAVX >= 2) {
7194       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
7195       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7196       movdl(tmp1Reg, tmp5);
7197       vpbroadcastd(tmp1Reg, tmp1Reg);
7198       jmpb(L_chars_32_check);
7199 
7200       bind(L_copy_32_chars);
7201       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
7202       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
7203       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7204       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7205       jccb(Assembler::notZero, L_copy_32_chars_exit);
7206       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector256 */ true);
7207       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector256 */ true);
7208       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
7209 
7210       bind(L_chars_32_check);
7211       addptr(len, 32);
7212       jccb(Assembler::lessEqual, L_copy_32_chars);
7213 
7214       bind(L_copy_32_chars_exit);
7215       subptr(len, 16);
7216       jccb(Assembler::greater, L_copy_16_chars_exit);
7217 
7218     } else if (UseSSE42Intrinsics) {
7219       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
7220       movdl(tmp1Reg, tmp5);
7221       pshufd(tmp1Reg, tmp1Reg, 0);
7222       jmpb(L_chars_16_check);
7223     }
7224 
7225     bind(L_copy_16_chars);
7226     if (UseAVX >= 2) {
7227       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
7228       vptest(tmp2Reg, tmp1Reg);
7229       jccb(Assembler::notZero, L_copy_16_chars_exit);
7230       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector256 */ true);
7231       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector256 */ true);
7232     } else {
7233       if (UseAVX > 0) {
7234         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7235         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7236         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector256 */ false);
7237       } else {
7238         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
7239         por(tmp2Reg, tmp3Reg);
7240         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
7241         por(tmp2Reg, tmp4Reg);
7242       }
7243       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
7244       jccb(Assembler::notZero, L_copy_16_chars_exit);
7245       packuswb(tmp3Reg, tmp4Reg);
7246     }
7247     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
7248 
7249     bind(L_chars_16_check);
7250     addptr(len, 16);
7251     jccb(Assembler::lessEqual, L_copy_16_chars);
7252 
7253     bind(L_copy_16_chars_exit);
7254     if (UseAVX >= 2) {
7255       // clean upper bits of YMM registers
7256       vpxor(tmp2Reg, tmp2Reg);
7257       vpxor(tmp3Reg, tmp3Reg);
7258       vpxor(tmp4Reg, tmp4Reg);
7259       movdl(tmp1Reg, tmp5);
7260       pshufd(tmp1Reg, tmp1Reg, 0);
7261     }
7262     subptr(len, 8);
7263     jccb(Assembler::greater, L_copy_8_chars_exit);
7264 
7265     bind(L_copy_8_chars);
7266     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
7267     ptest(tmp3Reg, tmp1Reg);
7268     jccb(Assembler::notZero, L_copy_8_chars_exit);
7269     packuswb(tmp3Reg, tmp1Reg);
7270     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
7271     addptr(len, 8);
7272     jccb(Assembler::lessEqual, L_copy_8_chars);
7273 
7274     bind(L_copy_8_chars_exit);
7275     subptr(len, 8);
7276     jccb(Assembler::zero, L_done);
7277   }
7278 
7279   bind(L_copy_1_char);
7280   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
7281   testl(tmp5, 0xff00);      // check if Unicode char
7282   jccb(Assembler::notZero, L_copy_1_char_exit);
7283   movb(Address(dst, len, Address::times_1, 0), tmp5);
7284   addptr(len, 1);
7285   jccb(Assembler::less, L_copy_1_char);
7286 
7287   bind(L_copy_1_char_exit);
7288   addptr(result, len); // len is negative count of not processed elements
7289   bind(L_done);
7290 }
7291 
7292 #ifdef _LP64
7293 /**
7294  * Helper for multiply_to_len().
7295  */
7296 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
7297   addq(dest_lo, src1);
7298   adcq(dest_hi, 0);
7299   addq(dest_lo, src2);
7300   adcq(dest_hi, 0);
7301 }
7302 
7303 /**
7304  * Multiply 64 bit by 64 bit first loop.
7305  */
7306 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
7307                                            Register y, Register y_idx, Register z,
7308                                            Register carry, Register product,
7309                                            Register idx, Register kdx) {
7310   //
7311   //  jlong carry, x[], y[], z[];
7312   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7313   //    huge_128 product = y[idx] * x[xstart] + carry;
7314   //    z[kdx] = (jlong)product;
7315   //    carry  = (jlong)(product >>> 64);
7316   //  }
7317   //  z[xstart] = carry;
7318   //
7319 
7320   Label L_first_loop, L_first_loop_exit;
7321   Label L_one_x, L_one_y, L_multiply;
7322 
7323   decrementl(xstart);
7324   jcc(Assembler::negative, L_one_x);
7325 
7326   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7327   rorq(x_xstart, 32); // convert big-endian to little-endian
7328 
7329   bind(L_first_loop);
7330   decrementl(idx);
7331   jcc(Assembler::negative, L_first_loop_exit);
7332   decrementl(idx);
7333   jcc(Assembler::negative, L_one_y);
7334   movq(y_idx, Address(y, idx, Address::times_4,  0));
7335   rorq(y_idx, 32); // convert big-endian to little-endian
7336   bind(L_multiply);
7337   movq(product, x_xstart);
7338   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
7339   addq(product, carry);
7340   adcq(rdx, 0);
7341   subl(kdx, 2);
7342   movl(Address(z, kdx, Address::times_4,  4), product);
7343   shrq(product, 32);
7344   movl(Address(z, kdx, Address::times_4,  0), product);
7345   movq(carry, rdx);
7346   jmp(L_first_loop);
7347 
7348   bind(L_one_y);
7349   movl(y_idx, Address(y,  0));
7350   jmp(L_multiply);
7351 
7352   bind(L_one_x);
7353   movl(x_xstart, Address(x,  0));
7354   jmp(L_first_loop);
7355 
7356   bind(L_first_loop_exit);
7357 }
7358 
7359 /**
7360  * Multiply 64 bit by 64 bit and add 128 bit.
7361  */
7362 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
7363                                             Register yz_idx, Register idx,
7364                                             Register carry, Register product, int offset) {
7365   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
7366   //     z[kdx] = (jlong)product;
7367 
7368   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
7369   rorq(yz_idx, 32); // convert big-endian to little-endian
7370   movq(product, x_xstart);
7371   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
7372   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
7373   rorq(yz_idx, 32); // convert big-endian to little-endian
7374 
7375   add2_with_carry(rdx, product, carry, yz_idx);
7376 
7377   movl(Address(z, idx, Address::times_4,  offset+4), product);
7378   shrq(product, 32);
7379   movl(Address(z, idx, Address::times_4,  offset), product);
7380 
7381 }
7382 
7383 /**
7384  * Multiply 128 bit by 128 bit. Unrolled inner loop.
7385  */
7386 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
7387                                              Register yz_idx, Register idx, Register jdx,
7388                                              Register carry, Register product,
7389                                              Register carry2) {
7390   //   jlong carry, x[], y[], z[];
7391   //   int kdx = ystart+1;
7392   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7393   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
7394   //     z[kdx+idx+1] = (jlong)product;
7395   //     jlong carry2  = (jlong)(product >>> 64);
7396   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
7397   //     z[kdx+idx] = (jlong)product;
7398   //     carry  = (jlong)(product >>> 64);
7399   //   }
7400   //   idx += 2;
7401   //   if (idx > 0) {
7402   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
7403   //     z[kdx+idx] = (jlong)product;
7404   //     carry  = (jlong)(product >>> 64);
7405   //   }
7406   //
7407 
7408   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7409 
7410   movl(jdx, idx);
7411   andl(jdx, 0xFFFFFFFC);
7412   shrl(jdx, 2);
7413 
7414   bind(L_third_loop);
7415   subl(jdx, 1);
7416   jcc(Assembler::negative, L_third_loop_exit);
7417   subl(idx, 4);
7418 
7419   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
7420   movq(carry2, rdx);
7421 
7422   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
7423   movq(carry, rdx);
7424   jmp(L_third_loop);
7425 
7426   bind (L_third_loop_exit);
7427 
7428   andl (idx, 0x3);
7429   jcc(Assembler::zero, L_post_third_loop_done);
7430 
7431   Label L_check_1;
7432   subl(idx, 2);
7433   jcc(Assembler::negative, L_check_1);
7434 
7435   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
7436   movq(carry, rdx);
7437 
7438   bind (L_check_1);
7439   addl (idx, 0x2);
7440   andl (idx, 0x1);
7441   subl(idx, 1);
7442   jcc(Assembler::negative, L_post_third_loop_done);
7443 
7444   movl(yz_idx, Address(y, idx, Address::times_4,  0));
7445   movq(product, x_xstart);
7446   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
7447   movl(yz_idx, Address(z, idx, Address::times_4,  0));
7448 
7449   add2_with_carry(rdx, product, yz_idx, carry);
7450 
7451   movl(Address(z, idx, Address::times_4,  0), product);
7452   shrq(product, 32);
7453 
7454   shlq(rdx, 32);
7455   orq(product, rdx);
7456   movq(carry, product);
7457 
7458   bind(L_post_third_loop_done);
7459 }
7460 
7461 /**
7462  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
7463  *
7464  */
7465 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
7466                                                   Register carry, Register carry2,
7467                                                   Register idx, Register jdx,
7468                                                   Register yz_idx1, Register yz_idx2,
7469                                                   Register tmp, Register tmp3, Register tmp4) {
7470   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
7471 
7472   //   jlong carry, x[], y[], z[];
7473   //   int kdx = ystart+1;
7474   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
7475   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
7476   //     jlong carry2  = (jlong)(tmp3 >>> 64);
7477   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
7478   //     carry  = (jlong)(tmp4 >>> 64);
7479   //     z[kdx+idx+1] = (jlong)tmp3;
7480   //     z[kdx+idx] = (jlong)tmp4;
7481   //   }
7482   //   idx += 2;
7483   //   if (idx > 0) {
7484   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
7485   //     z[kdx+idx] = (jlong)yz_idx1;
7486   //     carry  = (jlong)(yz_idx1 >>> 64);
7487   //   }
7488   //
7489 
7490   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
7491 
7492   movl(jdx, idx);
7493   andl(jdx, 0xFFFFFFFC);
7494   shrl(jdx, 2);
7495 
7496   bind(L_third_loop);
7497   subl(jdx, 1);
7498   jcc(Assembler::negative, L_third_loop_exit);
7499   subl(idx, 4);
7500 
7501   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
7502   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
7503   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
7504   rorxq(yz_idx2, yz_idx2, 32);
7505 
7506   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
7507   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
7508 
7509   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
7510   rorxq(yz_idx1, yz_idx1, 32);
7511   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7512   rorxq(yz_idx2, yz_idx2, 32);
7513 
7514   if (VM_Version::supports_adx()) {
7515     adcxq(tmp3, carry);
7516     adoxq(tmp3, yz_idx1);
7517 
7518     adcxq(tmp4, tmp);
7519     adoxq(tmp4, yz_idx2);
7520 
7521     movl(carry, 0); // does not affect flags
7522     adcxq(carry2, carry);
7523     adoxq(carry2, carry);
7524   } else {
7525     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
7526     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
7527   }
7528   movq(carry, carry2);
7529 
7530   movl(Address(z, idx, Address::times_4, 12), tmp3);
7531   shrq(tmp3, 32);
7532   movl(Address(z, idx, Address::times_4,  8), tmp3);
7533 
7534   movl(Address(z, idx, Address::times_4,  4), tmp4);
7535   shrq(tmp4, 32);
7536   movl(Address(z, idx, Address::times_4,  0), tmp4);
7537 
7538   jmp(L_third_loop);
7539 
7540   bind (L_third_loop_exit);
7541 
7542   andl (idx, 0x3);
7543   jcc(Assembler::zero, L_post_third_loop_done);
7544 
7545   Label L_check_1;
7546   subl(idx, 2);
7547   jcc(Assembler::negative, L_check_1);
7548 
7549   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
7550   rorxq(yz_idx1, yz_idx1, 32);
7551   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
7552   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
7553   rorxq(yz_idx2, yz_idx2, 32);
7554 
7555   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
7556 
7557   movl(Address(z, idx, Address::times_4,  4), tmp3);
7558   shrq(tmp3, 32);
7559   movl(Address(z, idx, Address::times_4,  0), tmp3);
7560   movq(carry, tmp4);
7561 
7562   bind (L_check_1);
7563   addl (idx, 0x2);
7564   andl (idx, 0x1);
7565   subl(idx, 1);
7566   jcc(Assembler::negative, L_post_third_loop_done);
7567   movl(tmp4, Address(y, idx, Address::times_4,  0));
7568   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
7569   movl(tmp4, Address(z, idx, Address::times_4,  0));
7570 
7571   add2_with_carry(carry2, tmp3, tmp4, carry);
7572 
7573   movl(Address(z, idx, Address::times_4,  0), tmp3);
7574   shrq(tmp3, 32);
7575 
7576   shlq(carry2, 32);
7577   orq(tmp3, carry2);
7578   movq(carry, tmp3);
7579 
7580   bind(L_post_third_loop_done);
7581 }
7582 
7583 /**
7584  * Code for BigInteger::multiplyToLen() instrinsic.
7585  *
7586  * rdi: x
7587  * rax: xlen
7588  * rsi: y
7589  * rcx: ylen
7590  * r8:  z
7591  * r11: zlen
7592  * r12: tmp1
7593  * r13: tmp2
7594  * r14: tmp3
7595  * r15: tmp4
7596  * rbx: tmp5
7597  *
7598  */
7599 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
7600                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
7601   ShortBranchVerifier sbv(this);
7602   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
7603 
7604   push(tmp1);
7605   push(tmp2);
7606   push(tmp3);
7607   push(tmp4);
7608   push(tmp5);
7609 
7610   push(xlen);
7611   push(zlen);
7612 
7613   const Register idx = tmp1;
7614   const Register kdx = tmp2;
7615   const Register xstart = tmp3;
7616 
7617   const Register y_idx = tmp4;
7618   const Register carry = tmp5;
7619   const Register product  = xlen;
7620   const Register x_xstart = zlen;  // reuse register
7621 
7622   // First Loop.
7623   //
7624   //  final static long LONG_MASK = 0xffffffffL;
7625   //  int xstart = xlen - 1;
7626   //  int ystart = ylen - 1;
7627   //  long carry = 0;
7628   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
7629   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
7630   //    z[kdx] = (int)product;
7631   //    carry = product >>> 32;
7632   //  }
7633   //  z[xstart] = (int)carry;
7634   //
7635 
7636   movl(idx, ylen);      // idx = ylen;
7637   movl(kdx, zlen);      // kdx = xlen+ylen;
7638   xorq(carry, carry);   // carry = 0;
7639 
7640   Label L_done;
7641 
7642   movl(xstart, xlen);
7643   decrementl(xstart);
7644   jcc(Assembler::negative, L_done);
7645 
7646   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
7647 
7648   Label L_second_loop;
7649   testl(kdx, kdx);
7650   jcc(Assembler::zero, L_second_loop);
7651 
7652   Label L_carry;
7653   subl(kdx, 1);
7654   jcc(Assembler::zero, L_carry);
7655 
7656   movl(Address(z, kdx, Address::times_4,  0), carry);
7657   shrq(carry, 32);
7658   subl(kdx, 1);
7659 
7660   bind(L_carry);
7661   movl(Address(z, kdx, Address::times_4,  0), carry);
7662 
7663   // Second and third (nested) loops.
7664   //
7665   // for (int i = xstart-1; i >= 0; i--) { // Second loop
7666   //   carry = 0;
7667   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
7668   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
7669   //                    (z[k] & LONG_MASK) + carry;
7670   //     z[k] = (int)product;
7671   //     carry = product >>> 32;
7672   //   }
7673   //   z[i] = (int)carry;
7674   // }
7675   //
7676   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
7677 
7678   const Register jdx = tmp1;
7679 
7680   bind(L_second_loop);
7681   xorl(carry, carry);    // carry = 0;
7682   movl(jdx, ylen);       // j = ystart+1
7683 
7684   subl(xstart, 1);       // i = xstart-1;
7685   jcc(Assembler::negative, L_done);
7686 
7687   push (z);
7688 
7689   Label L_last_x;
7690   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
7691   subl(xstart, 1);       // i = xstart-1;
7692   jcc(Assembler::negative, L_last_x);
7693 
7694   if (UseBMI2Instructions) {
7695     movq(rdx,  Address(x, xstart, Address::times_4,  0));
7696     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
7697   } else {
7698     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
7699     rorq(x_xstart, 32);  // convert big-endian to little-endian
7700   }
7701 
7702   Label L_third_loop_prologue;
7703   bind(L_third_loop_prologue);
7704 
7705   push (x);
7706   push (xstart);
7707   push (ylen);
7708 
7709 
7710   if (UseBMI2Instructions) {
7711     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
7712   } else { // !UseBMI2Instructions
7713     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
7714   }
7715 
7716   pop(ylen);
7717   pop(xlen);
7718   pop(x);
7719   pop(z);
7720 
7721   movl(tmp3, xlen);
7722   addl(tmp3, 1);
7723   movl(Address(z, tmp3, Address::times_4,  0), carry);
7724   subl(tmp3, 1);
7725   jccb(Assembler::negative, L_done);
7726 
7727   shrq(carry, 32);
7728   movl(Address(z, tmp3, Address::times_4,  0), carry);
7729   jmp(L_second_loop);
7730 
7731   // Next infrequent code is moved outside loops.
7732   bind(L_last_x);
7733   if (UseBMI2Instructions) {
7734     movl(rdx, Address(x,  0));
7735   } else {
7736     movl(x_xstart, Address(x,  0));
7737   }
7738   jmp(L_third_loop_prologue);
7739 
7740   bind(L_done);
7741 
7742   pop(zlen);
7743   pop(xlen);
7744 
7745   pop(tmp5);
7746   pop(tmp4);
7747   pop(tmp3);
7748   pop(tmp2);
7749   pop(tmp1);
7750 }
7751 #endif
7752 
7753 /**
7754  * Emits code to update CRC-32 with a byte value according to constants in table
7755  *
7756  * @param [in,out]crc   Register containing the crc.
7757  * @param [in]val       Register containing the byte to fold into the CRC.
7758  * @param [in]table     Register containing the table of crc constants.
7759  *
7760  * uint32_t crc;
7761  * val = crc_table[(val ^ crc) & 0xFF];
7762  * crc = val ^ (crc >> 8);
7763  *
7764  */
7765 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
7766   xorl(val, crc);
7767   andl(val, 0xFF);
7768   shrl(crc, 8); // unsigned shift
7769   xorl(crc, Address(table, val, Address::times_4, 0));
7770 }
7771 
7772 /**
7773  * Fold 128-bit data chunk
7774  */
7775 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
7776   if (UseAVX > 0) {
7777     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
7778     vpclmulldq(xcrc, xK, xcrc); // [63:0]
7779     vpxor(xcrc, xcrc, Address(buf, offset), false /* vector256 */);
7780     pxor(xcrc, xtmp);
7781   } else {
7782     movdqa(xtmp, xcrc);
7783     pclmulhdq(xtmp, xK);   // [123:64]
7784     pclmulldq(xcrc, xK);   // [63:0]
7785     pxor(xcrc, xtmp);
7786     movdqu(xtmp, Address(buf, offset));
7787     pxor(xcrc, xtmp);
7788   }
7789 }
7790 
7791 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
7792   if (UseAVX > 0) {
7793     vpclmulhdq(xtmp, xK, xcrc);
7794     vpclmulldq(xcrc, xK, xcrc);
7795     pxor(xcrc, xbuf);
7796     pxor(xcrc, xtmp);
7797   } else {
7798     movdqa(xtmp, xcrc);
7799     pclmulhdq(xtmp, xK);
7800     pclmulldq(xcrc, xK);
7801     pxor(xcrc, xbuf);
7802     pxor(xcrc, xtmp);
7803   }
7804 }
7805 
7806 /**
7807  * 8-bit folds to compute 32-bit CRC
7808  *
7809  * uint64_t xcrc;
7810  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
7811  */
7812 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
7813   movdl(tmp, xcrc);
7814   andl(tmp, 0xFF);
7815   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
7816   psrldq(xcrc, 1); // unsigned shift one byte
7817   pxor(xcrc, xtmp);
7818 }
7819 
7820 /**
7821  * uint32_t crc;
7822  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
7823  */
7824 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
7825   movl(tmp, crc);
7826   andl(tmp, 0xFF);
7827   shrl(crc, 8);
7828   xorl(crc, Address(table, tmp, Address::times_4, 0));
7829 }
7830 
7831 /**
7832  * @param crc   register containing existing CRC (32-bit)
7833  * @param buf   register pointing to input byte buffer (byte*)
7834  * @param len   register containing number of bytes
7835  * @param table register that will contain address of CRC table
7836  * @param tmp   scratch register
7837  */
7838 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
7839   assert_different_registers(crc, buf, len, table, tmp, rax);
7840 
7841   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
7842   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
7843 
7844   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
7845   notl(crc); // ~crc
7846   cmpl(len, 16);
7847   jcc(Assembler::less, L_tail);
7848 
7849   // Align buffer to 16 bytes
7850   movl(tmp, buf);
7851   andl(tmp, 0xF);
7852   jccb(Assembler::zero, L_aligned);
7853   subl(tmp,  16);
7854   addl(len, tmp);
7855 
7856   align(4);
7857   BIND(L_align_loop);
7858   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7859   update_byte_crc32(crc, rax, table);
7860   increment(buf);
7861   incrementl(tmp);
7862   jccb(Assembler::less, L_align_loop);
7863 
7864   BIND(L_aligned);
7865   movl(tmp, len); // save
7866   shrl(len, 4);
7867   jcc(Assembler::zero, L_tail_restore);
7868 
7869   // Fold crc into first bytes of vector
7870   movdqa(xmm1, Address(buf, 0));
7871   movdl(rax, xmm1);
7872   xorl(crc, rax);
7873   pinsrd(xmm1, crc, 0);
7874   addptr(buf, 16);
7875   subl(len, 4); // len > 0
7876   jcc(Assembler::less, L_fold_tail);
7877 
7878   movdqa(xmm2, Address(buf,  0));
7879   movdqa(xmm3, Address(buf, 16));
7880   movdqa(xmm4, Address(buf, 32));
7881   addptr(buf, 48);
7882   subl(len, 3);
7883   jcc(Assembler::lessEqual, L_fold_512b);
7884 
7885   // Fold total 512 bits of polynomial on each iteration,
7886   // 128 bits per each of 4 parallel streams.
7887   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
7888 
7889   align(32);
7890   BIND(L_fold_512b_loop);
7891   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7892   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
7893   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
7894   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
7895   addptr(buf, 64);
7896   subl(len, 4);
7897   jcc(Assembler::greater, L_fold_512b_loop);
7898 
7899   // Fold 512 bits to 128 bits.
7900   BIND(L_fold_512b);
7901   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7902   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
7903   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
7904   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
7905 
7906   // Fold the rest of 128 bits data chunks
7907   BIND(L_fold_tail);
7908   addl(len, 3);
7909   jccb(Assembler::lessEqual, L_fold_128b);
7910   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
7911 
7912   BIND(L_fold_tail_loop);
7913   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
7914   addptr(buf, 16);
7915   decrementl(len);
7916   jccb(Assembler::greater, L_fold_tail_loop);
7917 
7918   // Fold 128 bits in xmm1 down into 32 bits in crc register.
7919   BIND(L_fold_128b);
7920   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
7921   if (UseAVX > 0) {
7922     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
7923     vpand(xmm3, xmm0, xmm2, false /* vector256 */);
7924     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
7925   } else {
7926     movdqa(xmm2, xmm0);
7927     pclmulqdq(xmm2, xmm1, 0x1);
7928     movdqa(xmm3, xmm0);
7929     pand(xmm3, xmm2);
7930     pclmulqdq(xmm0, xmm3, 0x1);
7931   }
7932   psrldq(xmm1, 8);
7933   psrldq(xmm2, 4);
7934   pxor(xmm0, xmm1);
7935   pxor(xmm0, xmm2);
7936 
7937   // 8 8-bit folds to compute 32-bit CRC.
7938   for (int j = 0; j < 4; j++) {
7939     fold_8bit_crc32(xmm0, table, xmm1, rax);
7940   }
7941   movdl(crc, xmm0); // mov 32 bits to general register
7942   for (int j = 0; j < 4; j++) {
7943     fold_8bit_crc32(crc, table, rax);
7944   }
7945 
7946   BIND(L_tail_restore);
7947   movl(len, tmp); // restore
7948   BIND(L_tail);
7949   andl(len, 0xf);
7950   jccb(Assembler::zero, L_exit);
7951 
7952   // Fold the rest of bytes
7953   align(4);
7954   BIND(L_tail_loop);
7955   movsbl(rax, Address(buf, 0)); // load byte with sign extension
7956   update_byte_crc32(crc, rax, table);
7957   increment(buf);
7958   decrementl(len);
7959   jccb(Assembler::greater, L_tail_loop);
7960 
7961   BIND(L_exit);
7962   notl(crc); // ~c
7963 }
7964 
7965 #undef BIND
7966 #undef BLOCK_COMMENT
7967 
7968 
7969 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
7970   switch (cond) {
7971     // Note some conditions are synonyms for others
7972     case Assembler::zero:         return Assembler::notZero;
7973     case Assembler::notZero:      return Assembler::zero;
7974     case Assembler::less:         return Assembler::greaterEqual;
7975     case Assembler::lessEqual:    return Assembler::greater;
7976     case Assembler::greater:      return Assembler::lessEqual;
7977     case Assembler::greaterEqual: return Assembler::less;
7978     case Assembler::below:        return Assembler::aboveEqual;
7979     case Assembler::belowEqual:   return Assembler::above;
7980     case Assembler::above:        return Assembler::belowEqual;
7981     case Assembler::aboveEqual:   return Assembler::below;
7982     case Assembler::overflow:     return Assembler::noOverflow;
7983     case Assembler::noOverflow:   return Assembler::overflow;
7984     case Assembler::negative:     return Assembler::positive;
7985     case Assembler::positive:     return Assembler::negative;
7986     case Assembler::parity:       return Assembler::noParity;
7987     case Assembler::noParity:     return Assembler::parity;
7988   }
7989   ShouldNotReachHere(); return Assembler::overflow;
7990 }
7991 
7992 SkipIfEqual::SkipIfEqual(
7993     MacroAssembler* masm, const bool* flag_addr, bool value) {
7994   _masm = masm;
7995   _masm->cmp8(ExternalAddress((address)flag_addr), value);
7996   _masm->jcc(Assembler::equal, _label);
7997 }
7998 
7999 SkipIfEqual::~SkipIfEqual() {
8000   _masm->bind(_label);
8001 }