1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciMethodData.hpp"
  27 #include "ci/ciTypeFlow.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "gc/shared/gcLocker.hpp"
  32 #include "libadt/dict.hpp"
  33 #include "memory/oopFactory.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/instanceKlass.hpp"
  36 #include "oops/instanceMirrorKlass.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/typeArrayKlass.hpp"
  39 #include "opto/matcher.hpp"
  40 #include "opto/node.hpp"
  41 #include "opto/opcodes.hpp"
  42 #include "opto/type.hpp"
  43 
  44 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 
  53 // Array which maps compiler types to Basic Types
  54 Type::TypeInfo Type::_type_info[Type::lastype] = {
  55   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
  56   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
  57   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
  58   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
  59   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
  60   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
  61   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
  62   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
  63   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
  64   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
  65 
  66 #ifdef SPARC
  67   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  68   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
  69   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  70   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  71 #elif defined(PPC64)
  72   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
  73   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
  74   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
  75   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
  76 #else // all other
  77   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
  78   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
  79   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
  80   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
  81 #endif
  82   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
  83   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
  84   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
  85   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
  86   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
  87   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
  88   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
  89   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
  90   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
  91   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
  92   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
  93   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
  94   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
  95   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
  96   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
  97   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
  98   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
  99   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 100 };
 101 
 102 // Map ideal registers (machine types) to ideal types
 103 const Type *Type::mreg2type[_last_machine_leaf];
 104 
 105 // Map basic types to canonical Type* pointers.
 106 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 107 
 108 // Map basic types to constant-zero Types.
 109 const Type* Type::            _zero_type[T_CONFLICT+1];
 110 
 111 // Map basic types to array-body alias types.
 112 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 113 
 114 //=============================================================================
 115 // Convenience common pre-built types.
 116 const Type *Type::ABIO;         // State-of-machine only
 117 const Type *Type::BOTTOM;       // All values
 118 const Type *Type::CONTROL;      // Control only
 119 const Type *Type::DOUBLE;       // All doubles
 120 const Type *Type::FLOAT;        // All floats
 121 const Type *Type::HALF;         // Placeholder half of doublewide type
 122 const Type *Type::MEMORY;       // Abstract store only
 123 const Type *Type::RETURN_ADDRESS;
 124 const Type *Type::TOP;          // No values in set
 125 
 126 //------------------------------get_const_type---------------------------
 127 const Type* Type::get_const_type(ciType* type) {
 128   if (type == NULL) {
 129     return NULL;
 130   } else if (type->is_primitive_type()) {
 131     return get_const_basic_type(type->basic_type());
 132   } else {
 133     return TypeOopPtr::make_from_klass(type->as_klass());
 134   }
 135 }
 136 
 137 //---------------------------array_element_basic_type---------------------------------
 138 // Mapping to the array element's basic type.
 139 BasicType Type::array_element_basic_type() const {
 140   BasicType bt = basic_type();
 141   if (bt == T_INT) {
 142     if (this == TypeInt::INT)   return T_INT;
 143     if (this == TypeInt::CHAR)  return T_CHAR;
 144     if (this == TypeInt::BYTE)  return T_BYTE;
 145     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 146     if (this == TypeInt::SHORT) return T_SHORT;
 147     return T_VOID;
 148   }
 149   return bt;
 150 }
 151 
 152 //---------------------------get_typeflow_type---------------------------------
 153 // Import a type produced by ciTypeFlow.
 154 const Type* Type::get_typeflow_type(ciType* type) {
 155   switch (type->basic_type()) {
 156 
 157   case ciTypeFlow::StateVector::T_BOTTOM:
 158     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 159     return Type::BOTTOM;
 160 
 161   case ciTypeFlow::StateVector::T_TOP:
 162     assert(type == ciTypeFlow::StateVector::top_type(), "");
 163     return Type::TOP;
 164 
 165   case ciTypeFlow::StateVector::T_NULL:
 166     assert(type == ciTypeFlow::StateVector::null_type(), "");
 167     return TypePtr::NULL_PTR;
 168 
 169   case ciTypeFlow::StateVector::T_LONG2:
 170     // The ciTypeFlow pass pushes a long, then the half.
 171     // We do the same.
 172     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 173     return TypeInt::TOP;
 174 
 175   case ciTypeFlow::StateVector::T_DOUBLE2:
 176     // The ciTypeFlow pass pushes double, then the half.
 177     // Our convention is the same.
 178     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 179     return Type::TOP;
 180 
 181   case T_ADDRESS:
 182     assert(type->is_return_address(), "");
 183     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 184 
 185   default:
 186     // make sure we did not mix up the cases:
 187     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 188     assert(type != ciTypeFlow::StateVector::top_type(), "");
 189     assert(type != ciTypeFlow::StateVector::null_type(), "");
 190     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 191     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 192     assert(!type->is_return_address(), "");
 193 
 194     return Type::get_const_type(type);
 195   }
 196 }
 197 
 198 
 199 //-----------------------make_from_constant------------------------------------
 200 const Type* Type::make_from_constant(ciConstant constant,
 201                                      bool require_constant, bool is_autobox_cache) {
 202   switch (constant.basic_type()) {
 203   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 204   case T_CHAR:     return TypeInt::make(constant.as_char());
 205   case T_BYTE:     return TypeInt::make(constant.as_byte());
 206   case T_SHORT:    return TypeInt::make(constant.as_short());
 207   case T_INT:      return TypeInt::make(constant.as_int());
 208   case T_LONG:     return TypeLong::make(constant.as_long());
 209   case T_FLOAT:    return TypeF::make(constant.as_float());
 210   case T_DOUBLE:   return TypeD::make(constant.as_double());
 211   case T_ARRAY:
 212   case T_OBJECT:
 213     {
 214       // cases:
 215       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 216       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 217       // An oop is not scavengable if it is in the perm gen.
 218       ciObject* oop_constant = constant.as_object();
 219       if (oop_constant->is_null_object()) {
 220         return Type::get_zero_type(T_OBJECT);
 221       } else if (require_constant || oop_constant->should_be_constant()) {
 222         return TypeOopPtr::make_from_constant(oop_constant, require_constant, is_autobox_cache);
 223       }
 224     }
 225   }
 226   // Fall through to failure
 227   return NULL;
 228 }
 229 
 230 
 231 //------------------------------make-------------------------------------------
 232 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 233 // and look for an existing copy in the type dictionary.
 234 const Type *Type::make( enum TYPES t ) {
 235   return (new Type(t))->hashcons();
 236 }
 237 
 238 //------------------------------cmp--------------------------------------------
 239 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 240   if( t1->_base != t2->_base )
 241     return 1;                   // Missed badly
 242   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 243   return !t1->eq(t2);           // Return ZERO if equal
 244 }
 245 
 246 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 247   if (!include_speculative) {
 248     return remove_speculative();
 249   }
 250   return this;
 251 }
 252 
 253 //------------------------------hash-------------------------------------------
 254 int Type::uhash( const Type *const t ) {
 255   return t->hash();
 256 }
 257 
 258 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 259 
 260 //--------------------------Initialize_shared----------------------------------
 261 void Type::Initialize_shared(Compile* current) {
 262   // This method does not need to be locked because the first system
 263   // compilations (stub compilations) occur serially.  If they are
 264   // changed to proceed in parallel, then this section will need
 265   // locking.
 266 
 267   Arena* save = current->type_arena();
 268   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 269 
 270   current->set_type_arena(shared_type_arena);
 271   _shared_type_dict =
 272     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 273                                   shared_type_arena, 128 );
 274   current->set_type_dict(_shared_type_dict);
 275 
 276   // Make shared pre-built types.
 277   CONTROL = make(Control);      // Control only
 278   TOP     = make(Top);          // No values in set
 279   MEMORY  = make(Memory);       // Abstract store only
 280   ABIO    = make(Abio);         // State-of-machine only
 281   RETURN_ADDRESS=make(Return_Address);
 282   FLOAT   = make(FloatBot);     // All floats
 283   DOUBLE  = make(DoubleBot);    // All doubles
 284   BOTTOM  = make(Bottom);       // Everything
 285   HALF    = make(Half);         // Placeholder half of doublewide type
 286 
 287   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 288   TypeF::ONE  = TypeF::make(1.0); // Float 1
 289 
 290   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 291   TypeD::ONE  = TypeD::make(1.0); // Double 1
 292 
 293   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 294   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 295   TypeInt::ONE     = TypeInt::make( 1);  //  1
 296   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 297   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 298   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 299   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 300   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 301   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 302   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 303   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 304   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 305   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 306   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 307   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 308   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 309   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 310   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 311   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 312   // CmpL is overloaded both as the bytecode computation returning
 313   // a trinary (-1,0,+1) integer result AND as an efficient long
 314   // compare returning optimizer ideal-type flags.
 315   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 316   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 317   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 318   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 319   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 320 
 321   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 322   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 323   TypeLong::ONE     = TypeLong::make( 1);        //  1
 324   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 325   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 326   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 327   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 328   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 329 
 330   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 331   fboth[0] = Type::CONTROL;
 332   fboth[1] = Type::CONTROL;
 333   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 334 
 335   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 336   ffalse[0] = Type::CONTROL;
 337   ffalse[1] = Type::TOP;
 338   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 339 
 340   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 341   fneither[0] = Type::TOP;
 342   fneither[1] = Type::TOP;
 343   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 344 
 345   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 346   ftrue[0] = Type::TOP;
 347   ftrue[1] = Type::CONTROL;
 348   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 349 
 350   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 351   floop[0] = Type::CONTROL;
 352   floop[1] = TypeInt::INT;
 353   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 354 
 355   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, 0);
 356   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, OffsetBot);
 357   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, OffsetBot);
 358 
 359   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 360   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 361 
 362   const Type **fmembar = TypeTuple::fields(0);
 363   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 364 
 365   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 366   fsc[0] = TypeInt::CC;
 367   fsc[1] = Type::MEMORY;
 368   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 369 
 370   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 371   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 372   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 373   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 374                                            false, 0, oopDesc::mark_offset_in_bytes());
 375   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 376                                            false, 0, oopDesc::klass_offset_in_bytes());
 377   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, OffsetBot, TypeOopPtr::InstanceBot);
 378 
 379   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, OffsetBot);
 380 
 381   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 382   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 383 
 384   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 385 
 386   mreg2type[Op_Node] = Type::BOTTOM;
 387   mreg2type[Op_Set ] = 0;
 388   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 389   mreg2type[Op_RegI] = TypeInt::INT;
 390   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 391   mreg2type[Op_RegF] = Type::FLOAT;
 392   mreg2type[Op_RegD] = Type::DOUBLE;
 393   mreg2type[Op_RegL] = TypeLong::LONG;
 394   mreg2type[Op_RegFlags] = TypeInt::CC;
 395 
 396   TypeAryPtr::RANGE   = TypeAryPtr::make( TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, arrayOopDesc::length_offset_in_bytes());
 397 
 398   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 399 
 400 #ifdef _LP64
 401   if (UseCompressedOops) {
 402     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 403     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 404   } else
 405 #endif
 406   {
 407     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 408     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Type::OffsetBot);
 409   }
 410   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Type::OffsetBot);
 411   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Type::OffsetBot);
 412   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Type::OffsetBot);
 413   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Type::OffsetBot);
 414   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Type::OffsetBot);
 415   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Type::OffsetBot);
 416   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Type::OffsetBot);
 417 
 418   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 419   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 420   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 421   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 422   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 423   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 424   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 425   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 426   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 427   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 428   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 429   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 430 
 431   TypeKlassPtr::OBJECT = TypeKlassPtr::make( TypePtr::NotNull, current->env()->Object_klass(), 0 );
 432   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make( TypePtr::BotPTR, current->env()->Object_klass(), 0 );
 433 
 434   const Type **fi2c = TypeTuple::fields(2);
 435   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 436   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 437   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 438 
 439   const Type **intpair = TypeTuple::fields(2);
 440   intpair[0] = TypeInt::INT;
 441   intpair[1] = TypeInt::INT;
 442   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 443 
 444   const Type **longpair = TypeTuple::fields(2);
 445   longpair[0] = TypeLong::LONG;
 446   longpair[1] = TypeLong::LONG;
 447   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 448 
 449   const Type **intccpair = TypeTuple::fields(2);
 450   intccpair[0] = TypeInt::INT;
 451   intccpair[1] = TypeInt::CC;
 452   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 453 
 454   const Type **longccpair = TypeTuple::fields(2);
 455   longccpair[0] = TypeLong::LONG;
 456   longccpair[1] = TypeInt::CC;
 457   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 458 
 459   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 460   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 461   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 462   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 463   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 464   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 465   _const_basic_type[T_INT]         = TypeInt::INT;
 466   _const_basic_type[T_LONG]        = TypeLong::LONG;
 467   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 468   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 469   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 470   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 471   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 472   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 473   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 474 
 475   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 476   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 477   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 478   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 479   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 480   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 481   _zero_type[T_INT]         = TypeInt::ZERO;
 482   _zero_type[T_LONG]        = TypeLong::ZERO;
 483   _zero_type[T_FLOAT]       = TypeF::ZERO;
 484   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 485   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 486   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 487   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 488   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 489 
 490   // get_zero_type() should not happen for T_CONFLICT
 491   _zero_type[T_CONFLICT]= NULL;
 492 
 493   // Vector predefined types, it needs initialized _const_basic_type[].
 494   if (Matcher::vector_size_supported(T_BYTE,4)) {
 495     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 496   }
 497   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 498     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 499   }
 500   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 501     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 502   }
 503   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 504     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 505   }
 506   mreg2type[Op_VecS] = TypeVect::VECTS;
 507   mreg2type[Op_VecD] = TypeVect::VECTD;
 508   mreg2type[Op_VecX] = TypeVect::VECTX;
 509   mreg2type[Op_VecY] = TypeVect::VECTY;
 510 
 511   // Restore working type arena.
 512   current->set_type_arena(save);
 513   current->set_type_dict(NULL);
 514 }
 515 
 516 //------------------------------Initialize-------------------------------------
 517 void Type::Initialize(Compile* current) {
 518   assert(current->type_arena() != NULL, "must have created type arena");
 519 
 520   if (_shared_type_dict == NULL) {
 521     Initialize_shared(current);
 522   }
 523 
 524   Arena* type_arena = current->type_arena();
 525 
 526   // Create the hash-cons'ing dictionary with top-level storage allocation
 527   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 528   current->set_type_dict(tdic);
 529 
 530   // Transfer the shared types.
 531   DictI i(_shared_type_dict);
 532   for( ; i.test(); ++i ) {
 533     Type* t = (Type*)i._value;
 534     tdic->Insert(t,t);  // New Type, insert into Type table
 535   }
 536 }
 537 
 538 //------------------------------hashcons---------------------------------------
 539 // Do the hash-cons trick.  If the Type already exists in the type table,
 540 // delete the current Type and return the existing Type.  Otherwise stick the
 541 // current Type in the Type table.
 542 const Type *Type::hashcons(void) {
 543   debug_only(base());           // Check the assertion in Type::base().
 544   // Look up the Type in the Type dictionary
 545   Dict *tdic = type_dict();
 546   Type* old = (Type*)(tdic->Insert(this, this, false));
 547   if( old ) {                   // Pre-existing Type?
 548     if( old != this )           // Yes, this guy is not the pre-existing?
 549       delete this;              // Yes, Nuke this guy
 550     assert( old->_dual, "" );
 551     return old;                 // Return pre-existing
 552   }
 553 
 554   // Every type has a dual (to make my lattice symmetric).
 555   // Since we just discovered a new Type, compute its dual right now.
 556   assert( !_dual, "" );         // No dual yet
 557   _dual = xdual();              // Compute the dual
 558   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 559     _dual = this;
 560     return this;
 561   }
 562   assert( !_dual->_dual, "" );  // No reverse dual yet
 563   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 564   // New Type, insert into Type table
 565   tdic->Insert((void*)_dual,(void*)_dual);
 566   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 567 #ifdef ASSERT
 568   Type *dual_dual = (Type*)_dual->xdual();
 569   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 570   delete dual_dual;
 571 #endif
 572   return this;                  // Return new Type
 573 }
 574 
 575 //------------------------------eq---------------------------------------------
 576 // Structural equality check for Type representations
 577 bool Type::eq( const Type * ) const {
 578   return true;                  // Nothing else can go wrong
 579 }
 580 
 581 //------------------------------hash-------------------------------------------
 582 // Type-specific hashing function.
 583 int Type::hash(void) const {
 584   return _base;
 585 }
 586 
 587 //------------------------------is_finite--------------------------------------
 588 // Has a finite value
 589 bool Type::is_finite() const {
 590   return false;
 591 }
 592 
 593 //------------------------------is_nan-----------------------------------------
 594 // Is not a number (NaN)
 595 bool Type::is_nan()    const {
 596   return false;
 597 }
 598 
 599 //----------------------interface_vs_oop---------------------------------------
 600 #ifdef ASSERT
 601 bool Type::interface_vs_oop_helper(const Type *t) const {
 602   bool result = false;
 603 
 604   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 605   const TypePtr*    t_ptr =    t->make_ptr();
 606   if( this_ptr == NULL || t_ptr == NULL )
 607     return result;
 608 
 609   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 610   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 611   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 612     bool this_interface = this_inst->klass()->is_interface();
 613     bool    t_interface =    t_inst->klass()->is_interface();
 614     result = this_interface ^ t_interface;
 615   }
 616 
 617   return result;
 618 }
 619 
 620 bool Type::interface_vs_oop(const Type *t) const {
 621   if (interface_vs_oop_helper(t)) {
 622     return true;
 623   }
 624   // Now check the speculative parts as well
 625   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 626   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 627   if (this_spec != NULL && t_spec != NULL) {
 628     if (this_spec->interface_vs_oop_helper(t_spec)) {
 629       return true;
 630     }
 631     return false;
 632   }
 633   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 634     return true;
 635   }
 636   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 637     return true;
 638   }
 639   return false;
 640 }
 641 
 642 #endif
 643 
 644 //------------------------------meet-------------------------------------------
 645 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 646 // commutative and the lattice is symmetric.
 647 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 648   if (isa_narrowoop() && t->isa_narrowoop()) {
 649     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 650     return result->make_narrowoop();
 651   }
 652   if (isa_narrowklass() && t->isa_narrowklass()) {
 653     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 654     return result->make_narrowklass();
 655   }
 656 
 657   const Type *this_t = maybe_remove_speculative(include_speculative);
 658   t = t->maybe_remove_speculative(include_speculative);
 659 
 660   const Type *mt = this_t->xmeet(t);
 661   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 662   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 663 #ifdef ASSERT
 664   assert(mt == t->xmeet(this_t), "meet not commutative");
 665   const Type* dual_join = mt->_dual;
 666   const Type *t2t    = dual_join->xmeet(t->_dual);
 667   const Type *t2this = dual_join->xmeet(this_t->_dual);
 668 
 669   // Interface meet Oop is Not Symmetric:
 670   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 671   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 672 
 673   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 674     tty->print_cr("=== Meet Not Symmetric ===");
 675     tty->print("t   =                   ");              t->dump(); tty->cr();
 676     tty->print("this=                   ");         this_t->dump(); tty->cr();
 677     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 678 
 679     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 680     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 681     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 682 
 683     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 684     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 685 
 686     fatal("meet not symmetric" );
 687   }
 688 #endif
 689   return mt;
 690 }
 691 
 692 //------------------------------xmeet------------------------------------------
 693 // Compute the MEET of two types.  It returns a new Type object.
 694 const Type *Type::xmeet( const Type *t ) const {
 695   // Perform a fast test for common case; meeting the same types together.
 696   if( this == t ) return this;  // Meeting same type-rep?
 697 
 698   // Meeting TOP with anything?
 699   if( _base == Top ) return t;
 700 
 701   // Meeting BOTTOM with anything?
 702   if( _base == Bottom ) return BOTTOM;
 703 
 704   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 705   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 706   switch (t->base()) {  // Switch on original type
 707 
 708   // Cut in half the number of cases I must handle.  Only need cases for when
 709   // the given enum "t->type" is less than or equal to the local enum "type".
 710   case FloatCon:
 711   case DoubleCon:
 712   case Int:
 713   case Long:
 714     return t->xmeet(this);
 715 
 716   case OopPtr:
 717     return t->xmeet(this);
 718 
 719   case InstPtr:
 720     return t->xmeet(this);
 721 
 722   case MetadataPtr:
 723   case KlassPtr:
 724     return t->xmeet(this);
 725 
 726   case AryPtr:
 727     return t->xmeet(this);
 728 
 729   case NarrowOop:
 730     return t->xmeet(this);
 731 
 732   case NarrowKlass:
 733     return t->xmeet(this);
 734 
 735   case Bad:                     // Type check
 736   default:                      // Bogus type not in lattice
 737     typerr(t);
 738     return Type::BOTTOM;
 739 
 740   case Bottom:                  // Ye Olde Default
 741     return t;
 742 
 743   case FloatTop:
 744     if( _base == FloatTop ) return this;
 745   case FloatBot:                // Float
 746     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 747     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 748     typerr(t);
 749     return Type::BOTTOM;
 750 
 751   case DoubleTop:
 752     if( _base == DoubleTop ) return this;
 753   case DoubleBot:               // Double
 754     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 755     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 756     typerr(t);
 757     return Type::BOTTOM;
 758 
 759   // These next few cases must match exactly or it is a compile-time error.
 760   case Control:                 // Control of code
 761   case Abio:                    // State of world outside of program
 762   case Memory:
 763     if( _base == t->_base )  return this;
 764     typerr(t);
 765     return Type::BOTTOM;
 766 
 767   case Top:                     // Top of the lattice
 768     return this;
 769   }
 770 
 771   // The type is unchanged
 772   return this;
 773 }
 774 
 775 //-----------------------------filter------------------------------------------
 776 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 777   const Type* ft = join_helper(kills, include_speculative);
 778   if (ft->empty())
 779     return Type::TOP;           // Canonical empty value
 780   return ft;
 781 }
 782 
 783 //------------------------------xdual------------------------------------------
 784 // Compute dual right now.
 785 const Type::TYPES Type::dual_type[Type::lastype] = {
 786   Bad,          // Bad
 787   Control,      // Control
 788   Bottom,       // Top
 789   Bad,          // Int - handled in v-call
 790   Bad,          // Long - handled in v-call
 791   Half,         // Half
 792   Bad,          // NarrowOop - handled in v-call
 793   Bad,          // NarrowKlass - handled in v-call
 794 
 795   Bad,          // Tuple - handled in v-call
 796   Bad,          // Array - handled in v-call
 797   Bad,          // VectorS - handled in v-call
 798   Bad,          // VectorD - handled in v-call
 799   Bad,          // VectorX - handled in v-call
 800   Bad,          // VectorY - handled in v-call
 801 
 802   Bad,          // AnyPtr - handled in v-call
 803   Bad,          // RawPtr - handled in v-call
 804   Bad,          // OopPtr - handled in v-call
 805   Bad,          // InstPtr - handled in v-call
 806   Bad,          // AryPtr - handled in v-call
 807 
 808   Bad,          //  MetadataPtr - handled in v-call
 809   Bad,          // KlassPtr - handled in v-call
 810 
 811   Bad,          // Function - handled in v-call
 812   Abio,         // Abio
 813   Return_Address,// Return_Address
 814   Memory,       // Memory
 815   FloatBot,     // FloatTop
 816   FloatCon,     // FloatCon
 817   FloatTop,     // FloatBot
 818   DoubleBot,    // DoubleTop
 819   DoubleCon,    // DoubleCon
 820   DoubleTop,    // DoubleBot
 821   Top           // Bottom
 822 };
 823 
 824 const Type *Type::xdual() const {
 825   // Note: the base() accessor asserts the sanity of _base.
 826   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 827   return new Type(_type_info[_base].dual_type);
 828 }
 829 
 830 //------------------------------has_memory-------------------------------------
 831 bool Type::has_memory() const {
 832   Type::TYPES tx = base();
 833   if (tx == Memory) return true;
 834   if (tx == Tuple) {
 835     const TypeTuple *t = is_tuple();
 836     for (uint i=0; i < t->cnt(); i++) {
 837       tx = t->field_at(i)->base();
 838       if (tx == Memory)  return true;
 839     }
 840   }
 841   return false;
 842 }
 843 
 844 #ifndef PRODUCT
 845 //------------------------------dump2------------------------------------------
 846 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 847   st->print("%s", _type_info[_base].msg);
 848 }
 849 
 850 //------------------------------dump-------------------------------------------
 851 void Type::dump_on(outputStream *st) const {
 852   ResourceMark rm;
 853   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 854   dump2(d,1, st);
 855   if (is_ptr_to_narrowoop()) {
 856     st->print(" [narrow]");
 857   } else if (is_ptr_to_narrowklass()) {
 858     st->print(" [narrowklass]");
 859   }
 860 }
 861 #endif
 862 
 863 //------------------------------singleton--------------------------------------
 864 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
 865 // constants (Ldi nodes).  Singletons are integer, float or double constants.
 866 bool Type::singleton(void) const {
 867   return _base == Top || _base == Half;
 868 }
 869 
 870 //------------------------------empty------------------------------------------
 871 // TRUE if Type is a type with no values, FALSE otherwise.
 872 bool Type::empty(void) const {
 873   switch (_base) {
 874   case DoubleTop:
 875   case FloatTop:
 876   case Top:
 877     return true;
 878 
 879   case Half:
 880   case Abio:
 881   case Return_Address:
 882   case Memory:
 883   case Bottom:
 884   case FloatBot:
 885   case DoubleBot:
 886     return false;  // never a singleton, therefore never empty
 887   }
 888 
 889   ShouldNotReachHere();
 890   return false;
 891 }
 892 
 893 //------------------------------dump_stats-------------------------------------
 894 // Dump collected statistics to stderr
 895 #ifndef PRODUCT
 896 void Type::dump_stats() {
 897   tty->print("Types made: %d\n", type_dict()->Size());
 898 }
 899 #endif
 900 
 901 //------------------------------typerr-----------------------------------------
 902 void Type::typerr( const Type *t ) const {
 903 #ifndef PRODUCT
 904   tty->print("\nError mixing types: ");
 905   dump();
 906   tty->print(" and ");
 907   t->dump();
 908   tty->print("\n");
 909 #endif
 910   ShouldNotReachHere();
 911 }
 912 
 913 
 914 //=============================================================================
 915 // Convenience common pre-built types.
 916 const TypeF *TypeF::ZERO;       // Floating point zero
 917 const TypeF *TypeF::ONE;        // Floating point one
 918 
 919 //------------------------------make-------------------------------------------
 920 // Create a float constant
 921 const TypeF *TypeF::make(float f) {
 922   return (TypeF*)(new TypeF(f))->hashcons();
 923 }
 924 
 925 //------------------------------meet-------------------------------------------
 926 // Compute the MEET of two types.  It returns a new Type object.
 927 const Type *TypeF::xmeet( const Type *t ) const {
 928   // Perform a fast test for common case; meeting the same types together.
 929   if( this == t ) return this;  // Meeting same type-rep?
 930 
 931   // Current "this->_base" is FloatCon
 932   switch (t->base()) {          // Switch on original type
 933   case AnyPtr:                  // Mixing with oops happens when javac
 934   case RawPtr:                  // reuses local variables
 935   case OopPtr:
 936   case InstPtr:
 937   case AryPtr:
 938   case MetadataPtr:
 939   case KlassPtr:
 940   case NarrowOop:
 941   case NarrowKlass:
 942   case Int:
 943   case Long:
 944   case DoubleTop:
 945   case DoubleCon:
 946   case DoubleBot:
 947   case Bottom:                  // Ye Olde Default
 948     return Type::BOTTOM;
 949 
 950   case FloatBot:
 951     return t;
 952 
 953   default:                      // All else is a mistake
 954     typerr(t);
 955 
 956   case FloatCon:                // Float-constant vs Float-constant?
 957     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
 958                                 // must compare bitwise as positive zero, negative zero and NaN have
 959                                 // all the same representation in C++
 960       return FLOAT;             // Return generic float
 961                                 // Equal constants
 962   case Top:
 963   case FloatTop:
 964     break;                      // Return the float constant
 965   }
 966   return this;                  // Return the float constant
 967 }
 968 
 969 //------------------------------xdual------------------------------------------
 970 // Dual: symmetric
 971 const Type *TypeF::xdual() const {
 972   return this;
 973 }
 974 
 975 //------------------------------eq---------------------------------------------
 976 // Structural equality check for Type representations
 977 bool TypeF::eq(const Type *t) const {
 978   // Bitwise comparison to distinguish between +/-0. These values must be treated
 979   // as different to be consistent with C1 and the interpreter.
 980   return (jint_cast(_f) == jint_cast(t->getf()));
 981 }
 982 
 983 //------------------------------hash-------------------------------------------
 984 // Type-specific hashing function.
 985 int TypeF::hash(void) const {
 986   return *(int*)(&_f);
 987 }
 988 
 989 //------------------------------is_finite--------------------------------------
 990 // Has a finite value
 991 bool TypeF::is_finite() const {
 992   return g_isfinite(getf()) != 0;
 993 }
 994 
 995 //------------------------------is_nan-----------------------------------------
 996 // Is not a number (NaN)
 997 bool TypeF::is_nan()    const {
 998   return g_isnan(getf()) != 0;
 999 }
1000 
1001 //------------------------------dump2------------------------------------------
1002 // Dump float constant Type
1003 #ifndef PRODUCT
1004 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1005   Type::dump2(d,depth, st);
1006   st->print("%f", _f);
1007 }
1008 #endif
1009 
1010 //------------------------------singleton--------------------------------------
1011 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1012 // constants (Ldi nodes).  Singletons are integer, float or double constants
1013 // or a single symbol.
1014 bool TypeF::singleton(void) const {
1015   return true;                  // Always a singleton
1016 }
1017 
1018 bool TypeF::empty(void) const {
1019   return false;                 // always exactly a singleton
1020 }
1021 
1022 //=============================================================================
1023 // Convenience common pre-built types.
1024 const TypeD *TypeD::ZERO;       // Floating point zero
1025 const TypeD *TypeD::ONE;        // Floating point one
1026 
1027 //------------------------------make-------------------------------------------
1028 const TypeD *TypeD::make(double d) {
1029   return (TypeD*)(new TypeD(d))->hashcons();
1030 }
1031 
1032 //------------------------------meet-------------------------------------------
1033 // Compute the MEET of two types.  It returns a new Type object.
1034 const Type *TypeD::xmeet( const Type *t ) const {
1035   // Perform a fast test for common case; meeting the same types together.
1036   if( this == t ) return this;  // Meeting same type-rep?
1037 
1038   // Current "this->_base" is DoubleCon
1039   switch (t->base()) {          // Switch on original type
1040   case AnyPtr:                  // Mixing with oops happens when javac
1041   case RawPtr:                  // reuses local variables
1042   case OopPtr:
1043   case InstPtr:
1044   case AryPtr:
1045   case MetadataPtr:
1046   case KlassPtr:
1047   case NarrowOop:
1048   case NarrowKlass:
1049   case Int:
1050   case Long:
1051   case FloatTop:
1052   case FloatCon:
1053   case FloatBot:
1054   case Bottom:                  // Ye Olde Default
1055     return Type::BOTTOM;
1056 
1057   case DoubleBot:
1058     return t;
1059 
1060   default:                      // All else is a mistake
1061     typerr(t);
1062 
1063   case DoubleCon:               // Double-constant vs Double-constant?
1064     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1065       return DOUBLE;            // Return generic double
1066   case Top:
1067   case DoubleTop:
1068     break;
1069   }
1070   return this;                  // Return the double constant
1071 }
1072 
1073 //------------------------------xdual------------------------------------------
1074 // Dual: symmetric
1075 const Type *TypeD::xdual() const {
1076   return this;
1077 }
1078 
1079 //------------------------------eq---------------------------------------------
1080 // Structural equality check for Type representations
1081 bool TypeD::eq(const Type *t) const {
1082   // Bitwise comparison to distinguish between +/-0. These values must be treated
1083   // as different to be consistent with C1 and the interpreter.
1084   return (jlong_cast(_d) == jlong_cast(t->getd()));
1085 }
1086 
1087 //------------------------------hash-------------------------------------------
1088 // Type-specific hashing function.
1089 int TypeD::hash(void) const {
1090   return *(int*)(&_d);
1091 }
1092 
1093 //------------------------------is_finite--------------------------------------
1094 // Has a finite value
1095 bool TypeD::is_finite() const {
1096   return g_isfinite(getd()) != 0;
1097 }
1098 
1099 //------------------------------is_nan-----------------------------------------
1100 // Is not a number (NaN)
1101 bool TypeD::is_nan()    const {
1102   return g_isnan(getd()) != 0;
1103 }
1104 
1105 //------------------------------dump2------------------------------------------
1106 // Dump double constant Type
1107 #ifndef PRODUCT
1108 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1109   Type::dump2(d,depth,st);
1110   st->print("%f", _d);
1111 }
1112 #endif
1113 
1114 //------------------------------singleton--------------------------------------
1115 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1116 // constants (Ldi nodes).  Singletons are integer, float or double constants
1117 // or a single symbol.
1118 bool TypeD::singleton(void) const {
1119   return true;                  // Always a singleton
1120 }
1121 
1122 bool TypeD::empty(void) const {
1123   return false;                 // always exactly a singleton
1124 }
1125 
1126 //=============================================================================
1127 // Convience common pre-built types.
1128 const TypeInt *TypeInt::MINUS_1;// -1
1129 const TypeInt *TypeInt::ZERO;   // 0
1130 const TypeInt *TypeInt::ONE;    // 1
1131 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1132 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1133 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1134 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1135 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1136 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1137 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1138 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1139 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1140 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1141 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1142 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1143 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1144 const TypeInt *TypeInt::INT;    // 32-bit integers
1145 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1146 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1147 
1148 //------------------------------TypeInt----------------------------------------
1149 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1150 }
1151 
1152 //------------------------------make-------------------------------------------
1153 const TypeInt *TypeInt::make( jint lo ) {
1154   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1155 }
1156 
1157 static int normalize_int_widen( jint lo, jint hi, int w ) {
1158   // Certain normalizations keep us sane when comparing types.
1159   // The 'SMALLINT' covers constants and also CC and its relatives.
1160   if (lo <= hi) {
1161     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1162     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1163   } else {
1164     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1165     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1166   }
1167   return w;
1168 }
1169 
1170 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1171   w = normalize_int_widen(lo, hi, w);
1172   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1173 }
1174 
1175 //------------------------------meet-------------------------------------------
1176 // Compute the MEET of two types.  It returns a new Type representation object
1177 // with reference count equal to the number of Types pointing at it.
1178 // Caller should wrap a Types around it.
1179 const Type *TypeInt::xmeet( const Type *t ) const {
1180   // Perform a fast test for common case; meeting the same types together.
1181   if( this == t ) return this;  // Meeting same type?
1182 
1183   // Currently "this->_base" is a TypeInt
1184   switch (t->base()) {          // Switch on original type
1185   case AnyPtr:                  // Mixing with oops happens when javac
1186   case RawPtr:                  // reuses local variables
1187   case OopPtr:
1188   case InstPtr:
1189   case AryPtr:
1190   case MetadataPtr:
1191   case KlassPtr:
1192   case NarrowOop:
1193   case NarrowKlass:
1194   case Long:
1195   case FloatTop:
1196   case FloatCon:
1197   case FloatBot:
1198   case DoubleTop:
1199   case DoubleCon:
1200   case DoubleBot:
1201   case Bottom:                  // Ye Olde Default
1202     return Type::BOTTOM;
1203   default:                      // All else is a mistake
1204     typerr(t);
1205   case Top:                     // No change
1206     return this;
1207   case Int:                     // Int vs Int?
1208     break;
1209   }
1210 
1211   // Expand covered set
1212   const TypeInt *r = t->is_int();
1213   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1214 }
1215 
1216 //------------------------------xdual------------------------------------------
1217 // Dual: reverse hi & lo; flip widen
1218 const Type *TypeInt::xdual() const {
1219   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1220   return new TypeInt(_hi,_lo,w);
1221 }
1222 
1223 //------------------------------widen------------------------------------------
1224 // Only happens for optimistic top-down optimizations.
1225 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1226   // Coming from TOP or such; no widening
1227   if( old->base() != Int ) return this;
1228   const TypeInt *ot = old->is_int();
1229 
1230   // If new guy is equal to old guy, no widening
1231   if( _lo == ot->_lo && _hi == ot->_hi )
1232     return old;
1233 
1234   // If new guy contains old, then we widened
1235   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1236     // New contains old
1237     // If new guy is already wider than old, no widening
1238     if( _widen > ot->_widen ) return this;
1239     // If old guy was a constant, do not bother
1240     if (ot->_lo == ot->_hi)  return this;
1241     // Now widen new guy.
1242     // Check for widening too far
1243     if (_widen == WidenMax) {
1244       int max = max_jint;
1245       int min = min_jint;
1246       if (limit->isa_int()) {
1247         max = limit->is_int()->_hi;
1248         min = limit->is_int()->_lo;
1249       }
1250       if (min < _lo && _hi < max) {
1251         // If neither endpoint is extremal yet, push out the endpoint
1252         // which is closer to its respective limit.
1253         if (_lo >= 0 ||                 // easy common case
1254             (juint)(_lo - min) >= (juint)(max - _hi)) {
1255           // Try to widen to an unsigned range type of 31 bits:
1256           return make(_lo, max, WidenMax);
1257         } else {
1258           return make(min, _hi, WidenMax);
1259         }
1260       }
1261       return TypeInt::INT;
1262     }
1263     // Returned widened new guy
1264     return make(_lo,_hi,_widen+1);
1265   }
1266 
1267   // If old guy contains new, then we probably widened too far & dropped to
1268   // bottom.  Return the wider fellow.
1269   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1270     return old;
1271 
1272   //fatal("Integer value range is not subset");
1273   //return this;
1274   return TypeInt::INT;
1275 }
1276 
1277 //------------------------------narrow---------------------------------------
1278 // Only happens for pessimistic optimizations.
1279 const Type *TypeInt::narrow( const Type *old ) const {
1280   if (_lo >= _hi)  return this;   // already narrow enough
1281   if (old == NULL)  return this;
1282   const TypeInt* ot = old->isa_int();
1283   if (ot == NULL)  return this;
1284   jint olo = ot->_lo;
1285   jint ohi = ot->_hi;
1286 
1287   // If new guy is equal to old guy, no narrowing
1288   if (_lo == olo && _hi == ohi)  return old;
1289 
1290   // If old guy was maximum range, allow the narrowing
1291   if (olo == min_jint && ohi == max_jint)  return this;
1292 
1293   if (_lo < olo || _hi > ohi)
1294     return this;                // doesn't narrow; pretty wierd
1295 
1296   // The new type narrows the old type, so look for a "death march".
1297   // See comments on PhaseTransform::saturate.
1298   juint nrange = _hi - _lo;
1299   juint orange = ohi - olo;
1300   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1301     // Use the new type only if the range shrinks a lot.
1302     // We do not want the optimizer computing 2^31 point by point.
1303     return old;
1304   }
1305 
1306   return this;
1307 }
1308 
1309 //-----------------------------filter------------------------------------------
1310 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1311   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1312   if (ft == NULL || ft->empty())
1313     return Type::TOP;           // Canonical empty value
1314   if (ft->_widen < this->_widen) {
1315     // Do not allow the value of kill->_widen to affect the outcome.
1316     // The widen bits must be allowed to run freely through the graph.
1317     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1318   }
1319   return ft;
1320 }
1321 
1322 //------------------------------eq---------------------------------------------
1323 // Structural equality check for Type representations
1324 bool TypeInt::eq( const Type *t ) const {
1325   const TypeInt *r = t->is_int(); // Handy access
1326   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1327 }
1328 
1329 //------------------------------hash-------------------------------------------
1330 // Type-specific hashing function.
1331 int TypeInt::hash(void) const {
1332   return _lo+_hi+_widen+(int)Type::Int;
1333 }
1334 
1335 //------------------------------is_finite--------------------------------------
1336 // Has a finite value
1337 bool TypeInt::is_finite() const {
1338   return true;
1339 }
1340 
1341 //------------------------------dump2------------------------------------------
1342 // Dump TypeInt
1343 #ifndef PRODUCT
1344 static const char* intname(char* buf, jint n) {
1345   if (n == min_jint)
1346     return "min";
1347   else if (n < min_jint + 10000)
1348     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1349   else if (n == max_jint)
1350     return "max";
1351   else if (n > max_jint - 10000)
1352     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1353   else
1354     sprintf(buf, INT32_FORMAT, n);
1355   return buf;
1356 }
1357 
1358 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1359   char buf[40], buf2[40];
1360   if (_lo == min_jint && _hi == max_jint)
1361     st->print("int");
1362   else if (is_con())
1363     st->print("int:%s", intname(buf, get_con()));
1364   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1365     st->print("bool");
1366   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1367     st->print("byte");
1368   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1369     st->print("char");
1370   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1371     st->print("short");
1372   else if (_hi == max_jint)
1373     st->print("int:>=%s", intname(buf, _lo));
1374   else if (_lo == min_jint)
1375     st->print("int:<=%s", intname(buf, _hi));
1376   else
1377     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1378 
1379   if (_widen != 0 && this != TypeInt::INT)
1380     st->print(":%.*s", _widen, "wwww");
1381 }
1382 #endif
1383 
1384 //------------------------------singleton--------------------------------------
1385 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1386 // constants.
1387 bool TypeInt::singleton(void) const {
1388   return _lo >= _hi;
1389 }
1390 
1391 bool TypeInt::empty(void) const {
1392   return _lo > _hi;
1393 }
1394 
1395 //=============================================================================
1396 // Convenience common pre-built types.
1397 const TypeLong *TypeLong::MINUS_1;// -1
1398 const TypeLong *TypeLong::ZERO; // 0
1399 const TypeLong *TypeLong::ONE;  // 1
1400 const TypeLong *TypeLong::POS;  // >=0
1401 const TypeLong *TypeLong::LONG; // 64-bit integers
1402 const TypeLong *TypeLong::INT;  // 32-bit subrange
1403 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1404 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1405 
1406 //------------------------------TypeLong---------------------------------------
1407 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1408 }
1409 
1410 //------------------------------make-------------------------------------------
1411 const TypeLong *TypeLong::make( jlong lo ) {
1412   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1413 }
1414 
1415 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1416   // Certain normalizations keep us sane when comparing types.
1417   // The 'SMALLINT' covers constants.
1418   if (lo <= hi) {
1419     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1420     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1421   } else {
1422     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1423     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1424   }
1425   return w;
1426 }
1427 
1428 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1429   w = normalize_long_widen(lo, hi, w);
1430   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1431 }
1432 
1433 
1434 //------------------------------meet-------------------------------------------
1435 // Compute the MEET of two types.  It returns a new Type representation object
1436 // with reference count equal to the number of Types pointing at it.
1437 // Caller should wrap a Types around it.
1438 const Type *TypeLong::xmeet( const Type *t ) const {
1439   // Perform a fast test for common case; meeting the same types together.
1440   if( this == t ) return this;  // Meeting same type?
1441 
1442   // Currently "this->_base" is a TypeLong
1443   switch (t->base()) {          // Switch on original type
1444   case AnyPtr:                  // Mixing with oops happens when javac
1445   case RawPtr:                  // reuses local variables
1446   case OopPtr:
1447   case InstPtr:
1448   case AryPtr:
1449   case MetadataPtr:
1450   case KlassPtr:
1451   case NarrowOop:
1452   case NarrowKlass:
1453   case Int:
1454   case FloatTop:
1455   case FloatCon:
1456   case FloatBot:
1457   case DoubleTop:
1458   case DoubleCon:
1459   case DoubleBot:
1460   case Bottom:                  // Ye Olde Default
1461     return Type::BOTTOM;
1462   default:                      // All else is a mistake
1463     typerr(t);
1464   case Top:                     // No change
1465     return this;
1466   case Long:                    // Long vs Long?
1467     break;
1468   }
1469 
1470   // Expand covered set
1471   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1472   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1473 }
1474 
1475 //------------------------------xdual------------------------------------------
1476 // Dual: reverse hi & lo; flip widen
1477 const Type *TypeLong::xdual() const {
1478   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1479   return new TypeLong(_hi,_lo,w);
1480 }
1481 
1482 //------------------------------widen------------------------------------------
1483 // Only happens for optimistic top-down optimizations.
1484 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1485   // Coming from TOP or such; no widening
1486   if( old->base() != Long ) return this;
1487   const TypeLong *ot = old->is_long();
1488 
1489   // If new guy is equal to old guy, no widening
1490   if( _lo == ot->_lo && _hi == ot->_hi )
1491     return old;
1492 
1493   // If new guy contains old, then we widened
1494   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1495     // New contains old
1496     // If new guy is already wider than old, no widening
1497     if( _widen > ot->_widen ) return this;
1498     // If old guy was a constant, do not bother
1499     if (ot->_lo == ot->_hi)  return this;
1500     // Now widen new guy.
1501     // Check for widening too far
1502     if (_widen == WidenMax) {
1503       jlong max = max_jlong;
1504       jlong min = min_jlong;
1505       if (limit->isa_long()) {
1506         max = limit->is_long()->_hi;
1507         min = limit->is_long()->_lo;
1508       }
1509       if (min < _lo && _hi < max) {
1510         // If neither endpoint is extremal yet, push out the endpoint
1511         // which is closer to its respective limit.
1512         if (_lo >= 0 ||                 // easy common case
1513             (julong)(_lo - min) >= (julong)(max - _hi)) {
1514           // Try to widen to an unsigned range type of 32/63 bits:
1515           if (max >= max_juint && _hi < max_juint)
1516             return make(_lo, max_juint, WidenMax);
1517           else
1518             return make(_lo, max, WidenMax);
1519         } else {
1520           return make(min, _hi, WidenMax);
1521         }
1522       }
1523       return TypeLong::LONG;
1524     }
1525     // Returned widened new guy
1526     return make(_lo,_hi,_widen+1);
1527   }
1528 
1529   // If old guy contains new, then we probably widened too far & dropped to
1530   // bottom.  Return the wider fellow.
1531   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1532     return old;
1533 
1534   //  fatal("Long value range is not subset");
1535   // return this;
1536   return TypeLong::LONG;
1537 }
1538 
1539 //------------------------------narrow----------------------------------------
1540 // Only happens for pessimistic optimizations.
1541 const Type *TypeLong::narrow( const Type *old ) const {
1542   if (_lo >= _hi)  return this;   // already narrow enough
1543   if (old == NULL)  return this;
1544   const TypeLong* ot = old->isa_long();
1545   if (ot == NULL)  return this;
1546   jlong olo = ot->_lo;
1547   jlong ohi = ot->_hi;
1548 
1549   // If new guy is equal to old guy, no narrowing
1550   if (_lo == olo && _hi == ohi)  return old;
1551 
1552   // If old guy was maximum range, allow the narrowing
1553   if (olo == min_jlong && ohi == max_jlong)  return this;
1554 
1555   if (_lo < olo || _hi > ohi)
1556     return this;                // doesn't narrow; pretty wierd
1557 
1558   // The new type narrows the old type, so look for a "death march".
1559   // See comments on PhaseTransform::saturate.
1560   julong nrange = _hi - _lo;
1561   julong orange = ohi - olo;
1562   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1563     // Use the new type only if the range shrinks a lot.
1564     // We do not want the optimizer computing 2^31 point by point.
1565     return old;
1566   }
1567 
1568   return this;
1569 }
1570 
1571 //-----------------------------filter------------------------------------------
1572 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1573   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1574   if (ft == NULL || ft->empty())
1575     return Type::TOP;           // Canonical empty value
1576   if (ft->_widen < this->_widen) {
1577     // Do not allow the value of kill->_widen to affect the outcome.
1578     // The widen bits must be allowed to run freely through the graph.
1579     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1580   }
1581   return ft;
1582 }
1583 
1584 //------------------------------eq---------------------------------------------
1585 // Structural equality check for Type representations
1586 bool TypeLong::eq( const Type *t ) const {
1587   const TypeLong *r = t->is_long(); // Handy access
1588   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1589 }
1590 
1591 //------------------------------hash-------------------------------------------
1592 // Type-specific hashing function.
1593 int TypeLong::hash(void) const {
1594   return (int)(_lo+_hi+_widen+(int)Type::Long);
1595 }
1596 
1597 //------------------------------is_finite--------------------------------------
1598 // Has a finite value
1599 bool TypeLong::is_finite() const {
1600   return true;
1601 }
1602 
1603 //------------------------------dump2------------------------------------------
1604 // Dump TypeLong
1605 #ifndef PRODUCT
1606 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1607   if (n > x) {
1608     if (n >= x + 10000)  return NULL;
1609     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1610   } else if (n < x) {
1611     if (n <= x - 10000)  return NULL;
1612     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1613   } else {
1614     return xname;
1615   }
1616   return buf;
1617 }
1618 
1619 static const char* longname(char* buf, jlong n) {
1620   const char* str;
1621   if (n == min_jlong)
1622     return "min";
1623   else if (n < min_jlong + 10000)
1624     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1625   else if (n == max_jlong)
1626     return "max";
1627   else if (n > max_jlong - 10000)
1628     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1629   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1630     return str;
1631   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1632     return str;
1633   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1634     return str;
1635   else
1636     sprintf(buf, JLONG_FORMAT, n);
1637   return buf;
1638 }
1639 
1640 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1641   char buf[80], buf2[80];
1642   if (_lo == min_jlong && _hi == max_jlong)
1643     st->print("long");
1644   else if (is_con())
1645     st->print("long:%s", longname(buf, get_con()));
1646   else if (_hi == max_jlong)
1647     st->print("long:>=%s", longname(buf, _lo));
1648   else if (_lo == min_jlong)
1649     st->print("long:<=%s", longname(buf, _hi));
1650   else
1651     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1652 
1653   if (_widen != 0 && this != TypeLong::LONG)
1654     st->print(":%.*s", _widen, "wwww");
1655 }
1656 #endif
1657 
1658 //------------------------------singleton--------------------------------------
1659 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1660 // constants
1661 bool TypeLong::singleton(void) const {
1662   return _lo >= _hi;
1663 }
1664 
1665 bool TypeLong::empty(void) const {
1666   return _lo > _hi;
1667 }
1668 
1669 //=============================================================================
1670 // Convenience common pre-built types.
1671 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1672 const TypeTuple *TypeTuple::IFFALSE;
1673 const TypeTuple *TypeTuple::IFTRUE;
1674 const TypeTuple *TypeTuple::IFNEITHER;
1675 const TypeTuple *TypeTuple::LOOPBODY;
1676 const TypeTuple *TypeTuple::MEMBAR;
1677 const TypeTuple *TypeTuple::STORECONDITIONAL;
1678 const TypeTuple *TypeTuple::START_I2C;
1679 const TypeTuple *TypeTuple::INT_PAIR;
1680 const TypeTuple *TypeTuple::LONG_PAIR;
1681 const TypeTuple *TypeTuple::INT_CC_PAIR;
1682 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1683 
1684 
1685 //------------------------------make-------------------------------------------
1686 // Make a TypeTuple from the range of a method signature
1687 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1688   ciType* return_type = sig->return_type();
1689   uint arg_cnt = return_type->size();
1690   const Type **field_array = fields(arg_cnt);
1691   switch (return_type->basic_type()) {
1692   case T_LONG:
1693     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1694     field_array[TypeFunc::Parms+1] = Type::HALF;
1695     break;
1696   case T_DOUBLE:
1697     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1698     field_array[TypeFunc::Parms+1] = Type::HALF;
1699     break;
1700   case T_OBJECT:
1701   case T_ARRAY:
1702   case T_BOOLEAN:
1703   case T_CHAR:
1704   case T_FLOAT:
1705   case T_BYTE:
1706   case T_SHORT:
1707   case T_INT:
1708     field_array[TypeFunc::Parms] = get_const_type(return_type);
1709     break;
1710   case T_VOID:
1711     break;
1712   default:
1713     ShouldNotReachHere();
1714   }
1715   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1716 }
1717 
1718 // Make a TypeTuple from the domain of a method signature
1719 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig) {
1720   uint arg_cnt = sig->size();
1721 
1722   uint pos = TypeFunc::Parms;
1723   const Type **field_array;
1724   if (recv != NULL) {
1725     arg_cnt++;
1726     field_array = fields(arg_cnt);
1727     // Use get_const_type here because it respects UseUniqueSubclasses:
1728     field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1729   } else {
1730     field_array = fields(arg_cnt);
1731   }
1732 
1733   int i = 0;
1734   while (pos < TypeFunc::Parms + arg_cnt) {
1735     ciType* type = sig->type_at(i);
1736 
1737     switch (type->basic_type()) {
1738     case T_LONG:
1739       field_array[pos++] = TypeLong::LONG;
1740       field_array[pos++] = Type::HALF;
1741       break;
1742     case T_DOUBLE:
1743       field_array[pos++] = Type::DOUBLE;
1744       field_array[pos++] = Type::HALF;
1745       break;
1746     case T_OBJECT:
1747     case T_ARRAY:
1748     case T_BOOLEAN:
1749     case T_CHAR:
1750     case T_FLOAT:
1751     case T_BYTE:
1752     case T_SHORT:
1753     case T_INT:
1754       field_array[pos++] = get_const_type(type);
1755       break;
1756     default:
1757       ShouldNotReachHere();
1758     }
1759     i++;
1760   }
1761 
1762   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1763 }
1764 
1765 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1766   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1767 }
1768 
1769 //------------------------------fields-----------------------------------------
1770 // Subroutine call type with space allocated for argument types
1771 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1772 const Type **TypeTuple::fields( uint arg_cnt ) {
1773   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1774   flds[TypeFunc::Control  ] = Type::CONTROL;
1775   flds[TypeFunc::I_O      ] = Type::ABIO;
1776   flds[TypeFunc::Memory   ] = Type::MEMORY;
1777   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1778   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1779 
1780   return flds;
1781 }
1782 
1783 //------------------------------meet-------------------------------------------
1784 // Compute the MEET of two types.  It returns a new Type object.
1785 const Type *TypeTuple::xmeet( const Type *t ) const {
1786   // Perform a fast test for common case; meeting the same types together.
1787   if( this == t ) return this;  // Meeting same type-rep?
1788 
1789   // Current "this->_base" is Tuple
1790   switch (t->base()) {          // switch on original type
1791 
1792   case Bottom:                  // Ye Olde Default
1793     return t;
1794 
1795   default:                      // All else is a mistake
1796     typerr(t);
1797 
1798   case Tuple: {                 // Meeting 2 signatures?
1799     const TypeTuple *x = t->is_tuple();
1800     assert( _cnt == x->_cnt, "" );
1801     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1802     for( uint i=0; i<_cnt; i++ )
1803       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1804     return TypeTuple::make(_cnt,fields);
1805   }
1806   case Top:
1807     break;
1808   }
1809   return this;                  // Return the double constant
1810 }
1811 
1812 //------------------------------xdual------------------------------------------
1813 // Dual: compute field-by-field dual
1814 const Type *TypeTuple::xdual() const {
1815   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1816   for( uint i=0; i<_cnt; i++ )
1817     fields[i] = _fields[i]->dual();
1818   return new TypeTuple(_cnt,fields);
1819 }
1820 
1821 //------------------------------eq---------------------------------------------
1822 // Structural equality check for Type representations
1823 bool TypeTuple::eq( const Type *t ) const {
1824   const TypeTuple *s = (const TypeTuple *)t;
1825   if (_cnt != s->_cnt)  return false;  // Unequal field counts
1826   for (uint i = 0; i < _cnt; i++)
1827     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
1828       return false;             // Missed
1829   return true;
1830 }
1831 
1832 //------------------------------hash-------------------------------------------
1833 // Type-specific hashing function.
1834 int TypeTuple::hash(void) const {
1835   intptr_t sum = _cnt;
1836   for( uint i=0; i<_cnt; i++ )
1837     sum += (intptr_t)_fields[i];     // Hash on pointers directly
1838   return sum;
1839 }
1840 
1841 //------------------------------dump2------------------------------------------
1842 // Dump signature Type
1843 #ifndef PRODUCT
1844 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
1845   st->print("{");
1846   if( !depth || d[this] ) {     // Check for recursive print
1847     st->print("...}");
1848     return;
1849   }
1850   d.Insert((void*)this, (void*)this);   // Stop recursion
1851   if( _cnt ) {
1852     uint i;
1853     for( i=0; i<_cnt-1; i++ ) {
1854       st->print("%d:", i);
1855       _fields[i]->dump2(d, depth-1, st);
1856       st->print(", ");
1857     }
1858     st->print("%d:", i);
1859     _fields[i]->dump2(d, depth-1, st);
1860   }
1861   st->print("}");
1862 }
1863 #endif
1864 
1865 //------------------------------singleton--------------------------------------
1866 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1867 // constants (Ldi nodes).  Singletons are integer, float or double constants
1868 // or a single symbol.
1869 bool TypeTuple::singleton(void) const {
1870   return false;                 // Never a singleton
1871 }
1872 
1873 bool TypeTuple::empty(void) const {
1874   for( uint i=0; i<_cnt; i++ ) {
1875     if (_fields[i]->empty())  return true;
1876   }
1877   return false;
1878 }
1879 
1880 //=============================================================================
1881 // Convenience common pre-built types.
1882 
1883 inline const TypeInt* normalize_array_size(const TypeInt* size) {
1884   // Certain normalizations keep us sane when comparing types.
1885   // We do not want arrayOop variables to differ only by the wideness
1886   // of their index types.  Pick minimum wideness, since that is the
1887   // forced wideness of small ranges anyway.
1888   if (size->_widen != Type::WidenMin)
1889     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
1890   else
1891     return size;
1892 }
1893 
1894 //------------------------------make-------------------------------------------
1895 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
1896   if (UseCompressedOops && elem->isa_oopptr()) {
1897     elem = elem->make_narrowoop();
1898   }
1899   size = normalize_array_size(size);
1900   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
1901 }
1902 
1903 //------------------------------meet-------------------------------------------
1904 // Compute the MEET of two types.  It returns a new Type object.
1905 const Type *TypeAry::xmeet( const Type *t ) const {
1906   // Perform a fast test for common case; meeting the same types together.
1907   if( this == t ) return this;  // Meeting same type-rep?
1908 
1909   // Current "this->_base" is Ary
1910   switch (t->base()) {          // switch on original type
1911 
1912   case Bottom:                  // Ye Olde Default
1913     return t;
1914 
1915   default:                      // All else is a mistake
1916     typerr(t);
1917 
1918   case Array: {                 // Meeting 2 arrays?
1919     const TypeAry *a = t->is_ary();
1920     return TypeAry::make(_elem->meet_speculative(a->_elem),
1921                          _size->xmeet(a->_size)->is_int(),
1922                          _stable & a->_stable);
1923   }
1924   case Top:
1925     break;
1926   }
1927   return this;                  // Return the double constant
1928 }
1929 
1930 //------------------------------xdual------------------------------------------
1931 // Dual: compute field-by-field dual
1932 const Type *TypeAry::xdual() const {
1933   const TypeInt* size_dual = _size->dual()->is_int();
1934   size_dual = normalize_array_size(size_dual);
1935   return new TypeAry(_elem->dual(), size_dual, !_stable);
1936 }
1937 
1938 //------------------------------eq---------------------------------------------
1939 // Structural equality check for Type representations
1940 bool TypeAry::eq( const Type *t ) const {
1941   const TypeAry *a = (const TypeAry*)t;
1942   return _elem == a->_elem &&
1943     _stable == a->_stable &&
1944     _size == a->_size;
1945 }
1946 
1947 //------------------------------hash-------------------------------------------
1948 // Type-specific hashing function.
1949 int TypeAry::hash(void) const {
1950   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
1951 }
1952 
1953 /**
1954  * Return same type without a speculative part in the element
1955  */
1956 const Type* TypeAry::remove_speculative() const {
1957   return make(_elem->remove_speculative(), _size, _stable);
1958 }
1959 
1960 /**
1961  * Return same type with cleaned up speculative part of element
1962  */
1963 const Type* TypeAry::cleanup_speculative() const {
1964   return make(_elem->cleanup_speculative(), _size, _stable);
1965 }
1966 
1967 /**
1968  * Return same type but with a different inline depth (used for speculation)
1969  *
1970  * @param depth  depth to meet with
1971  */
1972 const TypePtr* TypePtr::with_inline_depth(int depth) const {
1973   if (!UseInlineDepthForSpeculativeTypes) {
1974     return this;
1975   }
1976   return make(AnyPtr, _ptr, _offset, _speculative, depth);
1977 }
1978 
1979 //----------------------interface_vs_oop---------------------------------------
1980 #ifdef ASSERT
1981 bool TypeAry::interface_vs_oop(const Type *t) const {
1982   const TypeAry* t_ary = t->is_ary();
1983   if (t_ary) {
1984     return _elem->interface_vs_oop(t_ary->_elem);
1985   }
1986   return false;
1987 }
1988 #endif
1989 
1990 //------------------------------dump2------------------------------------------
1991 #ifndef PRODUCT
1992 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
1993   if (_stable)  st->print("stable:");
1994   _elem->dump2(d, depth, st);
1995   st->print("[");
1996   _size->dump2(d, depth, st);
1997   st->print("]");
1998 }
1999 #endif
2000 
2001 //------------------------------singleton--------------------------------------
2002 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2003 // constants (Ldi nodes).  Singletons are integer, float or double constants
2004 // or a single symbol.
2005 bool TypeAry::singleton(void) const {
2006   return false;                 // Never a singleton
2007 }
2008 
2009 bool TypeAry::empty(void) const {
2010   return _elem->empty() || _size->empty();
2011 }
2012 
2013 //--------------------------ary_must_be_exact----------------------------------
2014 bool TypeAry::ary_must_be_exact() const {
2015   if (!UseExactTypes)       return false;
2016   // This logic looks at the element type of an array, and returns true
2017   // if the element type is either a primitive or a final instance class.
2018   // In such cases, an array built on this ary must have no subclasses.
2019   if (_elem == BOTTOM)      return false;  // general array not exact
2020   if (_elem == TOP   )      return false;  // inverted general array not exact
2021   const TypeOopPtr*  toop = NULL;
2022   if (UseCompressedOops && _elem->isa_narrowoop()) {
2023     toop = _elem->make_ptr()->isa_oopptr();
2024   } else {
2025     toop = _elem->isa_oopptr();
2026   }
2027   if (!toop)                return true;   // a primitive type, like int
2028   ciKlass* tklass = toop->klass();
2029   if (tklass == NULL)       return false;  // unloaded class
2030   if (!tklass->is_loaded()) return false;  // unloaded class
2031   const TypeInstPtr* tinst;
2032   if (_elem->isa_narrowoop())
2033     tinst = _elem->make_ptr()->isa_instptr();
2034   else
2035     tinst = _elem->isa_instptr();
2036   if (tinst)
2037     return tklass->as_instance_klass()->is_final();
2038   const TypeAryPtr*  tap;
2039   if (_elem->isa_narrowoop())
2040     tap = _elem->make_ptr()->isa_aryptr();
2041   else
2042     tap = _elem->isa_aryptr();
2043   if (tap)
2044     return tap->ary()->ary_must_be_exact();
2045   return false;
2046 }
2047 
2048 //==============================TypeVect=======================================
2049 // Convenience common pre-built types.
2050 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2051 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2052 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2053 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2054 
2055 //------------------------------make-------------------------------------------
2056 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2057   BasicType elem_bt = elem->array_element_basic_type();
2058   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2059   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2060   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2061   int size = length * type2aelembytes(elem_bt);
2062   switch (Matcher::vector_ideal_reg(size)) {
2063   case Op_VecS:
2064     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2065   case Op_RegL:
2066   case Op_VecD:
2067   case Op_RegD:
2068     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2069   case Op_VecX:
2070     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2071   case Op_VecY:
2072     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2073   }
2074  ShouldNotReachHere();
2075   return NULL;
2076 }
2077 
2078 //------------------------------meet-------------------------------------------
2079 // Compute the MEET of two types.  It returns a new Type object.
2080 const Type *TypeVect::xmeet( const Type *t ) const {
2081   // Perform a fast test for common case; meeting the same types together.
2082   if( this == t ) return this;  // Meeting same type-rep?
2083 
2084   // Current "this->_base" is Vector
2085   switch (t->base()) {          // switch on original type
2086 
2087   case Bottom:                  // Ye Olde Default
2088     return t;
2089 
2090   default:                      // All else is a mistake
2091     typerr(t);
2092 
2093   case VectorS:
2094   case VectorD:
2095   case VectorX:
2096   case VectorY: {                // Meeting 2 vectors?
2097     const TypeVect* v = t->is_vect();
2098     assert(  base() == v->base(), "");
2099     assert(length() == v->length(), "");
2100     assert(element_basic_type() == v->element_basic_type(), "");
2101     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2102   }
2103   case Top:
2104     break;
2105   }
2106   return this;
2107 }
2108 
2109 //------------------------------xdual------------------------------------------
2110 // Dual: compute field-by-field dual
2111 const Type *TypeVect::xdual() const {
2112   return new TypeVect(base(), _elem->dual(), _length);
2113 }
2114 
2115 //------------------------------eq---------------------------------------------
2116 // Structural equality check for Type representations
2117 bool TypeVect::eq(const Type *t) const {
2118   const TypeVect *v = t->is_vect();
2119   return (_elem == v->_elem) && (_length == v->_length);
2120 }
2121 
2122 //------------------------------hash-------------------------------------------
2123 // Type-specific hashing function.
2124 int TypeVect::hash(void) const {
2125   return (intptr_t)_elem + (intptr_t)_length;
2126 }
2127 
2128 //------------------------------singleton--------------------------------------
2129 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2130 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2131 // constant value (when vector is created with Replicate code).
2132 bool TypeVect::singleton(void) const {
2133 // There is no Con node for vectors yet.
2134 //  return _elem->singleton();
2135   return false;
2136 }
2137 
2138 bool TypeVect::empty(void) const {
2139   return _elem->empty();
2140 }
2141 
2142 //------------------------------dump2------------------------------------------
2143 #ifndef PRODUCT
2144 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2145   switch (base()) {
2146   case VectorS:
2147     st->print("vectors["); break;
2148   case VectorD:
2149     st->print("vectord["); break;
2150   case VectorX:
2151     st->print("vectorx["); break;
2152   case VectorY:
2153     st->print("vectory["); break;
2154   default:
2155     ShouldNotReachHere();
2156   }
2157   st->print("%d]:{", _length);
2158   _elem->dump2(d, depth, st);
2159   st->print("}");
2160 }
2161 #endif
2162 
2163 
2164 //=============================================================================
2165 // Convenience common pre-built types.
2166 const TypePtr *TypePtr::NULL_PTR;
2167 const TypePtr *TypePtr::NOTNULL;
2168 const TypePtr *TypePtr::BOTTOM;
2169 
2170 //------------------------------meet-------------------------------------------
2171 // Meet over the PTR enum
2172 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2173   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2174   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2175   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2176   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2177   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2178   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2179   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2180 };
2181 
2182 //------------------------------make-------------------------------------------
2183 const TypePtr *TypePtr::make(TYPES t, enum PTR ptr, int offset, const TypePtr* speculative, int inline_depth) {
2184   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2185 }
2186 
2187 //------------------------------cast_to_ptr_type-------------------------------
2188 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2189   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2190   if( ptr == _ptr ) return this;
2191   return make(_base, ptr, _offset, _speculative, _inline_depth);
2192 }
2193 
2194 //------------------------------get_con----------------------------------------
2195 intptr_t TypePtr::get_con() const {
2196   assert( _ptr == Null, "" );
2197   return _offset;
2198 }
2199 
2200 //------------------------------meet-------------------------------------------
2201 // Compute the MEET of two types.  It returns a new Type object.
2202 const Type *TypePtr::xmeet(const Type *t) const {
2203   const Type* res = xmeet_helper(t);
2204   if (res->isa_ptr() == NULL) {
2205     return res;
2206   }
2207 
2208   const TypePtr* res_ptr = res->is_ptr();
2209   if (res_ptr->speculative() != NULL) {
2210     // type->speculative() == NULL means that speculation is no better
2211     // than type, i.e. type->speculative() == type. So there are 2
2212     // ways to represent the fact that we have no useful speculative
2213     // data and we should use a single one to be able to test for
2214     // equality between types. Check whether type->speculative() ==
2215     // type and set speculative to NULL if it is the case.
2216     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2217       return res_ptr->remove_speculative();
2218     }
2219   }
2220 
2221   return res;
2222 }
2223 
2224 const Type *TypePtr::xmeet_helper(const Type *t) const {
2225   // Perform a fast test for common case; meeting the same types together.
2226   if( this == t ) return this;  // Meeting same type-rep?
2227 
2228   // Current "this->_base" is AnyPtr
2229   switch (t->base()) {          // switch on original type
2230   case Int:                     // Mixing ints & oops happens when javac
2231   case Long:                    // reuses local variables
2232   case FloatTop:
2233   case FloatCon:
2234   case FloatBot:
2235   case DoubleTop:
2236   case DoubleCon:
2237   case DoubleBot:
2238   case NarrowOop:
2239   case NarrowKlass:
2240   case Bottom:                  // Ye Olde Default
2241     return Type::BOTTOM;
2242   case Top:
2243     return this;
2244 
2245   case AnyPtr: {                // Meeting to AnyPtrs
2246     const TypePtr *tp = t->is_ptr();
2247     const TypePtr* speculative = xmeet_speculative(tp);
2248     int depth = meet_inline_depth(tp->inline_depth());
2249     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2250   }
2251   case RawPtr:                  // For these, flip the call around to cut down
2252   case OopPtr:
2253   case InstPtr:                 // on the cases I have to handle.
2254   case AryPtr:
2255   case MetadataPtr:
2256   case KlassPtr:
2257     return t->xmeet(this);      // Call in reverse direction
2258   default:                      // All else is a mistake
2259     typerr(t);
2260 
2261   }
2262   return this;
2263 }
2264 
2265 //------------------------------meet_offset------------------------------------
2266 int TypePtr::meet_offset( int offset ) const {
2267   // Either is 'TOP' offset?  Return the other offset!
2268   if( _offset == OffsetTop ) return offset;
2269   if( offset == OffsetTop ) return _offset;
2270   // If either is different, return 'BOTTOM' offset
2271   if( _offset != offset ) return OffsetBot;
2272   return _offset;
2273 }
2274 
2275 //------------------------------dual_offset------------------------------------
2276 int TypePtr::dual_offset( ) const {
2277   if( _offset == OffsetTop ) return OffsetBot;// Map 'TOP' into 'BOTTOM'
2278   if( _offset == OffsetBot ) return OffsetTop;// Map 'BOTTOM' into 'TOP'
2279   return _offset;               // Map everything else into self
2280 }
2281 
2282 //------------------------------xdual------------------------------------------
2283 // Dual: compute field-by-field dual
2284 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2285   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2286 };
2287 const Type *TypePtr::xdual() const {
2288   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2289 }
2290 
2291 //------------------------------xadd_offset------------------------------------
2292 int TypePtr::xadd_offset( intptr_t offset ) const {
2293   // Adding to 'TOP' offset?  Return 'TOP'!
2294   if( _offset == OffsetTop || offset == OffsetTop ) return OffsetTop;
2295   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
2296   if( _offset == OffsetBot || offset == OffsetBot ) return OffsetBot;
2297   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
2298   offset += (intptr_t)_offset;
2299   if (offset != (int)offset || offset == OffsetTop) return OffsetBot;
2300 
2301   // assert( _offset >= 0 && _offset+offset >= 0, "" );
2302   // It is possible to construct a negative offset during PhaseCCP
2303 
2304   return (int)offset;        // Sum valid offsets
2305 }
2306 
2307 //------------------------------add_offset-------------------------------------
2308 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2309   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2310 }
2311 
2312 //------------------------------eq---------------------------------------------
2313 // Structural equality check for Type representations
2314 bool TypePtr::eq( const Type *t ) const {
2315   const TypePtr *a = (const TypePtr*)t;
2316   return _ptr == a->ptr() && _offset == a->offset() && eq_speculative(a) && _inline_depth == a->_inline_depth;
2317 }
2318 
2319 //------------------------------hash-------------------------------------------
2320 // Type-specific hashing function.
2321 int TypePtr::hash(void) const {
2322   return _ptr + _offset + hash_speculative() + _inline_depth;
2323 ;
2324 }
2325 
2326 /**
2327  * Return same type without a speculative part
2328  */
2329 const Type* TypePtr::remove_speculative() const {
2330   if (_speculative == NULL) {
2331     return this;
2332   }
2333   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2334   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2335 }
2336 
2337 /**
2338  * Return same type but drop speculative part if we know we won't use
2339  * it
2340  */
2341 const Type* TypePtr::cleanup_speculative() const {
2342   if (speculative() == NULL) {
2343     return this;
2344   }
2345   const Type* no_spec = remove_speculative();
2346   // If this is NULL_PTR then we don't need the speculative type
2347   // (with_inline_depth in case the current type inline depth is
2348   // InlineDepthTop)
2349   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2350     return no_spec;
2351   }
2352   if (above_centerline(speculative()->ptr())) {
2353     return no_spec;
2354   }
2355   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2356   // If the speculative may be null and is an inexact klass then it
2357   // doesn't help
2358   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2359     return no_spec;
2360   }
2361   return this;
2362 }
2363 
2364 /**
2365  * dual of the speculative part of the type
2366  */
2367 const TypePtr* TypePtr::dual_speculative() const {
2368   if (_speculative == NULL) {
2369     return NULL;
2370   }
2371   return _speculative->dual()->is_ptr();
2372 }
2373 
2374 /**
2375  * meet of the speculative parts of 2 types
2376  *
2377  * @param other  type to meet with
2378  */
2379 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2380   bool this_has_spec = (_speculative != NULL);
2381   bool other_has_spec = (other->speculative() != NULL);
2382 
2383   if (!this_has_spec && !other_has_spec) {
2384     return NULL;
2385   }
2386 
2387   // If we are at a point where control flow meets and one branch has
2388   // a speculative type and the other has not, we meet the speculative
2389   // type of one branch with the actual type of the other. If the
2390   // actual type is exact and the speculative is as well, then the
2391   // result is a speculative type which is exact and we can continue
2392   // speculation further.
2393   const TypePtr* this_spec = _speculative;
2394   const TypePtr* other_spec = other->speculative();
2395 
2396   if (!this_has_spec) {
2397     this_spec = this;
2398   }
2399 
2400   if (!other_has_spec) {
2401     other_spec = other;
2402   }
2403 
2404   return this_spec->meet(other_spec)->is_ptr();
2405 }
2406 
2407 /**
2408  * dual of the inline depth for this type (used for speculation)
2409  */
2410 int TypePtr::dual_inline_depth() const {
2411   return -inline_depth();
2412 }
2413 
2414 /**
2415  * meet of 2 inline depths (used for speculation)
2416  *
2417  * @param depth  depth to meet with
2418  */
2419 int TypePtr::meet_inline_depth(int depth) const {
2420   return MAX2(inline_depth(), depth);
2421 }
2422 
2423 /**
2424  * Are the speculative parts of 2 types equal?
2425  *
2426  * @param other  type to compare this one to
2427  */
2428 bool TypePtr::eq_speculative(const TypePtr* other) const {
2429   if (_speculative == NULL || other->speculative() == NULL) {
2430     return _speculative == other->speculative();
2431   }
2432 
2433   if (_speculative->base() != other->speculative()->base()) {
2434     return false;
2435   }
2436 
2437   return _speculative->eq(other->speculative());
2438 }
2439 
2440 /**
2441  * Hash of the speculative part of the type
2442  */
2443 int TypePtr::hash_speculative() const {
2444   if (_speculative == NULL) {
2445     return 0;
2446   }
2447 
2448   return _speculative->hash();
2449 }
2450 
2451 /**
2452  * add offset to the speculative part of the type
2453  *
2454  * @param offset  offset to add
2455  */
2456 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2457   if (_speculative == NULL) {
2458     return NULL;
2459   }
2460   return _speculative->add_offset(offset)->is_ptr();
2461 }
2462 
2463 /**
2464  * return exact klass from the speculative type if there's one
2465  */
2466 ciKlass* TypePtr::speculative_type() const {
2467   if (_speculative != NULL && _speculative->isa_oopptr()) {
2468     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2469     if (speculative->klass_is_exact()) {
2470       return speculative->klass();
2471     }
2472   }
2473   return NULL;
2474 }
2475 
2476 /**
2477  * return true if speculative type may be null
2478  */
2479 bool TypePtr::speculative_maybe_null() const {
2480   if (_speculative != NULL) {
2481     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2482     return speculative->maybe_null();
2483   }
2484   return true;
2485 }
2486 
2487 /**
2488  * Same as TypePtr::speculative_type() but return the klass only if
2489  * the speculative tells us is not null
2490  */
2491 ciKlass* TypePtr::speculative_type_not_null() const {
2492   if (speculative_maybe_null()) {
2493     return NULL;
2494   }
2495   return speculative_type();
2496 }
2497 
2498 /**
2499  * Check whether new profiling would improve speculative type
2500  *
2501  * @param   exact_kls    class from profiling
2502  * @param   inline_depth inlining depth of profile point
2503  *
2504  * @return  true if type profile is valuable
2505  */
2506 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2507   // no profiling?
2508   if (exact_kls == NULL) {
2509     return false;
2510   }
2511   // no speculative type or non exact speculative type?
2512   if (speculative_type() == NULL) {
2513     return true;
2514   }
2515   // If the node already has an exact speculative type keep it,
2516   // unless it was provided by profiling that is at a deeper
2517   // inlining level. Profiling at a higher inlining depth is
2518   // expected to be less accurate.
2519   if (_speculative->inline_depth() == InlineDepthBottom) {
2520     return false;
2521   }
2522   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2523   return inline_depth < _speculative->inline_depth();
2524 }
2525 
2526 /**
2527  * Check whether new profiling would improve ptr (= tells us it is non
2528  * null)
2529  *
2530  * @param   maybe_null true if profiling tells the ptr may be null
2531  *
2532  * @return  true if ptr profile is valuable
2533  */
2534 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2535   // profiling doesn't tell us anything useful
2536   if (maybe_null) {
2537     return false;
2538   }
2539   // We already know this is not be null
2540   if (!this->maybe_null()) {
2541     return false;
2542   }
2543   // We already know the speculative type cannot be null
2544   if (!speculative_maybe_null()) {
2545     return false;
2546   }
2547   return true;
2548 }
2549 
2550 //------------------------------dump2------------------------------------------
2551 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2552   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2553 };
2554 
2555 #ifndef PRODUCT
2556 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2557   if( _ptr == Null ) st->print("NULL");
2558   else st->print("%s *", ptr_msg[_ptr]);
2559   if( _offset == OffsetTop ) st->print("+top");
2560   else if( _offset == OffsetBot ) st->print("+bot");
2561   else if( _offset ) st->print("+%d", _offset);
2562   dump_inline_depth(st);
2563   dump_speculative(st);
2564 }
2565 
2566 /**
2567  *dump the speculative part of the type
2568  */
2569 void TypePtr::dump_speculative(outputStream *st) const {
2570   if (_speculative != NULL) {
2571     st->print(" (speculative=");
2572     _speculative->dump_on(st);
2573     st->print(")");
2574   }
2575 }
2576 
2577 /**
2578  *dump the inline depth of the type
2579  */
2580 void TypePtr::dump_inline_depth(outputStream *st) const {
2581   if (_inline_depth != InlineDepthBottom) {
2582     if (_inline_depth == InlineDepthTop) {
2583       st->print(" (inline_depth=InlineDepthTop)");
2584     } else {
2585       st->print(" (inline_depth=%d)", _inline_depth);
2586     }
2587   }
2588 }
2589 #endif
2590 
2591 //------------------------------singleton--------------------------------------
2592 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2593 // constants
2594 bool TypePtr::singleton(void) const {
2595   // TopPTR, Null, AnyNull, Constant are all singletons
2596   return (_offset != OffsetBot) && !below_centerline(_ptr);
2597 }
2598 
2599 bool TypePtr::empty(void) const {
2600   return (_offset == OffsetTop) || above_centerline(_ptr);
2601 }
2602 
2603 //=============================================================================
2604 // Convenience common pre-built types.
2605 const TypeRawPtr *TypeRawPtr::BOTTOM;
2606 const TypeRawPtr *TypeRawPtr::NOTNULL;
2607 
2608 //------------------------------make-------------------------------------------
2609 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2610   assert( ptr != Constant, "what is the constant?" );
2611   assert( ptr != Null, "Use TypePtr for NULL" );
2612   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2613 }
2614 
2615 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2616   assert( bits, "Use TypePtr for NULL" );
2617   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2618 }
2619 
2620 //------------------------------cast_to_ptr_type-------------------------------
2621 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2622   assert( ptr != Constant, "what is the constant?" );
2623   assert( ptr != Null, "Use TypePtr for NULL" );
2624   assert( _bits==0, "Why cast a constant address?");
2625   if( ptr == _ptr ) return this;
2626   return make(ptr);
2627 }
2628 
2629 //------------------------------get_con----------------------------------------
2630 intptr_t TypeRawPtr::get_con() const {
2631   assert( _ptr == Null || _ptr == Constant, "" );
2632   return (intptr_t)_bits;
2633 }
2634 
2635 //------------------------------meet-------------------------------------------
2636 // Compute the MEET of two types.  It returns a new Type object.
2637 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2638   // Perform a fast test for common case; meeting the same types together.
2639   if( this == t ) return this;  // Meeting same type-rep?
2640 
2641   // Current "this->_base" is RawPtr
2642   switch( t->base() ) {         // switch on original type
2643   case Bottom:                  // Ye Olde Default
2644     return t;
2645   case Top:
2646     return this;
2647   case AnyPtr:                  // Meeting to AnyPtrs
2648     break;
2649   case RawPtr: {                // might be top, bot, any/not or constant
2650     enum PTR tptr = t->is_ptr()->ptr();
2651     enum PTR ptr = meet_ptr( tptr );
2652     if( ptr == Constant ) {     // Cannot be equal constants, so...
2653       if( tptr == Constant && _ptr != Constant)  return t;
2654       if( _ptr == Constant && tptr != Constant)  return this;
2655       ptr = NotNull;            // Fall down in lattice
2656     }
2657     return make( ptr );
2658   }
2659 
2660   case OopPtr:
2661   case InstPtr:
2662   case AryPtr:
2663   case MetadataPtr:
2664   case KlassPtr:
2665     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2666   default:                      // All else is a mistake
2667     typerr(t);
2668   }
2669 
2670   // Found an AnyPtr type vs self-RawPtr type
2671   const TypePtr *tp = t->is_ptr();
2672   switch (tp->ptr()) {
2673   case TypePtr::TopPTR:  return this;
2674   case TypePtr::BotPTR:  return t;
2675   case TypePtr::Null:
2676     if( _ptr == TypePtr::TopPTR ) return t;
2677     return TypeRawPtr::BOTTOM;
2678   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2679   case TypePtr::AnyNull:
2680     if( _ptr == TypePtr::Constant) return this;
2681     return make( meet_ptr(TypePtr::AnyNull) );
2682   default: ShouldNotReachHere();
2683   }
2684   return this;
2685 }
2686 
2687 //------------------------------xdual------------------------------------------
2688 // Dual: compute field-by-field dual
2689 const Type *TypeRawPtr::xdual() const {
2690   return new TypeRawPtr( dual_ptr(), _bits );
2691 }
2692 
2693 //------------------------------add_offset-------------------------------------
2694 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2695   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2696   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2697   if( offset == 0 ) return this; // No change
2698   switch (_ptr) {
2699   case TypePtr::TopPTR:
2700   case TypePtr::BotPTR:
2701   case TypePtr::NotNull:
2702     return this;
2703   case TypePtr::Null:
2704   case TypePtr::Constant: {
2705     address bits = _bits+offset;
2706     if ( bits == 0 ) return TypePtr::NULL_PTR;
2707     return make( bits );
2708   }
2709   default:  ShouldNotReachHere();
2710   }
2711   return NULL;                  // Lint noise
2712 }
2713 
2714 //------------------------------eq---------------------------------------------
2715 // Structural equality check for Type representations
2716 bool TypeRawPtr::eq( const Type *t ) const {
2717   const TypeRawPtr *a = (const TypeRawPtr*)t;
2718   return _bits == a->_bits && TypePtr::eq(t);
2719 }
2720 
2721 //------------------------------hash-------------------------------------------
2722 // Type-specific hashing function.
2723 int TypeRawPtr::hash(void) const {
2724   return (intptr_t)_bits + TypePtr::hash();
2725 }
2726 
2727 //------------------------------dump2------------------------------------------
2728 #ifndef PRODUCT
2729 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2730   if( _ptr == Constant )
2731     st->print(INTPTR_FORMAT, _bits);
2732   else
2733     st->print("rawptr:%s", ptr_msg[_ptr]);
2734 }
2735 #endif
2736 
2737 //=============================================================================
2738 // Convenience common pre-built type.
2739 const TypeOopPtr *TypeOopPtr::BOTTOM;
2740 
2741 //------------------------------TypeOopPtr-------------------------------------
2742 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
2743                        int instance_id, const TypePtr* speculative, int inline_depth)
2744   : TypePtr(t, ptr, offset, speculative, inline_depth),
2745     _const_oop(o), _klass(k),
2746     _klass_is_exact(xk),
2747     _is_ptr_to_narrowoop(false),
2748     _is_ptr_to_narrowklass(false),
2749     _is_ptr_to_boxed_value(false),
2750     _instance_id(instance_id) {
2751   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
2752       (offset > 0) && xk && (k != 0) && k->is_instance_klass()) {
2753     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset);
2754   }
2755 #ifdef _LP64
2756   if (_offset != 0) {
2757     if (_offset == oopDesc::klass_offset_in_bytes()) {
2758       _is_ptr_to_narrowklass = UseCompressedClassPointers;
2759     } else if (klass() == NULL) {
2760       // Array with unknown body type
2761       assert(this->isa_aryptr(), "only arrays without klass");
2762       _is_ptr_to_narrowoop = UseCompressedOops;
2763     } else if (this->isa_aryptr()) {
2764       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
2765                              _offset != arrayOopDesc::length_offset_in_bytes());
2766     } else if (klass()->is_instance_klass()) {
2767       ciInstanceKlass* ik = klass()->as_instance_klass();
2768       ciField* field = NULL;
2769       if (this->isa_klassptr()) {
2770         // Perm objects don't use compressed references
2771       } else if (_offset == OffsetBot || _offset == OffsetTop) {
2772         // unsafe access
2773         _is_ptr_to_narrowoop = UseCompressedOops;
2774       } else { // exclude unsafe ops
2775         assert(this->isa_instptr(), "must be an instance ptr.");
2776 
2777         if (klass() == ciEnv::current()->Class_klass() &&
2778             (_offset == java_lang_Class::klass_offset_in_bytes() ||
2779              _offset == java_lang_Class::array_klass_offset_in_bytes())) {
2780           // Special hidden fields from the Class.
2781           assert(this->isa_instptr(), "must be an instance ptr.");
2782           _is_ptr_to_narrowoop = false;
2783         } else if (klass() == ciEnv::current()->Class_klass() &&
2784                    _offset >= InstanceMirrorKlass::offset_of_static_fields()) {
2785           // Static fields
2786           assert(o != NULL, "must be constant");
2787           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
2788           ciField* field = k->get_field_by_offset(_offset, true);
2789           assert(field != NULL, "missing field");
2790           BasicType basic_elem_type = field->layout_type();
2791           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2792                                                        basic_elem_type == T_ARRAY);
2793         } else {
2794           // Instance fields which contains a compressed oop references.
2795           field = ik->get_field_by_offset(_offset, false);
2796           if (field != NULL) {
2797             BasicType basic_elem_type = field->layout_type();
2798             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
2799                                                          basic_elem_type == T_ARRAY);
2800           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
2801             // Compile::find_alias_type() cast exactness on all types to verify
2802             // that it does not affect alias type.
2803             _is_ptr_to_narrowoop = UseCompressedOops;
2804           } else {
2805             // Type for the copy start in LibraryCallKit::inline_native_clone().
2806             _is_ptr_to_narrowoop = UseCompressedOops;
2807           }
2808         }
2809       }
2810     }
2811   }
2812 #endif
2813 }
2814 
2815 //------------------------------make-------------------------------------------
2816 const TypeOopPtr *TypeOopPtr::make(PTR ptr, int offset, int instance_id,
2817                                      const TypePtr* speculative, int inline_depth) {
2818   assert(ptr != Constant, "no constant generic pointers");
2819   ciKlass*  k = Compile::current()->env()->Object_klass();
2820   bool      xk = false;
2821   ciObject* o = NULL;
2822   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
2823 }
2824 
2825 
2826 //------------------------------cast_to_ptr_type-------------------------------
2827 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
2828   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
2829   if( ptr == _ptr ) return this;
2830   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
2831 }
2832 
2833 //-----------------------------cast_to_instance_id----------------------------
2834 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
2835   // There are no instances of a general oop.
2836   // Return self unchanged.
2837   return this;
2838 }
2839 
2840 //-----------------------------cast_to_exactness-------------------------------
2841 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
2842   // There is no such thing as an exact general oop.
2843   // Return self unchanged.
2844   return this;
2845 }
2846 
2847 
2848 //------------------------------as_klass_type----------------------------------
2849 // Return the klass type corresponding to this instance or array type.
2850 // It is the type that is loaded from an object of this type.
2851 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
2852   ciKlass* k = klass();
2853   bool    xk = klass_is_exact();
2854   if (k == NULL)
2855     return TypeKlassPtr::OBJECT;
2856   else
2857     return TypeKlassPtr::make(xk? Constant: NotNull, k, 0);
2858 }
2859 
2860 //------------------------------meet-------------------------------------------
2861 // Compute the MEET of two types.  It returns a new Type object.
2862 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
2863   // Perform a fast test for common case; meeting the same types together.
2864   if( this == t ) return this;  // Meeting same type-rep?
2865 
2866   // Current "this->_base" is OopPtr
2867   switch (t->base()) {          // switch on original type
2868 
2869   case Int:                     // Mixing ints & oops happens when javac
2870   case Long:                    // reuses local variables
2871   case FloatTop:
2872   case FloatCon:
2873   case FloatBot:
2874   case DoubleTop:
2875   case DoubleCon:
2876   case DoubleBot:
2877   case NarrowOop:
2878   case NarrowKlass:
2879   case Bottom:                  // Ye Olde Default
2880     return Type::BOTTOM;
2881   case Top:
2882     return this;
2883 
2884   default:                      // All else is a mistake
2885     typerr(t);
2886 
2887   case RawPtr:
2888   case MetadataPtr:
2889   case KlassPtr:
2890     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2891 
2892   case AnyPtr: {
2893     // Found an AnyPtr type vs self-OopPtr type
2894     const TypePtr *tp = t->is_ptr();
2895     int offset = meet_offset(tp->offset());
2896     PTR ptr = meet_ptr(tp->ptr());
2897     const TypePtr* speculative = xmeet_speculative(tp);
2898     int depth = meet_inline_depth(tp->inline_depth());
2899     switch (tp->ptr()) {
2900     case Null:
2901       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2902       // else fall through:
2903     case TopPTR:
2904     case AnyNull: {
2905       int instance_id = meet_instance_id(InstanceTop);
2906       return make(ptr, offset, instance_id, speculative, depth);
2907     }
2908     case BotPTR:
2909     case NotNull:
2910       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
2911     default: typerr(t);
2912     }
2913   }
2914 
2915   case OopPtr: {                 // Meeting to other OopPtrs
2916     const TypeOopPtr *tp = t->is_oopptr();
2917     int instance_id = meet_instance_id(tp->instance_id());
2918     const TypePtr* speculative = xmeet_speculative(tp);
2919     int depth = meet_inline_depth(tp->inline_depth());
2920     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
2921   }
2922 
2923   case InstPtr:                  // For these, flip the call around to cut down
2924   case AryPtr:
2925     return t->xmeet(this);      // Call in reverse direction
2926 
2927   } // End of switch
2928   return this;                  // Return the double constant
2929 }
2930 
2931 
2932 //------------------------------xdual------------------------------------------
2933 // Dual of a pure heap pointer.  No relevant klass or oop information.
2934 const Type *TypeOopPtr::xdual() const {
2935   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
2936   assert(const_oop() == NULL,             "no constants here");
2937   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
2938 }
2939 
2940 //--------------------------make_from_klass_common-----------------------------
2941 // Computes the element-type given a klass.
2942 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
2943   if (klass->is_instance_klass()) {
2944     Compile* C = Compile::current();
2945     Dependencies* deps = C->dependencies();
2946     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
2947     // Element is an instance
2948     bool klass_is_exact = false;
2949     if (klass->is_loaded()) {
2950       // Try to set klass_is_exact.
2951       ciInstanceKlass* ik = klass->as_instance_klass();
2952       klass_is_exact = ik->is_final();
2953       if (!klass_is_exact && klass_change
2954           && deps != NULL && UseUniqueSubclasses) {
2955         ciInstanceKlass* sub = ik->unique_concrete_subklass();
2956         if (sub != NULL) {
2957           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
2958           klass = ik = sub;
2959           klass_is_exact = sub->is_final();
2960         }
2961       }
2962       if (!klass_is_exact && try_for_exact
2963           && deps != NULL && UseExactTypes) {
2964         if (!ik->is_interface() && !ik->has_subklass()) {
2965           // Add a dependence; if concrete subclass added we need to recompile
2966           deps->assert_leaf_type(ik);
2967           klass_is_exact = true;
2968         }
2969       }
2970     }
2971     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, 0);
2972   } else if (klass->is_obj_array_klass()) {
2973     // Element is an object array. Recursively call ourself.
2974     const TypeOopPtr *etype = TypeOopPtr::make_from_klass_common(klass->as_obj_array_klass()->element_klass(), false, try_for_exact);
2975     bool xk = etype->klass_is_exact();
2976     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2977     // We used to pass NotNull in here, asserting that the sub-arrays
2978     // are all not-null.  This is not true in generally, as code can
2979     // slam NULLs down in the subarrays.
2980     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, 0);
2981     return arr;
2982   } else if (klass->is_type_array_klass()) {
2983     // Element is an typeArray
2984     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
2985     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
2986     // We used to pass NotNull in here, asserting that the array pointer
2987     // is not-null. That was not true in general.
2988     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, 0);
2989     return arr;
2990   } else {
2991     ShouldNotReachHere();
2992     return NULL;
2993   }
2994 }
2995 
2996 //------------------------------make_from_constant-----------------------------
2997 // Make a java pointer from an oop constant
2998 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o,
2999                                                  bool require_constant,
3000                                                  bool is_autobox_cache) {
3001   assert(!o->is_null_object(), "null object not yet handled here.");
3002   ciKlass* klass = o->klass();
3003   if (klass->is_instance_klass()) {
3004     // Element is an instance
3005     if (require_constant) {
3006       if (!o->can_be_constant())  return NULL;
3007     } else if (!o->should_be_constant()) {
3008       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, 0);
3009     }
3010     return TypeInstPtr::make(o);
3011   } else if (klass->is_obj_array_klass()) {
3012     // Element is an object array. Recursively call ourself.
3013     const TypeOopPtr *etype =
3014       TypeOopPtr::make_from_klass_raw(klass->as_obj_array_klass()->element_klass());
3015     if (is_autobox_cache) {
3016       // The pointers in the autobox arrays are always non-null.
3017       etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
3018     }
3019     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3020     // We used to pass NotNull in here, asserting that the sub-arrays
3021     // are all not-null.  This is not true in generally, as code can
3022     // slam NULLs down in the subarrays.
3023     if (require_constant) {
3024       if (!o->can_be_constant())  return NULL;
3025     } else if (!o->should_be_constant()) {
3026       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3027     }
3028     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0, InstanceBot, NULL, InlineDepthBottom, is_autobox_cache);
3029     return arr;
3030   } else if (klass->is_type_array_klass()) {
3031     // Element is an typeArray
3032     const Type* etype =
3033       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3034     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3035     // We used to pass NotNull in here, asserting that the array pointer
3036     // is not-null. That was not true in general.
3037     if (require_constant) {
3038       if (!o->can_be_constant())  return NULL;
3039     } else if (!o->should_be_constant()) {
3040       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, 0);
3041     }
3042     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, 0);
3043     return arr;
3044   }
3045 
3046   fatal("unhandled object type");
3047   return NULL;
3048 }
3049 
3050 //------------------------------get_con----------------------------------------
3051 intptr_t TypeOopPtr::get_con() const {
3052   assert( _ptr == Null || _ptr == Constant, "" );
3053   assert( _offset >= 0, "" );
3054 
3055   if (_offset != 0) {
3056     // After being ported to the compiler interface, the compiler no longer
3057     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3058     // to a handle at compile time.  This handle is embedded in the generated
3059     // code and dereferenced at the time the nmethod is made.  Until that time,
3060     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3061     // have access to the addresses!).  This does not seem to currently happen,
3062     // but this assertion here is to help prevent its occurence.
3063     tty->print_cr("Found oop constant with non-zero offset");
3064     ShouldNotReachHere();
3065   }
3066 
3067   return (intptr_t)const_oop()->constant_encoding();
3068 }
3069 
3070 
3071 //-----------------------------filter------------------------------------------
3072 // Do not allow interface-vs.-noninterface joins to collapse to top.
3073 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3074 
3075   const Type* ft = join_helper(kills, include_speculative);
3076   const TypeInstPtr* ftip = ft->isa_instptr();
3077   const TypeInstPtr* ktip = kills->isa_instptr();
3078 
3079   if (ft->empty()) {
3080     // Check for evil case of 'this' being a class and 'kills' expecting an
3081     // interface.  This can happen because the bytecodes do not contain
3082     // enough type info to distinguish a Java-level interface variable
3083     // from a Java-level object variable.  If we meet 2 classes which
3084     // both implement interface I, but their meet is at 'j/l/O' which
3085     // doesn't implement I, we have no way to tell if the result should
3086     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3087     // into a Phi which "knows" it's an Interface type we'll have to
3088     // uplift the type.
3089     if (!empty() && ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface())
3090       return kills;             // Uplift to interface
3091 
3092     return Type::TOP;           // Canonical empty value
3093   }
3094 
3095   // If we have an interface-typed Phi or cast and we narrow to a class type,
3096   // the join should report back the class.  However, if we have a J/L/Object
3097   // class-typed Phi and an interface flows in, it's possible that the meet &
3098   // join report an interface back out.  This isn't possible but happens
3099   // because the type system doesn't interact well with interfaces.
3100   if (ftip != NULL && ktip != NULL &&
3101       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3102       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3103     assert(!ftip->klass_is_exact(), "interface could not be exact");
3104     return ktip->cast_to_ptr_type(ftip->ptr());
3105   }
3106 
3107   return ft;
3108 }
3109 
3110 //------------------------------eq---------------------------------------------
3111 // Structural equality check for Type representations
3112 bool TypeOopPtr::eq( const Type *t ) const {
3113   const TypeOopPtr *a = (const TypeOopPtr*)t;
3114   if (_klass_is_exact != a->_klass_is_exact ||
3115       _instance_id != a->_instance_id)  return false;
3116   ciObject* one = const_oop();
3117   ciObject* two = a->const_oop();
3118   if (one == NULL || two == NULL) {
3119     return (one == two) && TypePtr::eq(t);
3120   } else {
3121     return one->equals(two) && TypePtr::eq(t);
3122   }
3123 }
3124 
3125 //------------------------------hash-------------------------------------------
3126 // Type-specific hashing function.
3127 int TypeOopPtr::hash(void) const {
3128   return
3129     (const_oop() ? const_oop()->hash() : 0) +
3130     _klass_is_exact +
3131     _instance_id +
3132     TypePtr::hash();
3133 }
3134 
3135 //------------------------------dump2------------------------------------------
3136 #ifndef PRODUCT
3137 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3138   st->print("oopptr:%s", ptr_msg[_ptr]);
3139   if( _klass_is_exact ) st->print(":exact");
3140   if( const_oop() ) st->print(INTPTR_FORMAT, const_oop());
3141   switch( _offset ) {
3142   case OffsetTop: st->print("+top"); break;
3143   case OffsetBot: st->print("+any"); break;
3144   case         0: break;
3145   default:        st->print("+%d",_offset); break;
3146   }
3147   if (_instance_id == InstanceTop)
3148     st->print(",iid=top");
3149   else if (_instance_id != InstanceBot)
3150     st->print(",iid=%d",_instance_id);
3151 
3152   dump_inline_depth(st);
3153   dump_speculative(st);
3154 }
3155 #endif
3156 
3157 //------------------------------singleton--------------------------------------
3158 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3159 // constants
3160 bool TypeOopPtr::singleton(void) const {
3161   // detune optimizer to not generate constant oop + constant offset as a constant!
3162   // TopPTR, Null, AnyNull, Constant are all singletons
3163   return (_offset == 0) && !below_centerline(_ptr);
3164 }
3165 
3166 //------------------------------add_offset-------------------------------------
3167 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3168   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3169 }
3170 
3171 /**
3172  * Return same type without a speculative part
3173  */
3174 const Type* TypeOopPtr::remove_speculative() const {
3175   if (_speculative == NULL) {
3176     return this;
3177   }
3178   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3179   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3180 }
3181 
3182 /**
3183  * Return same type but drop speculative part if we know we won't use
3184  * it
3185  */
3186 const Type* TypeOopPtr::cleanup_speculative() const {
3187   // If the klass is exact and the ptr is not null then there's
3188   // nothing that the speculative type can help us with
3189   if (klass_is_exact() && !maybe_null()) {
3190     return remove_speculative();
3191   }
3192   return TypePtr::cleanup_speculative();
3193 }
3194 
3195 /**
3196  * Return same type but with a different inline depth (used for speculation)
3197  *
3198  * @param depth  depth to meet with
3199  */
3200 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3201   if (!UseInlineDepthForSpeculativeTypes) {
3202     return this;
3203   }
3204   return make(_ptr, _offset, _instance_id, _speculative, depth);
3205 }
3206 
3207 //------------------------------meet_instance_id--------------------------------
3208 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3209   // Either is 'TOP' instance?  Return the other instance!
3210   if( _instance_id == InstanceTop ) return  instance_id;
3211   if(  instance_id == InstanceTop ) return _instance_id;
3212   // If either is different, return 'BOTTOM' instance
3213   if( _instance_id != instance_id ) return InstanceBot;
3214   return _instance_id;
3215 }
3216 
3217 //------------------------------dual_instance_id--------------------------------
3218 int TypeOopPtr::dual_instance_id( ) const {
3219   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3220   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3221   return _instance_id;              // Map everything else into self
3222 }
3223 
3224 /**
3225  * Check whether new profiling would improve speculative type
3226  *
3227  * @param   exact_kls    class from profiling
3228  * @param   inline_depth inlining depth of profile point
3229  *
3230  * @return  true if type profile is valuable
3231  */
3232 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3233   // no way to improve an already exact type
3234   if (klass_is_exact()) {
3235     return false;
3236   }
3237   return TypePtr::would_improve_type(exact_kls, inline_depth);
3238 }
3239 
3240 //=============================================================================
3241 // Convenience common pre-built types.
3242 const TypeInstPtr *TypeInstPtr::NOTNULL;
3243 const TypeInstPtr *TypeInstPtr::BOTTOM;
3244 const TypeInstPtr *TypeInstPtr::MIRROR;
3245 const TypeInstPtr *TypeInstPtr::MARK;
3246 const TypeInstPtr *TypeInstPtr::KLASS;
3247 
3248 //------------------------------TypeInstPtr-------------------------------------
3249 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int off,
3250                          int instance_id, const TypePtr* speculative, int inline_depth)
3251   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3252     _name(k->name()) {
3253    assert(k != NULL &&
3254           (k->is_loaded() || o == NULL),
3255           "cannot have constants with non-loaded klass");
3256 };
3257 
3258 //------------------------------make-------------------------------------------
3259 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3260                                      ciKlass* k,
3261                                      bool xk,
3262                                      ciObject* o,
3263                                      int offset,
3264                                      int instance_id,
3265                                      const TypePtr* speculative,
3266                                      int inline_depth) {
3267   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3268   // Either const_oop() is NULL or else ptr is Constant
3269   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3270           "constant pointers must have a value supplied" );
3271   // Ptr is never Null
3272   assert( ptr != Null, "NULL pointers are not typed" );
3273 
3274   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3275   if (!UseExactTypes)  xk = false;
3276   if (ptr == Constant) {
3277     // Note:  This case includes meta-object constants, such as methods.
3278     xk = true;
3279   } else if (k->is_loaded()) {
3280     ciInstanceKlass* ik = k->as_instance_klass();
3281     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3282     if (xk && ik->is_interface())  xk = false;  // no exact interface
3283   }
3284 
3285   // Now hash this baby
3286   TypeInstPtr *result =
3287     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3288 
3289   return result;
3290 }
3291 
3292 /**
3293  *  Create constant type for a constant boxed value
3294  */
3295 const Type* TypeInstPtr::get_const_boxed_value() const {
3296   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3297   assert((const_oop() != NULL), "should be called only for constant object");
3298   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3299   BasicType bt = constant.basic_type();
3300   switch (bt) {
3301     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3302     case T_INT:      return TypeInt::make(constant.as_int());
3303     case T_CHAR:     return TypeInt::make(constant.as_char());
3304     case T_BYTE:     return TypeInt::make(constant.as_byte());
3305     case T_SHORT:    return TypeInt::make(constant.as_short());
3306     case T_FLOAT:    return TypeF::make(constant.as_float());
3307     case T_DOUBLE:   return TypeD::make(constant.as_double());
3308     case T_LONG:     return TypeLong::make(constant.as_long());
3309     default:         break;
3310   }
3311   fatal(err_msg_res("Invalid boxed value type '%s'", type2name(bt)));
3312   return NULL;
3313 }
3314 
3315 //------------------------------cast_to_ptr_type-------------------------------
3316 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3317   if( ptr == _ptr ) return this;
3318   // Reconstruct _sig info here since not a problem with later lazy
3319   // construction, _sig will show up on demand.
3320   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3321 }
3322 
3323 
3324 //-----------------------------cast_to_exactness-------------------------------
3325 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3326   if( klass_is_exact == _klass_is_exact ) return this;
3327   if (!UseExactTypes)  return this;
3328   if (!_klass->is_loaded())  return this;
3329   ciInstanceKlass* ik = _klass->as_instance_klass();
3330   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3331   if( ik->is_interface() )              return this;  // cannot set xk
3332   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3333 }
3334 
3335 //-----------------------------cast_to_instance_id----------------------------
3336 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3337   if( instance_id == _instance_id ) return this;
3338   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3339 }
3340 
3341 //------------------------------xmeet_unloaded---------------------------------
3342 // Compute the MEET of two InstPtrs when at least one is unloaded.
3343 // Assume classes are different since called after check for same name/class-loader
3344 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3345     int off = meet_offset(tinst->offset());
3346     PTR ptr = meet_ptr(tinst->ptr());
3347     int instance_id = meet_instance_id(tinst->instance_id());
3348     const TypePtr* speculative = xmeet_speculative(tinst);
3349     int depth = meet_inline_depth(tinst->inline_depth());
3350 
3351     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3352     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3353     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3354       //
3355       // Meet unloaded class with java/lang/Object
3356       //
3357       // Meet
3358       //          |                     Unloaded Class
3359       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3360       //  ===================================================================
3361       //   TOP    | ..........................Unloaded......................|
3362       //  AnyNull |  U-AN    |................Unloaded......................|
3363       // Constant | ... O-NN .................................. |   O-BOT   |
3364       //  NotNull | ... O-NN .................................. |   O-BOT   |
3365       //  BOTTOM  | ........................Object-BOTTOM ..................|
3366       //
3367       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3368       //
3369       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3370       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3371       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3372       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3373         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3374         else                                      { return TypeInstPtr::NOTNULL; }
3375       }
3376       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3377 
3378       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3379     }
3380 
3381     // Both are unloaded, not the same class, not Object
3382     // Or meet unloaded with a different loaded class, not java/lang/Object
3383     if( ptr != TypePtr::BotPTR ) {
3384       return TypeInstPtr::NOTNULL;
3385     }
3386     return TypeInstPtr::BOTTOM;
3387 }
3388 
3389 
3390 //------------------------------meet-------------------------------------------
3391 // Compute the MEET of two types.  It returns a new Type object.
3392 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3393   // Perform a fast test for common case; meeting the same types together.
3394   if( this == t ) return this;  // Meeting same type-rep?
3395 
3396   // Current "this->_base" is Pointer
3397   switch (t->base()) {          // switch on original type
3398 
3399   case Int:                     // Mixing ints & oops happens when javac
3400   case Long:                    // reuses local variables
3401   case FloatTop:
3402   case FloatCon:
3403   case FloatBot:
3404   case DoubleTop:
3405   case DoubleCon:
3406   case DoubleBot:
3407   case NarrowOop:
3408   case NarrowKlass:
3409   case Bottom:                  // Ye Olde Default
3410     return Type::BOTTOM;
3411   case Top:
3412     return this;
3413 
3414   default:                      // All else is a mistake
3415     typerr(t);
3416 
3417   case MetadataPtr:
3418   case KlassPtr:
3419   case RawPtr: return TypePtr::BOTTOM;
3420 
3421   case AryPtr: {                // All arrays inherit from Object class
3422     const TypeAryPtr *tp = t->is_aryptr();
3423     int offset = meet_offset(tp->offset());
3424     PTR ptr = meet_ptr(tp->ptr());
3425     int instance_id = meet_instance_id(tp->instance_id());
3426     const TypePtr* speculative = xmeet_speculative(tp);
3427     int depth = meet_inline_depth(tp->inline_depth());
3428     switch (ptr) {
3429     case TopPTR:
3430     case AnyNull:                // Fall 'down' to dual of object klass
3431       // For instances when a subclass meets a superclass we fall
3432       // below the centerline when the superclass is exact. We need to
3433       // do the same here.
3434       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3435         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3436       } else {
3437         // cannot subclass, so the meet has to fall badly below the centerline
3438         ptr = NotNull;
3439         instance_id = InstanceBot;
3440         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3441       }
3442     case Constant:
3443     case NotNull:
3444     case BotPTR:                // Fall down to object klass
3445       // LCA is object_klass, but if we subclass from the top we can do better
3446       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3447         // If 'this' (InstPtr) is above the centerline and it is Object class
3448         // then we can subclass in the Java class hierarchy.
3449         // For instances when a subclass meets a superclass we fall
3450         // below the centerline when the superclass is exact. We need
3451         // to do the same here.
3452         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3453           // that is, tp's array type is a subtype of my klass
3454           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3455                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, instance_id, speculative, depth);
3456         }
3457       }
3458       // The other case cannot happen, since I cannot be a subtype of an array.
3459       // The meet falls down to Object class below centerline.
3460       if( ptr == Constant )
3461          ptr = NotNull;
3462       instance_id = InstanceBot;
3463       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3464     default: typerr(t);
3465     }
3466   }
3467 
3468   case OopPtr: {                // Meeting to OopPtrs
3469     // Found a OopPtr type vs self-InstPtr type
3470     const TypeOopPtr *tp = t->is_oopptr();
3471     int offset = meet_offset(tp->offset());
3472     PTR ptr = meet_ptr(tp->ptr());
3473     switch (tp->ptr()) {
3474     case TopPTR:
3475     case AnyNull: {
3476       int instance_id = meet_instance_id(InstanceTop);
3477       const TypePtr* speculative = xmeet_speculative(tp);
3478       int depth = meet_inline_depth(tp->inline_depth());
3479       return make(ptr, klass(), klass_is_exact(),
3480                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3481     }
3482     case NotNull:
3483     case BotPTR: {
3484       int instance_id = meet_instance_id(tp->instance_id());
3485       const TypePtr* speculative = xmeet_speculative(tp);
3486       int depth = meet_inline_depth(tp->inline_depth());
3487       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3488     }
3489     default: typerr(t);
3490     }
3491   }
3492 
3493   case AnyPtr: {                // Meeting to AnyPtrs
3494     // Found an AnyPtr type vs self-InstPtr type
3495     const TypePtr *tp = t->is_ptr();
3496     int offset = meet_offset(tp->offset());
3497     PTR ptr = meet_ptr(tp->ptr());
3498     int instance_id = meet_instance_id(InstanceTop);
3499     const TypePtr* speculative = xmeet_speculative(tp);
3500     int depth = meet_inline_depth(tp->inline_depth());
3501     switch (tp->ptr()) {
3502     case Null:
3503       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3504       // else fall through to AnyNull
3505     case TopPTR:
3506     case AnyNull: {
3507       return make(ptr, klass(), klass_is_exact(),
3508                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3509     }
3510     case NotNull:
3511     case BotPTR:
3512       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3513     default: typerr(t);
3514     }
3515   }
3516 
3517   /*
3518                  A-top         }
3519                /   |   \       }  Tops
3520            B-top A-any C-top   }
3521               | /  |  \ |      }  Any-nulls
3522            B-any   |   C-any   }
3523               |    |    |
3524            B-con A-con C-con   } constants; not comparable across classes
3525               |    |    |
3526            B-not   |   C-not   }
3527               | \  |  / |      }  not-nulls
3528            B-bot A-not C-bot   }
3529                \   |   /       }  Bottoms
3530                  A-bot         }
3531   */
3532 
3533   case InstPtr: {                // Meeting 2 Oops?
3534     // Found an InstPtr sub-type vs self-InstPtr type
3535     const TypeInstPtr *tinst = t->is_instptr();
3536     int off = meet_offset( tinst->offset() );
3537     PTR ptr = meet_ptr( tinst->ptr() );
3538     int instance_id = meet_instance_id(tinst->instance_id());
3539     const TypePtr* speculative = xmeet_speculative(tinst);
3540     int depth = meet_inline_depth(tinst->inline_depth());
3541 
3542     // Check for easy case; klasses are equal (and perhaps not loaded!)
3543     // If we have constants, then we created oops so classes are loaded
3544     // and we can handle the constants further down.  This case handles
3545     // both-not-loaded or both-loaded classes
3546     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3547       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3548     }
3549 
3550     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3551     ciKlass* tinst_klass = tinst->klass();
3552     ciKlass* this_klass  = this->klass();
3553     bool tinst_xk = tinst->klass_is_exact();
3554     bool this_xk  = this->klass_is_exact();
3555     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3556       // One of these classes has not been loaded
3557       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3558 #ifndef PRODUCT
3559       if( PrintOpto && Verbose ) {
3560         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3561         tty->print("  this == "); this->dump(); tty->cr();
3562         tty->print(" tinst == "); tinst->dump(); tty->cr();
3563       }
3564 #endif
3565       return unloaded_meet;
3566     }
3567 
3568     // Handle mixing oops and interfaces first.
3569     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3570                                         tinst_klass == ciEnv::current()->Object_klass())) {
3571       ciKlass *tmp = tinst_klass; // Swap interface around
3572       tinst_klass = this_klass;
3573       this_klass = tmp;
3574       bool tmp2 = tinst_xk;
3575       tinst_xk = this_xk;
3576       this_xk = tmp2;
3577     }
3578     if (tinst_klass->is_interface() &&
3579         !(this_klass->is_interface() ||
3580           // Treat java/lang/Object as an honorary interface,
3581           // because we need a bottom for the interface hierarchy.
3582           this_klass == ciEnv::current()->Object_klass())) {
3583       // Oop meets interface!
3584 
3585       // See if the oop subtypes (implements) interface.
3586       ciKlass *k;
3587       bool xk;
3588       if( this_klass->is_subtype_of( tinst_klass ) ) {
3589         // Oop indeed subtypes.  Now keep oop or interface depending
3590         // on whether we are both above the centerline or either is
3591         // below the centerline.  If we are on the centerline
3592         // (e.g., Constant vs. AnyNull interface), use the constant.
3593         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3594         // If we are keeping this_klass, keep its exactness too.
3595         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3596       } else {                  // Does not implement, fall to Object
3597         // Oop does not implement interface, so mixing falls to Object
3598         // just like the verifier does (if both are above the
3599         // centerline fall to interface)
3600         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3601         xk = above_centerline(ptr) ? tinst_xk : false;
3602         // Watch out for Constant vs. AnyNull interface.
3603         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3604         instance_id = InstanceBot;
3605       }
3606       ciObject* o = NULL;  // the Constant value, if any
3607       if (ptr == Constant) {
3608         // Find out which constant.
3609         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3610       }
3611       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3612     }
3613 
3614     // Either oop vs oop or interface vs interface or interface vs Object
3615 
3616     // !!! Here's how the symmetry requirement breaks down into invariants:
3617     // If we split one up & one down AND they subtype, take the down man.
3618     // If we split one up & one down AND they do NOT subtype, "fall hard".
3619     // If both are up and they subtype, take the subtype class.
3620     // If both are up and they do NOT subtype, "fall hard".
3621     // If both are down and they subtype, take the supertype class.
3622     // If both are down and they do NOT subtype, "fall hard".
3623     // Constants treated as down.
3624 
3625     // Now, reorder the above list; observe that both-down+subtype is also
3626     // "fall hard"; "fall hard" becomes the default case:
3627     // If we split one up & one down AND they subtype, take the down man.
3628     // If both are up and they subtype, take the subtype class.
3629 
3630     // If both are down and they subtype, "fall hard".
3631     // If both are down and they do NOT subtype, "fall hard".
3632     // If both are up and they do NOT subtype, "fall hard".
3633     // If we split one up & one down AND they do NOT subtype, "fall hard".
3634 
3635     // If a proper subtype is exact, and we return it, we return it exactly.
3636     // If a proper supertype is exact, there can be no subtyping relationship!
3637     // If both types are equal to the subtype, exactness is and-ed below the
3638     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3639 
3640     // Check for subtyping:
3641     ciKlass *subtype = NULL;
3642     bool subtype_exact = false;
3643     if( tinst_klass->equals(this_klass) ) {
3644       subtype = this_klass;
3645       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3646     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3647       subtype = this_klass;     // Pick subtyping class
3648       subtype_exact = this_xk;
3649     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3650       subtype = tinst_klass;    // Pick subtyping class
3651       subtype_exact = tinst_xk;
3652     }
3653 
3654     if( subtype ) {
3655       if( above_centerline(ptr) ) { // both are up?
3656         this_klass = tinst_klass = subtype;
3657         this_xk = tinst_xk = subtype_exact;
3658       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3659         this_klass = tinst_klass; // tinst is down; keep down man
3660         this_xk = tinst_xk;
3661       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3662         tinst_klass = this_klass; // this is down; keep down man
3663         tinst_xk = this_xk;
3664       } else {
3665         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3666       }
3667     }
3668 
3669     // Check for classes now being equal
3670     if (tinst_klass->equals(this_klass)) {
3671       // If the klasses are equal, the constants may still differ.  Fall to
3672       // NotNull if they do (neither constant is NULL; that is a special case
3673       // handled elsewhere).
3674       ciObject* o = NULL;             // Assume not constant when done
3675       ciObject* this_oop  = const_oop();
3676       ciObject* tinst_oop = tinst->const_oop();
3677       if( ptr == Constant ) {
3678         if (this_oop != NULL && tinst_oop != NULL &&
3679             this_oop->equals(tinst_oop) )
3680           o = this_oop;
3681         else if (above_centerline(this ->_ptr))
3682           o = tinst_oop;
3683         else if (above_centerline(tinst ->_ptr))
3684           o = this_oop;
3685         else
3686           ptr = NotNull;
3687       }
3688       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3689     } // Else classes are not equal
3690 
3691     // Since klasses are different, we require a LCA in the Java
3692     // class hierarchy - which means we have to fall to at least NotNull.
3693     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3694       ptr = NotNull;
3695 
3696     instance_id = InstanceBot;
3697 
3698     // Now we find the LCA of Java classes
3699     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3700     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3701   } // End of case InstPtr
3702 
3703   } // End of switch
3704   return this;                  // Return the double constant
3705 }
3706 
3707 
3708 //------------------------java_mirror_type--------------------------------------
3709 ciType* TypeInstPtr::java_mirror_type() const {
3710   // must be a singleton type
3711   if( const_oop() == NULL )  return NULL;
3712 
3713   // must be of type java.lang.Class
3714   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3715 
3716   return const_oop()->as_instance()->java_mirror_type();
3717 }
3718 
3719 
3720 //------------------------------xdual------------------------------------------
3721 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3722 // inheritance mechanism.
3723 const Type *TypeInstPtr::xdual() const {
3724   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3725 }
3726 
3727 //------------------------------eq---------------------------------------------
3728 // Structural equality check for Type representations
3729 bool TypeInstPtr::eq( const Type *t ) const {
3730   const TypeInstPtr *p = t->is_instptr();
3731   return
3732     klass()->equals(p->klass()) &&
3733     TypeOopPtr::eq(p);          // Check sub-type stuff
3734 }
3735 
3736 //------------------------------hash-------------------------------------------
3737 // Type-specific hashing function.
3738 int TypeInstPtr::hash(void) const {
3739   int hash = klass()->hash() + TypeOopPtr::hash();
3740   return hash;
3741 }
3742 
3743 //------------------------------dump2------------------------------------------
3744 // Dump oop Type
3745 #ifndef PRODUCT
3746 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3747   // Print the name of the klass.
3748   klass()->print_name_on(st);
3749 
3750   switch( _ptr ) {
3751   case Constant:
3752     // TO DO: Make CI print the hex address of the underlying oop.
3753     if (WizardMode || Verbose) {
3754       const_oop()->print_oop(st);
3755     }
3756   case BotPTR:
3757     if (!WizardMode && !Verbose) {
3758       if( _klass_is_exact ) st->print(":exact");
3759       break;
3760     }
3761   case TopPTR:
3762   case AnyNull:
3763   case NotNull:
3764     st->print(":%s", ptr_msg[_ptr]);
3765     if( _klass_is_exact ) st->print(":exact");
3766     break;
3767   }
3768 
3769   if( _offset ) {               // Dump offset, if any
3770     if( _offset == OffsetBot )      st->print("+any");
3771     else if( _offset == OffsetTop ) st->print("+unknown");
3772     else st->print("+%d", _offset);
3773   }
3774 
3775   st->print(" *");
3776   if (_instance_id == InstanceTop)
3777     st->print(",iid=top");
3778   else if (_instance_id != InstanceBot)
3779     st->print(",iid=%d",_instance_id);
3780 
3781   dump_inline_depth(st);
3782   dump_speculative(st);
3783 }
3784 #endif
3785 
3786 //------------------------------add_offset-------------------------------------
3787 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
3788   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
3789               _instance_id, add_offset_speculative(offset), _inline_depth);
3790 }
3791 
3792 const Type *TypeInstPtr::remove_speculative() const {
3793   if (_speculative == NULL) {
3794     return this;
3795   }
3796   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3797   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
3798               _instance_id, NULL, _inline_depth);
3799 }
3800 
3801 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
3802   if (!UseInlineDepthForSpeculativeTypes) {
3803     return this;
3804   }
3805   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
3806 }
3807 
3808 //=============================================================================
3809 // Convenience common pre-built types.
3810 const TypeAryPtr *TypeAryPtr::RANGE;
3811 const TypeAryPtr *TypeAryPtr::OOPS;
3812 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
3813 const TypeAryPtr *TypeAryPtr::BYTES;
3814 const TypeAryPtr *TypeAryPtr::SHORTS;
3815 const TypeAryPtr *TypeAryPtr::CHARS;
3816 const TypeAryPtr *TypeAryPtr::INTS;
3817 const TypeAryPtr *TypeAryPtr::LONGS;
3818 const TypeAryPtr *TypeAryPtr::FLOATS;
3819 const TypeAryPtr *TypeAryPtr::DOUBLES;
3820 
3821 //------------------------------make-------------------------------------------
3822 const TypeAryPtr *TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3823                                    int instance_id, const TypePtr* speculative, int inline_depth) {
3824   assert(!(k == NULL && ary->_elem->isa_int()),
3825          "integral arrays must be pre-equipped with a class");
3826   if (!xk)  xk = ary->ary_must_be_exact();
3827   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3828   if (!UseExactTypes)  xk = (ptr == Constant);
3829   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, instance_id, false, speculative, inline_depth))->hashcons();
3830 }
3831 
3832 //------------------------------make-------------------------------------------
3833 const TypeAryPtr *TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,
3834                                    int instance_id, const TypePtr* speculative, int inline_depth,
3835                                    bool is_autobox_cache) {
3836   assert(!(k == NULL && ary->_elem->isa_int()),
3837          "integral arrays must be pre-equipped with a class");
3838   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
3839   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
3840   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3841   if (!UseExactTypes)  xk = (ptr == Constant);
3842   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
3843 }
3844 
3845 //------------------------------cast_to_ptr_type-------------------------------
3846 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
3847   if( ptr == _ptr ) return this;
3848   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3849 }
3850 
3851 
3852 //-----------------------------cast_to_exactness-------------------------------
3853 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
3854   if( klass_is_exact == _klass_is_exact ) return this;
3855   if (!UseExactTypes)  return this;
3856   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
3857   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _instance_id, _speculative, _inline_depth);
3858 }
3859 
3860 //-----------------------------cast_to_instance_id----------------------------
3861 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
3862   if( instance_id == _instance_id ) return this;
3863   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, instance_id, _speculative, _inline_depth);
3864 }
3865 
3866 //-----------------------------narrow_size_type-------------------------------
3867 // Local cache for arrayOopDesc::max_array_length(etype),
3868 // which is kind of slow (and cached elsewhere by other users).
3869 static jint max_array_length_cache[T_CONFLICT+1];
3870 static jint max_array_length(BasicType etype) {
3871   jint& cache = max_array_length_cache[etype];
3872   jint res = cache;
3873   if (res == 0) {
3874     switch (etype) {
3875     case T_NARROWOOP:
3876       etype = T_OBJECT;
3877       break;
3878     case T_NARROWKLASS:
3879     case T_CONFLICT:
3880     case T_ILLEGAL:
3881     case T_VOID:
3882       etype = T_BYTE;           // will produce conservatively high value
3883     }
3884     cache = res = arrayOopDesc::max_array_length(etype);
3885   }
3886   return res;
3887 }
3888 
3889 // Narrow the given size type to the index range for the given array base type.
3890 // Return NULL if the resulting int type becomes empty.
3891 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
3892   jint hi = size->_hi;
3893   jint lo = size->_lo;
3894   jint min_lo = 0;
3895   jint max_hi = max_array_length(elem()->basic_type());
3896   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
3897   bool chg = false;
3898   if (lo < min_lo) {
3899     lo = min_lo;
3900     if (size->is_con()) {
3901       hi = lo;
3902     }
3903     chg = true;
3904   }
3905   if (hi > max_hi) {
3906     hi = max_hi;
3907     if (size->is_con()) {
3908       lo = hi;
3909     }
3910     chg = true;
3911   }
3912   // Negative length arrays will produce weird intermediate dead fast-path code
3913   if (lo > hi)
3914     return TypeInt::ZERO;
3915   if (!chg)
3916     return size;
3917   return TypeInt::make(lo, hi, Type::WidenMin);
3918 }
3919 
3920 //-------------------------------cast_to_size----------------------------------
3921 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
3922   assert(new_size != NULL, "");
3923   new_size = narrow_size_type(new_size);
3924   if (new_size == size())  return this;
3925   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
3926   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3927 }
3928 
3929 
3930 //------------------------------cast_to_stable---------------------------------
3931 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
3932   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
3933     return this;
3934 
3935   const Type* elem = this->elem();
3936   const TypePtr* elem_ptr = elem->make_ptr();
3937 
3938   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
3939     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
3940     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
3941   }
3942 
3943   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
3944 
3945   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _instance_id, _speculative, _inline_depth);
3946 }
3947 
3948 //-----------------------------stable_dimension--------------------------------
3949 int TypeAryPtr::stable_dimension() const {
3950   if (!is_stable())  return 0;
3951   int dim = 1;
3952   const TypePtr* elem_ptr = elem()->make_ptr();
3953   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
3954     dim += elem_ptr->is_aryptr()->stable_dimension();
3955   return dim;
3956 }
3957 
3958 //------------------------------eq---------------------------------------------
3959 // Structural equality check for Type representations
3960 bool TypeAryPtr::eq( const Type *t ) const {
3961   const TypeAryPtr *p = t->is_aryptr();
3962   return
3963     _ary == p->_ary &&  // Check array
3964     TypeOopPtr::eq(p);  // Check sub-parts
3965 }
3966 
3967 //------------------------------hash-------------------------------------------
3968 // Type-specific hashing function.
3969 int TypeAryPtr::hash(void) const {
3970   return (intptr_t)_ary + TypeOopPtr::hash();
3971 }
3972 
3973 //------------------------------meet-------------------------------------------
3974 // Compute the MEET of two types.  It returns a new Type object.
3975 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
3976   // Perform a fast test for common case; meeting the same types together.
3977   if( this == t ) return this;  // Meeting same type-rep?
3978   // Current "this->_base" is Pointer
3979   switch (t->base()) {          // switch on original type
3980 
3981   // Mixing ints & oops happens when javac reuses local variables
3982   case Int:
3983   case Long:
3984   case FloatTop:
3985   case FloatCon:
3986   case FloatBot:
3987   case DoubleTop:
3988   case DoubleCon:
3989   case DoubleBot:
3990   case NarrowOop:
3991   case NarrowKlass:
3992   case Bottom:                  // Ye Olde Default
3993     return Type::BOTTOM;
3994   case Top:
3995     return this;
3996 
3997   default:                      // All else is a mistake
3998     typerr(t);
3999 
4000   case OopPtr: {                // Meeting to OopPtrs
4001     // Found a OopPtr type vs self-AryPtr type
4002     const TypeOopPtr *tp = t->is_oopptr();
4003     int offset = meet_offset(tp->offset());
4004     PTR ptr = meet_ptr(tp->ptr());
4005     int depth = meet_inline_depth(tp->inline_depth());
4006     const TypePtr* speculative = xmeet_speculative(tp);
4007     switch (tp->ptr()) {
4008     case TopPTR:
4009     case AnyNull: {
4010       int instance_id = meet_instance_id(InstanceTop);
4011       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4012                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4013     }
4014     case BotPTR:
4015     case NotNull: {
4016       int instance_id = meet_instance_id(tp->instance_id());
4017       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4018     }
4019     default: ShouldNotReachHere();
4020     }
4021   }
4022 
4023   case AnyPtr: {                // Meeting two AnyPtrs
4024     // Found an AnyPtr type vs self-AryPtr type
4025     const TypePtr *tp = t->is_ptr();
4026     int offset = meet_offset(tp->offset());
4027     PTR ptr = meet_ptr(tp->ptr());
4028     const TypePtr* speculative = xmeet_speculative(tp);
4029     int depth = meet_inline_depth(tp->inline_depth());
4030     switch (tp->ptr()) {
4031     case TopPTR:
4032       return this;
4033     case BotPTR:
4034     case NotNull:
4035       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4036     case Null:
4037       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4038       // else fall through to AnyNull
4039     case AnyNull: {
4040       int instance_id = meet_instance_id(InstanceTop);
4041       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4042                   _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4043     }
4044     default: ShouldNotReachHere();
4045     }
4046   }
4047 
4048   case MetadataPtr:
4049   case KlassPtr:
4050   case RawPtr: return TypePtr::BOTTOM;
4051 
4052   case AryPtr: {                // Meeting 2 references?
4053     const TypeAryPtr *tap = t->is_aryptr();
4054     int off = meet_offset(tap->offset());
4055     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4056     PTR ptr = meet_ptr(tap->ptr());
4057     int instance_id = meet_instance_id(tap->instance_id());
4058     const TypePtr* speculative = xmeet_speculative(tap);
4059     int depth = meet_inline_depth(tap->inline_depth());
4060     ciKlass* lazy_klass = NULL;
4061     if (tary->_elem->isa_int()) {
4062       // Integral array element types have irrelevant lattice relations.
4063       // It is the klass that determines array layout, not the element type.
4064       if (_klass == NULL)
4065         lazy_klass = tap->_klass;
4066       else if (tap->_klass == NULL || tap->_klass == _klass) {
4067         lazy_klass = _klass;
4068       } else {
4069         // Something like byte[int+] meets char[int+].
4070         // This must fall to bottom, not (int[-128..65535])[int+].
4071         instance_id = InstanceBot;
4072         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4073       }
4074     } else // Non integral arrays.
4075       // Must fall to bottom if exact klasses in upper lattice
4076       // are not equal or super klass is exact.
4077       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4078           // meet with top[] and bottom[] are processed further down:
4079           tap->_klass != NULL  && this->_klass != NULL   &&
4080           // both are exact and not equal:
4081           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4082            // 'tap'  is exact and super or unrelated:
4083            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4084            // 'this' is exact and super or unrelated:
4085            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4086       if (above_centerline(ptr)) {
4087         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4088       }
4089       return make(NotNull, NULL, tary, lazy_klass, false, off, InstanceBot, speculative, depth);
4090     }
4091 
4092     bool xk = false;
4093     switch (tap->ptr()) {
4094     case AnyNull:
4095     case TopPTR:
4096       // Compute new klass on demand, do not use tap->_klass
4097       if (below_centerline(this->_ptr)) {
4098         xk = this->_klass_is_exact;
4099       } else {
4100         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4101       }
4102       return make(ptr, const_oop(), tary, lazy_klass, xk, off, instance_id, speculative, depth);
4103     case Constant: {
4104       ciObject* o = const_oop();
4105       if( _ptr == Constant ) {
4106         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4107           xk = (klass() == tap->klass());
4108           ptr = NotNull;
4109           o = NULL;
4110           instance_id = InstanceBot;
4111         } else {
4112           xk = true;
4113         }
4114       } else if(above_centerline(_ptr)) {
4115         o = tap->const_oop();
4116         xk = true;
4117       } else {
4118         // Only precise for identical arrays
4119         xk = this->_klass_is_exact && (klass() == tap->klass());
4120       }
4121       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4122     }
4123     case NotNull:
4124     case BotPTR:
4125       // Compute new klass on demand, do not use tap->_klass
4126       if (above_centerline(this->_ptr))
4127             xk = tap->_klass_is_exact;
4128       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4129               (klass() == tap->klass()); // Only precise for identical arrays
4130       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, instance_id, speculative, depth);
4131     default: ShouldNotReachHere();
4132     }
4133   }
4134 
4135   // All arrays inherit from Object class
4136   case InstPtr: {
4137     const TypeInstPtr *tp = t->is_instptr();
4138     int offset = meet_offset(tp->offset());
4139     PTR ptr = meet_ptr(tp->ptr());
4140     int instance_id = meet_instance_id(tp->instance_id());
4141     const TypePtr* speculative = xmeet_speculative(tp);
4142     int depth = meet_inline_depth(tp->inline_depth());
4143     switch (ptr) {
4144     case TopPTR:
4145     case AnyNull:                // Fall 'down' to dual of object klass
4146       // For instances when a subclass meets a superclass we fall
4147       // below the centerline when the superclass is exact. We need to
4148       // do the same here.
4149       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4150         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4151       } else {
4152         // cannot subclass, so the meet has to fall badly below the centerline
4153         ptr = NotNull;
4154         instance_id = InstanceBot;
4155         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4156       }
4157     case Constant:
4158     case NotNull:
4159     case BotPTR:                // Fall down to object klass
4160       // LCA is object_klass, but if we subclass from the top we can do better
4161       if (above_centerline(tp->ptr())) {
4162         // If 'tp'  is above the centerline and it is Object class
4163         // then we can subclass in the Java class hierarchy.
4164         // For instances when a subclass meets a superclass we fall
4165         // below the centerline when the superclass is exact. We need
4166         // to do the same here.
4167         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4168           // that is, my array type is a subtype of 'tp' klass
4169           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4170                       _ary, _klass, _klass_is_exact, offset, instance_id, speculative, depth);
4171         }
4172       }
4173       // The other case cannot happen, since t cannot be a subtype of an array.
4174       // The meet falls down to Object class below centerline.
4175       if( ptr == Constant )
4176          ptr = NotNull;
4177       instance_id = InstanceBot;
4178       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4179     default: typerr(t);
4180     }
4181   }
4182   }
4183   return this;                  // Lint noise
4184 }
4185 
4186 //------------------------------xdual------------------------------------------
4187 // Dual: compute field-by-field dual
4188 const Type *TypeAryPtr::xdual() const {
4189   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4190 }
4191 
4192 //----------------------interface_vs_oop---------------------------------------
4193 #ifdef ASSERT
4194 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4195   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4196   if (t_aryptr) {
4197     return _ary->interface_vs_oop(t_aryptr->_ary);
4198   }
4199   return false;
4200 }
4201 #endif
4202 
4203 //------------------------------dump2------------------------------------------
4204 #ifndef PRODUCT
4205 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4206   _ary->dump2(d,depth,st);
4207   switch( _ptr ) {
4208   case Constant:
4209     const_oop()->print(st);
4210     break;
4211   case BotPTR:
4212     if (!WizardMode && !Verbose) {
4213       if( _klass_is_exact ) st->print(":exact");
4214       break;
4215     }
4216   case TopPTR:
4217   case AnyNull:
4218   case NotNull:
4219     st->print(":%s", ptr_msg[_ptr]);
4220     if( _klass_is_exact ) st->print(":exact");
4221     break;
4222   }
4223 
4224   if( _offset != 0 ) {
4225     int header_size = objArrayOopDesc::header_size() * wordSize;
4226     if( _offset == OffsetTop )       st->print("+undefined");
4227     else if( _offset == OffsetBot )  st->print("+any");
4228     else if( _offset < header_size ) st->print("+%d", _offset);
4229     else {
4230       BasicType basic_elem_type = elem()->basic_type();
4231       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4232       int elem_size = type2aelembytes(basic_elem_type);
4233       st->print("[%d]", (_offset - array_base)/elem_size);
4234     }
4235   }
4236   st->print(" *");
4237   if (_instance_id == InstanceTop)
4238     st->print(",iid=top");
4239   else if (_instance_id != InstanceBot)
4240     st->print(",iid=%d",_instance_id);
4241 
4242   dump_inline_depth(st);
4243   dump_speculative(st);
4244 }
4245 #endif
4246 
4247 bool TypeAryPtr::empty(void) const {
4248   if (_ary->empty())       return true;
4249   return TypeOopPtr::empty();
4250 }
4251 
4252 //------------------------------add_offset-------------------------------------
4253 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4254   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
4255 }
4256 
4257 const Type *TypeAryPtr::remove_speculative() const {
4258   if (_speculative == NULL) {
4259     return this;
4260   }
4261   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4262   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, NULL, _inline_depth);
4263 }
4264 
4265 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4266   if (!UseInlineDepthForSpeculativeTypes) {
4267     return this;
4268   }
4269   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _instance_id, _speculative, depth);
4270 }
4271 
4272 //=============================================================================
4273 
4274 //------------------------------hash-------------------------------------------
4275 // Type-specific hashing function.
4276 int TypeNarrowPtr::hash(void) const {
4277   return _ptrtype->hash() + 7;
4278 }
4279 
4280 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4281   return _ptrtype->singleton();
4282 }
4283 
4284 bool TypeNarrowPtr::empty(void) const {
4285   return _ptrtype->empty();
4286 }
4287 
4288 intptr_t TypeNarrowPtr::get_con() const {
4289   return _ptrtype->get_con();
4290 }
4291 
4292 bool TypeNarrowPtr::eq( const Type *t ) const {
4293   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4294   if (tc != NULL) {
4295     if (_ptrtype->base() != tc->_ptrtype->base()) {
4296       return false;
4297     }
4298     return tc->_ptrtype->eq(_ptrtype);
4299   }
4300   return false;
4301 }
4302 
4303 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4304   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4305   return make_same_narrowptr(odual);
4306 }
4307 
4308 
4309 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4310   if (isa_same_narrowptr(kills)) {
4311     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4312     if (ft->empty())
4313       return Type::TOP;           // Canonical empty value
4314     if (ft->isa_ptr()) {
4315       return make_hash_same_narrowptr(ft->isa_ptr());
4316     }
4317     return ft;
4318   } else if (kills->isa_ptr()) {
4319     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4320     if (ft->empty())
4321       return Type::TOP;           // Canonical empty value
4322     return ft;
4323   } else {
4324     return Type::TOP;
4325   }
4326 }
4327 
4328 //------------------------------xmeet------------------------------------------
4329 // Compute the MEET of two types.  It returns a new Type object.
4330 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4331   // Perform a fast test for common case; meeting the same types together.
4332   if( this == t ) return this;  // Meeting same type-rep?
4333 
4334   if (t->base() == base()) {
4335     const Type* result = _ptrtype->xmeet(t->make_ptr());
4336     if (result->isa_ptr()) {
4337       return make_hash_same_narrowptr(result->is_ptr());
4338     }
4339     return result;
4340   }
4341 
4342   // Current "this->_base" is NarrowKlass or NarrowOop
4343   switch (t->base()) {          // switch on original type
4344 
4345   case Int:                     // Mixing ints & oops happens when javac
4346   case Long:                    // reuses local variables
4347   case FloatTop:
4348   case FloatCon:
4349   case FloatBot:
4350   case DoubleTop:
4351   case DoubleCon:
4352   case DoubleBot:
4353   case AnyPtr:
4354   case RawPtr:
4355   case OopPtr:
4356   case InstPtr:
4357   case AryPtr:
4358   case MetadataPtr:
4359   case KlassPtr:
4360   case NarrowOop:
4361   case NarrowKlass:
4362 
4363   case Bottom:                  // Ye Olde Default
4364     return Type::BOTTOM;
4365   case Top:
4366     return this;
4367 
4368   default:                      // All else is a mistake
4369     typerr(t);
4370 
4371   } // End of switch
4372 
4373   return this;
4374 }
4375 
4376 #ifndef PRODUCT
4377 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4378   _ptrtype->dump2(d, depth, st);
4379 }
4380 #endif
4381 
4382 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4383 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4384 
4385 
4386 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4387   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4388 }
4389 
4390 const Type* TypeNarrowOop::remove_speculative() const {
4391   return make(_ptrtype->remove_speculative()->is_ptr());
4392 }
4393 
4394 const Type* TypeNarrowOop::cleanup_speculative() const {
4395   return make(_ptrtype->cleanup_speculative()->is_ptr());
4396 }
4397 
4398 #ifndef PRODUCT
4399 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4400   st->print("narrowoop: ");
4401   TypeNarrowPtr::dump2(d, depth, st);
4402 }
4403 #endif
4404 
4405 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4406 
4407 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4408   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4409 }
4410 
4411 #ifndef PRODUCT
4412 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4413   st->print("narrowklass: ");
4414   TypeNarrowPtr::dump2(d, depth, st);
4415 }
4416 #endif
4417 
4418 
4419 //------------------------------eq---------------------------------------------
4420 // Structural equality check for Type representations
4421 bool TypeMetadataPtr::eq( const Type *t ) const {
4422   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4423   ciMetadata* one = metadata();
4424   ciMetadata* two = a->metadata();
4425   if (one == NULL || two == NULL) {
4426     return (one == two) && TypePtr::eq(t);
4427   } else {
4428     return one->equals(two) && TypePtr::eq(t);
4429   }
4430 }
4431 
4432 //------------------------------hash-------------------------------------------
4433 // Type-specific hashing function.
4434 int TypeMetadataPtr::hash(void) const {
4435   return
4436     (metadata() ? metadata()->hash() : 0) +
4437     TypePtr::hash();
4438 }
4439 
4440 //------------------------------singleton--------------------------------------
4441 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4442 // constants
4443 bool TypeMetadataPtr::singleton(void) const {
4444   // detune optimizer to not generate constant metadta + constant offset as a constant!
4445   // TopPTR, Null, AnyNull, Constant are all singletons
4446   return (_offset == 0) && !below_centerline(_ptr);
4447 }
4448 
4449 //------------------------------add_offset-------------------------------------
4450 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4451   return make( _ptr, _metadata, xadd_offset(offset));
4452 }
4453 
4454 //-----------------------------filter------------------------------------------
4455 // Do not allow interface-vs.-noninterface joins to collapse to top.
4456 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4457   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4458   if (ft == NULL || ft->empty())
4459     return Type::TOP;           // Canonical empty value
4460   return ft;
4461 }
4462 
4463  //------------------------------get_con----------------------------------------
4464 intptr_t TypeMetadataPtr::get_con() const {
4465   assert( _ptr == Null || _ptr == Constant, "" );
4466   assert( _offset >= 0, "" );
4467 
4468   if (_offset != 0) {
4469     // After being ported to the compiler interface, the compiler no longer
4470     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4471     // to a handle at compile time.  This handle is embedded in the generated
4472     // code and dereferenced at the time the nmethod is made.  Until that time,
4473     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4474     // have access to the addresses!).  This does not seem to currently happen,
4475     // but this assertion here is to help prevent its occurence.
4476     tty->print_cr("Found oop constant with non-zero offset");
4477     ShouldNotReachHere();
4478   }
4479 
4480   return (intptr_t)metadata()->constant_encoding();
4481 }
4482 
4483 //------------------------------cast_to_ptr_type-------------------------------
4484 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4485   if( ptr == _ptr ) return this;
4486   return make(ptr, metadata(), _offset);
4487 }
4488 
4489 //------------------------------meet-------------------------------------------
4490 // Compute the MEET of two types.  It returns a new Type object.
4491 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4492   // Perform a fast test for common case; meeting the same types together.
4493   if( this == t ) return this;  // Meeting same type-rep?
4494 
4495   // Current "this->_base" is OopPtr
4496   switch (t->base()) {          // switch on original type
4497 
4498   case Int:                     // Mixing ints & oops happens when javac
4499   case Long:                    // reuses local variables
4500   case FloatTop:
4501   case FloatCon:
4502   case FloatBot:
4503   case DoubleTop:
4504   case DoubleCon:
4505   case DoubleBot:
4506   case NarrowOop:
4507   case NarrowKlass:
4508   case Bottom:                  // Ye Olde Default
4509     return Type::BOTTOM;
4510   case Top:
4511     return this;
4512 
4513   default:                      // All else is a mistake
4514     typerr(t);
4515 
4516   case AnyPtr: {
4517     // Found an AnyPtr type vs self-OopPtr type
4518     const TypePtr *tp = t->is_ptr();
4519     int offset = meet_offset(tp->offset());
4520     PTR ptr = meet_ptr(tp->ptr());
4521     switch (tp->ptr()) {
4522     case Null:
4523       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4524       // else fall through:
4525     case TopPTR:
4526     case AnyNull: {
4527       return make(ptr, _metadata, offset);
4528     }
4529     case BotPTR:
4530     case NotNull:
4531       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4532     default: typerr(t);
4533     }
4534   }
4535 
4536   case RawPtr:
4537   case KlassPtr:
4538   case OopPtr:
4539   case InstPtr:
4540   case AryPtr:
4541     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
4542 
4543   case MetadataPtr: {
4544     const TypeMetadataPtr *tp = t->is_metadataptr();
4545     int offset = meet_offset(tp->offset());
4546     PTR tptr = tp->ptr();
4547     PTR ptr = meet_ptr(tptr);
4548     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
4549     if (tptr == TopPTR || _ptr == TopPTR ||
4550         metadata()->equals(tp->metadata())) {
4551       return make(ptr, md, offset);
4552     }
4553     // metadata is different
4554     if( ptr == Constant ) {  // Cannot be equal constants, so...
4555       if( tptr == Constant && _ptr != Constant)  return t;
4556       if( _ptr == Constant && tptr != Constant)  return this;
4557       ptr = NotNull;            // Fall down in lattice
4558     }
4559     return make(ptr, NULL, offset);
4560     break;
4561   }
4562   } // End of switch
4563   return this;                  // Return the double constant
4564 }
4565 
4566 
4567 //------------------------------xdual------------------------------------------
4568 // Dual of a pure metadata pointer.
4569 const Type *TypeMetadataPtr::xdual() const {
4570   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
4571 }
4572 
4573 //------------------------------dump2------------------------------------------
4574 #ifndef PRODUCT
4575 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4576   st->print("metadataptr:%s", ptr_msg[_ptr]);
4577   if( metadata() ) st->print(INTPTR_FORMAT, metadata());
4578   switch( _offset ) {
4579   case OffsetTop: st->print("+top"); break;
4580   case OffsetBot: st->print("+any"); break;
4581   case         0: break;
4582   default:        st->print("+%d",_offset); break;
4583   }
4584 }
4585 #endif
4586 
4587 
4588 //=============================================================================
4589 // Convenience common pre-built type.
4590 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
4591 
4592 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset):
4593   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
4594 }
4595 
4596 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
4597   return make(Constant, m, 0);
4598 }
4599 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
4600   return make(Constant, m, 0);
4601 }
4602 
4603 //------------------------------make-------------------------------------------
4604 // Create a meta data constant
4605 const TypeMetadataPtr *TypeMetadataPtr::make(PTR ptr, ciMetadata* m, int offset) {
4606   assert(m == NULL || !m->is_klass(), "wrong type");
4607   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
4608 }
4609 
4610 
4611 //=============================================================================
4612 // Convenience common pre-built types.
4613 
4614 // Not-null object klass or below
4615 const TypeKlassPtr *TypeKlassPtr::OBJECT;
4616 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
4617 
4618 //------------------------------TypeKlassPtr-----------------------------------
4619 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, int offset )
4620   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
4621 }
4622 
4623 //------------------------------make-------------------------------------------
4624 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
4625 const TypeKlassPtr *TypeKlassPtr::make( PTR ptr, ciKlass* k, int offset ) {
4626   assert( k != NULL, "Expect a non-NULL klass");
4627   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
4628   TypeKlassPtr *r =
4629     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
4630 
4631   return r;
4632 }
4633 
4634 //------------------------------eq---------------------------------------------
4635 // Structural equality check for Type representations
4636 bool TypeKlassPtr::eq( const Type *t ) const {
4637   const TypeKlassPtr *p = t->is_klassptr();
4638   return
4639     klass()->equals(p->klass()) &&
4640     TypePtr::eq(p);
4641 }
4642 
4643 //------------------------------hash-------------------------------------------
4644 // Type-specific hashing function.
4645 int TypeKlassPtr::hash(void) const {
4646   return klass()->hash() + TypePtr::hash();
4647 }
4648 
4649 //------------------------------singleton--------------------------------------
4650 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4651 // constants
4652 bool TypeKlassPtr::singleton(void) const {
4653   // detune optimizer to not generate constant klass + constant offset as a constant!
4654   // TopPTR, Null, AnyNull, Constant are all singletons
4655   return (_offset == 0) && !below_centerline(_ptr);
4656 }
4657 
4658 // Do not allow interface-vs.-noninterface joins to collapse to top.
4659 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
4660   // logic here mirrors the one from TypeOopPtr::filter. See comments
4661   // there.
4662   const Type* ft = join_helper(kills, include_speculative);
4663   const TypeKlassPtr* ftkp = ft->isa_klassptr();
4664   const TypeKlassPtr* ktkp = kills->isa_klassptr();
4665 
4666   if (ft->empty()) {
4667     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
4668       return kills;             // Uplift to interface
4669 
4670     return Type::TOP;           // Canonical empty value
4671   }
4672 
4673   // Interface klass type could be exact in opposite to interface type,
4674   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
4675   if (ftkp != NULL && ktkp != NULL &&
4676       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
4677       !ftkp->klass_is_exact() && // Keep exact interface klass
4678       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
4679     return ktkp->cast_to_ptr_type(ftkp->ptr());
4680   }
4681 
4682   return ft;
4683 }
4684 
4685 //----------------------compute_klass------------------------------------------
4686 // Compute the defining klass for this class
4687 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
4688   // Compute _klass based on element type.
4689   ciKlass* k_ary = NULL;
4690   const TypeInstPtr *tinst;
4691   const TypeAryPtr *tary;
4692   const Type* el = elem();
4693   if (el->isa_narrowoop()) {
4694     el = el->make_ptr();
4695   }
4696 
4697   // Get element klass
4698   if ((tinst = el->isa_instptr()) != NULL) {
4699     // Compute array klass from element klass
4700     k_ary = ciObjArrayKlass::make(tinst->klass());
4701   } else if ((tary = el->isa_aryptr()) != NULL) {
4702     // Compute array klass from element klass
4703     ciKlass* k_elem = tary->klass();
4704     // If element type is something like bottom[], k_elem will be null.
4705     if (k_elem != NULL)
4706       k_ary = ciObjArrayKlass::make(k_elem);
4707   } else if ((el->base() == Type::Top) ||
4708              (el->base() == Type::Bottom)) {
4709     // element type of Bottom occurs from meet of basic type
4710     // and object; Top occurs when doing join on Bottom.
4711     // Leave k_ary at NULL.
4712   } else {
4713     // Cannot compute array klass directly from basic type,
4714     // since subtypes of TypeInt all have basic type T_INT.
4715 #ifdef ASSERT
4716     if (verify && el->isa_int()) {
4717       // Check simple cases when verifying klass.
4718       BasicType bt = T_ILLEGAL;
4719       if (el == TypeInt::BYTE) {
4720         bt = T_BYTE;
4721       } else if (el == TypeInt::SHORT) {
4722         bt = T_SHORT;
4723       } else if (el == TypeInt::CHAR) {
4724         bt = T_CHAR;
4725       } else if (el == TypeInt::INT) {
4726         bt = T_INT;
4727       } else {
4728         return _klass; // just return specified klass
4729       }
4730       return ciTypeArrayKlass::make(bt);
4731     }
4732 #endif
4733     assert(!el->isa_int(),
4734            "integral arrays must be pre-equipped with a class");
4735     // Compute array klass directly from basic type
4736     k_ary = ciTypeArrayKlass::make(el->basic_type());
4737   }
4738   return k_ary;
4739 }
4740 
4741 //------------------------------klass------------------------------------------
4742 // Return the defining klass for this class
4743 ciKlass* TypeAryPtr::klass() const {
4744   if( _klass ) return _klass;   // Return cached value, if possible
4745 
4746   // Oops, need to compute _klass and cache it
4747   ciKlass* k_ary = compute_klass();
4748 
4749   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
4750     // The _klass field acts as a cache of the underlying
4751     // ciKlass for this array type.  In order to set the field,
4752     // we need to cast away const-ness.
4753     //
4754     // IMPORTANT NOTE: we *never* set the _klass field for the
4755     // type TypeAryPtr::OOPS.  This Type is shared between all
4756     // active compilations.  However, the ciKlass which represents
4757     // this Type is *not* shared between compilations, so caching
4758     // this value would result in fetching a dangling pointer.
4759     //
4760     // Recomputing the underlying ciKlass for each request is
4761     // a bit less efficient than caching, but calls to
4762     // TypeAryPtr::OOPS->klass() are not common enough to matter.
4763     ((TypeAryPtr*)this)->_klass = k_ary;
4764     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
4765         _offset != 0 && _offset != arrayOopDesc::length_offset_in_bytes()) {
4766       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
4767     }
4768   }
4769   return k_ary;
4770 }
4771 
4772 
4773 //------------------------------add_offset-------------------------------------
4774 // Access internals of klass object
4775 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
4776   return make( _ptr, klass(), xadd_offset(offset) );
4777 }
4778 
4779 //------------------------------cast_to_ptr_type-------------------------------
4780 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
4781   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
4782   if( ptr == _ptr ) return this;
4783   return make(ptr, _klass, _offset);
4784 }
4785 
4786 
4787 //-----------------------------cast_to_exactness-------------------------------
4788 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
4789   if( klass_is_exact == _klass_is_exact ) return this;
4790   if (!UseExactTypes)  return this;
4791   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
4792 }
4793 
4794 
4795 //-----------------------------as_instance_type--------------------------------
4796 // Corresponding type for an instance of the given class.
4797 // It will be NotNull, and exact if and only if the klass type is exact.
4798 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
4799   ciKlass* k = klass();
4800   bool    xk = klass_is_exact();
4801   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
4802   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
4803   guarantee(toop != NULL, "need type for given klass");
4804   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4805   return toop->cast_to_exactness(xk)->is_oopptr();
4806 }
4807 
4808 
4809 //------------------------------xmeet------------------------------------------
4810 // Compute the MEET of two types, return a new Type object.
4811 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
4812   // Perform a fast test for common case; meeting the same types together.
4813   if( this == t ) return this;  // Meeting same type-rep?
4814 
4815   // Current "this->_base" is Pointer
4816   switch (t->base()) {          // switch on original type
4817 
4818   case Int:                     // Mixing ints & oops happens when javac
4819   case Long:                    // reuses local variables
4820   case FloatTop:
4821   case FloatCon:
4822   case FloatBot:
4823   case DoubleTop:
4824   case DoubleCon:
4825   case DoubleBot:
4826   case NarrowOop:
4827   case NarrowKlass:
4828   case Bottom:                  // Ye Olde Default
4829     return Type::BOTTOM;
4830   case Top:
4831     return this;
4832 
4833   default:                      // All else is a mistake
4834     typerr(t);
4835 
4836   case AnyPtr: {                // Meeting to AnyPtrs
4837     // Found an AnyPtr type vs self-KlassPtr type
4838     const TypePtr *tp = t->is_ptr();
4839     int offset = meet_offset(tp->offset());
4840     PTR ptr = meet_ptr(tp->ptr());
4841     switch (tp->ptr()) {
4842     case TopPTR:
4843       return this;
4844     case Null:
4845       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4846     case AnyNull:
4847       return make( ptr, klass(), offset );
4848     case BotPTR:
4849     case NotNull:
4850       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
4851     default: typerr(t);
4852     }
4853   }
4854 
4855   case RawPtr:
4856   case MetadataPtr:
4857   case OopPtr:
4858   case AryPtr:                  // Meet with AryPtr
4859   case InstPtr:                 // Meet with InstPtr
4860     return TypePtr::BOTTOM;
4861 
4862   //
4863   //             A-top         }
4864   //           /   |   \       }  Tops
4865   //       B-top A-any C-top   }
4866   //          | /  |  \ |      }  Any-nulls
4867   //       B-any   |   C-any   }
4868   //          |    |    |
4869   //       B-con A-con C-con   } constants; not comparable across classes
4870   //          |    |    |
4871   //       B-not   |   C-not   }
4872   //          | \  |  / |      }  not-nulls
4873   //       B-bot A-not C-bot   }
4874   //           \   |   /       }  Bottoms
4875   //             A-bot         }
4876   //
4877 
4878   case KlassPtr: {  // Meet two KlassPtr types
4879     const TypeKlassPtr *tkls = t->is_klassptr();
4880     int  off     = meet_offset(tkls->offset());
4881     PTR  ptr     = meet_ptr(tkls->ptr());
4882 
4883     // Check for easy case; klasses are equal (and perhaps not loaded!)
4884     // If we have constants, then we created oops so classes are loaded
4885     // and we can handle the constants further down.  This case handles
4886     // not-loaded classes
4887     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
4888       return make( ptr, klass(), off );
4889     }
4890 
4891     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4892     ciKlass* tkls_klass = tkls->klass();
4893     ciKlass* this_klass = this->klass();
4894     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
4895     assert( this_klass->is_loaded(), "This class should have been loaded.");
4896 
4897     // If 'this' type is above the centerline and is a superclass of the
4898     // other, we can treat 'this' as having the same type as the other.
4899     if ((above_centerline(this->ptr())) &&
4900         tkls_klass->is_subtype_of(this_klass)) {
4901       this_klass = tkls_klass;
4902     }
4903     // If 'tinst' type is above the centerline and is a superclass of the
4904     // other, we can treat 'tinst' as having the same type as the other.
4905     if ((above_centerline(tkls->ptr())) &&
4906         this_klass->is_subtype_of(tkls_klass)) {
4907       tkls_klass = this_klass;
4908     }
4909 
4910     // Check for classes now being equal
4911     if (tkls_klass->equals(this_klass)) {
4912       // If the klasses are equal, the constants may still differ.  Fall to
4913       // NotNull if they do (neither constant is NULL; that is a special case
4914       // handled elsewhere).
4915       if( ptr == Constant ) {
4916         if (this->_ptr == Constant && tkls->_ptr == Constant &&
4917             this->klass()->equals(tkls->klass()));
4918         else if (above_centerline(this->ptr()));
4919         else if (above_centerline(tkls->ptr()));
4920         else
4921           ptr = NotNull;
4922       }
4923       return make( ptr, this_klass, off );
4924     } // Else classes are not equal
4925 
4926     // Since klasses are different, we require the LCA in the Java
4927     // class hierarchy - which means we have to fall to at least NotNull.
4928     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4929       ptr = NotNull;
4930     // Now we find the LCA of Java classes
4931     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
4932     return   make( ptr, k, off );
4933   } // End of case KlassPtr
4934 
4935   } // End of switch
4936   return this;                  // Return the double constant
4937 }
4938 
4939 //------------------------------xdual------------------------------------------
4940 // Dual: compute field-by-field dual
4941 const Type    *TypeKlassPtr::xdual() const {
4942   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
4943 }
4944 
4945 //------------------------------get_con----------------------------------------
4946 intptr_t TypeKlassPtr::get_con() const {
4947   assert( _ptr == Null || _ptr == Constant, "" );
4948   assert( _offset >= 0, "" );
4949 
4950   if (_offset != 0) {
4951     // After being ported to the compiler interface, the compiler no longer
4952     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4953     // to a handle at compile time.  This handle is embedded in the generated
4954     // code and dereferenced at the time the nmethod is made.  Until that time,
4955     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4956     // have access to the addresses!).  This does not seem to currently happen,
4957     // but this assertion here is to help prevent its occurence.
4958     tty->print_cr("Found oop constant with non-zero offset");
4959     ShouldNotReachHere();
4960   }
4961 
4962   return (intptr_t)klass()->constant_encoding();
4963 }
4964 //------------------------------dump2------------------------------------------
4965 // Dump Klass Type
4966 #ifndef PRODUCT
4967 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4968   switch( _ptr ) {
4969   case Constant:
4970     st->print("precise ");
4971   case NotNull:
4972     {
4973       const char *name = klass()->name()->as_utf8();
4974       if( name ) {
4975         st->print("klass %s: " INTPTR_FORMAT, name, klass());
4976       } else {
4977         ShouldNotReachHere();
4978       }
4979     }
4980   case BotPTR:
4981     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
4982   case TopPTR:
4983   case AnyNull:
4984     st->print(":%s", ptr_msg[_ptr]);
4985     if( _klass_is_exact ) st->print(":exact");
4986     break;
4987   }
4988 
4989   if( _offset ) {               // Dump offset, if any
4990     if( _offset == OffsetBot )      { st->print("+any"); }
4991     else if( _offset == OffsetTop ) { st->print("+unknown"); }
4992     else                            { st->print("+%d", _offset); }
4993   }
4994 
4995   st->print(" *");
4996 }
4997 #endif
4998 
4999 
5000 
5001 //=============================================================================
5002 // Convenience common pre-built types.
5003 
5004 //------------------------------make-------------------------------------------
5005 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5006   return (TypeFunc*)(new TypeFunc(domain,range))->hashcons();
5007 }
5008 
5009 //------------------------------make-------------------------------------------
5010 const TypeFunc *TypeFunc::make(ciMethod* method) {
5011   Compile* C = Compile::current();
5012   const TypeFunc* tf = C->last_tf(method); // check cache
5013   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5014   const TypeTuple *domain;
5015   if (method->is_static()) {
5016     domain = TypeTuple::make_domain(NULL, method->signature());
5017   } else {
5018     domain = TypeTuple::make_domain(method->holder(), method->signature());
5019   }
5020   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5021   tf = TypeFunc::make(domain, range);
5022   C->set_last_tf(method, tf);  // fill cache
5023   return tf;
5024 }
5025 
5026 //------------------------------meet-------------------------------------------
5027 // Compute the MEET of two types.  It returns a new Type object.
5028 const Type *TypeFunc::xmeet( const Type *t ) const {
5029   // Perform a fast test for common case; meeting the same types together.
5030   if( this == t ) return this;  // Meeting same type-rep?
5031 
5032   // Current "this->_base" is Func
5033   switch (t->base()) {          // switch on original type
5034 
5035   case Bottom:                  // Ye Olde Default
5036     return t;
5037 
5038   default:                      // All else is a mistake
5039     typerr(t);
5040 
5041   case Top:
5042     break;
5043   }
5044   return this;                  // Return the double constant
5045 }
5046 
5047 //------------------------------xdual------------------------------------------
5048 // Dual: compute field-by-field dual
5049 const Type *TypeFunc::xdual() const {
5050   return this;
5051 }
5052 
5053 //------------------------------eq---------------------------------------------
5054 // Structural equality check for Type representations
5055 bool TypeFunc::eq( const Type *t ) const {
5056   const TypeFunc *a = (const TypeFunc*)t;
5057   return _domain == a->_domain &&
5058     _range == a->_range;
5059 }
5060 
5061 //------------------------------hash-------------------------------------------
5062 // Type-specific hashing function.
5063 int TypeFunc::hash(void) const {
5064   return (intptr_t)_domain + (intptr_t)_range;
5065 }
5066 
5067 //------------------------------dump2------------------------------------------
5068 // Dump Function Type
5069 #ifndef PRODUCT
5070 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5071   if( _range->cnt() <= Parms )
5072     st->print("void");
5073   else {
5074     uint i;
5075     for (i = Parms; i < _range->cnt()-1; i++) {
5076       _range->field_at(i)->dump2(d,depth,st);
5077       st->print("/");
5078     }
5079     _range->field_at(i)->dump2(d,depth,st);
5080   }
5081   st->print(" ");
5082   st->print("( ");
5083   if( !depth || d[this] ) {     // Check for recursive dump
5084     st->print("...)");
5085     return;
5086   }
5087   d.Insert((void*)this,(void*)this);    // Stop recursion
5088   if (Parms < _domain->cnt())
5089     _domain->field_at(Parms)->dump2(d,depth-1,st);
5090   for (uint i = Parms+1; i < _domain->cnt(); i++) {
5091     st->print(", ");
5092     _domain->field_at(i)->dump2(d,depth-1,st);
5093   }
5094   st->print(" )");
5095 }
5096 #endif
5097 
5098 //------------------------------singleton--------------------------------------
5099 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5100 // constants (Ldi nodes).  Singletons are integer, float or double constants
5101 // or a single symbol.
5102 bool TypeFunc::singleton(void) const {
5103   return false;                 // Never a singleton
5104 }
5105 
5106 bool TypeFunc::empty(void) const {
5107   return false;                 // Never empty
5108 }
5109 
5110 
5111 BasicType TypeFunc::return_type() const{
5112   if (range()->cnt() == TypeFunc::Parms) {
5113     return T_VOID;
5114   }
5115   return range()->field_at(TypeFunc::Parms)->basic_type();
5116 }