1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/barrierSet.hpp"
  36 #include "gc/shared/cardTableModRefBS.hpp"
  37 #include "gc/shared/collectedHeap.hpp"
  38 #include "nativeInst_x86.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "vmreg_x86.inline.hpp"
  42 
  43 
  44 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  45 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  46 // fast versions of NegF/NegD and AbsF/AbsD.
  47 
  48 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  49 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  50   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  51   // of 128-bits operands for SSE instructions.
  52   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  53   // Store the value to a 128-bits operand.
  54   operand[0] = lo;
  55   operand[1] = hi;
  56   return operand;
  57 }
  58 
  59 // Buffer for 128-bits masks used by SSE instructions.
  60 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  61 
  62 // Static initialization during VM startup.
  63 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2],         CONST64(0x7FFFFFFF7FFFFFFF),         CONST64(0x7FFFFFFF7FFFFFFF));
  64 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2],         CONST64(0x7FFFFFFFFFFFFFFF),         CONST64(0x7FFFFFFFFFFFFFFF));
  65 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], (jlong)UCONST64(0x8000000080000000), (jlong)UCONST64(0x8000000080000000));
  66 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], (jlong)UCONST64(0x8000000000000000), (jlong)UCONST64(0x8000000000000000));
  67 
  68 
  69 
  70 NEEDS_CLEANUP // remove this definitions ?
  71 const Register IC_Klass    = rax;   // where the IC klass is cached
  72 const Register SYNC_header = rax;   // synchronization header
  73 const Register SHIFT_count = rcx;   // where count for shift operations must be
  74 
  75 #define __ _masm->
  76 
  77 
  78 static void select_different_registers(Register preserve,
  79                                        Register extra,
  80                                        Register &tmp1,
  81                                        Register &tmp2) {
  82   if (tmp1 == preserve) {
  83     assert_different_registers(tmp1, tmp2, extra);
  84     tmp1 = extra;
  85   } else if (tmp2 == preserve) {
  86     assert_different_registers(tmp1, tmp2, extra);
  87     tmp2 = extra;
  88   }
  89   assert_different_registers(preserve, tmp1, tmp2);
  90 }
  91 
  92 
  93 
  94 static void select_different_registers(Register preserve,
  95                                        Register extra,
  96                                        Register &tmp1,
  97                                        Register &tmp2,
  98                                        Register &tmp3) {
  99   if (tmp1 == preserve) {
 100     assert_different_registers(tmp1, tmp2, tmp3, extra);
 101     tmp1 = extra;
 102   } else if (tmp2 == preserve) {
 103     assert_different_registers(tmp1, tmp2, tmp3, extra);
 104     tmp2 = extra;
 105   } else if (tmp3 == preserve) {
 106     assert_different_registers(tmp1, tmp2, tmp3, extra);
 107     tmp3 = extra;
 108   }
 109   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 110 }
 111 
 112 
 113 
 114 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 115   if (opr->is_constant()) {
 116     LIR_Const* constant = opr->as_constant_ptr();
 117     switch (constant->type()) {
 118       case T_INT: {
 119         return true;
 120       }
 121 
 122       default:
 123         return false;
 124     }
 125   }
 126   return false;
 127 }
 128 
 129 
 130 LIR_Opr LIR_Assembler::receiverOpr() {
 131   return FrameMap::receiver_opr;
 132 }
 133 
 134 LIR_Opr LIR_Assembler::osrBufferPointer() {
 135   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 136 }
 137 
 138 //--------------fpu register translations-----------------------
 139 
 140 
 141 address LIR_Assembler::float_constant(float f) {
 142   address const_addr = __ float_constant(f);
 143   if (const_addr == NULL) {
 144     bailout("const section overflow");
 145     return __ code()->consts()->start();
 146   } else {
 147     return const_addr;
 148   }
 149 }
 150 
 151 
 152 address LIR_Assembler::double_constant(double d) {
 153   address const_addr = __ double_constant(d);
 154   if (const_addr == NULL) {
 155     bailout("const section overflow");
 156     return __ code()->consts()->start();
 157   } else {
 158     return const_addr;
 159   }
 160 }
 161 
 162 
 163 void LIR_Assembler::set_24bit_FPU() {
 164   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 165 }
 166 
 167 void LIR_Assembler::reset_FPU() {
 168   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 169 }
 170 
 171 void LIR_Assembler::fpop() {
 172   __ fpop();
 173 }
 174 
 175 void LIR_Assembler::fxch(int i) {
 176   __ fxch(i);
 177 }
 178 
 179 void LIR_Assembler::fld(int i) {
 180   __ fld_s(i);
 181 }
 182 
 183 void LIR_Assembler::ffree(int i) {
 184   __ ffree(i);
 185 }
 186 
 187 void LIR_Assembler::breakpoint() {
 188   __ int3();
 189 }
 190 
 191 void LIR_Assembler::push(LIR_Opr opr) {
 192   if (opr->is_single_cpu()) {
 193     __ push_reg(opr->as_register());
 194   } else if (opr->is_double_cpu()) {
 195     NOT_LP64(__ push_reg(opr->as_register_hi()));
 196     __ push_reg(opr->as_register_lo());
 197   } else if (opr->is_stack()) {
 198     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 199   } else if (opr->is_constant()) {
 200     LIR_Const* const_opr = opr->as_constant_ptr();
 201     if (const_opr->type() == T_OBJECT) {
 202       __ push_oop(const_opr->as_jobject());
 203     } else if (const_opr->type() == T_INT) {
 204       __ push_jint(const_opr->as_jint());
 205     } else {
 206       ShouldNotReachHere();
 207     }
 208 
 209   } else {
 210     ShouldNotReachHere();
 211   }
 212 }
 213 
 214 void LIR_Assembler::pop(LIR_Opr opr) {
 215   if (opr->is_single_cpu()) {
 216     __ pop_reg(opr->as_register());
 217   } else {
 218     ShouldNotReachHere();
 219   }
 220 }
 221 
 222 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 223   return addr->base()->is_illegal() && addr->index()->is_illegal();
 224 }
 225 
 226 //-------------------------------------------
 227 
 228 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 229   return as_Address(addr, rscratch1);
 230 }
 231 
 232 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 233   if (addr->base()->is_illegal()) {
 234     assert(addr->index()->is_illegal(), "must be illegal too");
 235     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 236     if (! __ reachable(laddr)) {
 237       __ movptr(tmp, laddr.addr());
 238       Address res(tmp, 0);
 239       return res;
 240     } else {
 241       return __ as_Address(laddr);
 242     }
 243   }
 244 
 245   Register base = addr->base()->as_pointer_register();
 246 
 247   if (addr->index()->is_illegal()) {
 248     return Address( base, addr->disp());
 249   } else if (addr->index()->is_cpu_register()) {
 250     Register index = addr->index()->as_pointer_register();
 251     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 252   } else if (addr->index()->is_constant()) {
 253     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 254     assert(Assembler::is_simm32(addr_offset), "must be");
 255 
 256     return Address(base, addr_offset);
 257   } else {
 258     Unimplemented();
 259     return Address();
 260   }
 261 }
 262 
 263 
 264 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 265   Address base = as_Address(addr);
 266   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 267 }
 268 
 269 
 270 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 271   return as_Address(addr);
 272 }
 273 
 274 
 275 void LIR_Assembler::osr_entry() {
 276   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 277   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 278   ValueStack* entry_state = osr_entry->state();
 279   int number_of_locks = entry_state->locks_size();
 280 
 281   // we jump here if osr happens with the interpreter
 282   // state set up to continue at the beginning of the
 283   // loop that triggered osr - in particular, we have
 284   // the following registers setup:
 285   //
 286   // rcx: osr buffer
 287   //
 288 
 289   // build frame
 290   ciMethod* m = compilation()->method();
 291   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 292 
 293   // OSR buffer is
 294   //
 295   // locals[nlocals-1..0]
 296   // monitors[0..number_of_locks]
 297   //
 298   // locals is a direct copy of the interpreter frame so in the osr buffer
 299   // so first slot in the local array is the last local from the interpreter
 300   // and last slot is local[0] (receiver) from the interpreter
 301   //
 302   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 303   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 304   // in the interpreter frame (the method lock if a sync method)
 305 
 306   // Initialize monitors in the compiled activation.
 307   //   rcx: pointer to osr buffer
 308   //
 309   // All other registers are dead at this point and the locals will be
 310   // copied into place by code emitted in the IR.
 311 
 312   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 313   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 314     int monitor_offset = BytesPerWord * method()->max_locals() +
 315       (2 * BytesPerWord) * (number_of_locks - 1);
 316     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 317     // the OSR buffer using 2 word entries: first the lock and then
 318     // the oop.
 319     for (int i = 0; i < number_of_locks; i++) {
 320       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 321 #ifdef ASSERT
 322       // verify the interpreter's monitor has a non-null object
 323       {
 324         Label L;
 325         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 326         __ jcc(Assembler::notZero, L);
 327         __ stop("locked object is NULL");
 328         __ bind(L);
 329       }
 330 #endif
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 332       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 333       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 334       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 335     }
 336   }
 337 }
 338 
 339 
 340 // inline cache check; done before the frame is built.
 341 int LIR_Assembler::check_icache() {
 342   Register receiver = FrameMap::receiver_opr->as_register();
 343   Register ic_klass = IC_Klass;
 344   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 345   const bool do_post_padding = VerifyOops || UseCompressedClassPointers;
 346   if (!do_post_padding) {
 347     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 348     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 349       __ nop();
 350     }
 351   }
 352   int offset = __ offset();
 353   __ inline_cache_check(receiver, IC_Klass);
 354   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 355   if (do_post_padding) {
 356     // force alignment after the cache check.
 357     // It's been verified to be aligned if !VerifyOops
 358     __ align(CodeEntryAlignment);
 359   }
 360   return offset;
 361 }
 362 
 363 
 364 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 365   jobject o = NULL;
 366   PatchingStub* patch = new PatchingStub(_masm, patching_id(info));
 367   __ movoop(reg, o);
 368   patching_epilog(patch, lir_patch_normal, reg, info);
 369 }
 370 
 371 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
 372   Metadata* o = NULL;
 373   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 374   __ mov_metadata(reg, o);
 375   patching_epilog(patch, lir_patch_normal, reg, info);
 376 }
 377 
 378 // This specifies the rsp decrement needed to build the frame
 379 int LIR_Assembler::initial_frame_size_in_bytes() const {
 380   // if rounding, must let FrameMap know!
 381 
 382   // The frame_map records size in slots (32bit word)
 383 
 384   // subtract two words to account for return address and link
 385   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 386 }
 387 
 388 
 389 int LIR_Assembler::emit_exception_handler() {
 390   // if the last instruction is a call (typically to do a throw which
 391   // is coming at the end after block reordering) the return address
 392   // must still point into the code area in order to avoid assertion
 393   // failures when searching for the corresponding bci => add a nop
 394   // (was bug 5/14/1999 - gri)
 395   __ nop();
 396 
 397   // generate code for exception handler
 398   address handler_base = __ start_a_stub(exception_handler_size);
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   // the exception oop and pc are in rax, and rdx
 408   // no other registers need to be preserved, so invalidate them
 409   __ invalidate_registers(false, true, true, false, true, true);
 410 
 411   // check that there is really an exception
 412   __ verify_not_null_oop(rax);
 413 
 414   // search an exception handler (rax: exception oop, rdx: throwing pc)
 415   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 416   __ should_not_reach_here();
 417   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 418   __ end_a_stub();
 419 
 420   return offset;
 421 }
 422 
 423 
 424 // Emit the code to remove the frame from the stack in the exception
 425 // unwind path.
 426 int LIR_Assembler::emit_unwind_handler() {
 427 #ifndef PRODUCT
 428   if (CommentedAssembly) {
 429     _masm->block_comment("Unwind handler");
 430   }
 431 #endif
 432 
 433   int offset = code_offset();
 434 
 435   // Fetch the exception from TLS and clear out exception related thread state
 436   Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
 437   NOT_LP64(__ get_thread(rsi));
 438   __ movptr(rax, Address(thread, JavaThread::exception_oop_offset()));
 439   __ movptr(Address(thread, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 440   __ movptr(Address(thread, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 441 
 442   __ bind(_unwind_handler_entry);
 443   __ verify_not_null_oop(rax);
 444   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 445     __ mov(rbx, rax);  // Preserve the exception (rbx is always callee-saved)
 446   }
 447 
 448   // Preform needed unlocking
 449   MonitorExitStub* stub = NULL;
 450   if (method()->is_synchronized()) {
 451     monitor_address(0, FrameMap::rax_opr);
 452     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 453     __ unlock_object(rdi, rsi, rax, *stub->entry());
 454     __ bind(*stub->continuation());
 455   }
 456 
 457   if (compilation()->env()->dtrace_method_probes()) {
 458 #ifdef _LP64
 459     __ mov(rdi, r15_thread);
 460     __ mov_metadata(rsi, method()->constant_encoding());
 461 #else
 462     __ get_thread(rax);
 463     __ movptr(Address(rsp, 0), rax);
 464     __ mov_metadata(Address(rsp, sizeof(void*)), method()->constant_encoding());
 465 #endif
 466     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 467   }
 468 
 469   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 470     __ mov(rax, rbx);  // Restore the exception
 471   }
 472 
 473   // remove the activation and dispatch to the unwind handler
 474   __ remove_frame(initial_frame_size_in_bytes());
 475   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 476 
 477   // Emit the slow path assembly
 478   if (stub != NULL) {
 479     stub->emit_code(this);
 480   }
 481 
 482   return offset;
 483 }
 484 
 485 
 486 int LIR_Assembler::emit_deopt_handler() {
 487   // if the last instruction is a call (typically to do a throw which
 488   // is coming at the end after block reordering) the return address
 489   // must still point into the code area in order to avoid assertion
 490   // failures when searching for the corresponding bci => add a nop
 491   // (was bug 5/14/1999 - gri)
 492   __ nop();
 493 
 494   // generate code for exception handler
 495   address handler_base = __ start_a_stub(deopt_handler_size);
 496   if (handler_base == NULL) {
 497     // not enough space left for the handler
 498     bailout("deopt handler overflow");
 499     return -1;
 500   }
 501 
 502   int offset = code_offset();
 503   InternalAddress here(__ pc());
 504 
 505   __ pushptr(here.addr());
 506   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 507   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 508   __ end_a_stub();
 509 
 510   return offset;
 511 }
 512 
 513 
 514 // This is the fast version of java.lang.String.compare; it has not
 515 // OSR-entry and therefore, we generate a slow version for OSR's
 516 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 517   __ movptr (rbx, rcx); // receiver is in rcx
 518   __ movptr (rax, arg1->as_register());
 519 
 520   // Get addresses of first characters from both Strings
 521   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 522   if (java_lang_String::has_offset_field()) {
 523     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 524     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 525     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 526   } else {
 527     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
 528     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 529   }
 530 
 531   // rbx, may be NULL
 532   add_debug_info_for_null_check_here(info);
 533   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 534   if (java_lang_String::has_offset_field()) {
 535     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 536     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 537     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 538   } else {
 539     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
 540     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 541   }
 542 
 543   // compute minimum length (in rax) and difference of lengths (on top of stack)
 544   __ mov   (rcx, rbx);
 545   __ subptr(rbx, rax); // subtract lengths
 546   __ push  (rbx);      // result
 547   __ cmov  (Assembler::lessEqual, rax, rcx);
 548 
 549   // is minimum length 0?
 550   Label noLoop, haveResult;
 551   __ testptr (rax, rax);
 552   __ jcc (Assembler::zero, noLoop);
 553 
 554   // compare first characters
 555   __ load_unsigned_short(rcx, Address(rdi, 0));
 556   __ load_unsigned_short(rbx, Address(rsi, 0));
 557   __ subl(rcx, rbx);
 558   __ jcc(Assembler::notZero, haveResult);
 559   // starting loop
 560   __ decrement(rax); // we already tested index: skip one
 561   __ jcc(Assembler::zero, noLoop);
 562 
 563   // set rsi.edi to the end of the arrays (arrays have same length)
 564   // negate the index
 565 
 566   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 567   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 568   __ negptr(rax);
 569 
 570   // compare the strings in a loop
 571 
 572   Label loop;
 573   __ align(wordSize);
 574   __ bind(loop);
 575   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 576   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 577   __ subl(rcx, rbx);
 578   __ jcc(Assembler::notZero, haveResult);
 579   __ increment(rax);
 580   __ jcc(Assembler::notZero, loop);
 581 
 582   // strings are equal up to min length
 583 
 584   __ bind(noLoop);
 585   __ pop(rax);
 586   return_op(LIR_OprFact::illegalOpr);
 587 
 588   __ bind(haveResult);
 589   // leave instruction is going to discard the TOS value
 590   __ mov (rax, rcx); // result of call is in rax,
 591 }
 592 
 593 
 594 void LIR_Assembler::return_op(LIR_Opr result) {
 595   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 596   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 597     assert(result->fpu() == 0, "result must already be on TOS");
 598   }
 599 
 600   // Pop the stack before the safepoint code
 601   __ remove_frame(initial_frame_size_in_bytes());
 602 
 603   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 604 
 605   // Note: we do not need to round double result; float result has the right precision
 606   // the poll sets the condition code, but no data registers
 607   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_return_type);
 608 
 609   if (Assembler::is_polling_page_far()) {
 610     __ lea(rscratch1, polling_page);
 611     __ relocate(relocInfo::poll_return_type);
 612     __ testl(rax, Address(rscratch1, 0));
 613   } else {
 614     __ testl(rax, polling_page);
 615   }
 616   __ ret(0);
 617 }
 618 
 619 
 620 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 621   AddressLiteral polling_page(os::get_polling_page(), relocInfo::poll_type);
 622   guarantee(info != NULL, "Shouldn't be NULL");
 623   int offset = __ offset();
 624   if (Assembler::is_polling_page_far()) {
 625     __ lea(rscratch1, polling_page);
 626     offset = __ offset();
 627     add_debug_info_for_branch(info);
 628     __ relocate(relocInfo::poll_type);
 629     __ testl(rax, Address(rscratch1, 0));
 630   } else {
 631     add_debug_info_for_branch(info);
 632     __ testl(rax, polling_page);
 633   }
 634   return offset;
 635 }
 636 
 637 
 638 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 639   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 640 }
 641 
 642 void LIR_Assembler::swap_reg(Register a, Register b) {
 643   __ xchgptr(a, b);
 644 }
 645 
 646 
 647 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 648   assert(src->is_constant(), "should not call otherwise");
 649   assert(dest->is_register(), "should not call otherwise");
 650   LIR_Const* c = src->as_constant_ptr();
 651 
 652   switch (c->type()) {
 653     case T_INT: {
 654       assert(patch_code == lir_patch_none, "no patching handled here");
 655       __ movl(dest->as_register(), c->as_jint());
 656       break;
 657     }
 658 
 659     case T_ADDRESS: {
 660       assert(patch_code == lir_patch_none, "no patching handled here");
 661       __ movptr(dest->as_register(), c->as_jint());
 662       break;
 663     }
 664 
 665     case T_LONG: {
 666       assert(patch_code == lir_patch_none, "no patching handled here");
 667 #ifdef _LP64
 668       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 669 #else
 670       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 671       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 672 #endif // _LP64
 673       break;
 674     }
 675 
 676     case T_OBJECT: {
 677       if (patch_code != lir_patch_none) {
 678         jobject2reg_with_patching(dest->as_register(), info);
 679       } else {
 680         __ movoop(dest->as_register(), c->as_jobject());
 681       }
 682       break;
 683     }
 684 
 685     case T_METADATA: {
 686       if (patch_code != lir_patch_none) {
 687         klass2reg_with_patching(dest->as_register(), info);
 688       } else {
 689         __ mov_metadata(dest->as_register(), c->as_metadata());
 690       }
 691       break;
 692     }
 693 
 694     case T_FLOAT: {
 695       if (dest->is_single_xmm()) {
 696         if (c->is_zero_float()) {
 697           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 698         } else {
 699           __ movflt(dest->as_xmm_float_reg(),
 700                    InternalAddress(float_constant(c->as_jfloat())));
 701         }
 702       } else {
 703         assert(dest->is_single_fpu(), "must be");
 704         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 705         if (c->is_zero_float()) {
 706           __ fldz();
 707         } else if (c->is_one_float()) {
 708           __ fld1();
 709         } else {
 710           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 711         }
 712       }
 713       break;
 714     }
 715 
 716     case T_DOUBLE: {
 717       if (dest->is_double_xmm()) {
 718         if (c->is_zero_double()) {
 719           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 720         } else {
 721           __ movdbl(dest->as_xmm_double_reg(),
 722                     InternalAddress(double_constant(c->as_jdouble())));
 723         }
 724       } else {
 725         assert(dest->is_double_fpu(), "must be");
 726         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 727         if (c->is_zero_double()) {
 728           __ fldz();
 729         } else if (c->is_one_double()) {
 730           __ fld1();
 731         } else {
 732           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 733         }
 734       }
 735       break;
 736     }
 737 
 738     default:
 739       ShouldNotReachHere();
 740   }
 741 }
 742 
 743 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 744   assert(src->is_constant(), "should not call otherwise");
 745   assert(dest->is_stack(), "should not call otherwise");
 746   LIR_Const* c = src->as_constant_ptr();
 747 
 748   switch (c->type()) {
 749     case T_INT:  // fall through
 750     case T_FLOAT:
 751       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 752       break;
 753 
 754     case T_ADDRESS:
 755       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 756       break;
 757 
 758     case T_OBJECT:
 759       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 760       break;
 761 
 762     case T_LONG:  // fall through
 763     case T_DOUBLE:
 764 #ifdef _LP64
 765       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 766                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 767 #else
 768       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 769                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 770       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 771                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 772 #endif // _LP64
 773       break;
 774 
 775     default:
 776       ShouldNotReachHere();
 777   }
 778 }
 779 
 780 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 781   assert(src->is_constant(), "should not call otherwise");
 782   assert(dest->is_address(), "should not call otherwise");
 783   LIR_Const* c = src->as_constant_ptr();
 784   LIR_Address* addr = dest->as_address_ptr();
 785 
 786   int null_check_here = code_offset();
 787   switch (type) {
 788     case T_INT:    // fall through
 789     case T_FLOAT:
 790       __ movl(as_Address(addr), c->as_jint_bits());
 791       break;
 792 
 793     case T_ADDRESS:
 794       __ movptr(as_Address(addr), c->as_jint_bits());
 795       break;
 796 
 797     case T_OBJECT:  // fall through
 798     case T_ARRAY:
 799       if (c->as_jobject() == NULL) {
 800         if (UseCompressedOops && !wide) {
 801           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 802         } else {
 803 #ifdef _LP64
 804           __ xorptr(rscratch1, rscratch1);
 805           null_check_here = code_offset();
 806           __ movptr(as_Address(addr), rscratch1);
 807 #else
 808           __ movptr(as_Address(addr), NULL_WORD);
 809 #endif
 810         }
 811       } else {
 812         if (is_literal_address(addr)) {
 813           ShouldNotReachHere();
 814           __ movoop(as_Address(addr, noreg), c->as_jobject());
 815         } else {
 816 #ifdef _LP64
 817           __ movoop(rscratch1, c->as_jobject());
 818           if (UseCompressedOops && !wide) {
 819             __ encode_heap_oop(rscratch1);
 820             null_check_here = code_offset();
 821             __ movl(as_Address_lo(addr), rscratch1);
 822           } else {
 823             null_check_here = code_offset();
 824             __ movptr(as_Address_lo(addr), rscratch1);
 825           }
 826 #else
 827           __ movoop(as_Address(addr), c->as_jobject());
 828 #endif
 829         }
 830       }
 831       break;
 832 
 833     case T_LONG:    // fall through
 834     case T_DOUBLE:
 835 #ifdef _LP64
 836       if (is_literal_address(addr)) {
 837         ShouldNotReachHere();
 838         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 839       } else {
 840         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 841         null_check_here = code_offset();
 842         __ movptr(as_Address_lo(addr), r10);
 843       }
 844 #else
 845       // Always reachable in 32bit so this doesn't produce useless move literal
 846       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 847       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 848 #endif // _LP64
 849       break;
 850 
 851     case T_BOOLEAN: // fall through
 852     case T_BYTE:
 853       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 854       break;
 855 
 856     case T_CHAR:    // fall through
 857     case T_SHORT:
 858       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 859       break;
 860 
 861     default:
 862       ShouldNotReachHere();
 863   };
 864 
 865   if (info != NULL) {
 866     add_debug_info_for_null_check(null_check_here, info);
 867   }
 868 }
 869 
 870 
 871 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 872   assert(src->is_register(), "should not call otherwise");
 873   assert(dest->is_register(), "should not call otherwise");
 874 
 875   // move between cpu-registers
 876   if (dest->is_single_cpu()) {
 877 #ifdef _LP64
 878     if (src->type() == T_LONG) {
 879       // Can do LONG -> OBJECT
 880       move_regs(src->as_register_lo(), dest->as_register());
 881       return;
 882     }
 883 #endif
 884     assert(src->is_single_cpu(), "must match");
 885     if (src->type() == T_OBJECT) {
 886       __ verify_oop(src->as_register());
 887     }
 888     move_regs(src->as_register(), dest->as_register());
 889 
 890   } else if (dest->is_double_cpu()) {
 891 #ifdef _LP64
 892     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 893       // Surprising to me but we can see move of a long to t_object
 894       __ verify_oop(src->as_register());
 895       move_regs(src->as_register(), dest->as_register_lo());
 896       return;
 897     }
 898 #endif
 899     assert(src->is_double_cpu(), "must match");
 900     Register f_lo = src->as_register_lo();
 901     Register f_hi = src->as_register_hi();
 902     Register t_lo = dest->as_register_lo();
 903     Register t_hi = dest->as_register_hi();
 904 #ifdef _LP64
 905     assert(f_hi == f_lo, "must be same");
 906     assert(t_hi == t_lo, "must be same");
 907     move_regs(f_lo, t_lo);
 908 #else
 909     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 910 
 911 
 912     if (f_lo == t_hi && f_hi == t_lo) {
 913       swap_reg(f_lo, f_hi);
 914     } else if (f_hi == t_lo) {
 915       assert(f_lo != t_hi, "overwriting register");
 916       move_regs(f_hi, t_hi);
 917       move_regs(f_lo, t_lo);
 918     } else {
 919       assert(f_hi != t_lo, "overwriting register");
 920       move_regs(f_lo, t_lo);
 921       move_regs(f_hi, t_hi);
 922     }
 923 #endif // LP64
 924 
 925     // special moves from fpu-register to xmm-register
 926     // necessary for method results
 927   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 928     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 929     __ fld_s(Address(rsp, 0));
 930   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 931     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 932     __ fld_d(Address(rsp, 0));
 933   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 934     __ fstp_s(Address(rsp, 0));
 935     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 936   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 937     __ fstp_d(Address(rsp, 0));
 938     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 939 
 940     // move between xmm-registers
 941   } else if (dest->is_single_xmm()) {
 942     assert(src->is_single_xmm(), "must match");
 943     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 944   } else if (dest->is_double_xmm()) {
 945     assert(src->is_double_xmm(), "must match");
 946     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 947 
 948     // move between fpu-registers (no instruction necessary because of fpu-stack)
 949   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 950     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 951     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 952   } else {
 953     ShouldNotReachHere();
 954   }
 955 }
 956 
 957 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 958   assert(src->is_register(), "should not call otherwise");
 959   assert(dest->is_stack(), "should not call otherwise");
 960 
 961   if (src->is_single_cpu()) {
 962     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 963     if (type == T_OBJECT || type == T_ARRAY) {
 964       __ verify_oop(src->as_register());
 965       __ movptr (dst, src->as_register());
 966     } else if (type == T_METADATA) {
 967       __ movptr (dst, src->as_register());
 968     } else {
 969       __ movl (dst, src->as_register());
 970     }
 971 
 972   } else if (src->is_double_cpu()) {
 973     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 974     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 975     __ movptr (dstLO, src->as_register_lo());
 976     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 977 
 978   } else if (src->is_single_xmm()) {
 979     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 980     __ movflt(dst_addr, src->as_xmm_float_reg());
 981 
 982   } else if (src->is_double_xmm()) {
 983     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 984     __ movdbl(dst_addr, src->as_xmm_double_reg());
 985 
 986   } else if (src->is_single_fpu()) {
 987     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 988     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 989     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 990     else                   __ fst_s  (dst_addr);
 991 
 992   } else if (src->is_double_fpu()) {
 993     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 994     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 995     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 996     else                   __ fst_d  (dst_addr);
 997 
 998   } else {
 999     ShouldNotReachHere();
1000   }
1001 }
1002 
1003 
1004 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
1005   LIR_Address* to_addr = dest->as_address_ptr();
1006   PatchingStub* patch = NULL;
1007   Register compressed_src = rscratch1;
1008 
1009   if (type == T_ARRAY || type == T_OBJECT) {
1010     __ verify_oop(src->as_register());
1011 #ifdef _LP64
1012     if (UseCompressedOops && !wide) {
1013       __ movptr(compressed_src, src->as_register());
1014       __ encode_heap_oop(compressed_src);
1015       if (patch_code != lir_patch_none) {
1016         info->oop_map()->set_narrowoop(compressed_src->as_VMReg());
1017       }
1018     }
1019 #endif
1020   }
1021 
1022   if (patch_code != lir_patch_none) {
1023     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1024     Address toa = as_Address(to_addr);
1025     assert(toa.disp() != 0, "must have");
1026   }
1027 
1028   int null_check_here = code_offset();
1029   switch (type) {
1030     case T_FLOAT: {
1031       if (src->is_single_xmm()) {
1032         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1033       } else {
1034         assert(src->is_single_fpu(), "must be");
1035         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1036         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1037         else                    __ fst_s (as_Address(to_addr));
1038       }
1039       break;
1040     }
1041 
1042     case T_DOUBLE: {
1043       if (src->is_double_xmm()) {
1044         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1045       } else {
1046         assert(src->is_double_fpu(), "must be");
1047         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1048         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1049         else                    __ fst_d (as_Address(to_addr));
1050       }
1051       break;
1052     }
1053 
1054     case T_ARRAY:   // fall through
1055     case T_OBJECT:  // fall through
1056       if (UseCompressedOops && !wide) {
1057         __ movl(as_Address(to_addr), compressed_src);
1058       } else {
1059         __ movptr(as_Address(to_addr), src->as_register());
1060       }
1061       break;
1062     case T_METADATA:
1063       // We get here to store a method pointer to the stack to pass to
1064       // a dtrace runtime call. This can't work on 64 bit with
1065       // compressed klass ptrs: T_METADATA can be a compressed klass
1066       // ptr or a 64 bit method pointer.
1067       LP64_ONLY(ShouldNotReachHere());
1068       __ movptr(as_Address(to_addr), src->as_register());
1069       break;
1070     case T_ADDRESS:
1071       __ movptr(as_Address(to_addr), src->as_register());
1072       break;
1073     case T_INT:
1074       __ movl(as_Address(to_addr), src->as_register());
1075       break;
1076 
1077     case T_LONG: {
1078       Register from_lo = src->as_register_lo();
1079       Register from_hi = src->as_register_hi();
1080 #ifdef _LP64
1081       __ movptr(as_Address_lo(to_addr), from_lo);
1082 #else
1083       Register base = to_addr->base()->as_register();
1084       Register index = noreg;
1085       if (to_addr->index()->is_register()) {
1086         index = to_addr->index()->as_register();
1087       }
1088       if (base == from_lo || index == from_lo) {
1089         assert(base != from_hi, "can't be");
1090         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1091         __ movl(as_Address_hi(to_addr), from_hi);
1092         if (patch != NULL) {
1093           patching_epilog(patch, lir_patch_high, base, info);
1094           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1095           patch_code = lir_patch_low;
1096         }
1097         __ movl(as_Address_lo(to_addr), from_lo);
1098       } else {
1099         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1100         __ movl(as_Address_lo(to_addr), from_lo);
1101         if (patch != NULL) {
1102           patching_epilog(patch, lir_patch_low, base, info);
1103           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1104           patch_code = lir_patch_high;
1105         }
1106         __ movl(as_Address_hi(to_addr), from_hi);
1107       }
1108 #endif // _LP64
1109       break;
1110     }
1111 
1112     case T_BYTE:    // fall through
1113     case T_BOOLEAN: {
1114       Register src_reg = src->as_register();
1115       Address dst_addr = as_Address(to_addr);
1116       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1117       __ movb(dst_addr, src_reg);
1118       break;
1119     }
1120 
1121     case T_CHAR:    // fall through
1122     case T_SHORT:
1123       __ movw(as_Address(to_addr), src->as_register());
1124       break;
1125 
1126     default:
1127       ShouldNotReachHere();
1128   }
1129   if (info != NULL) {
1130     add_debug_info_for_null_check(null_check_here, info);
1131   }
1132 
1133   if (patch_code != lir_patch_none) {
1134     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1135   }
1136 }
1137 
1138 
1139 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1140   assert(src->is_stack(), "should not call otherwise");
1141   assert(dest->is_register(), "should not call otherwise");
1142 
1143   if (dest->is_single_cpu()) {
1144     if (type == T_ARRAY || type == T_OBJECT) {
1145       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1146       __ verify_oop(dest->as_register());
1147     } else if (type == T_METADATA) {
1148       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1149     } else {
1150       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1151     }
1152 
1153   } else if (dest->is_double_cpu()) {
1154     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1155     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1156     __ movptr(dest->as_register_lo(), src_addr_LO);
1157     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1158 
1159   } else if (dest->is_single_xmm()) {
1160     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1161     __ movflt(dest->as_xmm_float_reg(), src_addr);
1162 
1163   } else if (dest->is_double_xmm()) {
1164     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1165     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1166 
1167   } else if (dest->is_single_fpu()) {
1168     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1169     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1170     __ fld_s(src_addr);
1171 
1172   } else if (dest->is_double_fpu()) {
1173     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1174     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1175     __ fld_d(src_addr);
1176 
1177   } else {
1178     ShouldNotReachHere();
1179   }
1180 }
1181 
1182 
1183 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1184   if (src->is_single_stack()) {
1185     if (type == T_OBJECT || type == T_ARRAY) {
1186       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1187       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1188     } else {
1189 #ifndef _LP64
1190       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1191       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1192 #else
1193       //no pushl on 64bits
1194       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1195       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1196 #endif
1197     }
1198 
1199   } else if (src->is_double_stack()) {
1200 #ifdef _LP64
1201     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1202     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1203 #else
1204     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1205     // push and pop the part at src + wordSize, adding wordSize for the previous push
1206     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1207     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1208     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1209 #endif // _LP64
1210 
1211   } else {
1212     ShouldNotReachHere();
1213   }
1214 }
1215 
1216 
1217 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1218   assert(src->is_address(), "should not call otherwise");
1219   assert(dest->is_register(), "should not call otherwise");
1220 
1221   LIR_Address* addr = src->as_address_ptr();
1222   Address from_addr = as_Address(addr);
1223 
1224   if (addr->base()->type() == T_OBJECT) {
1225     __ verify_oop(addr->base()->as_pointer_register());
1226   }
1227 
1228   switch (type) {
1229     case T_BOOLEAN: // fall through
1230     case T_BYTE:    // fall through
1231     case T_CHAR:    // fall through
1232     case T_SHORT:
1233       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1234         // on pre P6 processors we may get partial register stalls
1235         // so blow away the value of to_rinfo before loading a
1236         // partial word into it.  Do it here so that it precedes
1237         // the potential patch point below.
1238         __ xorptr(dest->as_register(), dest->as_register());
1239       }
1240       break;
1241   }
1242 
1243   PatchingStub* patch = NULL;
1244   if (patch_code != lir_patch_none) {
1245     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1246     assert(from_addr.disp() != 0, "must have");
1247   }
1248   if (info != NULL) {
1249     add_debug_info_for_null_check_here(info);
1250   }
1251 
1252   switch (type) {
1253     case T_FLOAT: {
1254       if (dest->is_single_xmm()) {
1255         __ movflt(dest->as_xmm_float_reg(), from_addr);
1256       } else {
1257         assert(dest->is_single_fpu(), "must be");
1258         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1259         __ fld_s(from_addr);
1260       }
1261       break;
1262     }
1263 
1264     case T_DOUBLE: {
1265       if (dest->is_double_xmm()) {
1266         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1267       } else {
1268         assert(dest->is_double_fpu(), "must be");
1269         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1270         __ fld_d(from_addr);
1271       }
1272       break;
1273     }
1274 
1275     case T_OBJECT:  // fall through
1276     case T_ARRAY:   // fall through
1277       if (UseCompressedOops && !wide) {
1278         __ movl(dest->as_register(), from_addr);
1279       } else {
1280         __ movptr(dest->as_register(), from_addr);
1281       }
1282       break;
1283 
1284     case T_ADDRESS:
1285       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1286         __ movl(dest->as_register(), from_addr);
1287       } else {
1288         __ movptr(dest->as_register(), from_addr);
1289       }
1290       break;
1291     case T_INT:
1292       __ movl(dest->as_register(), from_addr);
1293       break;
1294 
1295     case T_LONG: {
1296       Register to_lo = dest->as_register_lo();
1297       Register to_hi = dest->as_register_hi();
1298 #ifdef _LP64
1299       __ movptr(to_lo, as_Address_lo(addr));
1300 #else
1301       Register base = addr->base()->as_register();
1302       Register index = noreg;
1303       if (addr->index()->is_register()) {
1304         index = addr->index()->as_register();
1305       }
1306       if ((base == to_lo && index == to_hi) ||
1307           (base == to_hi && index == to_lo)) {
1308         // addresses with 2 registers are only formed as a result of
1309         // array access so this code will never have to deal with
1310         // patches or null checks.
1311         assert(info == NULL && patch == NULL, "must be");
1312         __ lea(to_hi, as_Address(addr));
1313         __ movl(to_lo, Address(to_hi, 0));
1314         __ movl(to_hi, Address(to_hi, BytesPerWord));
1315       } else if (base == to_lo || index == to_lo) {
1316         assert(base != to_hi, "can't be");
1317         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1318         __ movl(to_hi, as_Address_hi(addr));
1319         if (patch != NULL) {
1320           patching_epilog(patch, lir_patch_high, base, info);
1321           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1322           patch_code = lir_patch_low;
1323         }
1324         __ movl(to_lo, as_Address_lo(addr));
1325       } else {
1326         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1327         __ movl(to_lo, as_Address_lo(addr));
1328         if (patch != NULL) {
1329           patching_epilog(patch, lir_patch_low, base, info);
1330           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1331           patch_code = lir_patch_high;
1332         }
1333         __ movl(to_hi, as_Address_hi(addr));
1334       }
1335 #endif // _LP64
1336       break;
1337     }
1338 
1339     case T_BOOLEAN: // fall through
1340     case T_BYTE: {
1341       Register dest_reg = dest->as_register();
1342       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1343       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1344         __ movsbl(dest_reg, from_addr);
1345       } else {
1346         __ movb(dest_reg, from_addr);
1347         __ shll(dest_reg, 24);
1348         __ sarl(dest_reg, 24);
1349       }
1350       break;
1351     }
1352 
1353     case T_CHAR: {
1354       Register dest_reg = dest->as_register();
1355       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1356       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1357         __ movzwl(dest_reg, from_addr);
1358       } else {
1359         __ movw(dest_reg, from_addr);
1360       }
1361       break;
1362     }
1363 
1364     case T_SHORT: {
1365       Register dest_reg = dest->as_register();
1366       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1367         __ movswl(dest_reg, from_addr);
1368       } else {
1369         __ movw(dest_reg, from_addr);
1370         __ shll(dest_reg, 16);
1371         __ sarl(dest_reg, 16);
1372       }
1373       break;
1374     }
1375 
1376     default:
1377       ShouldNotReachHere();
1378   }
1379 
1380   if (patch != NULL) {
1381     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1382   }
1383 
1384   if (type == T_ARRAY || type == T_OBJECT) {
1385 #ifdef _LP64
1386     if (UseCompressedOops && !wide) {
1387       __ decode_heap_oop(dest->as_register());
1388     }
1389 #endif
1390     __ verify_oop(dest->as_register());
1391   } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
1392 #ifdef _LP64
1393     if (UseCompressedClassPointers) {
1394       __ decode_klass_not_null(dest->as_register());
1395     }
1396 #endif
1397   }
1398 }
1399 
1400 
1401 NEEDS_CLEANUP; // This could be static?
1402 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1403   int elem_size = type2aelembytes(type);
1404   switch (elem_size) {
1405     case 1: return Address::times_1;
1406     case 2: return Address::times_2;
1407     case 4: return Address::times_4;
1408     case 8: return Address::times_8;
1409   }
1410   ShouldNotReachHere();
1411   return Address::no_scale;
1412 }
1413 
1414 
1415 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1416   switch (op->code()) {
1417     case lir_idiv:
1418     case lir_irem:
1419       arithmetic_idiv(op->code(),
1420                       op->in_opr1(),
1421                       op->in_opr2(),
1422                       op->in_opr3(),
1423                       op->result_opr(),
1424                       op->info());
1425       break;
1426     default:      ShouldNotReachHere(); break;
1427   }
1428 }
1429 
1430 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1431 #ifdef ASSERT
1432   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1433   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1434   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1435 #endif
1436 
1437   if (op->cond() == lir_cond_always) {
1438     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1439     __ jmp (*(op->label()));
1440   } else {
1441     Assembler::Condition acond = Assembler::zero;
1442     if (op->code() == lir_cond_float_branch) {
1443       assert(op->ublock() != NULL, "must have unordered successor");
1444       __ jcc(Assembler::parity, *(op->ublock()->label()));
1445       switch(op->cond()) {
1446         case lir_cond_equal:        acond = Assembler::equal;      break;
1447         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1448         case lir_cond_less:         acond = Assembler::below;      break;
1449         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1450         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1451         case lir_cond_greater:      acond = Assembler::above;      break;
1452         default:                         ShouldNotReachHere();
1453       }
1454     } else {
1455       switch (op->cond()) {
1456         case lir_cond_equal:        acond = Assembler::equal;       break;
1457         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1458         case lir_cond_less:         acond = Assembler::less;        break;
1459         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1460         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1461         case lir_cond_greater:      acond = Assembler::greater;     break;
1462         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1463         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1464         default:                         ShouldNotReachHere();
1465       }
1466     }
1467     __ jcc(acond,*(op->label()));
1468   }
1469 }
1470 
1471 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1472   LIR_Opr src  = op->in_opr();
1473   LIR_Opr dest = op->result_opr();
1474 
1475   switch (op->bytecode()) {
1476     case Bytecodes::_i2l:
1477 #ifdef _LP64
1478       __ movl2ptr(dest->as_register_lo(), src->as_register());
1479 #else
1480       move_regs(src->as_register(), dest->as_register_lo());
1481       move_regs(src->as_register(), dest->as_register_hi());
1482       __ sarl(dest->as_register_hi(), 31);
1483 #endif // LP64
1484       break;
1485 
1486     case Bytecodes::_l2i:
1487 #ifdef _LP64
1488       __ movl(dest->as_register(), src->as_register_lo());
1489 #else
1490       move_regs(src->as_register_lo(), dest->as_register());
1491 #endif
1492       break;
1493 
1494     case Bytecodes::_i2b:
1495       move_regs(src->as_register(), dest->as_register());
1496       __ sign_extend_byte(dest->as_register());
1497       break;
1498 
1499     case Bytecodes::_i2c:
1500       move_regs(src->as_register(), dest->as_register());
1501       __ andl(dest->as_register(), 0xFFFF);
1502       break;
1503 
1504     case Bytecodes::_i2s:
1505       move_regs(src->as_register(), dest->as_register());
1506       __ sign_extend_short(dest->as_register());
1507       break;
1508 
1509 
1510     case Bytecodes::_f2d:
1511     case Bytecodes::_d2f:
1512       if (dest->is_single_xmm()) {
1513         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1514       } else if (dest->is_double_xmm()) {
1515         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1516       } else {
1517         assert(src->fpu() == dest->fpu(), "register must be equal");
1518         // do nothing (float result is rounded later through spilling)
1519       }
1520       break;
1521 
1522     case Bytecodes::_i2f:
1523     case Bytecodes::_i2d:
1524       if (dest->is_single_xmm()) {
1525         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1526       } else if (dest->is_double_xmm()) {
1527         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1528       } else {
1529         assert(dest->fpu() == 0, "result must be on TOS");
1530         __ movl(Address(rsp, 0), src->as_register());
1531         __ fild_s(Address(rsp, 0));
1532       }
1533       break;
1534 
1535     case Bytecodes::_f2i:
1536     case Bytecodes::_d2i:
1537       if (src->is_single_xmm()) {
1538         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1539       } else if (src->is_double_xmm()) {
1540         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1541       } else {
1542         assert(src->fpu() == 0, "input must be on TOS");
1543         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1544         __ fist_s(Address(rsp, 0));
1545         __ movl(dest->as_register(), Address(rsp, 0));
1546         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1547       }
1548 
1549       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1550       assert(op->stub() != NULL, "stub required");
1551       __ cmpl(dest->as_register(), 0x80000000);
1552       __ jcc(Assembler::equal, *op->stub()->entry());
1553       __ bind(*op->stub()->continuation());
1554       break;
1555 
1556     case Bytecodes::_l2f:
1557     case Bytecodes::_l2d:
1558       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1559       assert(dest->fpu() == 0, "result must be on TOS");
1560 
1561       __ movptr(Address(rsp, 0),            src->as_register_lo());
1562       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1563       __ fild_d(Address(rsp, 0));
1564       // float result is rounded later through spilling
1565       break;
1566 
1567     case Bytecodes::_f2l:
1568     case Bytecodes::_d2l:
1569       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1570       assert(src->fpu() == 0, "input must be on TOS");
1571       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1572 
1573       // instruction sequence too long to inline it here
1574       {
1575         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1576       }
1577       break;
1578 
1579     default: ShouldNotReachHere();
1580   }
1581 }
1582 
1583 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1584   if (op->init_check()) {
1585     __ cmpb(Address(op->klass()->as_register(),
1586                     InstanceKlass::init_state_offset()),
1587                     InstanceKlass::fully_initialized);
1588     add_debug_info_for_null_check_here(op->stub()->info());
1589     __ jcc(Assembler::notEqual, *op->stub()->entry());
1590   }
1591   __ allocate_object(op->obj()->as_register(),
1592                      op->tmp1()->as_register(),
1593                      op->tmp2()->as_register(),
1594                      op->header_size(),
1595                      op->object_size(),
1596                      op->klass()->as_register(),
1597                      *op->stub()->entry());
1598   __ bind(*op->stub()->continuation());
1599 }
1600 
1601 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1602   Register len =  op->len()->as_register();
1603   LP64_ONLY( __ movslq(len, len); )
1604 
1605   if (UseSlowPath ||
1606       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1607       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1608     __ jmp(*op->stub()->entry());
1609   } else {
1610     Register tmp1 = op->tmp1()->as_register();
1611     Register tmp2 = op->tmp2()->as_register();
1612     Register tmp3 = op->tmp3()->as_register();
1613     if (len == tmp1) {
1614       tmp1 = tmp3;
1615     } else if (len == tmp2) {
1616       tmp2 = tmp3;
1617     } else if (len == tmp3) {
1618       // everything is ok
1619     } else {
1620       __ mov(tmp3, len);
1621     }
1622     __ allocate_array(op->obj()->as_register(),
1623                       len,
1624                       tmp1,
1625                       tmp2,
1626                       arrayOopDesc::header_size(op->type()),
1627                       array_element_size(op->type()),
1628                       op->klass()->as_register(),
1629                       *op->stub()->entry());
1630   }
1631   __ bind(*op->stub()->continuation());
1632 }
1633 
1634 void LIR_Assembler::type_profile_helper(Register mdo,
1635                                         ciMethodData *md, ciProfileData *data,
1636                                         Register recv, Label* update_done) {
1637   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1638     Label next_test;
1639     // See if the receiver is receiver[n].
1640     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1641     __ jccb(Assembler::notEqual, next_test);
1642     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1643     __ addptr(data_addr, DataLayout::counter_increment);
1644     __ jmp(*update_done);
1645     __ bind(next_test);
1646   }
1647 
1648   // Didn't find receiver; find next empty slot and fill it in
1649   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1650     Label next_test;
1651     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1652     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1653     __ jccb(Assembler::notEqual, next_test);
1654     __ movptr(recv_addr, recv);
1655     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1656     __ jmp(*update_done);
1657     __ bind(next_test);
1658   }
1659 }
1660 
1661 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1662   // we always need a stub for the failure case.
1663   CodeStub* stub = op->stub();
1664   Register obj = op->object()->as_register();
1665   Register k_RInfo = op->tmp1()->as_register();
1666   Register klass_RInfo = op->tmp2()->as_register();
1667   Register dst = op->result_opr()->as_register();
1668   ciKlass* k = op->klass();
1669   Register Rtmp1 = noreg;
1670 
1671   // check if it needs to be profiled
1672   ciMethodData* md;
1673   ciProfileData* data;
1674 
1675   if (op->should_profile()) {
1676     ciMethod* method = op->profiled_method();
1677     assert(method != NULL, "Should have method");
1678     int bci = op->profiled_bci();
1679     md = method->method_data_or_null();
1680     assert(md != NULL, "Sanity");
1681     data = md->bci_to_data(bci);
1682     assert(data != NULL,                "need data for type check");
1683     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1684   }
1685   Label profile_cast_success, profile_cast_failure;
1686   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1687   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1688 
1689   if (obj == k_RInfo) {
1690     k_RInfo = dst;
1691   } else if (obj == klass_RInfo) {
1692     klass_RInfo = dst;
1693   }
1694   if (k->is_loaded() && !UseCompressedClassPointers) {
1695     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1696   } else {
1697     Rtmp1 = op->tmp3()->as_register();
1698     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1699   }
1700 
1701   assert_different_registers(obj, k_RInfo, klass_RInfo);
1702 
1703   __ cmpptr(obj, (int32_t)NULL_WORD);
1704   if (op->should_profile()) {
1705     Label not_null;
1706     __ jccb(Assembler::notEqual, not_null);
1707     // Object is null; update MDO and exit
1708     Register mdo  = klass_RInfo;
1709     __ mov_metadata(mdo, md->constant_encoding());
1710     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1711     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1712     __ orl(data_addr, header_bits);
1713     __ jmp(*obj_is_null);
1714     __ bind(not_null);
1715   } else {
1716     __ jcc(Assembler::equal, *obj_is_null);
1717   }
1718 
1719   if (!k->is_loaded()) {
1720     klass2reg_with_patching(k_RInfo, op->info_for_patch());
1721   } else {
1722 #ifdef _LP64
1723     __ mov_metadata(k_RInfo, k->constant_encoding());
1724 #endif // _LP64
1725   }
1726   __ verify_oop(obj);
1727 
1728   if (op->fast_check()) {
1729     // get object class
1730     // not a safepoint as obj null check happens earlier
1731 #ifdef _LP64
1732     if (UseCompressedClassPointers) {
1733       __ load_klass(Rtmp1, obj);
1734       __ cmpptr(k_RInfo, Rtmp1);
1735     } else {
1736       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1737     }
1738 #else
1739     if (k->is_loaded()) {
1740       __ cmpklass(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1741     } else {
1742       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1743     }
1744 #endif
1745     __ jcc(Assembler::notEqual, *failure_target);
1746     // successful cast, fall through to profile or jump
1747   } else {
1748     // get object class
1749     // not a safepoint as obj null check happens earlier
1750     __ load_klass(klass_RInfo, obj);
1751     if (k->is_loaded()) {
1752       // See if we get an immediate positive hit
1753 #ifdef _LP64
1754       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1755 #else
1756       __ cmpklass(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1757 #endif // _LP64
1758       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1759         __ jcc(Assembler::notEqual, *failure_target);
1760         // successful cast, fall through to profile or jump
1761       } else {
1762         // See if we get an immediate positive hit
1763         __ jcc(Assembler::equal, *success_target);
1764         // check for self
1765 #ifdef _LP64
1766         __ cmpptr(klass_RInfo, k_RInfo);
1767 #else
1768         __ cmpklass(klass_RInfo, k->constant_encoding());
1769 #endif // _LP64
1770         __ jcc(Assembler::equal, *success_target);
1771 
1772         __ push(klass_RInfo);
1773 #ifdef _LP64
1774         __ push(k_RInfo);
1775 #else
1776         __ pushklass(k->constant_encoding());
1777 #endif // _LP64
1778         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1779         __ pop(klass_RInfo);
1780         __ pop(klass_RInfo);
1781         // result is a boolean
1782         __ cmpl(klass_RInfo, 0);
1783         __ jcc(Assembler::equal, *failure_target);
1784         // successful cast, fall through to profile or jump
1785       }
1786     } else {
1787       // perform the fast part of the checking logic
1788       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1789       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1790       __ push(klass_RInfo);
1791       __ push(k_RInfo);
1792       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1793       __ pop(klass_RInfo);
1794       __ pop(k_RInfo);
1795       // result is a boolean
1796       __ cmpl(k_RInfo, 0);
1797       __ jcc(Assembler::equal, *failure_target);
1798       // successful cast, fall through to profile or jump
1799     }
1800   }
1801   if (op->should_profile()) {
1802     Register mdo  = klass_RInfo, recv = k_RInfo;
1803     __ bind(profile_cast_success);
1804     __ mov_metadata(mdo, md->constant_encoding());
1805     __ load_klass(recv, obj);
1806     Label update_done;
1807     type_profile_helper(mdo, md, data, recv, success);
1808     __ jmp(*success);
1809 
1810     __ bind(profile_cast_failure);
1811     __ mov_metadata(mdo, md->constant_encoding());
1812     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1813     __ subptr(counter_addr, DataLayout::counter_increment);
1814     __ jmp(*failure);
1815   }
1816   __ jmp(*success);
1817 }
1818 
1819 
1820 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1821   LIR_Code code = op->code();
1822   if (code == lir_store_check) {
1823     Register value = op->object()->as_register();
1824     Register array = op->array()->as_register();
1825     Register k_RInfo = op->tmp1()->as_register();
1826     Register klass_RInfo = op->tmp2()->as_register();
1827     Register Rtmp1 = op->tmp3()->as_register();
1828 
1829     CodeStub* stub = op->stub();
1830 
1831     // check if it needs to be profiled
1832     ciMethodData* md;
1833     ciProfileData* data;
1834 
1835     if (op->should_profile()) {
1836       ciMethod* method = op->profiled_method();
1837       assert(method != NULL, "Should have method");
1838       int bci = op->profiled_bci();
1839       md = method->method_data_or_null();
1840       assert(md != NULL, "Sanity");
1841       data = md->bci_to_data(bci);
1842       assert(data != NULL,                "need data for type check");
1843       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1844     }
1845     Label profile_cast_success, profile_cast_failure, done;
1846     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1847     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1848 
1849     __ cmpptr(value, (int32_t)NULL_WORD);
1850     if (op->should_profile()) {
1851       Label not_null;
1852       __ jccb(Assembler::notEqual, not_null);
1853       // Object is null; update MDO and exit
1854       Register mdo  = klass_RInfo;
1855       __ mov_metadata(mdo, md->constant_encoding());
1856       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1857       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1858       __ orl(data_addr, header_bits);
1859       __ jmp(done);
1860       __ bind(not_null);
1861     } else {
1862       __ jcc(Assembler::equal, done);
1863     }
1864 
1865     add_debug_info_for_null_check_here(op->info_for_exception());
1866     __ load_klass(k_RInfo, array);
1867     __ load_klass(klass_RInfo, value);
1868 
1869     // get instance klass (it's already uncompressed)
1870     __ movptr(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
1871     // perform the fast part of the checking logic
1872     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1873     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1874     __ push(klass_RInfo);
1875     __ push(k_RInfo);
1876     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1877     __ pop(klass_RInfo);
1878     __ pop(k_RInfo);
1879     // result is a boolean
1880     __ cmpl(k_RInfo, 0);
1881     __ jcc(Assembler::equal, *failure_target);
1882     // fall through to the success case
1883 
1884     if (op->should_profile()) {
1885       Register mdo  = klass_RInfo, recv = k_RInfo;
1886       __ bind(profile_cast_success);
1887       __ mov_metadata(mdo, md->constant_encoding());
1888       __ load_klass(recv, value);
1889       Label update_done;
1890       type_profile_helper(mdo, md, data, recv, &done);
1891       __ jmpb(done);
1892 
1893       __ bind(profile_cast_failure);
1894       __ mov_metadata(mdo, md->constant_encoding());
1895       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1896       __ subptr(counter_addr, DataLayout::counter_increment);
1897       __ jmp(*stub->entry());
1898     }
1899 
1900     __ bind(done);
1901   } else
1902     if (code == lir_checkcast) {
1903       Register obj = op->object()->as_register();
1904       Register dst = op->result_opr()->as_register();
1905       Label success;
1906       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1907       __ bind(success);
1908       if (dst != obj) {
1909         __ mov(dst, obj);
1910       }
1911     } else
1912       if (code == lir_instanceof) {
1913         Register obj = op->object()->as_register();
1914         Register dst = op->result_opr()->as_register();
1915         Label success, failure, done;
1916         emit_typecheck_helper(op, &success, &failure, &failure);
1917         __ bind(failure);
1918         __ xorptr(dst, dst);
1919         __ jmpb(done);
1920         __ bind(success);
1921         __ movptr(dst, 1);
1922         __ bind(done);
1923       } else {
1924         ShouldNotReachHere();
1925       }
1926 
1927 }
1928 
1929 
1930 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1931   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1932     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1933     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1934     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1935     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1936     Register addr = op->addr()->as_register();
1937     if (os::is_MP()) {
1938       __ lock();
1939     }
1940     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1941 
1942   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1943     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1944     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1945     Register newval = op->new_value()->as_register();
1946     Register cmpval = op->cmp_value()->as_register();
1947     assert(cmpval == rax, "wrong register");
1948     assert(newval != NULL, "new val must be register");
1949     assert(cmpval != newval, "cmp and new values must be in different registers");
1950     assert(cmpval != addr, "cmp and addr must be in different registers");
1951     assert(newval != addr, "new value and addr must be in different registers");
1952 
1953     if ( op->code() == lir_cas_obj) {
1954 #ifdef _LP64
1955       if (UseCompressedOops) {
1956         __ encode_heap_oop(cmpval);
1957         __ mov(rscratch1, newval);
1958         __ encode_heap_oop(rscratch1);
1959         if (os::is_MP()) {
1960           __ lock();
1961         }
1962         // cmpval (rax) is implicitly used by this instruction
1963         __ cmpxchgl(rscratch1, Address(addr, 0));
1964       } else
1965 #endif
1966       {
1967         if (os::is_MP()) {
1968           __ lock();
1969         }
1970         __ cmpxchgptr(newval, Address(addr, 0));
1971       }
1972     } else {
1973       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1974       if (os::is_MP()) {
1975         __ lock();
1976       }
1977       __ cmpxchgl(newval, Address(addr, 0));
1978     }
1979 #ifdef _LP64
1980   } else if (op->code() == lir_cas_long) {
1981     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1982     Register newval = op->new_value()->as_register_lo();
1983     Register cmpval = op->cmp_value()->as_register_lo();
1984     assert(cmpval == rax, "wrong register");
1985     assert(newval != NULL, "new val must be register");
1986     assert(cmpval != newval, "cmp and new values must be in different registers");
1987     assert(cmpval != addr, "cmp and addr must be in different registers");
1988     assert(newval != addr, "new value and addr must be in different registers");
1989     if (os::is_MP()) {
1990       __ lock();
1991     }
1992     __ cmpxchgq(newval, Address(addr, 0));
1993 #endif // _LP64
1994   } else {
1995     Unimplemented();
1996   }
1997 }
1998 
1999 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
2000   Assembler::Condition acond, ncond;
2001   switch (condition) {
2002     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
2003     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
2004     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
2005     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
2006     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
2007     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
2008     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
2009     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
2010     default:                    ShouldNotReachHere();
2011   }
2012 
2013   if (opr1->is_cpu_register()) {
2014     reg2reg(opr1, result);
2015   } else if (opr1->is_stack()) {
2016     stack2reg(opr1, result, result->type());
2017   } else if (opr1->is_constant()) {
2018     const2reg(opr1, result, lir_patch_none, NULL);
2019   } else {
2020     ShouldNotReachHere();
2021   }
2022 
2023   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2024     // optimized version that does not require a branch
2025     if (opr2->is_single_cpu()) {
2026       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2027       __ cmov(ncond, result->as_register(), opr2->as_register());
2028     } else if (opr2->is_double_cpu()) {
2029       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2030       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2031       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2032       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2033     } else if (opr2->is_single_stack()) {
2034       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2035     } else if (opr2->is_double_stack()) {
2036       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2037       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2038     } else {
2039       ShouldNotReachHere();
2040     }
2041 
2042   } else {
2043     Label skip;
2044     __ jcc (acond, skip);
2045     if (opr2->is_cpu_register()) {
2046       reg2reg(opr2, result);
2047     } else if (opr2->is_stack()) {
2048       stack2reg(opr2, result, result->type());
2049     } else if (opr2->is_constant()) {
2050       const2reg(opr2, result, lir_patch_none, NULL);
2051     } else {
2052       ShouldNotReachHere();
2053     }
2054     __ bind(skip);
2055   }
2056 }
2057 
2058 
2059 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2060   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2061 
2062   if (left->is_single_cpu()) {
2063     assert(left == dest, "left and dest must be equal");
2064     Register lreg = left->as_register();
2065 
2066     if (right->is_single_cpu()) {
2067       // cpu register - cpu register
2068       Register rreg = right->as_register();
2069       switch (code) {
2070         case lir_add: __ addl (lreg, rreg); break;
2071         case lir_sub: __ subl (lreg, rreg); break;
2072         case lir_mul: __ imull(lreg, rreg); break;
2073         default:      ShouldNotReachHere();
2074       }
2075 
2076     } else if (right->is_stack()) {
2077       // cpu register - stack
2078       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2079       switch (code) {
2080         case lir_add: __ addl(lreg, raddr); break;
2081         case lir_sub: __ subl(lreg, raddr); break;
2082         default:      ShouldNotReachHere();
2083       }
2084 
2085     } else if (right->is_constant()) {
2086       // cpu register - constant
2087       jint c = right->as_constant_ptr()->as_jint();
2088       switch (code) {
2089         case lir_add: {
2090           __ incrementl(lreg, c);
2091           break;
2092         }
2093         case lir_sub: {
2094           __ decrementl(lreg, c);
2095           break;
2096         }
2097         default: ShouldNotReachHere();
2098       }
2099 
2100     } else {
2101       ShouldNotReachHere();
2102     }
2103 
2104   } else if (left->is_double_cpu()) {
2105     assert(left == dest, "left and dest must be equal");
2106     Register lreg_lo = left->as_register_lo();
2107     Register lreg_hi = left->as_register_hi();
2108 
2109     if (right->is_double_cpu()) {
2110       // cpu register - cpu register
2111       Register rreg_lo = right->as_register_lo();
2112       Register rreg_hi = right->as_register_hi();
2113       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2114       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2115       switch (code) {
2116         case lir_add:
2117           __ addptr(lreg_lo, rreg_lo);
2118           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2119           break;
2120         case lir_sub:
2121           __ subptr(lreg_lo, rreg_lo);
2122           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2123           break;
2124         case lir_mul:
2125 #ifdef _LP64
2126           __ imulq(lreg_lo, rreg_lo);
2127 #else
2128           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2129           __ imull(lreg_hi, rreg_lo);
2130           __ imull(rreg_hi, lreg_lo);
2131           __ addl (rreg_hi, lreg_hi);
2132           __ mull (rreg_lo);
2133           __ addl (lreg_hi, rreg_hi);
2134 #endif // _LP64
2135           break;
2136         default:
2137           ShouldNotReachHere();
2138       }
2139 
2140     } else if (right->is_constant()) {
2141       // cpu register - constant
2142 #ifdef _LP64
2143       jlong c = right->as_constant_ptr()->as_jlong_bits();
2144       __ movptr(r10, (intptr_t) c);
2145       switch (code) {
2146         case lir_add:
2147           __ addptr(lreg_lo, r10);
2148           break;
2149         case lir_sub:
2150           __ subptr(lreg_lo, r10);
2151           break;
2152         default:
2153           ShouldNotReachHere();
2154       }
2155 #else
2156       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2157       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2158       switch (code) {
2159         case lir_add:
2160           __ addptr(lreg_lo, c_lo);
2161           __ adcl(lreg_hi, c_hi);
2162           break;
2163         case lir_sub:
2164           __ subptr(lreg_lo, c_lo);
2165           __ sbbl(lreg_hi, c_hi);
2166           break;
2167         default:
2168           ShouldNotReachHere();
2169       }
2170 #endif // _LP64
2171 
2172     } else {
2173       ShouldNotReachHere();
2174     }
2175 
2176   } else if (left->is_single_xmm()) {
2177     assert(left == dest, "left and dest must be equal");
2178     XMMRegister lreg = left->as_xmm_float_reg();
2179 
2180     if (right->is_single_xmm()) {
2181       XMMRegister rreg = right->as_xmm_float_reg();
2182       switch (code) {
2183         case lir_add: __ addss(lreg, rreg);  break;
2184         case lir_sub: __ subss(lreg, rreg);  break;
2185         case lir_mul_strictfp: // fall through
2186         case lir_mul: __ mulss(lreg, rreg);  break;
2187         case lir_div_strictfp: // fall through
2188         case lir_div: __ divss(lreg, rreg);  break;
2189         default: ShouldNotReachHere();
2190       }
2191     } else {
2192       Address raddr;
2193       if (right->is_single_stack()) {
2194         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2195       } else if (right->is_constant()) {
2196         // hack for now
2197         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2198       } else {
2199         ShouldNotReachHere();
2200       }
2201       switch (code) {
2202         case lir_add: __ addss(lreg, raddr);  break;
2203         case lir_sub: __ subss(lreg, raddr);  break;
2204         case lir_mul_strictfp: // fall through
2205         case lir_mul: __ mulss(lreg, raddr);  break;
2206         case lir_div_strictfp: // fall through
2207         case lir_div: __ divss(lreg, raddr);  break;
2208         default: ShouldNotReachHere();
2209       }
2210     }
2211 
2212   } else if (left->is_double_xmm()) {
2213     assert(left == dest, "left and dest must be equal");
2214 
2215     XMMRegister lreg = left->as_xmm_double_reg();
2216     if (right->is_double_xmm()) {
2217       XMMRegister rreg = right->as_xmm_double_reg();
2218       switch (code) {
2219         case lir_add: __ addsd(lreg, rreg);  break;
2220         case lir_sub: __ subsd(lreg, rreg);  break;
2221         case lir_mul_strictfp: // fall through
2222         case lir_mul: __ mulsd(lreg, rreg);  break;
2223         case lir_div_strictfp: // fall through
2224         case lir_div: __ divsd(lreg, rreg);  break;
2225         default: ShouldNotReachHere();
2226       }
2227     } else {
2228       Address raddr;
2229       if (right->is_double_stack()) {
2230         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2231       } else if (right->is_constant()) {
2232         // hack for now
2233         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2234       } else {
2235         ShouldNotReachHere();
2236       }
2237       switch (code) {
2238         case lir_add: __ addsd(lreg, raddr);  break;
2239         case lir_sub: __ subsd(lreg, raddr);  break;
2240         case lir_mul_strictfp: // fall through
2241         case lir_mul: __ mulsd(lreg, raddr);  break;
2242         case lir_div_strictfp: // fall through
2243         case lir_div: __ divsd(lreg, raddr);  break;
2244         default: ShouldNotReachHere();
2245       }
2246     }
2247 
2248   } else if (left->is_single_fpu()) {
2249     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2250 
2251     if (right->is_single_fpu()) {
2252       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2253 
2254     } else {
2255       assert(left->fpu_regnr() == 0, "left must be on TOS");
2256       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2257 
2258       Address raddr;
2259       if (right->is_single_stack()) {
2260         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2261       } else if (right->is_constant()) {
2262         address const_addr = float_constant(right->as_jfloat());
2263         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2264         // hack for now
2265         raddr = __ as_Address(InternalAddress(const_addr));
2266       } else {
2267         ShouldNotReachHere();
2268       }
2269 
2270       switch (code) {
2271         case lir_add: __ fadd_s(raddr); break;
2272         case lir_sub: __ fsub_s(raddr); break;
2273         case lir_mul_strictfp: // fall through
2274         case lir_mul: __ fmul_s(raddr); break;
2275         case lir_div_strictfp: // fall through
2276         case lir_div: __ fdiv_s(raddr); break;
2277         default:      ShouldNotReachHere();
2278       }
2279     }
2280 
2281   } else if (left->is_double_fpu()) {
2282     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2283 
2284     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2285       // Double values require special handling for strictfp mul/div on x86
2286       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2287       __ fmulp(left->fpu_regnrLo() + 1);
2288     }
2289 
2290     if (right->is_double_fpu()) {
2291       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2292 
2293     } else {
2294       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2295       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2296 
2297       Address raddr;
2298       if (right->is_double_stack()) {
2299         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2300       } else if (right->is_constant()) {
2301         // hack for now
2302         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2303       } else {
2304         ShouldNotReachHere();
2305       }
2306 
2307       switch (code) {
2308         case lir_add: __ fadd_d(raddr); break;
2309         case lir_sub: __ fsub_d(raddr); break;
2310         case lir_mul_strictfp: // fall through
2311         case lir_mul: __ fmul_d(raddr); break;
2312         case lir_div_strictfp: // fall through
2313         case lir_div: __ fdiv_d(raddr); break;
2314         default: ShouldNotReachHere();
2315       }
2316     }
2317 
2318     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2319       // Double values require special handling for strictfp mul/div on x86
2320       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2321       __ fmulp(dest->fpu_regnrLo() + 1);
2322     }
2323 
2324   } else if (left->is_single_stack() || left->is_address()) {
2325     assert(left == dest, "left and dest must be equal");
2326 
2327     Address laddr;
2328     if (left->is_single_stack()) {
2329       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2330     } else if (left->is_address()) {
2331       laddr = as_Address(left->as_address_ptr());
2332     } else {
2333       ShouldNotReachHere();
2334     }
2335 
2336     if (right->is_single_cpu()) {
2337       Register rreg = right->as_register();
2338       switch (code) {
2339         case lir_add: __ addl(laddr, rreg); break;
2340         case lir_sub: __ subl(laddr, rreg); break;
2341         default:      ShouldNotReachHere();
2342       }
2343     } else if (right->is_constant()) {
2344       jint c = right->as_constant_ptr()->as_jint();
2345       switch (code) {
2346         case lir_add: {
2347           __ incrementl(laddr, c);
2348           break;
2349         }
2350         case lir_sub: {
2351           __ decrementl(laddr, c);
2352           break;
2353         }
2354         default: ShouldNotReachHere();
2355       }
2356     } else {
2357       ShouldNotReachHere();
2358     }
2359 
2360   } else {
2361     ShouldNotReachHere();
2362   }
2363 }
2364 
2365 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2366   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2367   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2368   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2369 
2370   bool left_is_tos = (left_index == 0);
2371   bool dest_is_tos = (dest_index == 0);
2372   int non_tos_index = (left_is_tos ? right_index : left_index);
2373 
2374   switch (code) {
2375     case lir_add:
2376       if (pop_fpu_stack)       __ faddp(non_tos_index);
2377       else if (dest_is_tos)    __ fadd (non_tos_index);
2378       else                     __ fadda(non_tos_index);
2379       break;
2380 
2381     case lir_sub:
2382       if (left_is_tos) {
2383         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2384         else if (dest_is_tos)  __ fsub  (non_tos_index);
2385         else                   __ fsubra(non_tos_index);
2386       } else {
2387         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2388         else if (dest_is_tos)  __ fsubr (non_tos_index);
2389         else                   __ fsuba (non_tos_index);
2390       }
2391       break;
2392 
2393     case lir_mul_strictfp: // fall through
2394     case lir_mul:
2395       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2396       else if (dest_is_tos)    __ fmul (non_tos_index);
2397       else                     __ fmula(non_tos_index);
2398       break;
2399 
2400     case lir_div_strictfp: // fall through
2401     case lir_div:
2402       if (left_is_tos) {
2403         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2404         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2405         else                   __ fdivra(non_tos_index);
2406       } else {
2407         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2408         else if (dest_is_tos)  __ fdivr (non_tos_index);
2409         else                   __ fdiva (non_tos_index);
2410       }
2411       break;
2412 
2413     case lir_rem:
2414       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2415       __ fremr(noreg);
2416       break;
2417 
2418     default:
2419       ShouldNotReachHere();
2420   }
2421 }
2422 
2423 
2424 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2425   if (value->is_double_xmm()) {
2426     switch(code) {
2427       case lir_abs :
2428         {
2429           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2430             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2431           }
2432           __ andpd(dest->as_xmm_double_reg(),
2433                     ExternalAddress((address)double_signmask_pool));
2434         }
2435         break;
2436 
2437       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2438       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2439       default      : ShouldNotReachHere();
2440     }
2441 
2442   } else if (value->is_double_fpu()) {
2443     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2444     switch(code) {
2445       case lir_log   : __ flog() ; break;
2446       case lir_log10 : __ flog10() ; break;
2447       case lir_abs   : __ fabs() ; break;
2448       case lir_sqrt  : __ fsqrt(); break;
2449       case lir_sin   :
2450         // Should consider not saving rbx, if not necessary
2451         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2452         break;
2453       case lir_cos :
2454         // Should consider not saving rbx, if not necessary
2455         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2456         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2457         break;
2458       case lir_tan :
2459         // Should consider not saving rbx, if not necessary
2460         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2461         break;
2462       case lir_exp :
2463         __ exp_with_fallback(op->as_Op2()->fpu_stack_size());
2464         break;
2465       case lir_pow :
2466         __ pow_with_fallback(op->as_Op2()->fpu_stack_size());
2467         break;
2468       default      : ShouldNotReachHere();
2469     }
2470   } else {
2471     Unimplemented();
2472   }
2473 }
2474 
2475 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2476   // assert(left->destroys_register(), "check");
2477   if (left->is_single_cpu()) {
2478     Register reg = left->as_register();
2479     if (right->is_constant()) {
2480       int val = right->as_constant_ptr()->as_jint();
2481       switch (code) {
2482         case lir_logic_and: __ andl (reg, val); break;
2483         case lir_logic_or:  __ orl  (reg, val); break;
2484         case lir_logic_xor: __ xorl (reg, val); break;
2485         default: ShouldNotReachHere();
2486       }
2487     } else if (right->is_stack()) {
2488       // added support for stack operands
2489       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2490       switch (code) {
2491         case lir_logic_and: __ andl (reg, raddr); break;
2492         case lir_logic_or:  __ orl  (reg, raddr); break;
2493         case lir_logic_xor: __ xorl (reg, raddr); break;
2494         default: ShouldNotReachHere();
2495       }
2496     } else {
2497       Register rright = right->as_register();
2498       switch (code) {
2499         case lir_logic_and: __ andptr (reg, rright); break;
2500         case lir_logic_or : __ orptr  (reg, rright); break;
2501         case lir_logic_xor: __ xorptr (reg, rright); break;
2502         default: ShouldNotReachHere();
2503       }
2504     }
2505     move_regs(reg, dst->as_register());
2506   } else {
2507     Register l_lo = left->as_register_lo();
2508     Register l_hi = left->as_register_hi();
2509     if (right->is_constant()) {
2510 #ifdef _LP64
2511       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2512       switch (code) {
2513         case lir_logic_and:
2514           __ andq(l_lo, rscratch1);
2515           break;
2516         case lir_logic_or:
2517           __ orq(l_lo, rscratch1);
2518           break;
2519         case lir_logic_xor:
2520           __ xorq(l_lo, rscratch1);
2521           break;
2522         default: ShouldNotReachHere();
2523       }
2524 #else
2525       int r_lo = right->as_constant_ptr()->as_jint_lo();
2526       int r_hi = right->as_constant_ptr()->as_jint_hi();
2527       switch (code) {
2528         case lir_logic_and:
2529           __ andl(l_lo, r_lo);
2530           __ andl(l_hi, r_hi);
2531           break;
2532         case lir_logic_or:
2533           __ orl(l_lo, r_lo);
2534           __ orl(l_hi, r_hi);
2535           break;
2536         case lir_logic_xor:
2537           __ xorl(l_lo, r_lo);
2538           __ xorl(l_hi, r_hi);
2539           break;
2540         default: ShouldNotReachHere();
2541       }
2542 #endif // _LP64
2543     } else {
2544 #ifdef _LP64
2545       Register r_lo;
2546       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2547         r_lo = right->as_register();
2548       } else {
2549         r_lo = right->as_register_lo();
2550       }
2551 #else
2552       Register r_lo = right->as_register_lo();
2553       Register r_hi = right->as_register_hi();
2554       assert(l_lo != r_hi, "overwriting registers");
2555 #endif
2556       switch (code) {
2557         case lir_logic_and:
2558           __ andptr(l_lo, r_lo);
2559           NOT_LP64(__ andptr(l_hi, r_hi);)
2560           break;
2561         case lir_logic_or:
2562           __ orptr(l_lo, r_lo);
2563           NOT_LP64(__ orptr(l_hi, r_hi);)
2564           break;
2565         case lir_logic_xor:
2566           __ xorptr(l_lo, r_lo);
2567           NOT_LP64(__ xorptr(l_hi, r_hi);)
2568           break;
2569         default: ShouldNotReachHere();
2570       }
2571     }
2572 
2573     Register dst_lo = dst->as_register_lo();
2574     Register dst_hi = dst->as_register_hi();
2575 
2576 #ifdef _LP64
2577     move_regs(l_lo, dst_lo);
2578 #else
2579     if (dst_lo == l_hi) {
2580       assert(dst_hi != l_lo, "overwriting registers");
2581       move_regs(l_hi, dst_hi);
2582       move_regs(l_lo, dst_lo);
2583     } else {
2584       assert(dst_lo != l_hi, "overwriting registers");
2585       move_regs(l_lo, dst_lo);
2586       move_regs(l_hi, dst_hi);
2587     }
2588 #endif // _LP64
2589   }
2590 }
2591 
2592 
2593 // we assume that rax, and rdx can be overwritten
2594 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2595 
2596   assert(left->is_single_cpu(),   "left must be register");
2597   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2598   assert(result->is_single_cpu(), "result must be register");
2599 
2600   //  assert(left->destroys_register(), "check");
2601   //  assert(right->destroys_register(), "check");
2602 
2603   Register lreg = left->as_register();
2604   Register dreg = result->as_register();
2605 
2606   if (right->is_constant()) {
2607     int divisor = right->as_constant_ptr()->as_jint();
2608     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2609     if (code == lir_idiv) {
2610       assert(lreg == rax, "must be rax,");
2611       assert(temp->as_register() == rdx, "tmp register must be rdx");
2612       __ cdql(); // sign extend into rdx:rax
2613       if (divisor == 2) {
2614         __ subl(lreg, rdx);
2615       } else {
2616         __ andl(rdx, divisor - 1);
2617         __ addl(lreg, rdx);
2618       }
2619       __ sarl(lreg, log2_intptr(divisor));
2620       move_regs(lreg, dreg);
2621     } else if (code == lir_irem) {
2622       Label done;
2623       __ mov(dreg, lreg);
2624       __ andl(dreg, 0x80000000 | (divisor - 1));
2625       __ jcc(Assembler::positive, done);
2626       __ decrement(dreg);
2627       __ orl(dreg, ~(divisor - 1));
2628       __ increment(dreg);
2629       __ bind(done);
2630     } else {
2631       ShouldNotReachHere();
2632     }
2633   } else {
2634     Register rreg = right->as_register();
2635     assert(lreg == rax, "left register must be rax,");
2636     assert(rreg != rdx, "right register must not be rdx");
2637     assert(temp->as_register() == rdx, "tmp register must be rdx");
2638 
2639     move_regs(lreg, rax);
2640 
2641     int idivl_offset = __ corrected_idivl(rreg);
2642     add_debug_info_for_div0(idivl_offset, info);
2643     if (code == lir_irem) {
2644       move_regs(rdx, dreg); // result is in rdx
2645     } else {
2646       move_regs(rax, dreg);
2647     }
2648   }
2649 }
2650 
2651 
2652 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2653   if (opr1->is_single_cpu()) {
2654     Register reg1 = opr1->as_register();
2655     if (opr2->is_single_cpu()) {
2656       // cpu register - cpu register
2657       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2658         __ cmpptr(reg1, opr2->as_register());
2659       } else {
2660         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2661         __ cmpl(reg1, opr2->as_register());
2662       }
2663     } else if (opr2->is_stack()) {
2664       // cpu register - stack
2665       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2666         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2667       } else {
2668         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2669       }
2670     } else if (opr2->is_constant()) {
2671       // cpu register - constant
2672       LIR_Const* c = opr2->as_constant_ptr();
2673       if (c->type() == T_INT) {
2674         __ cmpl(reg1, c->as_jint());
2675       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2676         // In 64bit oops are single register
2677         jobject o = c->as_jobject();
2678         if (o == NULL) {
2679           __ cmpptr(reg1, (int32_t)NULL_WORD);
2680         } else {
2681 #ifdef _LP64
2682           __ movoop(rscratch1, o);
2683           __ cmpptr(reg1, rscratch1);
2684 #else
2685           __ cmpoop(reg1, c->as_jobject());
2686 #endif // _LP64
2687         }
2688       } else {
2689         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2690       }
2691       // cpu register - address
2692     } else if (opr2->is_address()) {
2693       if (op->info() != NULL) {
2694         add_debug_info_for_null_check_here(op->info());
2695       }
2696       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2697     } else {
2698       ShouldNotReachHere();
2699     }
2700 
2701   } else if(opr1->is_double_cpu()) {
2702     Register xlo = opr1->as_register_lo();
2703     Register xhi = opr1->as_register_hi();
2704     if (opr2->is_double_cpu()) {
2705 #ifdef _LP64
2706       __ cmpptr(xlo, opr2->as_register_lo());
2707 #else
2708       // cpu register - cpu register
2709       Register ylo = opr2->as_register_lo();
2710       Register yhi = opr2->as_register_hi();
2711       __ subl(xlo, ylo);
2712       __ sbbl(xhi, yhi);
2713       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2714         __ orl(xhi, xlo);
2715       }
2716 #endif // _LP64
2717     } else if (opr2->is_constant()) {
2718       // cpu register - constant 0
2719       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2720 #ifdef _LP64
2721       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2722 #else
2723       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2724       __ orl(xhi, xlo);
2725 #endif // _LP64
2726     } else {
2727       ShouldNotReachHere();
2728     }
2729 
2730   } else if (opr1->is_single_xmm()) {
2731     XMMRegister reg1 = opr1->as_xmm_float_reg();
2732     if (opr2->is_single_xmm()) {
2733       // xmm register - xmm register
2734       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2735     } else if (opr2->is_stack()) {
2736       // xmm register - stack
2737       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2738     } else if (opr2->is_constant()) {
2739       // xmm register - constant
2740       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2741     } else if (opr2->is_address()) {
2742       // xmm register - address
2743       if (op->info() != NULL) {
2744         add_debug_info_for_null_check_here(op->info());
2745       }
2746       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2747     } else {
2748       ShouldNotReachHere();
2749     }
2750 
2751   } else if (opr1->is_double_xmm()) {
2752     XMMRegister reg1 = opr1->as_xmm_double_reg();
2753     if (opr2->is_double_xmm()) {
2754       // xmm register - xmm register
2755       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2756     } else if (opr2->is_stack()) {
2757       // xmm register - stack
2758       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2759     } else if (opr2->is_constant()) {
2760       // xmm register - constant
2761       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2762     } else if (opr2->is_address()) {
2763       // xmm register - address
2764       if (op->info() != NULL) {
2765         add_debug_info_for_null_check_here(op->info());
2766       }
2767       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2768     } else {
2769       ShouldNotReachHere();
2770     }
2771 
2772   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2773     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2774     assert(opr2->is_fpu_register(), "both must be registers");
2775     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2776 
2777   } else if (opr1->is_address() && opr2->is_constant()) {
2778     LIR_Const* c = opr2->as_constant_ptr();
2779 #ifdef _LP64
2780     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2781       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2782       __ movoop(rscratch1, c->as_jobject());
2783     }
2784 #endif // LP64
2785     if (op->info() != NULL) {
2786       add_debug_info_for_null_check_here(op->info());
2787     }
2788     // special case: address - constant
2789     LIR_Address* addr = opr1->as_address_ptr();
2790     if (c->type() == T_INT) {
2791       __ cmpl(as_Address(addr), c->as_jint());
2792     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2793 #ifdef _LP64
2794       // %%% Make this explode if addr isn't reachable until we figure out a
2795       // better strategy by giving noreg as the temp for as_Address
2796       __ cmpptr(rscratch1, as_Address(addr, noreg));
2797 #else
2798       __ cmpoop(as_Address(addr), c->as_jobject());
2799 #endif // _LP64
2800     } else {
2801       ShouldNotReachHere();
2802     }
2803 
2804   } else {
2805     ShouldNotReachHere();
2806   }
2807 }
2808 
2809 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2810   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2811     if (left->is_single_xmm()) {
2812       assert(right->is_single_xmm(), "must match");
2813       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2814     } else if (left->is_double_xmm()) {
2815       assert(right->is_double_xmm(), "must match");
2816       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2817 
2818     } else {
2819       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2820       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2821 
2822       assert(left->fpu() == 0, "left must be on TOS");
2823       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2824                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2825     }
2826   } else {
2827     assert(code == lir_cmp_l2i, "check");
2828 #ifdef _LP64
2829     Label done;
2830     Register dest = dst->as_register();
2831     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2832     __ movl(dest, -1);
2833     __ jccb(Assembler::less, done);
2834     __ set_byte_if_not_zero(dest);
2835     __ movzbl(dest, dest);
2836     __ bind(done);
2837 #else
2838     __ lcmp2int(left->as_register_hi(),
2839                 left->as_register_lo(),
2840                 right->as_register_hi(),
2841                 right->as_register_lo());
2842     move_regs(left->as_register_hi(), dst->as_register());
2843 #endif // _LP64
2844   }
2845 }
2846 
2847 
2848 void LIR_Assembler::align_call(LIR_Code code) {
2849   if (os::is_MP()) {
2850     // make sure that the displacement word of the call ends up word aligned
2851     int offset = __ offset();
2852     switch (code) {
2853       case lir_static_call:
2854       case lir_optvirtual_call:
2855       case lir_dynamic_call:
2856         offset += NativeCall::displacement_offset;
2857         break;
2858       case lir_icvirtual_call:
2859         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2860       break;
2861       case lir_virtual_call:  // currently, sparc-specific for niagara
2862       default: ShouldNotReachHere();
2863     }
2864     while (offset++ % BytesPerWord != 0) {
2865       __ nop();
2866     }
2867   }
2868 }
2869 
2870 
2871 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2872   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2873          "must be aligned");
2874   __ call(AddressLiteral(op->addr(), rtype));
2875   add_call_info(code_offset(), op->info());
2876 }
2877 
2878 
2879 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2880   __ ic_call(op->addr());
2881   add_call_info(code_offset(), op->info());
2882   assert(!os::is_MP() ||
2883          (__ offset() - NativeCall::instruction_size + NativeCall::displacement_offset) % BytesPerWord == 0,
2884          "must be aligned");
2885 }
2886 
2887 
2888 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2889 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2890   ShouldNotReachHere();
2891 }
2892 
2893 
2894 void LIR_Assembler::emit_static_call_stub() {
2895   address call_pc = __ pc();
2896   address stub = __ start_a_stub(call_stub_size);
2897   if (stub == NULL) {
2898     bailout("static call stub overflow");
2899     return;
2900   }
2901 
2902   int start = __ offset();
2903   if (os::is_MP()) {
2904     // make sure that the displacement word of the call ends up word aligned
2905     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2906     while (offset++ % BytesPerWord != 0) {
2907       __ nop();
2908     }
2909   }
2910   __ relocate(static_stub_Relocation::spec(call_pc));
2911   __ mov_metadata(rbx, (Metadata*)NULL);
2912   // must be set to -1 at code generation time
2913   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2914   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2915   __ jump(RuntimeAddress(__ pc()));
2916 
2917   assert(__ offset() - start <= call_stub_size, "stub too big");
2918   __ end_a_stub();
2919 }
2920 
2921 
2922 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2923   assert(exceptionOop->as_register() == rax, "must match");
2924   assert(exceptionPC->as_register() == rdx, "must match");
2925 
2926   // exception object is not added to oop map by LinearScan
2927   // (LinearScan assumes that no oops are in fixed registers)
2928   info->add_register_oop(exceptionOop);
2929   Runtime1::StubID unwind_id;
2930 
2931   // get current pc information
2932   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2933   int pc_for_athrow_offset = __ offset();
2934   InternalAddress pc_for_athrow(__ pc());
2935   __ lea(exceptionPC->as_register(), pc_for_athrow);
2936   add_call_info(pc_for_athrow_offset, info); // for exception handler
2937 
2938   __ verify_not_null_oop(rax);
2939   // search an exception handler (rax: exception oop, rdx: throwing pc)
2940   if (compilation()->has_fpu_code()) {
2941     unwind_id = Runtime1::handle_exception_id;
2942   } else {
2943     unwind_id = Runtime1::handle_exception_nofpu_id;
2944   }
2945   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2946 
2947   // enough room for two byte trap
2948   __ nop();
2949 }
2950 
2951 
2952 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2953   assert(exceptionOop->as_register() == rax, "must match");
2954 
2955   __ jmp(_unwind_handler_entry);
2956 }
2957 
2958 
2959 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2960 
2961   // optimized version for linear scan:
2962   // * count must be already in ECX (guaranteed by LinearScan)
2963   // * left and dest must be equal
2964   // * tmp must be unused
2965   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2966   assert(left == dest, "left and dest must be equal");
2967   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2968 
2969   if (left->is_single_cpu()) {
2970     Register value = left->as_register();
2971     assert(value != SHIFT_count, "left cannot be ECX");
2972 
2973     switch (code) {
2974       case lir_shl:  __ shll(value); break;
2975       case lir_shr:  __ sarl(value); break;
2976       case lir_ushr: __ shrl(value); break;
2977       default: ShouldNotReachHere();
2978     }
2979   } else if (left->is_double_cpu()) {
2980     Register lo = left->as_register_lo();
2981     Register hi = left->as_register_hi();
2982     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2983 #ifdef _LP64
2984     switch (code) {
2985       case lir_shl:  __ shlptr(lo);        break;
2986       case lir_shr:  __ sarptr(lo);        break;
2987       case lir_ushr: __ shrptr(lo);        break;
2988       default: ShouldNotReachHere();
2989     }
2990 #else
2991 
2992     switch (code) {
2993       case lir_shl:  __ lshl(hi, lo);        break;
2994       case lir_shr:  __ lshr(hi, lo, true);  break;
2995       case lir_ushr: __ lshr(hi, lo, false); break;
2996       default: ShouldNotReachHere();
2997     }
2998 #endif // LP64
2999   } else {
3000     ShouldNotReachHere();
3001   }
3002 }
3003 
3004 
3005 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
3006   if (dest->is_single_cpu()) {
3007     // first move left into dest so that left is not destroyed by the shift
3008     Register value = dest->as_register();
3009     count = count & 0x1F; // Java spec
3010 
3011     move_regs(left->as_register(), value);
3012     switch (code) {
3013       case lir_shl:  __ shll(value, count); break;
3014       case lir_shr:  __ sarl(value, count); break;
3015       case lir_ushr: __ shrl(value, count); break;
3016       default: ShouldNotReachHere();
3017     }
3018   } else if (dest->is_double_cpu()) {
3019 #ifndef _LP64
3020     Unimplemented();
3021 #else
3022     // first move left into dest so that left is not destroyed by the shift
3023     Register value = dest->as_register_lo();
3024     count = count & 0x1F; // Java spec
3025 
3026     move_regs(left->as_register_lo(), value);
3027     switch (code) {
3028       case lir_shl:  __ shlptr(value, count); break;
3029       case lir_shr:  __ sarptr(value, count); break;
3030       case lir_ushr: __ shrptr(value, count); break;
3031       default: ShouldNotReachHere();
3032     }
3033 #endif // _LP64
3034   } else {
3035     ShouldNotReachHere();
3036   }
3037 }
3038 
3039 
3040 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3041   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3042   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3043   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3044   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3045 }
3046 
3047 
3048 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3049   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3050   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3051   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3052   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3053 }
3054 
3055 
3056 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3057   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3058   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3059   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3060   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3061 }
3062 
3063 
3064 // This code replaces a call to arraycopy; no exception may
3065 // be thrown in this code, they must be thrown in the System.arraycopy
3066 // activation frame; we could save some checks if this would not be the case
3067 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3068   ciArrayKlass* default_type = op->expected_type();
3069   Register src = op->src()->as_register();
3070   Register dst = op->dst()->as_register();
3071   Register src_pos = op->src_pos()->as_register();
3072   Register dst_pos = op->dst_pos()->as_register();
3073   Register length  = op->length()->as_register();
3074   Register tmp = op->tmp()->as_register();
3075 
3076   CodeStub* stub = op->stub();
3077   int flags = op->flags();
3078   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3079   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3080 
3081   // if we don't know anything, just go through the generic arraycopy
3082   if (default_type == NULL) {
3083     Label done;
3084     // save outgoing arguments on stack in case call to System.arraycopy is needed
3085     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3086     // for interpreter calling conventions. Now we have to do it in new style conventions.
3087     // For the moment until C1 gets the new register allocator I just force all the
3088     // args to the right place (except the register args) and then on the back side
3089     // reload the register args properly if we go slow path. Yuck
3090 
3091     // These are proper for the calling convention
3092     store_parameter(length, 2);
3093     store_parameter(dst_pos, 1);
3094     store_parameter(dst, 0);
3095 
3096     // these are just temporary placements until we need to reload
3097     store_parameter(src_pos, 3);
3098     store_parameter(src, 4);
3099     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3100 
3101     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3102 
3103     address copyfunc_addr = StubRoutines::generic_arraycopy();
3104 
3105     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3106 #ifdef _LP64
3107     // The arguments are in java calling convention so we can trivially shift them to C
3108     // convention
3109     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3110     __ mov(c_rarg0, j_rarg0);
3111     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3112     __ mov(c_rarg1, j_rarg1);
3113     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3114     __ mov(c_rarg2, j_rarg2);
3115     assert_different_registers(c_rarg3, j_rarg4);
3116     __ mov(c_rarg3, j_rarg3);
3117 #ifdef _WIN64
3118     // Allocate abi space for args but be sure to keep stack aligned
3119     __ subptr(rsp, 6*wordSize);
3120     store_parameter(j_rarg4, 4);
3121     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3122       __ call(RuntimeAddress(C_entry));
3123     } else {
3124 #ifndef PRODUCT
3125       if (PrintC1Statistics) {
3126         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3127       }
3128 #endif
3129       __ call(RuntimeAddress(copyfunc_addr));
3130     }
3131     __ addptr(rsp, 6*wordSize);
3132 #else
3133     __ mov(c_rarg4, j_rarg4);
3134     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3135       __ call(RuntimeAddress(C_entry));
3136     } else {
3137 #ifndef PRODUCT
3138       if (PrintC1Statistics) {
3139         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3140       }
3141 #endif
3142       __ call(RuntimeAddress(copyfunc_addr));
3143     }
3144 #endif // _WIN64
3145 #else
3146     __ push(length);
3147     __ push(dst_pos);
3148     __ push(dst);
3149     __ push(src_pos);
3150     __ push(src);
3151 
3152     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3153       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3154     } else {
3155 #ifndef PRODUCT
3156       if (PrintC1Statistics) {
3157         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3158       }
3159 #endif
3160       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3161     }
3162 
3163 #endif // _LP64
3164 
3165     __ cmpl(rax, 0);
3166     __ jcc(Assembler::equal, *stub->continuation());
3167 
3168     if (copyfunc_addr != NULL) {
3169       __ mov(tmp, rax);
3170       __ xorl(tmp, -1);
3171     }
3172 
3173     // Reload values from the stack so they are where the stub
3174     // expects them.
3175     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3176     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3177     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3178     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3179     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3180 
3181     if (copyfunc_addr != NULL) {
3182       __ subl(length, tmp);
3183       __ addl(src_pos, tmp);
3184       __ addl(dst_pos, tmp);
3185     }
3186     __ jmp(*stub->entry());
3187 
3188     __ bind(*stub->continuation());
3189     return;
3190   }
3191 
3192   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3193 
3194   int elem_size = type2aelembytes(basic_type);
3195   int shift_amount;
3196   Address::ScaleFactor scale;
3197 
3198   switch (elem_size) {
3199     case 1 :
3200       shift_amount = 0;
3201       scale = Address::times_1;
3202       break;
3203     case 2 :
3204       shift_amount = 1;
3205       scale = Address::times_2;
3206       break;
3207     case 4 :
3208       shift_amount = 2;
3209       scale = Address::times_4;
3210       break;
3211     case 8 :
3212       shift_amount = 3;
3213       scale = Address::times_8;
3214       break;
3215     default:
3216       ShouldNotReachHere();
3217   }
3218 
3219   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3220   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3221   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3222   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3223 
3224   // length and pos's are all sign extended at this point on 64bit
3225 
3226   // test for NULL
3227   if (flags & LIR_OpArrayCopy::src_null_check) {
3228     __ testptr(src, src);
3229     __ jcc(Assembler::zero, *stub->entry());
3230   }
3231   if (flags & LIR_OpArrayCopy::dst_null_check) {
3232     __ testptr(dst, dst);
3233     __ jcc(Assembler::zero, *stub->entry());
3234   }
3235 
3236   // check if negative
3237   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3238     __ testl(src_pos, src_pos);
3239     __ jcc(Assembler::less, *stub->entry());
3240   }
3241   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3242     __ testl(dst_pos, dst_pos);
3243     __ jcc(Assembler::less, *stub->entry());
3244   }
3245 
3246   if (flags & LIR_OpArrayCopy::src_range_check) {
3247     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3248     __ cmpl(tmp, src_length_addr);
3249     __ jcc(Assembler::above, *stub->entry());
3250   }
3251   if (flags & LIR_OpArrayCopy::dst_range_check) {
3252     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3253     __ cmpl(tmp, dst_length_addr);
3254     __ jcc(Assembler::above, *stub->entry());
3255   }
3256 
3257   if (flags & LIR_OpArrayCopy::length_positive_check) {
3258     __ testl(length, length);
3259     __ jcc(Assembler::less, *stub->entry());
3260     __ jcc(Assembler::zero, *stub->continuation());
3261   }
3262 
3263 #ifdef _LP64
3264   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3265   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3266 #endif
3267 
3268   if (flags & LIR_OpArrayCopy::type_check) {
3269     // We don't know the array types are compatible
3270     if (basic_type != T_OBJECT) {
3271       // Simple test for basic type arrays
3272       if (UseCompressedClassPointers) {
3273         __ movl(tmp, src_klass_addr);
3274         __ cmpl(tmp, dst_klass_addr);
3275       } else {
3276         __ movptr(tmp, src_klass_addr);
3277         __ cmpptr(tmp, dst_klass_addr);
3278       }
3279       __ jcc(Assembler::notEqual, *stub->entry());
3280     } else {
3281       // For object arrays, if src is a sub class of dst then we can
3282       // safely do the copy.
3283       Label cont, slow;
3284 
3285       __ push(src);
3286       __ push(dst);
3287 
3288       __ load_klass(src, src);
3289       __ load_klass(dst, dst);
3290 
3291       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3292 
3293       __ push(src);
3294       __ push(dst);
3295       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3296       __ pop(dst);
3297       __ pop(src);
3298 
3299       __ cmpl(src, 0);
3300       __ jcc(Assembler::notEqual, cont);
3301 
3302       __ bind(slow);
3303       __ pop(dst);
3304       __ pop(src);
3305 
3306       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3307       if (copyfunc_addr != NULL) { // use stub if available
3308         // src is not a sub class of dst so we have to do a
3309         // per-element check.
3310 
3311         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3312         if ((flags & mask) != mask) {
3313           // Check that at least both of them object arrays.
3314           assert(flags & mask, "one of the two should be known to be an object array");
3315 
3316           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3317             __ load_klass(tmp, src);
3318           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3319             __ load_klass(tmp, dst);
3320           }
3321           int lh_offset = in_bytes(Klass::layout_helper_offset());
3322           Address klass_lh_addr(tmp, lh_offset);
3323           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3324           __ cmpl(klass_lh_addr, objArray_lh);
3325           __ jcc(Assembler::notEqual, *stub->entry());
3326         }
3327 
3328        // Spill because stubs can use any register they like and it's
3329        // easier to restore just those that we care about.
3330        store_parameter(dst, 0);
3331        store_parameter(dst_pos, 1);
3332        store_parameter(length, 2);
3333        store_parameter(src_pos, 3);
3334        store_parameter(src, 4);
3335 
3336 #ifndef _LP64
3337         __ movptr(tmp, dst_klass_addr);
3338         __ movptr(tmp, Address(tmp, ObjArrayKlass::element_klass_offset()));
3339         __ push(tmp);
3340         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3341         __ push(tmp);
3342         __ push(length);
3343         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3344         __ push(tmp);
3345         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3346         __ push(tmp);
3347 
3348         __ call_VM_leaf(copyfunc_addr, 5);
3349 #else
3350         __ movl2ptr(length, length); //higher 32bits must be null
3351 
3352         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3353         assert_different_registers(c_rarg0, dst, dst_pos, length);
3354         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3355         assert_different_registers(c_rarg1, dst, length);
3356 
3357         __ mov(c_rarg2, length);
3358         assert_different_registers(c_rarg2, dst);
3359 
3360 #ifdef _WIN64
3361         // Allocate abi space for args but be sure to keep stack aligned
3362         __ subptr(rsp, 6*wordSize);
3363         __ load_klass(c_rarg3, dst);
3364         __ movptr(c_rarg3, Address(c_rarg3, ObjArrayKlass::element_klass_offset()));
3365         store_parameter(c_rarg3, 4);
3366         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3367         __ call(RuntimeAddress(copyfunc_addr));
3368         __ addptr(rsp, 6*wordSize);
3369 #else
3370         __ load_klass(c_rarg4, dst);
3371         __ movptr(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
3372         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3373         __ call(RuntimeAddress(copyfunc_addr));
3374 #endif
3375 
3376 #endif
3377 
3378 #ifndef PRODUCT
3379         if (PrintC1Statistics) {
3380           Label failed;
3381           __ testl(rax, rax);
3382           __ jcc(Assembler::notZero, failed);
3383           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3384           __ bind(failed);
3385         }
3386 #endif
3387 
3388         __ testl(rax, rax);
3389         __ jcc(Assembler::zero, *stub->continuation());
3390 
3391 #ifndef PRODUCT
3392         if (PrintC1Statistics) {
3393           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3394         }
3395 #endif
3396 
3397         __ mov(tmp, rax);
3398 
3399         __ xorl(tmp, -1);
3400 
3401         // Restore previously spilled arguments
3402         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3403         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3404         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3405         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3406         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3407 
3408 
3409         __ subl(length, tmp);
3410         __ addl(src_pos, tmp);
3411         __ addl(dst_pos, tmp);
3412       }
3413 
3414       __ jmp(*stub->entry());
3415 
3416       __ bind(cont);
3417       __ pop(dst);
3418       __ pop(src);
3419     }
3420   }
3421 
3422 #ifdef ASSERT
3423   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3424     // Sanity check the known type with the incoming class.  For the
3425     // primitive case the types must match exactly with src.klass and
3426     // dst.klass each exactly matching the default type.  For the
3427     // object array case, if no type check is needed then either the
3428     // dst type is exactly the expected type and the src type is a
3429     // subtype which we can't check or src is the same array as dst
3430     // but not necessarily exactly of type default_type.
3431     Label known_ok, halt;
3432     __ mov_metadata(tmp, default_type->constant_encoding());
3433 #ifdef _LP64
3434     if (UseCompressedClassPointers) {
3435       __ encode_klass_not_null(tmp);
3436     }
3437 #endif
3438 
3439     if (basic_type != T_OBJECT) {
3440 
3441       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3442       else                   __ cmpptr(tmp, dst_klass_addr);
3443       __ jcc(Assembler::notEqual, halt);
3444       if (UseCompressedClassPointers)          __ cmpl(tmp, src_klass_addr);
3445       else                   __ cmpptr(tmp, src_klass_addr);
3446       __ jcc(Assembler::equal, known_ok);
3447     } else {
3448       if (UseCompressedClassPointers)          __ cmpl(tmp, dst_klass_addr);
3449       else                   __ cmpptr(tmp, dst_klass_addr);
3450       __ jcc(Assembler::equal, known_ok);
3451       __ cmpptr(src, dst);
3452       __ jcc(Assembler::equal, known_ok);
3453     }
3454     __ bind(halt);
3455     __ stop("incorrect type information in arraycopy");
3456     __ bind(known_ok);
3457   }
3458 #endif
3459 
3460 #ifndef PRODUCT
3461   if (PrintC1Statistics) {
3462     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3463   }
3464 #endif
3465 
3466 #ifdef _LP64
3467   assert_different_registers(c_rarg0, dst, dst_pos, length);
3468   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3469   assert_different_registers(c_rarg1, length);
3470   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3471   __ mov(c_rarg2, length);
3472 
3473 #else
3474   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3475   store_parameter(tmp, 0);
3476   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3477   store_parameter(tmp, 1);
3478   store_parameter(length, 2);
3479 #endif // _LP64
3480 
3481   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3482   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3483   const char *name;
3484   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3485   __ call_VM_leaf(entry, 0);
3486 
3487   __ bind(*stub->continuation());
3488 }
3489 
3490 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3491   assert(op->crc()->is_single_cpu(),  "crc must be register");
3492   assert(op->val()->is_single_cpu(),  "byte value must be register");
3493   assert(op->result_opr()->is_single_cpu(), "result must be register");
3494   Register crc = op->crc()->as_register();
3495   Register val = op->val()->as_register();
3496   Register res = op->result_opr()->as_register();
3497 
3498   assert_different_registers(val, crc, res);
3499 
3500   __ lea(res, ExternalAddress(StubRoutines::crc_table_addr()));
3501   __ notl(crc); // ~crc
3502   __ update_byte_crc32(crc, val, res);
3503   __ notl(crc); // ~crc
3504   __ mov(res, crc);
3505 }
3506 
3507 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3508   Register obj = op->obj_opr()->as_register();  // may not be an oop
3509   Register hdr = op->hdr_opr()->as_register();
3510   Register lock = op->lock_opr()->as_register();
3511   if (!UseFastLocking) {
3512     __ jmp(*op->stub()->entry());
3513   } else if (op->code() == lir_lock) {
3514     Register scratch = noreg;
3515     if (UseBiasedLocking) {
3516       scratch = op->scratch_opr()->as_register();
3517     }
3518     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3519     // add debug info for NullPointerException only if one is possible
3520     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3521     if (op->info() != NULL) {
3522       add_debug_info_for_null_check(null_check_offset, op->info());
3523     }
3524     // done
3525   } else if (op->code() == lir_unlock) {
3526     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3527     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3528   } else {
3529     Unimplemented();
3530   }
3531   __ bind(*op->stub()->continuation());
3532 }
3533 
3534 
3535 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3536   ciMethod* method = op->profiled_method();
3537   int bci          = op->profiled_bci();
3538   ciMethod* callee = op->profiled_callee();
3539 
3540   // Update counter for all call types
3541   ciMethodData* md = method->method_data_or_null();
3542   assert(md != NULL, "Sanity");
3543   ciProfileData* data = md->bci_to_data(bci);
3544   assert(data->is_CounterData(), "need CounterData for calls");
3545   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3546   Register mdo  = op->mdo()->as_register();
3547   __ mov_metadata(mdo, md->constant_encoding());
3548   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3549   Bytecodes::Code bc = method->java_code_at_bci(bci);
3550   const bool callee_is_static = callee->is_loaded() && callee->is_static();
3551   // Perform additional virtual call profiling for invokevirtual and
3552   // invokeinterface bytecodes
3553   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3554       !callee_is_static &&  // required for optimized MH invokes
3555       C1ProfileVirtualCalls) {
3556     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3557     Register recv = op->recv()->as_register();
3558     assert_different_registers(mdo, recv);
3559     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3560     ciKlass* known_klass = op->known_holder();
3561     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3562       // We know the type that will be seen at this call site; we can
3563       // statically update the MethodData* rather than needing to do
3564       // dynamic tests on the receiver type
3565 
3566       // NOTE: we should probably put a lock around this search to
3567       // avoid collisions by concurrent compilations
3568       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3569       uint i;
3570       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3571         ciKlass* receiver = vc_data->receiver(i);
3572         if (known_klass->equals(receiver)) {
3573           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3574           __ addptr(data_addr, DataLayout::counter_increment);
3575           return;
3576         }
3577       }
3578 
3579       // Receiver type not found in profile data; select an empty slot
3580 
3581       // Note that this is less efficient than it should be because it
3582       // always does a write to the receiver part of the
3583       // VirtualCallData rather than just the first time
3584       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3585         ciKlass* receiver = vc_data->receiver(i);
3586         if (receiver == NULL) {
3587           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3588           __ mov_metadata(recv_addr, known_klass->constant_encoding());
3589           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3590           __ addptr(data_addr, DataLayout::counter_increment);
3591           return;
3592         }
3593       }
3594     } else {
3595       __ load_klass(recv, recv);
3596       Label update_done;
3597       type_profile_helper(mdo, md, data, recv, &update_done);
3598       // Receiver did not match any saved receiver and there is no empty row for it.
3599       // Increment total counter to indicate polymorphic case.
3600       __ addptr(counter_addr, DataLayout::counter_increment);
3601 
3602       __ bind(update_done);
3603     }
3604   } else {
3605     // Static call
3606     __ addptr(counter_addr, DataLayout::counter_increment);
3607   }
3608 }
3609 
3610 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
3611   Register obj = op->obj()->as_register();
3612   Register tmp = op->tmp()->as_pointer_register();
3613   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
3614   ciKlass* exact_klass = op->exact_klass();
3615   intptr_t current_klass = op->current_klass();
3616   bool not_null = op->not_null();
3617   bool no_conflict = op->no_conflict();
3618 
3619   Label update, next, none;
3620 
3621   bool do_null = !not_null;
3622   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3623   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3624 
3625   assert(do_null || do_update, "why are we here?");
3626   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3627 
3628   __ verify_oop(obj);
3629 
3630   if (tmp != obj) {
3631     __ mov(tmp, obj);
3632   }
3633   if (do_null) {
3634     __ testptr(tmp, tmp);
3635     __ jccb(Assembler::notZero, update);
3636     if (!TypeEntries::was_null_seen(current_klass)) {
3637       __ orptr(mdo_addr, TypeEntries::null_seen);
3638     }
3639     if (do_update) {
3640 #ifndef ASSERT
3641       __ jmpb(next);
3642     }
3643 #else
3644       __ jmp(next);
3645     }
3646   } else {
3647     __ testptr(tmp, tmp);
3648     __ jccb(Assembler::notZero, update);
3649     __ stop("unexpect null obj");
3650 #endif
3651   }
3652 
3653   __ bind(update);
3654 
3655   if (do_update) {
3656 #ifdef ASSERT
3657     if (exact_klass != NULL) {
3658       Label ok;
3659       __ load_klass(tmp, tmp);
3660       __ push(tmp);
3661       __ mov_metadata(tmp, exact_klass->constant_encoding());
3662       __ cmpptr(tmp, Address(rsp, 0));
3663       __ jccb(Assembler::equal, ok);
3664       __ stop("exact klass and actual klass differ");
3665       __ bind(ok);
3666       __ pop(tmp);
3667     }
3668 #endif
3669     if (!no_conflict) {
3670       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3671         if (exact_klass != NULL) {
3672           __ mov_metadata(tmp, exact_klass->constant_encoding());
3673         } else {
3674           __ load_klass(tmp, tmp);
3675         }
3676 
3677         __ xorptr(tmp, mdo_addr);
3678         __ testptr(tmp, TypeEntries::type_klass_mask);
3679         // klass seen before, nothing to do. The unknown bit may have been
3680         // set already but no need to check.
3681         __ jccb(Assembler::zero, next);
3682 
3683         __ testptr(tmp, TypeEntries::type_unknown);
3684         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3685 
3686         if (TypeEntries::is_type_none(current_klass)) {
3687           __ cmpptr(mdo_addr, 0);
3688           __ jccb(Assembler::equal, none);
3689           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3690           __ jccb(Assembler::equal, none);
3691           // There is a chance that the checks above (re-reading profiling
3692           // data from memory) fail if another thread has just set the
3693           // profiling to this obj's klass
3694           __ xorptr(tmp, mdo_addr);
3695           __ testptr(tmp, TypeEntries::type_klass_mask);
3696           __ jccb(Assembler::zero, next);
3697         }
3698       } else {
3699         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3700                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3701 
3702         __ movptr(tmp, mdo_addr);
3703         __ testptr(tmp, TypeEntries::type_unknown);
3704         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3705       }
3706 
3707       // different than before. Cannot keep accurate profile.
3708       __ orptr(mdo_addr, TypeEntries::type_unknown);
3709 
3710       if (TypeEntries::is_type_none(current_klass)) {
3711         __ jmpb(next);
3712 
3713         __ bind(none);
3714         // first time here. Set profile type.
3715         __ movptr(mdo_addr, tmp);
3716       }
3717     } else {
3718       // There's a single possible klass at this profile point
3719       assert(exact_klass != NULL, "should be");
3720       if (TypeEntries::is_type_none(current_klass)) {
3721         __ mov_metadata(tmp, exact_klass->constant_encoding());
3722         __ xorptr(tmp, mdo_addr);
3723         __ testptr(tmp, TypeEntries::type_klass_mask);
3724 #ifdef ASSERT
3725         __ jcc(Assembler::zero, next);
3726 
3727         {
3728           Label ok;
3729           __ push(tmp);
3730           __ cmpptr(mdo_addr, 0);
3731           __ jcc(Assembler::equal, ok);
3732           __ cmpptr(mdo_addr, TypeEntries::null_seen);
3733           __ jcc(Assembler::equal, ok);
3734           // may have been set by another thread
3735           __ mov_metadata(tmp, exact_klass->constant_encoding());
3736           __ xorptr(tmp, mdo_addr);
3737           __ testptr(tmp, TypeEntries::type_mask);
3738           __ jcc(Assembler::zero, ok);
3739 
3740           __ stop("unexpected profiling mismatch");
3741           __ bind(ok);
3742           __ pop(tmp);
3743         }
3744 #else
3745         __ jccb(Assembler::zero, next);
3746 #endif
3747         // first time here. Set profile type.
3748         __ movptr(mdo_addr, tmp);
3749       } else {
3750         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3751                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3752 
3753         __ movptr(tmp, mdo_addr);
3754         __ testptr(tmp, TypeEntries::type_unknown);
3755         __ jccb(Assembler::notZero, next); // already unknown. Nothing to do anymore.
3756 
3757         __ orptr(mdo_addr, TypeEntries::type_unknown);
3758       }
3759     }
3760 
3761     __ bind(next);
3762   }
3763 }
3764 
3765 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3766   Unimplemented();
3767 }
3768 
3769 
3770 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3771   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3772 }
3773 
3774 
3775 void LIR_Assembler::align_backward_branch_target() {
3776   __ align(BytesPerWord);
3777 }
3778 
3779 
3780 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3781   if (left->is_single_cpu()) {
3782     __ negl(left->as_register());
3783     move_regs(left->as_register(), dest->as_register());
3784 
3785   } else if (left->is_double_cpu()) {
3786     Register lo = left->as_register_lo();
3787 #ifdef _LP64
3788     Register dst = dest->as_register_lo();
3789     __ movptr(dst, lo);
3790     __ negptr(dst);
3791 #else
3792     Register hi = left->as_register_hi();
3793     __ lneg(hi, lo);
3794     if (dest->as_register_lo() == hi) {
3795       assert(dest->as_register_hi() != lo, "destroying register");
3796       move_regs(hi, dest->as_register_hi());
3797       move_regs(lo, dest->as_register_lo());
3798     } else {
3799       move_regs(lo, dest->as_register_lo());
3800       move_regs(hi, dest->as_register_hi());
3801     }
3802 #endif // _LP64
3803 
3804   } else if (dest->is_single_xmm()) {
3805     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3806       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3807     }
3808     __ xorps(dest->as_xmm_float_reg(),
3809              ExternalAddress((address)float_signflip_pool));
3810 
3811   } else if (dest->is_double_xmm()) {
3812     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3813       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3814     }
3815     __ xorpd(dest->as_xmm_double_reg(),
3816              ExternalAddress((address)double_signflip_pool));
3817 
3818   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3819     assert(left->fpu() == 0, "arg must be on TOS");
3820     assert(dest->fpu() == 0, "dest must be TOS");
3821     __ fchs();
3822 
3823   } else {
3824     ShouldNotReachHere();
3825   }
3826 }
3827 
3828 
3829 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3830   assert(addr->is_address() && dest->is_register(), "check");
3831   Register reg;
3832   reg = dest->as_pointer_register();
3833   __ lea(reg, as_Address(addr->as_address_ptr()));
3834 }
3835 
3836 
3837 
3838 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3839   assert(!tmp->is_valid(), "don't need temporary");
3840   __ call(RuntimeAddress(dest));
3841   if (info != NULL) {
3842     add_call_info_here(info);
3843   }
3844 }
3845 
3846 
3847 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3848   assert(type == T_LONG, "only for volatile long fields");
3849 
3850   if (info != NULL) {
3851     add_debug_info_for_null_check_here(info);
3852   }
3853 
3854   if (src->is_double_xmm()) {
3855     if (dest->is_double_cpu()) {
3856 #ifdef _LP64
3857       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3858 #else
3859       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3860       __ psrlq(src->as_xmm_double_reg(), 32);
3861       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3862 #endif // _LP64
3863     } else if (dest->is_double_stack()) {
3864       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3865     } else if (dest->is_address()) {
3866       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3867     } else {
3868       ShouldNotReachHere();
3869     }
3870 
3871   } else if (dest->is_double_xmm()) {
3872     if (src->is_double_stack()) {
3873       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3874     } else if (src->is_address()) {
3875       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3876     } else {
3877       ShouldNotReachHere();
3878     }
3879 
3880   } else if (src->is_double_fpu()) {
3881     assert(src->fpu_regnrLo() == 0, "must be TOS");
3882     if (dest->is_double_stack()) {
3883       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3884     } else if (dest->is_address()) {
3885       __ fistp_d(as_Address(dest->as_address_ptr()));
3886     } else {
3887       ShouldNotReachHere();
3888     }
3889 
3890   } else if (dest->is_double_fpu()) {
3891     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3892     if (src->is_double_stack()) {
3893       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3894     } else if (src->is_address()) {
3895       __ fild_d(as_Address(src->as_address_ptr()));
3896     } else {
3897       ShouldNotReachHere();
3898     }
3899   } else {
3900     ShouldNotReachHere();
3901   }
3902 }
3903 
3904 #ifdef ASSERT
3905 // emit run-time assertion
3906 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
3907   assert(op->code() == lir_assert, "must be");
3908 
3909   if (op->in_opr1()->is_valid()) {
3910     assert(op->in_opr2()->is_valid(), "both operands must be valid");
3911     comp_op(op->condition(), op->in_opr1(), op->in_opr2(), op);
3912   } else {
3913     assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
3914     assert(op->condition() == lir_cond_always, "no other conditions allowed");
3915   }
3916 
3917   Label ok;
3918   if (op->condition() != lir_cond_always) {
3919     Assembler::Condition acond = Assembler::zero;
3920     switch (op->condition()) {
3921       case lir_cond_equal:        acond = Assembler::equal;       break;
3922       case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
3923       case lir_cond_less:         acond = Assembler::less;        break;
3924       case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
3925       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
3926       case lir_cond_greater:      acond = Assembler::greater;     break;
3927       case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
3928       case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
3929       default:                    ShouldNotReachHere();
3930     }
3931     __ jcc(acond, ok);
3932   }
3933   if (op->halt()) {
3934     const char* str = __ code_string(op->msg());
3935     __ stop(str);
3936   } else {
3937     breakpoint();
3938   }
3939   __ bind(ok);
3940 }
3941 #endif
3942 
3943 void LIR_Assembler::membar() {
3944   // QQQ sparc TSO uses this,
3945   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3946 }
3947 
3948 void LIR_Assembler::membar_acquire() {
3949   // No x86 machines currently require load fences
3950 }
3951 
3952 void LIR_Assembler::membar_release() {
3953   // No x86 machines currently require store fences
3954 }
3955 
3956 void LIR_Assembler::membar_loadload() {
3957   // no-op
3958   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3959 }
3960 
3961 void LIR_Assembler::membar_storestore() {
3962   // no-op
3963   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3964 }
3965 
3966 void LIR_Assembler::membar_loadstore() {
3967   // no-op
3968   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3969 }
3970 
3971 void LIR_Assembler::membar_storeload() {
3972   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3973 }
3974 
3975 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3976   assert(result_reg->is_register(), "check");
3977 #ifdef _LP64
3978   // __ get_thread(result_reg->as_register_lo());
3979   __ mov(result_reg->as_register(), r15_thread);
3980 #else
3981   __ get_thread(result_reg->as_register());
3982 #endif // _LP64
3983 }
3984 
3985 
3986 void LIR_Assembler::peephole(LIR_List*) {
3987   // do nothing for now
3988 }
3989 
3990 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
3991   assert(data == dest, "xchg/xadd uses only 2 operands");
3992 
3993   if (data->type() == T_INT) {
3994     if (code == lir_xadd) {
3995       if (os::is_MP()) {
3996         __ lock();
3997       }
3998       __ xaddl(as_Address(src->as_address_ptr()), data->as_register());
3999     } else {
4000       __ xchgl(data->as_register(), as_Address(src->as_address_ptr()));
4001     }
4002   } else if (data->is_oop()) {
4003     assert (code == lir_xchg, "xadd for oops");
4004     Register obj = data->as_register();
4005 #ifdef _LP64
4006     if (UseCompressedOops) {
4007       __ encode_heap_oop(obj);
4008       __ xchgl(obj, as_Address(src->as_address_ptr()));
4009       __ decode_heap_oop(obj);
4010     } else {
4011       __ xchgptr(obj, as_Address(src->as_address_ptr()));
4012     }
4013 #else
4014     __ xchgl(obj, as_Address(src->as_address_ptr()));
4015 #endif
4016   } else if (data->type() == T_LONG) {
4017 #ifdef _LP64
4018     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
4019     if (code == lir_xadd) {
4020       if (os::is_MP()) {
4021         __ lock();
4022       }
4023       __ xaddq(as_Address(src->as_address_ptr()), data->as_register_lo());
4024     } else {
4025       __ xchgq(data->as_register_lo(), as_Address(src->as_address_ptr()));
4026     }
4027 #else
4028     ShouldNotReachHere();
4029 #endif
4030   } else {
4031     ShouldNotReachHere();
4032   }
4033 }
4034 
4035 #undef __