1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP
  27 
  28 #include "classfile/javaClasses.hpp"
  29 #include "gc_implementation/g1/heapRegionSet.hpp"
  30 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  31 #include "gc_implementation/shared/gcId.hpp"
  32 #include "utilities/taskqueue.hpp"
  33 
  34 class G1CollectedHeap;
  35 class CMBitMap;
  36 class CMTask;
  37 class ConcurrentMark;
  38 typedef GenericTaskQueue<oop, mtGC>            CMTaskQueue;
  39 typedef GenericTaskQueueSet<CMTaskQueue, mtGC> CMTaskQueueSet;
  40 
  41 // Closure used by CM during concurrent reference discovery
  42 // and reference processing (during remarking) to determine
  43 // if a particular object is alive. It is primarily used
  44 // to determine if referents of discovered reference objects
  45 // are alive. An instance is also embedded into the
  46 // reference processor as the _is_alive_non_header field
  47 class G1CMIsAliveClosure: public BoolObjectClosure {
  48   G1CollectedHeap* _g1;
  49  public:
  50   G1CMIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) { }
  51 
  52   bool do_object_b(oop obj);
  53 };
  54 
  55 // A generic CM bit map.  This is essentially a wrapper around the BitMap
  56 // class, with one bit per (1<<_shifter) HeapWords.
  57 
  58 class CMBitMapRO VALUE_OBJ_CLASS_SPEC {
  59  protected:
  60   HeapWord* _bmStartWord;      // base address of range covered by map
  61   size_t    _bmWordSize;       // map size (in #HeapWords covered)
  62   const int _shifter;          // map to char or bit
  63   BitMap    _bm;               // the bit map itself
  64 
  65  public:
  66   // constructor
  67   CMBitMapRO(int shifter);
  68 
  69   enum { do_yield = true };
  70 
  71   // inquiries
  72   HeapWord* startWord()   const { return _bmStartWord; }
  73   size_t    sizeInWords() const { return _bmWordSize;  }
  74   // the following is one past the last word in space
  75   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
  76 
  77   // read marks
  78 
  79   bool isMarked(HeapWord* addr) const {
  80     assert(_bmStartWord <= addr && addr < (_bmStartWord + _bmWordSize),
  81            "outside underlying space?");
  82     return _bm.at(heapWordToOffset(addr));
  83   }
  84 
  85   // iteration
  86   inline bool iterate(BitMapClosure* cl, MemRegion mr);
  87   inline bool iterate(BitMapClosure* cl);
  88 
  89   // Return the address corresponding to the next marked bit at or after
  90   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  91   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  92   HeapWord* getNextMarkedWordAddress(const HeapWord* addr,
  93                                      const HeapWord* limit = NULL) const;
  94   // Return the address corresponding to the next unmarked bit at or after
  95   // "addr", and before "limit", if "limit" is non-NULL.  If there is no
  96   // such bit, returns "limit" if that is non-NULL, or else "endWord()".
  97   HeapWord* getNextUnmarkedWordAddress(const HeapWord* addr,
  98                                        const HeapWord* limit = NULL) const;
  99 
 100   // conversion utilities
 101   HeapWord* offsetToHeapWord(size_t offset) const {
 102     return _bmStartWord + (offset << _shifter);
 103   }
 104   size_t heapWordToOffset(const HeapWord* addr) const {
 105     return pointer_delta(addr, _bmStartWord) >> _shifter;
 106   }
 107   int heapWordDiffToOffsetDiff(size_t diff) const;
 108 
 109   // The argument addr should be the start address of a valid object
 110   HeapWord* nextObject(HeapWord* addr) {
 111     oop obj = (oop) addr;
 112     HeapWord* res =  addr + obj->size();
 113     assert(offsetToHeapWord(heapWordToOffset(res)) == res, "sanity");
 114     return res;
 115   }
 116 
 117   void print_on_error(outputStream* st, const char* prefix) const;
 118 
 119   // debugging
 120   NOT_PRODUCT(bool covers(MemRegion rs) const;)
 121 };
 122 
 123 class CMBitMapMappingChangedListener : public G1MappingChangedListener {
 124  private:
 125   CMBitMap* _bm;
 126  public:
 127   CMBitMapMappingChangedListener() : _bm(NULL) {}
 128 
 129   void set_bitmap(CMBitMap* bm) { _bm = bm; }
 130 
 131   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 132 };
 133 
 134 class CMBitMap : public CMBitMapRO {
 135  private:
 136   CMBitMapMappingChangedListener _listener;
 137 
 138  public:
 139   static size_t compute_size(size_t heap_size);
 140   // Returns the amount of bytes on the heap between two marks in the bitmap.
 141   static size_t mark_distance();
 142   // Returns how many bytes (or bits) of the heap a single byte (or bit) of the
 143   // mark bitmap corresponds to. This is the same as the mark distance above.
 144   static size_t heap_map_factor() {
 145     return mark_distance();
 146   }
 147 
 148   CMBitMap() : CMBitMapRO(LogMinObjAlignment), _listener() { _listener.set_bitmap(this); }
 149 
 150   // Initializes the underlying BitMap to cover the given area.
 151   void initialize(MemRegion heap, G1RegionToSpaceMapper* storage);
 152 
 153   // Write marks.
 154   inline void mark(HeapWord* addr);
 155   inline void clear(HeapWord* addr);
 156   inline bool parMark(HeapWord* addr);
 157   inline bool parClear(HeapWord* addr);
 158 
 159   void markRange(MemRegion mr);
 160   void clearRange(MemRegion mr);
 161 
 162   // Starting at the bit corresponding to "addr" (inclusive), find the next
 163   // "1" bit, if any.  This bit starts some run of consecutive "1"'s; find
 164   // the end of this run (stopping at "end_addr").  Return the MemRegion
 165   // covering from the start of the region corresponding to the first bit
 166   // of the run to the end of the region corresponding to the last bit of
 167   // the run.  If there is no "1" bit at or after "addr", return an empty
 168   // MemRegion.
 169   MemRegion getAndClearMarkedRegion(HeapWord* addr, HeapWord* end_addr);
 170 
 171   // Clear the whole mark bitmap.
 172   void clearAll();
 173 };
 174 
 175 // Represents a marking stack used by ConcurrentMarking in the G1 collector.
 176 class CMMarkStack VALUE_OBJ_CLASS_SPEC {
 177   VirtualSpace _virtual_space;   // Underlying backing store for actual stack
 178   ConcurrentMark* _cm;
 179   oop* _base;        // bottom of stack
 180   jint _index;       // one more than last occupied index
 181   jint _capacity;    // max #elements
 182   jint _saved_index; // value of _index saved at start of GC
 183 
 184   bool  _overflow;
 185   bool  _should_expand;
 186   DEBUG_ONLY(bool _drain_in_progress;)
 187   DEBUG_ONLY(bool _drain_in_progress_yields;)
 188 
 189   oop pop() {
 190     if (!isEmpty()) {
 191       return _base[--_index] ;
 192     }
 193     return NULL;
 194   }
 195 
 196  public:
 197   CMMarkStack(ConcurrentMark* cm);
 198   ~CMMarkStack();
 199 
 200   bool allocate(size_t capacity);
 201 
 202   // Pushes the first "n" elements of "ptr_arr" on the stack.
 203   // Locking impl: concurrency is allowed only with
 204   // "par_push_arr" and/or "par_pop_arr" operations, which use the same
 205   // locking strategy.
 206   void par_push_arr(oop* ptr_arr, int n);
 207 
 208   // If returns false, the array was empty.  Otherwise, removes up to "max"
 209   // elements from the stack, and transfers them to "ptr_arr" in an
 210   // unspecified order.  The actual number transferred is given in "n" ("n
 211   // == 0" is deliberately redundant with the return value.)  Locking impl:
 212   // concurrency is allowed only with "par_push_arr" and/or "par_pop_arr"
 213   // operations, which use the same locking strategy.
 214   bool par_pop_arr(oop* ptr_arr, int max, int* n);
 215 
 216   // Drain the mark stack, applying the given closure to all fields of
 217   // objects on the stack.  (That is, continue until the stack is empty,
 218   // even if closure applications add entries to the stack.)  The "bm"
 219   // argument, if non-null, may be used to verify that only marked objects
 220   // are on the mark stack.  If "yield_after" is "true", then the
 221   // concurrent marker performing the drain offers to yield after
 222   // processing each object.  If a yield occurs, stops the drain operation
 223   // and returns false.  Otherwise, returns true.
 224   template<class OopClosureClass>
 225   bool drain(OopClosureClass* cl, CMBitMap* bm, bool yield_after = false);
 226 
 227   bool isEmpty()    { return _index == 0; }
 228   int  maxElems()   { return _capacity; }
 229 
 230   bool overflow() { return _overflow; }
 231   void clear_overflow() { _overflow = false; }
 232 
 233   bool should_expand() const { return _should_expand; }
 234   void set_should_expand();
 235 
 236   // Expand the stack, typically in response to an overflow condition
 237   void expand();
 238 
 239   int  size() { return _index; }
 240 
 241   void setEmpty()   { _index = 0; clear_overflow(); }
 242 
 243   // Record the current index.
 244   void note_start_of_gc();
 245 
 246   // Make sure that we have not added any entries to the stack during GC.
 247   void note_end_of_gc();
 248 
 249   // iterate over the oops in the mark stack, up to the bound recorded via
 250   // the call above.
 251   void oops_do(OopClosure* f);
 252 };
 253 
 254 class ForceOverflowSettings VALUE_OBJ_CLASS_SPEC {
 255 private:
 256 #ifndef PRODUCT
 257   uintx _num_remaining;
 258   bool _force;
 259 #endif // !defined(PRODUCT)
 260 
 261 public:
 262   void init() PRODUCT_RETURN;
 263   void update() PRODUCT_RETURN;
 264   bool should_force() PRODUCT_RETURN_( return false; );
 265 };
 266 
 267 // this will enable a variety of different statistics per GC task
 268 #define _MARKING_STATS_       0
 269 // this will enable the higher verbose levels
 270 #define _MARKING_VERBOSE_     0
 271 
 272 #if _MARKING_STATS_
 273 #define statsOnly(statement)  \
 274 do {                          \
 275   statement ;                 \
 276 } while (0)
 277 #else // _MARKING_STATS_
 278 #define statsOnly(statement)  \
 279 do {                          \
 280 } while (0)
 281 #endif // _MARKING_STATS_
 282 
 283 typedef enum {
 284   no_verbose  = 0,   // verbose turned off
 285   stats_verbose,     // only prints stats at the end of marking
 286   low_verbose,       // low verbose, mostly per region and per major event
 287   medium_verbose,    // a bit more detailed than low
 288   high_verbose       // per object verbose
 289 } CMVerboseLevel;
 290 
 291 class YoungList;
 292 
 293 // Root Regions are regions that are not empty at the beginning of a
 294 // marking cycle and which we might collect during an evacuation pause
 295 // while the cycle is active. Given that, during evacuation pauses, we
 296 // do not copy objects that are explicitly marked, what we have to do
 297 // for the root regions is to scan them and mark all objects reachable
 298 // from them. According to the SATB assumptions, we only need to visit
 299 // each object once during marking. So, as long as we finish this scan
 300 // before the next evacuation pause, we can copy the objects from the
 301 // root regions without having to mark them or do anything else to them.
 302 //
 303 // Currently, we only support root region scanning once (at the start
 304 // of the marking cycle) and the root regions are all the survivor
 305 // regions populated during the initial-mark pause.
 306 class CMRootRegions VALUE_OBJ_CLASS_SPEC {
 307 private:
 308   YoungList*           _young_list;
 309   ConcurrentMark*      _cm;
 310 
 311   volatile bool        _scan_in_progress;
 312   volatile bool        _should_abort;
 313   HeapRegion* volatile _next_survivor;
 314 
 315 public:
 316   CMRootRegions();
 317   // We actually do most of the initialization in this method.
 318   void init(G1CollectedHeap* g1h, ConcurrentMark* cm);
 319 
 320   // Reset the claiming / scanning of the root regions.
 321   void prepare_for_scan();
 322 
 323   // Forces get_next() to return NULL so that the iteration aborts early.
 324   void abort() { _should_abort = true; }
 325 
 326   // Return true if the CM thread are actively scanning root regions,
 327   // false otherwise.
 328   bool scan_in_progress() { return _scan_in_progress; }
 329 
 330   // Claim the next root region to scan atomically, or return NULL if
 331   // all have been claimed.
 332   HeapRegion* claim_next();
 333 
 334   // Flag that we're done with root region scanning and notify anyone
 335   // who's waiting on it. If aborted is false, assume that all regions
 336   // have been claimed.
 337   void scan_finished();
 338 
 339   // If CM threads are still scanning root regions, wait until they
 340   // are done. Return true if we had to wait, false otherwise.
 341   bool wait_until_scan_finished();
 342 };
 343 
 344 class ConcurrentMarkThread;
 345 
 346 class ConcurrentMark: public CHeapObj<mtGC> {
 347   friend class CMMarkStack;
 348   friend class ConcurrentMarkThread;
 349   friend class CMTask;
 350   friend class CMBitMapClosure;
 351   friend class CMRemarkTask;
 352   friend class CMConcurrentMarkingTask;
 353   friend class G1ParNoteEndTask;
 354   friend class CalcLiveObjectsClosure;
 355   friend class G1CMRefProcTaskProxy;
 356   friend class G1CMRefProcTaskExecutor;
 357   friend class G1CMKeepAliveAndDrainClosure;
 358   friend class G1CMDrainMarkingStackClosure;
 359 
 360 protected:
 361   ConcurrentMarkThread* _cmThread;   // The thread doing the work
 362   G1CollectedHeap*      _g1h;        // The heap
 363   uint                  _parallel_marking_threads; // The number of marking
 364                                                    // threads we're using
 365   uint                  _max_parallel_marking_threads; // Max number of marking
 366                                                        // threads we'll ever use
 367   double                _sleep_factor; // How much we have to sleep, with
 368                                        // respect to the work we just did, to
 369                                        // meet the marking overhead goal
 370   double                _marking_task_overhead; // Marking target overhead for
 371                                                 // a single task
 372 
 373   // Same as the two above, but for the cleanup task
 374   double                _cleanup_sleep_factor;
 375   double                _cleanup_task_overhead;
 376 
 377   FreeRegionList        _cleanup_list;
 378 
 379   // Concurrent marking support structures
 380   CMBitMap                _markBitMap1;
 381   CMBitMap                _markBitMap2;
 382   CMBitMapRO*             _prevMarkBitMap; // Completed mark bitmap
 383   CMBitMap*               _nextMarkBitMap; // Under-construction mark bitmap
 384 
 385   BitMap                  _region_bm;
 386   BitMap                  _card_bm;
 387 
 388   // Heap bounds
 389   HeapWord*               _heap_start;
 390   HeapWord*               _heap_end;
 391 
 392   // Root region tracking and claiming
 393   CMRootRegions           _root_regions;
 394 
 395   // For gray objects
 396   CMMarkStack             _markStack; // Grey objects behind global finger
 397   HeapWord* volatile      _finger;  // The global finger, region aligned,
 398                                     // always points to the end of the
 399                                     // last claimed region
 400 
 401   // Marking tasks
 402   uint                    _max_worker_id;// Maximum worker id
 403   uint                    _active_tasks; // Task num currently active
 404   CMTask**                _tasks;        // Task queue array (max_worker_id len)
 405   CMTaskQueueSet*         _task_queues;  // Task queue set
 406   ParallelTaskTerminator  _terminator;   // For termination
 407 
 408   // Two sync barriers that are used to synchronize tasks when an
 409   // overflow occurs. The algorithm is the following. All tasks enter
 410   // the first one to ensure that they have all stopped manipulating
 411   // the global data structures. After they exit it, they re-initialize
 412   // their data structures and task 0 re-initializes the global data
 413   // structures. Then, they enter the second sync barrier. This
 414   // ensure, that no task starts doing work before all data
 415   // structures (local and global) have been re-initialized. When they
 416   // exit it, they are free to start working again.
 417   WorkGangBarrierSync     _first_overflow_barrier_sync;
 418   WorkGangBarrierSync     _second_overflow_barrier_sync;
 419 
 420   // This is set by any task, when an overflow on the global data
 421   // structures is detected
 422   volatile bool           _has_overflown;
 423   // True: marking is concurrent, false: we're in remark
 424   volatile bool           _concurrent;
 425   // Set at the end of a Full GC so that marking aborts
 426   volatile bool           _has_aborted;
 427   GCId                    _aborted_gc_id;
 428 
 429   // Used when remark aborts due to an overflow to indicate that
 430   // another concurrent marking phase should start
 431   volatile bool           _restart_for_overflow;
 432 
 433   // This is true from the very start of concurrent marking until the
 434   // point when all the tasks complete their work. It is really used
 435   // to determine the points between the end of concurrent marking and
 436   // time of remark.
 437   volatile bool           _concurrent_marking_in_progress;
 438 
 439   // Verbose level
 440   CMVerboseLevel          _verbose_level;
 441 
 442   // All of these times are in ms
 443   NumberSeq _init_times;
 444   NumberSeq _remark_times;
 445   NumberSeq _remark_mark_times;
 446   NumberSeq _remark_weak_ref_times;
 447   NumberSeq _cleanup_times;
 448   double    _total_counting_time;
 449   double    _total_rs_scrub_time;
 450 
 451   double*   _accum_task_vtime;   // Accumulated task vtime
 452 
 453   FlexibleWorkGang* _parallel_workers;
 454 
 455   ForceOverflowSettings _force_overflow_conc;
 456   ForceOverflowSettings _force_overflow_stw;
 457 
 458   void weakRefsWorkParallelPart(BoolObjectClosure* is_alive, bool purged_classes);
 459   void weakRefsWork(bool clear_all_soft_refs);
 460 
 461   void swapMarkBitMaps();
 462 
 463   // It resets the global marking data structures, as well as the
 464   // task local ones; should be called during initial mark.
 465   void reset();
 466 
 467   // Resets all the marking data structures. Called when we have to restart
 468   // marking or when marking completes (via set_non_marking_state below).
 469   void reset_marking_state(bool clear_overflow = true);
 470 
 471   // We do this after we're done with marking so that the marking data
 472   // structures are initialized to a sensible and predictable state.
 473   void set_non_marking_state();
 474 
 475   // Called to indicate how many threads are currently active.
 476   void set_concurrency(uint active_tasks);
 477 
 478   // It should be called to indicate which phase we're in (concurrent
 479   // mark or remark) and how many threads are currently active.
 480   void set_concurrency_and_phase(uint active_tasks, bool concurrent);
 481 
 482   // Prints all gathered CM-related statistics
 483   void print_stats();
 484 
 485   bool cleanup_list_is_empty() {
 486     return _cleanup_list.is_empty();
 487   }
 488 
 489   // Accessor methods
 490   uint parallel_marking_threads() const     { return _parallel_marking_threads; }
 491   uint max_parallel_marking_threads() const { return _max_parallel_marking_threads;}
 492   double sleep_factor()                     { return _sleep_factor; }
 493   double marking_task_overhead()            { return _marking_task_overhead;}
 494   double cleanup_sleep_factor()             { return _cleanup_sleep_factor; }
 495   double cleanup_task_overhead()            { return _cleanup_task_overhead;}
 496 
 497   HeapWord*               finger()          { return _finger;   }
 498   bool                    concurrent()      { return _concurrent; }
 499   uint                    active_tasks()    { return _active_tasks; }
 500   ParallelTaskTerminator* terminator()      { return &_terminator; }
 501 
 502   // It claims the next available region to be scanned by a marking
 503   // task/thread. It might return NULL if the next region is empty or
 504   // we have run out of regions. In the latter case, out_of_regions()
 505   // determines whether we've really run out of regions or the task
 506   // should call claim_region() again. This might seem a bit
 507   // awkward. Originally, the code was written so that claim_region()
 508   // either successfully returned with a non-empty region or there
 509   // were no more regions to be claimed. The problem with this was
 510   // that, in certain circumstances, it iterated over large chunks of
 511   // the heap finding only empty regions and, while it was working, it
 512   // was preventing the calling task to call its regular clock
 513   // method. So, this way, each task will spend very little time in
 514   // claim_region() and is allowed to call the regular clock method
 515   // frequently.
 516   HeapRegion* claim_region(uint worker_id);
 517 
 518   // It determines whether we've run out of regions to scan. Note that
 519   // the finger can point past the heap end in case the heap was expanded
 520   // to satisfy an allocation without doing a GC. This is fine, because all
 521   // objects in those regions will be considered live anyway because of
 522   // SATB guarantees (i.e. their TAMS will be equal to bottom).
 523   bool        out_of_regions() { return _finger >= _heap_end; }
 524 
 525   // Returns the task with the given id
 526   CMTask* task(int id) {
 527     assert(0 <= id && id < (int) _active_tasks,
 528            "task id not within active bounds");
 529     return _tasks[id];
 530   }
 531 
 532   // Returns the task queue with the given id
 533   CMTaskQueue* task_queue(int id) {
 534     assert(0 <= id && id < (int) _active_tasks,
 535            "task queue id not within active bounds");
 536     return (CMTaskQueue*) _task_queues->queue(id);
 537   }
 538 
 539   // Returns the task queue set
 540   CMTaskQueueSet* task_queues()  { return _task_queues; }
 541 
 542   // Access / manipulation of the overflow flag which is set to
 543   // indicate that the global stack has overflown
 544   bool has_overflown()           { return _has_overflown; }
 545   void set_has_overflown()       { _has_overflown = true; }
 546   void clear_has_overflown()     { _has_overflown = false; }
 547   bool restart_for_overflow()    { return _restart_for_overflow; }
 548 
 549   // Methods to enter the two overflow sync barriers
 550   void enter_first_sync_barrier(uint worker_id);
 551   void enter_second_sync_barrier(uint worker_id);
 552 
 553   ForceOverflowSettings* force_overflow_conc() {
 554     return &_force_overflow_conc;
 555   }
 556 
 557   ForceOverflowSettings* force_overflow_stw() {
 558     return &_force_overflow_stw;
 559   }
 560 
 561   ForceOverflowSettings* force_overflow() {
 562     if (concurrent()) {
 563       return force_overflow_conc();
 564     } else {
 565       return force_overflow_stw();
 566     }
 567   }
 568 
 569   // Live Data Counting data structures...
 570   // These data structures are initialized at the start of
 571   // marking. They are written to while marking is active.
 572   // They are aggregated during remark; the aggregated values
 573   // are then used to populate the _region_bm, _card_bm, and
 574   // the total live bytes, which are then subsequently updated
 575   // during cleanup.
 576 
 577   // An array of bitmaps (one bit map per task). Each bitmap
 578   // is used to record the cards spanned by the live objects
 579   // marked by that task/worker.
 580   BitMap*  _count_card_bitmaps;
 581 
 582   // Used to record the number of marked live bytes
 583   // (for each region, by worker thread).
 584   size_t** _count_marked_bytes;
 585 
 586   // Card index of the bottom of the G1 heap. Used for biasing indices into
 587   // the card bitmaps.
 588   intptr_t _heap_bottom_card_num;
 589 
 590   // Set to true when initialization is complete
 591   bool _completed_initialization;
 592 
 593 public:
 594   // Manipulation of the global mark stack.
 595   // The push and pop operations are used by tasks for transfers
 596   // between task-local queues and the global mark stack, and use
 597   // locking for concurrency safety.
 598   bool mark_stack_push(oop* arr, int n) {
 599     _markStack.par_push_arr(arr, n);
 600     if (_markStack.overflow()) {
 601       set_has_overflown();
 602       return false;
 603     }
 604     return true;
 605   }
 606   void mark_stack_pop(oop* arr, int max, int* n) {
 607     _markStack.par_pop_arr(arr, max, n);
 608   }
 609   size_t mark_stack_size()                { return _markStack.size(); }
 610   size_t partial_mark_stack_size_target() { return _markStack.maxElems()/3; }
 611   bool mark_stack_overflow()              { return _markStack.overflow(); }
 612   bool mark_stack_empty()                 { return _markStack.isEmpty(); }
 613 
 614   CMRootRegions* root_regions() { return &_root_regions; }
 615 
 616   bool concurrent_marking_in_progress() {
 617     return _concurrent_marking_in_progress;
 618   }
 619   void set_concurrent_marking_in_progress() {
 620     _concurrent_marking_in_progress = true;
 621   }
 622   void clear_concurrent_marking_in_progress() {
 623     _concurrent_marking_in_progress = false;
 624   }
 625 
 626   void update_accum_task_vtime(int i, double vtime) {
 627     _accum_task_vtime[i] += vtime;
 628   }
 629 
 630   double all_task_accum_vtime() {
 631     double ret = 0.0;
 632     for (uint i = 0; i < _max_worker_id; ++i)
 633       ret += _accum_task_vtime[i];
 634     return ret;
 635   }
 636 
 637   // Attempts to steal an object from the task queues of other tasks
 638   bool try_stealing(uint worker_id, int* hash_seed, oop& obj);
 639 
 640   ConcurrentMark(G1CollectedHeap* g1h,
 641                  G1RegionToSpaceMapper* prev_bitmap_storage,
 642                  G1RegionToSpaceMapper* next_bitmap_storage);
 643   ~ConcurrentMark();
 644 
 645   ConcurrentMarkThread* cmThread() { return _cmThread; }
 646 
 647   CMBitMapRO* prevMarkBitMap() const { return _prevMarkBitMap; }
 648   CMBitMap*   nextMarkBitMap() const { return _nextMarkBitMap; }
 649 
 650   // Returns the number of GC threads to be used in a concurrent
 651   // phase based on the number of GC threads being used in a STW
 652   // phase.
 653   uint scale_parallel_threads(uint n_par_threads);
 654 
 655   // Calculates the number of GC threads to be used in a concurrent phase.
 656   uint calc_parallel_marking_threads();
 657 
 658   // The following three are interaction between CM and
 659   // G1CollectedHeap
 660 
 661   // This notifies CM that a root during initial-mark needs to be
 662   // grayed. It is MT-safe. word_size is the size of the object in
 663   // words. It is passed explicitly as sometimes we cannot calculate
 664   // it from the given object because it might be in an inconsistent
 665   // state (e.g., in to-space and being copied). So the caller is
 666   // responsible for dealing with this issue (e.g., get the size from
 667   // the from-space image when the to-space image might be
 668   // inconsistent) and always passing the size. hr is the region that
 669   // contains the object and it's passed optionally from callers who
 670   // might already have it (no point in recalculating it).
 671   inline void grayRoot(oop obj,
 672                        size_t word_size,
 673                        uint worker_id,
 674                        HeapRegion* hr = NULL);
 675 
 676   // It iterates over the heap and for each object it comes across it
 677   // will dump the contents of its reference fields, as well as
 678   // liveness information for the object and its referents. The dump
 679   // will be written to a file with the following name:
 680   // G1PrintReachableBaseFile + "." + str.
 681   // vo decides whether the prev (vo == UsePrevMarking), the next
 682   // (vo == UseNextMarking) marking information, or the mark word
 683   // (vo == UseMarkWord) will be used to determine the liveness of
 684   // each object / referent.
 685   // If all is true, all objects in the heap will be dumped, otherwise
 686   // only the live ones. In the dump the following symbols / breviations
 687   // are used:
 688   //   M : an explicitly live object (its bitmap bit is set)
 689   //   > : an implicitly live object (over tams)
 690   //   O : an object outside the G1 heap (typically: in the perm gen)
 691   //   NOT : a reference field whose referent is not live
 692   //   AND MARKED : indicates that an object is both explicitly and
 693   //   implicitly live (it should be one or the other, not both)
 694   void print_reachable(const char* str,
 695                        VerifyOption vo,
 696                        bool all) PRODUCT_RETURN;
 697 
 698   // Clear the next marking bitmap (will be called concurrently).
 699   void clearNextBitmap();
 700 
 701   // Return whether the next mark bitmap has no marks set. To be used for assertions
 702   // only. Will not yield to pause requests.
 703   bool nextMarkBitmapIsClear();
 704 
 705   // These two do the work that needs to be done before and after the
 706   // initial root checkpoint. Since this checkpoint can be done at two
 707   // different points (i.e. an explicit pause or piggy-backed on a
 708   // young collection), then it's nice to be able to easily share the
 709   // pre/post code. It might be the case that we can put everything in
 710   // the post method. TP
 711   void checkpointRootsInitialPre();
 712   void checkpointRootsInitialPost();
 713 
 714   // Scan all the root regions and mark everything reachable from
 715   // them.
 716   void scanRootRegions();
 717 
 718   // Scan a single root region and mark everything reachable from it.
 719   void scanRootRegion(HeapRegion* hr, uint worker_id);
 720 
 721   // Do concurrent phase of marking, to a tentative transitive closure.
 722   void markFromRoots();
 723 
 724   void checkpointRootsFinal(bool clear_all_soft_refs);
 725   void checkpointRootsFinalWork();
 726   void cleanup();
 727   void completeCleanup();
 728 
 729   // Mark in the previous bitmap.  NB: this is usually read-only, so use
 730   // this carefully!
 731   inline void markPrev(oop p);
 732 
 733   // Clears marks for all objects in the given range, for the prev or
 734   // next bitmaps.  NB: the previous bitmap is usually
 735   // read-only, so use this carefully!
 736   void clearRangePrevBitmap(MemRegion mr);
 737   void clearRangeNextBitmap(MemRegion mr);
 738 
 739   // Notify data structures that a GC has started.
 740   void note_start_of_gc() {
 741     _markStack.note_start_of_gc();
 742   }
 743 
 744   // Notify data structures that a GC is finished.
 745   void note_end_of_gc() {
 746     _markStack.note_end_of_gc();
 747   }
 748 
 749   // Verify that there are no CSet oops on the stacks (taskqueues /
 750   // global mark stack) and fingers (global / per-task).
 751   // If marking is not in progress, it's a no-op.
 752   void verify_no_cset_oops() PRODUCT_RETURN;
 753 
 754   bool isPrevMarked(oop p) const {
 755     assert(p != NULL && p->is_oop(), "expected an oop");
 756     HeapWord* addr = (HeapWord*)p;
 757     assert(addr >= _prevMarkBitMap->startWord() ||
 758            addr < _prevMarkBitMap->endWord(), "in a region");
 759 
 760     return _prevMarkBitMap->isMarked(addr);
 761   }
 762 
 763   inline bool do_yield_check(uint worker_i = 0);
 764 
 765   // Called to abort the marking cycle after a Full GC takes place.
 766   void abort();
 767 
 768   bool has_aborted()      { return _has_aborted; }
 769 
 770   const GCId& concurrent_gc_id();
 771 
 772   // This prints the global/local fingers. It is used for debugging.
 773   NOT_PRODUCT(void print_finger();)
 774 
 775   void print_summary_info();
 776 
 777   void print_worker_threads_on(outputStream* st) const;
 778 
 779   void print_on_error(outputStream* st) const;
 780 
 781   // The following indicate whether a given verbose level has been
 782   // set. Notice that anything above stats is conditional to
 783   // _MARKING_VERBOSE_ having been set to 1
 784   bool verbose_stats() {
 785     return _verbose_level >= stats_verbose;
 786   }
 787   bool verbose_low() {
 788     return _MARKING_VERBOSE_ && _verbose_level >= low_verbose;
 789   }
 790   bool verbose_medium() {
 791     return _MARKING_VERBOSE_ && _verbose_level >= medium_verbose;
 792   }
 793   bool verbose_high() {
 794     return _MARKING_VERBOSE_ && _verbose_level >= high_verbose;
 795   }
 796 
 797   // Liveness counting
 798 
 799   // Utility routine to set an exclusive range of cards on the given
 800   // card liveness bitmap
 801   inline void set_card_bitmap_range(BitMap* card_bm,
 802                                     BitMap::idx_t start_idx,
 803                                     BitMap::idx_t end_idx,
 804                                     bool is_par);
 805 
 806   // Returns the card number of the bottom of the G1 heap.
 807   // Used in biasing indices into accounting card bitmaps.
 808   intptr_t heap_bottom_card_num() const {
 809     return _heap_bottom_card_num;
 810   }
 811 
 812   // Returns the card bitmap for a given task or worker id.
 813   BitMap* count_card_bitmap_for(uint worker_id) {
 814     assert(worker_id < _max_worker_id, "oob");
 815     assert(_count_card_bitmaps != NULL, "uninitialized");
 816     BitMap* task_card_bm = &_count_card_bitmaps[worker_id];
 817     assert(task_card_bm->size() == _card_bm.size(), "size mismatch");
 818     return task_card_bm;
 819   }
 820 
 821   // Returns the array containing the marked bytes for each region,
 822   // for the given worker or task id.
 823   size_t* count_marked_bytes_array_for(uint worker_id) {
 824     assert(worker_id < _max_worker_id, "oob");
 825     assert(_count_marked_bytes != NULL, "uninitialized");
 826     size_t* marked_bytes_array = _count_marked_bytes[worker_id];
 827     assert(marked_bytes_array != NULL, "uninitialized");
 828     return marked_bytes_array;
 829   }
 830 
 831   // Returns the index in the liveness accounting card table bitmap
 832   // for the given address
 833   inline BitMap::idx_t card_bitmap_index_for(HeapWord* addr);
 834 
 835   // Counts the size of the given memory region in the the given
 836   // marked_bytes array slot for the given HeapRegion.
 837   // Sets the bits in the given card bitmap that are associated with the
 838   // cards that are spanned by the memory region.
 839   inline void count_region(MemRegion mr,
 840                            HeapRegion* hr,
 841                            size_t* marked_bytes_array,
 842                            BitMap* task_card_bm);
 843 
 844   // Counts the given memory region in the task/worker counting
 845   // data structures for the given worker id.
 846   inline void count_region(MemRegion mr, HeapRegion* hr, uint worker_id);
 847 
 848   // Counts the given object in the given task/worker counting
 849   // data structures.
 850   inline void count_object(oop obj,
 851                            HeapRegion* hr,
 852                            size_t* marked_bytes_array,
 853                            BitMap* task_card_bm);
 854 
 855   // Attempts to mark the given object and, if successful, counts
 856   // the object in the given task/worker counting structures.
 857   inline bool par_mark_and_count(oop obj,
 858                                  HeapRegion* hr,
 859                                  size_t* marked_bytes_array,
 860                                  BitMap* task_card_bm);
 861 
 862   // Attempts to mark the given object and, if successful, counts
 863   // the object in the task/worker counting structures for the
 864   // given worker id.
 865   inline bool par_mark_and_count(oop obj,
 866                                  size_t word_size,
 867                                  HeapRegion* hr,
 868                                  uint worker_id);
 869 
 870   // Returns true if initialization was successfully completed.
 871   bool completed_initialization() const {
 872     return _completed_initialization;
 873   }
 874 
 875 protected:
 876   // Clear all the per-task bitmaps and arrays used to store the
 877   // counting data.
 878   void clear_all_count_data();
 879 
 880   // Aggregates the counting data for each worker/task
 881   // that was constructed while marking. Also sets
 882   // the amount of marked bytes for each region and
 883   // the top at concurrent mark count.
 884   void aggregate_count_data();
 885 
 886   // Verification routine
 887   void verify_count_data();
 888 };
 889 
 890 // A class representing a marking task.
 891 class CMTask : public TerminatorTerminator {
 892 private:
 893   enum PrivateConstants {
 894     // the regular clock call is called once the scanned words reaches
 895     // this limit
 896     words_scanned_period          = 12*1024,
 897     // the regular clock call is called once the number of visited
 898     // references reaches this limit
 899     refs_reached_period           = 384,
 900     // initial value for the hash seed, used in the work stealing code
 901     init_hash_seed                = 17,
 902     // how many entries will be transferred between global stack and
 903     // local queues
 904     global_stack_transfer_size    = 16
 905   };
 906 
 907   uint                        _worker_id;
 908   G1CollectedHeap*            _g1h;
 909   ConcurrentMark*             _cm;
 910   CMBitMap*                   _nextMarkBitMap;
 911   // the task queue of this task
 912   CMTaskQueue*                _task_queue;
 913 private:
 914   // the task queue set---needed for stealing
 915   CMTaskQueueSet*             _task_queues;
 916   // indicates whether the task has been claimed---this is only  for
 917   // debugging purposes
 918   bool                        _claimed;
 919 
 920   // number of calls to this task
 921   int                         _calls;
 922 
 923   // when the virtual timer reaches this time, the marking step should
 924   // exit
 925   double                      _time_target_ms;
 926   // the start time of the current marking step
 927   double                      _start_time_ms;
 928 
 929   // the oop closure used for iterations over oops
 930   G1CMOopClosure*             _cm_oop_closure;
 931 
 932   // the region this task is scanning, NULL if we're not scanning any
 933   HeapRegion*                 _curr_region;
 934   // the local finger of this task, NULL if we're not scanning a region
 935   HeapWord*                   _finger;
 936   // limit of the region this task is scanning, NULL if we're not scanning one
 937   HeapWord*                   _region_limit;
 938 
 939   // the number of words this task has scanned
 940   size_t                      _words_scanned;
 941   // When _words_scanned reaches this limit, the regular clock is
 942   // called. Notice that this might be decreased under certain
 943   // circumstances (i.e. when we believe that we did an expensive
 944   // operation).
 945   size_t                      _words_scanned_limit;
 946   // the initial value of _words_scanned_limit (i.e. what it was
 947   // before it was decreased).
 948   size_t                      _real_words_scanned_limit;
 949 
 950   // the number of references this task has visited
 951   size_t                      _refs_reached;
 952   // When _refs_reached reaches this limit, the regular clock is
 953   // called. Notice this this might be decreased under certain
 954   // circumstances (i.e. when we believe that we did an expensive
 955   // operation).
 956   size_t                      _refs_reached_limit;
 957   // the initial value of _refs_reached_limit (i.e. what it was before
 958   // it was decreased).
 959   size_t                      _real_refs_reached_limit;
 960 
 961   // used by the work stealing stuff
 962   int                         _hash_seed;
 963   // if this is true, then the task has aborted for some reason
 964   bool                        _has_aborted;
 965   // set when the task aborts because it has met its time quota
 966   bool                        _has_timed_out;
 967   // true when we're draining SATB buffers; this avoids the task
 968   // aborting due to SATB buffers being available (as we're already
 969   // dealing with them)
 970   bool                        _draining_satb_buffers;
 971 
 972   // number sequence of past step times
 973   NumberSeq                   _step_times_ms;
 974   // elapsed time of this task
 975   double                      _elapsed_time_ms;
 976   // termination time of this task
 977   double                      _termination_time_ms;
 978   // when this task got into the termination protocol
 979   double                      _termination_start_time_ms;
 980 
 981   // true when the task is during a concurrent phase, false when it is
 982   // in the remark phase (so, in the latter case, we do not have to
 983   // check all the things that we have to check during the concurrent
 984   // phase, i.e. SATB buffer availability...)
 985   bool                        _concurrent;
 986 
 987   TruncatedSeq                _marking_step_diffs_ms;
 988 
 989   // Counting data structures. Embedding the task's marked_bytes_array
 990   // and card bitmap into the actual task saves having to go through
 991   // the ConcurrentMark object.
 992   size_t*                     _marked_bytes_array;
 993   BitMap*                     _card_bm;
 994 
 995   // LOTS of statistics related with this task
 996 #if _MARKING_STATS_
 997   NumberSeq                   _all_clock_intervals_ms;
 998   double                      _interval_start_time_ms;
 999 
1000   size_t                      _aborted;
1001   size_t                      _aborted_overflow;
1002   size_t                      _aborted_cm_aborted;
1003   size_t                      _aborted_yield;
1004   size_t                      _aborted_timed_out;
1005   size_t                      _aborted_satb;
1006   size_t                      _aborted_termination;
1007 
1008   size_t                      _steal_attempts;
1009   size_t                      _steals;
1010 
1011   size_t                      _clock_due_to_marking;
1012   size_t                      _clock_due_to_scanning;
1013 
1014   size_t                      _local_pushes;
1015   size_t                      _local_pops;
1016   size_t                      _local_max_size;
1017   size_t                      _objs_scanned;
1018 
1019   size_t                      _global_pushes;
1020   size_t                      _global_pops;
1021   size_t                      _global_max_size;
1022 
1023   size_t                      _global_transfers_to;
1024   size_t                      _global_transfers_from;
1025 
1026   size_t                      _regions_claimed;
1027   size_t                      _objs_found_on_bitmap;
1028 
1029   size_t                      _satb_buffers_processed;
1030 #endif // _MARKING_STATS_
1031 
1032   // it updates the local fields after this task has claimed
1033   // a new region to scan
1034   void setup_for_region(HeapRegion* hr);
1035   // it brings up-to-date the limit of the region
1036   void update_region_limit();
1037 
1038   // called when either the words scanned or the refs visited limit
1039   // has been reached
1040   void reached_limit();
1041   // recalculates the words scanned and refs visited limits
1042   void recalculate_limits();
1043   // decreases the words scanned and refs visited limits when we reach
1044   // an expensive operation
1045   void decrease_limits();
1046   // it checks whether the words scanned or refs visited reached their
1047   // respective limit and calls reached_limit() if they have
1048   void check_limits() {
1049     if (_words_scanned >= _words_scanned_limit ||
1050         _refs_reached >= _refs_reached_limit) {
1051       reached_limit();
1052     }
1053   }
1054   // this is supposed to be called regularly during a marking step as
1055   // it checks a bunch of conditions that might cause the marking step
1056   // to abort
1057   void regular_clock_call();
1058   bool concurrent() { return _concurrent; }
1059 
1060   // Test whether obj might have already been passed over by the
1061   // mark bitmap scan, and so needs to be pushed onto the mark stack.
1062   bool is_below_finger(oop obj, HeapWord* global_finger) const;
1063 
1064   template<bool scan> void process_grey_object(oop obj);
1065 
1066 public:
1067   // It resets the task; it should be called right at the beginning of
1068   // a marking phase.
1069   void reset(CMBitMap* _nextMarkBitMap);
1070   // it clears all the fields that correspond to a claimed region.
1071   void clear_region_fields();
1072 
1073   void set_concurrent(bool concurrent) { _concurrent = concurrent; }
1074 
1075   // The main method of this class which performs a marking step
1076   // trying not to exceed the given duration. However, it might exit
1077   // prematurely, according to some conditions (i.e. SATB buffers are
1078   // available for processing).
1079   void do_marking_step(double target_ms,
1080                        bool do_termination,
1081                        bool is_serial);
1082 
1083   // These two calls start and stop the timer
1084   void record_start_time() {
1085     _elapsed_time_ms = os::elapsedTime() * 1000.0;
1086   }
1087   void record_end_time() {
1088     _elapsed_time_ms = os::elapsedTime() * 1000.0 - _elapsed_time_ms;
1089   }
1090 
1091   // returns the worker ID associated with this task.
1092   uint worker_id() { return _worker_id; }
1093 
1094   // From TerminatorTerminator. It determines whether this task should
1095   // exit the termination protocol after it's entered it.
1096   virtual bool should_exit_termination();
1097 
1098   // Resets the local region fields after a task has finished scanning a
1099   // region; or when they have become stale as a result of the region
1100   // being evacuated.
1101   void giveup_current_region();
1102 
1103   HeapWord* finger()            { return _finger; }
1104 
1105   bool has_aborted()            { return _has_aborted; }
1106   void set_has_aborted()        { _has_aborted = true; }
1107   void clear_has_aborted()      { _has_aborted = false; }
1108   bool has_timed_out()          { return _has_timed_out; }
1109   bool claimed()                { return _claimed; }
1110 
1111   void set_cm_oop_closure(G1CMOopClosure* cm_oop_closure);
1112 
1113   // Increment the number of references this task has visited.
1114   void increment_refs_reached() { ++_refs_reached; }
1115 
1116   // Grey the object by marking it.  If not already marked, push it on
1117   // the local queue if below the finger.
1118   // Precondition: obj is in region.
1119   // Precondition: obj is below region's NTAMS.
1120   inline void make_reference_grey(oop obj, HeapRegion* region);
1121 
1122   // Grey the object (by calling make_grey_reference) if required,
1123   // e.g. obj is below its containing region's NTAMS.
1124   // Precondition: obj is a valid heap object.
1125   inline void deal_with_reference(oop obj);
1126 
1127   // It scans an object and visits its children.
1128   void scan_object(oop obj) { process_grey_object<true>(obj); }
1129 
1130   // It pushes an object on the local queue.
1131   inline void push(oop obj);
1132 
1133   // These two move entries to/from the global stack.
1134   void move_entries_to_global_stack();
1135   void get_entries_from_global_stack();
1136 
1137   // It pops and scans objects from the local queue. If partially is
1138   // true, then it stops when the queue size is of a given limit. If
1139   // partially is false, then it stops when the queue is empty.
1140   void drain_local_queue(bool partially);
1141   // It moves entries from the global stack to the local queue and
1142   // drains the local queue. If partially is true, then it stops when
1143   // both the global stack and the local queue reach a given size. If
1144   // partially if false, it tries to empty them totally.
1145   void drain_global_stack(bool partially);
1146   // It keeps picking SATB buffers and processing them until no SATB
1147   // buffers are available.
1148   void drain_satb_buffers();
1149 
1150   // moves the local finger to a new location
1151   inline void move_finger_to(HeapWord* new_finger) {
1152     assert(new_finger >= _finger && new_finger < _region_limit, "invariant");
1153     _finger = new_finger;
1154   }
1155 
1156   CMTask(uint worker_id,
1157          ConcurrentMark *cm,
1158          size_t* marked_bytes,
1159          BitMap* card_bm,
1160          CMTaskQueue* task_queue,
1161          CMTaskQueueSet* task_queues);
1162 
1163   // it prints statistics associated with this task
1164   void print_stats();
1165 
1166 #if _MARKING_STATS_
1167   void increase_objs_found_on_bitmap() { ++_objs_found_on_bitmap; }
1168 #endif // _MARKING_STATS_
1169 };
1170 
1171 // Class that's used to to print out per-region liveness
1172 // information. It's currently used at the end of marking and also
1173 // after we sort the old regions at the end of the cleanup operation.
1174 class G1PrintRegionLivenessInfoClosure: public HeapRegionClosure {
1175 private:
1176   outputStream* _out;
1177 
1178   // Accumulators for these values.
1179   size_t _total_used_bytes;
1180   size_t _total_capacity_bytes;
1181   size_t _total_prev_live_bytes;
1182   size_t _total_next_live_bytes;
1183 
1184   // These are set up when we come across a "stars humongous" region
1185   // (as this is where most of this information is stored, not in the
1186   // subsequent "continues humongous" regions). After that, for every
1187   // region in a given humongous region series we deduce the right
1188   // values for it by simply subtracting the appropriate amount from
1189   // these fields. All these values should reach 0 after we've visited
1190   // the last region in the series.
1191   size_t _hum_used_bytes;
1192   size_t _hum_capacity_bytes;
1193   size_t _hum_prev_live_bytes;
1194   size_t _hum_next_live_bytes;
1195 
1196   // Accumulator for the remembered set size
1197   size_t _total_remset_bytes;
1198 
1199   // Accumulator for strong code roots memory size
1200   size_t _total_strong_code_roots_bytes;
1201 
1202   static double perc(size_t val, size_t total) {
1203     if (total == 0) {
1204       return 0.0;
1205     } else {
1206       return 100.0 * ((double) val / (double) total);
1207     }
1208   }
1209 
1210   static double bytes_to_mb(size_t val) {
1211     return (double) val / (double) M;
1212   }
1213 
1214   // See the .cpp file.
1215   size_t get_hum_bytes(size_t* hum_bytes);
1216   void get_hum_bytes(size_t* used_bytes, size_t* capacity_bytes,
1217                      size_t* prev_live_bytes, size_t* next_live_bytes);
1218 
1219 public:
1220   // The header and footer are printed in the constructor and
1221   // destructor respectively.
1222   G1PrintRegionLivenessInfoClosure(outputStream* out, const char* phase_name);
1223   virtual bool doHeapRegion(HeapRegion* r);
1224   ~G1PrintRegionLivenessInfoClosure();
1225 };
1226 
1227 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_CONCURRENTMARK_HPP