--- old/src/share/vm/memory/space.inline.hpp 2015-05-12 11:57:43.152018925 +0200 +++ /dev/null 2015-03-18 17:10:38.111854831 +0100 @@ -1,334 +0,0 @@ -/* - * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved. - * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. - * - * This code is free software; you can redistribute it and/or modify it - * under the terms of the GNU General Public License version 2 only, as - * published by the Free Software Foundation. - * - * This code is distributed in the hope that it will be useful, but WITHOUT - * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or - * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License - * version 2 for more details (a copy is included in the LICENSE file that - * accompanied this code). - * - * You should have received a copy of the GNU General Public License version - * 2 along with this work; if not, write to the Free Software Foundation, - * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. - * - * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA - * or visit www.oracle.com if you need additional information or have any - * questions. - * - */ - -#ifndef SHARE_VM_MEMORY_SPACE_INLINE_HPP -#define SHARE_VM_MEMORY_SPACE_INLINE_HPP - -#include "gc_implementation/shared/liveRange.hpp" -#include "gc_implementation/shared/markSweep.inline.hpp" -#include "gc_implementation/shared/spaceDecorator.hpp" -#include "gc_interface/collectedHeap.hpp" -#include "memory/generation.hpp" -#include "memory/space.hpp" -#include "memory/universe.hpp" -#include "runtime/prefetch.inline.hpp" -#include "runtime/safepoint.hpp" - -inline HeapWord* Space::block_start(const void* p) { - return block_start_const(p); -} - -inline HeapWord* OffsetTableContigSpace::allocate(size_t size) { - HeapWord* res = ContiguousSpace::allocate(size); - if (res != NULL) { - _offsets.alloc_block(res, size); - } - return res; -} - -// Because of the requirement of keeping "_offsets" up to date with the -// allocations, we sequentialize these with a lock. Therefore, best if -// this is used for larger LAB allocations only. -inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) { - MutexLocker x(&_par_alloc_lock); - // This ought to be just "allocate", because of the lock above, but that - // ContiguousSpace::allocate asserts that either the allocating thread - // holds the heap lock or it is the VM thread and we're at a safepoint. - // The best I (dld) could figure was to put a field in ContiguousSpace - // meaning "locking at safepoint taken care of", and set/reset that - // here. But this will do for now, especially in light of the comment - // above. Perhaps in the future some lock-free manner of keeping the - // coordination. - HeapWord* res = ContiguousSpace::par_allocate(size); - if (res != NULL) { - _offsets.alloc_block(res, size); - } - return res; -} - -inline HeapWord* -OffsetTableContigSpace::block_start_const(const void* p) const { - return _offsets.block_start(p); -} - -template -inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) { - // Compute the new addresses for the live objects and store it in the mark - // Used by universe::mark_sweep_phase2() - HeapWord* compact_top; // This is where we are currently compacting to. - - // We're sure to be here before any objects are compacted into this - // space, so this is a good time to initialize this: - space->set_compaction_top(space->bottom()); - - if (cp->space == NULL) { - assert(cp->gen != NULL, "need a generation"); - assert(cp->threshold == NULL, "just checking"); - assert(cp->gen->first_compaction_space() == space, "just checking"); - cp->space = cp->gen->first_compaction_space(); - compact_top = cp->space->bottom(); - cp->space->set_compaction_top(compact_top); - cp->threshold = cp->space->initialize_threshold(); - } else { - compact_top = cp->space->compaction_top(); - } - - // We allow some amount of garbage towards the bottom of the space, so - // we don't start compacting before there is a significant gain to be made. - // Occasionally, we want to ensure a full compaction, which is determined - // by the MarkSweepAlwaysCompactCount parameter. - uint invocations = MarkSweep::total_invocations(); - bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); - - size_t allowed_deadspace = 0; - if (skip_dead) { - const size_t ratio = space->allowed_dead_ratio(); - allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize; - } - - HeapWord* q = space->bottom(); - HeapWord* t = space->scan_limit(); - - HeapWord* end_of_live= q; // One byte beyond the last byte of the last - // live object. - HeapWord* first_dead = space->end(); // The first dead object. - LiveRange* liveRange = NULL; // The current live range, recorded in the - // first header of preceding free area. - space->_first_dead = first_dead; - - const intx interval = PrefetchScanIntervalInBytes; - - while (q < t) { - assert(!space->scanned_block_is_obj(q) || - oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || - oop(q)->mark()->has_bias_pattern(), - "these are the only valid states during a mark sweep"); - if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) { - // prefetch beyond q - Prefetch::write(q, interval); - size_t size = space->scanned_block_size(q); - compact_top = cp->space->forward(oop(q), size, cp, compact_top); - q += size; - end_of_live = q; - } else { - // run over all the contiguous dead objects - HeapWord* end = q; - do { - // prefetch beyond end - Prefetch::write(end, interval); - end += space->scanned_block_size(end); - } while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked())); - - // see if we might want to pretend this object is alive so that - // we don't have to compact quite as often. - if (allowed_deadspace > 0 && q == compact_top) { - size_t sz = pointer_delta(end, q); - if (space->insert_deadspace(allowed_deadspace, q, sz)) { - compact_top = cp->space->forward(oop(q), sz, cp, compact_top); - q = end; - end_of_live = end; - continue; - } - } - - // otherwise, it really is a free region. - - // for the previous LiveRange, record the end of the live objects. - if (liveRange) { - liveRange->set_end(q); - } - - // record the current LiveRange object. - // liveRange->start() is overlaid on the mark word. - liveRange = (LiveRange*)q; - liveRange->set_start(end); - liveRange->set_end(end); - - // see if this is the first dead region. - if (q < first_dead) { - first_dead = q; - } - - // move on to the next object - q = end; - } - } - - assert(q == t, "just checking"); - if (liveRange != NULL) { - liveRange->set_end(q); - } - space->_end_of_live = end_of_live; - if (end_of_live < first_dead) { - first_dead = end_of_live; - } - space->_first_dead = first_dead; - - // save the compaction_top of the compaction space. - cp->space->set_compaction_top(compact_top); -} - -template -inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) { - // adjust all the interior pointers to point at the new locations of objects - // Used by MarkSweep::mark_sweep_phase3() - - HeapWord* q = space->bottom(); - HeapWord* t = space->_end_of_live; // Established by "prepare_for_compaction". - - assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?"); - - if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) { - // we have a chunk of the space which hasn't moved and we've - // reinitialized the mark word during the previous pass, so we can't - // use is_gc_marked for the traversal. - HeapWord* end = space->_first_dead; - - while (q < end) { - // I originally tried to conjoin "block_start(q) == q" to the - // assertion below, but that doesn't work, because you can't - // accurately traverse previous objects to get to the current one - // after their pointers have been - // updated, until the actual compaction is done. dld, 4/00 - assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs"); - - // point all the oops to the new location - size_t size = MarkSweep::adjust_pointers(oop(q)); - size = space->adjust_obj_size(size); - - q += size; - } - - if (space->_first_dead == t) { - q = t; - } else { - // $$$ This is funky. Using this to read the previously written - // LiveRange. See also use below. - q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer(); - } - } - - const intx interval = PrefetchScanIntervalInBytes; - - debug_only(HeapWord* prev_q = NULL); - while (q < t) { - // prefetch beyond q - Prefetch::write(q, interval); - if (oop(q)->is_gc_marked()) { - // q is alive - // point all the oops to the new location - size_t size = MarkSweep::adjust_pointers(oop(q)); - size = space->adjust_obj_size(size); - debug_only(prev_q = q); - q += size; - } else { - // q is not a live object, so its mark should point at the next - // live object - debug_only(prev_q = q); - q = (HeapWord*) oop(q)->mark()->decode_pointer(); - assert(q > prev_q, "we should be moving forward through memory"); - } - } - - assert(q == t, "just checking"); -} - -template -inline void CompactibleSpace::scan_and_compact(SpaceType* space) { - // Copy all live objects to their new location - // Used by MarkSweep::mark_sweep_phase4() - - HeapWord* q = space->bottom(); - HeapWord* const t = space->_end_of_live; - debug_only(HeapWord* prev_q = NULL); - - if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) { - #ifdef ASSERT // Debug only - // we have a chunk of the space which hasn't moved and we've reinitialized - // the mark word during the previous pass, so we can't use is_gc_marked for - // the traversal. - HeapWord* const end = space->_first_dead; - - while (q < end) { - size_t size = space->obj_size(q); - assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)"); - prev_q = q; - q += size; - } - #endif - - if (space->_first_dead == t) { - q = t; - } else { - // $$$ Funky - q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer(); - } - } - - const intx scan_interval = PrefetchScanIntervalInBytes; - const intx copy_interval = PrefetchCopyIntervalInBytes; - while (q < t) { - if (!oop(q)->is_gc_marked()) { - // mark is pointer to next marked oop - debug_only(prev_q = q); - q = (HeapWord*) oop(q)->mark()->decode_pointer(); - assert(q > prev_q, "we should be moving forward through memory"); - } else { - // prefetch beyond q - Prefetch::read(q, scan_interval); - - // size and destination - size_t size = space->obj_size(q); - HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); - - // prefetch beyond compaction_top - Prefetch::write(compaction_top, copy_interval); - - // copy object and reinit its mark - assert(q != compaction_top, "everything in this pass should be moving"); - Copy::aligned_conjoint_words(q, compaction_top, size); - oop(compaction_top)->init_mark(); - assert(oop(compaction_top)->klass() != NULL, "should have a class"); - - debug_only(prev_q = q); - q += size; - } - } - - // Let's remember if we were empty before we did the compaction. - bool was_empty = space->used_region().is_empty(); - // Reset space after compaction is complete - space->reset_after_compaction(); - // We do this clear, below, since it has overloaded meanings for some - // space subtypes. For example, OffsetTableContigSpace's that were - // compacted into will have had their offset table thresholds updated - // continuously, but those that weren't need to have their thresholds - // re-initialized. Also mangles unused area for debugging. - if (space->used_region().is_empty()) { - if (!was_empty) space->clear(SpaceDecorator::Mangle); - } else { - if (ZapUnusedHeapArea) space->mangle_unused_area(); - } -} -#endif // SHARE_VM_MEMORY_SPACE_INLINE_HPP --- /dev/null 2015-03-18 17:10:38.111854831 +0100 +++ new/src/share/vm/gc/shared/space.inline.hpp 2015-05-12 11:57:42.965011045 +0200 @@ -0,0 +1,334 @@ +/* + * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#ifndef SHARE_VM_GC_SHARED_SPACE_INLINE_HPP +#define SHARE_VM_GC_SHARED_SPACE_INLINE_HPP + +#include "gc/serial/markSweep.inline.hpp" +#include "gc/shared/collectedHeap.hpp" +#include "gc/shared/generation.hpp" +#include "gc/shared/liveRange.hpp" +#include "gc/shared/space.hpp" +#include "gc/shared/spaceDecorator.hpp" +#include "memory/universe.hpp" +#include "runtime/prefetch.inline.hpp" +#include "runtime/safepoint.hpp" + +inline HeapWord* Space::block_start(const void* p) { + return block_start_const(p); +} + +inline HeapWord* OffsetTableContigSpace::allocate(size_t size) { + HeapWord* res = ContiguousSpace::allocate(size); + if (res != NULL) { + _offsets.alloc_block(res, size); + } + return res; +} + +// Because of the requirement of keeping "_offsets" up to date with the +// allocations, we sequentialize these with a lock. Therefore, best if +// this is used for larger LAB allocations only. +inline HeapWord* OffsetTableContigSpace::par_allocate(size_t size) { + MutexLocker x(&_par_alloc_lock); + // This ought to be just "allocate", because of the lock above, but that + // ContiguousSpace::allocate asserts that either the allocating thread + // holds the heap lock or it is the VM thread and we're at a safepoint. + // The best I (dld) could figure was to put a field in ContiguousSpace + // meaning "locking at safepoint taken care of", and set/reset that + // here. But this will do for now, especially in light of the comment + // above. Perhaps in the future some lock-free manner of keeping the + // coordination. + HeapWord* res = ContiguousSpace::par_allocate(size); + if (res != NULL) { + _offsets.alloc_block(res, size); + } + return res; +} + +inline HeapWord* +OffsetTableContigSpace::block_start_const(const void* p) const { + return _offsets.block_start(p); +} + +template +inline void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp) { + // Compute the new addresses for the live objects and store it in the mark + // Used by universe::mark_sweep_phase2() + HeapWord* compact_top; // This is where we are currently compacting to. + + // We're sure to be here before any objects are compacted into this + // space, so this is a good time to initialize this: + space->set_compaction_top(space->bottom()); + + if (cp->space == NULL) { + assert(cp->gen != NULL, "need a generation"); + assert(cp->threshold == NULL, "just checking"); + assert(cp->gen->first_compaction_space() == space, "just checking"); + cp->space = cp->gen->first_compaction_space(); + compact_top = cp->space->bottom(); + cp->space->set_compaction_top(compact_top); + cp->threshold = cp->space->initialize_threshold(); + } else { + compact_top = cp->space->compaction_top(); + } + + // We allow some amount of garbage towards the bottom of the space, so + // we don't start compacting before there is a significant gain to be made. + // Occasionally, we want to ensure a full compaction, which is determined + // by the MarkSweepAlwaysCompactCount parameter. + uint invocations = MarkSweep::total_invocations(); + bool skip_dead = ((invocations % MarkSweepAlwaysCompactCount) != 0); + + size_t allowed_deadspace = 0; + if (skip_dead) { + const size_t ratio = space->allowed_dead_ratio(); + allowed_deadspace = (space->capacity() * ratio / 100) / HeapWordSize; + } + + HeapWord* q = space->bottom(); + HeapWord* t = space->scan_limit(); + + HeapWord* end_of_live= q; // One byte beyond the last byte of the last + // live object. + HeapWord* first_dead = space->end(); // The first dead object. + LiveRange* liveRange = NULL; // The current live range, recorded in the + // first header of preceding free area. + space->_first_dead = first_dead; + + const intx interval = PrefetchScanIntervalInBytes; + + while (q < t) { + assert(!space->scanned_block_is_obj(q) || + oop(q)->mark()->is_marked() || oop(q)->mark()->is_unlocked() || + oop(q)->mark()->has_bias_pattern(), + "these are the only valid states during a mark sweep"); + if (space->scanned_block_is_obj(q) && oop(q)->is_gc_marked()) { + // prefetch beyond q + Prefetch::write(q, interval); + size_t size = space->scanned_block_size(q); + compact_top = cp->space->forward(oop(q), size, cp, compact_top); + q += size; + end_of_live = q; + } else { + // run over all the contiguous dead objects + HeapWord* end = q; + do { + // prefetch beyond end + Prefetch::write(end, interval); + end += space->scanned_block_size(end); + } while (end < t && (!space->scanned_block_is_obj(end) || !oop(end)->is_gc_marked())); + + // see if we might want to pretend this object is alive so that + // we don't have to compact quite as often. + if (allowed_deadspace > 0 && q == compact_top) { + size_t sz = pointer_delta(end, q); + if (space->insert_deadspace(allowed_deadspace, q, sz)) { + compact_top = cp->space->forward(oop(q), sz, cp, compact_top); + q = end; + end_of_live = end; + continue; + } + } + + // otherwise, it really is a free region. + + // for the previous LiveRange, record the end of the live objects. + if (liveRange) { + liveRange->set_end(q); + } + + // record the current LiveRange object. + // liveRange->start() is overlaid on the mark word. + liveRange = (LiveRange*)q; + liveRange->set_start(end); + liveRange->set_end(end); + + // see if this is the first dead region. + if (q < first_dead) { + first_dead = q; + } + + // move on to the next object + q = end; + } + } + + assert(q == t, "just checking"); + if (liveRange != NULL) { + liveRange->set_end(q); + } + space->_end_of_live = end_of_live; + if (end_of_live < first_dead) { + first_dead = end_of_live; + } + space->_first_dead = first_dead; + + // save the compaction_top of the compaction space. + cp->space->set_compaction_top(compact_top); +} + +template +inline void CompactibleSpace::scan_and_adjust_pointers(SpaceType* space) { + // adjust all the interior pointers to point at the new locations of objects + // Used by MarkSweep::mark_sweep_phase3() + + HeapWord* q = space->bottom(); + HeapWord* t = space->_end_of_live; // Established by "prepare_for_compaction". + + assert(space->_first_dead <= space->_end_of_live, "Stands to reason, no?"); + + if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) { + // we have a chunk of the space which hasn't moved and we've + // reinitialized the mark word during the previous pass, so we can't + // use is_gc_marked for the traversal. + HeapWord* end = space->_first_dead; + + while (q < end) { + // I originally tried to conjoin "block_start(q) == q" to the + // assertion below, but that doesn't work, because you can't + // accurately traverse previous objects to get to the current one + // after their pointers have been + // updated, until the actual compaction is done. dld, 4/00 + assert(space->block_is_obj(q), "should be at block boundaries, and should be looking at objs"); + + // point all the oops to the new location + size_t size = MarkSweep::adjust_pointers(oop(q)); + size = space->adjust_obj_size(size); + + q += size; + } + + if (space->_first_dead == t) { + q = t; + } else { + // $$$ This is funky. Using this to read the previously written + // LiveRange. See also use below. + q = (HeapWord*)oop(space->_first_dead)->mark()->decode_pointer(); + } + } + + const intx interval = PrefetchScanIntervalInBytes; + + debug_only(HeapWord* prev_q = NULL); + while (q < t) { + // prefetch beyond q + Prefetch::write(q, interval); + if (oop(q)->is_gc_marked()) { + // q is alive + // point all the oops to the new location + size_t size = MarkSweep::adjust_pointers(oop(q)); + size = space->adjust_obj_size(size); + debug_only(prev_q = q); + q += size; + } else { + // q is not a live object, so its mark should point at the next + // live object + debug_only(prev_q = q); + q = (HeapWord*) oop(q)->mark()->decode_pointer(); + assert(q > prev_q, "we should be moving forward through memory"); + } + } + + assert(q == t, "just checking"); +} + +template +inline void CompactibleSpace::scan_and_compact(SpaceType* space) { + // Copy all live objects to their new location + // Used by MarkSweep::mark_sweep_phase4() + + HeapWord* q = space->bottom(); + HeapWord* const t = space->_end_of_live; + debug_only(HeapWord* prev_q = NULL); + + if (q < t && space->_first_dead > q && !oop(q)->is_gc_marked()) { + #ifdef ASSERT // Debug only + // we have a chunk of the space which hasn't moved and we've reinitialized + // the mark word during the previous pass, so we can't use is_gc_marked for + // the traversal. + HeapWord* const end = space->_first_dead; + + while (q < end) { + size_t size = space->obj_size(q); + assert(!oop(q)->is_gc_marked(), "should be unmarked (special dense prefix handling)"); + prev_q = q; + q += size; + } + #endif + + if (space->_first_dead == t) { + q = t; + } else { + // $$$ Funky + q = (HeapWord*) oop(space->_first_dead)->mark()->decode_pointer(); + } + } + + const intx scan_interval = PrefetchScanIntervalInBytes; + const intx copy_interval = PrefetchCopyIntervalInBytes; + while (q < t) { + if (!oop(q)->is_gc_marked()) { + // mark is pointer to next marked oop + debug_only(prev_q = q); + q = (HeapWord*) oop(q)->mark()->decode_pointer(); + assert(q > prev_q, "we should be moving forward through memory"); + } else { + // prefetch beyond q + Prefetch::read(q, scan_interval); + + // size and destination + size_t size = space->obj_size(q); + HeapWord* compaction_top = (HeapWord*)oop(q)->forwardee(); + + // prefetch beyond compaction_top + Prefetch::write(compaction_top, copy_interval); + + // copy object and reinit its mark + assert(q != compaction_top, "everything in this pass should be moving"); + Copy::aligned_conjoint_words(q, compaction_top, size); + oop(compaction_top)->init_mark(); + assert(oop(compaction_top)->klass() != NULL, "should have a class"); + + debug_only(prev_q = q); + q += size; + } + } + + // Let's remember if we were empty before we did the compaction. + bool was_empty = space->used_region().is_empty(); + // Reset space after compaction is complete + space->reset_after_compaction(); + // We do this clear, below, since it has overloaded meanings for some + // space subtypes. For example, OffsetTableContigSpace's that were + // compacted into will have had their offset table thresholds updated + // continuously, but those that weren't need to have their thresholds + // re-initialized. Also mangles unused area for debugging. + if (space->used_region().is_empty()) { + if (!was_empty) space->clear(SpaceDecorator::Mangle); + } else { + if (ZapUnusedHeapArea) space->mangle_unused_area(); + } +} +#endif // SHARE_VM_GC_SHARED_SPACE_INLINE_HPP