1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/allocationStats.hpp"
  27 #include "gc/shared/spaceDecorator.hpp"
  28 #include "memory/binaryTreeDictionary.hpp"
  29 #include "memory/freeBlockDictionary.hpp"
  30 #include "memory/freeList.hpp"
  31 #include "memory/metachunk.hpp"
  32 #include "runtime/globals.hpp"
  33 #include "utilities/macros.hpp"
  34 #include "utilities/ostream.hpp"
  35 #if INCLUDE_ALL_GCS
  36 #include "gc/cms/adaptiveFreeList.hpp"
  37 #include "gc/cms/freeChunk.hpp"
  38 #endif // INCLUDE_ALL_GCS
  39 
  40 ////////////////////////////////////////////////////////////////////////////////
  41 // A binary tree based search structure for free blocks.
  42 // This is currently used in the Concurrent Mark&Sweep implementation.
  43 ////////////////////////////////////////////////////////////////////////////////
  44 
  45 template <class Chunk_t, class FreeList_t>
  46 size_t TreeChunk<Chunk_t, FreeList_t>::_min_tree_chunk_size = sizeof(TreeChunk<Chunk_t,  FreeList_t>)/HeapWordSize;
  47 
  48 template <class Chunk_t, class FreeList_t>
  49 TreeChunk<Chunk_t, FreeList_t>* TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(Chunk_t* fc) {
  50   // Do some assertion checking here.
  51   return (TreeChunk<Chunk_t, FreeList_t>*) fc;
  52 }
  53 
  54 template <class Chunk_t, class FreeList_t>
  55 void TreeChunk<Chunk_t, FreeList_t>::verify_tree_chunk_list() const {
  56   TreeChunk<Chunk_t, FreeList_t>* nextTC = (TreeChunk<Chunk_t, FreeList_t>*)next();
  57   if (prev() != NULL) { // interior list node shouldn't have tree fields
  58     guarantee(embedded_list()->parent() == NULL && embedded_list()->left() == NULL &&
  59               embedded_list()->right()  == NULL, "should be clear");
  60   }
  61   if (nextTC != NULL) {
  62     guarantee(as_TreeChunk(nextTC->prev()) == this, "broken chain");
  63     guarantee(nextTC->size() == size(), "wrong size");
  64     nextTC->verify_tree_chunk_list();
  65   }
  66 }
  67 
  68 template <class Chunk_t, class FreeList_t>
  69 TreeList<Chunk_t, FreeList_t>::TreeList() : _parent(NULL),
  70   _left(NULL), _right(NULL) {}
  71 
  72 template <class Chunk_t, class FreeList_t>
  73 TreeList<Chunk_t, FreeList_t>*
  74 TreeList<Chunk_t, FreeList_t>::as_TreeList(TreeChunk<Chunk_t,FreeList_t>* tc) {
  75   // This first free chunk in the list will be the tree list.
  76   assert((tc->size() >= (TreeChunk<Chunk_t, FreeList_t>::min_size())),
  77     "Chunk is too small for a TreeChunk");
  78   TreeList<Chunk_t, FreeList_t>* tl = tc->embedded_list();
  79   tl->initialize();
  80   tc->set_list(tl);
  81   tl->set_size(tc->size());
  82   tl->link_head(tc);
  83   tl->link_tail(tc);
  84   tl->set_count(1);
  85   assert(tl->parent() == NULL, "Should be clear");
  86   return tl;
  87 }
  88 
  89 template <class Chunk_t, class FreeList_t>
  90 TreeList<Chunk_t, FreeList_t>*
  91 TreeList<Chunk_t, FreeList_t>::as_TreeList(HeapWord* addr, size_t size) {
  92   TreeChunk<Chunk_t, FreeList_t>* tc = (TreeChunk<Chunk_t, FreeList_t>*) addr;
  93   assert((size >= TreeChunk<Chunk_t, FreeList_t>::min_size()),
  94     "Chunk is too small for a TreeChunk");
  95   // The space will have been mangled initially but
  96   // is not remangled when a Chunk_t is returned to the free list
  97   // (since it is used to maintain the chunk on the free list).
  98   tc->assert_is_mangled();
  99   tc->set_size(size);
 100   tc->link_prev(NULL);
 101   tc->link_next(NULL);
 102   TreeList<Chunk_t, FreeList_t>* tl = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 103   return tl;
 104 }
 105 
 106 
 107 #if INCLUDE_ALL_GCS
 108 // Specialize for AdaptiveFreeList which tries to avoid
 109 // splitting a chunk of a size that is under populated in favor of
 110 // an over populated size.  The general get_better_list() just returns
 111 // the current list.
 112 template <>
 113 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >*
 114 TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >::get_better_list(
 115   BinaryTreeDictionary<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* dictionary) {
 116   // A candidate chunk has been found.  If it is already under
 117   // populated, get a chunk associated with the hint for this
 118   // chunk.
 119 
 120   TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* curTL = this;
 121   if (curTL->surplus() <= 0) {
 122     /* Use the hint to find a size with a surplus, and reset the hint. */
 123     TreeList<FreeChunk, ::AdaptiveFreeList<FreeChunk> >* hintTL = this;
 124     while (hintTL->hint() != 0) {
 125       assert(hintTL->hint() > hintTL->size(),
 126         "hint points in the wrong direction");
 127       hintTL = dictionary->find_list(hintTL->hint());
 128       assert(curTL != hintTL, "Infinite loop");
 129       if (hintTL == NULL ||
 130           hintTL == curTL /* Should not happen but protect against it */ ) {
 131         // No useful hint.  Set the hint to NULL and go on.
 132         curTL->set_hint(0);
 133         break;
 134       }
 135       assert(hintTL->size() > curTL->size(), "hint is inconsistent");
 136       if (hintTL->surplus() > 0) {
 137         // The hint led to a list that has a surplus.  Use it.
 138         // Set the hint for the candidate to an overpopulated
 139         // size.
 140         curTL->set_hint(hintTL->size());
 141         // Change the candidate.
 142         curTL = hintTL;
 143         break;
 144       }
 145     }
 146   }
 147   return curTL;
 148 }
 149 #endif // INCLUDE_ALL_GCS
 150 
 151 template <class Chunk_t, class FreeList_t>
 152 TreeList<Chunk_t, FreeList_t>*
 153 TreeList<Chunk_t, FreeList_t>::get_better_list(
 154   BinaryTreeDictionary<Chunk_t, FreeList_t>* dictionary) {
 155   return this;
 156 }
 157 
 158 template <class Chunk_t, class FreeList_t>
 159 TreeList<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::remove_chunk_replace_if_needed(TreeChunk<Chunk_t, FreeList_t>* tc) {
 160 
 161   TreeList<Chunk_t, FreeList_t>* retTL = this;
 162   Chunk_t* list = head();
 163   assert(!list || list != list->next(), "Chunk on list twice");
 164   assert(tc != NULL, "Chunk being removed is NULL");
 165   assert(parent() == NULL || this == parent()->left() ||
 166     this == parent()->right(), "list is inconsistent");
 167   assert(tc->is_free(), "Header is not marked correctly");
 168   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 169   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 170 
 171   Chunk_t* prevFC = tc->prev();
 172   TreeChunk<Chunk_t, FreeList_t>* nextTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(tc->next());
 173   assert(list != NULL, "should have at least the target chunk");
 174 
 175   // Is this the first item on the list?
 176   if (tc == list) {
 177     // The "getChunk..." functions for a TreeList<Chunk_t, FreeList_t> will not return the
 178     // first chunk in the list unless it is the last chunk in the list
 179     // because the first chunk is also acting as the tree node.
 180     // When coalescing happens, however, the first chunk in the a tree
 181     // list can be the start of a free range.  Free ranges are removed
 182     // from the free lists so that they are not available to be
 183     // allocated when the sweeper yields (giving up the free list lock)
 184     // to allow mutator activity.  If this chunk is the first in the
 185     // list and is not the last in the list, do the work to copy the
 186     // TreeList<Chunk_t, FreeList_t> from the first chunk to the next chunk and update all
 187     // the TreeList<Chunk_t, FreeList_t> pointers in the chunks in the list.
 188     if (nextTC == NULL) {
 189       assert(prevFC == NULL, "Not last chunk in the list");
 190       set_tail(NULL);
 191       set_head(NULL);
 192     } else {
 193       // copy embedded list.
 194       nextTC->set_embedded_list(tc->embedded_list());
 195       retTL = nextTC->embedded_list();
 196       // Fix the pointer to the list in each chunk in the list.
 197       // This can be slow for a long list.  Consider having
 198       // an option that does not allow the first chunk on the
 199       // list to be coalesced.
 200       for (TreeChunk<Chunk_t, FreeList_t>* curTC = nextTC; curTC != NULL;
 201           curTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(curTC->next())) {
 202         curTC->set_list(retTL);
 203       }
 204       // Fix the parent to point to the new TreeList<Chunk_t, FreeList_t>.
 205       if (retTL->parent() != NULL) {
 206         if (this == retTL->parent()->left()) {
 207           retTL->parent()->set_left(retTL);
 208         } else {
 209           assert(this == retTL->parent()->right(), "Parent is incorrect");
 210           retTL->parent()->set_right(retTL);
 211         }
 212       }
 213       // Fix the children's parent pointers to point to the
 214       // new list.
 215       assert(right() == retTL->right(), "Should have been copied");
 216       if (retTL->right() != NULL) {
 217         retTL->right()->set_parent(retTL);
 218       }
 219       assert(left() == retTL->left(), "Should have been copied");
 220       if (retTL->left() != NULL) {
 221         retTL->left()->set_parent(retTL);
 222       }
 223       retTL->link_head(nextTC);
 224       assert(nextTC->is_free(), "Should be a free chunk");
 225     }
 226   } else {
 227     if (nextTC == NULL) {
 228       // Removing chunk at tail of list
 229       this->link_tail(prevFC);
 230     }
 231     // Chunk is interior to the list
 232     prevFC->link_after(nextTC);
 233   }
 234 
 235   // Below this point the embedded TreeList<Chunk_t, FreeList_t> being used for the
 236   // tree node may have changed. Don't use "this"
 237   // TreeList<Chunk_t, FreeList_t>*.
 238   // chunk should still be a free chunk (bit set in _prev)
 239   assert(!retTL->head() || retTL->size() == retTL->head()->size(),
 240     "Wrong sized chunk in list");
 241   debug_only(
 242     tc->link_prev(NULL);
 243     tc->link_next(NULL);
 244     tc->set_list(NULL);
 245     bool prev_found = false;
 246     bool next_found = false;
 247     for (Chunk_t* curFC = retTL->head();
 248          curFC != NULL; curFC = curFC->next()) {
 249       assert(curFC != tc, "Chunk is still in list");
 250       if (curFC == prevFC) {
 251         prev_found = true;
 252       }
 253       if (curFC == nextTC) {
 254         next_found = true;
 255       }
 256     }
 257     assert(prevFC == NULL || prev_found, "Chunk was lost from list");
 258     assert(nextTC == NULL || next_found, "Chunk was lost from list");
 259     assert(retTL->parent() == NULL ||
 260            retTL == retTL->parent()->left() ||
 261            retTL == retTL->parent()->right(),
 262            "list is inconsistent");
 263   )
 264   retTL->decrement_count();
 265 
 266   assert(tc->is_free(), "Should still be a free chunk");
 267   assert(retTL->head() == NULL || retTL->head()->prev() == NULL,
 268     "list invariant");
 269   assert(retTL->tail() == NULL || retTL->tail()->next() == NULL,
 270     "list invariant");
 271   return retTL;
 272 }
 273 
 274 template <class Chunk_t, class FreeList_t>
 275 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_tail(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 276   assert(chunk != NULL, "returning NULL chunk");
 277   assert(chunk->list() == this, "list should be set for chunk");
 278   assert(tail() != NULL, "The tree list is embedded in the first chunk");
 279   // which means that the list can never be empty.
 280   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
 281   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 282   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 283 
 284   Chunk_t* fc = tail();
 285   fc->link_after(chunk);
 286   this->link_tail(chunk);
 287 
 288   assert(!tail() || size() == tail()->size(), "Wrong sized chunk in list");
 289   FreeList_t::increment_count();
 290   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 291   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 292   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 293 }
 294 
 295 // Add this chunk at the head of the list.  "At the head of the list"
 296 // is defined to be after the chunk pointer to by head().  This is
 297 // because the TreeList<Chunk_t, FreeList_t> is embedded in the first TreeChunk<Chunk_t, FreeList_t> in the
 298 // list.  See the definition of TreeChunk<Chunk_t, FreeList_t>.
 299 template <class Chunk_t, class FreeList_t>
 300 void TreeList<Chunk_t, FreeList_t>::return_chunk_at_head(TreeChunk<Chunk_t, FreeList_t>* chunk) {
 301   assert(chunk->list() == this, "list should be set for chunk");
 302   assert(head() != NULL, "The tree list is embedded in the first chunk");
 303   assert(chunk != NULL, "returning NULL chunk");
 304   assert(!this->verify_chunk_in_free_list(chunk), "Double entry");
 305   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 306   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 307 
 308   Chunk_t* fc = head()->next();
 309   if (fc != NULL) {
 310     chunk->link_after(fc);
 311   } else {
 312     assert(tail() == NULL, "List is inconsistent");
 313     this->link_tail(chunk);
 314   }
 315   head()->link_after(chunk);
 316   assert(!head() || size() == head()->size(), "Wrong sized chunk in list");
 317   FreeList_t::increment_count();
 318   debug_only(this->increment_returned_bytes_by(chunk->size()*sizeof(HeapWord));)
 319   assert(head() == NULL || head()->prev() == NULL, "list invariant");
 320   assert(tail() == NULL || tail()->next() == NULL, "list invariant");
 321 }
 322 
 323 template <class Chunk_t, class FreeList_t>
 324 void TreeChunk<Chunk_t, FreeList_t>::assert_is_mangled() const {
 325   assert((ZapUnusedHeapArea &&
 326           SpaceMangler::is_mangled((HeapWord*) Chunk_t::size_addr()) &&
 327           SpaceMangler::is_mangled((HeapWord*) Chunk_t::prev_addr()) &&
 328           SpaceMangler::is_mangled((HeapWord*) Chunk_t::next_addr())) ||
 329           (size() == 0 && prev() == NULL && next() == NULL),
 330     "Space should be clear or mangled");
 331 }
 332 
 333 template <class Chunk_t, class FreeList_t>
 334 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::head_as_TreeChunk() {
 335   assert(head() == NULL || (TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head())->list() == this),
 336     "Wrong type of chunk?");
 337   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(head());
 338 }
 339 
 340 template <class Chunk_t, class FreeList_t>
 341 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::first_available() {
 342   assert(head() != NULL, "The head of the list cannot be NULL");
 343   Chunk_t* fc = head()->next();
 344   TreeChunk<Chunk_t, FreeList_t>* retTC;
 345   if (fc == NULL) {
 346     retTC = head_as_TreeChunk();
 347   } else {
 348     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 349   }
 350   assert(retTC->list() == this, "Wrong type of chunk.");
 351   return retTC;
 352 }
 353 
 354 // Returns the block with the largest heap address amongst
 355 // those in the list for this size; potentially slow and expensive,
 356 // use with caution!
 357 template <class Chunk_t, class FreeList_t>
 358 TreeChunk<Chunk_t, FreeList_t>* TreeList<Chunk_t, FreeList_t>::largest_address() {
 359   assert(head() != NULL, "The head of the list cannot be NULL");
 360   Chunk_t* fc = head()->next();
 361   TreeChunk<Chunk_t, FreeList_t>* retTC;
 362   if (fc == NULL) {
 363     retTC = head_as_TreeChunk();
 364   } else {
 365     // walk down the list and return the one with the highest
 366     // heap address among chunks of this size.
 367     Chunk_t* last = fc;
 368     while (fc->next() != NULL) {
 369       if ((HeapWord*)last < (HeapWord*)fc) {
 370         last = fc;
 371       }
 372       fc = fc->next();
 373     }
 374     retTC = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(last);
 375   }
 376   assert(retTC->list() == this, "Wrong type of chunk.");
 377   return retTC;
 378 }
 379 
 380 template <class Chunk_t, class FreeList_t>
 381 BinaryTreeDictionary<Chunk_t, FreeList_t>::BinaryTreeDictionary(MemRegion mr) {
 382   assert((mr.byte_size() > min_size()), "minimum chunk size");
 383 
 384   reset(mr);
 385   assert(root()->left() == NULL, "reset check failed");
 386   assert(root()->right() == NULL, "reset check failed");
 387   assert(root()->head()->next() == NULL, "reset check failed");
 388   assert(root()->head()->prev() == NULL, "reset check failed");
 389   assert(total_size() == root()->size(), "reset check failed");
 390   assert(total_free_blocks() == 1, "reset check failed");
 391 }
 392 
 393 template <class Chunk_t, class FreeList_t>
 394 void BinaryTreeDictionary<Chunk_t, FreeList_t>::inc_total_size(size_t inc) {
 395   _total_size = _total_size + inc;
 396 }
 397 
 398 template <class Chunk_t, class FreeList_t>
 399 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dec_total_size(size_t dec) {
 400   _total_size = _total_size - dec;
 401 }
 402 
 403 template <class Chunk_t, class FreeList_t>
 404 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(MemRegion mr) {
 405   assert((mr.byte_size() > min_size()), "minimum chunk size");
 406   set_root(TreeList<Chunk_t, FreeList_t>::as_TreeList(mr.start(), mr.word_size()));
 407   set_total_size(mr.word_size());
 408   set_total_free_blocks(1);
 409 }
 410 
 411 template <class Chunk_t, class FreeList_t>
 412 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset(HeapWord* addr, size_t byte_size) {
 413   MemRegion mr(addr, heap_word_size(byte_size));
 414   reset(mr);
 415 }
 416 
 417 template <class Chunk_t, class FreeList_t>
 418 void BinaryTreeDictionary<Chunk_t, FreeList_t>::reset() {
 419   set_root(NULL);
 420   set_total_size(0);
 421   set_total_free_blocks(0);
 422 }
 423 
 424 // Get a free block of size at least size from tree, or NULL.
 425 template <class Chunk_t, class FreeList_t>
 426 TreeChunk<Chunk_t, FreeList_t>*
 427 BinaryTreeDictionary<Chunk_t, FreeList_t>::get_chunk_from_tree(
 428                               size_t size,
 429                               enum FreeBlockDictionary<Chunk_t>::Dither dither)
 430 {
 431   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 432   TreeChunk<Chunk_t, FreeList_t>* retTC = NULL;
 433 
 434   assert((size >= min_size()), "minimum chunk size");
 435   if (FLSVerifyDictionary) {
 436     verify_tree();
 437   }
 438   // starting at the root, work downwards trying to find match.
 439   // Remember the last node of size too great or too small.
 440   for (prevTL = curTL = root(); curTL != NULL;) {
 441     if (curTL->size() == size) {        // exact match
 442       break;
 443     }
 444     prevTL = curTL;
 445     if (curTL->size() < size) {        // proceed to right sub-tree
 446       curTL = curTL->right();
 447     } else {                           // proceed to left sub-tree
 448       assert(curTL->size() > size, "size inconsistency");
 449       curTL = curTL->left();
 450     }
 451   }
 452   if (curTL == NULL) { // couldn't find exact match
 453 
 454     if (dither == FreeBlockDictionary<Chunk_t>::exactly) return NULL;
 455 
 456     // try and find the next larger size by walking back up the search path
 457     for (curTL = prevTL; curTL != NULL;) {
 458       if (curTL->size() >= size) break;
 459       else curTL = curTL->parent();
 460     }
 461     assert(curTL == NULL || curTL->count() > 0,
 462       "An empty list should not be in the tree");
 463   }
 464   if (curTL != NULL) {
 465     assert(curTL->size() >= size, "size inconsistency");
 466 
 467     curTL = curTL->get_better_list(this);
 468 
 469     retTC = curTL->first_available();
 470     assert((retTC != NULL) && (curTL->count() > 0),
 471       "A list in the binary tree should not be NULL");
 472     assert(retTC->size() >= size,
 473       "A chunk of the wrong size was found");
 474     remove_chunk_from_tree(retTC);
 475     assert(retTC->is_free(), "Header is not marked correctly");
 476   }
 477 
 478   if (FLSVerifyDictionary) {
 479     verify();
 480   }
 481   return retTC;
 482 }
 483 
 484 template <class Chunk_t, class FreeList_t>
 485 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_list(size_t size) const {
 486   TreeList<Chunk_t, FreeList_t>* curTL;
 487   for (curTL = root(); curTL != NULL;) {
 488     if (curTL->size() == size) {        // exact match
 489       break;
 490     }
 491 
 492     if (curTL->size() < size) {        // proceed to right sub-tree
 493       curTL = curTL->right();
 494     } else {                           // proceed to left sub-tree
 495       assert(curTL->size() > size, "size inconsistency");
 496       curTL = curTL->left();
 497     }
 498   }
 499   return curTL;
 500 }
 501 
 502 
 503 template <class Chunk_t, class FreeList_t>
 504 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_chunk_in_free_list(Chunk_t* tc) const {
 505   size_t size = tc->size();
 506   TreeList<Chunk_t, FreeList_t>* tl = find_list(size);
 507   if (tl == NULL) {
 508     return false;
 509   } else {
 510     return tl->verify_chunk_in_free_list(tc);
 511   }
 512 }
 513 
 514 template <class Chunk_t, class FreeList_t>
 515 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_largest_dict() const {
 516   TreeList<Chunk_t, FreeList_t> *curTL = root();
 517   if (curTL != NULL) {
 518     while(curTL->right() != NULL) curTL = curTL->right();
 519     return curTL->largest_address();
 520   } else {
 521     return NULL;
 522   }
 523 }
 524 
 525 // Remove the current chunk from the tree.  If it is not the last
 526 // chunk in a list on a tree node, just unlink it.
 527 // If it is the last chunk in the list (the next link is NULL),
 528 // remove the node and repair the tree.
 529 template <class Chunk_t, class FreeList_t>
 530 TreeChunk<Chunk_t, FreeList_t>*
 531 BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_chunk_from_tree(TreeChunk<Chunk_t, FreeList_t>* tc) {
 532   assert(tc != NULL, "Should not call with a NULL chunk");
 533   assert(tc->is_free(), "Header is not marked correctly");
 534 
 535   TreeList<Chunk_t, FreeList_t> *newTL, *parentTL;
 536   TreeChunk<Chunk_t, FreeList_t>* retTC;
 537   TreeList<Chunk_t, FreeList_t>* tl = tc->list();
 538   debug_only(
 539     bool removing_only_chunk = false;
 540     if (tl == _root) {
 541       if ((_root->left() == NULL) && (_root->right() == NULL)) {
 542         if (_root->count() == 1) {
 543           assert(_root->head() == tc, "Should only be this one chunk");
 544           removing_only_chunk = true;
 545         }
 546       }
 547     }
 548   )
 549   assert(tl != NULL, "List should be set");
 550   assert(tl->parent() == NULL || tl == tl->parent()->left() ||
 551          tl == tl->parent()->right(), "list is inconsistent");
 552 
 553   bool complicated_splice = false;
 554 
 555   retTC = tc;
 556   // Removing this chunk can have the side effect of changing the node
 557   // (TreeList<Chunk_t, FreeList_t>*) in the tree.  If the node is the root, update it.
 558   TreeList<Chunk_t, FreeList_t>* replacementTL = tl->remove_chunk_replace_if_needed(tc);
 559   assert(tc->is_free(), "Chunk should still be free");
 560   assert(replacementTL->parent() == NULL ||
 561          replacementTL == replacementTL->parent()->left() ||
 562          replacementTL == replacementTL->parent()->right(),
 563          "list is inconsistent");
 564   if (tl == root()) {
 565     assert(replacementTL->parent() == NULL, "Incorrectly replacing root");
 566     set_root(replacementTL);
 567   }
 568 #ifdef ASSERT
 569     if (tl != replacementTL) {
 570       assert(replacementTL->head() != NULL,
 571         "If the tree list was replaced, it should not be a NULL list");
 572       TreeList<Chunk_t, FreeList_t>* rhl = replacementTL->head_as_TreeChunk()->list();
 573       TreeList<Chunk_t, FreeList_t>* rtl =
 574         TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(replacementTL->tail())->list();
 575       assert(rhl == replacementTL, "Broken head");
 576       assert(rtl == replacementTL, "Broken tail");
 577       assert(replacementTL->size() == tc->size(),  "Broken size");
 578     }
 579 #endif
 580 
 581   // Does the tree need to be repaired?
 582   if (replacementTL->count() == 0) {
 583     assert(replacementTL->head() == NULL &&
 584            replacementTL->tail() == NULL, "list count is incorrect");
 585     // Find the replacement node for the (soon to be empty) node being removed.
 586     // if we have a single (or no) child, splice child in our stead
 587     if (replacementTL->left() == NULL) {
 588       // left is NULL so pick right.  right may also be NULL.
 589       newTL = replacementTL->right();
 590       debug_only(replacementTL->clear_right();)
 591     } else if (replacementTL->right() == NULL) {
 592       // right is NULL
 593       newTL = replacementTL->left();
 594       debug_only(replacementTL->clear_left();)
 595     } else {  // we have both children, so, by patriarchal convention,
 596               // my replacement is least node in right sub-tree
 597       complicated_splice = true;
 598       newTL = remove_tree_minimum(replacementTL->right());
 599       assert(newTL != NULL && newTL->left() == NULL &&
 600              newTL->right() == NULL, "sub-tree minimum exists");
 601     }
 602     // newTL is the replacement for the (soon to be empty) node.
 603     // newTL may be NULL.
 604     // should verify; we just cleanly excised our replacement
 605     if (FLSVerifyDictionary) {
 606       verify_tree();
 607     }
 608     // first make newTL my parent's child
 609     if ((parentTL = replacementTL->parent()) == NULL) {
 610       // newTL should be root
 611       assert(tl == root(), "Incorrectly replacing root");
 612       set_root(newTL);
 613       if (newTL != NULL) {
 614         newTL->clear_parent();
 615       }
 616     } else if (parentTL->right() == replacementTL) {
 617       // replacementTL is a right child
 618       parentTL->set_right(newTL);
 619     } else {                                // replacementTL is a left child
 620       assert(parentTL->left() == replacementTL, "should be left child");
 621       parentTL->set_left(newTL);
 622     }
 623     debug_only(replacementTL->clear_parent();)
 624     if (complicated_splice) {  // we need newTL to get replacementTL's
 625                               // two children
 626       assert(newTL != NULL &&
 627              newTL->left() == NULL && newTL->right() == NULL,
 628             "newTL should not have encumbrances from the past");
 629       // we'd like to assert as below:
 630       // assert(replacementTL->left() != NULL && replacementTL->right() != NULL,
 631       //       "else !complicated_splice");
 632       // ... however, the above assertion is too strong because we aren't
 633       // guaranteed that replacementTL->right() is still NULL.
 634       // Recall that we removed
 635       // the right sub-tree minimum from replacementTL.
 636       // That may well have been its right
 637       // child! So we'll just assert half of the above:
 638       assert(replacementTL->left() != NULL, "else !complicated_splice");
 639       newTL->set_left(replacementTL->left());
 640       newTL->set_right(replacementTL->right());
 641       debug_only(
 642         replacementTL->clear_right();
 643         replacementTL->clear_left();
 644       )
 645     }
 646     assert(replacementTL->right() == NULL &&
 647            replacementTL->left() == NULL &&
 648            replacementTL->parent() == NULL,
 649         "delete without encumbrances");
 650   }
 651 
 652   assert(total_size() >= retTC->size(), "Incorrect total size");
 653   dec_total_size(retTC->size());     // size book-keeping
 654   assert(total_free_blocks() > 0, "Incorrect total count");
 655   set_total_free_blocks(total_free_blocks() - 1);
 656 
 657   assert(retTC != NULL, "null chunk?");
 658   assert(retTC->prev() == NULL && retTC->next() == NULL,
 659          "should return without encumbrances");
 660   if (FLSVerifyDictionary) {
 661     verify_tree();
 662   }
 663   assert(!removing_only_chunk || _root == NULL, "root should be NULL");
 664   return TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(retTC);
 665 }
 666 
 667 // Remove the leftmost node (lm) in the tree and return it.
 668 // If lm has a right child, link it to the left node of
 669 // the parent of lm.
 670 template <class Chunk_t, class FreeList_t>
 671 TreeList<Chunk_t, FreeList_t>* BinaryTreeDictionary<Chunk_t, FreeList_t>::remove_tree_minimum(TreeList<Chunk_t, FreeList_t>* tl) {
 672   assert(tl != NULL && tl->parent() != NULL, "really need a proper sub-tree");
 673   // locate the subtree minimum by walking down left branches
 674   TreeList<Chunk_t, FreeList_t>* curTL = tl;
 675   for (; curTL->left() != NULL; curTL = curTL->left());
 676   // obviously curTL now has at most one child, a right child
 677   if (curTL != root()) {  // Should this test just be removed?
 678     TreeList<Chunk_t, FreeList_t>* parentTL = curTL->parent();
 679     if (parentTL->left() == curTL) { // curTL is a left child
 680       parentTL->set_left(curTL->right());
 681     } else {
 682       // If the list tl has no left child, then curTL may be
 683       // the right child of parentTL.
 684       assert(parentTL->right() == curTL, "should be a right child");
 685       parentTL->set_right(curTL->right());
 686     }
 687   } else {
 688     // The only use of this method would not pass the root of the
 689     // tree (as indicated by the assertion above that the tree list
 690     // has a parent) but the specification does not explicitly exclude the
 691     // passing of the root so accommodate it.
 692     set_root(NULL);
 693   }
 694   debug_only(
 695     curTL->clear_parent();  // Test if this needs to be cleared
 696     curTL->clear_right();    // recall, above, left child is already null
 697   )
 698   // we just excised a (non-root) node, we should still verify all tree invariants
 699   if (FLSVerifyDictionary) {
 700     verify_tree();
 701   }
 702   return curTL;
 703 }
 704 
 705 template <class Chunk_t, class FreeList_t>
 706 void BinaryTreeDictionary<Chunk_t, FreeList_t>::insert_chunk_in_tree(Chunk_t* fc) {
 707   TreeList<Chunk_t, FreeList_t> *curTL, *prevTL;
 708   size_t size = fc->size();
 709 
 710   assert((size >= min_size()),
 711     err_msg(SIZE_FORMAT " is too small to be a TreeChunk<Chunk_t, FreeList_t> " SIZE_FORMAT,
 712       size, min_size()));
 713   if (FLSVerifyDictionary) {
 714     verify_tree();
 715   }
 716 
 717   fc->clear_next();
 718   fc->link_prev(NULL);
 719 
 720   // work down from the _root, looking for insertion point
 721   for (prevTL = curTL = root(); curTL != NULL;) {
 722     if (curTL->size() == size)  // exact match
 723       break;
 724     prevTL = curTL;
 725     if (curTL->size() > size) { // follow left branch
 726       curTL = curTL->left();
 727     } else {                    // follow right branch
 728       assert(curTL->size() < size, "size inconsistency");
 729       curTL = curTL->right();
 730     }
 731   }
 732   TreeChunk<Chunk_t, FreeList_t>* tc = TreeChunk<Chunk_t, FreeList_t>::as_TreeChunk(fc);
 733   // This chunk is being returned to the binary tree.  Its embedded
 734   // TreeList<Chunk_t, FreeList_t> should be unused at this point.
 735   tc->initialize();
 736   if (curTL != NULL) {          // exact match
 737     tc->set_list(curTL);
 738     curTL->return_chunk_at_tail(tc);
 739   } else {                     // need a new node in tree
 740     tc->clear_next();
 741     tc->link_prev(NULL);
 742     TreeList<Chunk_t, FreeList_t>* newTL = TreeList<Chunk_t, FreeList_t>::as_TreeList(tc);
 743     assert(((TreeChunk<Chunk_t, FreeList_t>*)tc)->list() == newTL,
 744       "List was not initialized correctly");
 745     if (prevTL == NULL) {      // we are the only tree node
 746       assert(root() == NULL, "control point invariant");
 747       set_root(newTL);
 748     } else {                   // insert under prevTL ...
 749       if (prevTL->size() < size) {   // am right child
 750         assert(prevTL->right() == NULL, "control point invariant");
 751         prevTL->set_right(newTL);
 752       } else {                       // am left child
 753         assert(prevTL->size() > size && prevTL->left() == NULL, "cpt pt inv");
 754         prevTL->set_left(newTL);
 755       }
 756     }
 757   }
 758   assert(tc->list() != NULL, "Tree list should be set");
 759 
 760   inc_total_size(size);
 761   // Method 'total_size_in_tree' walks through the every block in the
 762   // tree, so it can cause significant performance loss if there are
 763   // many blocks in the tree
 764   assert(!FLSVerifyDictionary || total_size_in_tree(root()) == total_size(), "_total_size inconsistency");
 765   set_total_free_blocks(total_free_blocks() + 1);
 766   if (FLSVerifyDictionary) {
 767     verify_tree();
 768   }
 769 }
 770 
 771 template <class Chunk_t, class FreeList_t>
 772 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::max_chunk_size() const {
 773   FreeBlockDictionary<Chunk_t>::verify_par_locked();
 774   TreeList<Chunk_t, FreeList_t>* tc = root();
 775   if (tc == NULL) return 0;
 776   for (; tc->right() != NULL; tc = tc->right());
 777   return tc->size();
 778 }
 779 
 780 template <class Chunk_t, class FreeList_t>
 781 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_list_length(TreeList<Chunk_t, FreeList_t>* tl) const {
 782   size_t res;
 783   res = tl->count();
 784 #ifdef ASSERT
 785   size_t cnt;
 786   Chunk_t* tc = tl->head();
 787   for (cnt = 0; tc != NULL; tc = tc->next(), cnt++);
 788   assert(res == cnt, "The count is not being maintained correctly");
 789 #endif
 790   return res;
 791 }
 792 
 793 template <class Chunk_t, class FreeList_t>
 794 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_size_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 795   if (tl == NULL)
 796     return 0;
 797   return (tl->size() * total_list_length(tl)) +
 798          total_size_in_tree(tl->left())    +
 799          total_size_in_tree(tl->right());
 800 }
 801 
 802 template <class Chunk_t, class FreeList_t>
 803 double BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_of_squared_block_sizes(TreeList<Chunk_t, FreeList_t>* const tl) const {
 804   if (tl == NULL) {
 805     return 0.0;
 806   }
 807   double size = (double)(tl->size());
 808   double curr = size * size * total_list_length(tl);
 809   curr += sum_of_squared_block_sizes(tl->left());
 810   curr += sum_of_squared_block_sizes(tl->right());
 811   return curr;
 812 }
 813 
 814 template <class Chunk_t, class FreeList_t>
 815 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_free_blocks_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 816   if (tl == NULL)
 817     return 0;
 818   return total_list_length(tl) +
 819          total_free_blocks_in_tree(tl->left()) +
 820          total_free_blocks_in_tree(tl->right());
 821 }
 822 
 823 template <class Chunk_t, class FreeList_t>
 824 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::num_free_blocks() const {
 825   assert(total_free_blocks_in_tree(root()) == total_free_blocks(),
 826          "_total_free_blocks inconsistency");
 827   return total_free_blocks();
 828 }
 829 
 830 template <class Chunk_t, class FreeList_t>
 831 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 832   if (tl == NULL)
 833     return 0;
 834   return 1 + MAX2(tree_height_helper(tl->left()),
 835                   tree_height_helper(tl->right()));
 836 }
 837 
 838 template <class Chunk_t, class FreeList_t>
 839 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::tree_height() const {
 840   return tree_height_helper(root());
 841 }
 842 
 843 template <class Chunk_t, class FreeList_t>
 844 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
 845   if (tl == NULL) {
 846     return 0;
 847   }
 848   return 1 + total_nodes_helper(tl->left()) +
 849     total_nodes_helper(tl->right());
 850 }
 851 
 852 template <class Chunk_t, class FreeList_t>
 853 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_nodes_in_tree(TreeList<Chunk_t, FreeList_t>* tl) const {
 854   return total_nodes_helper(root());
 855 }
 856 
 857 template <class Chunk_t, class FreeList_t>
 858 void BinaryTreeDictionary<Chunk_t, FreeList_t>::dict_census_update(size_t size, bool split, bool birth){}
 859 
 860 #if INCLUDE_ALL_GCS
 861 template <>
 862 void AFLBinaryTreeDictionary::dict_census_update(size_t size, bool split, bool birth) {
 863   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* nd = find_list(size);
 864   if (nd) {
 865     if (split) {
 866       if (birth) {
 867         nd->increment_split_births();
 868         nd->increment_surplus();
 869       }  else {
 870         nd->increment_split_deaths();
 871         nd->decrement_surplus();
 872       }
 873     } else {
 874       if (birth) {
 875         nd->increment_coal_births();
 876         nd->increment_surplus();
 877       } else {
 878         nd->increment_coal_deaths();
 879         nd->decrement_surplus();
 880       }
 881     }
 882   }
 883   // A list for this size may not be found (nd == 0) if
 884   //   This is a death where the appropriate list is now
 885   //     empty and has been removed from the list.
 886   //   This is a birth associated with a LinAB.  The chunk
 887   //     for the LinAB is not in the dictionary.
 888 }
 889 #endif // INCLUDE_ALL_GCS
 890 
 891 template <class Chunk_t, class FreeList_t>
 892 bool BinaryTreeDictionary<Chunk_t, FreeList_t>::coal_dict_over_populated(size_t size) {
 893   // For the general type of freelists, encourage coalescing by
 894   // returning true.
 895   return true;
 896 }
 897 
 898 #if INCLUDE_ALL_GCS
 899 template <>
 900 bool AFLBinaryTreeDictionary::coal_dict_over_populated(size_t size) {
 901   if (FLSAlwaysCoalesceLarge) return true;
 902 
 903   TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >* list_of_size = find_list(size);
 904   // None of requested size implies overpopulated.
 905   return list_of_size == NULL || list_of_size->coal_desired() <= 0 ||
 906          list_of_size->count() > list_of_size->coal_desired();
 907 }
 908 #endif // INCLUDE_ALL_GCS
 909 
 910 // Closures for walking the binary tree.
 911 //   do_list() walks the free list in a node applying the closure
 912 //     to each free chunk in the list
 913 //   do_tree() walks the nodes in the binary tree applying do_list()
 914 //     to each list at each node.
 915 
 916 template <class Chunk_t, class FreeList_t>
 917 class TreeCensusClosure : public StackObj {
 918  protected:
 919   virtual void do_list(FreeList_t* fl) = 0;
 920  public:
 921   virtual void do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 922 };
 923 
 924 template <class Chunk_t, class FreeList_t>
 925 class AscendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 926  public:
 927   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 928     if (tl != NULL) {
 929       do_tree(tl->left());
 930       this->do_list(tl);
 931       do_tree(tl->right());
 932     }
 933   }
 934 };
 935 
 936 template <class Chunk_t, class FreeList_t>
 937 class DescendTreeCensusClosure : public TreeCensusClosure<Chunk_t, FreeList_t> {
 938  public:
 939   void do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 940     if (tl != NULL) {
 941       do_tree(tl->right());
 942       this->do_list(tl);
 943       do_tree(tl->left());
 944     }
 945   }
 946 };
 947 
 948 // For each list in the tree, calculate the desired, desired
 949 // coalesce, count before sweep, and surplus before sweep.
 950 template <class Chunk_t, class FreeList_t>
 951 class BeginSweepClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
 952   double _percentage;
 953   float _inter_sweep_current;
 954   float _inter_sweep_estimate;
 955   float _intra_sweep_estimate;
 956 
 957  public:
 958   BeginSweepClosure(double p, float inter_sweep_current,
 959                               float inter_sweep_estimate,
 960                               float intra_sweep_estimate) :
 961    _percentage(p),
 962    _inter_sweep_current(inter_sweep_current),
 963    _inter_sweep_estimate(inter_sweep_estimate),
 964    _intra_sweep_estimate(intra_sweep_estimate) { }
 965 
 966   void do_list(FreeList<Chunk_t>* fl) {}
 967 
 968 #if INCLUDE_ALL_GCS
 969   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
 970     double coalSurplusPercent = _percentage;
 971     fl->compute_desired(_inter_sweep_current, _inter_sweep_estimate, _intra_sweep_estimate);
 972     fl->set_coal_desired((ssize_t)((double)fl->desired() * coalSurplusPercent));
 973     fl->set_before_sweep(fl->count());
 974     fl->set_bfr_surp(fl->surplus());
 975   }
 976 #endif // INCLUDE_ALL_GCS
 977 };
 978 
 979 // Used to search the tree until a condition is met.
 980 // Similar to TreeCensusClosure but searches the
 981 // tree and returns promptly when found.
 982 
 983 template <class Chunk_t, class FreeList_t>
 984 class TreeSearchClosure : public StackObj {
 985  protected:
 986   virtual bool do_list(FreeList_t* fl) = 0;
 987  public:
 988   virtual bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) = 0;
 989 };
 990 
 991 #if 0 //  Don't need this yet but here for symmetry.
 992 template <class Chunk_t, class FreeList_t>
 993 class AscendTreeSearchClosure : public TreeSearchClosure<Chunk_t> {
 994  public:
 995   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
 996     if (tl != NULL) {
 997       if (do_tree(tl->left())) return true;
 998       if (do_list(tl)) return true;
 999       if (do_tree(tl->right())) return true;
1000     }
1001     return false;
1002   }
1003 };
1004 #endif
1005 
1006 template <class Chunk_t, class FreeList_t>
1007 class DescendTreeSearchClosure : public TreeSearchClosure<Chunk_t, FreeList_t> {
1008  public:
1009   bool do_tree(TreeList<Chunk_t, FreeList_t>* tl) {
1010     if (tl != NULL) {
1011       if (do_tree(tl->right())) return true;
1012       if (this->do_list(tl)) return true;
1013       if (do_tree(tl->left())) return true;
1014     }
1015     return false;
1016   }
1017 };
1018 
1019 // Searches the tree for a chunk that ends at the
1020 // specified address.
1021 template <class Chunk_t, class FreeList_t>
1022 class EndTreeSearchClosure : public DescendTreeSearchClosure<Chunk_t, FreeList_t> {
1023   HeapWord* _target;
1024   Chunk_t* _found;
1025 
1026  public:
1027   EndTreeSearchClosure(HeapWord* target) : _target(target), _found(NULL) {}
1028   bool do_list(FreeList_t* fl) {
1029     Chunk_t* item = fl->head();
1030     while (item != NULL) {
1031       if (item->end() == (uintptr_t*) _target) {
1032         _found = item;
1033         return true;
1034       }
1035       item = item->next();
1036     }
1037     return false;
1038   }
1039   Chunk_t* found() { return _found; }
1040 };
1041 
1042 template <class Chunk_t, class FreeList_t>
1043 Chunk_t* BinaryTreeDictionary<Chunk_t, FreeList_t>::find_chunk_ends_at(HeapWord* target) const {
1044   EndTreeSearchClosure<Chunk_t, FreeList_t> etsc(target);
1045   bool found_target = etsc.do_tree(root());
1046   assert(found_target || etsc.found() == NULL, "Consistency check");
1047   assert(!found_target || etsc.found() != NULL, "Consistency check");
1048   return etsc.found();
1049 }
1050 
1051 template <class Chunk_t, class FreeList_t>
1052 void BinaryTreeDictionary<Chunk_t, FreeList_t>::begin_sweep_dict_census(double coalSurplusPercent,
1053   float inter_sweep_current, float inter_sweep_estimate, float intra_sweep_estimate) {
1054   BeginSweepClosure<Chunk_t, FreeList_t> bsc(coalSurplusPercent, inter_sweep_current,
1055                                             inter_sweep_estimate,
1056                                             intra_sweep_estimate);
1057   bsc.do_tree(root());
1058 }
1059 
1060 // Closures and methods for calculating total bytes returned to the
1061 // free lists in the tree.
1062 #ifndef PRODUCT
1063 template <class Chunk_t, class FreeList_t>
1064 class InitializeDictReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1065    public:
1066   void do_list(FreeList_t* fl) {
1067     fl->set_returned_bytes(0);
1068   }
1069 };
1070 
1071 template <class Chunk_t, class FreeList_t>
1072 void BinaryTreeDictionary<Chunk_t, FreeList_t>::initialize_dict_returned_bytes() {
1073   InitializeDictReturnedBytesClosure<Chunk_t, FreeList_t> idrb;
1074   idrb.do_tree(root());
1075 }
1076 
1077 template <class Chunk_t, class FreeList_t>
1078 class ReturnedBytesClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1079   size_t _dict_returned_bytes;
1080  public:
1081   ReturnedBytesClosure() { _dict_returned_bytes = 0; }
1082   void do_list(FreeList_t* fl) {
1083     _dict_returned_bytes += fl->returned_bytes();
1084   }
1085   size_t dict_returned_bytes() { return _dict_returned_bytes; }
1086 };
1087 
1088 template <class Chunk_t, class FreeList_t>
1089 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::sum_dict_returned_bytes() {
1090   ReturnedBytesClosure<Chunk_t, FreeList_t> rbc;
1091   rbc.do_tree(root());
1092 
1093   return rbc.dict_returned_bytes();
1094 }
1095 
1096 // Count the number of entries in the tree.
1097 template <class Chunk_t, class FreeList_t>
1098 class treeCountClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1099  public:
1100   uint count;
1101   treeCountClosure(uint c) { count = c; }
1102   void do_list(FreeList_t* fl) {
1103     count++;
1104   }
1105 };
1106 
1107 template <class Chunk_t, class FreeList_t>
1108 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::total_count() {
1109   treeCountClosure<Chunk_t, FreeList_t> ctc(0);
1110   ctc.do_tree(root());
1111   return ctc.count;
1112 }
1113 #endif // PRODUCT
1114 
1115 // Calculate surpluses for the lists in the tree.
1116 template <class Chunk_t, class FreeList_t>
1117 class setTreeSurplusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1118   double percentage;
1119  public:
1120   setTreeSurplusClosure(double v) { percentage = v; }
1121   void do_list(FreeList<Chunk_t>* fl) {}
1122 
1123 #if INCLUDE_ALL_GCS
1124   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1125     double splitSurplusPercent = percentage;
1126     fl->set_surplus(fl->count() -
1127                    (ssize_t)((double)fl->desired() * splitSurplusPercent));
1128   }
1129 #endif // INCLUDE_ALL_GCS
1130 };
1131 
1132 template <class Chunk_t, class FreeList_t>
1133 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_surplus(double splitSurplusPercent) {
1134   setTreeSurplusClosure<Chunk_t, FreeList_t> sts(splitSurplusPercent);
1135   sts.do_tree(root());
1136 }
1137 
1138 // Set hints for the lists in the tree.
1139 template <class Chunk_t, class FreeList_t>
1140 class setTreeHintsClosure : public DescendTreeCensusClosure<Chunk_t, FreeList_t> {
1141   size_t hint;
1142  public:
1143   setTreeHintsClosure(size_t v) { hint = v; }
1144   void do_list(FreeList<Chunk_t>* fl) {}
1145 
1146 #if INCLUDE_ALL_GCS
1147   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1148     fl->set_hint(hint);
1149     assert(fl->hint() == 0 || fl->hint() > fl->size(),
1150       "Current hint is inconsistent");
1151     if (fl->surplus() > 0) {
1152       hint = fl->size();
1153     }
1154   }
1155 #endif // INCLUDE_ALL_GCS
1156 };
1157 
1158 template <class Chunk_t, class FreeList_t>
1159 void BinaryTreeDictionary<Chunk_t, FreeList_t>::set_tree_hints(void) {
1160   setTreeHintsClosure<Chunk_t, FreeList_t> sth(0);
1161   sth.do_tree(root());
1162 }
1163 
1164 // Save count before previous sweep and splits and coalesces.
1165 template <class Chunk_t, class FreeList_t>
1166 class clearTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1167   void do_list(FreeList<Chunk_t>* fl) {}
1168 
1169 #if INCLUDE_ALL_GCS
1170   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1171     fl->set_prev_sweep(fl->count());
1172     fl->set_coal_births(0);
1173     fl->set_coal_deaths(0);
1174     fl->set_split_births(0);
1175     fl->set_split_deaths(0);
1176   }
1177 #endif // INCLUDE_ALL_GCS
1178 };
1179 
1180 template <class Chunk_t, class FreeList_t>
1181 void BinaryTreeDictionary<Chunk_t, FreeList_t>::clear_tree_census(void) {
1182   clearTreeCensusClosure<Chunk_t, FreeList_t> ctc;
1183   ctc.do_tree(root());
1184 }
1185 
1186 // Do reporting and post sweep clean up.
1187 template <class Chunk_t, class FreeList_t>
1188 void BinaryTreeDictionary<Chunk_t, FreeList_t>::end_sweep_dict_census(double splitSurplusPercent) {
1189   // Does walking the tree 3 times hurt?
1190   set_tree_surplus(splitSurplusPercent);
1191   set_tree_hints();
1192   if (PrintGC && Verbose) {
1193     report_statistics();
1194   }
1195   clear_tree_census();
1196 }
1197 
1198 // Print summary statistics
1199 template <class Chunk_t, class FreeList_t>
1200 void BinaryTreeDictionary<Chunk_t, FreeList_t>::report_statistics() const {
1201   FreeBlockDictionary<Chunk_t>::verify_par_locked();
1202   gclog_or_tty->print("Statistics for BinaryTreeDictionary:\n"
1203          "------------------------------------\n");
1204   size_t total_size = total_chunk_size(debug_only(NULL));
1205   size_t    free_blocks = num_free_blocks();
1206   gclog_or_tty->print("Total Free Space: " SIZE_FORMAT "\n", total_size);
1207   gclog_or_tty->print("Max   Chunk Size: " SIZE_FORMAT "\n", max_chunk_size());
1208   gclog_or_tty->print("Number of Blocks: " SIZE_FORMAT "\n", free_blocks);
1209   if (free_blocks > 0) {
1210     gclog_or_tty->print("Av.  Block  Size: " SIZE_FORMAT "\n", total_size/free_blocks);
1211   }
1212   gclog_or_tty->print("Tree      Height: " SIZE_FORMAT "\n", tree_height());
1213 }
1214 
1215 // Print census information - counts, births, deaths, etc.
1216 // for each list in the tree.  Also print some summary
1217 // information.
1218 template <class Chunk_t, class FreeList_t>
1219 class PrintTreeCensusClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1220   int _print_line;
1221   size_t _total_free;
1222   FreeList_t _total;
1223 
1224  public:
1225   PrintTreeCensusClosure() {
1226     _print_line = 0;
1227     _total_free = 0;
1228   }
1229   FreeList_t* total() { return &_total; }
1230   size_t total_free() { return _total_free; }
1231   void do_list(FreeList<Chunk_t>* fl) {
1232     if (++_print_line >= 40) {
1233       FreeList_t::print_labels_on(gclog_or_tty, "size");
1234       _print_line = 0;
1235     }
1236     fl->print_on(gclog_or_tty);
1237     _total_free +=            fl->count()            * fl->size()        ;
1238     total()->set_count(      total()->count()       + fl->count()      );
1239   }
1240 
1241 #if INCLUDE_ALL_GCS
1242   void do_list(AdaptiveFreeList<Chunk_t>* fl) {
1243     if (++_print_line >= 40) {
1244       FreeList_t::print_labels_on(gclog_or_tty, "size");
1245       _print_line = 0;
1246     }
1247     fl->print_on(gclog_or_tty);
1248     _total_free +=           fl->count()             * fl->size()        ;
1249     total()->set_count(      total()->count()        + fl->count()      );
1250     total()->set_bfr_surp(   total()->bfr_surp()     + fl->bfr_surp()    );
1251     total()->set_surplus(    total()->split_deaths() + fl->surplus()    );
1252     total()->set_desired(    total()->desired()      + fl->desired()    );
1253     total()->set_prev_sweep(  total()->prev_sweep()   + fl->prev_sweep()  );
1254     total()->set_before_sweep(total()->before_sweep() + fl->before_sweep());
1255     total()->set_coal_births( total()->coal_births()  + fl->coal_births() );
1256     total()->set_coal_deaths( total()->coal_deaths()  + fl->coal_deaths() );
1257     total()->set_split_births(total()->split_births() + fl->split_births());
1258     total()->set_split_deaths(total()->split_deaths() + fl->split_deaths());
1259   }
1260 #endif // INCLUDE_ALL_GCS
1261 };
1262 
1263 template <class Chunk_t, class FreeList_t>
1264 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_dict_census(void) const {
1265 
1266   gclog_or_tty->print("\nBinaryTree\n");
1267   FreeList_t::print_labels_on(gclog_or_tty, "size");
1268   PrintTreeCensusClosure<Chunk_t, FreeList_t> ptc;
1269   ptc.do_tree(root());
1270 
1271   FreeList_t* total = ptc.total();
1272   FreeList_t::print_labels_on(gclog_or_tty, " ");
1273 }
1274 
1275 #if INCLUDE_ALL_GCS
1276 template <>
1277 void AFLBinaryTreeDictionary::print_dict_census(void) const {
1278 
1279   gclog_or_tty->print("\nBinaryTree\n");
1280   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, "size");
1281   PrintTreeCensusClosure<FreeChunk, AdaptiveFreeList<FreeChunk> > ptc;
1282   ptc.do_tree(root());
1283 
1284   AdaptiveFreeList<FreeChunk>* total = ptc.total();
1285   AdaptiveFreeList<FreeChunk>::print_labels_on(gclog_or_tty, " ");
1286   total->print_on(gclog_or_tty, "TOTAL\t");
1287   gclog_or_tty->print(
1288               "total_free(words): " SIZE_FORMAT_W(16)
1289               " growth: %8.5f  deficit: %8.5f\n",
1290               ptc.total_free(),
1291               (double)(total->split_births() + total->coal_births()
1292                      - total->split_deaths() - total->coal_deaths())
1293               /(total->prev_sweep() != 0 ? (double)total->prev_sweep() : 1.0),
1294              (double)(total->desired() - total->count())
1295              /(total->desired() != 0 ? (double)total->desired() : 1.0));
1296 }
1297 #endif // INCLUDE_ALL_GCS
1298 
1299 template <class Chunk_t, class FreeList_t>
1300 class PrintFreeListsClosure : public AscendTreeCensusClosure<Chunk_t, FreeList_t> {
1301   outputStream* _st;
1302   int _print_line;
1303 
1304  public:
1305   PrintFreeListsClosure(outputStream* st) {
1306     _st = st;
1307     _print_line = 0;
1308   }
1309   void do_list(FreeList_t* fl) {
1310     if (++_print_line >= 40) {
1311       FreeList_t::print_labels_on(_st, "size");
1312       _print_line = 0;
1313     }
1314     fl->print_on(gclog_or_tty);
1315     size_t sz = fl->size();
1316     for (Chunk_t* fc = fl->head(); fc != NULL;
1317          fc = fc->next()) {
1318       _st->print_cr("\t[" PTR_FORMAT "," PTR_FORMAT ")  %s",
1319                     p2i(fc), p2i((HeapWord*)fc + sz),
1320                     fc->cantCoalesce() ? "\t CC" : "");
1321     }
1322   }
1323 };
1324 
1325 template <class Chunk_t, class FreeList_t>
1326 void BinaryTreeDictionary<Chunk_t, FreeList_t>::print_free_lists(outputStream* st) const {
1327 
1328   FreeList_t::print_labels_on(st, "size");
1329   PrintFreeListsClosure<Chunk_t, FreeList_t> pflc(st);
1330   pflc.do_tree(root());
1331 }
1332 
1333 // Verify the following tree invariants:
1334 // . _root has no parent
1335 // . parent and child point to each other
1336 // . each node's key correctly related to that of its child(ren)
1337 template <class Chunk_t, class FreeList_t>
1338 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree() const {
1339   guarantee(root() == NULL || total_free_blocks() == 0 ||
1340     total_size() != 0, "_total_size shouldn't be 0?");
1341   guarantee(root() == NULL || root()->parent() == NULL, "_root shouldn't have parent");
1342   verify_tree_helper(root());
1343 }
1344 
1345 template <class Chunk_t, class FreeList_t>
1346 size_t BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_prev_free_ptrs(TreeList<Chunk_t, FreeList_t>* tl) {
1347   size_t ct = 0;
1348   for (Chunk_t* curFC = tl->head(); curFC != NULL; curFC = curFC->next()) {
1349     ct++;
1350     assert(curFC->prev() == NULL || curFC->prev()->is_free(),
1351       "Chunk should be free");
1352   }
1353   return ct;
1354 }
1355 
1356 // Note: this helper is recursive rather than iterative, so use with
1357 // caution on very deep trees; and watch out for stack overflow errors;
1358 // In general, to be used only for debugging.
1359 template <class Chunk_t, class FreeList_t>
1360 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify_tree_helper(TreeList<Chunk_t, FreeList_t>* tl) const {
1361   if (tl == NULL)
1362     return;
1363   guarantee(tl->size() != 0, "A list must has a size");
1364   guarantee(tl->left()  == NULL || tl->left()->parent()  == tl,
1365          "parent<-/->left");
1366   guarantee(tl->right() == NULL || tl->right()->parent() == tl,
1367          "parent<-/->right");;
1368   guarantee(tl->left() == NULL  || tl->left()->size()    <  tl->size(),
1369          "parent !> left");
1370   guarantee(tl->right() == NULL || tl->right()->size()   >  tl->size(),
1371          "parent !< left");
1372   guarantee(tl->head() == NULL || tl->head()->is_free(), "!Free");
1373   guarantee(tl->head() == NULL || tl->head_as_TreeChunk()->list() == tl,
1374     "list inconsistency");
1375   guarantee(tl->count() > 0 || (tl->head() == NULL && tl->tail() == NULL),
1376     "list count is inconsistent");
1377   guarantee(tl->count() > 1 || tl->head() == tl->tail(),
1378     "list is incorrectly constructed");
1379   size_t count = verify_prev_free_ptrs(tl);
1380   guarantee(count == (size_t)tl->count(), "Node count is incorrect");
1381   if (tl->head() != NULL) {
1382     tl->head_as_TreeChunk()->verify_tree_chunk_list();
1383   }
1384   verify_tree_helper(tl->left());
1385   verify_tree_helper(tl->right());
1386 }
1387 
1388 template <class Chunk_t, class FreeList_t>
1389 void BinaryTreeDictionary<Chunk_t, FreeList_t>::verify() const {
1390   verify_tree();
1391   guarantee(total_size() == total_size_in_tree(root()), "Total Size inconsistency");
1392 }
1393 
1394 template class TreeList<Metablock, FreeList<Metablock> >;
1395 template class BinaryTreeDictionary<Metablock, FreeList<Metablock> >;
1396 template class TreeChunk<Metablock, FreeList<Metablock> >;
1397 
1398 template class TreeList<Metachunk, FreeList<Metachunk> >;
1399 template class BinaryTreeDictionary<Metachunk, FreeList<Metachunk> >;
1400 template class TreeChunk<Metachunk, FreeList<Metachunk> >;
1401 
1402 
1403 #if INCLUDE_ALL_GCS
1404 // Explicitly instantiate these types for FreeChunk.
1405 template class TreeList<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1406 template class BinaryTreeDictionary<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1407 template class TreeChunk<FreeChunk, AdaptiveFreeList<FreeChunk> >;
1408 
1409 #endif // INCLUDE_ALL_GCS