/* * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2014, Red Hat Inc. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "classfile/systemDictionary.hpp" #include "gc/shared/collectedHeap.hpp" #include "interpreter/interpreter.hpp" #include "oops/arrayOop.hpp" #include "oops/markOop.hpp" #include "runtime/basicLock.hpp" #include "runtime/biasedLocking.hpp" #include "runtime/os.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/stubRoutines.hpp" void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result, FloatRegister f0, FloatRegister f1, Register result) { Label done; if (is_float) { fcmps(f0, f1); } else { fcmpd(f0, f1); } if (unordered_result < 0) { // we want -1 for unordered or less than, 0 for equal and 1 for // greater than. cset(result, NE); // Not equal or unordered cneg(result, result, LT); // Less than or unordered } else { // we want -1 for less than, 0 for equal and 1 for unordered or // greater than. cset(result, NE); // Not equal or unordered cneg(result, result, LO); // Less than } } int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register scratch, Label& slow_case) { const int aligned_mask = BytesPerWord -1; const int hdr_offset = oopDesc::mark_offset_in_bytes(); assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); Label done, fail; int null_check_offset = -1; verify_oop(obj); // save object being locked into the BasicObjectLock str(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); if (UseBiasedLocking) { assert(scratch != noreg, "should have scratch register at this point"); null_check_offset = biased_locking_enter(disp_hdr, obj, hdr, scratch, false, done, &slow_case); } else { null_check_offset = offset(); } // Load object header ldr(hdr, Address(obj, hdr_offset)); // and mark it as unlocked orr(hdr, hdr, markOopDesc::unlocked_value); // save unlocked object header into the displaced header location on the stack str(hdr, Address(disp_hdr, 0)); // test if object header is still the same (i.e. unlocked), and if so, store the // displaced header address in the object header - if it is not the same, get the // object header instead lea(rscratch2, Address(obj, hdr_offset)); cmpxchgptr(hdr, disp_hdr, rscratch2, rscratch1, done, /*fallthough*/NULL); // if the object header was the same, we're done // if the object header was not the same, it is now in the hdr register // => test if it is a stack pointer into the same stack (recursive locking), i.e.: // // 1) (hdr & aligned_mask) == 0 // 2) sp <= hdr // 3) hdr <= sp + page_size // // these 3 tests can be done by evaluating the following expression: // // (hdr - sp) & (aligned_mask - page_size) // // assuming both the stack pointer and page_size have their least // significant 2 bits cleared and page_size is a power of 2 mov(rscratch1, sp); sub(hdr, hdr, rscratch1); ands(hdr, hdr, aligned_mask - os::vm_page_size()); // for recursive locking, the result is zero => save it in the displaced header // location (NULL in the displaced hdr location indicates recursive locking) str(hdr, Address(disp_hdr, 0)); // otherwise we don't care about the result and handle locking via runtime call cbnz(hdr, slow_case); // done bind(done); if (PrintBiasedLockingStatistics) { lea(rscratch2, ExternalAddress((address)BiasedLocking::fast_path_entry_count_addr())); addmw(Address(rscratch2, 0), 1, rscratch1); } return null_check_offset; } void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) { const int aligned_mask = BytesPerWord -1; const int hdr_offset = oopDesc::mark_offset_in_bytes(); assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different"); Label done; if (UseBiasedLocking) { // load object ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); biased_locking_exit(obj, hdr, done); } // load displaced header ldr(hdr, Address(disp_hdr, 0)); // if the loaded hdr is NULL we had recursive locking // if we had recursive locking, we are done cbz(hdr, done); if (!UseBiasedLocking) { // load object ldr(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes())); } verify_oop(obj); // test if object header is pointing to the displaced header, and if so, restore // the displaced header in the object - if the object header is not pointing to // the displaced header, get the object header instead // if the object header was not pointing to the displaced header, // we do unlocking via runtime call if (hdr_offset) { lea(rscratch1, Address(obj, hdr_offset)); cmpxchgptr(disp_hdr, hdr, rscratch1, rscratch2, done, &slow_case); } else { cmpxchgptr(disp_hdr, hdr, obj, rscratch2, done, &slow_case); } // done bind(done); } // Defines obj, preserves var_size_in_bytes void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2, Label& slow_case) { if (UseTLAB) { tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, t2, slow_case); } else { eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, t1, slow_case); incr_allocated_bytes(noreg, var_size_in_bytes, con_size_in_bytes, t1); } } void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register t1, Register t2) { assert_different_registers(obj, klass, len); if (UseBiasedLocking && !len->is_valid()) { assert_different_registers(obj, klass, len, t1, t2); ldr(t1, Address(klass, Klass::prototype_header_offset())); } else { // This assumes that all prototype bits fit in an int32_t mov(t1, (int32_t)(intptr_t)markOopDesc::prototype()); } str(t1, Address(obj, oopDesc::mark_offset_in_bytes())); if (UseCompressedClassPointers) { // Take care not to kill klass encode_klass_not_null(t1, klass); strw(t1, Address(obj, oopDesc::klass_offset_in_bytes())); } else { str(klass, Address(obj, oopDesc::klass_offset_in_bytes())); } if (len->is_valid()) { strw(len, Address(obj, arrayOopDesc::length_offset_in_bytes())); } else if (UseCompressedClassPointers) { store_klass_gap(obj, zr); } } // Zero words; len is in bytes // Destroys all registers except addr // len must be a nonzero multiple of wordSize void C1_MacroAssembler::zero_memory(Register addr, Register len, Register t1) { assert_different_registers(addr, len, t1, rscratch1, rscratch2); #ifdef ASSERT { Label L; tst(len, BytesPerWord - 1); br(Assembler::EQ, L); stop("len is not a multiple of BytesPerWord"); bind(L); } #endif #ifndef PRODUCT block_comment("zero memory"); #endif Label loop; Label entry; // Algorithm: // // scratch1 = cnt & 7; // cnt -= scratch1; // p += scratch1; // switch (scratch1) { // do { // cnt -= 8; // p[-8] = 0; // case 7: // p[-7] = 0; // case 6: // p[-6] = 0; // // ... // case 1: // p[-1] = 0; // case 0: // p += 8; // } while (cnt); // } const int unroll = 8; // Number of str(zr) instructions we'll unroll lsr(len, len, LogBytesPerWord); andr(rscratch1, len, unroll - 1); // tmp1 = cnt % unroll sub(len, len, rscratch1); // cnt -= unroll // t1 always points to the end of the region we're about to zero add(t1, addr, rscratch1, Assembler::LSL, LogBytesPerWord); adr(rscratch2, entry); sub(rscratch2, rscratch2, rscratch1, Assembler::LSL, 2); br(rscratch2); bind(loop); sub(len, len, unroll); for (int i = -unroll; i < 0; i++) str(zr, Address(t1, i * wordSize)); bind(entry); add(t1, t1, unroll * wordSize); cbnz(len, loop); } // preserves obj, destroys len_in_bytes void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register t1) { Label done; assert(obj != len_in_bytes && obj != t1 && t1 != len_in_bytes, "registers must be different"); assert((hdr_size_in_bytes & (BytesPerWord - 1)) == 0, "header size is not a multiple of BytesPerWord"); Register index = len_in_bytes; // index is positive and ptr sized subs(index, index, hdr_size_in_bytes); br(Assembler::EQ, done); // note: for the remaining code to work, index must be a multiple of BytesPerWord #ifdef ASSERT { Label L; tst(index, BytesPerWord - 1); br(Assembler::EQ, L); stop("index is not a multiple of BytesPerWord"); bind(L); } #endif // Preserve obj if (hdr_size_in_bytes) add(obj, obj, hdr_size_in_bytes); zero_memory(obj, index, t1); if (hdr_size_in_bytes) sub(obj, obj, hdr_size_in_bytes); // done bind(done); } void C1_MacroAssembler::allocate_object(Register obj, Register t1, Register t2, int header_size, int object_size, Register klass, Label& slow_case) { assert_different_registers(obj, t1, t2); // XXX really? assert(header_size >= 0 && object_size >= header_size, "illegal sizes"); try_allocate(obj, noreg, object_size * BytesPerWord, t1, t2, slow_case); initialize_object(obj, klass, noreg, object_size * HeapWordSize, t1, t2); } void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register t1, Register t2) { assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0, "con_size_in_bytes is not multiple of alignment"); const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize; initialize_header(obj, klass, noreg, t1, t2); // clear rest of allocated space const Register index = t2; const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below) if (var_size_in_bytes != noreg) { mov(index, var_size_in_bytes); initialize_body(obj, index, hdr_size_in_bytes, t1); } else if (con_size_in_bytes <= threshold) { // use explicit null stores int i = hdr_size_in_bytes; if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { str(zr, Address(obj, i)); i += BytesPerWord; } for (; i < con_size_in_bytes; i += 2 * BytesPerWord) stp(zr, zr, Address(obj, i)); } else if (con_size_in_bytes > hdr_size_in_bytes) { block_comment("zero memory"); // use loop to null out the fields int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord; mov(index, words / 8); const int unroll = 8; // Number of str(zr) instructions we'll unroll int remainder = words % unroll; lea(rscratch1, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord)); Label entry_point, loop; b(entry_point); bind(loop); sub(index, index, 1); for (int i = -unroll; i < 0; i++) { if (-i == remainder) bind(entry_point); str(zr, Address(rscratch1, i * wordSize)); } if (remainder == 0) bind(entry_point); add(rscratch1, rscratch1, unroll * wordSize); cbnz(index, loop); } membar(StoreStore); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == r0, "must be"); far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); } verify_oop(obj); } void C1_MacroAssembler::allocate_array(Register obj, Register len, Register t1, Register t2, int header_size, int f, Register klass, Label& slow_case) { assert_different_registers(obj, len, t1, t2, klass); // determine alignment mask assert(!(BytesPerWord & 1), "must be a multiple of 2 for masking code to work"); // check for negative or excessive length mov(rscratch1, (int32_t)max_array_allocation_length); cmp(len, rscratch1); br(Assembler::HS, slow_case); const Register arr_size = t2; // okay to be the same // align object end mov(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask); add(arr_size, arr_size, len, ext::uxtw, f); andr(arr_size, arr_size, ~MinObjAlignmentInBytesMask); try_allocate(obj, arr_size, 0, t1, t2, slow_case); initialize_header(obj, klass, len, t1, t2); // clear rest of allocated space const Register len_zero = len; initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero); membar(StoreStore); if (CURRENT_ENV->dtrace_alloc_probes()) { assert(obj == r0, "must be"); far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id))); } verify_oop(obj); } void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache) { verify_oop(receiver); // explicit NULL check not needed since load from [klass_offset] causes a trap // check against inline cache assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check"); cmp_klass(receiver, iCache, rscratch1); } void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) { // If we have to make this method not-entrant we'll overwrite its // first instruction with a jump. For this action to be legal we // must ensure that this first instruction is a B, BL, NOP, BKPT, // SVC, HVC, or SMC. Make it a NOP. nop(); assert(bang_size_in_bytes >= framesize, "stack bang size incorrect"); // Make sure there is enough stack space for this method's activation. // Note that we do this before doing an enter(). generate_stack_overflow_check(bang_size_in_bytes); MacroAssembler::build_frame(framesize + 2 * wordSize); if (NotifySimulator) { notify(Assembler::method_entry); } } void C1_MacroAssembler::remove_frame(int framesize) { MacroAssembler::remove_frame(framesize + 2 * wordSize); if (NotifySimulator) { notify(Assembler::method_reentry); } } void C1_MacroAssembler::verified_entry() { } #ifndef PRODUCT void C1_MacroAssembler::verify_stack_oop(int stack_offset) { if (!VerifyOops) return; verify_oop_addr(Address(sp, stack_offset), "oop"); } void C1_MacroAssembler::verify_not_null_oop(Register r) { if (!VerifyOops) return; Label not_null; cbnz(r, not_null); stop("non-null oop required"); bind(not_null); verify_oop(r); } void C1_MacroAssembler::invalidate_registers(bool inv_r0, bool inv_r19, bool inv_r2, bool inv_r3, bool inv_r4, bool inv_r5) { #ifdef ASSERT static int nn; if (inv_r0) mov(r0, 0xDEAD); if (inv_r19) mov(r19, 0xDEAD); if (inv_r2) mov(r2, nn++); if (inv_r3) mov(r3, 0xDEAD); if (inv_r4) mov(r4, 0xDEAD); if (inv_r5) mov(r5, 0xDEAD); #endif } #endif // ifndef PRODUCT