1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "memory/allocation.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "runtime/atomic.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "utilities/workgroup.hpp"
  31 
  32 // Definitions of WorkGang methods.
  33 
  34 AbstractWorkGang::AbstractWorkGang(const char* name,
  35                                    bool  are_GC_task_threads,
  36                                    bool  are_ConcurrentGC_threads) :
  37   _name(name),
  38   _are_GC_task_threads(are_GC_task_threads),
  39   _are_ConcurrentGC_threads(are_ConcurrentGC_threads) {
  40 
  41   assert(!(are_GC_task_threads && are_ConcurrentGC_threads),
  42          "They cannot both be STW GC and Concurrent threads" );
  43 
  44   // Other initialization.
  45   _monitor = new Monitor(/* priority */       Mutex::leaf,
  46                          /* name */           "WorkGroup monitor",
  47                          /* allow_vm_block */ are_GC_task_threads,
  48                                               Monitor::_safepoint_check_sometimes);
  49   assert(monitor() != NULL, "Failed to allocate monitor");
  50   _terminate = false;
  51   _task = NULL;
  52   _sequence_number = 0;
  53   _started_workers = 0;
  54   _finished_workers = 0;
  55 }
  56 
  57 WorkGang::WorkGang(const char* name,
  58                    uint        workers,
  59                    bool        are_GC_task_threads,
  60                    bool        are_ConcurrentGC_threads) :
  61   AbstractWorkGang(name, are_GC_task_threads, are_ConcurrentGC_threads) {
  62   _total_workers = workers;
  63 }
  64 
  65 GangWorker* WorkGang::allocate_worker(uint which) {
  66   GangWorker* new_worker = new GangWorker(this, which);
  67   return new_worker;
  68 }
  69 
  70 // The current implementation will exit if the allocation
  71 // of any worker fails.  Still, return a boolean so that
  72 // a future implementation can possibly do a partial
  73 // initialization of the workers and report such to the
  74 // caller.
  75 bool WorkGang::initialize_workers() {
  76 
  77   if (TraceWorkGang) {
  78     tty->print_cr("Constructing work gang %s with %d threads",
  79                   name(),
  80                   total_workers());
  81   }
  82   _gang_workers = NEW_C_HEAP_ARRAY(GangWorker*, total_workers(), mtInternal);
  83   if (gang_workers() == NULL) {
  84     vm_exit_out_of_memory(0, OOM_MALLOC_ERROR, "Cannot create GangWorker array.");
  85     return false;
  86   }
  87   os::ThreadType worker_type;
  88   if (are_ConcurrentGC_threads()) {
  89     worker_type = os::cgc_thread;
  90   } else {
  91     worker_type = os::pgc_thread;
  92   }
  93   for (uint worker = 0; worker < total_workers(); worker += 1) {
  94     GangWorker* new_worker = allocate_worker(worker);
  95     assert(new_worker != NULL, "Failed to allocate GangWorker");
  96     _gang_workers[worker] = new_worker;
  97     if (new_worker == NULL || !os::create_thread(new_worker, worker_type)) {
  98       vm_exit_out_of_memory(0, OOM_MALLOC_ERROR,
  99               "Cannot create worker GC thread. Out of system resources.");
 100       return false;
 101     }
 102     if (!DisableStartThread) {
 103       os::start_thread(new_worker);
 104     }
 105   }
 106   return true;
 107 }
 108 
 109 AbstractWorkGang::~AbstractWorkGang() {
 110   if (TraceWorkGang) {
 111     tty->print_cr("Destructing work gang %s", name());
 112   }
 113   stop();   // stop all the workers
 114   for (uint worker = 0; worker < total_workers(); worker += 1) {
 115     delete gang_worker(worker);
 116   }
 117   delete gang_workers();
 118   delete monitor();
 119 }
 120 
 121 GangWorker* AbstractWorkGang::gang_worker(uint i) const {
 122   // Array index bounds checking.
 123   GangWorker* result = NULL;
 124   assert(gang_workers() != NULL, "No workers for indexing");
 125   assert(i < total_workers(), "Worker index out of bounds");
 126   result = _gang_workers[i];
 127   assert(result != NULL, "Indexing to null worker");
 128   return result;
 129 }
 130 
 131 void WorkGang::run_task(AbstractGangTask* task) {
 132   run_task(task, total_workers());
 133 }
 134 
 135 void WorkGang::run_task(AbstractGangTask* task, uint no_of_parallel_workers) {
 136   task->set_for_termination(no_of_parallel_workers);
 137 
 138   // This thread is executed by the VM thread which does not block
 139   // on ordinary MutexLocker's.
 140   MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
 141   if (TraceWorkGang) {
 142     tty->print_cr("Running work gang %s task %s", name(), task->name());
 143   }
 144   // Tell all the workers to run a task.
 145   assert(task != NULL, "Running a null task");
 146   // Initialize.
 147   _task = task;
 148   _sequence_number += 1;
 149   _started_workers = 0;
 150   _finished_workers = 0;
 151   // Tell the workers to get to work.
 152   monitor()->notify_all();
 153   // Wait for them to be finished
 154   while (finished_workers() < no_of_parallel_workers) {
 155     if (TraceWorkGang) {
 156       tty->print_cr("Waiting in work gang %s: %u/%u finished sequence %d",
 157                     name(), finished_workers(), no_of_parallel_workers,
 158                     _sequence_number);
 159     }
 160     monitor()->wait(/* no_safepoint_check */ true);
 161   }
 162   _task = NULL;
 163   if (TraceWorkGang) {
 164     tty->print_cr("\nFinished work gang %s: %u/%u sequence %d",
 165                   name(), finished_workers(), no_of_parallel_workers,
 166                   _sequence_number);
 167     Thread* me = Thread::current();
 168     tty->print_cr("  T: " PTR_FORMAT "  VM_thread: %d", p2i(me), me->is_VM_thread());
 169   }
 170 }
 171 
 172 void FlexibleWorkGang::run_task(AbstractGangTask* task) {
 173   // If active_workers() is passed, _finished_workers
 174   // must only be incremented for workers that find non_null
 175   // work (as opposed to all those that just check that the
 176   // task is not null).
 177   WorkGang::run_task(task, (uint) active_workers());
 178 }
 179 
 180 void AbstractWorkGang::stop() {
 181   // Tell all workers to terminate, then wait for them to become inactive.
 182   MutexLockerEx ml(monitor(), Mutex::_no_safepoint_check_flag);
 183   if (TraceWorkGang) {
 184     tty->print_cr("Stopping work gang %s task %s", name(), task()->name());
 185   }
 186   _task = NULL;
 187   _terminate = true;
 188   monitor()->notify_all();
 189   while (finished_workers() < active_workers()) {
 190     if (TraceWorkGang) {
 191       tty->print_cr("Waiting in work gang %s: %u/%u finished",
 192                     name(), finished_workers(), active_workers());
 193     }
 194     monitor()->wait(/* no_safepoint_check */ true);
 195   }
 196 }
 197 
 198 void AbstractWorkGang::internal_worker_poll(WorkData* data) const {
 199   assert(monitor()->owned_by_self(), "worker_poll is an internal method");
 200   assert(data != NULL, "worker data is null");
 201   data->set_terminate(terminate());
 202   data->set_task(task());
 203   data->set_sequence_number(sequence_number());
 204 }
 205 
 206 void AbstractWorkGang::internal_note_start() {
 207   assert(monitor()->owned_by_self(), "note_finish is an internal method");
 208   _started_workers += 1;
 209 }
 210 
 211 void AbstractWorkGang::internal_note_finish() {
 212   assert(monitor()->owned_by_self(), "note_finish is an internal method");
 213   _finished_workers += 1;
 214 }
 215 
 216 void AbstractWorkGang::print_worker_threads_on(outputStream* st) const {
 217   uint    num_thr = total_workers();
 218   for (uint i = 0; i < num_thr; i++) {
 219     gang_worker(i)->print_on(st);
 220     st->cr();
 221   }
 222 }
 223 
 224 void AbstractWorkGang::threads_do(ThreadClosure* tc) const {
 225   assert(tc != NULL, "Null ThreadClosure");
 226   uint num_thr = total_workers();
 227   for (uint i = 0; i < num_thr; i++) {
 228     tc->do_thread(gang_worker(i));
 229   }
 230 }
 231 
 232 // GangWorker methods.
 233 
 234 GangWorker::GangWorker(AbstractWorkGang* gang, uint id) {
 235   _gang = gang;
 236   set_id(id);
 237   set_name("%s#%d", gang->name(), id);
 238 }
 239 
 240 void GangWorker::run() {
 241   initialize();
 242   loop();
 243 }
 244 
 245 void GangWorker::initialize() {
 246   this->initialize_thread_local_storage();
 247   this->record_stack_base_and_size();
 248   this->initialize_named_thread();
 249   assert(_gang != NULL, "No gang to run in");
 250   os::set_priority(this, NearMaxPriority);
 251   if (TraceWorkGang) {
 252     tty->print_cr("Running gang worker for gang %s id %u",
 253                   gang()->name(), id());
 254   }
 255   // The VM thread should not execute here because MutexLocker's are used
 256   // as (opposed to MutexLockerEx's).
 257   assert(!Thread::current()->is_VM_thread(), "VM thread should not be part"
 258          " of a work gang");
 259 }
 260 
 261 void GangWorker::loop() {
 262   int previous_sequence_number = 0;
 263   Monitor* gang_monitor = gang()->monitor();
 264   for ( ; /* !terminate() */; ) {
 265     WorkData data;
 266     int part;  // Initialized below.
 267     {
 268       // Grab the gang mutex.
 269       MutexLocker ml(gang_monitor);
 270       // Wait for something to do.
 271       // Polling outside the while { wait } avoids missed notifies
 272       // in the outer loop.
 273       gang()->internal_worker_poll(&data);
 274       if (TraceWorkGang) {
 275         tty->print("Polled outside for work in gang %s worker %u",
 276                    gang()->name(), id());
 277         tty->print("  terminate: %s",
 278                    data.terminate() ? "true" : "false");
 279         tty->print("  sequence: %d (prev: %d)",
 280                    data.sequence_number(), previous_sequence_number);
 281         if (data.task() != NULL) {
 282           tty->print("  task: %s", data.task()->name());
 283         } else {
 284           tty->print("  task: NULL");
 285         }
 286         tty->cr();
 287       }
 288       for ( ; /* break or return */; ) {
 289         // Terminate if requested.
 290         if (data.terminate()) {
 291           gang()->internal_note_finish();
 292           gang_monitor->notify_all();
 293           return;
 294         }
 295         // Check for new work.
 296         if ((data.task() != NULL) &&
 297             (data.sequence_number() != previous_sequence_number)) {
 298           if (gang()->needs_more_workers()) {
 299             gang()->internal_note_start();
 300             gang_monitor->notify_all();
 301             part = gang()->started_workers() - 1;
 302             break;
 303           }
 304         }
 305         // Nothing to do.
 306         gang_monitor->wait(/* no_safepoint_check */ true);
 307         gang()->internal_worker_poll(&data);
 308         if (TraceWorkGang) {
 309           tty->print("Polled inside for work in gang %s worker %u",
 310                      gang()->name(), id());
 311           tty->print("  terminate: %s",
 312                      data.terminate() ? "true" : "false");
 313           tty->print("  sequence: %d (prev: %d)",
 314                      data.sequence_number(), previous_sequence_number);
 315           if (data.task() != NULL) {
 316             tty->print("  task: %s", data.task()->name());
 317           } else {
 318             tty->print("  task: NULL");
 319           }
 320           tty->cr();
 321         }
 322       }
 323       // Drop gang mutex.
 324     }
 325     if (TraceWorkGang) {
 326       tty->print("Work for work gang %s id %u task %s part %d",
 327                  gang()->name(), id(), data.task()->name(), part);
 328     }
 329     assert(data.task() != NULL, "Got null task");
 330     data.task()->work(part);
 331     {
 332       if (TraceWorkGang) {
 333         tty->print("Finish for work gang %s id %u task %s part %d",
 334                    gang()->name(), id(), data.task()->name(), part);
 335       }
 336       // Grab the gang mutex.
 337       MutexLocker ml(gang_monitor);
 338       gang()->internal_note_finish();
 339       // Tell the gang you are done.
 340       gang_monitor->notify_all();
 341       // Drop the gang mutex.
 342     }
 343     previous_sequence_number = data.sequence_number();
 344   }
 345 }
 346 
 347 bool GangWorker::is_GC_task_thread() const {
 348   return gang()->are_GC_task_threads();
 349 }
 350 
 351 bool GangWorker::is_ConcurrentGC_thread() const {
 352   return gang()->are_ConcurrentGC_threads();
 353 }
 354 
 355 void GangWorker::print_on(outputStream* st) const {
 356   st->print("\"%s\" ", name());
 357   Thread::print_on(st);
 358   st->cr();
 359 }
 360 
 361 // Printing methods
 362 
 363 const char* AbstractWorkGang::name() const {
 364   return _name;
 365 }
 366 
 367 #ifndef PRODUCT
 368 
 369 const char* AbstractGangTask::name() const {
 370   return _name;
 371 }
 372 
 373 #endif /* PRODUCT */
 374 
 375 // FlexibleWorkGang
 376 
 377 
 378 // *** WorkGangBarrierSync
 379 
 380 WorkGangBarrierSync::WorkGangBarrierSync()
 381   : _monitor(Mutex::safepoint, "work gang barrier sync", true,
 382              Monitor::_safepoint_check_never),
 383     _n_workers(0), _n_completed(0), _should_reset(false), _aborted(false) {
 384 }
 385 
 386 WorkGangBarrierSync::WorkGangBarrierSync(uint n_workers, const char* name)
 387   : _monitor(Mutex::safepoint, name, true, Monitor::_safepoint_check_never),
 388     _n_workers(n_workers), _n_completed(0), _should_reset(false), _aborted(false) {
 389 }
 390 
 391 void WorkGangBarrierSync::set_n_workers(uint n_workers) {
 392   _n_workers    = n_workers;
 393   _n_completed  = 0;
 394   _should_reset = false;
 395   _aborted      = false;
 396 }
 397 
 398 bool WorkGangBarrierSync::enter() {
 399   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 400   if (should_reset()) {
 401     // The should_reset() was set and we are the first worker to enter
 402     // the sync barrier. We will zero the n_completed() count which
 403     // effectively resets the barrier.
 404     zero_completed();
 405     set_should_reset(false);
 406   }
 407   inc_completed();
 408   if (n_completed() == n_workers()) {
 409     // At this point we would like to reset the barrier to be ready in
 410     // case it is used again. However, we cannot set n_completed() to
 411     // 0, even after the notify_all(), given that some other workers
 412     // might still be waiting for n_completed() to become ==
 413     // n_workers(). So, if we set n_completed() to 0, those workers
 414     // will get stuck (as they will wake up, see that n_completed() !=
 415     // n_workers() and go back to sleep). Instead, we raise the
 416     // should_reset() flag and the barrier will be reset the first
 417     // time a worker enters it again.
 418     set_should_reset(true);
 419     monitor()->notify_all();
 420   } else {
 421     while (n_completed() != n_workers() && !aborted()) {
 422       monitor()->wait(/* no_safepoint_check */ true);
 423     }
 424   }
 425   return !aborted();
 426 }
 427 
 428 void WorkGangBarrierSync::abort() {
 429   MutexLockerEx x(monitor(), Mutex::_no_safepoint_check_flag);
 430   set_aborted();
 431   monitor()->notify_all();
 432 }
 433 
 434 // SubTasksDone functions.
 435 
 436 SubTasksDone::SubTasksDone(uint n) :
 437   _n_tasks(n), _n_threads(1), _tasks(NULL) {
 438   _tasks = NEW_C_HEAP_ARRAY(uint, n, mtInternal);
 439   guarantee(_tasks != NULL, "alloc failure");
 440   clear();
 441 }
 442 
 443 bool SubTasksDone::valid() {
 444   return _tasks != NULL;
 445 }
 446 
 447 void SubTasksDone::set_n_threads(uint t) {
 448   assert(_claimed == 0 || _threads_completed == _n_threads,
 449          "should not be called while tasks are being processed!");
 450   _n_threads = (t == 0 ? 1 : t);
 451 }
 452 
 453 void SubTasksDone::clear() {
 454   for (uint i = 0; i < _n_tasks; i++) {
 455     _tasks[i] = 0;
 456   }
 457   _threads_completed = 0;
 458 #ifdef ASSERT
 459   _claimed = 0;
 460 #endif
 461 }
 462 
 463 bool SubTasksDone::is_task_claimed(uint t) {
 464   assert(t < _n_tasks, "bad task id.");
 465   uint old = _tasks[t];
 466   if (old == 0) {
 467     old = Atomic::cmpxchg(1, &_tasks[t], 0);
 468   }
 469   assert(_tasks[t] == 1, "What else?");
 470   bool res = old != 0;
 471 #ifdef ASSERT
 472   if (!res) {
 473     assert(_claimed < _n_tasks, "Too many tasks claimed; missing clear?");
 474     Atomic::inc((volatile jint*) &_claimed);
 475   }
 476 #endif
 477   return res;
 478 }
 479 
 480 void SubTasksDone::all_tasks_completed() {
 481   jint observed = _threads_completed;
 482   jint old;
 483   do {
 484     old = observed;
 485     observed = Atomic::cmpxchg(old+1, &_threads_completed, old);
 486   } while (observed != old);
 487   // If this was the last thread checking in, clear the tasks.
 488   if (observed+1 == (jint)_n_threads) clear();
 489 }
 490 
 491 
 492 SubTasksDone::~SubTasksDone() {
 493   if (_tasks != NULL) FREE_C_HEAP_ARRAY(jint, _tasks);
 494 }
 495 
 496 // *** SequentialSubTasksDone
 497 
 498 void SequentialSubTasksDone::clear() {
 499   _n_tasks   = _n_claimed   = 0;
 500   _n_threads = _n_completed = 0;
 501 }
 502 
 503 bool SequentialSubTasksDone::valid() {
 504   return _n_threads > 0;
 505 }
 506 
 507 bool SequentialSubTasksDone::is_task_claimed(uint& t) {
 508   uint* n_claimed_ptr = &_n_claimed;
 509   t = *n_claimed_ptr;
 510   while (t < _n_tasks) {
 511     jint res = Atomic::cmpxchg(t+1, n_claimed_ptr, t);
 512     if (res == (jint)t) {
 513       return false;
 514     }
 515     t = *n_claimed_ptr;
 516   }
 517   return true;
 518 }
 519 
 520 bool SequentialSubTasksDone::all_tasks_completed() {
 521   uint* n_completed_ptr = &_n_completed;
 522   uint  complete        = *n_completed_ptr;
 523   while (true) {
 524     uint res = Atomic::cmpxchg(complete+1, n_completed_ptr, complete);
 525     if (res == complete) {
 526       break;
 527     }
 528     complete = res;
 529   }
 530   if (complete+1 == _n_threads) {
 531     clear();
 532     return true;
 533   }
 534   return false;
 535 }
 536 
 537 bool FreeIdSet::_stat_init = false;
 538 FreeIdSet* FreeIdSet::_sets[NSets];
 539 bool FreeIdSet::_safepoint;
 540 
 541 FreeIdSet::FreeIdSet(int sz, Monitor* mon) :
 542   _sz(sz), _mon(mon), _hd(0), _waiters(0), _index(-1), _claimed(0)
 543 {
 544   _ids = NEW_C_HEAP_ARRAY(int, sz, mtInternal);
 545   for (int i = 0; i < sz; i++) _ids[i] = i+1;
 546   _ids[sz-1] = end_of_list; // end of list.
 547   if (_stat_init) {
 548     for (int j = 0; j < NSets; j++) _sets[j] = NULL;
 549     _stat_init = true;
 550   }
 551   // Add to sets.  (This should happen while the system is still single-threaded.)
 552   for (int j = 0; j < NSets; j++) {
 553     if (_sets[j] == NULL) {
 554       _sets[j] = this;
 555       _index = j;
 556       break;
 557     }
 558   }
 559   guarantee(_index != -1, "Too many FreeIdSets in use!");
 560 }
 561 
 562 FreeIdSet::~FreeIdSet() {
 563   _sets[_index] = NULL;
 564   FREE_C_HEAP_ARRAY(int, _ids);
 565 }
 566 
 567 void FreeIdSet::set_safepoint(bool b) {
 568   _safepoint = b;
 569   if (b) {
 570     for (int j = 0; j < NSets; j++) {
 571       if (_sets[j] != NULL && _sets[j]->_waiters > 0) {
 572         Monitor* mon = _sets[j]->_mon;
 573         mon->lock_without_safepoint_check();
 574         mon->notify_all();
 575         mon->unlock();
 576       }
 577     }
 578   }
 579 }
 580 
 581 #define FID_STATS 0
 582 
 583 int FreeIdSet::claim_par_id() {
 584 #if FID_STATS
 585   thread_t tslf = thr_self();
 586   tty->print("claim_par_id[%d]: sz = %d, claimed = %d\n", tslf, _sz, _claimed);
 587 #endif
 588   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 589   while (!_safepoint && _hd == end_of_list) {
 590     _waiters++;
 591 #if FID_STATS
 592     if (_waiters > 5) {
 593       tty->print("claim_par_id waiting[%d]: %d waiters, %d claimed.\n",
 594                  tslf, _waiters, _claimed);
 595     }
 596 #endif
 597     _mon->wait(Mutex::_no_safepoint_check_flag);
 598     _waiters--;
 599   }
 600   if (_hd == end_of_list) {
 601 #if FID_STATS
 602     tty->print("claim_par_id[%d]: returning EOL.\n", tslf);
 603 #endif
 604     return -1;
 605   } else {
 606     int res = _hd;
 607     _hd = _ids[res];
 608     _ids[res] = claimed;  // For debugging.
 609     _claimed++;
 610 #if FID_STATS
 611     tty->print("claim_par_id[%d]: returning %d, claimed = %d.\n",
 612                tslf, res, _claimed);
 613 #endif
 614     return res;
 615   }
 616 }
 617 
 618 bool FreeIdSet::claim_perm_id(int i) {
 619   assert(0 <= i && i < _sz, "Out of range.");
 620   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 621   int prev = end_of_list;
 622   int cur = _hd;
 623   while (cur != end_of_list) {
 624     if (cur == i) {
 625       if (prev == end_of_list) {
 626         _hd = _ids[cur];
 627       } else {
 628         _ids[prev] = _ids[cur];
 629       }
 630       _ids[cur] = claimed;
 631       _claimed++;
 632       return true;
 633     } else {
 634       prev = cur;
 635       cur = _ids[cur];
 636     }
 637   }
 638   return false;
 639 
 640 }
 641 
 642 void FreeIdSet::release_par_id(int id) {
 643   MutexLockerEx x(_mon, Mutex::_no_safepoint_check_flag);
 644   assert(_ids[id] == claimed, "Precondition.");
 645   _ids[id] = _hd;
 646   _hd = id;
 647   _claimed--;
 648 #if FID_STATS
 649   tty->print("[%d] release_par_id(%d), waiters =%d,  claimed = %d.\n",
 650              thr_self(), id, _waiters, _claimed);
 651 #endif
 652   if (_waiters > 0)
 653     // Notify all would be safer, but this is OK, right?
 654     _mon->notify_all();
 655 }