1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/align.hpp"
  68 #include "utilities/decoder.hpp"
  69 #include "utilities/defaultStream.hpp"
  70 #include "utilities/events.hpp"
  71 #include "utilities/elfFile.hpp"
  72 #include "utilities/growableArray.hpp"
  73 #include "utilities/macros.hpp"
  74 #include "utilities/vmError.hpp"
  75 
  76 // put OS-includes here
  77 # include <sys/types.h>
  78 # include <sys/mman.h>
  79 # include <sys/stat.h>
  80 # include <sys/select.h>
  81 # include <pthread.h>
  82 # include <signal.h>
  83 # include <errno.h>
  84 # include <dlfcn.h>
  85 # include <stdio.h>
  86 # include <unistd.h>
  87 # include <sys/resource.h>
  88 # include <pthread.h>
  89 # include <sys/stat.h>
  90 # include <sys/time.h>
  91 # include <sys/times.h>
  92 # include <sys/utsname.h>
  93 # include <sys/socket.h>
  94 # include <sys/wait.h>
  95 # include <pwd.h>
  96 # include <poll.h>
  97 # include <semaphore.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 ////////////////////////////////////////////////////////////////////////////////
 133 // global variables
 134 julong os::Linux::_physical_memory = 0;
 135 
 136 address   os::Linux::_initial_thread_stack_bottom = NULL;
 137 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 138 
 139 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 140 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 141 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 142 Mutex* os::Linux::_createThread_lock = NULL;
 143 pthread_t os::Linux::_main_thread;
 144 int os::Linux::_page_size = -1;
 145 bool os::Linux::_supports_fast_thread_cpu_time = false;
 146 uint32_t os::Linux::_os_version = 0;
 147 const char * os::Linux::_glibc_version = NULL;
 148 const char * os::Linux::_libpthread_version = NULL;
 149 
 150 static jlong initial_time_count=0;
 151 
 152 static int clock_tics_per_sec = 100;
 153 
 154 // For diagnostics to print a message once. see run_periodic_checks
 155 static sigset_t check_signal_done;
 156 static bool check_signals = true;
 157 
 158 // Signal number used to suspend/resume a thread
 159 
 160 // do not use any signal number less than SIGSEGV, see 4355769
 161 static int SR_signum = SIGUSR2;
 162 sigset_t SR_sigset;
 163 
 164 // utility functions
 165 
 166 static int SR_initialize();
 167 
 168 julong os::available_memory() {
 169   return Linux::available_memory();
 170 }
 171 
 172 julong os::Linux::available_memory() {
 173   // values in struct sysinfo are "unsigned long"
 174   struct sysinfo si;
 175   julong avail_mem;
 176 
 177   if (OSContainer::is_containerized()) {
 178     jlong mem_limit, mem_usage;
 179     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 180       if ((mem_usage = OSContainer::memory_usage_in_bytes()) > 0) {
 181         if (mem_limit > mem_usage) {
 182           avail_mem = (julong)mem_limit - (julong)mem_usage;
 183         } else {
 184           avail_mem = 0;
 185         }
 186         log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 187         return avail_mem;
 188       } else {
 189         log_debug(os,container)("container memory usage call failed: " JLONG_FORMAT, mem_usage);
 190       }
 191     } else {
 192       log_debug(os,container)("container memory unlimited or failed: " JLONG_FORMAT, mem_limit);
 193     }
 194   }
 195 
 196   sysinfo(&si);
 197   avail_mem = (julong)si.freeram * si.mem_unit;
 198   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 199   return avail_mem;
 200 }
 201 
 202 julong os::physical_memory() {
 203   if (OSContainer::is_containerized()) {
 204     jlong mem_limit;
 205     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 206       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 207       return (julong)mem_limit;
 208     } else {
 209       if (mem_limit == OSCONTAINER_ERROR) {
 210         log_debug(os,container)("container memory limit call failed");
 211       }
 212       if (mem_limit == -1) {
 213         log_debug(os,container)("container memory unlimited, using host value");
 214       }
 215     }
 216   }
 217 
 218   jlong phys_mem = Linux::physical_memory();
 219   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 220   return phys_mem;
 221 }
 222 
 223 // Return true if user is running as root.
 224 
 225 bool os::have_special_privileges() {
 226   static bool init = false;
 227   static bool privileges = false;
 228   if (!init) {
 229     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 230     init = true;
 231   }
 232   return privileges;
 233 }
 234 
 235 
 236 #ifndef SYS_gettid
 237 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 238   #ifdef __ia64__
 239     #define SYS_gettid 1105
 240   #else
 241     #ifdef __i386__
 242       #define SYS_gettid 224
 243     #else
 244       #ifdef __amd64__
 245         #define SYS_gettid 186
 246       #else
 247         #ifdef __sparc__
 248           #define SYS_gettid 143
 249         #else
 250           #error define gettid for the arch
 251         #endif
 252       #endif
 253     #endif
 254   #endif
 255 #endif
 256 
 257 
 258 // pid_t gettid()
 259 //
 260 // Returns the kernel thread id of the currently running thread. Kernel
 261 // thread id is used to access /proc.
 262 pid_t os::Linux::gettid() {
 263   int rslt = syscall(SYS_gettid);
 264   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 265   return (pid_t)rslt;
 266 }
 267 
 268 // Most versions of linux have a bug where the number of processors are
 269 // determined by looking at the /proc file system.  In a chroot environment,
 270 // the system call returns 1.  This causes the VM to act as if it is
 271 // a single processor and elide locking (see is_MP() call).
 272 static bool unsafe_chroot_detected = false;
 273 static const char *unstable_chroot_error = "/proc file system not found.\n"
 274                      "Java may be unstable running multithreaded in a chroot "
 275                      "environment on Linux when /proc filesystem is not mounted.";
 276 
 277 void os::Linux::initialize_system_info() {
 278   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 279   if (processor_count() == 1) {
 280     pid_t pid = os::Linux::gettid();
 281     char fname[32];
 282     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 283     FILE *fp = fopen(fname, "r");
 284     if (fp == NULL) {
 285       unsafe_chroot_detected = true;
 286     } else {
 287       fclose(fp);
 288     }
 289   }
 290   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 291   assert(processor_count() > 0, "linux error");
 292 }
 293 
 294 void os::init_system_properties_values() {
 295   // The next steps are taken in the product version:
 296   //
 297   // Obtain the JAVA_HOME value from the location of libjvm.so.
 298   // This library should be located at:
 299   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 300   //
 301   // If "/jre/lib/" appears at the right place in the path, then we
 302   // assume libjvm.so is installed in a JDK and we use this path.
 303   //
 304   // Otherwise exit with message: "Could not create the Java virtual machine."
 305   //
 306   // The following extra steps are taken in the debugging version:
 307   //
 308   // If "/jre/lib/" does NOT appear at the right place in the path
 309   // instead of exit check for $JAVA_HOME environment variable.
 310   //
 311   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 312   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 313   // it looks like libjvm.so is installed there
 314   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 315   //
 316   // Otherwise exit.
 317   //
 318   // Important note: if the location of libjvm.so changes this
 319   // code needs to be changed accordingly.
 320 
 321   // See ld(1):
 322   //      The linker uses the following search paths to locate required
 323   //      shared libraries:
 324   //        1: ...
 325   //        ...
 326   //        7: The default directories, normally /lib and /usr/lib.
 327 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 328   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 329 #else
 330   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 331 #endif
 332 
 333 // Base path of extensions installed on the system.
 334 #define SYS_EXT_DIR     "/usr/java/packages"
 335 #define EXTENSIONS_DIR  "/lib/ext"
 336 
 337   // Buffer that fits several sprintfs.
 338   // Note that the space for the colon and the trailing null are provided
 339   // by the nulls included by the sizeof operator.
 340   const size_t bufsize =
 341     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 342          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 343   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 344 
 345   // sysclasspath, java_home, dll_dir
 346   {
 347     char *pslash;
 348     os::jvm_path(buf, bufsize);
 349 
 350     // Found the full path to libjvm.so.
 351     // Now cut the path to <java_home>/jre if we can.
 352     pslash = strrchr(buf, '/');
 353     if (pslash != NULL) {
 354       *pslash = '\0';            // Get rid of /libjvm.so.
 355     }
 356     pslash = strrchr(buf, '/');
 357     if (pslash != NULL) {
 358       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 359     }
 360     Arguments::set_dll_dir(buf);
 361 
 362     if (pslash != NULL) {
 363       pslash = strrchr(buf, '/');
 364       if (pslash != NULL) {
 365         *pslash = '\0';        // Get rid of /lib.
 366       }
 367     }
 368     Arguments::set_java_home(buf);
 369     set_boot_path('/', ':');
 370   }
 371 
 372   // Where to look for native libraries.
 373   //
 374   // Note: Due to a legacy implementation, most of the library path
 375   // is set in the launcher. This was to accomodate linking restrictions
 376   // on legacy Linux implementations (which are no longer supported).
 377   // Eventually, all the library path setting will be done here.
 378   //
 379   // However, to prevent the proliferation of improperly built native
 380   // libraries, the new path component /usr/java/packages is added here.
 381   // Eventually, all the library path setting will be done here.
 382   {
 383     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 384     // should always exist (until the legacy problem cited above is
 385     // addressed).
 386     const char *v = ::getenv("LD_LIBRARY_PATH");
 387     const char *v_colon = ":";
 388     if (v == NULL) { v = ""; v_colon = ""; }
 389     // That's +1 for the colon and +1 for the trailing '\0'.
 390     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 391                                                      strlen(v) + 1 +
 392                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 393                                                      mtInternal);
 394     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 395     Arguments::set_library_path(ld_library_path);
 396     FREE_C_HEAP_ARRAY(char, ld_library_path);
 397   }
 398 
 399   // Extensions directories.
 400   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 401   Arguments::set_ext_dirs(buf);
 402 
 403   FREE_C_HEAP_ARRAY(char, buf);
 404 
 405 #undef DEFAULT_LIBPATH
 406 #undef SYS_EXT_DIR
 407 #undef EXTENSIONS_DIR
 408 }
 409 
 410 ////////////////////////////////////////////////////////////////////////////////
 411 // breakpoint support
 412 
 413 void os::breakpoint() {
 414   BREAKPOINT;
 415 }
 416 
 417 extern "C" void breakpoint() {
 418   // use debugger to set breakpoint here
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // signal support
 423 
 424 debug_only(static bool signal_sets_initialized = false);
 425 static sigset_t unblocked_sigs, vm_sigs;
 426 
 427 bool os::Linux::is_sig_ignored(int sig) {
 428   struct sigaction oact;
 429   sigaction(sig, (struct sigaction*)NULL, &oact);
 430   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 431                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 432   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 433     return true;
 434   } else {
 435     return false;
 436   }
 437 }
 438 
 439 void os::Linux::signal_sets_init() {
 440   // Should also have an assertion stating we are still single-threaded.
 441   assert(!signal_sets_initialized, "Already initialized");
 442   // Fill in signals that are necessarily unblocked for all threads in
 443   // the VM. Currently, we unblock the following signals:
 444   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 445   //                         by -Xrs (=ReduceSignalUsage));
 446   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 447   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 448   // the dispositions or masks wrt these signals.
 449   // Programs embedding the VM that want to use the above signals for their
 450   // own purposes must, at this time, use the "-Xrs" option to prevent
 451   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 452   // (See bug 4345157, and other related bugs).
 453   // In reality, though, unblocking these signals is really a nop, since
 454   // these signals are not blocked by default.
 455   sigemptyset(&unblocked_sigs);
 456   sigaddset(&unblocked_sigs, SIGILL);
 457   sigaddset(&unblocked_sigs, SIGSEGV);
 458   sigaddset(&unblocked_sigs, SIGBUS);
 459   sigaddset(&unblocked_sigs, SIGFPE);
 460 #if defined(PPC64)
 461   sigaddset(&unblocked_sigs, SIGTRAP);
 462 #endif
 463   sigaddset(&unblocked_sigs, SR_signum);
 464 
 465   if (!ReduceSignalUsage) {
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 468     }
 469     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 470       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 471     }
 472     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 473       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 474     }
 475   }
 476   // Fill in signals that are blocked by all but the VM thread.
 477   sigemptyset(&vm_sigs);
 478   if (!ReduceSignalUsage) {
 479     sigaddset(&vm_sigs, BREAK_SIGNAL);
 480   }
 481   debug_only(signal_sets_initialized = true);
 482 
 483 }
 484 
 485 // These are signals that are unblocked while a thread is running Java.
 486 // (For some reason, they get blocked by default.)
 487 sigset_t* os::Linux::unblocked_signals() {
 488   assert(signal_sets_initialized, "Not initialized");
 489   return &unblocked_sigs;
 490 }
 491 
 492 // These are the signals that are blocked while a (non-VM) thread is
 493 // running Java. Only the VM thread handles these signals.
 494 sigset_t* os::Linux::vm_signals() {
 495   assert(signal_sets_initialized, "Not initialized");
 496   return &vm_sigs;
 497 }
 498 
 499 void os::Linux::hotspot_sigmask(Thread* thread) {
 500 
 501   //Save caller's signal mask before setting VM signal mask
 502   sigset_t caller_sigmask;
 503   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 504 
 505   OSThread* osthread = thread->osthread();
 506   osthread->set_caller_sigmask(caller_sigmask);
 507 
 508   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 509 
 510   if (!ReduceSignalUsage) {
 511     if (thread->is_VM_thread()) {
 512       // Only the VM thread handles BREAK_SIGNAL ...
 513       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 514     } else {
 515       // ... all other threads block BREAK_SIGNAL
 516       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 517     }
 518   }
 519 }
 520 
 521 //////////////////////////////////////////////////////////////////////////////
 522 // detecting pthread library
 523 
 524 void os::Linux::libpthread_init() {
 525   // Save glibc and pthread version strings.
 526 #if !defined(_CS_GNU_LIBC_VERSION) || \
 527     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 528   #error "glibc too old (< 2.3.2)"
 529 #endif
 530 
 531   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve glibc version");
 533   char *str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBC_VERSION, str, n);
 535   os::Linux::set_glibc_version(str);
 536 
 537   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 538   assert(n > 0, "cannot retrieve pthread version");
 539   str = (char *)malloc(n, mtInternal);
 540   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 541   os::Linux::set_libpthread_version(str);
 542 }
 543 
 544 /////////////////////////////////////////////////////////////////////////////
 545 // thread stack expansion
 546 
 547 // os::Linux::manually_expand_stack() takes care of expanding the thread
 548 // stack. Note that this is normally not needed: pthread stacks allocate
 549 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 550 // committed. Therefore it is not necessary to expand the stack manually.
 551 //
 552 // Manually expanding the stack was historically needed on LinuxThreads
 553 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 554 // it is kept to deal with very rare corner cases:
 555 //
 556 // For one, user may run the VM on an own implementation of threads
 557 // whose stacks are - like the old LinuxThreads - implemented using
 558 // mmap(MAP_GROWSDOWN).
 559 //
 560 // Also, this coding may be needed if the VM is running on the primordial
 561 // thread. Normally we avoid running on the primordial thread; however,
 562 // user may still invoke the VM on the primordial thread.
 563 //
 564 // The following historical comment describes the details about running
 565 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 566 
 567 
 568 // Force Linux kernel to expand current thread stack. If "bottom" is close
 569 // to the stack guard, caller should block all signals.
 570 //
 571 // MAP_GROWSDOWN:
 572 //   A special mmap() flag that is used to implement thread stacks. It tells
 573 //   kernel that the memory region should extend downwards when needed. This
 574 //   allows early versions of LinuxThreads to only mmap the first few pages
 575 //   when creating a new thread. Linux kernel will automatically expand thread
 576 //   stack as needed (on page faults).
 577 //
 578 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 579 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 580 //   region, it's hard to tell if the fault is due to a legitimate stack
 581 //   access or because of reading/writing non-exist memory (e.g. buffer
 582 //   overrun). As a rule, if the fault happens below current stack pointer,
 583 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 584 //   application (see Linux kernel fault.c).
 585 //
 586 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 587 //   stack overflow detection.
 588 //
 589 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 590 //   not use MAP_GROWSDOWN.
 591 //
 592 // To get around the problem and allow stack banging on Linux, we need to
 593 // manually expand thread stack after receiving the SIGSEGV.
 594 //
 595 // There are two ways to expand thread stack to address "bottom", we used
 596 // both of them in JVM before 1.5:
 597 //   1. adjust stack pointer first so that it is below "bottom", and then
 598 //      touch "bottom"
 599 //   2. mmap() the page in question
 600 //
 601 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 602 // if current sp is already near the lower end of page 101, and we need to
 603 // call mmap() to map page 100, it is possible that part of the mmap() frame
 604 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 605 // That will destroy the mmap() frame and cause VM to crash.
 606 //
 607 // The following code works by adjusting sp first, then accessing the "bottom"
 608 // page to force a page fault. Linux kernel will then automatically expand the
 609 // stack mapping.
 610 //
 611 // _expand_stack_to() assumes its frame size is less than page size, which
 612 // should always be true if the function is not inlined.
 613 
 614 static void NOINLINE _expand_stack_to(address bottom) {
 615   address sp;
 616   size_t size;
 617   volatile char *p;
 618 
 619   // Adjust bottom to point to the largest address within the same page, it
 620   // gives us a one-page buffer if alloca() allocates slightly more memory.
 621   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 622   bottom += os::Linux::page_size() - 1;
 623 
 624   // sp might be slightly above current stack pointer; if that's the case, we
 625   // will alloca() a little more space than necessary, which is OK. Don't use
 626   // os::current_stack_pointer(), as its result can be slightly below current
 627   // stack pointer, causing us to not alloca enough to reach "bottom".
 628   sp = (address)&sp;
 629 
 630   if (sp > bottom) {
 631     size = sp - bottom;
 632     p = (volatile char *)alloca(size);
 633     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 634     p[0] = '\0';
 635   }
 636 }
 637 
 638 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 639   assert(t!=NULL, "just checking");
 640   assert(t->osthread()->expanding_stack(), "expand should be set");
 641   assert(t->stack_base() != NULL, "stack_base was not initialized");
 642 
 643   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 644     sigset_t mask_all, old_sigset;
 645     sigfillset(&mask_all);
 646     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 647     _expand_stack_to(addr);
 648     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 649     return true;
 650   }
 651   return false;
 652 }
 653 
 654 //////////////////////////////////////////////////////////////////////////////
 655 // create new thread
 656 
 657 // Thread start routine for all newly created threads
 658 static void *thread_native_entry(Thread *thread) {
 659   // Try to randomize the cache line index of hot stack frames.
 660   // This helps when threads of the same stack traces evict each other's
 661   // cache lines. The threads can be either from the same JVM instance, or
 662   // from different JVM instances. The benefit is especially true for
 663   // processors with hyperthreading technology.
 664   static int counter = 0;
 665   int pid = os::current_process_id();
 666   alloca(((pid ^ counter++) & 7) * 128);
 667 
 668   thread->initialize_thread_current();
 669 
 670   OSThread* osthread = thread->osthread();
 671   Monitor* sync = osthread->startThread_lock();
 672 
 673   osthread->set_thread_id(os::current_thread_id());
 674 
 675   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 676     os::current_thread_id(), (uintx) pthread_self());
 677 
 678   if (UseNUMA) {
 679     int lgrp_id = os::numa_get_group_id();
 680     if (lgrp_id != -1) {
 681       thread->set_lgrp_id(lgrp_id);
 682     }
 683   }
 684   // initialize signal mask for this thread
 685   os::Linux::hotspot_sigmask(thread);
 686 
 687   // initialize floating point control register
 688   os::Linux::init_thread_fpu_state();
 689 
 690   // handshaking with parent thread
 691   {
 692     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 693 
 694     // notify parent thread
 695     osthread->set_state(INITIALIZED);
 696     sync->notify_all();
 697 
 698     // wait until os::start_thread()
 699     while (osthread->get_state() == INITIALIZED) {
 700       sync->wait(Mutex::_no_safepoint_check_flag);
 701     }
 702   }
 703 
 704   // call one more level start routine
 705   thread->run();
 706 
 707   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 708     os::current_thread_id(), (uintx) pthread_self());
 709 
 710   // If a thread has not deleted itself ("delete this") as part of its
 711   // termination sequence, we have to ensure thread-local-storage is
 712   // cleared before we actually terminate. No threads should ever be
 713   // deleted asynchronously with respect to their termination.
 714   if (Thread::current_or_null_safe() != NULL) {
 715     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 716     thread->clear_thread_current();
 717   }
 718 
 719   return 0;
 720 }
 721 
 722 bool os::create_thread(Thread* thread, ThreadType thr_type,
 723                        size_t req_stack_size) {
 724   assert(thread->osthread() == NULL, "caller responsible");
 725 
 726   // Allocate the OSThread object
 727   OSThread* osthread = new OSThread(NULL, NULL);
 728   if (osthread == NULL) {
 729     return false;
 730   }
 731 
 732   // set the correct thread state
 733   osthread->set_thread_type(thr_type);
 734 
 735   // Initial state is ALLOCATED but not INITIALIZED
 736   osthread->set_state(ALLOCATED);
 737 
 738   thread->set_osthread(osthread);
 739 
 740   // init thread attributes
 741   pthread_attr_t attr;
 742   pthread_attr_init(&attr);
 743   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 744 
 745   // Calculate stack size if it's not specified by caller.
 746   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 747   // In the Linux NPTL pthread implementation the guard size mechanism
 748   // is not implemented properly. The posix standard requires adding
 749   // the size of the guard pages to the stack size, instead Linux
 750   // takes the space out of 'stacksize'. Thus we adapt the requested
 751   // stack_size by the size of the guard pages to mimick proper
 752   // behaviour. However, be careful not to end up with a size
 753   // of zero due to overflow. Don't add the guard page in that case.
 754   size_t guard_size = os::Linux::default_guard_size(thr_type);
 755   if (stack_size <= SIZE_MAX - guard_size) {
 756     stack_size += guard_size;
 757   }
 758   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 759 
 760   int status = pthread_attr_setstacksize(&attr, stack_size);
 761   assert_status(status == 0, status, "pthread_attr_setstacksize");
 762 
 763   // Configure glibc guard page.
 764   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 765 
 766   ThreadState state;
 767 
 768   {
 769     pthread_t tid;
 770     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 771 
 772     char buf[64];
 773     if (ret == 0) {
 774       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 775         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 776     } else {
 777       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 778         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 779     }
 780 
 781     pthread_attr_destroy(&attr);
 782 
 783     if (ret != 0) {
 784       // Need to clean up stuff we've allocated so far
 785       thread->set_osthread(NULL);
 786       delete osthread;
 787       return false;
 788     }
 789 
 790     // Store pthread info into the OSThread
 791     osthread->set_pthread_id(tid);
 792 
 793     // Wait until child thread is either initialized or aborted
 794     {
 795       Monitor* sync_with_child = osthread->startThread_lock();
 796       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 797       while ((state = osthread->get_state()) == ALLOCATED) {
 798         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 799       }
 800     }
 801   }
 802 
 803   // Aborted due to thread limit being reached
 804   if (state == ZOMBIE) {
 805     thread->set_osthread(NULL);
 806     delete osthread;
 807     return false;
 808   }
 809 
 810   // The thread is returned suspended (in state INITIALIZED),
 811   // and is started higher up in the call chain
 812   assert(state == INITIALIZED, "race condition");
 813   return true;
 814 }
 815 
 816 /////////////////////////////////////////////////////////////////////////////
 817 // attach existing thread
 818 
 819 // bootstrap the main thread
 820 bool os::create_main_thread(JavaThread* thread) {
 821   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 822   return create_attached_thread(thread);
 823 }
 824 
 825 bool os::create_attached_thread(JavaThread* thread) {
 826 #ifdef ASSERT
 827   thread->verify_not_published();
 828 #endif
 829 
 830   // Allocate the OSThread object
 831   OSThread* osthread = new OSThread(NULL, NULL);
 832 
 833   if (osthread == NULL) {
 834     return false;
 835   }
 836 
 837   // Store pthread info into the OSThread
 838   osthread->set_thread_id(os::Linux::gettid());
 839   osthread->set_pthread_id(::pthread_self());
 840 
 841   // initialize floating point control register
 842   os::Linux::init_thread_fpu_state();
 843 
 844   // Initial thread state is RUNNABLE
 845   osthread->set_state(RUNNABLE);
 846 
 847   thread->set_osthread(osthread);
 848 
 849   if (UseNUMA) {
 850     int lgrp_id = os::numa_get_group_id();
 851     if (lgrp_id != -1) {
 852       thread->set_lgrp_id(lgrp_id);
 853     }
 854   }
 855 
 856   if (os::is_primordial_thread()) {
 857     // If current thread is primordial thread, its stack is mapped on demand,
 858     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 859     // the entire stack region to avoid SEGV in stack banging.
 860     // It is also useful to get around the heap-stack-gap problem on SuSE
 861     // kernel (see 4821821 for details). We first expand stack to the top
 862     // of yellow zone, then enable stack yellow zone (order is significant,
 863     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 864     // is no gap between the last two virtual memory regions.
 865 
 866     JavaThread *jt = (JavaThread *)thread;
 867     address addr = jt->stack_reserved_zone_base();
 868     assert(addr != NULL, "initialization problem?");
 869     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 870 
 871     osthread->set_expanding_stack();
 872     os::Linux::manually_expand_stack(jt, addr);
 873     osthread->clear_expanding_stack();
 874   }
 875 
 876   // initialize signal mask for this thread
 877   // and save the caller's signal mask
 878   os::Linux::hotspot_sigmask(thread);
 879 
 880   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 881     os::current_thread_id(), (uintx) pthread_self());
 882 
 883   return true;
 884 }
 885 
 886 void os::pd_start_thread(Thread* thread) {
 887   OSThread * osthread = thread->osthread();
 888   assert(osthread->get_state() != INITIALIZED, "just checking");
 889   Monitor* sync_with_child = osthread->startThread_lock();
 890   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 891   sync_with_child->notify();
 892 }
 893 
 894 // Free Linux resources related to the OSThread
 895 void os::free_thread(OSThread* osthread) {
 896   assert(osthread != NULL, "osthread not set");
 897 
 898   // We are told to free resources of the argument thread,
 899   // but we can only really operate on the current thread.
 900   assert(Thread::current()->osthread() == osthread,
 901          "os::free_thread but not current thread");
 902 
 903 #ifdef ASSERT
 904   sigset_t current;
 905   sigemptyset(&current);
 906   pthread_sigmask(SIG_SETMASK, NULL, &current);
 907   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 908 #endif
 909 
 910   // Restore caller's signal mask
 911   sigset_t sigmask = osthread->caller_sigmask();
 912   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 913 
 914   delete osthread;
 915 }
 916 
 917 //////////////////////////////////////////////////////////////////////////////
 918 // primordial thread
 919 
 920 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 921 bool os::is_primordial_thread(void) {
 922   char dummy;
 923   // If called before init complete, thread stack bottom will be null.
 924   // Can be called if fatal error occurs before initialization.
 925   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 926   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 927          os::Linux::initial_thread_stack_size()   != 0,
 928          "os::init did not locate primordial thread's stack region");
 929   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 930       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 931                         os::Linux::initial_thread_stack_size()) {
 932     return true;
 933   } else {
 934     return false;
 935   }
 936 }
 937 
 938 // Find the virtual memory area that contains addr
 939 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 940   FILE *fp = fopen("/proc/self/maps", "r");
 941   if (fp) {
 942     address low, high;
 943     while (!feof(fp)) {
 944       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 945         if (low <= addr && addr < high) {
 946           if (vma_low)  *vma_low  = low;
 947           if (vma_high) *vma_high = high;
 948           fclose(fp);
 949           return true;
 950         }
 951       }
 952       for (;;) {
 953         int ch = fgetc(fp);
 954         if (ch == EOF || ch == (int)'\n') break;
 955       }
 956     }
 957     fclose(fp);
 958   }
 959   return false;
 960 }
 961 
 962 // Locate primordial thread stack. This special handling of primordial thread stack
 963 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 964 // bogus value for the primordial process thread. While the launcher has created
 965 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 966 // JNI invocation API from a primordial thread.
 967 void os::Linux::capture_initial_stack(size_t max_size) {
 968 
 969   // max_size is either 0 (which means accept OS default for thread stacks) or
 970   // a user-specified value known to be at least the minimum needed. If we
 971   // are actually on the primordial thread we can make it appear that we have a
 972   // smaller max_size stack by inserting the guard pages at that location. But we
 973   // cannot do anything to emulate a larger stack than what has been provided by
 974   // the OS or threading library. In fact if we try to use a stack greater than
 975   // what is set by rlimit then we will crash the hosting process.
 976 
 977   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 978   // If this is "unlimited" then it will be a huge value.
 979   struct rlimit rlim;
 980   getrlimit(RLIMIT_STACK, &rlim);
 981   size_t stack_size = rlim.rlim_cur;
 982 
 983   // 6308388: a bug in ld.so will relocate its own .data section to the
 984   //   lower end of primordial stack; reduce ulimit -s value a little bit
 985   //   so we won't install guard page on ld.so's data section.
 986   //   But ensure we don't underflow the stack size - allow 1 page spare
 987   if (stack_size >= (size_t)(3 * page_size())) {
 988     stack_size -= 2 * page_size();
 989   }
 990 
 991   // Try to figure out where the stack base (top) is. This is harder.
 992   //
 993   // When an application is started, glibc saves the initial stack pointer in
 994   // a global variable "__libc_stack_end", which is then used by system
 995   // libraries. __libc_stack_end should be pretty close to stack top. The
 996   // variable is available since the very early days. However, because it is
 997   // a private interface, it could disappear in the future.
 998   //
 999   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1000   // to __libc_stack_end, it is very close to stack top, but isn't the real
1001   // stack top. Note that /proc may not exist if VM is running as a chroot
1002   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1003   // /proc/<pid>/stat could change in the future (though unlikely).
1004   //
1005   // We try __libc_stack_end first. If that doesn't work, look for
1006   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1007   // as a hint, which should work well in most cases.
1008 
1009   uintptr_t stack_start;
1010 
1011   // try __libc_stack_end first
1012   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1013   if (p && *p) {
1014     stack_start = *p;
1015   } else {
1016     // see if we can get the start_stack field from /proc/self/stat
1017     FILE *fp;
1018     int pid;
1019     char state;
1020     int ppid;
1021     int pgrp;
1022     int session;
1023     int nr;
1024     int tpgrp;
1025     unsigned long flags;
1026     unsigned long minflt;
1027     unsigned long cminflt;
1028     unsigned long majflt;
1029     unsigned long cmajflt;
1030     unsigned long utime;
1031     unsigned long stime;
1032     long cutime;
1033     long cstime;
1034     long prio;
1035     long nice;
1036     long junk;
1037     long it_real;
1038     uintptr_t start;
1039     uintptr_t vsize;
1040     intptr_t rss;
1041     uintptr_t rsslim;
1042     uintptr_t scodes;
1043     uintptr_t ecode;
1044     int i;
1045 
1046     // Figure what the primordial thread stack base is. Code is inspired
1047     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1048     // followed by command name surrounded by parentheses, state, etc.
1049     char stat[2048];
1050     int statlen;
1051 
1052     fp = fopen("/proc/self/stat", "r");
1053     if (fp) {
1054       statlen = fread(stat, 1, 2047, fp);
1055       stat[statlen] = '\0';
1056       fclose(fp);
1057 
1058       // Skip pid and the command string. Note that we could be dealing with
1059       // weird command names, e.g. user could decide to rename java launcher
1060       // to "java 1.4.2 :)", then the stat file would look like
1061       //                1234 (java 1.4.2 :)) R ... ...
1062       // We don't really need to know the command string, just find the last
1063       // occurrence of ")" and then start parsing from there. See bug 4726580.
1064       char * s = strrchr(stat, ')');
1065 
1066       i = 0;
1067       if (s) {
1068         // Skip blank chars
1069         do { s++; } while (s && isspace(*s));
1070 
1071 #define _UFM UINTX_FORMAT
1072 #define _DFM INTX_FORMAT
1073 
1074         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1075         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1076         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1077                    &state,          // 3  %c
1078                    &ppid,           // 4  %d
1079                    &pgrp,           // 5  %d
1080                    &session,        // 6  %d
1081                    &nr,             // 7  %d
1082                    &tpgrp,          // 8  %d
1083                    &flags,          // 9  %lu
1084                    &minflt,         // 10 %lu
1085                    &cminflt,        // 11 %lu
1086                    &majflt,         // 12 %lu
1087                    &cmajflt,        // 13 %lu
1088                    &utime,          // 14 %lu
1089                    &stime,          // 15 %lu
1090                    &cutime,         // 16 %ld
1091                    &cstime,         // 17 %ld
1092                    &prio,           // 18 %ld
1093                    &nice,           // 19 %ld
1094                    &junk,           // 20 %ld
1095                    &it_real,        // 21 %ld
1096                    &start,          // 22 UINTX_FORMAT
1097                    &vsize,          // 23 UINTX_FORMAT
1098                    &rss,            // 24 INTX_FORMAT
1099                    &rsslim,         // 25 UINTX_FORMAT
1100                    &scodes,         // 26 UINTX_FORMAT
1101                    &ecode,          // 27 UINTX_FORMAT
1102                    &stack_start);   // 28 UINTX_FORMAT
1103       }
1104 
1105 #undef _UFM
1106 #undef _DFM
1107 
1108       if (i != 28 - 2) {
1109         assert(false, "Bad conversion from /proc/self/stat");
1110         // product mode - assume we are the primordial thread, good luck in the
1111         // embedded case.
1112         warning("Can't detect primordial thread stack location - bad conversion");
1113         stack_start = (uintptr_t) &rlim;
1114       }
1115     } else {
1116       // For some reason we can't open /proc/self/stat (for example, running on
1117       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1118       // most cases, so don't abort:
1119       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1120       stack_start = (uintptr_t) &rlim;
1121     }
1122   }
1123 
1124   // Now we have a pointer (stack_start) very close to the stack top, the
1125   // next thing to do is to figure out the exact location of stack top. We
1126   // can find out the virtual memory area that contains stack_start by
1127   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1128   // and its upper limit is the real stack top. (again, this would fail if
1129   // running inside chroot, because /proc may not exist.)
1130 
1131   uintptr_t stack_top;
1132   address low, high;
1133   if (find_vma((address)stack_start, &low, &high)) {
1134     // success, "high" is the true stack top. (ignore "low", because initial
1135     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1136     stack_top = (uintptr_t)high;
1137   } else {
1138     // failed, likely because /proc/self/maps does not exist
1139     warning("Can't detect primordial thread stack location - find_vma failed");
1140     // best effort: stack_start is normally within a few pages below the real
1141     // stack top, use it as stack top, and reduce stack size so we won't put
1142     // guard page outside stack.
1143     stack_top = stack_start;
1144     stack_size -= 16 * page_size();
1145   }
1146 
1147   // stack_top could be partially down the page so align it
1148   stack_top = align_up(stack_top, page_size());
1149 
1150   // Allowed stack value is minimum of max_size and what we derived from rlimit
1151   if (max_size > 0) {
1152     _initial_thread_stack_size = MIN2(max_size, stack_size);
1153   } else {
1154     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1155     // clamp it at 8MB as we do on Solaris
1156     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1157   }
1158   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1159   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1160 
1161   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1162 
1163   if (log_is_enabled(Info, os, thread)) {
1164     // See if we seem to be on primordial process thread
1165     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1166                       uintptr_t(&rlim) < stack_top;
1167 
1168     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1169                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1170                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1171                          stack_top, intptr_t(_initial_thread_stack_bottom));
1172   }
1173 }
1174 
1175 ////////////////////////////////////////////////////////////////////////////////
1176 // time support
1177 
1178 // Time since start-up in seconds to a fine granularity.
1179 // Used by VMSelfDestructTimer and the MemProfiler.
1180 double os::elapsedTime() {
1181 
1182   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1183 }
1184 
1185 jlong os::elapsed_counter() {
1186   return javaTimeNanos() - initial_time_count;
1187 }
1188 
1189 jlong os::elapsed_frequency() {
1190   return NANOSECS_PER_SEC; // nanosecond resolution
1191 }
1192 
1193 bool os::supports_vtime() { return true; }
1194 bool os::enable_vtime()   { return false; }
1195 bool os::vtime_enabled()  { return false; }
1196 
1197 double os::elapsedVTime() {
1198   struct rusage usage;
1199   int retval = getrusage(RUSAGE_THREAD, &usage);
1200   if (retval == 0) {
1201     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1202   } else {
1203     // better than nothing, but not much
1204     return elapsedTime();
1205   }
1206 }
1207 
1208 jlong os::javaTimeMillis() {
1209   timeval time;
1210   int status = gettimeofday(&time, NULL);
1211   assert(status != -1, "linux error");
1212   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1213 }
1214 
1215 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1216   timeval time;
1217   int status = gettimeofday(&time, NULL);
1218   assert(status != -1, "linux error");
1219   seconds = jlong(time.tv_sec);
1220   nanos = jlong(time.tv_usec) * 1000;
1221 }
1222 
1223 
1224 #ifndef CLOCK_MONOTONIC
1225   #define CLOCK_MONOTONIC (1)
1226 #endif
1227 
1228 void os::Linux::clock_init() {
1229   // we do dlopen's in this particular order due to bug in linux
1230   // dynamical loader (see 6348968) leading to crash on exit
1231   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1232   if (handle == NULL) {
1233     handle = dlopen("librt.so", RTLD_LAZY);
1234   }
1235 
1236   if (handle) {
1237     int (*clock_getres_func)(clockid_t, struct timespec*) =
1238            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1239     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1240            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1241     if (clock_getres_func && clock_gettime_func) {
1242       // See if monotonic clock is supported by the kernel. Note that some
1243       // early implementations simply return kernel jiffies (updated every
1244       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1245       // for nano time (though the monotonic property is still nice to have).
1246       // It's fixed in newer kernels, however clock_getres() still returns
1247       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1248       // resolution for now. Hopefully as people move to new kernels, this
1249       // won't be a problem.
1250       struct timespec res;
1251       struct timespec tp;
1252       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1253           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1254         // yes, monotonic clock is supported
1255         _clock_gettime = clock_gettime_func;
1256         return;
1257       } else {
1258         // close librt if there is no monotonic clock
1259         dlclose(handle);
1260       }
1261     }
1262   }
1263   warning("No monotonic clock was available - timed services may " \
1264           "be adversely affected if the time-of-day clock changes");
1265 }
1266 
1267 #ifndef SYS_clock_getres
1268   #if defined(X86) || defined(PPC64) || defined(S390)
1269     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1270     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1271   #else
1272     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1273     #define sys_clock_getres(x,y)  -1
1274   #endif
1275 #else
1276   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1277 #endif
1278 
1279 void os::Linux::fast_thread_clock_init() {
1280   if (!UseLinuxPosixThreadCPUClocks) {
1281     return;
1282   }
1283   clockid_t clockid;
1284   struct timespec tp;
1285   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1286       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1287 
1288   // Switch to using fast clocks for thread cpu time if
1289   // the sys_clock_getres() returns 0 error code.
1290   // Note, that some kernels may support the current thread
1291   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1292   // returned by the pthread_getcpuclockid().
1293   // If the fast Posix clocks are supported then the sys_clock_getres()
1294   // must return at least tp.tv_sec == 0 which means a resolution
1295   // better than 1 sec. This is extra check for reliability.
1296 
1297   if (pthread_getcpuclockid_func &&
1298       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1299       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1300     _supports_fast_thread_cpu_time = true;
1301     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1302   }
1303 }
1304 
1305 jlong os::javaTimeNanos() {
1306   if (os::supports_monotonic_clock()) {
1307     struct timespec tp;
1308     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1309     assert(status == 0, "gettime error");
1310     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1311     return result;
1312   } else {
1313     timeval time;
1314     int status = gettimeofday(&time, NULL);
1315     assert(status != -1, "linux error");
1316     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1317     return 1000 * usecs;
1318   }
1319 }
1320 
1321 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1322   if (os::supports_monotonic_clock()) {
1323     info_ptr->max_value = ALL_64_BITS;
1324 
1325     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1326     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1327     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1328   } else {
1329     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1330     info_ptr->max_value = ALL_64_BITS;
1331 
1332     // gettimeofday is a real time clock so it skips
1333     info_ptr->may_skip_backward = true;
1334     info_ptr->may_skip_forward = true;
1335   }
1336 
1337   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1338 }
1339 
1340 // Return the real, user, and system times in seconds from an
1341 // arbitrary fixed point in the past.
1342 bool os::getTimesSecs(double* process_real_time,
1343                       double* process_user_time,
1344                       double* process_system_time) {
1345   struct tms ticks;
1346   clock_t real_ticks = times(&ticks);
1347 
1348   if (real_ticks == (clock_t) (-1)) {
1349     return false;
1350   } else {
1351     double ticks_per_second = (double) clock_tics_per_sec;
1352     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1353     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1354     *process_real_time = ((double) real_ticks) / ticks_per_second;
1355 
1356     return true;
1357   }
1358 }
1359 
1360 
1361 char * os::local_time_string(char *buf, size_t buflen) {
1362   struct tm t;
1363   time_t long_time;
1364   time(&long_time);
1365   localtime_r(&long_time, &t);
1366   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1367                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1368                t.tm_hour, t.tm_min, t.tm_sec);
1369   return buf;
1370 }
1371 
1372 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1373   return localtime_r(clock, res);
1374 }
1375 
1376 ////////////////////////////////////////////////////////////////////////////////
1377 // runtime exit support
1378 
1379 // Note: os::shutdown() might be called very early during initialization, or
1380 // called from signal handler. Before adding something to os::shutdown(), make
1381 // sure it is async-safe and can handle partially initialized VM.
1382 void os::shutdown() {
1383 
1384   // allow PerfMemory to attempt cleanup of any persistent resources
1385   perfMemory_exit();
1386 
1387   // needs to remove object in file system
1388   AttachListener::abort();
1389 
1390   // flush buffered output, finish log files
1391   ostream_abort();
1392 
1393   // Check for abort hook
1394   abort_hook_t abort_hook = Arguments::abort_hook();
1395   if (abort_hook != NULL) {
1396     abort_hook();
1397   }
1398 
1399 }
1400 
1401 // Note: os::abort() might be called very early during initialization, or
1402 // called from signal handler. Before adding something to os::abort(), make
1403 // sure it is async-safe and can handle partially initialized VM.
1404 void os::abort(bool dump_core, void* siginfo, const void* context) {
1405   os::shutdown();
1406   if (dump_core) {
1407 #ifndef PRODUCT
1408     fdStream out(defaultStream::output_fd());
1409     out.print_raw("Current thread is ");
1410     char buf[16];
1411     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1412     out.print_raw_cr(buf);
1413     out.print_raw_cr("Dumping core ...");
1414 #endif
1415     ::abort(); // dump core
1416   }
1417 
1418   ::exit(1);
1419 }
1420 
1421 // Die immediately, no exit hook, no abort hook, no cleanup.
1422 void os::die() {
1423   ::abort();
1424 }
1425 
1426 
1427 // This method is a copy of JDK's sysGetLastErrorString
1428 // from src/solaris/hpi/src/system_md.c
1429 
1430 size_t os::lasterror(char *buf, size_t len) {
1431   if (errno == 0)  return 0;
1432 
1433   const char *s = os::strerror(errno);
1434   size_t n = ::strlen(s);
1435   if (n >= len) {
1436     n = len - 1;
1437   }
1438   ::strncpy(buf, s, n);
1439   buf[n] = '\0';
1440   return n;
1441 }
1442 
1443 // thread_id is kernel thread id (similar to Solaris LWP id)
1444 intx os::current_thread_id() { return os::Linux::gettid(); }
1445 int os::current_process_id() {
1446   return ::getpid();
1447 }
1448 
1449 // DLL functions
1450 
1451 const char* os::dll_file_extension() { return ".so"; }
1452 
1453 // This must be hard coded because it's the system's temporary
1454 // directory not the java application's temp directory, ala java.io.tmpdir.
1455 const char* os::get_temp_directory() { return "/tmp"; }
1456 
1457 static bool file_exists(const char* filename) {
1458   struct stat statbuf;
1459   if (filename == NULL || strlen(filename) == 0) {
1460     return false;
1461   }
1462   return os::stat(filename, &statbuf) == 0;
1463 }
1464 
1465 // check if addr is inside libjvm.so
1466 bool os::address_is_in_vm(address addr) {
1467   static address libjvm_base_addr;
1468   Dl_info dlinfo;
1469 
1470   if (libjvm_base_addr == NULL) {
1471     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1472       libjvm_base_addr = (address)dlinfo.dli_fbase;
1473     }
1474     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1475   }
1476 
1477   if (dladdr((void *)addr, &dlinfo) != 0) {
1478     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1479   }
1480 
1481   return false;
1482 }
1483 
1484 bool os::dll_address_to_function_name(address addr, char *buf,
1485                                       int buflen, int *offset,
1486                                       bool demangle) {
1487   // buf is not optional, but offset is optional
1488   assert(buf != NULL, "sanity check");
1489 
1490   Dl_info dlinfo;
1491 
1492   if (dladdr((void*)addr, &dlinfo) != 0) {
1493     // see if we have a matching symbol
1494     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1495       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1496         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1497       }
1498       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1499       return true;
1500     }
1501     // no matching symbol so try for just file info
1502     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1503       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1504                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1505         return true;
1506       }
1507     }
1508   }
1509 
1510   buf[0] = '\0';
1511   if (offset != NULL) *offset = -1;
1512   return false;
1513 }
1514 
1515 struct _address_to_library_name {
1516   address addr;          // input : memory address
1517   size_t  buflen;        //         size of fname
1518   char*   fname;         // output: library name
1519   address base;          //         library base addr
1520 };
1521 
1522 static int address_to_library_name_callback(struct dl_phdr_info *info,
1523                                             size_t size, void *data) {
1524   int i;
1525   bool found = false;
1526   address libbase = NULL;
1527   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1528 
1529   // iterate through all loadable segments
1530   for (i = 0; i < info->dlpi_phnum; i++) {
1531     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1532     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1533       // base address of a library is the lowest address of its loaded
1534       // segments.
1535       if (libbase == NULL || libbase > segbase) {
1536         libbase = segbase;
1537       }
1538       // see if 'addr' is within current segment
1539       if (segbase <= d->addr &&
1540           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1541         found = true;
1542       }
1543     }
1544   }
1545 
1546   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1547   // so dll_address_to_library_name() can fall through to use dladdr() which
1548   // can figure out executable name from argv[0].
1549   if (found && info->dlpi_name && info->dlpi_name[0]) {
1550     d->base = libbase;
1551     if (d->fname) {
1552       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1553     }
1554     return 1;
1555   }
1556   return 0;
1557 }
1558 
1559 bool os::dll_address_to_library_name(address addr, char* buf,
1560                                      int buflen, int* offset) {
1561   // buf is not optional, but offset is optional
1562   assert(buf != NULL, "sanity check");
1563 
1564   Dl_info dlinfo;
1565   struct _address_to_library_name data;
1566 
1567   // There is a bug in old glibc dladdr() implementation that it could resolve
1568   // to wrong library name if the .so file has a base address != NULL. Here
1569   // we iterate through the program headers of all loaded libraries to find
1570   // out which library 'addr' really belongs to. This workaround can be
1571   // removed once the minimum requirement for glibc is moved to 2.3.x.
1572   data.addr = addr;
1573   data.fname = buf;
1574   data.buflen = buflen;
1575   data.base = NULL;
1576   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1577 
1578   if (rslt) {
1579     // buf already contains library name
1580     if (offset) *offset = addr - data.base;
1581     return true;
1582   }
1583   if (dladdr((void*)addr, &dlinfo) != 0) {
1584     if (dlinfo.dli_fname != NULL) {
1585       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1586     }
1587     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1588       *offset = addr - (address)dlinfo.dli_fbase;
1589     }
1590     return true;
1591   }
1592 
1593   buf[0] = '\0';
1594   if (offset) *offset = -1;
1595   return false;
1596 }
1597 
1598 // Loads .dll/.so and
1599 // in case of error it checks if .dll/.so was built for the
1600 // same architecture as Hotspot is running on
1601 
1602 
1603 // Remember the stack's state. The Linux dynamic linker will change
1604 // the stack to 'executable' at most once, so we must safepoint only once.
1605 bool os::Linux::_stack_is_executable = false;
1606 
1607 // VM operation that loads a library.  This is necessary if stack protection
1608 // of the Java stacks can be lost during loading the library.  If we
1609 // do not stop the Java threads, they can stack overflow before the stacks
1610 // are protected again.
1611 class VM_LinuxDllLoad: public VM_Operation {
1612  private:
1613   const char *_filename;
1614   char *_ebuf;
1615   int _ebuflen;
1616   void *_lib;
1617  public:
1618   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1619     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1620   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1621   void doit() {
1622     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1623     os::Linux::_stack_is_executable = true;
1624   }
1625   void* loaded_library() { return _lib; }
1626 };
1627 
1628 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1629   void * result = NULL;
1630   bool load_attempted = false;
1631 
1632   // Check whether the library to load might change execution rights
1633   // of the stack. If they are changed, the protection of the stack
1634   // guard pages will be lost. We need a safepoint to fix this.
1635   //
1636   // See Linux man page execstack(8) for more info.
1637   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1638     if (!ElfFile::specifies_noexecstack(filename)) {
1639       if (!is_init_completed()) {
1640         os::Linux::_stack_is_executable = true;
1641         // This is OK - No Java threads have been created yet, and hence no
1642         // stack guard pages to fix.
1643         //
1644         // This should happen only when you are building JDK7 using a very
1645         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1646         //
1647         // Dynamic loader will make all stacks executable after
1648         // this function returns, and will not do that again.
1649         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1650       } else {
1651         warning("You have loaded library %s which might have disabled stack guard. "
1652                 "The VM will try to fix the stack guard now.\n"
1653                 "It's highly recommended that you fix the library with "
1654                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1655                 filename);
1656 
1657         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1658         JavaThread *jt = JavaThread::current();
1659         if (jt->thread_state() != _thread_in_native) {
1660           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1661           // that requires ExecStack. Cannot enter safe point. Let's give up.
1662           warning("Unable to fix stack guard. Giving up.");
1663         } else {
1664           if (!LoadExecStackDllInVMThread) {
1665             // This is for the case where the DLL has an static
1666             // constructor function that executes JNI code. We cannot
1667             // load such DLLs in the VMThread.
1668             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1669           }
1670 
1671           ThreadInVMfromNative tiv(jt);
1672           debug_only(VMNativeEntryWrapper vew;)
1673 
1674           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1675           VMThread::execute(&op);
1676           if (LoadExecStackDllInVMThread) {
1677             result = op.loaded_library();
1678           }
1679           load_attempted = true;
1680         }
1681       }
1682     }
1683   }
1684 
1685   if (!load_attempted) {
1686     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1687   }
1688 
1689   if (result != NULL) {
1690     // Successful loading
1691     return result;
1692   }
1693 
1694   Elf32_Ehdr elf_head;
1695   int diag_msg_max_length=ebuflen-strlen(ebuf);
1696   char* diag_msg_buf=ebuf+strlen(ebuf);
1697 
1698   if (diag_msg_max_length==0) {
1699     // No more space in ebuf for additional diagnostics message
1700     return NULL;
1701   }
1702 
1703 
1704   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1705 
1706   if (file_descriptor < 0) {
1707     // Can't open library, report dlerror() message
1708     return NULL;
1709   }
1710 
1711   bool failed_to_read_elf_head=
1712     (sizeof(elf_head)!=
1713      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1714 
1715   ::close(file_descriptor);
1716   if (failed_to_read_elf_head) {
1717     // file i/o error - report dlerror() msg
1718     return NULL;
1719   }
1720 
1721   typedef struct {
1722     Elf32_Half    code;         // Actual value as defined in elf.h
1723     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1724     unsigned char elf_class;    // 32 or 64 bit
1725     unsigned char endianess;    // MSB or LSB
1726     char*         name;         // String representation
1727   } arch_t;
1728 
1729 #ifndef EM_486
1730   #define EM_486          6               /* Intel 80486 */
1731 #endif
1732 #ifndef EM_AARCH64
1733   #define EM_AARCH64    183               /* ARM AARCH64 */
1734 #endif
1735 
1736   static const arch_t arch_array[]={
1737     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1738     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1739     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1740     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1741     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1742     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1743     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1744     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1745 #if defined(VM_LITTLE_ENDIAN)
1746     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1747     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1748 #else
1749     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1750     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1751 #endif
1752     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1753     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1754     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1755     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1756     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1757     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1758     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1759     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1760   };
1761 
1762 #if  (defined IA32)
1763   static  Elf32_Half running_arch_code=EM_386;
1764 #elif   (defined AMD64)
1765   static  Elf32_Half running_arch_code=EM_X86_64;
1766 #elif  (defined IA64)
1767   static  Elf32_Half running_arch_code=EM_IA_64;
1768 #elif  (defined __sparc) && (defined _LP64)
1769   static  Elf32_Half running_arch_code=EM_SPARCV9;
1770 #elif  (defined __sparc) && (!defined _LP64)
1771   static  Elf32_Half running_arch_code=EM_SPARC;
1772 #elif  (defined __powerpc64__)
1773   static  Elf32_Half running_arch_code=EM_PPC64;
1774 #elif  (defined __powerpc__)
1775   static  Elf32_Half running_arch_code=EM_PPC;
1776 #elif  (defined AARCH64)
1777   static  Elf32_Half running_arch_code=EM_AARCH64;
1778 #elif  (defined ARM)
1779   static  Elf32_Half running_arch_code=EM_ARM;
1780 #elif  (defined S390)
1781   static  Elf32_Half running_arch_code=EM_S390;
1782 #elif  (defined ALPHA)
1783   static  Elf32_Half running_arch_code=EM_ALPHA;
1784 #elif  (defined MIPSEL)
1785   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1786 #elif  (defined PARISC)
1787   static  Elf32_Half running_arch_code=EM_PARISC;
1788 #elif  (defined MIPS)
1789   static  Elf32_Half running_arch_code=EM_MIPS;
1790 #elif  (defined M68K)
1791   static  Elf32_Half running_arch_code=EM_68K;
1792 #elif  (defined SH)
1793   static  Elf32_Half running_arch_code=EM_SH;
1794 #else
1795     #error Method os::dll_load requires that one of following is defined:\
1796         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1797 #endif
1798 
1799   // Identify compatability class for VM's architecture and library's architecture
1800   // Obtain string descriptions for architectures
1801 
1802   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803   int running_arch_index=-1;
1804 
1805   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806     if (running_arch_code == arch_array[i].code) {
1807       running_arch_index    = i;
1808     }
1809     if (lib_arch.code == arch_array[i].code) {
1810       lib_arch.compat_class = arch_array[i].compat_class;
1811       lib_arch.name         = arch_array[i].name;
1812     }
1813   }
1814 
1815   assert(running_arch_index != -1,
1816          "Didn't find running architecture code (running_arch_code) in arch_array");
1817   if (running_arch_index == -1) {
1818     // Even though running architecture detection failed
1819     // we may still continue with reporting dlerror() message
1820     return NULL;
1821   }
1822 
1823   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825     return NULL;
1826   }
1827 
1828 #ifndef S390
1829   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831     return NULL;
1832   }
1833 #endif // !S390
1834 
1835   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836     if (lib_arch.name!=NULL) {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                  lib_arch.name, arch_array[running_arch_index].name);
1840     } else {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                  lib_arch.code,
1844                  arch_array[running_arch_index].name);
1845     }
1846   }
1847 
1848   return NULL;
1849 }
1850 
1851 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                 int ebuflen) {
1853   void * result = ::dlopen(filename, RTLD_LAZY);
1854   if (result == NULL) {
1855     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856     ebuf[ebuflen-1] = '\0';
1857   }
1858   return result;
1859 }
1860 
1861 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                        int ebuflen) {
1863   void * result = NULL;
1864   if (LoadExecStackDllInVMThread) {
1865     result = dlopen_helper(filename, ebuf, ebuflen);
1866   }
1867 
1868   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869   // library that requires an executable stack, or which does not have this
1870   // stack attribute set, dlopen changes the stack attribute to executable. The
1871   // read protection of the guard pages gets lost.
1872   //
1873   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874   // may have been queued at the same time.
1875 
1876   if (!_stack_is_executable) {
1877     JavaThread *jt = Threads::first();
1878 
1879     while (jt) {
1880       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1881           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1882         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1883           warning("Attempt to reguard stack yellow zone failed.");
1884         }
1885       }
1886       jt = jt->next();
1887     }
1888   }
1889 
1890   return result;
1891 }
1892 
1893 void* os::dll_lookup(void* handle, const char* name) {
1894   void* res = dlsym(handle, name);
1895   return res;
1896 }
1897 
1898 void* os::get_default_process_handle() {
1899   return (void*)::dlopen(NULL, RTLD_LAZY);
1900 }
1901 
1902 static bool _print_ascii_file(const char* filename, outputStream* st) {
1903   int fd = ::open(filename, O_RDONLY);
1904   if (fd == -1) {
1905     return false;
1906   }
1907 
1908   char buf[33];
1909   int bytes;
1910   buf[32] = '\0';
1911   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1912     st->print_raw(buf, bytes);
1913   }
1914 
1915   ::close(fd);
1916 
1917   return true;
1918 }
1919 
1920 void os::print_dll_info(outputStream *st) {
1921   st->print_cr("Dynamic libraries:");
1922 
1923   char fname[32];
1924   pid_t pid = os::Linux::gettid();
1925 
1926   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1927 
1928   if (!_print_ascii_file(fname, st)) {
1929     st->print("Can not get library information for pid = %d\n", pid);
1930   }
1931 }
1932 
1933 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1934   FILE *procmapsFile = NULL;
1935 
1936   // Open the procfs maps file for the current process
1937   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1938     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1939     char line[PATH_MAX + 100];
1940 
1941     // Read line by line from 'file'
1942     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1943       u8 base, top, offset, inode;
1944       char permissions[5];
1945       char device[6];
1946       char name[PATH_MAX + 1];
1947 
1948       // Parse fields from line
1949       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1950              &base, &top, permissions, &offset, device, &inode, name);
1951 
1952       // Filter by device id '00:00' so that we only get file system mapped files.
1953       if (strcmp(device, "00:00") != 0) {
1954 
1955         // Call callback with the fields of interest
1956         if(callback(name, (address)base, (address)top, param)) {
1957           // Oops abort, callback aborted
1958           fclose(procmapsFile);
1959           return 1;
1960         }
1961       }
1962     }
1963     fclose(procmapsFile);
1964   }
1965   return 0;
1966 }
1967 
1968 void os::print_os_info_brief(outputStream* st) {
1969   os::Linux::print_distro_info(st);
1970 
1971   os::Posix::print_uname_info(st);
1972 
1973   os::Linux::print_libversion_info(st);
1974 
1975 }
1976 
1977 void os::print_os_info(outputStream* st) {
1978   st->print("OS:");
1979 
1980   os::Linux::print_distro_info(st);
1981 
1982   os::Posix::print_uname_info(st);
1983 
1984   // Print warning if unsafe chroot environment detected
1985   if (unsafe_chroot_detected) {
1986     st->print("WARNING!! ");
1987     st->print_cr("%s", unstable_chroot_error);
1988   }
1989 
1990   os::Linux::print_libversion_info(st);
1991 
1992   os::Posix::print_rlimit_info(st);
1993 
1994   os::Posix::print_load_average(st);
1995 
1996   os::Linux::print_full_memory_info(st);
1997 
1998   os::Linux::print_container_info(st);
1999 }
2000 
2001 // Try to identify popular distros.
2002 // Most Linux distributions have a /etc/XXX-release file, which contains
2003 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2004 // file that also contains the OS version string. Some have more than one
2005 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2006 // /etc/redhat-release.), so the order is important.
2007 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2008 // their own specific XXX-release file as well as a redhat-release file.
2009 // Because of this the XXX-release file needs to be searched for before the
2010 // redhat-release file.
2011 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2012 // search for redhat-release / SuSE-release needs to be before lsb-release.
2013 // Since the lsb-release file is the new standard it needs to be searched
2014 // before the older style release files.
2015 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2016 // next to last resort.  The os-release file is a new standard that contains
2017 // distribution information and the system-release file seems to be an old
2018 // standard that has been replaced by the lsb-release and os-release files.
2019 // Searching for the debian_version file is the last resort.  It contains
2020 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2021 // "Debian " is printed before the contents of the debian_version file.
2022 
2023 const char* distro_files[] = {
2024   "/etc/oracle-release",
2025   "/etc/mandriva-release",
2026   "/etc/mandrake-release",
2027   "/etc/sun-release",
2028   "/etc/redhat-release",
2029   "/etc/SuSE-release",
2030   "/etc/lsb-release",
2031   "/etc/turbolinux-release",
2032   "/etc/gentoo-release",
2033   "/etc/ltib-release",
2034   "/etc/angstrom-version",
2035   "/etc/system-release",
2036   "/etc/os-release",
2037   NULL };
2038 
2039 void os::Linux::print_distro_info(outputStream* st) {
2040   for (int i = 0;; i++) {
2041     const char* file = distro_files[i];
2042     if (file == NULL) {
2043       break;  // done
2044     }
2045     // If file prints, we found it.
2046     if (_print_ascii_file(file, st)) {
2047       return;
2048     }
2049   }
2050 
2051   if (file_exists("/etc/debian_version")) {
2052     st->print("Debian ");
2053     _print_ascii_file("/etc/debian_version", st);
2054   } else {
2055     st->print("Linux");
2056   }
2057   st->cr();
2058 }
2059 
2060 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2061   char buf[256];
2062   while (fgets(buf, sizeof(buf), fp)) {
2063     // Edit out extra stuff in expected format
2064     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2065       char* ptr = strstr(buf, "\"");  // the name is in quotes
2066       if (ptr != NULL) {
2067         ptr++; // go beyond first quote
2068         char* nl = strchr(ptr, '\"');
2069         if (nl != NULL) *nl = '\0';
2070         strncpy(distro, ptr, length);
2071       } else {
2072         ptr = strstr(buf, "=");
2073         ptr++; // go beyond equals then
2074         char* nl = strchr(ptr, '\n');
2075         if (nl != NULL) *nl = '\0';
2076         strncpy(distro, ptr, length);
2077       }
2078       return;
2079     } else if (get_first_line) {
2080       char* nl = strchr(buf, '\n');
2081       if (nl != NULL) *nl = '\0';
2082       strncpy(distro, buf, length);
2083       return;
2084     }
2085   }
2086   // print last line and close
2087   char* nl = strchr(buf, '\n');
2088   if (nl != NULL) *nl = '\0';
2089   strncpy(distro, buf, length);
2090 }
2091 
2092 static void parse_os_info(char* distro, size_t length, const char* file) {
2093   FILE* fp = fopen(file, "r");
2094   if (fp != NULL) {
2095     // if suse format, print out first line
2096     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2097     parse_os_info_helper(fp, distro, length, get_first_line);
2098     fclose(fp);
2099   }
2100 }
2101 
2102 void os::get_summary_os_info(char* buf, size_t buflen) {
2103   for (int i = 0;; i++) {
2104     const char* file = distro_files[i];
2105     if (file == NULL) {
2106       break; // ran out of distro_files
2107     }
2108     if (file_exists(file)) {
2109       parse_os_info(buf, buflen, file);
2110       return;
2111     }
2112   }
2113   // special case for debian
2114   if (file_exists("/etc/debian_version")) {
2115     strncpy(buf, "Debian ", buflen);
2116     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2117   } else {
2118     strncpy(buf, "Linux", buflen);
2119   }
2120 }
2121 
2122 void os::Linux::print_libversion_info(outputStream* st) {
2123   // libc, pthread
2124   st->print("libc:");
2125   st->print("%s ", os::Linux::glibc_version());
2126   st->print("%s ", os::Linux::libpthread_version());
2127   st->cr();
2128 }
2129 
2130 void os::Linux::print_full_memory_info(outputStream* st) {
2131   st->print("\n/proc/meminfo:\n");
2132   _print_ascii_file("/proc/meminfo", st);
2133   st->cr();
2134 }
2135 
2136 void os::Linux::print_container_info(outputStream* st) {
2137   if (OSContainer::is_containerized()) {
2138     st->print("container (cgroup) information:\n");
2139 
2140     char *p = OSContainer::container_type();
2141     if (p == NULL)
2142       st->print("container_type() failed\n");
2143     else {
2144       st->print("container_type: %s\n", p);
2145     }
2146 
2147     p = OSContainer::cpu_cpuset_cpus();
2148     if (p == NULL)
2149       st->print("cpu_cpuset_cpus() failed\n");
2150     else {
2151       st->print("cpu_cpuset_cpus: %s\n", p);
2152       free(p);
2153     }
2154 
2155     p = OSContainer::cpu_cpuset_memory_nodes();
2156     if (p < 0)
2157       st->print("cpu_memory_nodes() failed\n");
2158     else {
2159       st->print("cpu_memory_nodes: %s\n", p);
2160       free(p);
2161     }
2162 
2163     int i = OSContainer::active_processor_count();
2164     if (i < 0)
2165       st->print("active_processor_count() failed\n");
2166     else
2167       st->print("active_processor_count: %d\n", i);
2168 
2169     i = OSContainer::cpu_quota();
2170     st->print("cpu_quota: %d\n", i);
2171 
2172     i = OSContainer::cpu_period();
2173     st->print("cpu_period: %d\n", i);
2174 
2175     i = OSContainer::cpu_shares();
2176     st->print("cpu_shares: %d\n", i);
2177 
2178     jlong j = OSContainer::memory_limit_in_bytes();
2179     st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2180 
2181     j = OSContainer::memory_and_swap_limit_in_bytes();
2182     st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2183 
2184     j = OSContainer::memory_soft_limit_in_bytes();
2185     st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2186 
2187     j = OSContainer::OSContainer::memory_usage_in_bytes();
2188     st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2189 
2190     j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2191     st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2192     st->cr();
2193   }
2194 }
2195 
2196 void os::print_memory_info(outputStream* st) {
2197 
2198   st->print("Memory:");
2199   st->print(" %dk page", os::vm_page_size()>>10);
2200 
2201   // values in struct sysinfo are "unsigned long"
2202   struct sysinfo si;
2203   sysinfo(&si);
2204 
2205   st->print(", physical " UINT64_FORMAT "k",
2206             os::physical_memory() >> 10);
2207   st->print("(" UINT64_FORMAT "k free)",
2208             os::available_memory() >> 10);
2209   st->print(", swap " UINT64_FORMAT "k",
2210             ((jlong)si.totalswap * si.mem_unit) >> 10);
2211   st->print("(" UINT64_FORMAT "k free)",
2212             ((jlong)si.freeswap * si.mem_unit) >> 10);
2213   st->cr();
2214 }
2215 
2216 // Print the first "model name" line and the first "flags" line
2217 // that we find and nothing more. We assume "model name" comes
2218 // before "flags" so if we find a second "model name", then the
2219 // "flags" field is considered missing.
2220 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2221 #if defined(IA32) || defined(AMD64)
2222   // Other platforms have less repetitive cpuinfo files
2223   FILE *fp = fopen("/proc/cpuinfo", "r");
2224   if (fp) {
2225     while (!feof(fp)) {
2226       if (fgets(buf, buflen, fp)) {
2227         // Assume model name comes before flags
2228         bool model_name_printed = false;
2229         if (strstr(buf, "model name") != NULL) {
2230           if (!model_name_printed) {
2231             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2232             st->print_raw(buf);
2233             model_name_printed = true;
2234           } else {
2235             // model name printed but not flags?  Odd, just return
2236             fclose(fp);
2237             return true;
2238           }
2239         }
2240         // print the flags line too
2241         if (strstr(buf, "flags") != NULL) {
2242           st->print_raw(buf);
2243           fclose(fp);
2244           return true;
2245         }
2246       }
2247     }
2248     fclose(fp);
2249   }
2250 #endif // x86 platforms
2251   return false;
2252 }
2253 
2254 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2255   // Only print the model name if the platform provides this as a summary
2256   if (!print_model_name_and_flags(st, buf, buflen)) {
2257     st->print("\n/proc/cpuinfo:\n");
2258     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2259       st->print_cr("  <Not Available>");
2260     }
2261   }
2262 }
2263 
2264 #if defined(AMD64) || defined(IA32) || defined(X32)
2265 const char* search_string = "model name";
2266 #elif defined(M68K)
2267 const char* search_string = "CPU";
2268 #elif defined(PPC64)
2269 const char* search_string = "cpu";
2270 #elif defined(S390)
2271 const char* search_string = "processor";
2272 #elif defined(SPARC)
2273 const char* search_string = "cpu";
2274 #else
2275 const char* search_string = "Processor";
2276 #endif
2277 
2278 // Parses the cpuinfo file for string representing the model name.
2279 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2280   FILE* fp = fopen("/proc/cpuinfo", "r");
2281   if (fp != NULL) {
2282     while (!feof(fp)) {
2283       char buf[256];
2284       if (fgets(buf, sizeof(buf), fp)) {
2285         char* start = strstr(buf, search_string);
2286         if (start != NULL) {
2287           char *ptr = start + strlen(search_string);
2288           char *end = buf + strlen(buf);
2289           while (ptr != end) {
2290              // skip whitespace and colon for the rest of the name.
2291              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2292                break;
2293              }
2294              ptr++;
2295           }
2296           if (ptr != end) {
2297             // reasonable string, get rid of newline and keep the rest
2298             char* nl = strchr(buf, '\n');
2299             if (nl != NULL) *nl = '\0';
2300             strncpy(cpuinfo, ptr, length);
2301             fclose(fp);
2302             return;
2303           }
2304         }
2305       }
2306     }
2307     fclose(fp);
2308   }
2309   // cpuinfo not found or parsing failed, just print generic string.  The entire
2310   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2311 #if   defined(AARCH64)
2312   strncpy(cpuinfo, "AArch64", length);
2313 #elif defined(AMD64)
2314   strncpy(cpuinfo, "x86_64", length);
2315 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2316   strncpy(cpuinfo, "ARM", length);
2317 #elif defined(IA32)
2318   strncpy(cpuinfo, "x86_32", length);
2319 #elif defined(IA64)
2320   strncpy(cpuinfo, "IA64", length);
2321 #elif defined(PPC)
2322   strncpy(cpuinfo, "PPC64", length);
2323 #elif defined(S390)
2324   strncpy(cpuinfo, "S390", length);
2325 #elif defined(SPARC)
2326   strncpy(cpuinfo, "sparcv9", length);
2327 #elif defined(ZERO_LIBARCH)
2328   strncpy(cpuinfo, ZERO_LIBARCH, length);
2329 #else
2330   strncpy(cpuinfo, "unknown", length);
2331 #endif
2332 }
2333 
2334 static void print_signal_handler(outputStream* st, int sig,
2335                                  char* buf, size_t buflen);
2336 
2337 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2338   st->print_cr("Signal Handlers:");
2339   print_signal_handler(st, SIGSEGV, buf, buflen);
2340   print_signal_handler(st, SIGBUS , buf, buflen);
2341   print_signal_handler(st, SIGFPE , buf, buflen);
2342   print_signal_handler(st, SIGPIPE, buf, buflen);
2343   print_signal_handler(st, SIGXFSZ, buf, buflen);
2344   print_signal_handler(st, SIGILL , buf, buflen);
2345   print_signal_handler(st, SR_signum, buf, buflen);
2346   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2347   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2348   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2349   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2350 #if defined(PPC64)
2351   print_signal_handler(st, SIGTRAP, buf, buflen);
2352 #endif
2353 }
2354 
2355 static char saved_jvm_path[MAXPATHLEN] = {0};
2356 
2357 // Find the full path to the current module, libjvm.so
2358 void os::jvm_path(char *buf, jint buflen) {
2359   // Error checking.
2360   if (buflen < MAXPATHLEN) {
2361     assert(false, "must use a large-enough buffer");
2362     buf[0] = '\0';
2363     return;
2364   }
2365   // Lazy resolve the path to current module.
2366   if (saved_jvm_path[0] != 0) {
2367     strcpy(buf, saved_jvm_path);
2368     return;
2369   }
2370 
2371   char dli_fname[MAXPATHLEN];
2372   bool ret = dll_address_to_library_name(
2373                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2374                                          dli_fname, sizeof(dli_fname), NULL);
2375   assert(ret, "cannot locate libjvm");
2376   char *rp = NULL;
2377   if (ret && dli_fname[0] != '\0') {
2378     rp = os::Posix::realpath(dli_fname, buf, buflen);
2379   }
2380   if (rp == NULL) {
2381     return;
2382   }
2383 
2384   if (Arguments::sun_java_launcher_is_altjvm()) {
2385     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2386     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2387     // If "/jre/lib/" appears at the right place in the string, then
2388     // assume we are installed in a JDK and we're done. Otherwise, check
2389     // for a JAVA_HOME environment variable and fix up the path so it
2390     // looks like libjvm.so is installed there (append a fake suffix
2391     // hotspot/libjvm.so).
2392     const char *p = buf + strlen(buf) - 1;
2393     for (int count = 0; p > buf && count < 5; ++count) {
2394       for (--p; p > buf && *p != '/'; --p)
2395         /* empty */ ;
2396     }
2397 
2398     if (strncmp(p, "/jre/lib/", 9) != 0) {
2399       // Look for JAVA_HOME in the environment.
2400       char* java_home_var = ::getenv("JAVA_HOME");
2401       if (java_home_var != NULL && java_home_var[0] != 0) {
2402         char* jrelib_p;
2403         int len;
2404 
2405         // Check the current module name "libjvm.so".
2406         p = strrchr(buf, '/');
2407         if (p == NULL) {
2408           return;
2409         }
2410         assert(strstr(p, "/libjvm") == p, "invalid library name");
2411 
2412         rp = os::Posix::realpath(java_home_var, buf, buflen);
2413         if (rp == NULL) {
2414           return;
2415         }
2416 
2417         // determine if this is a legacy image or modules image
2418         // modules image doesn't have "jre" subdirectory
2419         len = strlen(buf);
2420         assert(len < buflen, "Ran out of buffer room");
2421         jrelib_p = buf + len;
2422         snprintf(jrelib_p, buflen-len, "/jre/lib");
2423         if (0 != access(buf, F_OK)) {
2424           snprintf(jrelib_p, buflen-len, "/lib");
2425         }
2426 
2427         if (0 == access(buf, F_OK)) {
2428           // Use current module name "libjvm.so"
2429           len = strlen(buf);
2430           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2431         } else {
2432           // Go back to path of .so
2433           rp = os::Posix::realpath(dli_fname, buf, buflen);
2434           if (rp == NULL) {
2435             return;
2436           }
2437         }
2438       }
2439     }
2440   }
2441 
2442   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2443   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2444 }
2445 
2446 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2447   // no prefix required, not even "_"
2448 }
2449 
2450 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2451   // no suffix required
2452 }
2453 
2454 ////////////////////////////////////////////////////////////////////////////////
2455 // sun.misc.Signal support
2456 
2457 static volatile jint sigint_count = 0;
2458 
2459 static void UserHandler(int sig, void *siginfo, void *context) {
2460   // 4511530 - sem_post is serialized and handled by the manager thread. When
2461   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2462   // don't want to flood the manager thread with sem_post requests.
2463   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2464     return;
2465   }
2466 
2467   // Ctrl-C is pressed during error reporting, likely because the error
2468   // handler fails to abort. Let VM die immediately.
2469   if (sig == SIGINT && VMError::is_error_reported()) {
2470     os::die();
2471   }
2472 
2473   os::signal_notify(sig);
2474 }
2475 
2476 void* os::user_handler() {
2477   return CAST_FROM_FN_PTR(void*, UserHandler);
2478 }
2479 
2480 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2481   struct timespec ts;
2482   // Semaphore's are always associated with CLOCK_REALTIME
2483   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2484   // see unpackTime for discussion on overflow checking
2485   if (sec >= MAX_SECS) {
2486     ts.tv_sec += MAX_SECS;
2487     ts.tv_nsec = 0;
2488   } else {
2489     ts.tv_sec += sec;
2490     ts.tv_nsec += nsec;
2491     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2492       ts.tv_nsec -= NANOSECS_PER_SEC;
2493       ++ts.tv_sec; // note: this must be <= max_secs
2494     }
2495   }
2496 
2497   return ts;
2498 }
2499 
2500 extern "C" {
2501   typedef void (*sa_handler_t)(int);
2502   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2503 }
2504 
2505 void* os::signal(int signal_number, void* handler) {
2506   struct sigaction sigAct, oldSigAct;
2507 
2508   sigfillset(&(sigAct.sa_mask));
2509   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2510   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2511 
2512   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2513     // -1 means registration failed
2514     return (void *)-1;
2515   }
2516 
2517   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2518 }
2519 
2520 void os::signal_raise(int signal_number) {
2521   ::raise(signal_number);
2522 }
2523 
2524 // The following code is moved from os.cpp for making this
2525 // code platform specific, which it is by its very nature.
2526 
2527 // Will be modified when max signal is changed to be dynamic
2528 int os::sigexitnum_pd() {
2529   return NSIG;
2530 }
2531 
2532 // a counter for each possible signal value
2533 static volatile jint pending_signals[NSIG+1] = { 0 };
2534 
2535 // Linux(POSIX) specific hand shaking semaphore.
2536 static sem_t sig_sem;
2537 static PosixSemaphore sr_semaphore;
2538 
2539 void os::signal_init_pd() {
2540   // Initialize signal structures
2541   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2542 
2543   // Initialize signal semaphore
2544   ::sem_init(&sig_sem, 0, 0);
2545 }
2546 
2547 void os::signal_notify(int sig) {
2548   Atomic::inc(&pending_signals[sig]);
2549   ::sem_post(&sig_sem);
2550 }
2551 
2552 static int check_pending_signals(bool wait) {
2553   Atomic::store(0, &sigint_count);
2554   for (;;) {
2555     for (int i = 0; i < NSIG + 1; i++) {
2556       jint n = pending_signals[i];
2557       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2558         return i;
2559       }
2560     }
2561     if (!wait) {
2562       return -1;
2563     }
2564     JavaThread *thread = JavaThread::current();
2565     ThreadBlockInVM tbivm(thread);
2566 
2567     bool threadIsSuspended;
2568     do {
2569       thread->set_suspend_equivalent();
2570       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2571       ::sem_wait(&sig_sem);
2572 
2573       // were we externally suspended while we were waiting?
2574       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2575       if (threadIsSuspended) {
2576         // The semaphore has been incremented, but while we were waiting
2577         // another thread suspended us. We don't want to continue running
2578         // while suspended because that would surprise the thread that
2579         // suspended us.
2580         ::sem_post(&sig_sem);
2581 
2582         thread->java_suspend_self();
2583       }
2584     } while (threadIsSuspended);
2585   }
2586 }
2587 
2588 int os::signal_lookup() {
2589   return check_pending_signals(false);
2590 }
2591 
2592 int os::signal_wait() {
2593   return check_pending_signals(true);
2594 }
2595 
2596 ////////////////////////////////////////////////////////////////////////////////
2597 // Virtual Memory
2598 
2599 int os::vm_page_size() {
2600   // Seems redundant as all get out
2601   assert(os::Linux::page_size() != -1, "must call os::init");
2602   return os::Linux::page_size();
2603 }
2604 
2605 // Solaris allocates memory by pages.
2606 int os::vm_allocation_granularity() {
2607   assert(os::Linux::page_size() != -1, "must call os::init");
2608   return os::Linux::page_size();
2609 }
2610 
2611 // Rationale behind this function:
2612 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2613 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2614 //  samples for JITted code. Here we create private executable mapping over the code cache
2615 //  and then we can use standard (well, almost, as mapping can change) way to provide
2616 //  info for the reporting script by storing timestamp and location of symbol
2617 void linux_wrap_code(char* base, size_t size) {
2618   static volatile jint cnt = 0;
2619 
2620   if (!UseOprofile) {
2621     return;
2622   }
2623 
2624   char buf[PATH_MAX+1];
2625   int num = Atomic::add(1, &cnt);
2626 
2627   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2628            os::get_temp_directory(), os::current_process_id(), num);
2629   unlink(buf);
2630 
2631   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2632 
2633   if (fd != -1) {
2634     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2635     if (rv != (off_t)-1) {
2636       if (::write(fd, "", 1) == 1) {
2637         mmap(base, size,
2638              PROT_READ|PROT_WRITE|PROT_EXEC,
2639              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2640       }
2641     }
2642     ::close(fd);
2643     unlink(buf);
2644   }
2645 }
2646 
2647 static bool recoverable_mmap_error(int err) {
2648   // See if the error is one we can let the caller handle. This
2649   // list of errno values comes from JBS-6843484. I can't find a
2650   // Linux man page that documents this specific set of errno
2651   // values so while this list currently matches Solaris, it may
2652   // change as we gain experience with this failure mode.
2653   switch (err) {
2654   case EBADF:
2655   case EINVAL:
2656   case ENOTSUP:
2657     // let the caller deal with these errors
2658     return true;
2659 
2660   default:
2661     // Any remaining errors on this OS can cause our reserved mapping
2662     // to be lost. That can cause confusion where different data
2663     // structures think they have the same memory mapped. The worst
2664     // scenario is if both the VM and a library think they have the
2665     // same memory mapped.
2666     return false;
2667   }
2668 }
2669 
2670 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2671                                     int err) {
2672   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2673           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2674           os::strerror(err), err);
2675 }
2676 
2677 static void warn_fail_commit_memory(char* addr, size_t size,
2678                                     size_t alignment_hint, bool exec,
2679                                     int err) {
2680   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2681           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2682           alignment_hint, exec, os::strerror(err), err);
2683 }
2684 
2685 // NOTE: Linux kernel does not really reserve the pages for us.
2686 //       All it does is to check if there are enough free pages
2687 //       left at the time of mmap(). This could be a potential
2688 //       problem.
2689 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2690   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2691   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2692                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2693   if (res != (uintptr_t) MAP_FAILED) {
2694     if (UseNUMAInterleaving) {
2695       numa_make_global(addr, size);
2696     }
2697     return 0;
2698   }
2699 
2700   int err = errno;  // save errno from mmap() call above
2701 
2702   if (!recoverable_mmap_error(err)) {
2703     warn_fail_commit_memory(addr, size, exec, err);
2704     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2705   }
2706 
2707   return err;
2708 }
2709 
2710 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2711   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2712 }
2713 
2714 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2715                                   const char* mesg) {
2716   assert(mesg != NULL, "mesg must be specified");
2717   int err = os::Linux::commit_memory_impl(addr, size, exec);
2718   if (err != 0) {
2719     // the caller wants all commit errors to exit with the specified mesg:
2720     warn_fail_commit_memory(addr, size, exec, err);
2721     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2722   }
2723 }
2724 
2725 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2726 #ifndef MAP_HUGETLB
2727   #define MAP_HUGETLB 0x40000
2728 #endif
2729 
2730 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2731 #ifndef MADV_HUGEPAGE
2732   #define MADV_HUGEPAGE 14
2733 #endif
2734 
2735 int os::Linux::commit_memory_impl(char* addr, size_t size,
2736                                   size_t alignment_hint, bool exec) {
2737   int err = os::Linux::commit_memory_impl(addr, size, exec);
2738   if (err == 0) {
2739     realign_memory(addr, size, alignment_hint);
2740   }
2741   return err;
2742 }
2743 
2744 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2745                           bool exec) {
2746   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2747 }
2748 
2749 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2750                                   size_t alignment_hint, bool exec,
2751                                   const char* mesg) {
2752   assert(mesg != NULL, "mesg must be specified");
2753   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2754   if (err != 0) {
2755     // the caller wants all commit errors to exit with the specified mesg:
2756     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2757     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2758   }
2759 }
2760 
2761 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2762   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2763     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2764     // be supported or the memory may already be backed by huge pages.
2765     ::madvise(addr, bytes, MADV_HUGEPAGE);
2766   }
2767 }
2768 
2769 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2770   // This method works by doing an mmap over an existing mmaping and effectively discarding
2771   // the existing pages. However it won't work for SHM-based large pages that cannot be
2772   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2773   // small pages on top of the SHM segment. This method always works for small pages, so we
2774   // allow that in any case.
2775   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2776     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2777   }
2778 }
2779 
2780 void os::numa_make_global(char *addr, size_t bytes) {
2781   Linux::numa_interleave_memory(addr, bytes);
2782 }
2783 
2784 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2785 // bind policy to MPOL_PREFERRED for the current thread.
2786 #define USE_MPOL_PREFERRED 0
2787 
2788 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2789   // To make NUMA and large pages more robust when both enabled, we need to ease
2790   // the requirements on where the memory should be allocated. MPOL_BIND is the
2791   // default policy and it will force memory to be allocated on the specified
2792   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2793   // the specified node, but will not force it. Using this policy will prevent
2794   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2795   // free large pages.
2796   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2797   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2798 }
2799 
2800 bool os::numa_topology_changed() { return false; }
2801 
2802 size_t os::numa_get_groups_num() {
2803   // Return just the number of nodes in which it's possible to allocate memory
2804   // (in numa terminology, configured nodes).
2805   return Linux::numa_num_configured_nodes();
2806 }
2807 
2808 int os::numa_get_group_id() {
2809   int cpu_id = Linux::sched_getcpu();
2810   if (cpu_id != -1) {
2811     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2812     if (lgrp_id != -1) {
2813       return lgrp_id;
2814     }
2815   }
2816   return 0;
2817 }
2818 
2819 int os::Linux::get_existing_num_nodes() {
2820   size_t node;
2821   size_t highest_node_number = Linux::numa_max_node();
2822   int num_nodes = 0;
2823 
2824   // Get the total number of nodes in the system including nodes without memory.
2825   for (node = 0; node <= highest_node_number; node++) {
2826     if (isnode_in_existing_nodes(node)) {
2827       num_nodes++;
2828     }
2829   }
2830   return num_nodes;
2831 }
2832 
2833 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2834   size_t highest_node_number = Linux::numa_max_node();
2835   size_t i = 0;
2836 
2837   // Map all node ids in which is possible to allocate memory. Also nodes are
2838   // not always consecutively available, i.e. available from 0 to the highest
2839   // node number.
2840   for (size_t node = 0; node <= highest_node_number; node++) {
2841     if (Linux::isnode_in_configured_nodes(node)) {
2842       ids[i++] = node;
2843     }
2844   }
2845   return i;
2846 }
2847 
2848 bool os::get_page_info(char *start, page_info* info) {
2849   return false;
2850 }
2851 
2852 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2853                      page_info* page_found) {
2854   return end;
2855 }
2856 
2857 
2858 int os::Linux::sched_getcpu_syscall(void) {
2859   unsigned int cpu = 0;
2860   int retval = -1;
2861 
2862 #if defined(IA32)
2863   #ifndef SYS_getcpu
2864     #define SYS_getcpu 318
2865   #endif
2866   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2867 #elif defined(AMD64)
2868 // Unfortunately we have to bring all these macros here from vsyscall.h
2869 // to be able to compile on old linuxes.
2870   #define __NR_vgetcpu 2
2871   #define VSYSCALL_START (-10UL << 20)
2872   #define VSYSCALL_SIZE 1024
2873   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2874   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2875   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2876   retval = vgetcpu(&cpu, NULL, NULL);
2877 #endif
2878 
2879   return (retval == -1) ? retval : cpu;
2880 }
2881 
2882 void os::Linux::sched_getcpu_init() {
2883   // sched_getcpu() should be in libc.
2884   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2885                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2886 
2887   // If it's not, try a direct syscall.
2888   if (sched_getcpu() == -1) {
2889     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2890                                     (void*)&sched_getcpu_syscall));
2891   }
2892 }
2893 
2894 // Something to do with the numa-aware allocator needs these symbols
2895 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2896 extern "C" JNIEXPORT void numa_error(char *where) { }
2897 
2898 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2899 // load symbol from base version instead.
2900 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2901   void *f = dlvsym(handle, name, "libnuma_1.1");
2902   if (f == NULL) {
2903     f = dlsym(handle, name);
2904   }
2905   return f;
2906 }
2907 
2908 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2909 // Return NULL if the symbol is not defined in this particular version.
2910 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2911   return dlvsym(handle, name, "libnuma_1.2");
2912 }
2913 
2914 bool os::Linux::libnuma_init() {
2915   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2916     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2917     if (handle != NULL) {
2918       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2919                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2920       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2921                                        libnuma_dlsym(handle, "numa_max_node")));
2922       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2923                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2924       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2925                                         libnuma_dlsym(handle, "numa_available")));
2926       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2927                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2928       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2929                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2930       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2931                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2932       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2933                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2934       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2935                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2936       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2937                                        libnuma_dlsym(handle, "numa_distance")));
2938 
2939       if (numa_available() != -1) {
2940         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2941         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2942         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2943         // Create an index -> node mapping, since nodes are not always consecutive
2944         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2945         rebuild_nindex_to_node_map();
2946         // Create a cpu -> node mapping
2947         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2948         rebuild_cpu_to_node_map();
2949         return true;
2950       }
2951     }
2952   }
2953   return false;
2954 }
2955 
2956 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2957   // Creating guard page is very expensive. Java thread has HotSpot
2958   // guard pages, only enable glibc guard page for non-Java threads.
2959   // (Remember: compiler thread is a Java thread, too!)
2960   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2961 }
2962 
2963 void os::Linux::rebuild_nindex_to_node_map() {
2964   int highest_node_number = Linux::numa_max_node();
2965 
2966   nindex_to_node()->clear();
2967   for (int node = 0; node <= highest_node_number; node++) {
2968     if (Linux::isnode_in_existing_nodes(node)) {
2969       nindex_to_node()->append(node);
2970     }
2971   }
2972 }
2973 
2974 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2975 // The table is later used in get_node_by_cpu().
2976 void os::Linux::rebuild_cpu_to_node_map() {
2977   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2978                               // in libnuma (possible values are starting from 16,
2979                               // and continuing up with every other power of 2, but less
2980                               // than the maximum number of CPUs supported by kernel), and
2981                               // is a subject to change (in libnuma version 2 the requirements
2982                               // are more reasonable) we'll just hardcode the number they use
2983                               // in the library.
2984   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2985 
2986   size_t cpu_num = processor_count();
2987   size_t cpu_map_size = NCPUS / BitsPerCLong;
2988   size_t cpu_map_valid_size =
2989     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2990 
2991   cpu_to_node()->clear();
2992   cpu_to_node()->at_grow(cpu_num - 1);
2993 
2994   size_t node_num = get_existing_num_nodes();
2995 
2996   int distance = 0;
2997   int closest_distance = INT_MAX;
2998   int closest_node = 0;
2999   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3000   for (size_t i = 0; i < node_num; i++) {
3001     // Check if node is configured (not a memory-less node). If it is not, find
3002     // the closest configured node.
3003     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
3004       closest_distance = INT_MAX;
3005       // Check distance from all remaining nodes in the system. Ignore distance
3006       // from itself and from another non-configured node.
3007       for (size_t m = 0; m < node_num; m++) {
3008         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
3009           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3010           // If a closest node is found, update. There is always at least one
3011           // configured node in the system so there is always at least one node
3012           // close.
3013           if (distance != 0 && distance < closest_distance) {
3014             closest_distance = distance;
3015             closest_node = nindex_to_node()->at(m);
3016           }
3017         }
3018       }
3019      } else {
3020        // Current node is already a configured node.
3021        closest_node = nindex_to_node()->at(i);
3022      }
3023 
3024     // Get cpus from the original node and map them to the closest node. If node
3025     // is a configured node (not a memory-less node), then original node and
3026     // closest node are the same.
3027     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3028       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3029         if (cpu_map[j] != 0) {
3030           for (size_t k = 0; k < BitsPerCLong; k++) {
3031             if (cpu_map[j] & (1UL << k)) {
3032               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3033             }
3034           }
3035         }
3036       }
3037     }
3038   }
3039   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3040 }
3041 
3042 int os::Linux::get_node_by_cpu(int cpu_id) {
3043   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3044     return cpu_to_node()->at(cpu_id);
3045   }
3046   return -1;
3047 }
3048 
3049 GrowableArray<int>* os::Linux::_cpu_to_node;
3050 GrowableArray<int>* os::Linux::_nindex_to_node;
3051 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3052 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3053 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3054 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3055 os::Linux::numa_available_func_t os::Linux::_numa_available;
3056 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3057 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3058 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3059 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3060 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3061 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3062 unsigned long* os::Linux::_numa_all_nodes;
3063 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3064 struct bitmask* os::Linux::_numa_nodes_ptr;
3065 
3066 bool os::pd_uncommit_memory(char* addr, size_t size) {
3067   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3068                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3069   return res  != (uintptr_t) MAP_FAILED;
3070 }
3071 
3072 static address get_stack_commited_bottom(address bottom, size_t size) {
3073   address nbot = bottom;
3074   address ntop = bottom + size;
3075 
3076   size_t page_sz = os::vm_page_size();
3077   unsigned pages = size / page_sz;
3078 
3079   unsigned char vec[1];
3080   unsigned imin = 1, imax = pages + 1, imid;
3081   int mincore_return_value = 0;
3082 
3083   assert(imin <= imax, "Unexpected page size");
3084 
3085   while (imin < imax) {
3086     imid = (imax + imin) / 2;
3087     nbot = ntop - (imid * page_sz);
3088 
3089     // Use a trick with mincore to check whether the page is mapped or not.
3090     // mincore sets vec to 1 if page resides in memory and to 0 if page
3091     // is swapped output but if page we are asking for is unmapped
3092     // it returns -1,ENOMEM
3093     mincore_return_value = mincore(nbot, page_sz, vec);
3094 
3095     if (mincore_return_value == -1) {
3096       // Page is not mapped go up
3097       // to find first mapped page
3098       if (errno != EAGAIN) {
3099         assert(errno == ENOMEM, "Unexpected mincore errno");
3100         imax = imid;
3101       }
3102     } else {
3103       // Page is mapped go down
3104       // to find first not mapped page
3105       imin = imid + 1;
3106     }
3107   }
3108 
3109   nbot = nbot + page_sz;
3110 
3111   // Adjust stack bottom one page up if last checked page is not mapped
3112   if (mincore_return_value == -1) {
3113     nbot = nbot + page_sz;
3114   }
3115 
3116   return nbot;
3117 }
3118 
3119 
3120 // Linux uses a growable mapping for the stack, and if the mapping for
3121 // the stack guard pages is not removed when we detach a thread the
3122 // stack cannot grow beyond the pages where the stack guard was
3123 // mapped.  If at some point later in the process the stack expands to
3124 // that point, the Linux kernel cannot expand the stack any further
3125 // because the guard pages are in the way, and a segfault occurs.
3126 //
3127 // However, it's essential not to split the stack region by unmapping
3128 // a region (leaving a hole) that's already part of the stack mapping,
3129 // so if the stack mapping has already grown beyond the guard pages at
3130 // the time we create them, we have to truncate the stack mapping.
3131 // So, we need to know the extent of the stack mapping when
3132 // create_stack_guard_pages() is called.
3133 
3134 // We only need this for stacks that are growable: at the time of
3135 // writing thread stacks don't use growable mappings (i.e. those
3136 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3137 // only applies to the main thread.
3138 
3139 // If the (growable) stack mapping already extends beyond the point
3140 // where we're going to put our guard pages, truncate the mapping at
3141 // that point by munmap()ping it.  This ensures that when we later
3142 // munmap() the guard pages we don't leave a hole in the stack
3143 // mapping. This only affects the main/primordial thread
3144 
3145 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3146   if (os::is_primordial_thread()) {
3147     // As we manually grow stack up to bottom inside create_attached_thread(),
3148     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3149     // we don't need to do anything special.
3150     // Check it first, before calling heavy function.
3151     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3152     unsigned char vec[1];
3153 
3154     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3155       // Fallback to slow path on all errors, including EAGAIN
3156       stack_extent = (uintptr_t) get_stack_commited_bottom(
3157                                                            os::Linux::initial_thread_stack_bottom(),
3158                                                            (size_t)addr - stack_extent);
3159     }
3160 
3161     if (stack_extent < (uintptr_t)addr) {
3162       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3163     }
3164   }
3165 
3166   return os::commit_memory(addr, size, !ExecMem);
3167 }
3168 
3169 // If this is a growable mapping, remove the guard pages entirely by
3170 // munmap()ping them.  If not, just call uncommit_memory(). This only
3171 // affects the main/primordial thread, but guard against future OS changes.
3172 // It's safe to always unmap guard pages for primordial thread because we
3173 // always place it right after end of the mapped region.
3174 
3175 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3176   uintptr_t stack_extent, stack_base;
3177 
3178   if (os::is_primordial_thread()) {
3179     return ::munmap(addr, size) == 0;
3180   }
3181 
3182   return os::uncommit_memory(addr, size);
3183 }
3184 
3185 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3186 // at 'requested_addr'. If there are existing memory mappings at the same
3187 // location, however, they will be overwritten. If 'fixed' is false,
3188 // 'requested_addr' is only treated as a hint, the return value may or
3189 // may not start from the requested address. Unlike Linux mmap(), this
3190 // function returns NULL to indicate failure.
3191 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3192   char * addr;
3193   int flags;
3194 
3195   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3196   if (fixed) {
3197     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3198     flags |= MAP_FIXED;
3199   }
3200 
3201   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3202   // touch an uncommitted page. Otherwise, the read/write might
3203   // succeed if we have enough swap space to back the physical page.
3204   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3205                        flags, -1, 0);
3206 
3207   return addr == MAP_FAILED ? NULL : addr;
3208 }
3209 
3210 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3211 //   (req_addr != NULL) or with a given alignment.
3212 //  - bytes shall be a multiple of alignment.
3213 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3214 //  - alignment sets the alignment at which memory shall be allocated.
3215 //     It must be a multiple of allocation granularity.
3216 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3217 //  req_addr or NULL.
3218 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3219 
3220   size_t extra_size = bytes;
3221   if (req_addr == NULL && alignment > 0) {
3222     extra_size += alignment;
3223   }
3224 
3225   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3226     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3227     -1, 0);
3228   if (start == MAP_FAILED) {
3229     start = NULL;
3230   } else {
3231     if (req_addr != NULL) {
3232       if (start != req_addr) {
3233         ::munmap(start, extra_size);
3234         start = NULL;
3235       }
3236     } else {
3237       char* const start_aligned = align_up(start, alignment);
3238       char* const end_aligned = start_aligned + bytes;
3239       char* const end = start + extra_size;
3240       if (start_aligned > start) {
3241         ::munmap(start, start_aligned - start);
3242       }
3243       if (end_aligned < end) {
3244         ::munmap(end_aligned, end - end_aligned);
3245       }
3246       start = start_aligned;
3247     }
3248   }
3249   return start;
3250 }
3251 
3252 static int anon_munmap(char * addr, size_t size) {
3253   return ::munmap(addr, size) == 0;
3254 }
3255 
3256 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3257                             size_t alignment_hint) {
3258   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3259 }
3260 
3261 bool os::pd_release_memory(char* addr, size_t size) {
3262   return anon_munmap(addr, size);
3263 }
3264 
3265 static bool linux_mprotect(char* addr, size_t size, int prot) {
3266   // Linux wants the mprotect address argument to be page aligned.
3267   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3268 
3269   // According to SUSv3, mprotect() should only be used with mappings
3270   // established by mmap(), and mmap() always maps whole pages. Unaligned
3271   // 'addr' likely indicates problem in the VM (e.g. trying to change
3272   // protection of malloc'ed or statically allocated memory). Check the
3273   // caller if you hit this assert.
3274   assert(addr == bottom, "sanity check");
3275 
3276   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3277   return ::mprotect(bottom, size, prot) == 0;
3278 }
3279 
3280 // Set protections specified
3281 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3282                         bool is_committed) {
3283   unsigned int p = 0;
3284   switch (prot) {
3285   case MEM_PROT_NONE: p = PROT_NONE; break;
3286   case MEM_PROT_READ: p = PROT_READ; break;
3287   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3288   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3289   default:
3290     ShouldNotReachHere();
3291   }
3292   // is_committed is unused.
3293   return linux_mprotect(addr, bytes, p);
3294 }
3295 
3296 bool os::guard_memory(char* addr, size_t size) {
3297   return linux_mprotect(addr, size, PROT_NONE);
3298 }
3299 
3300 bool os::unguard_memory(char* addr, size_t size) {
3301   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3302 }
3303 
3304 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3305                                                     size_t page_size) {
3306   bool result = false;
3307   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3308                  MAP_ANONYMOUS|MAP_PRIVATE,
3309                  -1, 0);
3310   if (p != MAP_FAILED) {
3311     void *aligned_p = align_up(p, page_size);
3312 
3313     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3314 
3315     munmap(p, page_size * 2);
3316   }
3317 
3318   if (warn && !result) {
3319     warning("TransparentHugePages is not supported by the operating system.");
3320   }
3321 
3322   return result;
3323 }
3324 
3325 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3326   bool result = false;
3327   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3328                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3329                  -1, 0);
3330 
3331   if (p != MAP_FAILED) {
3332     // We don't know if this really is a huge page or not.
3333     FILE *fp = fopen("/proc/self/maps", "r");
3334     if (fp) {
3335       while (!feof(fp)) {
3336         char chars[257];
3337         long x = 0;
3338         if (fgets(chars, sizeof(chars), fp)) {
3339           if (sscanf(chars, "%lx-%*x", &x) == 1
3340               && x == (long)p) {
3341             if (strstr (chars, "hugepage")) {
3342               result = true;
3343               break;
3344             }
3345           }
3346         }
3347       }
3348       fclose(fp);
3349     }
3350     munmap(p, page_size);
3351   }
3352 
3353   if (warn && !result) {
3354     warning("HugeTLBFS is not supported by the operating system.");
3355   }
3356 
3357   return result;
3358 }
3359 
3360 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3361 //
3362 // From the coredump_filter documentation:
3363 //
3364 // - (bit 0) anonymous private memory
3365 // - (bit 1) anonymous shared memory
3366 // - (bit 2) file-backed private memory
3367 // - (bit 3) file-backed shared memory
3368 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3369 //           effective only if the bit 2 is cleared)
3370 // - (bit 5) hugetlb private memory
3371 // - (bit 6) hugetlb shared memory
3372 //
3373 static void set_coredump_filter(void) {
3374   FILE *f;
3375   long cdm;
3376 
3377   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3378     return;
3379   }
3380 
3381   if (fscanf(f, "%lx", &cdm) != 1) {
3382     fclose(f);
3383     return;
3384   }
3385 
3386   rewind(f);
3387 
3388   if ((cdm & LARGEPAGES_BIT) == 0) {
3389     cdm |= LARGEPAGES_BIT;
3390     fprintf(f, "%#lx", cdm);
3391   }
3392 
3393   fclose(f);
3394 }
3395 
3396 // Large page support
3397 
3398 static size_t _large_page_size = 0;
3399 
3400 size_t os::Linux::find_large_page_size() {
3401   size_t large_page_size = 0;
3402 
3403   // large_page_size on Linux is used to round up heap size. x86 uses either
3404   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3405   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3406   // page as large as 256M.
3407   //
3408   // Here we try to figure out page size by parsing /proc/meminfo and looking
3409   // for a line with the following format:
3410   //    Hugepagesize:     2048 kB
3411   //
3412   // If we can't determine the value (e.g. /proc is not mounted, or the text
3413   // format has been changed), we'll use the largest page size supported by
3414   // the processor.
3415 
3416 #ifndef ZERO
3417   large_page_size =
3418     AARCH64_ONLY(2 * M)
3419     AMD64_ONLY(2 * M)
3420     ARM32_ONLY(2 * M)
3421     IA32_ONLY(4 * M)
3422     IA64_ONLY(256 * M)
3423     PPC_ONLY(4 * M)
3424     S390_ONLY(1 * M)
3425     SPARC_ONLY(4 * M);
3426 #endif // ZERO
3427 
3428   FILE *fp = fopen("/proc/meminfo", "r");
3429   if (fp) {
3430     while (!feof(fp)) {
3431       int x = 0;
3432       char buf[16];
3433       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3434         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3435           large_page_size = x * K;
3436           break;
3437         }
3438       } else {
3439         // skip to next line
3440         for (;;) {
3441           int ch = fgetc(fp);
3442           if (ch == EOF || ch == (int)'\n') break;
3443         }
3444       }
3445     }
3446     fclose(fp);
3447   }
3448 
3449   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3450     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3451             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3452             proper_unit_for_byte_size(large_page_size));
3453   }
3454 
3455   return large_page_size;
3456 }
3457 
3458 size_t os::Linux::setup_large_page_size() {
3459   _large_page_size = Linux::find_large_page_size();
3460   const size_t default_page_size = (size_t)Linux::page_size();
3461   if (_large_page_size > default_page_size) {
3462     _page_sizes[0] = _large_page_size;
3463     _page_sizes[1] = default_page_size;
3464     _page_sizes[2] = 0;
3465   }
3466 
3467   return _large_page_size;
3468 }
3469 
3470 bool os::Linux::setup_large_page_type(size_t page_size) {
3471   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3472       FLAG_IS_DEFAULT(UseSHM) &&
3473       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3474 
3475     // The type of large pages has not been specified by the user.
3476 
3477     // Try UseHugeTLBFS and then UseSHM.
3478     UseHugeTLBFS = UseSHM = true;
3479 
3480     // Don't try UseTransparentHugePages since there are known
3481     // performance issues with it turned on. This might change in the future.
3482     UseTransparentHugePages = false;
3483   }
3484 
3485   if (UseTransparentHugePages) {
3486     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3487     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3488       UseHugeTLBFS = false;
3489       UseSHM = false;
3490       return true;
3491     }
3492     UseTransparentHugePages = false;
3493   }
3494 
3495   if (UseHugeTLBFS) {
3496     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3497     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3498       UseSHM = false;
3499       return true;
3500     }
3501     UseHugeTLBFS = false;
3502   }
3503 
3504   return UseSHM;
3505 }
3506 
3507 void os::large_page_init() {
3508   if (!UseLargePages &&
3509       !UseTransparentHugePages &&
3510       !UseHugeTLBFS &&
3511       !UseSHM) {
3512     // Not using large pages.
3513     return;
3514   }
3515 
3516   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3517     // The user explicitly turned off large pages.
3518     // Ignore the rest of the large pages flags.
3519     UseTransparentHugePages = false;
3520     UseHugeTLBFS = false;
3521     UseSHM = false;
3522     return;
3523   }
3524 
3525   size_t large_page_size = Linux::setup_large_page_size();
3526   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3527 
3528   set_coredump_filter();
3529 }
3530 
3531 #ifndef SHM_HUGETLB
3532   #define SHM_HUGETLB 04000
3533 #endif
3534 
3535 #define shm_warning_format(format, ...)              \
3536   do {                                               \
3537     if (UseLargePages &&                             \
3538         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3539          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3540          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3541       warning(format, __VA_ARGS__);                  \
3542     }                                                \
3543   } while (0)
3544 
3545 #define shm_warning(str) shm_warning_format("%s", str)
3546 
3547 #define shm_warning_with_errno(str)                \
3548   do {                                             \
3549     int err = errno;                               \
3550     shm_warning_format(str " (error = %d)", err);  \
3551   } while (0)
3552 
3553 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3554   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3555 
3556   if (!is_aligned(alignment, SHMLBA)) {
3557     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3558     return NULL;
3559   }
3560 
3561   // To ensure that we get 'alignment' aligned memory from shmat,
3562   // we pre-reserve aligned virtual memory and then attach to that.
3563 
3564   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3565   if (pre_reserved_addr == NULL) {
3566     // Couldn't pre-reserve aligned memory.
3567     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3568     return NULL;
3569   }
3570 
3571   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3572   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3573 
3574   if ((intptr_t)addr == -1) {
3575     int err = errno;
3576     shm_warning_with_errno("Failed to attach shared memory.");
3577 
3578     assert(err != EACCES, "Unexpected error");
3579     assert(err != EIDRM,  "Unexpected error");
3580     assert(err != EINVAL, "Unexpected error");
3581 
3582     // Since we don't know if the kernel unmapped the pre-reserved memory area
3583     // we can't unmap it, since that would potentially unmap memory that was
3584     // mapped from other threads.
3585     return NULL;
3586   }
3587 
3588   return addr;
3589 }
3590 
3591 static char* shmat_at_address(int shmid, char* req_addr) {
3592   if (!is_aligned(req_addr, SHMLBA)) {
3593     assert(false, "Requested address needs to be SHMLBA aligned");
3594     return NULL;
3595   }
3596 
3597   char* addr = (char*)shmat(shmid, req_addr, 0);
3598 
3599   if ((intptr_t)addr == -1) {
3600     shm_warning_with_errno("Failed to attach shared memory.");
3601     return NULL;
3602   }
3603 
3604   return addr;
3605 }
3606 
3607 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3608   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3609   if (req_addr != NULL) {
3610     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3611     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3612     return shmat_at_address(shmid, req_addr);
3613   }
3614 
3615   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3616   // return large page size aligned memory addresses when req_addr == NULL.
3617   // However, if the alignment is larger than the large page size, we have
3618   // to manually ensure that the memory returned is 'alignment' aligned.
3619   if (alignment > os::large_page_size()) {
3620     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3621     return shmat_with_alignment(shmid, bytes, alignment);
3622   } else {
3623     return shmat_at_address(shmid, NULL);
3624   }
3625 }
3626 
3627 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3628                                             char* req_addr, bool exec) {
3629   // "exec" is passed in but not used.  Creating the shared image for
3630   // the code cache doesn't have an SHM_X executable permission to check.
3631   assert(UseLargePages && UseSHM, "only for SHM large pages");
3632   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3633   assert(is_aligned(req_addr, alignment), "Unaligned address");
3634 
3635   if (!is_aligned(bytes, os::large_page_size())) {
3636     return NULL; // Fallback to small pages.
3637   }
3638 
3639   // Create a large shared memory region to attach to based on size.
3640   // Currently, size is the total size of the heap.
3641   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3642   if (shmid == -1) {
3643     // Possible reasons for shmget failure:
3644     // 1. shmmax is too small for Java heap.
3645     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3646     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3647     // 2. not enough large page memory.
3648     //    > check available large pages: cat /proc/meminfo
3649     //    > increase amount of large pages:
3650     //          echo new_value > /proc/sys/vm/nr_hugepages
3651     //      Note 1: different Linux may use different name for this property,
3652     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3653     //      Note 2: it's possible there's enough physical memory available but
3654     //            they are so fragmented after a long run that they can't
3655     //            coalesce into large pages. Try to reserve large pages when
3656     //            the system is still "fresh".
3657     shm_warning_with_errno("Failed to reserve shared memory.");
3658     return NULL;
3659   }
3660 
3661   // Attach to the region.
3662   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3663 
3664   // Remove shmid. If shmat() is successful, the actual shared memory segment
3665   // will be deleted when it's detached by shmdt() or when the process
3666   // terminates. If shmat() is not successful this will remove the shared
3667   // segment immediately.
3668   shmctl(shmid, IPC_RMID, NULL);
3669 
3670   return addr;
3671 }
3672 
3673 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3674                                         int error) {
3675   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3676 
3677   bool warn_on_failure = UseLargePages &&
3678       (!FLAG_IS_DEFAULT(UseLargePages) ||
3679        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3680        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3681 
3682   if (warn_on_failure) {
3683     char msg[128];
3684     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3685                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3686     warning("%s", msg);
3687   }
3688 }
3689 
3690 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3691                                                         char* req_addr,
3692                                                         bool exec) {
3693   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3694   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3695   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3696 
3697   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3698   char* addr = (char*)::mmap(req_addr, bytes, prot,
3699                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3700                              -1, 0);
3701 
3702   if (addr == MAP_FAILED) {
3703     warn_on_large_pages_failure(req_addr, bytes, errno);
3704     return NULL;
3705   }
3706 
3707   assert(is_aligned(addr, os::large_page_size()), "Must be");
3708 
3709   return addr;
3710 }
3711 
3712 // Reserve memory using mmap(MAP_HUGETLB).
3713 //  - bytes shall be a multiple of alignment.
3714 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3715 //  - alignment sets the alignment at which memory shall be allocated.
3716 //     It must be a multiple of allocation granularity.
3717 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3718 //  req_addr or NULL.
3719 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3720                                                          size_t alignment,
3721                                                          char* req_addr,
3722                                                          bool exec) {
3723   size_t large_page_size = os::large_page_size();
3724   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3725 
3726   assert(is_aligned(req_addr, alignment), "Must be");
3727   assert(is_aligned(bytes, alignment), "Must be");
3728 
3729   // First reserve - but not commit - the address range in small pages.
3730   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3731 
3732   if (start == NULL) {
3733     return NULL;
3734   }
3735 
3736   assert(is_aligned(start, alignment), "Must be");
3737 
3738   char* end = start + bytes;
3739 
3740   // Find the regions of the allocated chunk that can be promoted to large pages.
3741   char* lp_start = align_up(start, large_page_size);
3742   char* lp_end   = align_down(end, large_page_size);
3743 
3744   size_t lp_bytes = lp_end - lp_start;
3745 
3746   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3747 
3748   if (lp_bytes == 0) {
3749     // The mapped region doesn't even span the start and the end of a large page.
3750     // Fall back to allocate a non-special area.
3751     ::munmap(start, end - start);
3752     return NULL;
3753   }
3754 
3755   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3756 
3757   void* result;
3758 
3759   // Commit small-paged leading area.
3760   if (start != lp_start) {
3761     result = ::mmap(start, lp_start - start, prot,
3762                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3763                     -1, 0);
3764     if (result == MAP_FAILED) {
3765       ::munmap(lp_start, end - lp_start);
3766       return NULL;
3767     }
3768   }
3769 
3770   // Commit large-paged area.
3771   result = ::mmap(lp_start, lp_bytes, prot,
3772                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3773                   -1, 0);
3774   if (result == MAP_FAILED) {
3775     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3776     // If the mmap above fails, the large pages region will be unmapped and we
3777     // have regions before and after with small pages. Release these regions.
3778     //
3779     // |  mapped  |  unmapped  |  mapped  |
3780     // ^          ^            ^          ^
3781     // start      lp_start     lp_end     end
3782     //
3783     ::munmap(start, lp_start - start);
3784     ::munmap(lp_end, end - lp_end);
3785     return NULL;
3786   }
3787 
3788   // Commit small-paged trailing area.
3789   if (lp_end != end) {
3790     result = ::mmap(lp_end, end - lp_end, prot,
3791                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3792                     -1, 0);
3793     if (result == MAP_FAILED) {
3794       ::munmap(start, lp_end - start);
3795       return NULL;
3796     }
3797   }
3798 
3799   return start;
3800 }
3801 
3802 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3803                                                    size_t alignment,
3804                                                    char* req_addr,
3805                                                    bool exec) {
3806   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3807   assert(is_aligned(req_addr, alignment), "Must be");
3808   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3809   assert(is_power_of_2(os::large_page_size()), "Must be");
3810   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3811 
3812   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3813     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3814   } else {
3815     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3816   }
3817 }
3818 
3819 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3820                                  char* req_addr, bool exec) {
3821   assert(UseLargePages, "only for large pages");
3822 
3823   char* addr;
3824   if (UseSHM) {
3825     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3826   } else {
3827     assert(UseHugeTLBFS, "must be");
3828     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3829   }
3830 
3831   if (addr != NULL) {
3832     if (UseNUMAInterleaving) {
3833       numa_make_global(addr, bytes);
3834     }
3835 
3836     // The memory is committed
3837     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3838   }
3839 
3840   return addr;
3841 }
3842 
3843 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3844   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3845   return shmdt(base) == 0;
3846 }
3847 
3848 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3849   return pd_release_memory(base, bytes);
3850 }
3851 
3852 bool os::release_memory_special(char* base, size_t bytes) {
3853   bool res;
3854   if (MemTracker::tracking_level() > NMT_minimal) {
3855     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3856     res = os::Linux::release_memory_special_impl(base, bytes);
3857     if (res) {
3858       tkr.record((address)base, bytes);
3859     }
3860 
3861   } else {
3862     res = os::Linux::release_memory_special_impl(base, bytes);
3863   }
3864   return res;
3865 }
3866 
3867 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3868   assert(UseLargePages, "only for large pages");
3869   bool res;
3870 
3871   if (UseSHM) {
3872     res = os::Linux::release_memory_special_shm(base, bytes);
3873   } else {
3874     assert(UseHugeTLBFS, "must be");
3875     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3876   }
3877   return res;
3878 }
3879 
3880 size_t os::large_page_size() {
3881   return _large_page_size;
3882 }
3883 
3884 // With SysV SHM the entire memory region must be allocated as shared
3885 // memory.
3886 // HugeTLBFS allows application to commit large page memory on demand.
3887 // However, when committing memory with HugeTLBFS fails, the region
3888 // that was supposed to be committed will lose the old reservation
3889 // and allow other threads to steal that memory region. Because of this
3890 // behavior we can't commit HugeTLBFS memory.
3891 bool os::can_commit_large_page_memory() {
3892   return UseTransparentHugePages;
3893 }
3894 
3895 bool os::can_execute_large_page_memory() {
3896   return UseTransparentHugePages || UseHugeTLBFS;
3897 }
3898 
3899 // Reserve memory at an arbitrary address, only if that area is
3900 // available (and not reserved for something else).
3901 
3902 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3903   const int max_tries = 10;
3904   char* base[max_tries];
3905   size_t size[max_tries];
3906   const size_t gap = 0x000000;
3907 
3908   // Assert only that the size is a multiple of the page size, since
3909   // that's all that mmap requires, and since that's all we really know
3910   // about at this low abstraction level.  If we need higher alignment,
3911   // we can either pass an alignment to this method or verify alignment
3912   // in one of the methods further up the call chain.  See bug 5044738.
3913   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3914 
3915   // Repeatedly allocate blocks until the block is allocated at the
3916   // right spot.
3917 
3918   // Linux mmap allows caller to pass an address as hint; give it a try first,
3919   // if kernel honors the hint then we can return immediately.
3920   char * addr = anon_mmap(requested_addr, bytes, false);
3921   if (addr == requested_addr) {
3922     return requested_addr;
3923   }
3924 
3925   if (addr != NULL) {
3926     // mmap() is successful but it fails to reserve at the requested address
3927     anon_munmap(addr, bytes);
3928   }
3929 
3930   int i;
3931   for (i = 0; i < max_tries; ++i) {
3932     base[i] = reserve_memory(bytes);
3933 
3934     if (base[i] != NULL) {
3935       // Is this the block we wanted?
3936       if (base[i] == requested_addr) {
3937         size[i] = bytes;
3938         break;
3939       }
3940 
3941       // Does this overlap the block we wanted? Give back the overlapped
3942       // parts and try again.
3943 
3944       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3945       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3946         unmap_memory(base[i], top_overlap);
3947         base[i] += top_overlap;
3948         size[i] = bytes - top_overlap;
3949       } else {
3950         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3951         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3952           unmap_memory(requested_addr, bottom_overlap);
3953           size[i] = bytes - bottom_overlap;
3954         } else {
3955           size[i] = bytes;
3956         }
3957       }
3958     }
3959   }
3960 
3961   // Give back the unused reserved pieces.
3962 
3963   for (int j = 0; j < i; ++j) {
3964     if (base[j] != NULL) {
3965       unmap_memory(base[j], size[j]);
3966     }
3967   }
3968 
3969   if (i < max_tries) {
3970     return requested_addr;
3971   } else {
3972     return NULL;
3973   }
3974 }
3975 
3976 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3977   return ::read(fd, buf, nBytes);
3978 }
3979 
3980 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3981   return ::pread(fd, buf, nBytes, offset);
3982 }
3983 
3984 // Short sleep, direct OS call.
3985 //
3986 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3987 // sched_yield(2) will actually give up the CPU:
3988 //
3989 //   * Alone on this pariticular CPU, keeps running.
3990 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3991 //     (pre 2.6.39).
3992 //
3993 // So calling this with 0 is an alternative.
3994 //
3995 void os::naked_short_sleep(jlong ms) {
3996   struct timespec req;
3997 
3998   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3999   req.tv_sec = 0;
4000   if (ms > 0) {
4001     req.tv_nsec = (ms % 1000) * 1000000;
4002   } else {
4003     req.tv_nsec = 1;
4004   }
4005 
4006   nanosleep(&req, NULL);
4007 
4008   return;
4009 }
4010 
4011 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4012 void os::infinite_sleep() {
4013   while (true) {    // sleep forever ...
4014     ::sleep(100);   // ... 100 seconds at a time
4015   }
4016 }
4017 
4018 // Used to convert frequent JVM_Yield() to nops
4019 bool os::dont_yield() {
4020   return DontYieldALot;
4021 }
4022 
4023 void os::naked_yield() {
4024   sched_yield();
4025 }
4026 
4027 ////////////////////////////////////////////////////////////////////////////////
4028 // thread priority support
4029 
4030 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4031 // only supports dynamic priority, static priority must be zero. For real-time
4032 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4033 // However, for large multi-threaded applications, SCHED_RR is not only slower
4034 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4035 // of 5 runs - Sep 2005).
4036 //
4037 // The following code actually changes the niceness of kernel-thread/LWP. It
4038 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4039 // not the entire user process, and user level threads are 1:1 mapped to kernel
4040 // threads. It has always been the case, but could change in the future. For
4041 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4042 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4043 
4044 int os::java_to_os_priority[CriticalPriority + 1] = {
4045   19,              // 0 Entry should never be used
4046 
4047    4,              // 1 MinPriority
4048    3,              // 2
4049    2,              // 3
4050 
4051    1,              // 4
4052    0,              // 5 NormPriority
4053   -1,              // 6
4054 
4055   -2,              // 7
4056   -3,              // 8
4057   -4,              // 9 NearMaxPriority
4058 
4059   -5,              // 10 MaxPriority
4060 
4061   -5               // 11 CriticalPriority
4062 };
4063 
4064 static int prio_init() {
4065   if (ThreadPriorityPolicy == 1) {
4066     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4067     // if effective uid is not root. Perhaps, a more elegant way of doing
4068     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4069     if (geteuid() != 0) {
4070       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4071         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4072       }
4073       ThreadPriorityPolicy = 0;
4074     }
4075   }
4076   if (UseCriticalJavaThreadPriority) {
4077     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4078   }
4079   return 0;
4080 }
4081 
4082 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4083   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4084 
4085   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4086   return (ret == 0) ? OS_OK : OS_ERR;
4087 }
4088 
4089 OSReturn os::get_native_priority(const Thread* const thread,
4090                                  int *priority_ptr) {
4091   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4092     *priority_ptr = java_to_os_priority[NormPriority];
4093     return OS_OK;
4094   }
4095 
4096   errno = 0;
4097   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4098   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4099 }
4100 
4101 // Hint to the underlying OS that a task switch would not be good.
4102 // Void return because it's a hint and can fail.
4103 void os::hint_no_preempt() {}
4104 
4105 ////////////////////////////////////////////////////////////////////////////////
4106 // suspend/resume support
4107 
4108 //  The low-level signal-based suspend/resume support is a remnant from the
4109 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4110 //  within hotspot. Currently used by JFR's OSThreadSampler
4111 //
4112 //  The remaining code is greatly simplified from the more general suspension
4113 //  code that used to be used.
4114 //
4115 //  The protocol is quite simple:
4116 //  - suspend:
4117 //      - sends a signal to the target thread
4118 //      - polls the suspend state of the osthread using a yield loop
4119 //      - target thread signal handler (SR_handler) sets suspend state
4120 //        and blocks in sigsuspend until continued
4121 //  - resume:
4122 //      - sets target osthread state to continue
4123 //      - sends signal to end the sigsuspend loop in the SR_handler
4124 //
4125 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4126 //  but is checked for NULL in SR_handler as a thread termination indicator.
4127 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4128 //
4129 //  Note that resume_clear_context() and suspend_save_context() are needed
4130 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4131 //  which in part is used by:
4132 //    - Forte Analyzer: AsyncGetCallTrace()
4133 //    - StackBanging: get_frame_at_stack_banging_point()
4134 
4135 static void resume_clear_context(OSThread *osthread) {
4136   osthread->set_ucontext(NULL);
4137   osthread->set_siginfo(NULL);
4138 }
4139 
4140 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4141                                  ucontext_t* context) {
4142   osthread->set_ucontext(context);
4143   osthread->set_siginfo(siginfo);
4144 }
4145 
4146 // Handler function invoked when a thread's execution is suspended or
4147 // resumed. We have to be careful that only async-safe functions are
4148 // called here (Note: most pthread functions are not async safe and
4149 // should be avoided.)
4150 //
4151 // Note: sigwait() is a more natural fit than sigsuspend() from an
4152 // interface point of view, but sigwait() prevents the signal hander
4153 // from being run. libpthread would get very confused by not having
4154 // its signal handlers run and prevents sigwait()'s use with the
4155 // mutex granting granting signal.
4156 //
4157 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4158 //
4159 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4160   // Save and restore errno to avoid confusing native code with EINTR
4161   // after sigsuspend.
4162   int old_errno = errno;
4163 
4164   Thread* thread = Thread::current_or_null_safe();
4165   assert(thread != NULL, "Missing current thread in SR_handler");
4166 
4167   // On some systems we have seen signal delivery get "stuck" until the signal
4168   // mask is changed as part of thread termination. Check that the current thread
4169   // has not already terminated (via SR_lock()) - else the following assertion
4170   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4171   // destructor has completed.
4172 
4173   if (thread->SR_lock() == NULL) {
4174     return;
4175   }
4176 
4177   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4178 
4179   OSThread* osthread = thread->osthread();
4180 
4181   os::SuspendResume::State current = osthread->sr.state();
4182   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4183     suspend_save_context(osthread, siginfo, context);
4184 
4185     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4186     os::SuspendResume::State state = osthread->sr.suspended();
4187     if (state == os::SuspendResume::SR_SUSPENDED) {
4188       sigset_t suspend_set;  // signals for sigsuspend()
4189       sigemptyset(&suspend_set);
4190       // get current set of blocked signals and unblock resume signal
4191       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4192       sigdelset(&suspend_set, SR_signum);
4193 
4194       sr_semaphore.signal();
4195       // wait here until we are resumed
4196       while (1) {
4197         sigsuspend(&suspend_set);
4198 
4199         os::SuspendResume::State result = osthread->sr.running();
4200         if (result == os::SuspendResume::SR_RUNNING) {
4201           sr_semaphore.signal();
4202           break;
4203         }
4204       }
4205 
4206     } else if (state == os::SuspendResume::SR_RUNNING) {
4207       // request was cancelled, continue
4208     } else {
4209       ShouldNotReachHere();
4210     }
4211 
4212     resume_clear_context(osthread);
4213   } else if (current == os::SuspendResume::SR_RUNNING) {
4214     // request was cancelled, continue
4215   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4216     // ignore
4217   } else {
4218     // ignore
4219   }
4220 
4221   errno = old_errno;
4222 }
4223 
4224 static int SR_initialize() {
4225   struct sigaction act;
4226   char *s;
4227 
4228   // Get signal number to use for suspend/resume
4229   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4230     int sig = ::strtol(s, 0, 10);
4231     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4232         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4233       SR_signum = sig;
4234     } else {
4235       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4236               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4237     }
4238   }
4239 
4240   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4241          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4242 
4243   sigemptyset(&SR_sigset);
4244   sigaddset(&SR_sigset, SR_signum);
4245 
4246   // Set up signal handler for suspend/resume
4247   act.sa_flags = SA_RESTART|SA_SIGINFO;
4248   act.sa_handler = (void (*)(int)) SR_handler;
4249 
4250   // SR_signum is blocked by default.
4251   // 4528190 - We also need to block pthread restart signal (32 on all
4252   // supported Linux platforms). Note that LinuxThreads need to block
4253   // this signal for all threads to work properly. So we don't have
4254   // to use hard-coded signal number when setting up the mask.
4255   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4256 
4257   if (sigaction(SR_signum, &act, 0) == -1) {
4258     return -1;
4259   }
4260 
4261   // Save signal flag
4262   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4263   return 0;
4264 }
4265 
4266 static int sr_notify(OSThread* osthread) {
4267   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4268   assert_status(status == 0, status, "pthread_kill");
4269   return status;
4270 }
4271 
4272 // "Randomly" selected value for how long we want to spin
4273 // before bailing out on suspending a thread, also how often
4274 // we send a signal to a thread we want to resume
4275 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4276 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4277 
4278 // returns true on success and false on error - really an error is fatal
4279 // but this seems the normal response to library errors
4280 static bool do_suspend(OSThread* osthread) {
4281   assert(osthread->sr.is_running(), "thread should be running");
4282   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4283 
4284   // mark as suspended and send signal
4285   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4286     // failed to switch, state wasn't running?
4287     ShouldNotReachHere();
4288     return false;
4289   }
4290 
4291   if (sr_notify(osthread) != 0) {
4292     ShouldNotReachHere();
4293   }
4294 
4295   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4296   while (true) {
4297     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4298       break;
4299     } else {
4300       // timeout
4301       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4302       if (cancelled == os::SuspendResume::SR_RUNNING) {
4303         return false;
4304       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4305         // make sure that we consume the signal on the semaphore as well
4306         sr_semaphore.wait();
4307         break;
4308       } else {
4309         ShouldNotReachHere();
4310         return false;
4311       }
4312     }
4313   }
4314 
4315   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4316   return true;
4317 }
4318 
4319 static void do_resume(OSThread* osthread) {
4320   assert(osthread->sr.is_suspended(), "thread should be suspended");
4321   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4322 
4323   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4324     // failed to switch to WAKEUP_REQUEST
4325     ShouldNotReachHere();
4326     return;
4327   }
4328 
4329   while (true) {
4330     if (sr_notify(osthread) == 0) {
4331       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4332         if (osthread->sr.is_running()) {
4333           return;
4334         }
4335       }
4336     } else {
4337       ShouldNotReachHere();
4338     }
4339   }
4340 
4341   guarantee(osthread->sr.is_running(), "Must be running!");
4342 }
4343 
4344 ///////////////////////////////////////////////////////////////////////////////////
4345 // signal handling (except suspend/resume)
4346 
4347 // This routine may be used by user applications as a "hook" to catch signals.
4348 // The user-defined signal handler must pass unrecognized signals to this
4349 // routine, and if it returns true (non-zero), then the signal handler must
4350 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4351 // routine will never retun false (zero), but instead will execute a VM panic
4352 // routine kill the process.
4353 //
4354 // If this routine returns false, it is OK to call it again.  This allows
4355 // the user-defined signal handler to perform checks either before or after
4356 // the VM performs its own checks.  Naturally, the user code would be making
4357 // a serious error if it tried to handle an exception (such as a null check
4358 // or breakpoint) that the VM was generating for its own correct operation.
4359 //
4360 // This routine may recognize any of the following kinds of signals:
4361 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4362 // It should be consulted by handlers for any of those signals.
4363 //
4364 // The caller of this routine must pass in the three arguments supplied
4365 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4366 // field of the structure passed to sigaction().  This routine assumes that
4367 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4368 //
4369 // Note that the VM will print warnings if it detects conflicting signal
4370 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4371 //
4372 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4373                                                  siginfo_t* siginfo,
4374                                                  void* ucontext,
4375                                                  int abort_if_unrecognized);
4376 
4377 void signalHandler(int sig, siginfo_t* info, void* uc) {
4378   assert(info != NULL && uc != NULL, "it must be old kernel");
4379   int orig_errno = errno;  // Preserve errno value over signal handler.
4380   JVM_handle_linux_signal(sig, info, uc, true);
4381   errno = orig_errno;
4382 }
4383 
4384 
4385 // This boolean allows users to forward their own non-matching signals
4386 // to JVM_handle_linux_signal, harmlessly.
4387 bool os::Linux::signal_handlers_are_installed = false;
4388 
4389 // For signal-chaining
4390 struct sigaction sigact[NSIG];
4391 uint64_t sigs = 0;
4392 #if (64 < NSIG-1)
4393 #error "Not all signals can be encoded in sigs. Adapt its type!"
4394 #endif
4395 bool os::Linux::libjsig_is_loaded = false;
4396 typedef struct sigaction *(*get_signal_t)(int);
4397 get_signal_t os::Linux::get_signal_action = NULL;
4398 
4399 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4400   struct sigaction *actp = NULL;
4401 
4402   if (libjsig_is_loaded) {
4403     // Retrieve the old signal handler from libjsig
4404     actp = (*get_signal_action)(sig);
4405   }
4406   if (actp == NULL) {
4407     // Retrieve the preinstalled signal handler from jvm
4408     actp = get_preinstalled_handler(sig);
4409   }
4410 
4411   return actp;
4412 }
4413 
4414 static bool call_chained_handler(struct sigaction *actp, int sig,
4415                                  siginfo_t *siginfo, void *context) {
4416   // Call the old signal handler
4417   if (actp->sa_handler == SIG_DFL) {
4418     // It's more reasonable to let jvm treat it as an unexpected exception
4419     // instead of taking the default action.
4420     return false;
4421   } else if (actp->sa_handler != SIG_IGN) {
4422     if ((actp->sa_flags & SA_NODEFER) == 0) {
4423       // automaticlly block the signal
4424       sigaddset(&(actp->sa_mask), sig);
4425     }
4426 
4427     sa_handler_t hand = NULL;
4428     sa_sigaction_t sa = NULL;
4429     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4430     // retrieve the chained handler
4431     if (siginfo_flag_set) {
4432       sa = actp->sa_sigaction;
4433     } else {
4434       hand = actp->sa_handler;
4435     }
4436 
4437     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4438       actp->sa_handler = SIG_DFL;
4439     }
4440 
4441     // try to honor the signal mask
4442     sigset_t oset;
4443     sigemptyset(&oset);
4444     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4445 
4446     // call into the chained handler
4447     if (siginfo_flag_set) {
4448       (*sa)(sig, siginfo, context);
4449     } else {
4450       (*hand)(sig);
4451     }
4452 
4453     // restore the signal mask
4454     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4455   }
4456   // Tell jvm's signal handler the signal is taken care of.
4457   return true;
4458 }
4459 
4460 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4461   bool chained = false;
4462   // signal-chaining
4463   if (UseSignalChaining) {
4464     struct sigaction *actp = get_chained_signal_action(sig);
4465     if (actp != NULL) {
4466       chained = call_chained_handler(actp, sig, siginfo, context);
4467     }
4468   }
4469   return chained;
4470 }
4471 
4472 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4473   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4474     return &sigact[sig];
4475   }
4476   return NULL;
4477 }
4478 
4479 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4480   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4481   sigact[sig] = oldAct;
4482   sigs |= (uint64_t)1 << (sig-1);
4483 }
4484 
4485 // for diagnostic
4486 int sigflags[NSIG];
4487 
4488 int os::Linux::get_our_sigflags(int sig) {
4489   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4490   return sigflags[sig];
4491 }
4492 
4493 void os::Linux::set_our_sigflags(int sig, int flags) {
4494   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4495   if (sig > 0 && sig < NSIG) {
4496     sigflags[sig] = flags;
4497   }
4498 }
4499 
4500 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4501   // Check for overwrite.
4502   struct sigaction oldAct;
4503   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4504 
4505   void* oldhand = oldAct.sa_sigaction
4506                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4507                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4508   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4509       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4510       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4511     if (AllowUserSignalHandlers || !set_installed) {
4512       // Do not overwrite; user takes responsibility to forward to us.
4513       return;
4514     } else if (UseSignalChaining) {
4515       // save the old handler in jvm
4516       save_preinstalled_handler(sig, oldAct);
4517       // libjsig also interposes the sigaction() call below and saves the
4518       // old sigaction on it own.
4519     } else {
4520       fatal("Encountered unexpected pre-existing sigaction handler "
4521             "%#lx for signal %d.", (long)oldhand, sig);
4522     }
4523   }
4524 
4525   struct sigaction sigAct;
4526   sigfillset(&(sigAct.sa_mask));
4527   sigAct.sa_handler = SIG_DFL;
4528   if (!set_installed) {
4529     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4530   } else {
4531     sigAct.sa_sigaction = signalHandler;
4532     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4533   }
4534   // Save flags, which are set by ours
4535   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4536   sigflags[sig] = sigAct.sa_flags;
4537 
4538   int ret = sigaction(sig, &sigAct, &oldAct);
4539   assert(ret == 0, "check");
4540 
4541   void* oldhand2  = oldAct.sa_sigaction
4542                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4543                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4544   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4545 }
4546 
4547 // install signal handlers for signals that HotSpot needs to
4548 // handle in order to support Java-level exception handling.
4549 
4550 void os::Linux::install_signal_handlers() {
4551   if (!signal_handlers_are_installed) {
4552     signal_handlers_are_installed = true;
4553 
4554     // signal-chaining
4555     typedef void (*signal_setting_t)();
4556     signal_setting_t begin_signal_setting = NULL;
4557     signal_setting_t end_signal_setting = NULL;
4558     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4559                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4560     if (begin_signal_setting != NULL) {
4561       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4562                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4563       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4564                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4565       libjsig_is_loaded = true;
4566       assert(UseSignalChaining, "should enable signal-chaining");
4567     }
4568     if (libjsig_is_loaded) {
4569       // Tell libjsig jvm is setting signal handlers
4570       (*begin_signal_setting)();
4571     }
4572 
4573     set_signal_handler(SIGSEGV, true);
4574     set_signal_handler(SIGPIPE, true);
4575     set_signal_handler(SIGBUS, true);
4576     set_signal_handler(SIGILL, true);
4577     set_signal_handler(SIGFPE, true);
4578 #if defined(PPC64)
4579     set_signal_handler(SIGTRAP, true);
4580 #endif
4581     set_signal_handler(SIGXFSZ, true);
4582 
4583     if (libjsig_is_loaded) {
4584       // Tell libjsig jvm finishes setting signal handlers
4585       (*end_signal_setting)();
4586     }
4587 
4588     // We don't activate signal checker if libjsig is in place, we trust ourselves
4589     // and if UserSignalHandler is installed all bets are off.
4590     // Log that signal checking is off only if -verbose:jni is specified.
4591     if (CheckJNICalls) {
4592       if (libjsig_is_loaded) {
4593         if (PrintJNIResolving) {
4594           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4595         }
4596         check_signals = false;
4597       }
4598       if (AllowUserSignalHandlers) {
4599         if (PrintJNIResolving) {
4600           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4601         }
4602         check_signals = false;
4603       }
4604     }
4605   }
4606 }
4607 
4608 // This is the fastest way to get thread cpu time on Linux.
4609 // Returns cpu time (user+sys) for any thread, not only for current.
4610 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4611 // It might work on 2.6.10+ with a special kernel/glibc patch.
4612 // For reference, please, see IEEE Std 1003.1-2004:
4613 //   http://www.unix.org/single_unix_specification
4614 
4615 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4616   struct timespec tp;
4617   int rc = os::Linux::clock_gettime(clockid, &tp);
4618   assert(rc == 0, "clock_gettime is expected to return 0 code");
4619 
4620   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4621 }
4622 
4623 void os::Linux::initialize_os_info() {
4624   assert(_os_version == 0, "OS info already initialized");
4625 
4626   struct utsname _uname;
4627 
4628   uint32_t major;
4629   uint32_t minor;
4630   uint32_t fix;
4631 
4632   int rc;
4633 
4634   // Kernel version is unknown if
4635   // verification below fails.
4636   _os_version = 0x01000000;
4637 
4638   rc = uname(&_uname);
4639   if (rc != -1) {
4640 
4641     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4642     if (rc == 3) {
4643 
4644       if (major < 256 && minor < 256 && fix < 256) {
4645         // Kernel version format is as expected,
4646         // set it overriding unknown state.
4647         _os_version = (major << 16) |
4648                       (minor << 8 ) |
4649                       (fix   << 0 ) ;
4650       }
4651     }
4652   }
4653 }
4654 
4655 uint32_t os::Linux::os_version() {
4656   assert(_os_version != 0, "not initialized");
4657   return _os_version & 0x00FFFFFF;
4658 }
4659 
4660 bool os::Linux::os_version_is_known() {
4661   assert(_os_version != 0, "not initialized");
4662   return _os_version & 0x01000000 ? false : true;
4663 }
4664 
4665 /////
4666 // glibc on Linux platform uses non-documented flag
4667 // to indicate, that some special sort of signal
4668 // trampoline is used.
4669 // We will never set this flag, and we should
4670 // ignore this flag in our diagnostic
4671 #ifdef SIGNIFICANT_SIGNAL_MASK
4672   #undef SIGNIFICANT_SIGNAL_MASK
4673 #endif
4674 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4675 
4676 static const char* get_signal_handler_name(address handler,
4677                                            char* buf, int buflen) {
4678   int offset = 0;
4679   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4680   if (found) {
4681     // skip directory names
4682     const char *p1, *p2;
4683     p1 = buf;
4684     size_t len = strlen(os::file_separator());
4685     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4686     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4687   } else {
4688     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4689   }
4690   return buf;
4691 }
4692 
4693 static void print_signal_handler(outputStream* st, int sig,
4694                                  char* buf, size_t buflen) {
4695   struct sigaction sa;
4696 
4697   sigaction(sig, NULL, &sa);
4698 
4699   // See comment for SIGNIFICANT_SIGNAL_MASK define
4700   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4701 
4702   st->print("%s: ", os::exception_name(sig, buf, buflen));
4703 
4704   address handler = (sa.sa_flags & SA_SIGINFO)
4705     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4706     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4707 
4708   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4709     st->print("SIG_DFL");
4710   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4711     st->print("SIG_IGN");
4712   } else {
4713     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4714   }
4715 
4716   st->print(", sa_mask[0]=");
4717   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4718 
4719   address rh = VMError::get_resetted_sighandler(sig);
4720   // May be, handler was resetted by VMError?
4721   if (rh != NULL) {
4722     handler = rh;
4723     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4724   }
4725 
4726   st->print(", sa_flags=");
4727   os::Posix::print_sa_flags(st, sa.sa_flags);
4728 
4729   // Check: is it our handler?
4730   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4731       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4732     // It is our signal handler
4733     // check for flags, reset system-used one!
4734     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4735       st->print(
4736                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4737                 os::Linux::get_our_sigflags(sig));
4738     }
4739   }
4740   st->cr();
4741 }
4742 
4743 
4744 #define DO_SIGNAL_CHECK(sig)                      \
4745   do {                                            \
4746     if (!sigismember(&check_signal_done, sig)) {  \
4747       os::Linux::check_signal_handler(sig);       \
4748     }                                             \
4749   } while (0)
4750 
4751 // This method is a periodic task to check for misbehaving JNI applications
4752 // under CheckJNI, we can add any periodic checks here
4753 
4754 void os::run_periodic_checks() {
4755   if (check_signals == false) return;
4756 
4757   // SEGV and BUS if overridden could potentially prevent
4758   // generation of hs*.log in the event of a crash, debugging
4759   // such a case can be very challenging, so we absolutely
4760   // check the following for a good measure:
4761   DO_SIGNAL_CHECK(SIGSEGV);
4762   DO_SIGNAL_CHECK(SIGILL);
4763   DO_SIGNAL_CHECK(SIGFPE);
4764   DO_SIGNAL_CHECK(SIGBUS);
4765   DO_SIGNAL_CHECK(SIGPIPE);
4766   DO_SIGNAL_CHECK(SIGXFSZ);
4767 #if defined(PPC64)
4768   DO_SIGNAL_CHECK(SIGTRAP);
4769 #endif
4770 
4771   // ReduceSignalUsage allows the user to override these handlers
4772   // see comments at the very top and jvm_md.h
4773   if (!ReduceSignalUsage) {
4774     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4775     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4776     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4777     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4778   }
4779 
4780   DO_SIGNAL_CHECK(SR_signum);
4781 }
4782 
4783 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4784 
4785 static os_sigaction_t os_sigaction = NULL;
4786 
4787 void os::Linux::check_signal_handler(int sig) {
4788   char buf[O_BUFLEN];
4789   address jvmHandler = NULL;
4790 
4791 
4792   struct sigaction act;
4793   if (os_sigaction == NULL) {
4794     // only trust the default sigaction, in case it has been interposed
4795     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4796     if (os_sigaction == NULL) return;
4797   }
4798 
4799   os_sigaction(sig, (struct sigaction*)NULL, &act);
4800 
4801 
4802   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4803 
4804   address thisHandler = (act.sa_flags & SA_SIGINFO)
4805     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4806     : CAST_FROM_FN_PTR(address, act.sa_handler);
4807 
4808 
4809   switch (sig) {
4810   case SIGSEGV:
4811   case SIGBUS:
4812   case SIGFPE:
4813   case SIGPIPE:
4814   case SIGILL:
4815   case SIGXFSZ:
4816     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4817     break;
4818 
4819   case SHUTDOWN1_SIGNAL:
4820   case SHUTDOWN2_SIGNAL:
4821   case SHUTDOWN3_SIGNAL:
4822   case BREAK_SIGNAL:
4823     jvmHandler = (address)user_handler();
4824     break;
4825 
4826   default:
4827     if (sig == SR_signum) {
4828       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4829     } else {
4830       return;
4831     }
4832     break;
4833   }
4834 
4835   if (thisHandler != jvmHandler) {
4836     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4837     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4838     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4839     // No need to check this sig any longer
4840     sigaddset(&check_signal_done, sig);
4841     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4842     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4843       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4844                     exception_name(sig, buf, O_BUFLEN));
4845     }
4846   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4847     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4848     tty->print("expected:");
4849     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4850     tty->cr();
4851     tty->print("  found:");
4852     os::Posix::print_sa_flags(tty, act.sa_flags);
4853     tty->cr();
4854     // No need to check this sig any longer
4855     sigaddset(&check_signal_done, sig);
4856   }
4857 
4858   // Dump all the signal
4859   if (sigismember(&check_signal_done, sig)) {
4860     print_signal_handlers(tty, buf, O_BUFLEN);
4861   }
4862 }
4863 
4864 extern void report_error(char* file_name, int line_no, char* title,
4865                          char* format, ...);
4866 
4867 // this is called _before_ most of the global arguments have been parsed
4868 void os::init(void) {
4869   char dummy;   // used to get a guess on initial stack address
4870 
4871   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4872 
4873   init_random(1234567);
4874 
4875   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4876   if (Linux::page_size() == -1) {
4877     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4878           os::strerror(errno));
4879   }
4880   init_page_sizes((size_t) Linux::page_size());
4881 
4882   Linux::initialize_system_info();
4883 
4884   Linux::initialize_os_info();
4885 
4886   // _main_thread points to the thread that created/loaded the JVM.
4887   Linux::_main_thread = pthread_self();
4888 
4889   Linux::clock_init();
4890   initial_time_count = javaTimeNanos();
4891 
4892   // retrieve entry point for pthread_setname_np
4893   Linux::_pthread_setname_np =
4894     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4895 
4896   os::Posix::init();
4897 }
4898 
4899 // To install functions for atexit system call
4900 extern "C" {
4901   static void perfMemory_exit_helper() {
4902     perfMemory_exit();
4903   }
4904 }
4905 
4906 void os::pd_init_container_support() {
4907   OSContainer::init();
4908 }
4909 
4910 // this is called _after_ the global arguments have been parsed
4911 jint os::init_2(void) {
4912 
4913   os::Posix::init_2();
4914 
4915   Linux::fast_thread_clock_init();
4916 
4917   // initialize suspend/resume support - must do this before signal_sets_init()
4918   if (SR_initialize() != 0) {
4919     perror("SR_initialize failed");
4920     return JNI_ERR;
4921   }
4922 
4923   Linux::signal_sets_init();
4924   Linux::install_signal_handlers();
4925 
4926   // Check and sets minimum stack sizes against command line options
4927   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4928     return JNI_ERR;
4929   }
4930   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4931 
4932 #if defined(IA32)
4933   workaround_expand_exec_shield_cs_limit();
4934 #endif
4935 
4936   Linux::libpthread_init();
4937   Linux::sched_getcpu_init();
4938   log_info(os)("HotSpot is running with %s, %s",
4939                Linux::glibc_version(), Linux::libpthread_version());
4940 
4941   if (UseNUMA) {
4942     if (!Linux::libnuma_init()) {
4943       UseNUMA = false;
4944     } else {
4945       if ((Linux::numa_max_node() < 1)) {
4946         // There's only one node(they start from 0), disable NUMA.
4947         UseNUMA = false;
4948       }
4949     }
4950 
4951     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4952       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4953       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4954       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4955       // and disable adaptive resizing.
4956       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4957         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4958                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4959         UseAdaptiveSizePolicy = false;
4960         UseAdaptiveNUMAChunkSizing = false;
4961       }
4962     }
4963 
4964     if (!UseNUMA && ForceNUMA) {
4965       UseNUMA = true;
4966     }
4967   }
4968 
4969   if (MaxFDLimit) {
4970     // set the number of file descriptors to max. print out error
4971     // if getrlimit/setrlimit fails but continue regardless.
4972     struct rlimit nbr_files;
4973     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4974     if (status != 0) {
4975       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4976     } else {
4977       nbr_files.rlim_cur = nbr_files.rlim_max;
4978       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4979       if (status != 0) {
4980         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4981       }
4982     }
4983   }
4984 
4985   // Initialize lock used to serialize thread creation (see os::create_thread)
4986   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4987 
4988   // at-exit methods are called in the reverse order of their registration.
4989   // atexit functions are called on return from main or as a result of a
4990   // call to exit(3C). There can be only 32 of these functions registered
4991   // and atexit() does not set errno.
4992 
4993   if (PerfAllowAtExitRegistration) {
4994     // only register atexit functions if PerfAllowAtExitRegistration is set.
4995     // atexit functions can be delayed until process exit time, which
4996     // can be problematic for embedded VM situations. Embedded VMs should
4997     // call DestroyJavaVM() to assure that VM resources are released.
4998 
4999     // note: perfMemory_exit_helper atexit function may be removed in
5000     // the future if the appropriate cleanup code can be added to the
5001     // VM_Exit VMOperation's doit method.
5002     if (atexit(perfMemory_exit_helper) != 0) {
5003       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5004     }
5005   }
5006 
5007   // initialize thread priority policy
5008   prio_init();
5009 
5010   return JNI_OK;
5011 }
5012 
5013 // Mark the polling page as unreadable
5014 void os::make_polling_page_unreadable(void) {
5015   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5016     fatal("Could not disable polling page");
5017   }
5018 }
5019 
5020 // Mark the polling page as readable
5021 void os::make_polling_page_readable(void) {
5022   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5023     fatal("Could not enable polling page");
5024   }
5025 }
5026 
5027 // older glibc versions don't have this macro (which expands to
5028 // an optimized bit-counting function) so we have to roll our own
5029 #ifndef CPU_COUNT
5030 
5031 static int _cpu_count(const cpu_set_t* cpus) {
5032   int count = 0;
5033   // only look up to the number of configured processors
5034   for (int i = 0; i < os::processor_count(); i++) {
5035     if (CPU_ISSET(i, cpus)) {
5036       count++;
5037     }
5038   }
5039   return count;
5040 }
5041 
5042 #define CPU_COUNT(cpus) _cpu_count(cpus)
5043 
5044 #endif // CPU_COUNT
5045 
5046 // Get the current number of available processors for this process.
5047 // This value can change at any time during a process's lifetime.
5048 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5049 // If it appears there may be more than 1024 processors then we do a
5050 // dynamic check - see 6515172 for details.
5051 // If anything goes wrong we fallback to returning the number of online
5052 // processors - which can be greater than the number available to the process.
5053 int os::Linux::active_processor_count() {
5054   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5055   cpu_set_t* cpus_p = &cpus;
5056   int cpus_size = sizeof(cpu_set_t);
5057 
5058   int configured_cpus = os::processor_count();  // upper bound on available cpus
5059   int cpu_count = 0;
5060 
5061 // old build platforms may not support dynamic cpu sets
5062 #ifdef CPU_ALLOC
5063 
5064   // To enable easy testing of the dynamic path on different platforms we
5065   // introduce a diagnostic flag: UseCpuAllocPath
5066   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5067     // kernel may use a mask bigger than cpu_set_t
5068     log_trace(os)("active_processor_count: using dynamic path %s"
5069                   "- configured processors: %d",
5070                   UseCpuAllocPath ? "(forced) " : "",
5071                   configured_cpus);
5072     cpus_p = CPU_ALLOC(configured_cpus);
5073     if (cpus_p != NULL) {
5074       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5075       // zero it just to be safe
5076       CPU_ZERO_S(cpus_size, cpus_p);
5077     }
5078     else {
5079        // failed to allocate so fallback to online cpus
5080        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5081        log_trace(os)("active_processor_count: "
5082                      "CPU_ALLOC failed (%s) - using "
5083                      "online processor count: %d",
5084                      os::strerror(errno), online_cpus);
5085        return online_cpus;
5086     }
5087   }
5088   else {
5089     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5090                   configured_cpus);
5091   }
5092 #else // CPU_ALLOC
5093 // these stubs won't be executed
5094 #define CPU_COUNT_S(size, cpus) -1
5095 #define CPU_FREE(cpus)
5096 
5097   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5098                 configured_cpus);
5099 #endif // CPU_ALLOC
5100 
5101   // pid 0 means the current thread - which we have to assume represents the process
5102   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5103     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5104       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5105     }
5106     else {
5107       cpu_count = CPU_COUNT(cpus_p);
5108     }
5109     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5110   }
5111   else {
5112     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5113     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5114             "which may exceed available processors", os::strerror(errno), cpu_count);
5115   }
5116 
5117   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5118     CPU_FREE(cpus_p);
5119   }
5120 
5121   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5122   return cpu_count;
5123 }
5124 
5125 // Determine the active processor count from one of
5126 // three different sources:
5127 //
5128 // 1. User option -XX:ActiveProcessorCount
5129 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5130 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5131 //
5132 // Option 1, if specified, will always override.
5133 // If the cgroup subsystem is active and configured, we
5134 // will return the min of the cgroup and option 2 results.
5135 // This is required since tools, such as numactl, that
5136 // alter cpu affinity do not update cgroup subsystem
5137 // cpuset configuration files.
5138 int os::active_processor_count() {
5139   // User has overridden the number of active processors
5140   if (ActiveProcessorCount > 0) {
5141     log_trace(os)("active_processor_count: "
5142                   "active processor count set by user : %d",
5143                   ActiveProcessorCount);
5144     return ActiveProcessorCount;
5145   }
5146 
5147   int active_cpus;
5148   if (OSContainer::is_containerized()) {
5149     active_cpus = OSContainer::active_processor_count();
5150     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5151                    active_cpus);
5152   } else {
5153     active_cpus = os::Linux::active_processor_count();
5154   }
5155 
5156   return active_cpus;
5157 }
5158 
5159 void os::set_native_thread_name(const char *name) {
5160   if (Linux::_pthread_setname_np) {
5161     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5162     snprintf(buf, sizeof(buf), "%s", name);
5163     buf[sizeof(buf) - 1] = '\0';
5164     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5165     // ERANGE should not happen; all other errors should just be ignored.
5166     assert(rc != ERANGE, "pthread_setname_np failed");
5167   }
5168 }
5169 
5170 bool os::distribute_processes(uint length, uint* distribution) {
5171   // Not yet implemented.
5172   return false;
5173 }
5174 
5175 bool os::bind_to_processor(uint processor_id) {
5176   // Not yet implemented.
5177   return false;
5178 }
5179 
5180 ///
5181 
5182 void os::SuspendedThreadTask::internal_do_task() {
5183   if (do_suspend(_thread->osthread())) {
5184     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5185     do_task(context);
5186     do_resume(_thread->osthread());
5187   }
5188 }
5189 
5190 ////////////////////////////////////////////////////////////////////////////////
5191 // debug support
5192 
5193 bool os::find(address addr, outputStream* st) {
5194   Dl_info dlinfo;
5195   memset(&dlinfo, 0, sizeof(dlinfo));
5196   if (dladdr(addr, &dlinfo) != 0) {
5197     st->print(PTR_FORMAT ": ", p2i(addr));
5198     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5199       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5200                 p2i(addr) - p2i(dlinfo.dli_saddr));
5201     } else if (dlinfo.dli_fbase != NULL) {
5202       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5203     } else {
5204       st->print("<absolute address>");
5205     }
5206     if (dlinfo.dli_fname != NULL) {
5207       st->print(" in %s", dlinfo.dli_fname);
5208     }
5209     if (dlinfo.dli_fbase != NULL) {
5210       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5211     }
5212     st->cr();
5213 
5214     if (Verbose) {
5215       // decode some bytes around the PC
5216       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5217       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5218       address       lowest = (address) dlinfo.dli_sname;
5219       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5220       if (begin < lowest)  begin = lowest;
5221       Dl_info dlinfo2;
5222       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5223           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5224         end = (address) dlinfo2.dli_saddr;
5225       }
5226       Disassembler::decode(begin, end, st);
5227     }
5228     return true;
5229   }
5230   return false;
5231 }
5232 
5233 ////////////////////////////////////////////////////////////////////////////////
5234 // misc
5235 
5236 // This does not do anything on Linux. This is basically a hook for being
5237 // able to use structured exception handling (thread-local exception filters)
5238 // on, e.g., Win32.
5239 void
5240 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5241                          JavaCallArguments* args, Thread* thread) {
5242   f(value, method, args, thread);
5243 }
5244 
5245 void os::print_statistics() {
5246 }
5247 
5248 bool os::message_box(const char* title, const char* message) {
5249   int i;
5250   fdStream err(defaultStream::error_fd());
5251   for (i = 0; i < 78; i++) err.print_raw("=");
5252   err.cr();
5253   err.print_raw_cr(title);
5254   for (i = 0; i < 78; i++) err.print_raw("-");
5255   err.cr();
5256   err.print_raw_cr(message);
5257   for (i = 0; i < 78; i++) err.print_raw("=");
5258   err.cr();
5259 
5260   char buf[16];
5261   // Prevent process from exiting upon "read error" without consuming all CPU
5262   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5263 
5264   return buf[0] == 'y' || buf[0] == 'Y';
5265 }
5266 
5267 int os::stat(const char *path, struct stat *sbuf) {
5268   char pathbuf[MAX_PATH];
5269   if (strlen(path) > MAX_PATH - 1) {
5270     errno = ENAMETOOLONG;
5271     return -1;
5272   }
5273   os::native_path(strcpy(pathbuf, path));
5274   return ::stat(pathbuf, sbuf);
5275 }
5276 
5277 // Is a (classpath) directory empty?
5278 bool os::dir_is_empty(const char* path) {
5279   DIR *dir = NULL;
5280   struct dirent *ptr;
5281 
5282   dir = opendir(path);
5283   if (dir == NULL) return true;
5284 
5285   // Scan the directory
5286   bool result = true;
5287   char buf[sizeof(struct dirent) + MAX_PATH];
5288   while (result && (ptr = ::readdir(dir)) != NULL) {
5289     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5290       result = false;
5291     }
5292   }
5293   closedir(dir);
5294   return result;
5295 }
5296 
5297 // This code originates from JDK's sysOpen and open64_w
5298 // from src/solaris/hpi/src/system_md.c
5299 
5300 int os::open(const char *path, int oflag, int mode) {
5301   if (strlen(path) > MAX_PATH - 1) {
5302     errno = ENAMETOOLONG;
5303     return -1;
5304   }
5305 
5306   // All file descriptors that are opened in the Java process and not
5307   // specifically destined for a subprocess should have the close-on-exec
5308   // flag set.  If we don't set it, then careless 3rd party native code
5309   // might fork and exec without closing all appropriate file descriptors
5310   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5311   // turn might:
5312   //
5313   // - cause end-of-file to fail to be detected on some file
5314   //   descriptors, resulting in mysterious hangs, or
5315   //
5316   // - might cause an fopen in the subprocess to fail on a system
5317   //   suffering from bug 1085341.
5318   //
5319   // (Yes, the default setting of the close-on-exec flag is a Unix
5320   // design flaw)
5321   //
5322   // See:
5323   // 1085341: 32-bit stdio routines should support file descriptors >255
5324   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5325   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5326   //
5327   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5328   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5329   // because it saves a system call and removes a small window where the flag
5330   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5331   // and we fall back to using FD_CLOEXEC (see below).
5332 #ifdef O_CLOEXEC
5333   oflag |= O_CLOEXEC;
5334 #endif
5335 
5336   int fd = ::open64(path, oflag, mode);
5337   if (fd == -1) return -1;
5338 
5339   //If the open succeeded, the file might still be a directory
5340   {
5341     struct stat64 buf64;
5342     int ret = ::fstat64(fd, &buf64);
5343     int st_mode = buf64.st_mode;
5344 
5345     if (ret != -1) {
5346       if ((st_mode & S_IFMT) == S_IFDIR) {
5347         errno = EISDIR;
5348         ::close(fd);
5349         return -1;
5350       }
5351     } else {
5352       ::close(fd);
5353       return -1;
5354     }
5355   }
5356 
5357 #ifdef FD_CLOEXEC
5358   // Validate that the use of the O_CLOEXEC flag on open above worked.
5359   // With recent kernels, we will perform this check exactly once.
5360   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5361   if (!O_CLOEXEC_is_known_to_work) {
5362     int flags = ::fcntl(fd, F_GETFD);
5363     if (flags != -1) {
5364       if ((flags & FD_CLOEXEC) != 0)
5365         O_CLOEXEC_is_known_to_work = 1;
5366       else
5367         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5368     }
5369   }
5370 #endif
5371 
5372   return fd;
5373 }
5374 
5375 
5376 // create binary file, rewriting existing file if required
5377 int os::create_binary_file(const char* path, bool rewrite_existing) {
5378   int oflags = O_WRONLY | O_CREAT;
5379   if (!rewrite_existing) {
5380     oflags |= O_EXCL;
5381   }
5382   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5383 }
5384 
5385 // return current position of file pointer
5386 jlong os::current_file_offset(int fd) {
5387   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5388 }
5389 
5390 // move file pointer to the specified offset
5391 jlong os::seek_to_file_offset(int fd, jlong offset) {
5392   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5393 }
5394 
5395 // This code originates from JDK's sysAvailable
5396 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5397 
5398 int os::available(int fd, jlong *bytes) {
5399   jlong cur, end;
5400   int mode;
5401   struct stat64 buf64;
5402 
5403   if (::fstat64(fd, &buf64) >= 0) {
5404     mode = buf64.st_mode;
5405     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5406       int n;
5407       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5408         *bytes = n;
5409         return 1;
5410       }
5411     }
5412   }
5413   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5414     return 0;
5415   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5416     return 0;
5417   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5418     return 0;
5419   }
5420   *bytes = end - cur;
5421   return 1;
5422 }
5423 
5424 // Map a block of memory.
5425 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5426                         char *addr, size_t bytes, bool read_only,
5427                         bool allow_exec) {
5428   int prot;
5429   int flags = MAP_PRIVATE;
5430 
5431   if (read_only) {
5432     prot = PROT_READ;
5433   } else {
5434     prot = PROT_READ | PROT_WRITE;
5435   }
5436 
5437   if (allow_exec) {
5438     prot |= PROT_EXEC;
5439   }
5440 
5441   if (addr != NULL) {
5442     flags |= MAP_FIXED;
5443   }
5444 
5445   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5446                                      fd, file_offset);
5447   if (mapped_address == MAP_FAILED) {
5448     return NULL;
5449   }
5450   return mapped_address;
5451 }
5452 
5453 
5454 // Remap a block of memory.
5455 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5456                           char *addr, size_t bytes, bool read_only,
5457                           bool allow_exec) {
5458   // same as map_memory() on this OS
5459   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5460                         allow_exec);
5461 }
5462 
5463 
5464 // Unmap a block of memory.
5465 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5466   return munmap(addr, bytes) == 0;
5467 }
5468 
5469 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5470 
5471 static clockid_t thread_cpu_clockid(Thread* thread) {
5472   pthread_t tid = thread->osthread()->pthread_id();
5473   clockid_t clockid;
5474 
5475   // Get thread clockid
5476   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5477   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5478   return clockid;
5479 }
5480 
5481 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5482 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5483 // of a thread.
5484 //
5485 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5486 // the fast estimate available on the platform.
5487 
5488 jlong os::current_thread_cpu_time() {
5489   if (os::Linux::supports_fast_thread_cpu_time()) {
5490     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5491   } else {
5492     // return user + sys since the cost is the same
5493     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5494   }
5495 }
5496 
5497 jlong os::thread_cpu_time(Thread* thread) {
5498   // consistent with what current_thread_cpu_time() returns
5499   if (os::Linux::supports_fast_thread_cpu_time()) {
5500     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5501   } else {
5502     return slow_thread_cpu_time(thread, true /* user + sys */);
5503   }
5504 }
5505 
5506 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5507   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5508     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5509   } else {
5510     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5511   }
5512 }
5513 
5514 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5515   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5516     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5517   } else {
5518     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5519   }
5520 }
5521 
5522 //  -1 on error.
5523 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5524   pid_t  tid = thread->osthread()->thread_id();
5525   char *s;
5526   char stat[2048];
5527   int statlen;
5528   char proc_name[64];
5529   int count;
5530   long sys_time, user_time;
5531   char cdummy;
5532   int idummy;
5533   long ldummy;
5534   FILE *fp;
5535 
5536   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5537   fp = fopen(proc_name, "r");
5538   if (fp == NULL) return -1;
5539   statlen = fread(stat, 1, 2047, fp);
5540   stat[statlen] = '\0';
5541   fclose(fp);
5542 
5543   // Skip pid and the command string. Note that we could be dealing with
5544   // weird command names, e.g. user could decide to rename java launcher
5545   // to "java 1.4.2 :)", then the stat file would look like
5546   //                1234 (java 1.4.2 :)) R ... ...
5547   // We don't really need to know the command string, just find the last
5548   // occurrence of ")" and then start parsing from there. See bug 4726580.
5549   s = strrchr(stat, ')');
5550   if (s == NULL) return -1;
5551 
5552   // Skip blank chars
5553   do { s++; } while (s && isspace(*s));
5554 
5555   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5556                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5557                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5558                  &user_time, &sys_time);
5559   if (count != 13) return -1;
5560   if (user_sys_cpu_time) {
5561     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5562   } else {
5563     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5564   }
5565 }
5566 
5567 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5568   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5569   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5570   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5571   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5572 }
5573 
5574 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5575   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5576   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5577   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5578   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5579 }
5580 
5581 bool os::is_thread_cpu_time_supported() {
5582   return true;
5583 }
5584 
5585 // System loadavg support.  Returns -1 if load average cannot be obtained.
5586 // Linux doesn't yet have a (official) notion of processor sets,
5587 // so just return the system wide load average.
5588 int os::loadavg(double loadavg[], int nelem) {
5589   return ::getloadavg(loadavg, nelem);
5590 }
5591 
5592 void os::pause() {
5593   char filename[MAX_PATH];
5594   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5595     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5596   } else {
5597     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5598   }
5599 
5600   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5601   if (fd != -1) {
5602     struct stat buf;
5603     ::close(fd);
5604     while (::stat(filename, &buf) == 0) {
5605       (void)::poll(NULL, 0, 100);
5606     }
5607   } else {
5608     jio_fprintf(stderr,
5609                 "Could not open pause file '%s', continuing immediately.\n", filename);
5610   }
5611 }
5612 
5613 extern char** environ;
5614 
5615 // Run the specified command in a separate process. Return its exit value,
5616 // or -1 on failure (e.g. can't fork a new process).
5617 // Unlike system(), this function can be called from signal handler. It
5618 // doesn't block SIGINT et al.
5619 int os::fork_and_exec(char* cmd) {
5620   const char * argv[4] = {"sh", "-c", cmd, NULL};
5621 
5622   pid_t pid = fork();
5623 
5624   if (pid < 0) {
5625     // fork failed
5626     return -1;
5627 
5628   } else if (pid == 0) {
5629     // child process
5630 
5631     execve("/bin/sh", (char* const*)argv, environ);
5632 
5633     // execve failed
5634     _exit(-1);
5635 
5636   } else  {
5637     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5638     // care about the actual exit code, for now.
5639 
5640     int status;
5641 
5642     // Wait for the child process to exit.  This returns immediately if
5643     // the child has already exited. */
5644     while (waitpid(pid, &status, 0) < 0) {
5645       switch (errno) {
5646       case ECHILD: return 0;
5647       case EINTR: break;
5648       default: return -1;
5649       }
5650     }
5651 
5652     if (WIFEXITED(status)) {
5653       // The child exited normally; get its exit code.
5654       return WEXITSTATUS(status);
5655     } else if (WIFSIGNALED(status)) {
5656       // The child exited because of a signal
5657       // The best value to return is 0x80 + signal number,
5658       // because that is what all Unix shells do, and because
5659       // it allows callers to distinguish between process exit and
5660       // process death by signal.
5661       return 0x80 + WTERMSIG(status);
5662     } else {
5663       // Unknown exit code; pass it through
5664       return status;
5665     }
5666   }
5667 }
5668 
5669 // is_headless_jre()
5670 //
5671 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5672 // in order to report if we are running in a headless jre
5673 //
5674 // Since JDK8 xawt/libmawt.so was moved into the same directory
5675 // as libawt.so, and renamed libawt_xawt.so
5676 //
5677 bool os::is_headless_jre() {
5678   struct stat statbuf;
5679   char buf[MAXPATHLEN];
5680   char libmawtpath[MAXPATHLEN];
5681   const char *xawtstr  = "/xawt/libmawt.so";
5682   const char *new_xawtstr = "/libawt_xawt.so";
5683   char *p;
5684 
5685   // Get path to libjvm.so
5686   os::jvm_path(buf, sizeof(buf));
5687 
5688   // Get rid of libjvm.so
5689   p = strrchr(buf, '/');
5690   if (p == NULL) {
5691     return false;
5692   } else {
5693     *p = '\0';
5694   }
5695 
5696   // Get rid of client or server
5697   p = strrchr(buf, '/');
5698   if (p == NULL) {
5699     return false;
5700   } else {
5701     *p = '\0';
5702   }
5703 
5704   // check xawt/libmawt.so
5705   strcpy(libmawtpath, buf);
5706   strcat(libmawtpath, xawtstr);
5707   if (::stat(libmawtpath, &statbuf) == 0) return false;
5708 
5709   // check libawt_xawt.so
5710   strcpy(libmawtpath, buf);
5711   strcat(libmawtpath, new_xawtstr);
5712   if (::stat(libmawtpath, &statbuf) == 0) return false;
5713 
5714   return true;
5715 }
5716 
5717 // Get the default path to the core file
5718 // Returns the length of the string
5719 int os::get_core_path(char* buffer, size_t bufferSize) {
5720   /*
5721    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5722    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5723    */
5724   const int core_pattern_len = 129;
5725   char core_pattern[core_pattern_len] = {0};
5726 
5727   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5728   if (core_pattern_file == -1) {
5729     return -1;
5730   }
5731 
5732   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5733   ::close(core_pattern_file);
5734   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5735     return -1;
5736   }
5737   if (core_pattern[ret-1] == '\n') {
5738     core_pattern[ret-1] = '\0';
5739   } else {
5740     core_pattern[ret] = '\0';
5741   }
5742 
5743   char *pid_pos = strstr(core_pattern, "%p");
5744   int written;
5745 
5746   if (core_pattern[0] == '/') {
5747     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5748   } else {
5749     char cwd[PATH_MAX];
5750 
5751     const char* p = get_current_directory(cwd, PATH_MAX);
5752     if (p == NULL) {
5753       return -1;
5754     }
5755 
5756     if (core_pattern[0] == '|') {
5757       written = jio_snprintf(buffer, bufferSize,
5758                              "\"%s\" (or dumping to %s/core.%d)",
5759                              &core_pattern[1], p, current_process_id());
5760     } else {
5761       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5762     }
5763   }
5764 
5765   if (written < 0) {
5766     return -1;
5767   }
5768 
5769   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5770     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5771 
5772     if (core_uses_pid_file != -1) {
5773       char core_uses_pid = 0;
5774       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5775       ::close(core_uses_pid_file);
5776 
5777       if (core_uses_pid == '1') {
5778         jio_snprintf(buffer + written, bufferSize - written,
5779                                           ".%d", current_process_id());
5780       }
5781     }
5782   }
5783 
5784   return strlen(buffer);
5785 }
5786 
5787 bool os::start_debugging(char *buf, int buflen) {
5788   int len = (int)strlen(buf);
5789   char *p = &buf[len];
5790 
5791   jio_snprintf(p, buflen-len,
5792                "\n\n"
5793                "Do you want to debug the problem?\n\n"
5794                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5795                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5796                "Otherwise, press RETURN to abort...",
5797                os::current_process_id(), os::current_process_id(),
5798                os::current_thread_id(), os::current_thread_id());
5799 
5800   bool yes = os::message_box("Unexpected Error", buf);
5801 
5802   if (yes) {
5803     // yes, user asked VM to launch debugger
5804     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5805                  os::current_process_id(), os::current_process_id());
5806 
5807     os::fork_and_exec(buf);
5808     yes = false;
5809   }
5810   return yes;
5811 }
5812 
5813 
5814 // Java/Compiler thread:
5815 //
5816 //   Low memory addresses
5817 // P0 +------------------------+
5818 //    |                        |\  Java thread created by VM does not have glibc
5819 //    |    glibc guard page    | - guard page, attached Java thread usually has
5820 //    |                        |/  1 glibc guard page.
5821 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5822 //    |                        |\
5823 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5824 //    |                        |/
5825 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5826 //    |                        |\
5827 //    |      Normal Stack      | -
5828 //    |                        |/
5829 // P2 +------------------------+ Thread::stack_base()
5830 //
5831 // Non-Java thread:
5832 //
5833 //   Low memory addresses
5834 // P0 +------------------------+
5835 //    |                        |\
5836 //    |  glibc guard page      | - usually 1 page
5837 //    |                        |/
5838 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5839 //    |                        |\
5840 //    |      Normal Stack      | -
5841 //    |                        |/
5842 // P2 +------------------------+ Thread::stack_base()
5843 //
5844 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5845 //    returned from pthread_attr_getstack().
5846 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5847 //    of the stack size given in pthread_attr. We work around this for
5848 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5849 //
5850 #ifndef ZERO
5851 static void current_stack_region(address * bottom, size_t * size) {
5852   if (os::is_primordial_thread()) {
5853     // primordial thread needs special handling because pthread_getattr_np()
5854     // may return bogus value.
5855     *bottom = os::Linux::initial_thread_stack_bottom();
5856     *size   = os::Linux::initial_thread_stack_size();
5857   } else {
5858     pthread_attr_t attr;
5859 
5860     int rslt = pthread_getattr_np(pthread_self(), &attr);
5861 
5862     // JVM needs to know exact stack location, abort if it fails
5863     if (rslt != 0) {
5864       if (rslt == ENOMEM) {
5865         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5866       } else {
5867         fatal("pthread_getattr_np failed with error = %d", rslt);
5868       }
5869     }
5870 
5871     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5872       fatal("Cannot locate current stack attributes!");
5873     }
5874 
5875     // Work around NPTL stack guard error.
5876     size_t guard_size = 0;
5877     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5878     if (rslt != 0) {
5879       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5880     }
5881     *bottom += guard_size;
5882     *size   -= guard_size;
5883 
5884     pthread_attr_destroy(&attr);
5885 
5886   }
5887   assert(os::current_stack_pointer() >= *bottom &&
5888          os::current_stack_pointer() < *bottom + *size, "just checking");
5889 }
5890 
5891 address os::current_stack_base() {
5892   address bottom;
5893   size_t size;
5894   current_stack_region(&bottom, &size);
5895   return (bottom + size);
5896 }
5897 
5898 size_t os::current_stack_size() {
5899   // This stack size includes the usable stack and HotSpot guard pages
5900   // (for the threads that have Hotspot guard pages).
5901   address bottom;
5902   size_t size;
5903   current_stack_region(&bottom, &size);
5904   return size;
5905 }
5906 #endif
5907 
5908 static inline struct timespec get_mtime(const char* filename) {
5909   struct stat st;
5910   int ret = os::stat(filename, &st);
5911   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5912   return st.st_mtim;
5913 }
5914 
5915 int os::compare_file_modified_times(const char* file1, const char* file2) {
5916   struct timespec filetime1 = get_mtime(file1);
5917   struct timespec filetime2 = get_mtime(file2);
5918   int diff = filetime1.tv_sec - filetime2.tv_sec;
5919   if (diff == 0) {
5920     return filetime1.tv_nsec - filetime2.tv_nsec;
5921   }
5922   return diff;
5923 }
5924 
5925 /////////////// Unit tests ///////////////
5926 
5927 #ifndef PRODUCT
5928 
5929 #define test_log(...)              \
5930   do {                             \
5931     if (VerboseInternalVMTests) {  \
5932       tty->print_cr(__VA_ARGS__);  \
5933       tty->flush();                \
5934     }                              \
5935   } while (false)
5936 
5937 class TestReserveMemorySpecial : AllStatic {
5938  public:
5939   static void small_page_write(void* addr, size_t size) {
5940     size_t page_size = os::vm_page_size();
5941 
5942     char* end = (char*)addr + size;
5943     for (char* p = (char*)addr; p < end; p += page_size) {
5944       *p = 1;
5945     }
5946   }
5947 
5948   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5949     if (!UseHugeTLBFS) {
5950       return;
5951     }
5952 
5953     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5954 
5955     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5956 
5957     if (addr != NULL) {
5958       small_page_write(addr, size);
5959 
5960       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5961     }
5962   }
5963 
5964   static void test_reserve_memory_special_huge_tlbfs_only() {
5965     if (!UseHugeTLBFS) {
5966       return;
5967     }
5968 
5969     size_t lp = os::large_page_size();
5970 
5971     for (size_t size = lp; size <= lp * 10; size += lp) {
5972       test_reserve_memory_special_huge_tlbfs_only(size);
5973     }
5974   }
5975 
5976   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5977     size_t lp = os::large_page_size();
5978     size_t ag = os::vm_allocation_granularity();
5979 
5980     // sizes to test
5981     const size_t sizes[] = {
5982       lp, lp + ag, lp + lp / 2, lp * 2,
5983       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5984       lp * 10, lp * 10 + lp / 2
5985     };
5986     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5987 
5988     // For each size/alignment combination, we test three scenarios:
5989     // 1) with req_addr == NULL
5990     // 2) with a non-null req_addr at which we expect to successfully allocate
5991     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5992     //    expect the allocation to either fail or to ignore req_addr
5993 
5994     // Pre-allocate two areas; they shall be as large as the largest allocation
5995     //  and aligned to the largest alignment we will be testing.
5996     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5997     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5998       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5999       -1, 0);
6000     assert(mapping1 != MAP_FAILED, "should work");
6001 
6002     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6003       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6004       -1, 0);
6005     assert(mapping2 != MAP_FAILED, "should work");
6006 
6007     // Unmap the first mapping, but leave the second mapping intact: the first
6008     // mapping will serve as a value for a "good" req_addr (case 2). The second
6009     // mapping, still intact, as "bad" req_addr (case 3).
6010     ::munmap(mapping1, mapping_size);
6011 
6012     // Case 1
6013     test_log("%s, req_addr NULL:", __FUNCTION__);
6014     test_log("size            align           result");
6015 
6016     for (int i = 0; i < num_sizes; i++) {
6017       const size_t size = sizes[i];
6018       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6019         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6020         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6021                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6022         if (p != NULL) {
6023           assert(is_aligned(p, alignment), "must be");
6024           small_page_write(p, size);
6025           os::Linux::release_memory_special_huge_tlbfs(p, size);
6026         }
6027       }
6028     }
6029 
6030     // Case 2
6031     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6032     test_log("size            align           req_addr         result");
6033 
6034     for (int i = 0; i < num_sizes; i++) {
6035       const size_t size = sizes[i];
6036       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6037         char* const req_addr = align_up(mapping1, alignment);
6038         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6039         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6040                  size, alignment, p2i(req_addr), p2i(p),
6041                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6042         if (p != NULL) {
6043           assert(p == req_addr, "must be");
6044           small_page_write(p, size);
6045           os::Linux::release_memory_special_huge_tlbfs(p, size);
6046         }
6047       }
6048     }
6049 
6050     // Case 3
6051     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6052     test_log("size            align           req_addr         result");
6053 
6054     for (int i = 0; i < num_sizes; i++) {
6055       const size_t size = sizes[i];
6056       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6057         char* const req_addr = align_up(mapping2, alignment);
6058         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6059         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6060                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6061         // as the area around req_addr contains already existing mappings, the API should always
6062         // return NULL (as per contract, it cannot return another address)
6063         assert(p == NULL, "must be");
6064       }
6065     }
6066 
6067     ::munmap(mapping2, mapping_size);
6068 
6069   }
6070 
6071   static void test_reserve_memory_special_huge_tlbfs() {
6072     if (!UseHugeTLBFS) {
6073       return;
6074     }
6075 
6076     test_reserve_memory_special_huge_tlbfs_only();
6077     test_reserve_memory_special_huge_tlbfs_mixed();
6078   }
6079 
6080   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6081     if (!UseSHM) {
6082       return;
6083     }
6084 
6085     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6086 
6087     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6088 
6089     if (addr != NULL) {
6090       assert(is_aligned(addr, alignment), "Check");
6091       assert(is_aligned(addr, os::large_page_size()), "Check");
6092 
6093       small_page_write(addr, size);
6094 
6095       os::Linux::release_memory_special_shm(addr, size);
6096     }
6097   }
6098 
6099   static void test_reserve_memory_special_shm() {
6100     size_t lp = os::large_page_size();
6101     size_t ag = os::vm_allocation_granularity();
6102 
6103     for (size_t size = ag; size < lp * 3; size += ag) {
6104       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6105         test_reserve_memory_special_shm(size, alignment);
6106       }
6107     }
6108   }
6109 
6110   static void test() {
6111     test_reserve_memory_special_huge_tlbfs();
6112     test_reserve_memory_special_shm();
6113   }
6114 };
6115 
6116 void TestReserveMemorySpecial_test() {
6117   TestReserveMemorySpecial::test();
6118 }
6119 
6120 #endif