1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
  26 #define SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP
  27 
  28 #include "gc/shared/modRefBarrierSet.hpp"
  29 #include "utilities/align.hpp"
  30 
  31 // This kind of "BarrierSet" allows a "CollectedHeap" to detect and
  32 // enumerate ref fields that have been modified (since the last
  33 // enumeration.)
  34 
  35 // As it currently stands, this barrier is *imprecise*: when a ref field in
  36 // an object "o" is modified, the card table entry for the card containing
  37 // the head of "o" is dirtied, not necessarily the card containing the
  38 // modified field itself.  For object arrays, however, the barrier *is*
  39 // precise; only the card containing the modified element is dirtied.
  40 // Closures used to scan dirty cards should take these
  41 // considerations into account.
  42 
  43 class CardTableModRefBS: public ModRefBarrierSet {
  44   // Some classes get to look at some private stuff.
  45   friend class VMStructs;
  46  protected:
  47 
  48   enum CardValues {
  49     clean_card                  = -1,
  50     // The mask contains zeros in places for all other values.
  51     clean_card_mask             = clean_card - 31,
  52 
  53     dirty_card                  =  0,
  54     precleaned_card             =  1,
  55     claimed_card                =  2,
  56     deferred_card               =  4,
  57     last_card                   =  8,
  58     CT_MR_BS_last_reserved      = 16
  59   };
  60 
  61   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
  62   // or INCLUDE_JVMCI is being used
  63   bool _defer_initial_card_mark;
  64 
  65   // a word's worth (row) of clean card values
  66   static const intptr_t clean_card_row = (intptr_t)(-1);
  67 
  68   // The declaration order of these const fields is important; see the
  69   // constructor before changing.
  70   const MemRegion _whole_heap;       // the region covered by the card table
  71   size_t          _guard_index;      // index of very last element in the card
  72                                      // table; it is set to a guard value
  73                                      // (last_card) and should never be modified
  74   size_t          _last_valid_index; // index of the last valid element
  75   const size_t    _page_size;        // page size used when mapping _byte_map
  76   size_t          _byte_map_size;    // in bytes
  77   jbyte*          _byte_map;         // the card marking array
  78 
  79   // Some barrier sets create tables whose elements correspond to parts of
  80   // the heap; the CardTableModRefBS is an example.  Such barrier sets will
  81   // normally reserve space for such tables, and commit parts of the table
  82   // "covering" parts of the heap that are committed. At most one covered
  83   // region per generation is needed.
  84   static const int _max_covered_regions = 2;
  85 
  86   int _cur_covered_regions;
  87 
  88   // The covered regions should be in address order.
  89   MemRegion* _covered;
  90   // The committed regions correspond one-to-one to the covered regions.
  91   // They represent the card-table memory that has been committed to service
  92   // the corresponding covered region.  It may be that committed region for
  93   // one covered region corresponds to a larger region because of page-size
  94   // roundings.  Thus, a committed region for one covered region may
  95   // actually extend onto the card-table space for the next covered region.
  96   MemRegion* _committed;
  97 
  98   // The last card is a guard card, and we commit the page for it so
  99   // we can use the card for verification purposes. We make sure we never
 100   // uncommit the MemRegion for that page.
 101   MemRegion _guard_region;
 102 
 103   inline size_t compute_byte_map_size();
 104 
 105   // Finds and return the index of the region, if any, to which the given
 106   // region would be contiguous.  If none exists, assign a new region and
 107   // returns its index.  Requires that no more than the maximum number of
 108   // covered regions defined in the constructor are ever in use.
 109   int find_covering_region_by_base(HeapWord* base);
 110 
 111   // Same as above, but finds the region containing the given address
 112   // instead of starting at a given base address.
 113   int find_covering_region_containing(HeapWord* addr);
 114 
 115   // Resize one of the regions covered by the remembered set.
 116   virtual void resize_covered_region(MemRegion new_region);
 117 
 118   // Returns the leftmost end of a committed region corresponding to a
 119   // covered region before covered region "ind", or else "NULL" if "ind" is
 120   // the first covered region.
 121   HeapWord* largest_prev_committed_end(int ind) const;
 122 
 123   // Returns the part of the region mr that doesn't intersect with
 124   // any committed region other than self.  Used to prevent uncommitting
 125   // regions that are also committed by other regions.  Also protects
 126   // against uncommitting the guard region.
 127   MemRegion committed_unique_to_self(int self, MemRegion mr) const;
 128 
 129   // Mapping from address to card marking array entry
 130   jbyte* byte_for(const void* p) const {
 131     assert(_whole_heap.contains(p),
 132            "Attempt to access p = " PTR_FORMAT " out of bounds of "
 133            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
 134            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
 135     jbyte* result = &byte_map_base[uintptr_t(p) >> card_shift];
 136     assert(result >= _byte_map && result < _byte_map + _byte_map_size,
 137            "out of bounds accessor for card marking array");
 138     return result;
 139   }
 140 
 141   // The card table byte one after the card marking array
 142   // entry for argument address. Typically used for higher bounds
 143   // for loops iterating through the card table.
 144   jbyte* byte_after(const void* p) const {
 145     return byte_for(p) + 1;
 146   }
 147 
 148   // Dirty the bytes corresponding to "mr" (not all of which must be
 149   // covered.)
 150   void dirty_MemRegion(MemRegion mr);
 151 
 152   // Clear (to clean_card) the bytes entirely contained within "mr" (not
 153   // all of which must be covered.)
 154   void clear_MemRegion(MemRegion mr);
 155 
 156  public:
 157   // Constants
 158   enum SomePublicConstants {
 159     card_shift                  = 9,
 160     card_size                   = 1 << card_shift,
 161     card_size_in_words          = card_size / sizeof(HeapWord)
 162   };
 163 
 164   static int clean_card_val()      { return clean_card; }
 165   static int clean_card_mask_val() { return clean_card_mask; }
 166   static int dirty_card_val()      { return dirty_card; }
 167   static int claimed_card_val()    { return claimed_card; }
 168   static int precleaned_card_val() { return precleaned_card; }
 169   static int deferred_card_val()   { return deferred_card; }
 170 
 171   virtual void initialize();
 172 
 173   // *** Barrier set functions.
 174 
 175   // Initialization utilities; covered_words is the size of the covered region
 176   // in, um, words.
 177   inline size_t cards_required(size_t covered_words) {
 178     // Add one for a guard card, used to detect errors.
 179     const size_t words = align_up(covered_words, card_size_in_words);
 180     return words / card_size_in_words + 1;
 181   }
 182 
 183  protected:
 184   CardTableModRefBS(MemRegion whole_heap, const BarrierSet::FakeRtti& fake_rtti);
 185   ~CardTableModRefBS();
 186 
 187  public:
 188   void write_region(MemRegion mr) {
 189     dirty_MemRegion(mr);
 190   }
 191 
 192  protected:
 193   void write_ref_array_work(MemRegion mr) {
 194     dirty_MemRegion(mr);
 195   }
 196 
 197  public:
 198   bool is_aligned(HeapWord* addr) {
 199     return is_card_aligned(addr);
 200   }
 201 
 202   // *** Card-table-barrier-specific things.
 203 
 204   // Record a reference update. Note that these versions are precise!
 205   // The scanning code has to handle the fact that the write barrier may be
 206   // either precise or imprecise. We make non-virtual inline variants of
 207   // these functions here for performance.
 208   template <DecoratorSet decorators, typename T>
 209   void write_ref_field_post(T* field, oop newVal);
 210 
 211   // These are used by G1, when it uses the card table as a temporary data
 212   // structure for card claiming.
 213   bool is_card_dirty(size_t card_index) {
 214     return _byte_map[card_index] == dirty_card_val();
 215   }
 216 
 217   void mark_card_dirty(size_t card_index) {
 218     _byte_map[card_index] = dirty_card_val();
 219   }
 220 
 221   bool is_card_clean(size_t card_index) {
 222     return _byte_map[card_index] == clean_card_val();
 223   }
 224 
 225   // Card marking array base (adjusted for heap low boundary)
 226   // This would be the 0th element of _byte_map, if the heap started at 0x0.
 227   // But since the heap starts at some higher address, this points to somewhere
 228   // before the beginning of the actual _byte_map.
 229   jbyte* byte_map_base;
 230 
 231   // Return true if "p" is at the start of a card.
 232   bool is_card_aligned(HeapWord* p) {
 233     jbyte* pcard = byte_for(p);
 234     return (addr_for(pcard) == p);
 235   }
 236 
 237   HeapWord* align_to_card_boundary(HeapWord* p) {
 238     jbyte* pcard = byte_for(p + card_size_in_words - 1);
 239     return addr_for(pcard);
 240   }
 241 
 242   // The kinds of precision a CardTableModRefBS may offer.
 243   enum PrecisionStyle {
 244     Precise,
 245     ObjHeadPreciseArray
 246   };
 247 
 248   // Tells what style of precision this card table offers.
 249   PrecisionStyle precision() {
 250     return ObjHeadPreciseArray; // Only one supported for now.
 251   }
 252 
 253   // ModRefBS functions.
 254   virtual void invalidate(MemRegion mr);
 255   void clear(MemRegion mr);
 256   void dirty(MemRegion mr);
 257 
 258   // *** Card-table-RemSet-specific things.
 259 
 260   static uintx ct_max_alignment_constraint();
 261 
 262   // Apply closure "cl" to the dirty cards containing some part of
 263   // MemRegion "mr".
 264   void dirty_card_iterate(MemRegion mr, MemRegionClosure* cl);
 265 
 266   // Return the MemRegion corresponding to the first maximal run
 267   // of dirty cards lying completely within MemRegion mr.
 268   // If reset is "true", then sets those card table entries to the given
 269   // value.
 270   MemRegion dirty_card_range_after_reset(MemRegion mr, bool reset,
 271                                          int reset_val);
 272 
 273   // Provide read-only access to the card table array.
 274   const jbyte* byte_for_const(const void* p) const {
 275     return byte_for(p);
 276   }
 277   const jbyte* byte_after_const(const void* p) const {
 278     return byte_after(p);
 279   }
 280 
 281   // Mapping from card marking array entry to address of first word
 282   HeapWord* addr_for(const jbyte* p) const {
 283     assert(p >= _byte_map && p < _byte_map + _byte_map_size,
 284            "out of bounds access to card marking array. p: " PTR_FORMAT
 285            " _byte_map: " PTR_FORMAT " _byte_map + _byte_map_size: " PTR_FORMAT,
 286            p2i(p), p2i(_byte_map), p2i(_byte_map + _byte_map_size));
 287     size_t delta = pointer_delta(p, byte_map_base, sizeof(jbyte));
 288     HeapWord* result = (HeapWord*) (delta << card_shift);
 289     assert(_whole_heap.contains(result),
 290            "Returning result = " PTR_FORMAT " out of bounds of "
 291            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
 292            p2i(result), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
 293     return result;
 294   }
 295 
 296   // Mapping from address to card marking array index.
 297   size_t index_for(void* p) {
 298     assert(_whole_heap.contains(p),
 299            "Attempt to access p = " PTR_FORMAT " out of bounds of "
 300            " card marking array's _whole_heap = [" PTR_FORMAT "," PTR_FORMAT ")",
 301            p2i(p), p2i(_whole_heap.start()), p2i(_whole_heap.end()));
 302     return byte_for(p) - _byte_map;
 303   }
 304 
 305   const jbyte* byte_for_index(const size_t card_index) const {
 306     return _byte_map + card_index;
 307   }
 308 
 309   // Print a description of the memory for the barrier set
 310   virtual void print_on(outputStream* st) const;
 311 
 312   void verify();
 313   void verify_guard();
 314 
 315   // val_equals -> it will check that all cards covered by mr equal val
 316   // !val_equals -> it will check that all cards covered by mr do not equal val
 317   void verify_region(MemRegion mr, jbyte val, bool val_equals) PRODUCT_RETURN;
 318   void verify_not_dirty_region(MemRegion mr) PRODUCT_RETURN;
 319   void verify_dirty_region(MemRegion mr) PRODUCT_RETURN;
 320 
 321   // ReduceInitialCardMarks
 322   void initialize_deferred_card_mark_barriers();
 323 
 324   // If the CollectedHeap was asked to defer a store barrier above,
 325   // this informs it to flush such a deferred store barrier to the
 326   // remembered set.
 327   void flush_deferred_card_mark_barrier(JavaThread* thread);
 328 
 329   // Can a compiler initialize a new object without store barriers?
 330   // This permission only extends from the creation of a new object
 331   // via a TLAB up to the first subsequent safepoint. If such permission
 332   // is granted for this heap type, the compiler promises to call
 333   // defer_store_barrier() below on any slow path allocation of
 334   // a new object for which such initializing store barriers will
 335   // have been elided. G1, like CMS, allows this, but should be
 336   // ready to provide a compensating write barrier as necessary
 337   // if that storage came out of a non-young region. The efficiency
 338   // of this implementation depends crucially on being able to
 339   // answer very efficiently in constant time whether a piece of
 340   // storage in the heap comes from a young region or not.
 341   // See ReduceInitialCardMarks.
 342   virtual bool can_elide_tlab_store_barriers() const {
 343     return true;
 344   }
 345 
 346   // If a compiler is eliding store barriers for TLAB-allocated objects,
 347   // we will be informed of a slow-path allocation by a call
 348   // to on_slowpath_allocation_exit() below. Such a call precedes the
 349   // initialization of the object itself, and no post-store-barriers will
 350   // be issued. Some heap types require that the barrier strictly follows
 351   // the initializing stores. (This is currently implemented by deferring the
 352   // barrier until the next slow-path allocation or gc-related safepoint.)
 353   // This interface answers whether a particular barrier type needs the card
 354   // mark to be thus strictly sequenced after the stores.
 355   virtual bool card_mark_must_follow_store() const = 0;
 356 
 357   virtual bool is_in_young(oop obj) const = 0;
 358 
 359   virtual void on_slowpath_allocation_exit(JavaThread* thread, oop new_obj);
 360   virtual void on_thread_detach(JavaThread* thread);
 361 
 362   virtual void make_parsable(JavaThread* thread) { flush_deferred_card_mark_barrier(thread); }
 363 
 364   template <DecoratorSet decorators, typename BarrierSetT = CardTableModRefBS>
 365   class AccessBarrier: public ModRefBarrierSet::AccessBarrier<decorators, BarrierSetT> {};
 366 };
 367 
 368 template<>
 369 struct BarrierSet::GetName<CardTableModRefBS> {
 370   static const BarrierSet::Name value = BarrierSet::CardTableModRef;
 371 };
 372 
 373 template<>
 374 struct BarrierSet::GetType<BarrierSet::CardTableModRef> {
 375   typedef CardTableModRefBS type;
 376 };
 377 
 378 #endif // SHARE_VM_GC_SHARED_CARDTABLEMODREFBS_HPP