1 /* 2 * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved. 3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. 4 * 5 * This code is free software; you can redistribute it and/or modify it 6 * under the terms of the GNU General Public License version 2 only, as 7 * published by the Free Software Foundation. 8 * 9 * This code is distributed in the hope that it will be useful, but WITHOUT 10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 12 * version 2 for more details (a copy is included in the LICENSE file that 13 * accompanied this code). 14 * 15 * You should have received a copy of the GNU General Public License version 16 * 2 along with this work; if not, write to the Free Software Foundation, 17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. 18 * 19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA 20 * or visit www.oracle.com if you need additional information or have any 21 * questions. 22 * 23 */ 24 25 #include "precompiled.hpp" 26 #include "classfile/metadataOnStackMark.hpp" 27 #include "classfile/symbolTable.hpp" 28 #include "code/codeCache.hpp" 29 #include "gc/g1/g1CollectedHeap.inline.hpp" 30 #include "gc/g1/g1CollectorState.hpp" 31 #include "gc/g1/g1ConcurrentMark.inline.hpp" 32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp" 33 #include "gc/g1/g1HeapVerifier.hpp" 34 #include "gc/g1/g1OopClosures.inline.hpp" 35 #include "gc/g1/g1Policy.hpp" 36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp" 37 #include "gc/g1/g1StringDedup.hpp" 38 #include "gc/g1/heapRegion.inline.hpp" 39 #include "gc/g1/heapRegionRemSet.hpp" 40 #include "gc/g1/heapRegionSet.inline.hpp" 41 #include "gc/shared/adaptiveSizePolicy.hpp" 42 #include "gc/shared/gcId.hpp" 43 #include "gc/shared/gcTimer.hpp" 44 #include "gc/shared/gcTrace.hpp" 45 #include "gc/shared/gcTraceTime.inline.hpp" 46 #include "gc/shared/genOopClosures.inline.hpp" 47 #include "gc/shared/referencePolicy.hpp" 48 #include "gc/shared/strongRootsScope.hpp" 49 #include "gc/shared/suspendibleThreadSet.hpp" 50 #include "gc/shared/taskqueue.inline.hpp" 51 #include "gc/shared/vmGCOperations.hpp" 52 #include "gc/shared/weakProcessor.hpp" 53 #include "include/jvm.h" 54 #include "logging/log.hpp" 55 #include "memory/allocation.hpp" 56 #include "memory/resourceArea.hpp" 57 #include "oops/access.inline.hpp" 58 #include "oops/oop.inline.hpp" 59 #include "runtime/atomic.hpp" 60 #include "runtime/handles.inline.hpp" 61 #include "runtime/java.hpp" 62 #include "runtime/prefetch.inline.hpp" 63 #include "services/memTracker.hpp" 64 #include "utilities/align.hpp" 65 #include "utilities/growableArray.hpp" 66 67 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) { 68 assert(addr < _cm->finger(), "invariant"); 69 assert(addr >= _task->finger(), "invariant"); 70 71 // We move that task's local finger along. 72 _task->move_finger_to(addr); 73 74 _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr))); 75 // we only partially drain the local queue and global stack 76 _task->drain_local_queue(true); 77 _task->drain_global_stack(true); 78 79 // if the has_aborted flag has been raised, we need to bail out of 80 // the iteration 81 return !_task->has_aborted(); 82 } 83 84 G1CMMarkStack::G1CMMarkStack() : 85 _max_chunk_capacity(0), 86 _base(NULL), 87 _chunk_capacity(0) { 88 set_empty(); 89 } 90 91 bool G1CMMarkStack::resize(size_t new_capacity) { 92 assert(is_empty(), "Only resize when stack is empty."); 93 assert(new_capacity <= _max_chunk_capacity, 94 "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity); 95 96 TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC); 97 98 if (new_base == NULL) { 99 log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk)); 100 return false; 101 } 102 // Release old mapping. 103 if (_base != NULL) { 104 MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity); 105 } 106 107 _base = new_base; 108 _chunk_capacity = new_capacity; 109 set_empty(); 110 111 return true; 112 } 113 114 size_t G1CMMarkStack::capacity_alignment() { 115 return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry); 116 } 117 118 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) { 119 guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized."); 120 121 size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry); 122 123 _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar; 124 size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar; 125 126 guarantee(initial_chunk_capacity <= _max_chunk_capacity, 127 "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT, 128 _max_chunk_capacity, 129 initial_chunk_capacity); 130 131 log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT, 132 initial_chunk_capacity, _max_chunk_capacity); 133 134 return resize(initial_chunk_capacity); 135 } 136 137 void G1CMMarkStack::expand() { 138 if (_chunk_capacity == _max_chunk_capacity) { 139 log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity); 140 return; 141 } 142 size_t old_capacity = _chunk_capacity; 143 // Double capacity if possible 144 size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity); 145 146 if (resize(new_capacity)) { 147 log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks", 148 old_capacity, new_capacity); 149 } else { 150 log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks", 151 old_capacity, new_capacity); 152 } 153 } 154 155 G1CMMarkStack::~G1CMMarkStack() { 156 if (_base != NULL) { 157 MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity); 158 } 159 } 160 161 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) { 162 elem->next = *list; 163 *list = elem; 164 } 165 166 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) { 167 MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag); 168 add_chunk_to_list(&_chunk_list, elem); 169 _chunks_in_chunk_list++; 170 } 171 172 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) { 173 MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag); 174 add_chunk_to_list(&_free_list, elem); 175 } 176 177 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) { 178 TaskQueueEntryChunk* result = *list; 179 if (result != NULL) { 180 *list = (*list)->next; 181 } 182 return result; 183 } 184 185 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() { 186 MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag); 187 TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list); 188 if (result != NULL) { 189 _chunks_in_chunk_list--; 190 } 191 return result; 192 } 193 194 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() { 195 MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag); 196 return remove_chunk_from_list(&_free_list); 197 } 198 199 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() { 200 // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code. 201 // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding 202 // wraparound of _hwm. 203 if (_hwm >= _chunk_capacity) { 204 return NULL; 205 } 206 207 size_t cur_idx = Atomic::add(1u, &_hwm) - 1; 208 if (cur_idx >= _chunk_capacity) { 209 return NULL; 210 } 211 212 TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk; 213 result->next = NULL; 214 return result; 215 } 216 217 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) { 218 // Get a new chunk. 219 TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list(); 220 221 if (new_chunk == NULL) { 222 // Did not get a chunk from the free list. Allocate from backing memory. 223 new_chunk = allocate_new_chunk(); 224 225 if (new_chunk == NULL) { 226 return false; 227 } 228 } 229 230 Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry)); 231 232 add_chunk_to_chunk_list(new_chunk); 233 234 return true; 235 } 236 237 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) { 238 TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list(); 239 240 if (cur == NULL) { 241 return false; 242 } 243 244 Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry)); 245 246 add_chunk_to_free_list(cur); 247 return true; 248 } 249 250 void G1CMMarkStack::set_empty() { 251 _chunks_in_chunk_list = 0; 252 _hwm = 0; 253 _chunk_list = NULL; 254 _free_list = NULL; 255 } 256 257 G1CMRootRegions::G1CMRootRegions() : 258 _survivors(NULL), _cm(NULL), _scan_in_progress(false), 259 _should_abort(false), _claimed_survivor_index(0) { } 260 261 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) { 262 _survivors = survivors; 263 _cm = cm; 264 } 265 266 void G1CMRootRegions::prepare_for_scan() { 267 assert(!scan_in_progress(), "pre-condition"); 268 269 // Currently, only survivors can be root regions. 270 _claimed_survivor_index = 0; 271 _scan_in_progress = _survivors->regions()->is_nonempty(); 272 _should_abort = false; 273 } 274 275 HeapRegion* G1CMRootRegions::claim_next() { 276 if (_should_abort) { 277 // If someone has set the should_abort flag, we return NULL to 278 // force the caller to bail out of their loop. 279 return NULL; 280 } 281 282 // Currently, only survivors can be root regions. 283 const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions(); 284 285 int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1; 286 if (claimed_index < survivor_regions->length()) { 287 return survivor_regions->at(claimed_index); 288 } 289 return NULL; 290 } 291 292 uint G1CMRootRegions::num_root_regions() const { 293 return (uint)_survivors->regions()->length(); 294 } 295 296 void G1CMRootRegions::notify_scan_done() { 297 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag); 298 _scan_in_progress = false; 299 RootRegionScan_lock->notify_all(); 300 } 301 302 void G1CMRootRegions::cancel_scan() { 303 notify_scan_done(); 304 } 305 306 void G1CMRootRegions::scan_finished() { 307 assert(scan_in_progress(), "pre-condition"); 308 309 // Currently, only survivors can be root regions. 310 if (!_should_abort) { 311 assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index); 312 assert((uint)_claimed_survivor_index >= _survivors->length(), 313 "we should have claimed all survivors, claimed index = %u, length = %u", 314 (uint)_claimed_survivor_index, _survivors->length()); 315 } 316 317 notify_scan_done(); 318 } 319 320 bool G1CMRootRegions::wait_until_scan_finished() { 321 if (!scan_in_progress()) { 322 return false; 323 } 324 325 { 326 MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag); 327 while (scan_in_progress()) { 328 RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag); 329 } 330 } 331 return true; 332 } 333 334 // Returns the maximum number of workers to be used in a concurrent 335 // phase based on the number of GC workers being used in a STW 336 // phase. 337 static uint scale_concurrent_worker_threads(uint num_gc_workers) { 338 return MAX2((num_gc_workers + 2) / 4, 1U); 339 } 340 341 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h, 342 G1RegionToSpaceMapper* prev_bitmap_storage, 343 G1RegionToSpaceMapper* next_bitmap_storage) : 344 // _cm_thread set inside the constructor 345 _g1h(g1h), 346 _completed_initialization(false), 347 348 _mark_bitmap_1(), 349 _mark_bitmap_2(), 350 _prev_mark_bitmap(&_mark_bitmap_1), 351 _next_mark_bitmap(&_mark_bitmap_2), 352 353 _heap(_g1h->reserved_region()), 354 355 _root_regions(), 356 357 _global_mark_stack(), 358 359 // _finger set in set_non_marking_state 360 361 _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads), 362 _max_num_tasks(ParallelGCThreads), 363 // _num_active_tasks set in set_non_marking_state() 364 // _tasks set inside the constructor 365 366 _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)), 367 _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)), 368 369 _first_overflow_barrier_sync(), 370 _second_overflow_barrier_sync(), 371 372 _has_overflown(false), 373 _concurrent(false), 374 _has_aborted(false), 375 _restart_for_overflow(false), 376 _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()), 377 _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()), 378 379 // _verbose_level set below 380 381 _init_times(), 382 _remark_times(), 383 _remark_mark_times(), 384 _remark_weak_ref_times(), 385 _cleanup_times(), 386 _total_cleanup_time(0.0), 387 388 _accum_task_vtime(NULL), 389 390 _concurrent_workers(NULL), 391 _num_concurrent_workers(0), 392 _max_concurrent_workers(0), 393 394 _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)), 395 _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC)) 396 { 397 _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage); 398 _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage); 399 400 // Create & start ConcurrentMark thread. 401 _cm_thread = new G1ConcurrentMarkThread(this); 402 if (_cm_thread->osthread() == NULL) { 403 vm_shutdown_during_initialization("Could not create ConcurrentMarkThread"); 404 } 405 406 assert(CGC_lock != NULL, "CGC_lock must be initialized"); 407 408 SATBMarkQueueSet& satb_qs = JavaThread::satb_mark_queue_set(); 409 satb_qs.set_buffer_size(G1SATBBufferSize); 410 411 _root_regions.init(_g1h->survivor(), this); 412 413 if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) { 414 // Calculate the number of concurrent worker threads by scaling 415 // the number of parallel GC threads. 416 uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads); 417 FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num); 418 } 419 420 assert(ConcGCThreads > 0, "ConcGCThreads have been set."); 421 if (ConcGCThreads > ParallelGCThreads) { 422 log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).", 423 ConcGCThreads, ParallelGCThreads); 424 return; 425 } 426 427 log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset); 428 log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads); 429 430 _num_concurrent_workers = ConcGCThreads; 431 _max_concurrent_workers = _num_concurrent_workers; 432 433 _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true); 434 _concurrent_workers->initialize_workers(); 435 436 if (FLAG_IS_DEFAULT(MarkStackSize)) { 437 size_t mark_stack_size = 438 MIN2(MarkStackSizeMax, 439 MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE))); 440 // Verify that the calculated value for MarkStackSize is in range. 441 // It would be nice to use the private utility routine from Arguments. 442 if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) { 443 log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): " 444 "must be between 1 and " SIZE_FORMAT, 445 mark_stack_size, MarkStackSizeMax); 446 return; 447 } 448 FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size); 449 } else { 450 // Verify MarkStackSize is in range. 451 if (FLAG_IS_CMDLINE(MarkStackSize)) { 452 if (FLAG_IS_DEFAULT(MarkStackSizeMax)) { 453 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) { 454 log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): " 455 "must be between 1 and " SIZE_FORMAT, 456 MarkStackSize, MarkStackSizeMax); 457 return; 458 } 459 } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) { 460 if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) { 461 log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")" 462 " or for MarkStackSizeMax (" SIZE_FORMAT ")", 463 MarkStackSize, MarkStackSizeMax); 464 return; 465 } 466 } 467 } 468 } 469 470 if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) { 471 vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack."); 472 } 473 474 _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC); 475 _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC); 476 477 // so that the assertion in MarkingTaskQueue::task_queue doesn't fail 478 _num_active_tasks = _max_num_tasks; 479 480 for (uint i = 0; i < _max_num_tasks; ++i) { 481 G1CMTaskQueue* task_queue = new G1CMTaskQueue(); 482 task_queue->initialize(); 483 _task_queues->register_queue(i, task_queue); 484 485 _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions()); 486 487 _accum_task_vtime[i] = 0.0; 488 } 489 490 reset_at_marking_complete(); 491 _completed_initialization = true; 492 } 493 494 void G1ConcurrentMark::reset() { 495 _has_aborted = false; 496 497 reset_marking_for_restart(); 498 499 // Reset all tasks, since different phases will use different number of active 500 // threads. So, it's easiest to have all of them ready. 501 for (uint i = 0; i < _max_num_tasks; ++i) { 502 _tasks[i]->reset(_next_mark_bitmap); 503 } 504 505 uint max_regions = _g1h->max_regions(); 506 for (uint i = 0; i < max_regions; i++) { 507 _top_at_rebuild_starts[i] = NULL; 508 _region_mark_stats[i].clear(); 509 } 510 } 511 512 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) { 513 for (uint j = 0; j < _max_num_tasks; ++j) { 514 _tasks[j]->clear_mark_stats_cache(region_idx); 515 } 516 _top_at_rebuild_starts[region_idx] = NULL; 517 _region_mark_stats[region_idx].clear(); 518 } 519 520 void G1ConcurrentMark::clear_statistics(HeapRegion* r) { 521 uint const region_idx = r->hrm_index(); 522 if (r->is_humongous()) { 523 assert(r->is_starts_humongous(), "Got humongous continues region here"); 524 uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size()); 525 for (uint j = region_idx; j < (region_idx + size_in_regions); j++) { 526 clear_statistics_in_region(j); 527 } 528 } else { 529 clear_statistics_in_region(region_idx); 530 } 531 } 532 533 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) { 534 assert_at_safepoint_on_vm_thread(); 535 536 // Need to clear mark bit of the humongous object. 537 if (_next_mark_bitmap->is_marked(r->bottom())) { 538 _next_mark_bitmap->clear(r->bottom()); 539 } 540 541 if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) { 542 return; 543 } 544 545 // Clear any statistics about the region gathered so far. 546 clear_statistics(r); 547 } 548 549 void G1ConcurrentMark::reset_marking_for_restart() { 550 _global_mark_stack.set_empty(); 551 552 // Expand the marking stack, if we have to and if we can. 553 if (has_overflown()) { 554 _global_mark_stack.expand(); 555 556 uint max_regions = _g1h->max_regions(); 557 for (uint i = 0; i < max_regions; i++) { 558 _region_mark_stats[i].clear_during_overflow(); 559 } 560 } 561 562 clear_has_overflown(); 563 _finger = _heap.start(); 564 565 for (uint i = 0; i < _max_num_tasks; ++i) { 566 G1CMTaskQueue* queue = _task_queues->queue(i); 567 queue->set_empty(); 568 } 569 } 570 571 void G1ConcurrentMark::set_concurrency(uint active_tasks) { 572 assert(active_tasks <= _max_num_tasks, "we should not have more"); 573 574 _num_active_tasks = active_tasks; 575 // Need to update the three data structures below according to the 576 // number of active threads for this phase. 577 _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues); 578 _first_overflow_barrier_sync.set_n_workers((int) active_tasks); 579 _second_overflow_barrier_sync.set_n_workers((int) active_tasks); 580 } 581 582 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) { 583 set_concurrency(active_tasks); 584 585 _concurrent = concurrent; 586 587 if (!concurrent) { 588 // At this point we should be in a STW phase, and completed marking. 589 assert_at_safepoint_on_vm_thread(); 590 assert(out_of_regions(), 591 "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT, 592 p2i(_finger), p2i(_heap.end())); 593 } 594 } 595 596 void G1ConcurrentMark::reset_at_marking_complete() { 597 // We set the global marking state to some default values when we're 598 // not doing marking. 599 reset_marking_for_restart(); 600 _num_active_tasks = 0; 601 } 602 603 G1ConcurrentMark::~G1ConcurrentMark() { 604 FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts); 605 FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats); 606 // The G1ConcurrentMark instance is never freed. 607 ShouldNotReachHere(); 608 } 609 610 class G1ClearBitMapTask : public AbstractGangTask { 611 public: 612 static size_t chunk_size() { return M; } 613 614 private: 615 // Heap region closure used for clearing the given mark bitmap. 616 class G1ClearBitmapHRClosure : public HeapRegionClosure { 617 private: 618 G1CMBitMap* _bitmap; 619 G1ConcurrentMark* _cm; 620 public: 621 G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _cm(cm), _bitmap(bitmap) { 622 } 623 624 virtual bool do_heap_region(HeapRegion* r) { 625 size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize; 626 627 HeapWord* cur = r->bottom(); 628 HeapWord* const end = r->end(); 629 630 while (cur < end) { 631 MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end)); 632 _bitmap->clear_range(mr); 633 634 cur += chunk_size_in_words; 635 636 // Abort iteration if after yielding the marking has been aborted. 637 if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) { 638 return true; 639 } 640 // Repeat the asserts from before the start of the closure. We will do them 641 // as asserts here to minimize their overhead on the product. However, we 642 // will have them as guarantees at the beginning / end of the bitmap 643 // clearing to get some checking in the product. 644 assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant"); 645 assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant"); 646 } 647 assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index()); 648 649 return false; 650 } 651 }; 652 653 G1ClearBitmapHRClosure _cl; 654 HeapRegionClaimer _hr_claimer; 655 bool _suspendible; // If the task is suspendible, workers must join the STS. 656 657 public: 658 G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) : 659 AbstractGangTask("G1 Clear Bitmap"), 660 _cl(bitmap, suspendible ? cm : NULL), 661 _hr_claimer(n_workers), 662 _suspendible(suspendible) 663 { } 664 665 void work(uint worker_id) { 666 SuspendibleThreadSetJoiner sts_join(_suspendible); 667 G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id); 668 } 669 670 bool is_complete() { 671 return _cl.is_complete(); 672 } 673 }; 674 675 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) { 676 assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint."); 677 678 size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor(); 679 size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size(); 680 681 uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers()); 682 683 G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield); 684 685 log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks); 686 workers->run_task(&cl, num_workers); 687 guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding."); 688 } 689 690 void G1ConcurrentMark::cleanup_for_next_mark() { 691 // Make sure that the concurrent mark thread looks to still be in 692 // the current cycle. 693 guarantee(cm_thread()->during_cycle(), "invariant"); 694 695 // We are finishing up the current cycle by clearing the next 696 // marking bitmap and getting it ready for the next cycle. During 697 // this time no other cycle can start. So, let's make sure that this 698 // is the case. 699 guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant"); 700 701 clear_bitmap(_next_mark_bitmap, _concurrent_workers, true); 702 703 // Repeat the asserts from above. 704 guarantee(cm_thread()->during_cycle(), "invariant"); 705 guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant"); 706 } 707 708 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) { 709 assert_at_safepoint_on_vm_thread(); 710 clear_bitmap(_prev_mark_bitmap, workers, false); 711 } 712 713 class CheckBitmapClearHRClosure : public HeapRegionClosure { 714 G1CMBitMap* _bitmap; 715 public: 716 CheckBitmapClearHRClosure(G1CMBitMap* bitmap) : _bitmap(bitmap) { 717 } 718 719 virtual bool do_heap_region(HeapRegion* r) { 720 // This closure can be called concurrently to the mutator, so we must make sure 721 // that the result of the getNextMarkedWordAddress() call is compared to the 722 // value passed to it as limit to detect any found bits. 723 // end never changes in G1. 724 HeapWord* end = r->end(); 725 return _bitmap->get_next_marked_addr(r->bottom(), end) != end; 726 } 727 }; 728 729 bool G1ConcurrentMark::next_mark_bitmap_is_clear() { 730 CheckBitmapClearHRClosure cl(_next_mark_bitmap); 731 _g1h->heap_region_iterate(&cl); 732 return cl.is_complete(); 733 } 734 735 class NoteStartOfMarkHRClosure : public HeapRegionClosure { 736 public: 737 bool do_heap_region(HeapRegion* r) { 738 r->note_start_of_marking(); 739 return false; 740 } 741 }; 742 743 void G1ConcurrentMark::pre_initial_mark() { 744 // Initialize marking structures. This has to be done in a STW phase. 745 reset(); 746 747 // For each region note start of marking. 748 NoteStartOfMarkHRClosure startcl; 749 _g1h->heap_region_iterate(&startcl); 750 } 751 752 753 void G1ConcurrentMark::post_initial_mark() { 754 // Start Concurrent Marking weak-reference discovery. 755 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 756 // enable ("weak") refs discovery 757 rp->enable_discovery(); 758 rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle 759 760 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 761 // This is the start of the marking cycle, we're expected all 762 // threads to have SATB queues with active set to false. 763 satb_mq_set.set_active_all_threads(true, /* new active value */ 764 false /* expected_active */); 765 766 _root_regions.prepare_for_scan(); 767 768 // update_g1_committed() will be called at the end of an evac pause 769 // when marking is on. So, it's also called at the end of the 770 // initial-mark pause to update the heap end, if the heap expands 771 // during it. No need to call it here. 772 } 773 774 /* 775 * Notice that in the next two methods, we actually leave the STS 776 * during the barrier sync and join it immediately afterwards. If we 777 * do not do this, the following deadlock can occur: one thread could 778 * be in the barrier sync code, waiting for the other thread to also 779 * sync up, whereas another one could be trying to yield, while also 780 * waiting for the other threads to sync up too. 781 * 782 * Note, however, that this code is also used during remark and in 783 * this case we should not attempt to leave / enter the STS, otherwise 784 * we'll either hit an assert (debug / fastdebug) or deadlock 785 * (product). So we should only leave / enter the STS if we are 786 * operating concurrently. 787 * 788 * Because the thread that does the sync barrier has left the STS, it 789 * is possible to be suspended for a Full GC or an evacuation pause 790 * could occur. This is actually safe, since the entering the sync 791 * barrier is one of the last things do_marking_step() does, and it 792 * doesn't manipulate any data structures afterwards. 793 */ 794 795 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) { 796 bool barrier_aborted; 797 { 798 SuspendibleThreadSetLeaver sts_leave(concurrent()); 799 barrier_aborted = !_first_overflow_barrier_sync.enter(); 800 } 801 802 // at this point everyone should have synced up and not be doing any 803 // more work 804 805 if (barrier_aborted) { 806 // If the barrier aborted we ignore the overflow condition and 807 // just abort the whole marking phase as quickly as possible. 808 return; 809 } 810 } 811 812 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) { 813 SuspendibleThreadSetLeaver sts_leave(concurrent()); 814 _second_overflow_barrier_sync.enter(); 815 816 // at this point everything should be re-initialized and ready to go 817 } 818 819 class G1CMConcurrentMarkingTask : public AbstractGangTask { 820 G1ConcurrentMark* _cm; 821 822 public: 823 void work(uint worker_id) { 824 assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread"); 825 ResourceMark rm; 826 827 double start_vtime = os::elapsedVTime(); 828 829 { 830 SuspendibleThreadSetJoiner sts_join; 831 832 assert(worker_id < _cm->active_tasks(), "invariant"); 833 834 G1CMTask* task = _cm->task(worker_id); 835 task->record_start_time(); 836 if (!_cm->has_aborted()) { 837 do { 838 task->do_marking_step(G1ConcMarkStepDurationMillis, 839 true /* do_termination */, 840 false /* is_serial*/); 841 842 _cm->do_yield_check(); 843 } while (!_cm->has_aborted() && task->has_aborted()); 844 } 845 task->record_end_time(); 846 guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant"); 847 } 848 849 double end_vtime = os::elapsedVTime(); 850 _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime); 851 } 852 853 G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) : 854 AbstractGangTask("Concurrent Mark"), _cm(cm) { } 855 856 ~G1CMConcurrentMarkingTask() { } 857 }; 858 859 uint G1ConcurrentMark::calc_active_marking_workers() { 860 uint result = 0; 861 if (!UseDynamicNumberOfGCThreads || 862 (!FLAG_IS_DEFAULT(ConcGCThreads) && 863 !ForceDynamicNumberOfGCThreads)) { 864 result = _max_concurrent_workers; 865 } else { 866 result = 867 AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers, 868 1, /* Minimum workers */ 869 _num_concurrent_workers, 870 Threads::number_of_non_daemon_threads()); 871 // Don't scale the result down by scale_concurrent_workers() because 872 // that scaling has already gone into "_max_concurrent_workers". 873 } 874 assert(result > 0 && result <= _max_concurrent_workers, 875 "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u", 876 _max_concurrent_workers, result); 877 return result; 878 } 879 880 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) { 881 // Currently, only survivors can be root regions. 882 assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant"); 883 G1RootRegionScanClosure cl(_g1h, this, worker_id); 884 885 const uintx interval = PrefetchScanIntervalInBytes; 886 HeapWord* curr = hr->bottom(); 887 const HeapWord* end = hr->top(); 888 while (curr < end) { 889 Prefetch::read(curr, interval); 890 oop obj = oop(curr); 891 int size = obj->oop_iterate_size(&cl); 892 assert(size == obj->size(), "sanity"); 893 curr += size; 894 } 895 } 896 897 class G1CMRootRegionScanTask : public AbstractGangTask { 898 G1ConcurrentMark* _cm; 899 public: 900 G1CMRootRegionScanTask(G1ConcurrentMark* cm) : 901 AbstractGangTask("G1 Root Region Scan"), _cm(cm) { } 902 903 void work(uint worker_id) { 904 assert(Thread::current()->is_ConcurrentGC_thread(), 905 "this should only be done by a conc GC thread"); 906 907 G1CMRootRegions* root_regions = _cm->root_regions(); 908 HeapRegion* hr = root_regions->claim_next(); 909 while (hr != NULL) { 910 _cm->scan_root_region(hr, worker_id); 911 hr = root_regions->claim_next(); 912 } 913 } 914 }; 915 916 void G1ConcurrentMark::scan_root_regions() { 917 // scan_in_progress() will have been set to true only if there was 918 // at least one root region to scan. So, if it's false, we 919 // should not attempt to do any further work. 920 if (root_regions()->scan_in_progress()) { 921 assert(!has_aborted(), "Aborting before root region scanning is finished not supported."); 922 923 _num_concurrent_workers = MIN2(calc_active_marking_workers(), 924 // We distribute work on a per-region basis, so starting 925 // more threads than that is useless. 926 root_regions()->num_root_regions()); 927 assert(_num_concurrent_workers <= _max_concurrent_workers, 928 "Maximum number of marking threads exceeded"); 929 930 G1CMRootRegionScanTask task(this); 931 log_debug(gc, ergo)("Running %s using %u workers for %u work units.", 932 task.name(), _num_concurrent_workers, root_regions()->num_root_regions()); 933 _concurrent_workers->run_task(&task, _num_concurrent_workers); 934 935 // It's possible that has_aborted() is true here without actually 936 // aborting the survivor scan earlier. This is OK as it's 937 // mainly used for sanity checking. 938 root_regions()->scan_finished(); 939 } 940 } 941 942 void G1ConcurrentMark::concurrent_cycle_start() { 943 _gc_timer_cm->register_gc_start(); 944 945 _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start()); 946 947 _g1h->trace_heap_before_gc(_gc_tracer_cm); 948 } 949 950 void G1ConcurrentMark::concurrent_cycle_end() { 951 _g1h->collector_state()->set_clearing_next_bitmap(false); 952 953 _g1h->trace_heap_after_gc(_gc_tracer_cm); 954 955 if (has_aborted()) { 956 log_info(gc, marking)("Concurrent Mark Abort"); 957 _gc_tracer_cm->report_concurrent_mode_failure(); 958 } 959 960 _gc_timer_cm->register_gc_end(); 961 962 _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions()); 963 } 964 965 void G1ConcurrentMark::mark_from_roots() { 966 _restart_for_overflow = false; 967 968 _num_concurrent_workers = calc_active_marking_workers(); 969 970 uint active_workers = MAX2(1U, _num_concurrent_workers); 971 972 // Setting active workers is not guaranteed since fewer 973 // worker threads may currently exist and more may not be 974 // available. 975 active_workers = _concurrent_workers->update_active_workers(active_workers); 976 log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers()); 977 978 // Parallel task terminator is set in "set_concurrency_and_phase()" 979 set_concurrency_and_phase(active_workers, true /* concurrent */); 980 981 G1CMConcurrentMarkingTask marking_task(this); 982 _concurrent_workers->run_task(&marking_task); 983 print_stats(); 984 } 985 986 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) { 987 G1HeapVerifier* verifier = _g1h->verifier(); 988 989 verifier->verify_region_sets_optional(); 990 991 if (VerifyDuringGC) { 992 GCTraceTime(Debug, gc, phases) trace(caller, _gc_timer_cm); 993 994 size_t const BufLen = 512; 995 char buffer[BufLen]; 996 997 jio_snprintf(buffer, BufLen, "During GC (%s)", caller); 998 verifier->verify(type, vo, buffer); 999 } 1000 1001 verifier->check_bitmaps(caller); 1002 } 1003 1004 class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure { 1005 G1CollectedHeap* _g1h; 1006 G1ConcurrentMark* _cm; 1007 1008 uint _num_regions_selected_for_rebuild; // The number of regions actually selected for rebuild. 1009 1010 void update_remset_before_rebuild(HeapRegion * hr) { 1011 G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker(); 1012 1013 size_t live_bytes = _cm->liveness(hr->hrm_index()) * HeapWordSize; 1014 bool selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes); 1015 if (selected_for_rebuild) { 1016 _num_regions_selected_for_rebuild++; 1017 } 1018 _cm->update_top_at_rebuild_start(hr); 1019 } 1020 1021 public: 1022 G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm) : 1023 _g1h(g1h), _cm(cm), _num_regions_selected_for_rebuild(0) { } 1024 1025 virtual bool do_heap_region(HeapRegion* r) { 1026 update_remset_before_rebuild(r); 1027 return false; 1028 } 1029 1030 uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; } 1031 }; 1032 1033 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure { 1034 G1CollectedHeap* _g1h; 1035 public: 1036 G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { } 1037 1038 virtual bool do_heap_region(HeapRegion* r) { 1039 _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r); 1040 return false; 1041 } 1042 }; 1043 1044 void G1ConcurrentMark::remark() { 1045 assert_at_safepoint_on_vm_thread(); 1046 1047 // If a full collection has happened, we should not continue. However we might 1048 // have ended up here as the Remark VM operation has been scheduled already. 1049 if (has_aborted()) { 1050 return; 1051 } 1052 1053 G1Policy* g1p = _g1h->g1_policy(); 1054 g1p->record_concurrent_mark_remark_start(); 1055 1056 double start = os::elapsedTime(); 1057 1058 verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before"); 1059 1060 { 1061 GCTraceTime(Debug, gc, phases) trace("Finalize Marking", _gc_timer_cm); 1062 finalize_marking(); 1063 } 1064 1065 double mark_work_end = os::elapsedTime(); 1066 1067 bool const mark_finished = !has_overflown(); 1068 if (mark_finished) { 1069 weak_refs_work(false /* clear_all_soft_refs */); 1070 1071 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 1072 // We're done with marking. 1073 // This is the end of the marking cycle, we're expected all 1074 // threads to have SATB queues with active set to true. 1075 satb_mq_set.set_active_all_threads(false, /* new active value */ 1076 true /* expected_active */); 1077 1078 { 1079 GCTraceTime(Debug, gc, phases)("Flush Task Caches"); 1080 flush_all_task_caches(); 1081 } 1082 1083 { 1084 GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking Before Rebuild"); 1085 G1UpdateRemSetTrackingBeforeRebuild cl(_g1h, this); 1086 _g1h->heap_region_iterate(&cl); 1087 log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u", 1088 _g1h->num_regions(), cl.num_selected_for_rebuild()); 1089 } 1090 1091 verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UseNextMarking, "Remark after"); 1092 1093 assert(!restart_for_overflow(), "sanity"); 1094 // Completely reset the marking state since marking completed 1095 reset_at_marking_complete(); 1096 } else { 1097 // We overflowed. Restart concurrent marking. 1098 _restart_for_overflow = true; 1099 1100 verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow"); 1101 1102 // Clear the marking state because we will be restarting 1103 // marking due to overflowing the global mark stack. 1104 reset_marking_for_restart(); 1105 } 1106 1107 { 1108 GCTraceTime(Debug, gc, phases)("Report Object Count"); 1109 report_object_count(); 1110 } 1111 1112 // Statistics 1113 double now = os::elapsedTime(); 1114 _remark_mark_times.add((mark_work_end - start) * 1000.0); 1115 _remark_weak_ref_times.add((now - mark_work_end) * 1000.0); 1116 _remark_times.add((now - start) * 1000.0); 1117 1118 g1p->record_concurrent_mark_remark_end(); 1119 } 1120 1121 class G1CleanupTask : public AbstractGangTask { 1122 // Per-region work during the Cleanup pause. 1123 class G1CleanupRegionsClosure : public HeapRegionClosure { 1124 G1CollectedHeap* _g1h; 1125 size_t _freed_bytes; 1126 FreeRegionList* _local_cleanup_list; 1127 uint _old_regions_removed; 1128 uint _humongous_regions_removed; 1129 HRRSCleanupTask* _hrrs_cleanup_task; 1130 1131 public: 1132 G1CleanupRegionsClosure(G1CollectedHeap* g1, 1133 FreeRegionList* local_cleanup_list, 1134 HRRSCleanupTask* hrrs_cleanup_task) : 1135 _g1h(g1), 1136 _freed_bytes(0), 1137 _local_cleanup_list(local_cleanup_list), 1138 _old_regions_removed(0), 1139 _humongous_regions_removed(0), 1140 _hrrs_cleanup_task(hrrs_cleanup_task) { } 1141 1142 size_t freed_bytes() { return _freed_bytes; } 1143 const uint old_regions_removed() { return _old_regions_removed; } 1144 const uint humongous_regions_removed() { return _humongous_regions_removed; } 1145 1146 bool do_heap_region(HeapRegion *hr) { 1147 hr->note_end_of_marking(); 1148 1149 if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) { 1150 _freed_bytes += hr->used(); 1151 hr->set_containing_set(NULL); 1152 if (hr->is_humongous()) { 1153 _humongous_regions_removed++; 1154 _g1h->free_humongous_region(hr, _local_cleanup_list); 1155 } else { 1156 _old_regions_removed++; 1157 _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */); 1158 } 1159 hr->clear_cardtable(); 1160 _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index()); 1161 log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom())); 1162 } else { 1163 hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task); 1164 } 1165 1166 return false; 1167 } 1168 }; 1169 1170 G1CollectedHeap* _g1h; 1171 FreeRegionList* _cleanup_list; 1172 HeapRegionClaimer _hrclaimer; 1173 1174 public: 1175 G1CleanupTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) : 1176 AbstractGangTask("G1 Cleanup"), 1177 _g1h(g1h), 1178 _cleanup_list(cleanup_list), 1179 _hrclaimer(n_workers) { 1180 1181 HeapRegionRemSet::reset_for_cleanup_tasks(); 1182 } 1183 1184 void work(uint worker_id) { 1185 FreeRegionList local_cleanup_list("Local Cleanup List"); 1186 HRRSCleanupTask hrrs_cleanup_task; 1187 G1CleanupRegionsClosure cl(_g1h, 1188 &local_cleanup_list, 1189 &hrrs_cleanup_task); 1190 _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id); 1191 assert(cl.is_complete(), "Shouldn't have aborted!"); 1192 1193 // Now update the old/humongous region sets 1194 _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed()); 1195 { 1196 MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag); 1197 _g1h->decrement_summary_bytes(cl.freed_bytes()); 1198 1199 _cleanup_list->add_ordered(&local_cleanup_list); 1200 assert(local_cleanup_list.is_empty(), "post-condition"); 1201 1202 HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task); 1203 } 1204 } 1205 }; 1206 1207 void G1ConcurrentMark::reclaim_empty_regions() { 1208 WorkGang* workers = _g1h->workers(); 1209 FreeRegionList empty_regions_list("Empty Regions After Mark List"); 1210 1211 G1CleanupTask cl(_g1h, &empty_regions_list, workers->active_workers()); 1212 workers->run_task(&cl); 1213 1214 if (!empty_regions_list.is_empty()) { 1215 log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length()); 1216 // Now print the empty regions list. 1217 G1HRPrinter* hrp = _g1h->hr_printer(); 1218 if (hrp->is_active()) { 1219 FreeRegionListIterator iter(&empty_regions_list); 1220 while (iter.more_available()) { 1221 HeapRegion* hr = iter.get_next(); 1222 hrp->cleanup(hr); 1223 } 1224 } 1225 // And actually make them available. 1226 _g1h->prepend_to_freelist(&empty_regions_list); 1227 } 1228 } 1229 1230 void G1ConcurrentMark::cleanup() { 1231 assert_at_safepoint_on_vm_thread(); 1232 1233 // If a full collection has happened, we shouldn't do this. 1234 if (has_aborted()) { 1235 return; 1236 } 1237 1238 G1Policy* g1p = _g1h->g1_policy(); 1239 g1p->record_concurrent_mark_cleanup_start(); 1240 1241 double start = os::elapsedTime(); 1242 1243 verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UseNextMarking, "Cleanup before"); 1244 1245 { 1246 GCTraceTime(Debug, gc, phases)("Update Remembered Set Tracking After Rebuild"); 1247 G1UpdateRemSetTrackingAfterRebuild cl(_g1h); 1248 _g1h->heap_region_iterate(&cl); 1249 } 1250 1251 if (log_is_enabled(Trace, gc, liveness)) { 1252 G1PrintRegionLivenessInfoClosure cl("Post-Cleanup"); 1253 _g1h->heap_region_iterate(&cl); 1254 } 1255 1256 // Install newly created mark bitmap as "prev". 1257 swap_mark_bitmaps(); 1258 { 1259 GCTraceTime(Debug, gc, phases)("Reclaim Empty Regions"); 1260 reclaim_empty_regions(); 1261 } 1262 1263 // Cleanup will have freed any regions completely full of garbage. 1264 // Update the soft reference policy with the new heap occupancy. 1265 Universe::update_heap_info_at_gc(); 1266 1267 // Clean out dead classes and update Metaspace sizes. 1268 if (ClassUnloadingWithConcurrentMark) { 1269 GCTraceTime(Debug, gc, phases)("Purge Metaspace"); 1270 ClassLoaderDataGraph::purge(); 1271 } 1272 MetaspaceGC::compute_new_size(); 1273 1274 // We reclaimed old regions so we should calculate the sizes to make 1275 // sure we update the old gen/space data. 1276 _g1h->g1mm()->update_sizes(); 1277 1278 verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after"); 1279 1280 // We need to make this be a "collection" so any collection pause that 1281 // races with it goes around and waits for Cleanup to finish. 1282 _g1h->increment_total_collections(); 1283 1284 // Local statistics 1285 double recent_cleanup_time = (os::elapsedTime() - start); 1286 _total_cleanup_time += recent_cleanup_time; 1287 _cleanup_times.add(recent_cleanup_time); 1288 1289 { 1290 GCTraceTime(Debug, gc, phases)("Finalize Concurrent Mark Cleanup"); 1291 _g1h->g1_policy()->record_concurrent_mark_cleanup_end(); 1292 } 1293 } 1294 1295 // Supporting Object and Oop closures for reference discovery 1296 // and processing in during marking 1297 1298 bool G1CMIsAliveClosure::do_object_b(oop obj) { 1299 HeapWord* addr = (HeapWord*)obj; 1300 return addr != NULL && 1301 (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_ill(obj)); 1302 } 1303 1304 // 'Keep Alive' oop closure used by both serial parallel reference processing. 1305 // Uses the G1CMTask associated with a worker thread (for serial reference 1306 // processing the G1CMTask for worker 0 is used) to preserve (mark) and 1307 // trace referent objects. 1308 // 1309 // Using the G1CMTask and embedded local queues avoids having the worker 1310 // threads operating on the global mark stack. This reduces the risk 1311 // of overflowing the stack - which we would rather avoid at this late 1312 // state. Also using the tasks' local queues removes the potential 1313 // of the workers interfering with each other that could occur if 1314 // operating on the global stack. 1315 1316 class G1CMKeepAliveAndDrainClosure : public OopClosure { 1317 G1ConcurrentMark* _cm; 1318 G1CMTask* _task; 1319 int _ref_counter_limit; 1320 int _ref_counter; 1321 bool _is_serial; 1322 public: 1323 G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) : 1324 _cm(cm), _task(task), _is_serial(is_serial), 1325 _ref_counter_limit(G1RefProcDrainInterval) { 1326 assert(_ref_counter_limit > 0, "sanity"); 1327 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code"); 1328 _ref_counter = _ref_counter_limit; 1329 } 1330 1331 virtual void do_oop(narrowOop* p) { do_oop_work(p); } 1332 virtual void do_oop( oop* p) { do_oop_work(p); } 1333 1334 template <class T> void do_oop_work(T* p) { 1335 if (!_cm->has_overflown()) { 1336 _task->deal_with_reference(p); 1337 _ref_counter--; 1338 1339 if (_ref_counter == 0) { 1340 // We have dealt with _ref_counter_limit references, pushing them 1341 // and objects reachable from them on to the local stack (and 1342 // possibly the global stack). Call G1CMTask::do_marking_step() to 1343 // process these entries. 1344 // 1345 // We call G1CMTask::do_marking_step() in a loop, which we'll exit if 1346 // there's nothing more to do (i.e. we're done with the entries that 1347 // were pushed as a result of the G1CMTask::deal_with_reference() calls 1348 // above) or we overflow. 1349 // 1350 // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted() 1351 // flag while there may still be some work to do. (See the comment at 1352 // the beginning of G1CMTask::do_marking_step() for those conditions - 1353 // one of which is reaching the specified time target.) It is only 1354 // when G1CMTask::do_marking_step() returns without setting the 1355 // has_aborted() flag that the marking step has completed. 1356 do { 1357 double mark_step_duration_ms = G1ConcMarkStepDurationMillis; 1358 _task->do_marking_step(mark_step_duration_ms, 1359 false /* do_termination */, 1360 _is_serial); 1361 } while (_task->has_aborted() && !_cm->has_overflown()); 1362 _ref_counter = _ref_counter_limit; 1363 } 1364 } 1365 } 1366 }; 1367 1368 // 'Drain' oop closure used by both serial and parallel reference processing. 1369 // Uses the G1CMTask associated with a given worker thread (for serial 1370 // reference processing the G1CMtask for worker 0 is used). Calls the 1371 // do_marking_step routine, with an unbelievably large timeout value, 1372 // to drain the marking data structures of the remaining entries 1373 // added by the 'keep alive' oop closure above. 1374 1375 class G1CMDrainMarkingStackClosure : public VoidClosure { 1376 G1ConcurrentMark* _cm; 1377 G1CMTask* _task; 1378 bool _is_serial; 1379 public: 1380 G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) : 1381 _cm(cm), _task(task), _is_serial(is_serial) { 1382 assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code"); 1383 } 1384 1385 void do_void() { 1386 do { 1387 // We call G1CMTask::do_marking_step() to completely drain the local 1388 // and global marking stacks of entries pushed by the 'keep alive' 1389 // oop closure (an instance of G1CMKeepAliveAndDrainClosure above). 1390 // 1391 // G1CMTask::do_marking_step() is called in a loop, which we'll exit 1392 // if there's nothing more to do (i.e. we've completely drained the 1393 // entries that were pushed as a a result of applying the 'keep alive' 1394 // closure to the entries on the discovered ref lists) or we overflow 1395 // the global marking stack. 1396 // 1397 // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted() 1398 // flag while there may still be some work to do. (See the comment at 1399 // the beginning of G1CMTask::do_marking_step() for those conditions - 1400 // one of which is reaching the specified time target.) It is only 1401 // when G1CMTask::do_marking_step() returns without setting the 1402 // has_aborted() flag that the marking step has completed. 1403 1404 _task->do_marking_step(1000000000.0 /* something very large */, 1405 true /* do_termination */, 1406 _is_serial); 1407 } while (_task->has_aborted() && !_cm->has_overflown()); 1408 } 1409 }; 1410 1411 // Implementation of AbstractRefProcTaskExecutor for parallel 1412 // reference processing at the end of G1 concurrent marking 1413 1414 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor { 1415 private: 1416 G1CollectedHeap* _g1h; 1417 G1ConcurrentMark* _cm; 1418 WorkGang* _workers; 1419 uint _active_workers; 1420 1421 public: 1422 G1CMRefProcTaskExecutor(G1CollectedHeap* g1h, 1423 G1ConcurrentMark* cm, 1424 WorkGang* workers, 1425 uint n_workers) : 1426 _g1h(g1h), _cm(cm), 1427 _workers(workers), _active_workers(n_workers) { } 1428 1429 // Executes the given task using concurrent marking worker threads. 1430 virtual void execute(ProcessTask& task); 1431 virtual void execute(EnqueueTask& task); 1432 }; 1433 1434 class G1CMRefProcTaskProxy : public AbstractGangTask { 1435 typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask; 1436 ProcessTask& _proc_task; 1437 G1CollectedHeap* _g1h; 1438 G1ConcurrentMark* _cm; 1439 1440 public: 1441 G1CMRefProcTaskProxy(ProcessTask& proc_task, 1442 G1CollectedHeap* g1h, 1443 G1ConcurrentMark* cm) : 1444 AbstractGangTask("Process reference objects in parallel"), 1445 _proc_task(proc_task), _g1h(g1h), _cm(cm) { 1446 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 1447 assert(rp->processing_is_mt(), "shouldn't be here otherwise"); 1448 } 1449 1450 virtual void work(uint worker_id) { 1451 ResourceMark rm; 1452 HandleMark hm; 1453 G1CMTask* task = _cm->task(worker_id); 1454 G1CMIsAliveClosure g1_is_alive(_g1h); 1455 G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */); 1456 G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */); 1457 1458 _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain); 1459 } 1460 }; 1461 1462 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task) { 1463 assert(_workers != NULL, "Need parallel worker threads."); 1464 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT"); 1465 1466 G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm); 1467 1468 // We need to reset the concurrency level before each 1469 // proxy task execution, so that the termination protocol 1470 // and overflow handling in G1CMTask::do_marking_step() knows 1471 // how many workers to wait for. 1472 _cm->set_concurrency(_active_workers); 1473 _workers->run_task(&proc_task_proxy); 1474 } 1475 1476 class G1CMRefEnqueueTaskProxy : public AbstractGangTask { 1477 typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask; 1478 EnqueueTask& _enq_task; 1479 1480 public: 1481 G1CMRefEnqueueTaskProxy(EnqueueTask& enq_task) : 1482 AbstractGangTask("Enqueue reference objects in parallel"), 1483 _enq_task(enq_task) { } 1484 1485 virtual void work(uint worker_id) { 1486 _enq_task.work(worker_id); 1487 } 1488 }; 1489 1490 void G1CMRefProcTaskExecutor::execute(EnqueueTask& enq_task) { 1491 assert(_workers != NULL, "Need parallel worker threads."); 1492 assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT"); 1493 1494 G1CMRefEnqueueTaskProxy enq_task_proxy(enq_task); 1495 1496 // Not strictly necessary but... 1497 // 1498 // We need to reset the concurrency level before each 1499 // proxy task execution, so that the termination protocol 1500 // and overflow handling in G1CMTask::do_marking_step() knows 1501 // how many workers to wait for. 1502 _cm->set_concurrency(_active_workers); 1503 _workers->run_task(&enq_task_proxy); 1504 } 1505 1506 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) { 1507 ResourceMark rm; 1508 HandleMark hm; 1509 1510 // Is alive closure. 1511 G1CMIsAliveClosure g1_is_alive(_g1h); 1512 1513 // Inner scope to exclude the cleaning of the string and symbol 1514 // tables from the displayed time. 1515 { 1516 GCTraceTime(Debug, gc, phases) trace("Reference Processing", _gc_timer_cm); 1517 1518 ReferenceProcessor* rp = _g1h->ref_processor_cm(); 1519 1520 // See the comment in G1CollectedHeap::ref_processing_init() 1521 // about how reference processing currently works in G1. 1522 1523 // Set the soft reference policy 1524 rp->setup_policy(clear_all_soft_refs); 1525 assert(_global_mark_stack.is_empty(), "mark stack should be empty"); 1526 1527 // Instances of the 'Keep Alive' and 'Complete GC' closures used 1528 // in serial reference processing. Note these closures are also 1529 // used for serially processing (by the the current thread) the 1530 // JNI references during parallel reference processing. 1531 // 1532 // These closures do not need to synchronize with the worker 1533 // threads involved in parallel reference processing as these 1534 // instances are executed serially by the current thread (e.g. 1535 // reference processing is not multi-threaded and is thus 1536 // performed by the current thread instead of a gang worker). 1537 // 1538 // The gang tasks involved in parallel reference processing create 1539 // their own instances of these closures, which do their own 1540 // synchronization among themselves. 1541 G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */); 1542 G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */); 1543 1544 // We need at least one active thread. If reference processing 1545 // is not multi-threaded we use the current (VMThread) thread, 1546 // otherwise we use the work gang from the G1CollectedHeap and 1547 // we utilize all the worker threads we can. 1548 bool processing_is_mt = rp->processing_is_mt(); 1549 uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U); 1550 active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U); 1551 1552 // Parallel processing task executor. 1553 G1CMRefProcTaskExecutor par_task_executor(_g1h, this, 1554 _g1h->workers(), active_workers); 1555 AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL); 1556 1557 // Set the concurrency level. The phase was already set prior to 1558 // executing the remark task. 1559 set_concurrency(active_workers); 1560 1561 // Set the degree of MT processing here. If the discovery was done MT, 1562 // the number of threads involved during discovery could differ from 1563 // the number of active workers. This is OK as long as the discovered 1564 // Reference lists are balanced (see balance_all_queues() and balance_queues()). 1565 rp->set_active_mt_degree(active_workers); 1566 1567 ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->num_q()); 1568 1569 // Process the weak references. 1570 const ReferenceProcessorStats& stats = 1571 rp->process_discovered_references(&g1_is_alive, 1572 &g1_keep_alive, 1573 &g1_drain_mark_stack, 1574 executor, 1575 &pt); 1576 _gc_tracer_cm->report_gc_reference_stats(stats); 1577 pt.print_all_references(); 1578 1579 // The do_oop work routines of the keep_alive and drain_marking_stack 1580 // oop closures will set the has_overflown flag if we overflow the 1581 // global marking stack. 1582 1583 assert(has_overflown() || _global_mark_stack.is_empty(), 1584 "Mark stack should be empty (unless it has overflown)"); 1585 1586 assert(rp->num_q() == active_workers, "why not"); 1587 1588 rp->enqueue_discovered_references(executor, &pt); 1589 1590 rp->verify_no_references_recorded(); 1591 1592 pt.print_enqueue_phase(); 1593 1594 assert(!rp->discovery_enabled(), "Post condition"); 1595 } 1596 1597 assert(has_overflown() || _global_mark_stack.is_empty(), 1598 "Mark stack should be empty (unless it has overflown)"); 1599 1600 { 1601 GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm); 1602 WeakProcessor::weak_oops_do(&g1_is_alive, &do_nothing_cl); 1603 } 1604 1605 if (has_overflown()) { 1606 // We can not trust g1_is_alive if the marking stack overflowed 1607 return; 1608 } 1609 1610 assert(_global_mark_stack.is_empty(), "Marking should have completed"); 1611 1612 // Unload Klasses, String, Symbols, Code Cache, etc. 1613 if (ClassUnloadingWithConcurrentMark) { 1614 GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm); 1615 bool purged_classes = SystemDictionary::do_unloading(&g1_is_alive, _gc_timer_cm, false /* Defer cleaning */); 1616 _g1h->complete_cleaning(&g1_is_alive, purged_classes); 1617 } else { 1618 GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm); 1619 // No need to clean string table and symbol table as they are treated as strong roots when 1620 // class unloading is disabled. 1621 _g1h->partial_cleaning(&g1_is_alive, false, false, G1StringDedup::is_enabled()); 1622 } 1623 } 1624 1625 void G1ConcurrentMark::report_object_count() { 1626 G1CMIsAliveClosure is_alive(_g1h); 1627 _gc_tracer_cm->report_object_count_after_gc(&is_alive); 1628 } 1629 1630 void G1ConcurrentMark::swap_mark_bitmaps() { 1631 G1CMBitMap* temp = _prev_mark_bitmap; 1632 _prev_mark_bitmap = _next_mark_bitmap; 1633 _next_mark_bitmap = temp; 1634 _g1h->collector_state()->set_clearing_next_bitmap(true); 1635 } 1636 1637 // Closure for marking entries in SATB buffers. 1638 class G1CMSATBBufferClosure : public SATBBufferClosure { 1639 private: 1640 G1CMTask* _task; 1641 G1CollectedHeap* _g1h; 1642 1643 // This is very similar to G1CMTask::deal_with_reference, but with 1644 // more relaxed requirements for the argument, so this must be more 1645 // circumspect about treating the argument as an object. 1646 void do_entry(void* entry) const { 1647 _task->increment_refs_reached(); 1648 oop const obj = static_cast<oop>(entry); 1649 _task->make_reference_grey(obj); 1650 } 1651 1652 public: 1653 G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h) 1654 : _task(task), _g1h(g1h) { } 1655 1656 virtual void do_buffer(void** buffer, size_t size) { 1657 for (size_t i = 0; i < size; ++i) { 1658 do_entry(buffer[i]); 1659 } 1660 } 1661 }; 1662 1663 class G1RemarkThreadsClosure : public ThreadClosure { 1664 G1CMSATBBufferClosure _cm_satb_cl; 1665 G1CMOopClosure _cm_cl; 1666 MarkingCodeBlobClosure _code_cl; 1667 int _thread_parity; 1668 1669 public: 1670 G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) : 1671 _cm_satb_cl(task, g1h), 1672 _cm_cl(g1h, task), 1673 _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations), 1674 _thread_parity(Threads::thread_claim_parity()) {} 1675 1676 void do_thread(Thread* thread) { 1677 if (thread->is_Java_thread()) { 1678 if (thread->claim_oops_do(true, _thread_parity)) { 1679 JavaThread* jt = (JavaThread*)thread; 1680 1681 // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking 1682 // however the liveness of oops reachable from nmethods have very complex lifecycles: 1683 // * Alive if on the stack of an executing method 1684 // * Weakly reachable otherwise 1685 // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be 1686 // live by the SATB invariant but other oops recorded in nmethods may behave differently. 1687 jt->nmethods_do(&_code_cl); 1688 1689 jt->satb_mark_queue().apply_closure_and_empty(&_cm_satb_cl); 1690 } 1691 } else if (thread->is_VM_thread()) { 1692 if (thread->claim_oops_do(true, _thread_parity)) { 1693 JavaThread::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl); 1694 } 1695 } 1696 } 1697 }; 1698 1699 class G1CMRemarkTask : public AbstractGangTask { 1700 G1ConcurrentMark* _cm; 1701 public: 1702 void work(uint worker_id) { 1703 G1CMTask* task = _cm->task(worker_id); 1704 task->record_start_time(); 1705 { 1706 ResourceMark rm; 1707 HandleMark hm; 1708 1709 G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task); 1710 Threads::threads_do(&threads_f); 1711 } 1712 1713 do { 1714 task->do_marking_step(1000000000.0 /* something very large */, 1715 true /* do_termination */, 1716 false /* is_serial */); 1717 } while (task->has_aborted() && !_cm->has_overflown()); 1718 // If we overflow, then we do not want to restart. We instead 1719 // want to abort remark and do concurrent marking again. 1720 task->record_end_time(); 1721 } 1722 1723 G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) : 1724 AbstractGangTask("Par Remark"), _cm(cm) { 1725 _cm->terminator()->reset_for_reuse(active_workers); 1726 } 1727 }; 1728 1729 void G1ConcurrentMark::finalize_marking() { 1730 ResourceMark rm; 1731 HandleMark hm; 1732 1733 _g1h->ensure_parsability(false); 1734 1735 // this is remark, so we'll use up all active threads 1736 uint active_workers = _g1h->workers()->active_workers(); 1737 set_concurrency_and_phase(active_workers, false /* concurrent */); 1738 // Leave _parallel_marking_threads at it's 1739 // value originally calculated in the G1ConcurrentMark 1740 // constructor and pass values of the active workers 1741 // through the gang in the task. 1742 1743 { 1744 StrongRootsScope srs(active_workers); 1745 1746 G1CMRemarkTask remarkTask(this, active_workers); 1747 // We will start all available threads, even if we decide that the 1748 // active_workers will be fewer. The extra ones will just bail out 1749 // immediately. 1750 _g1h->workers()->run_task(&remarkTask); 1751 } 1752 1753 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 1754 guarantee(has_overflown() || 1755 satb_mq_set.completed_buffers_num() == 0, 1756 "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT, 1757 BOOL_TO_STR(has_overflown()), 1758 satb_mq_set.completed_buffers_num()); 1759 1760 print_stats(); 1761 } 1762 1763 void G1ConcurrentMark::flush_all_task_caches() { 1764 size_t hits = 0; 1765 size_t misses = 0; 1766 for (uint i = 0; i < _max_num_tasks; i++) { 1767 Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache(); 1768 hits += stats.first; 1769 misses += stats.second; 1770 } 1771 size_t sum = hits + misses; 1772 log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf", 1773 hits, misses, percent_of(hits, sum)); 1774 } 1775 1776 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) { 1777 _prev_mark_bitmap->clear_range(mr); 1778 } 1779 1780 HeapRegion* 1781 G1ConcurrentMark::claim_region(uint worker_id) { 1782 // "checkpoint" the finger 1783 HeapWord* finger = _finger; 1784 1785 while (finger < _heap.end()) { 1786 assert(_g1h->is_in_g1_reserved(finger), "invariant"); 1787 1788 HeapRegion* curr_region = _g1h->heap_region_containing(finger); 1789 // Make sure that the reads below do not float before loading curr_region. 1790 OrderAccess::loadload(); 1791 // Above heap_region_containing may return NULL as we always scan claim 1792 // until the end of the heap. In this case, just jump to the next region. 1793 HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords; 1794 1795 // Is the gap between reading the finger and doing the CAS too long? 1796 HeapWord* res = Atomic::cmpxchg(end, &_finger, finger); 1797 if (res == finger && curr_region != NULL) { 1798 // we succeeded 1799 HeapWord* bottom = curr_region->bottom(); 1800 HeapWord* limit = curr_region->next_top_at_mark_start(); 1801 1802 // notice that _finger == end cannot be guaranteed here since, 1803 // someone else might have moved the finger even further 1804 assert(_finger >= end, "the finger should have moved forward"); 1805 1806 if (limit > bottom) { 1807 return curr_region; 1808 } else { 1809 assert(limit == bottom, 1810 "the region limit should be at bottom"); 1811 // we return NULL and the caller should try calling 1812 // claim_region() again. 1813 return NULL; 1814 } 1815 } else { 1816 assert(_finger > finger, "the finger should have moved forward"); 1817 // read it again 1818 finger = _finger; 1819 } 1820 } 1821 1822 return NULL; 1823 } 1824 1825 #ifndef PRODUCT 1826 class VerifyNoCSetOops { 1827 G1CollectedHeap* _g1h; 1828 const char* _phase; 1829 int _info; 1830 1831 public: 1832 VerifyNoCSetOops(const char* phase, int info = -1) : 1833 _g1h(G1CollectedHeap::heap()), 1834 _phase(phase), 1835 _info(info) 1836 { } 1837 1838 void operator()(G1TaskQueueEntry task_entry) const { 1839 if (task_entry.is_array_slice()) { 1840 guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice())); 1841 return; 1842 } 1843 guarantee(oopDesc::is_oop(task_entry.obj()), 1844 "Non-oop " PTR_FORMAT ", phase: %s, info: %d", 1845 p2i(task_entry.obj()), _phase, _info); 1846 guarantee(!_g1h->is_in_cset(task_entry.obj()), 1847 "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d", 1848 p2i(task_entry.obj()), _phase, _info); 1849 } 1850 }; 1851 1852 void G1ConcurrentMark::verify_no_cset_oops() { 1853 assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint"); 1854 if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) { 1855 return; 1856 } 1857 1858 // Verify entries on the global mark stack 1859 _global_mark_stack.iterate(VerifyNoCSetOops("Stack")); 1860 1861 // Verify entries on the task queues 1862 for (uint i = 0; i < _max_num_tasks; ++i) { 1863 G1CMTaskQueue* queue = _task_queues->queue(i); 1864 queue->iterate(VerifyNoCSetOops("Queue", i)); 1865 } 1866 1867 // Verify the global finger 1868 HeapWord* global_finger = finger(); 1869 if (global_finger != NULL && global_finger < _heap.end()) { 1870 // Since we always iterate over all regions, we might get a NULL HeapRegion 1871 // here. 1872 HeapRegion* global_hr = _g1h->heap_region_containing(global_finger); 1873 guarantee(global_hr == NULL || global_finger == global_hr->bottom(), 1874 "global finger: " PTR_FORMAT " region: " HR_FORMAT, 1875 p2i(global_finger), HR_FORMAT_PARAMS(global_hr)); 1876 } 1877 1878 // Verify the task fingers 1879 assert(_num_concurrent_workers <= _max_num_tasks, "sanity"); 1880 for (uint i = 0; i < _num_concurrent_workers; ++i) { 1881 G1CMTask* task = _tasks[i]; 1882 HeapWord* task_finger = task->finger(); 1883 if (task_finger != NULL && task_finger < _heap.end()) { 1884 // See above note on the global finger verification. 1885 HeapRegion* task_hr = _g1h->heap_region_containing(task_finger); 1886 guarantee(task_hr == NULL || task_finger == task_hr->bottom() || 1887 !task_hr->in_collection_set(), 1888 "task finger: " PTR_FORMAT " region: " HR_FORMAT, 1889 p2i(task_finger), HR_FORMAT_PARAMS(task_hr)); 1890 } 1891 } 1892 } 1893 #endif // PRODUCT 1894 1895 void G1ConcurrentMark::rebuild_rem_set_concurrently() { 1896 _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset); 1897 } 1898 1899 void G1ConcurrentMark::print_stats() { 1900 if (!log_is_enabled(Debug, gc, stats)) { 1901 return; 1902 } 1903 log_debug(gc, stats)("---------------------------------------------------------------------"); 1904 for (size_t i = 0; i < _num_active_tasks; ++i) { 1905 _tasks[i]->print_stats(); 1906 log_debug(gc, stats)("---------------------------------------------------------------------"); 1907 } 1908 } 1909 1910 void G1ConcurrentMark::concurrent_cycle_abort() { 1911 if (!cm_thread()->during_cycle() || _has_aborted) { 1912 // We haven't started a concurrent cycle or we have already aborted it. No need to do anything. 1913 return; 1914 } 1915 1916 // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next 1917 // concurrent bitmap clearing. 1918 { 1919 GCTraceTime(Debug, gc)("Clear Next Bitmap"); 1920 clear_bitmap(_next_mark_bitmap, _g1h->workers(), false); 1921 } 1922 // Note we cannot clear the previous marking bitmap here 1923 // since VerifyDuringGC verifies the objects marked during 1924 // a full GC against the previous bitmap. 1925 1926 // Empty mark stack 1927 reset_marking_for_restart(); 1928 for (uint i = 0; i < _max_num_tasks; ++i) { 1929 _tasks[i]->clear_region_fields(); 1930 } 1931 _first_overflow_barrier_sync.abort(); 1932 _second_overflow_barrier_sync.abort(); 1933 _has_aborted = true; 1934 1935 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 1936 satb_mq_set.abandon_partial_marking(); 1937 // This can be called either during or outside marking, we'll read 1938 // the expected_active value from the SATB queue set. 1939 satb_mq_set.set_active_all_threads( 1940 false, /* new active value */ 1941 satb_mq_set.is_active() /* expected_active */); 1942 } 1943 1944 static void print_ms_time_info(const char* prefix, const char* name, 1945 NumberSeq& ns) { 1946 log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).", 1947 prefix, ns.num(), name, ns.sum()/1000.0, ns.avg()); 1948 if (ns.num() > 0) { 1949 log_trace(gc, marking)("%s [std. dev = %8.2f ms, max = %8.2f ms]", 1950 prefix, ns.sd(), ns.maximum()); 1951 } 1952 } 1953 1954 void G1ConcurrentMark::print_summary_info() { 1955 Log(gc, marking) log; 1956 if (!log.is_trace()) { 1957 return; 1958 } 1959 1960 log.trace(" Concurrent marking:"); 1961 print_ms_time_info(" ", "init marks", _init_times); 1962 print_ms_time_info(" ", "remarks", _remark_times); 1963 { 1964 print_ms_time_info(" ", "final marks", _remark_mark_times); 1965 print_ms_time_info(" ", "weak refs", _remark_weak_ref_times); 1966 1967 } 1968 print_ms_time_info(" ", "cleanups", _cleanup_times); 1969 log.trace(" Finalize live data total time = %8.2f s (avg = %8.2f ms).", 1970 _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0)); 1971 log.trace(" Total stop_world time = %8.2f s.", 1972 (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0); 1973 log.trace(" Total concurrent time = %8.2f s (%8.2f s marking).", 1974 cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum()); 1975 } 1976 1977 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const { 1978 _concurrent_workers->print_worker_threads_on(st); 1979 } 1980 1981 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const { 1982 _concurrent_workers->threads_do(tc); 1983 } 1984 1985 void G1ConcurrentMark::print_on_error(outputStream* st) const { 1986 st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT, 1987 p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap)); 1988 _prev_mark_bitmap->print_on_error(st, " Prev Bits: "); 1989 _next_mark_bitmap->print_on_error(st, " Next Bits: "); 1990 } 1991 1992 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) { 1993 ReferenceProcessor* result = g1h->ref_processor_cm(); 1994 assert(result != NULL, "CM reference processor should not be NULL"); 1995 return result; 1996 } 1997 1998 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h, 1999 G1CMTask* task) 2000 : MetadataAwareOopClosure(get_cm_oop_closure_ref_processor(g1h)), 2001 _g1h(g1h), _task(task) 2002 { } 2003 2004 void G1CMTask::setup_for_region(HeapRegion* hr) { 2005 assert(hr != NULL, 2006 "claim_region() should have filtered out NULL regions"); 2007 _curr_region = hr; 2008 _finger = hr->bottom(); 2009 update_region_limit(); 2010 } 2011 2012 void G1CMTask::update_region_limit() { 2013 HeapRegion* hr = _curr_region; 2014 HeapWord* bottom = hr->bottom(); 2015 HeapWord* limit = hr->next_top_at_mark_start(); 2016 2017 if (limit == bottom) { 2018 // The region was collected underneath our feet. 2019 // We set the finger to bottom to ensure that the bitmap 2020 // iteration that will follow this will not do anything. 2021 // (this is not a condition that holds when we set the region up, 2022 // as the region is not supposed to be empty in the first place) 2023 _finger = bottom; 2024 } else if (limit >= _region_limit) { 2025 assert(limit >= _finger, "peace of mind"); 2026 } else { 2027 assert(limit < _region_limit, "only way to get here"); 2028 // This can happen under some pretty unusual circumstances. An 2029 // evacuation pause empties the region underneath our feet (NTAMS 2030 // at bottom). We then do some allocation in the region (NTAMS 2031 // stays at bottom), followed by the region being used as a GC 2032 // alloc region (NTAMS will move to top() and the objects 2033 // originally below it will be grayed). All objects now marked in 2034 // the region are explicitly grayed, if below the global finger, 2035 // and we do not need in fact to scan anything else. So, we simply 2036 // set _finger to be limit to ensure that the bitmap iteration 2037 // doesn't do anything. 2038 _finger = limit; 2039 } 2040 2041 _region_limit = limit; 2042 } 2043 2044 void G1CMTask::giveup_current_region() { 2045 assert(_curr_region != NULL, "invariant"); 2046 clear_region_fields(); 2047 } 2048 2049 void G1CMTask::clear_region_fields() { 2050 // Values for these three fields that indicate that we're not 2051 // holding on to a region. 2052 _curr_region = NULL; 2053 _finger = NULL; 2054 _region_limit = NULL; 2055 } 2056 2057 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) { 2058 if (cm_oop_closure == NULL) { 2059 assert(_cm_oop_closure != NULL, "invariant"); 2060 } else { 2061 assert(_cm_oop_closure == NULL, "invariant"); 2062 } 2063 _cm_oop_closure = cm_oop_closure; 2064 } 2065 2066 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) { 2067 guarantee(next_mark_bitmap != NULL, "invariant"); 2068 _next_mark_bitmap = next_mark_bitmap; 2069 clear_region_fields(); 2070 2071 _calls = 0; 2072 _elapsed_time_ms = 0.0; 2073 _termination_time_ms = 0.0; 2074 _termination_start_time_ms = 0.0; 2075 2076 _mark_stats_cache.reset(); 2077 } 2078 2079 bool G1CMTask::should_exit_termination() { 2080 regular_clock_call(); 2081 // This is called when we are in the termination protocol. We should 2082 // quit if, for some reason, this task wants to abort or the global 2083 // stack is not empty (this means that we can get work from it). 2084 return !_cm->mark_stack_empty() || has_aborted(); 2085 } 2086 2087 void G1CMTask::reached_limit() { 2088 assert(_words_scanned >= _words_scanned_limit || 2089 _refs_reached >= _refs_reached_limit , 2090 "shouldn't have been called otherwise"); 2091 regular_clock_call(); 2092 } 2093 2094 void G1CMTask::regular_clock_call() { 2095 if (has_aborted()) { 2096 return; 2097 } 2098 2099 // First, we need to recalculate the words scanned and refs reached 2100 // limits for the next clock call. 2101 recalculate_limits(); 2102 2103 // During the regular clock call we do the following 2104 2105 // (1) If an overflow has been flagged, then we abort. 2106 if (_cm->has_overflown()) { 2107 set_has_aborted(); 2108 return; 2109 } 2110 2111 // If we are not concurrent (i.e. we're doing remark) we don't need 2112 // to check anything else. The other steps are only needed during 2113 // the concurrent marking phase. 2114 if (!_cm->concurrent()) { 2115 return; 2116 } 2117 2118 // (2) If marking has been aborted for Full GC, then we also abort. 2119 if (_cm->has_aborted()) { 2120 set_has_aborted(); 2121 return; 2122 } 2123 2124 double curr_time_ms = os::elapsedVTime() * 1000.0; 2125 2126 // (4) We check whether we should yield. If we have to, then we abort. 2127 if (SuspendibleThreadSet::should_yield()) { 2128 // We should yield. To do this we abort the task. The caller is 2129 // responsible for yielding. 2130 set_has_aborted(); 2131 return; 2132 } 2133 2134 // (5) We check whether we've reached our time quota. If we have, 2135 // then we abort. 2136 double elapsed_time_ms = curr_time_ms - _start_time_ms; 2137 if (elapsed_time_ms > _time_target_ms) { 2138 set_has_aborted(); 2139 _has_timed_out = true; 2140 return; 2141 } 2142 2143 // (6) Finally, we check whether there are enough completed STAB 2144 // buffers available for processing. If there are, we abort. 2145 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 2146 if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) { 2147 // we do need to process SATB buffers, we'll abort and restart 2148 // the marking task to do so 2149 set_has_aborted(); 2150 return; 2151 } 2152 } 2153 2154 void G1CMTask::recalculate_limits() { 2155 _real_words_scanned_limit = _words_scanned + words_scanned_period; 2156 _words_scanned_limit = _real_words_scanned_limit; 2157 2158 _real_refs_reached_limit = _refs_reached + refs_reached_period; 2159 _refs_reached_limit = _real_refs_reached_limit; 2160 } 2161 2162 void G1CMTask::decrease_limits() { 2163 // This is called when we believe that we're going to do an infrequent 2164 // operation which will increase the per byte scanned cost (i.e. move 2165 // entries to/from the global stack). It basically tries to decrease the 2166 // scanning limit so that the clock is called earlier. 2167 2168 _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4; 2169 _refs_reached_limit = _real_refs_reached_limit - 3 * refs_reached_period / 4; 2170 } 2171 2172 void G1CMTask::move_entries_to_global_stack() { 2173 // Local array where we'll store the entries that will be popped 2174 // from the local queue. 2175 G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk]; 2176 2177 size_t n = 0; 2178 G1TaskQueueEntry task_entry; 2179 while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) { 2180 buffer[n] = task_entry; 2181 ++n; 2182 } 2183 if (n < G1CMMarkStack::EntriesPerChunk) { 2184 buffer[n] = G1TaskQueueEntry(); 2185 } 2186 2187 if (n > 0) { 2188 if (!_cm->mark_stack_push(buffer)) { 2189 set_has_aborted(); 2190 } 2191 } 2192 2193 // This operation was quite expensive, so decrease the limits. 2194 decrease_limits(); 2195 } 2196 2197 bool G1CMTask::get_entries_from_global_stack() { 2198 // Local array where we'll store the entries that will be popped 2199 // from the global stack. 2200 G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk]; 2201 2202 if (!_cm->mark_stack_pop(buffer)) { 2203 return false; 2204 } 2205 2206 // We did actually pop at least one entry. 2207 for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) { 2208 G1TaskQueueEntry task_entry = buffer[i]; 2209 if (task_entry.is_null()) { 2210 break; 2211 } 2212 assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj())); 2213 bool success = _task_queue->push(task_entry); 2214 // We only call this when the local queue is empty or under a 2215 // given target limit. So, we do not expect this push to fail. 2216 assert(success, "invariant"); 2217 } 2218 2219 // This operation was quite expensive, so decrease the limits 2220 decrease_limits(); 2221 return true; 2222 } 2223 2224 void G1CMTask::drain_local_queue(bool partially) { 2225 if (has_aborted()) { 2226 return; 2227 } 2228 2229 // Decide what the target size is, depending whether we're going to 2230 // drain it partially (so that other tasks can steal if they run out 2231 // of things to do) or totally (at the very end). 2232 size_t target_size; 2233 if (partially) { 2234 target_size = MIN2((size_t)_task_queue->max_elems()/3, GCDrainStackTargetSize); 2235 } else { 2236 target_size = 0; 2237 } 2238 2239 if (_task_queue->size() > target_size) { 2240 G1TaskQueueEntry entry; 2241 bool ret = _task_queue->pop_local(entry); 2242 while (ret) { 2243 scan_task_entry(entry); 2244 if (_task_queue->size() <= target_size || has_aborted()) { 2245 ret = false; 2246 } else { 2247 ret = _task_queue->pop_local(entry); 2248 } 2249 } 2250 } 2251 } 2252 2253 void G1CMTask::drain_global_stack(bool partially) { 2254 if (has_aborted()) { 2255 return; 2256 } 2257 2258 // We have a policy to drain the local queue before we attempt to 2259 // drain the global stack. 2260 assert(partially || _task_queue->size() == 0, "invariant"); 2261 2262 // Decide what the target size is, depending whether we're going to 2263 // drain it partially (so that other tasks can steal if they run out 2264 // of things to do) or totally (at the very end). 2265 // Notice that when draining the global mark stack partially, due to the racyness 2266 // of the mark stack size update we might in fact drop below the target. But, 2267 // this is not a problem. 2268 // In case of total draining, we simply process until the global mark stack is 2269 // totally empty, disregarding the size counter. 2270 if (partially) { 2271 size_t const target_size = _cm->partial_mark_stack_size_target(); 2272 while (!has_aborted() && _cm->mark_stack_size() > target_size) { 2273 if (get_entries_from_global_stack()) { 2274 drain_local_queue(partially); 2275 } 2276 } 2277 } else { 2278 while (!has_aborted() && get_entries_from_global_stack()) { 2279 drain_local_queue(partially); 2280 } 2281 } 2282 } 2283 2284 // SATB Queue has several assumptions on whether to call the par or 2285 // non-par versions of the methods. this is why some of the code is 2286 // replicated. We should really get rid of the single-threaded version 2287 // of the code to simplify things. 2288 void G1CMTask::drain_satb_buffers() { 2289 if (has_aborted()) { 2290 return; 2291 } 2292 2293 // We set this so that the regular clock knows that we're in the 2294 // middle of draining buffers and doesn't set the abort flag when it 2295 // notices that SATB buffers are available for draining. It'd be 2296 // very counter productive if it did that. :-) 2297 _draining_satb_buffers = true; 2298 2299 G1CMSATBBufferClosure satb_cl(this, _g1h); 2300 SATBMarkQueueSet& satb_mq_set = JavaThread::satb_mark_queue_set(); 2301 2302 // This keeps claiming and applying the closure to completed buffers 2303 // until we run out of buffers or we need to abort. 2304 while (!has_aborted() && 2305 satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) { 2306 regular_clock_call(); 2307 } 2308 2309 _draining_satb_buffers = false; 2310 2311 assert(has_aborted() || 2312 _cm->concurrent() || 2313 satb_mq_set.completed_buffers_num() == 0, "invariant"); 2314 2315 // again, this was a potentially expensive operation, decrease the 2316 // limits to get the regular clock call early 2317 decrease_limits(); 2318 } 2319 2320 void G1CMTask::clear_mark_stats_cache(uint region_idx) { 2321 _mark_stats_cache.reset(region_idx); 2322 } 2323 2324 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() { 2325 return _mark_stats_cache.evict_all(); 2326 } 2327 2328 void G1CMTask::print_stats() { 2329 log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls); 2330 log_debug(gc, stats)(" Elapsed time = %1.2lfms, Termination time = %1.2lfms", 2331 _elapsed_time_ms, _termination_time_ms); 2332 log_debug(gc, stats)(" Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms", 2333 _step_times_ms.num(), 2334 _step_times_ms.avg(), 2335 _step_times_ms.sd(), 2336 _step_times_ms.maximum(), 2337 _step_times_ms.sum()); 2338 size_t const hits = _mark_stats_cache.hits(); 2339 size_t const misses = _mark_stats_cache.misses(); 2340 log_debug(gc, stats)(" Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f", 2341 hits, misses, percent_of(hits, hits + misses)); 2342 } 2343 2344 bool G1ConcurrentMark::try_stealing(uint worker_id, int* hash_seed, G1TaskQueueEntry& task_entry) { 2345 return _task_queues->steal(worker_id, hash_seed, task_entry); 2346 } 2347 2348 /***************************************************************************** 2349 2350 The do_marking_step(time_target_ms, ...) method is the building 2351 block of the parallel marking framework. It can be called in parallel 2352 with other invocations of do_marking_step() on different tasks 2353 (but only one per task, obviously) and concurrently with the 2354 mutator threads, or during remark, hence it eliminates the need 2355 for two versions of the code. When called during remark, it will 2356 pick up from where the task left off during the concurrent marking 2357 phase. Interestingly, tasks are also claimable during evacuation 2358 pauses too, since do_marking_step() ensures that it aborts before 2359 it needs to yield. 2360 2361 The data structures that it uses to do marking work are the 2362 following: 2363 2364 (1) Marking Bitmap. If there are gray objects that appear only 2365 on the bitmap (this happens either when dealing with an overflow 2366 or when the initial marking phase has simply marked the roots 2367 and didn't push them on the stack), then tasks claim heap 2368 regions whose bitmap they then scan to find gray objects. A 2369 global finger indicates where the end of the last claimed region 2370 is. A local finger indicates how far into the region a task has 2371 scanned. The two fingers are used to determine how to gray an 2372 object (i.e. whether simply marking it is OK, as it will be 2373 visited by a task in the future, or whether it needs to be also 2374 pushed on a stack). 2375 2376 (2) Local Queue. The local queue of the task which is accessed 2377 reasonably efficiently by the task. Other tasks can steal from 2378 it when they run out of work. Throughout the marking phase, a 2379 task attempts to keep its local queue short but not totally 2380 empty, so that entries are available for stealing by other 2381 tasks. Only when there is no more work, a task will totally 2382 drain its local queue. 2383 2384 (3) Global Mark Stack. This handles local queue overflow. During 2385 marking only sets of entries are moved between it and the local 2386 queues, as access to it requires a mutex and more fine-grain 2387 interaction with it which might cause contention. If it 2388 overflows, then the marking phase should restart and iterate 2389 over the bitmap to identify gray objects. Throughout the marking 2390 phase, tasks attempt to keep the global mark stack at a small 2391 length but not totally empty, so that entries are available for 2392 popping by other tasks. Only when there is no more work, tasks 2393 will totally drain the global mark stack. 2394 2395 (4) SATB Buffer Queue. This is where completed SATB buffers are 2396 made available. Buffers are regularly removed from this queue 2397 and scanned for roots, so that the queue doesn't get too 2398 long. During remark, all completed buffers are processed, as 2399 well as the filled in parts of any uncompleted buffers. 2400 2401 The do_marking_step() method tries to abort when the time target 2402 has been reached. There are a few other cases when the 2403 do_marking_step() method also aborts: 2404 2405 (1) When the marking phase has been aborted (after a Full GC). 2406 2407 (2) When a global overflow (on the global stack) has been 2408 triggered. Before the task aborts, it will actually sync up with 2409 the other tasks to ensure that all the marking data structures 2410 (local queues, stacks, fingers etc.) are re-initialized so that 2411 when do_marking_step() completes, the marking phase can 2412 immediately restart. 2413 2414 (3) When enough completed SATB buffers are available. The 2415 do_marking_step() method only tries to drain SATB buffers right 2416 at the beginning. So, if enough buffers are available, the 2417 marking step aborts and the SATB buffers are processed at 2418 the beginning of the next invocation. 2419 2420 (4) To yield. when we have to yield then we abort and yield 2421 right at the end of do_marking_step(). This saves us from a lot 2422 of hassle as, by yielding we might allow a Full GC. If this 2423 happens then objects will be compacted underneath our feet, the 2424 heap might shrink, etc. We save checking for this by just 2425 aborting and doing the yield right at the end. 2426 2427 From the above it follows that the do_marking_step() method should 2428 be called in a loop (or, otherwise, regularly) until it completes. 2429 2430 If a marking step completes without its has_aborted() flag being 2431 true, it means it has completed the current marking phase (and 2432 also all other marking tasks have done so and have all synced up). 2433 2434 A method called regular_clock_call() is invoked "regularly" (in 2435 sub ms intervals) throughout marking. It is this clock method that 2436 checks all the abort conditions which were mentioned above and 2437 decides when the task should abort. A work-based scheme is used to 2438 trigger this clock method: when the number of object words the 2439 marking phase has scanned or the number of references the marking 2440 phase has visited reach a given limit. Additional invocations to 2441 the method clock have been planted in a few other strategic places 2442 too. The initial reason for the clock method was to avoid calling 2443 vtime too regularly, as it is quite expensive. So, once it was in 2444 place, it was natural to piggy-back all the other conditions on it 2445 too and not constantly check them throughout the code. 2446 2447 If do_termination is true then do_marking_step will enter its 2448 termination protocol. 2449 2450 The value of is_serial must be true when do_marking_step is being 2451 called serially (i.e. by the VMThread) and do_marking_step should 2452 skip any synchronization in the termination and overflow code. 2453 Examples include the serial remark code and the serial reference 2454 processing closures. 2455 2456 The value of is_serial must be false when do_marking_step is 2457 being called by any of the worker threads in a work gang. 2458 Examples include the concurrent marking code (CMMarkingTask), 2459 the MT remark code, and the MT reference processing closures. 2460 2461 *****************************************************************************/ 2462 2463 void G1CMTask::do_marking_step(double time_target_ms, 2464 bool do_termination, 2465 bool is_serial) { 2466 assert(time_target_ms >= 1.0, "minimum granularity is 1ms"); 2467 2468 _start_time_ms = os::elapsedVTime() * 1000.0; 2469 2470 // If do_stealing is true then do_marking_step will attempt to 2471 // steal work from the other G1CMTasks. It only makes sense to 2472 // enable stealing when the termination protocol is enabled 2473 // and do_marking_step() is not being called serially. 2474 bool do_stealing = do_termination && !is_serial; 2475 2476 double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms); 2477 _time_target_ms = time_target_ms - diff_prediction_ms; 2478 2479 // set up the variables that are used in the work-based scheme to 2480 // call the regular clock method 2481 _words_scanned = 0; 2482 _refs_reached = 0; 2483 recalculate_limits(); 2484 2485 // clear all flags 2486 clear_has_aborted(); 2487 _has_timed_out = false; 2488 _draining_satb_buffers = false; 2489 2490 ++_calls; 2491 2492 // Set up the bitmap and oop closures. Anything that uses them is 2493 // eventually called from this method, so it is OK to allocate these 2494 // statically. 2495 G1CMBitMapClosure bitmap_closure(this, _cm); 2496 G1CMOopClosure cm_oop_closure(_g1h, this); 2497 set_cm_oop_closure(&cm_oop_closure); 2498 2499 if (_cm->has_overflown()) { 2500 // This can happen if the mark stack overflows during a GC pause 2501 // and this task, after a yield point, restarts. We have to abort 2502 // as we need to get into the overflow protocol which happens 2503 // right at the end of this task. 2504 set_has_aborted(); 2505 } 2506 2507 // First drain any available SATB buffers. After this, we will not 2508 // look at SATB buffers before the next invocation of this method. 2509 // If enough completed SATB buffers are queued up, the regular clock 2510 // will abort this task so that it restarts. 2511 drain_satb_buffers(); 2512 // ...then partially drain the local queue and the global stack 2513 drain_local_queue(true); 2514 drain_global_stack(true); 2515 2516 do { 2517 if (!has_aborted() && _curr_region != NULL) { 2518 // This means that we're already holding on to a region. 2519 assert(_finger != NULL, "if region is not NULL, then the finger " 2520 "should not be NULL either"); 2521 2522 // We might have restarted this task after an evacuation pause 2523 // which might have evacuated the region we're holding on to 2524 // underneath our feet. Let's read its limit again to make sure 2525 // that we do not iterate over a region of the heap that 2526 // contains garbage (update_region_limit() will also move 2527 // _finger to the start of the region if it is found empty). 2528 update_region_limit(); 2529 // We will start from _finger not from the start of the region, 2530 // as we might be restarting this task after aborting half-way 2531 // through scanning this region. In this case, _finger points to 2532 // the address where we last found a marked object. If this is a 2533 // fresh region, _finger points to start(). 2534 MemRegion mr = MemRegion(_finger, _region_limit); 2535 2536 assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(), 2537 "humongous regions should go around loop once only"); 2538 2539 // Some special cases: 2540 // If the memory region is empty, we can just give up the region. 2541 // If the current region is humongous then we only need to check 2542 // the bitmap for the bit associated with the start of the object, 2543 // scan the object if it's live, and give up the region. 2544 // Otherwise, let's iterate over the bitmap of the part of the region 2545 // that is left. 2546 // If the iteration is successful, give up the region. 2547 if (mr.is_empty()) { 2548 giveup_current_region(); 2549 regular_clock_call(); 2550 } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) { 2551 if (_next_mark_bitmap->is_marked(mr.start())) { 2552 // The object is marked - apply the closure 2553 bitmap_closure.do_addr(mr.start()); 2554 } 2555 // Even if this task aborted while scanning the humongous object 2556 // we can (and should) give up the current region. 2557 giveup_current_region(); 2558 regular_clock_call(); 2559 } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) { 2560 giveup_current_region(); 2561 regular_clock_call(); 2562 } else { 2563 assert(has_aborted(), "currently the only way to do so"); 2564 // The only way to abort the bitmap iteration is to return 2565 // false from the do_bit() method. However, inside the 2566 // do_bit() method we move the _finger to point to the 2567 // object currently being looked at. So, if we bail out, we 2568 // have definitely set _finger to something non-null. 2569 assert(_finger != NULL, "invariant"); 2570 2571 // Region iteration was actually aborted. So now _finger 2572 // points to the address of the object we last scanned. If we 2573 // leave it there, when we restart this task, we will rescan 2574 // the object. It is easy to avoid this. We move the finger by 2575 // enough to point to the next possible object header. 2576 assert(_finger < _region_limit, "invariant"); 2577 HeapWord* const new_finger = _finger + ((oop)_finger)->size(); 2578 // Check if bitmap iteration was aborted while scanning the last object 2579 if (new_finger >= _region_limit) { 2580 giveup_current_region(); 2581 } else { 2582 move_finger_to(new_finger); 2583 } 2584 } 2585 } 2586 // At this point we have either completed iterating over the 2587 // region we were holding on to, or we have aborted. 2588 2589 // We then partially drain the local queue and the global stack. 2590 // (Do we really need this?) 2591 drain_local_queue(true); 2592 drain_global_stack(true); 2593 2594 // Read the note on the claim_region() method on why it might 2595 // return NULL with potentially more regions available for 2596 // claiming and why we have to check out_of_regions() to determine 2597 // whether we're done or not. 2598 while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) { 2599 // We are going to try to claim a new region. We should have 2600 // given up on the previous one. 2601 // Separated the asserts so that we know which one fires. 2602 assert(_curr_region == NULL, "invariant"); 2603 assert(_finger == NULL, "invariant"); 2604 assert(_region_limit == NULL, "invariant"); 2605 HeapRegion* claimed_region = _cm->claim_region(_worker_id); 2606 if (claimed_region != NULL) { 2607 // Yes, we managed to claim one 2608 setup_for_region(claimed_region); 2609 assert(_curr_region == claimed_region, "invariant"); 2610 } 2611 // It is important to call the regular clock here. It might take 2612 // a while to claim a region if, for example, we hit a large 2613 // block of empty regions. So we need to call the regular clock 2614 // method once round the loop to make sure it's called 2615 // frequently enough. 2616 regular_clock_call(); 2617 } 2618 2619 if (!has_aborted() && _curr_region == NULL) { 2620 assert(_cm->out_of_regions(), 2621 "at this point we should be out of regions"); 2622 } 2623 } while ( _curr_region != NULL && !has_aborted()); 2624 2625 if (!has_aborted()) { 2626 // We cannot check whether the global stack is empty, since other 2627 // tasks might be pushing objects to it concurrently. 2628 assert(_cm->out_of_regions(), 2629 "at this point we should be out of regions"); 2630 // Try to reduce the number of available SATB buffers so that 2631 // remark has less work to do. 2632 drain_satb_buffers(); 2633 } 2634 2635 // Since we've done everything else, we can now totally drain the 2636 // local queue and global stack. 2637 drain_local_queue(false); 2638 drain_global_stack(false); 2639 2640 // Attempt at work stealing from other task's queues. 2641 if (do_stealing && !has_aborted()) { 2642 // We have not aborted. This means that we have finished all that 2643 // we could. Let's try to do some stealing... 2644 2645 // We cannot check whether the global stack is empty, since other 2646 // tasks might be pushing objects to it concurrently. 2647 assert(_cm->out_of_regions() && _task_queue->size() == 0, 2648 "only way to reach here"); 2649 while (!has_aborted()) { 2650 G1TaskQueueEntry entry; 2651 if (_cm->try_stealing(_worker_id, &_hash_seed, entry)) { 2652 scan_task_entry(entry); 2653 2654 // And since we're towards the end, let's totally drain the 2655 // local queue and global stack. 2656 drain_local_queue(false); 2657 drain_global_stack(false); 2658 } else { 2659 break; 2660 } 2661 } 2662 } 2663 2664 // We still haven't aborted. Now, let's try to get into the 2665 // termination protocol. 2666 if (do_termination && !has_aborted()) { 2667 // We cannot check whether the global stack is empty, since other 2668 // tasks might be concurrently pushing objects on it. 2669 // Separated the asserts so that we know which one fires. 2670 assert(_cm->out_of_regions(), "only way to reach here"); 2671 assert(_task_queue->size() == 0, "only way to reach here"); 2672 _termination_start_time_ms = os::elapsedVTime() * 1000.0; 2673 2674 // The G1CMTask class also extends the TerminatorTerminator class, 2675 // hence its should_exit_termination() method will also decide 2676 // whether to exit the termination protocol or not. 2677 bool finished = (is_serial || 2678 _cm->terminator()->offer_termination(this)); 2679 double termination_end_time_ms = os::elapsedVTime() * 1000.0; 2680 _termination_time_ms += 2681 termination_end_time_ms - _termination_start_time_ms; 2682 2683 if (finished) { 2684 // We're all done. 2685 2686 // We can now guarantee that the global stack is empty, since 2687 // all other tasks have finished. We separated the guarantees so 2688 // that, if a condition is false, we can immediately find out 2689 // which one. 2690 guarantee(_cm->out_of_regions(), "only way to reach here"); 2691 guarantee(_cm->mark_stack_empty(), "only way to reach here"); 2692 guarantee(_task_queue->size() == 0, "only way to reach here"); 2693 guarantee(!_cm->has_overflown(), "only way to reach here"); 2694 } else { 2695 // Apparently there's more work to do. Let's abort this task. It 2696 // will restart it and we can hopefully find more things to do. 2697 set_has_aborted(); 2698 } 2699 } 2700 2701 // Mainly for debugging purposes to make sure that a pointer to the 2702 // closure which was statically allocated in this frame doesn't 2703 // escape it by accident. 2704 set_cm_oop_closure(NULL); 2705 double end_time_ms = os::elapsedVTime() * 1000.0; 2706 double elapsed_time_ms = end_time_ms - _start_time_ms; 2707 // Update the step history. 2708 _step_times_ms.add(elapsed_time_ms); 2709 2710 if (has_aborted()) { 2711 // The task was aborted for some reason. 2712 if (_has_timed_out) { 2713 double diff_ms = elapsed_time_ms - _time_target_ms; 2714 // Keep statistics of how well we did with respect to hitting 2715 // our target only if we actually timed out (if we aborted for 2716 // other reasons, then the results might get skewed). 2717 _marking_step_diffs_ms.add(diff_ms); 2718 } 2719 2720 if (_cm->has_overflown()) { 2721 // This is the interesting one. We aborted because a global 2722 // overflow was raised. This means we have to restart the 2723 // marking phase and start iterating over regions. However, in 2724 // order to do this we have to make sure that all tasks stop 2725 // what they are doing and re-initialize in a safe manner. We 2726 // will achieve this with the use of two barrier sync points. 2727 2728 if (!is_serial) { 2729 // We only need to enter the sync barrier if being called 2730 // from a parallel context 2731 _cm->enter_first_sync_barrier(_worker_id); 2732 2733 // When we exit this sync barrier we know that all tasks have 2734 // stopped doing marking work. So, it's now safe to 2735 // re-initialize our data structures. 2736 } 2737 2738 clear_region_fields(); 2739 flush_mark_stats_cache(); 2740 2741 if (!is_serial) { 2742 // If we're executing the concurrent phase of marking, reset the marking 2743 // state; otherwise the marking state is reset after reference processing, 2744 // during the remark pause. 2745 // If we reset here as a result of an overflow during the remark we will 2746 // see assertion failures from any subsequent set_concurrency_and_phase() 2747 // calls. 2748 if (_cm->concurrent() && _worker_id == 0) { 2749 // Worker 0 is responsible for clearing the global data structures because 2750 // of an overflow. During STW we should not clear the overflow flag (in 2751 // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit 2752 // method to abort the pause and restart concurrent marking. 2753 _cm->reset_marking_for_restart(); 2754 2755 log_info(gc, marking)("Concurrent Mark reset for overflow"); 2756 } 2757 2758 // ...and enter the second barrier. 2759 _cm->enter_second_sync_barrier(_worker_id); 2760 } 2761 // At this point, if we're during the concurrent phase of 2762 // marking, everything has been re-initialized and we're 2763 // ready to restart. 2764 } 2765 } 2766 } 2767 2768 G1CMTask::G1CMTask(uint worker_id, 2769 G1ConcurrentMark* cm, 2770 G1CMTaskQueue* task_queue, 2771 G1RegionMarkStats* mark_stats, 2772 uint max_regions) : 2773 _objArray_processor(this), 2774 _worker_id(worker_id), 2775 _g1h(G1CollectedHeap::heap()), 2776 _cm(cm), 2777 _next_mark_bitmap(NULL), 2778 _task_queue(task_queue), 2779 _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize), 2780 _calls(0), 2781 _time_target_ms(0.0), 2782 _start_time_ms(0.0), 2783 _cm_oop_closure(NULL), 2784 _curr_region(NULL), 2785 _finger(NULL), 2786 _region_limit(NULL), 2787 _words_scanned(0), 2788 _words_scanned_limit(0), 2789 _real_words_scanned_limit(0), 2790 _refs_reached(0), 2791 _refs_reached_limit(0), 2792 _real_refs_reached_limit(0), 2793 _hash_seed(17), 2794 _has_aborted(false), 2795 _has_timed_out(false), 2796 _draining_satb_buffers(false), 2797 _step_times_ms(), 2798 _elapsed_time_ms(0.0), 2799 _termination_time_ms(0.0), 2800 _termination_start_time_ms(0.0), 2801 _marking_step_diffs_ms() 2802 { 2803 guarantee(task_queue != NULL, "invariant"); 2804 2805 _marking_step_diffs_ms.add(0.5); 2806 } 2807 2808 // These are formatting macros that are used below to ensure 2809 // consistent formatting. The *_H_* versions are used to format the 2810 // header for a particular value and they should be kept consistent 2811 // with the corresponding macro. Also note that most of the macros add 2812 // the necessary white space (as a prefix) which makes them a bit 2813 // easier to compose. 2814 2815 // All the output lines are prefixed with this string to be able to 2816 // identify them easily in a large log file. 2817 #define G1PPRL_LINE_PREFIX "###" 2818 2819 #define G1PPRL_ADDR_BASE_FORMAT " " PTR_FORMAT "-" PTR_FORMAT 2820 #ifdef _LP64 2821 #define G1PPRL_ADDR_BASE_H_FORMAT " %37s" 2822 #else // _LP64 2823 #define G1PPRL_ADDR_BASE_H_FORMAT " %21s" 2824 #endif // _LP64 2825 2826 // For per-region info 2827 #define G1PPRL_TYPE_FORMAT " %-4s" 2828 #define G1PPRL_TYPE_H_FORMAT " %4s" 2829 #define G1PPRL_STATE_FORMAT " %-5s" 2830 #define G1PPRL_STATE_H_FORMAT " %5s" 2831 #define G1PPRL_BYTE_FORMAT " " SIZE_FORMAT_W(9) 2832 #define G1PPRL_BYTE_H_FORMAT " %9s" 2833 #define G1PPRL_DOUBLE_FORMAT " %14.1f" 2834 #define G1PPRL_DOUBLE_H_FORMAT " %14s" 2835 2836 // For summary info 2837 #define G1PPRL_SUM_ADDR_FORMAT(tag) " " tag ":" G1PPRL_ADDR_BASE_FORMAT 2838 #define G1PPRL_SUM_BYTE_FORMAT(tag) " " tag ": " SIZE_FORMAT 2839 #define G1PPRL_SUM_MB_FORMAT(tag) " " tag ": %1.2f MB" 2840 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%" 2841 2842 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) : 2843 _total_used_bytes(0), _total_capacity_bytes(0), 2844 _total_prev_live_bytes(0), _total_next_live_bytes(0), 2845 _total_remset_bytes(0), _total_strong_code_roots_bytes(0) 2846 { 2847 G1CollectedHeap* g1h = G1CollectedHeap::heap(); 2848 MemRegion g1_reserved = g1h->g1_reserved(); 2849 double now = os::elapsedTime(); 2850 2851 // Print the header of the output. 2852 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now); 2853 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP" 2854 G1PPRL_SUM_ADDR_FORMAT("reserved") 2855 G1PPRL_SUM_BYTE_FORMAT("region-size"), 2856 p2i(g1_reserved.start()), p2i(g1_reserved.end()), 2857 HeapRegion::GrainBytes); 2858 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX); 2859 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX 2860 G1PPRL_TYPE_H_FORMAT 2861 G1PPRL_ADDR_BASE_H_FORMAT 2862 G1PPRL_BYTE_H_FORMAT 2863 G1PPRL_BYTE_H_FORMAT 2864 G1PPRL_BYTE_H_FORMAT 2865 G1PPRL_DOUBLE_H_FORMAT 2866 G1PPRL_BYTE_H_FORMAT 2867 G1PPRL_STATE_H_FORMAT 2868 G1PPRL_BYTE_H_FORMAT, 2869 "type", "address-range", 2870 "used", "prev-live", "next-live", "gc-eff", 2871 "remset", "state", "code-roots"); 2872 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX 2873 G1PPRL_TYPE_H_FORMAT 2874 G1PPRL_ADDR_BASE_H_FORMAT 2875 G1PPRL_BYTE_H_FORMAT 2876 G1PPRL_BYTE_H_FORMAT 2877 G1PPRL_BYTE_H_FORMAT 2878 G1PPRL_DOUBLE_H_FORMAT 2879 G1PPRL_BYTE_H_FORMAT 2880 G1PPRL_STATE_H_FORMAT 2881 G1PPRL_BYTE_H_FORMAT, 2882 "", "", 2883 "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)", 2884 "(bytes)", "", "(bytes)"); 2885 } 2886 2887 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) { 2888 const char* type = r->get_type_str(); 2889 HeapWord* bottom = r->bottom(); 2890 HeapWord* end = r->end(); 2891 size_t capacity_bytes = r->capacity(); 2892 size_t used_bytes = r->used(); 2893 size_t prev_live_bytes = r->live_bytes(); 2894 size_t next_live_bytes = r->next_live_bytes(); 2895 double gc_eff = r->gc_efficiency(); 2896 size_t remset_bytes = r->rem_set()->mem_size(); 2897 size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size(); 2898 const char* remset_type = r->rem_set()->get_short_state_str(); 2899 2900 _total_used_bytes += used_bytes; 2901 _total_capacity_bytes += capacity_bytes; 2902 _total_prev_live_bytes += prev_live_bytes; 2903 _total_next_live_bytes += next_live_bytes; 2904 _total_remset_bytes += remset_bytes; 2905 _total_strong_code_roots_bytes += strong_code_roots_bytes; 2906 2907 // Print a line for this particular region. 2908 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX 2909 G1PPRL_TYPE_FORMAT 2910 G1PPRL_ADDR_BASE_FORMAT 2911 G1PPRL_BYTE_FORMAT 2912 G1PPRL_BYTE_FORMAT 2913 G1PPRL_BYTE_FORMAT 2914 G1PPRL_DOUBLE_FORMAT 2915 G1PPRL_BYTE_FORMAT 2916 G1PPRL_STATE_FORMAT 2917 G1PPRL_BYTE_FORMAT, 2918 type, p2i(bottom), p2i(end), 2919 used_bytes, prev_live_bytes, next_live_bytes, gc_eff, 2920 remset_bytes, remset_type, strong_code_roots_bytes); 2921 2922 return false; 2923 } 2924 2925 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() { 2926 // add static memory usages to remembered set sizes 2927 _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size(); 2928 // Print the footer of the output. 2929 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX); 2930 log_trace(gc, liveness)(G1PPRL_LINE_PREFIX 2931 " SUMMARY" 2932 G1PPRL_SUM_MB_FORMAT("capacity") 2933 G1PPRL_SUM_MB_PERC_FORMAT("used") 2934 G1PPRL_SUM_MB_PERC_FORMAT("prev-live") 2935 G1PPRL_SUM_MB_PERC_FORMAT("next-live") 2936 G1PPRL_SUM_MB_FORMAT("remset") 2937 G1PPRL_SUM_MB_FORMAT("code-roots"), 2938 bytes_to_mb(_total_capacity_bytes), 2939 bytes_to_mb(_total_used_bytes), 2940 percent_of(_total_used_bytes, _total_capacity_bytes), 2941 bytes_to_mb(_total_prev_live_bytes), 2942 percent_of(_total_prev_live_bytes, _total_capacity_bytes), 2943 bytes_to_mb(_total_next_live_bytes), 2944 percent_of(_total_next_live_bytes, _total_capacity_bytes), 2945 bytes_to_mb(_total_remset_bytes), 2946 bytes_to_mb(_total_strong_code_roots_bytes)); 2947 }