1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_FrameMap.hpp"
  29 #include "c1/c1_Instruction.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "ci/ciObjArray.hpp"
  36 #include "ci/ciUtilities.hpp"
  37 #include "gc/shared/cardTable.hpp"
  38 #include "gc/shared/cardTableBarrierSet.hpp"
  39 #include "gc/shared/collectedHeap.hpp"
  40 #include "runtime/arguments.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "runtime/stubRoutines.hpp"
  43 #include "runtime/vm_version.hpp"
  44 #include "utilities/bitMap.inline.hpp"
  45 #include "utilities/macros.hpp"
  46 #if INCLUDE_ALL_GCS
  47 #include "gc/g1/g1ThreadLocalData.hpp"
  48 #include "gc/g1/heapRegion.hpp"
  49 #endif // INCLUDE_ALL_GCS
  50 #ifdef TRACE_HAVE_INTRINSICS
  51 #include "trace/traceMacros.hpp"
  52 #endif
  53 
  54 #ifdef ASSERT
  55 #define __ gen()->lir(__FILE__, __LINE__)->
  56 #else
  57 #define __ gen()->lir()->
  58 #endif
  59 
  60 #ifndef PATCHED_ADDR
  61 #define PATCHED_ADDR  (max_jint)
  62 #endif
  63 
  64 void PhiResolverState::reset(int max_vregs) {
  65   // Initialize array sizes
  66   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  67   _virtual_operands.trunc_to(0);
  68   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  69   _other_operands.trunc_to(0);
  70   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  71   _vreg_table.trunc_to(0);
  72 }
  73 
  74 
  75 
  76 //--------------------------------------------------------------
  77 // PhiResolver
  78 
  79 // Resolves cycles:
  80 //
  81 //  r1 := r2  becomes  temp := r1
  82 //  r2 := r1           r1 := r2
  83 //                     r2 := temp
  84 // and orders moves:
  85 //
  86 //  r2 := r3  becomes  r1 := r2
  87 //  r1 := r2           r2 := r3
  88 
  89 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  90  : _gen(gen)
  91  , _state(gen->resolver_state())
  92  , _temp(LIR_OprFact::illegalOpr)
  93 {
  94   // reinitialize the shared state arrays
  95   _state.reset(max_vregs);
  96 }
  97 
  98 
  99 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
 100   assert(src->is_valid(), "");
 101   assert(dest->is_valid(), "");
 102   __ move(src, dest);
 103 }
 104 
 105 
 106 void PhiResolver::move_temp_to(LIR_Opr dest) {
 107   assert(_temp->is_valid(), "");
 108   emit_move(_temp, dest);
 109   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 110 }
 111 
 112 
 113 void PhiResolver::move_to_temp(LIR_Opr src) {
 114   assert(_temp->is_illegal(), "");
 115   _temp = _gen->new_register(src->type());
 116   emit_move(src, _temp);
 117 }
 118 
 119 
 120 // Traverse assignment graph in depth first order and generate moves in post order
 121 // ie. two assignments: b := c, a := b start with node c:
 122 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 123 // Generates moves in this order: move b to a and move c to b
 124 // ie. cycle a := b, b := a start with node a
 125 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 126 // Generates moves in this order: move b to temp, move a to b, move temp to a
 127 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 128   if (!dest->visited()) {
 129     dest->set_visited();
 130     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 131       move(dest, dest->destination_at(i));
 132     }
 133   } else if (!dest->start_node()) {
 134     // cylce in graph detected
 135     assert(_loop == NULL, "only one loop valid!");
 136     _loop = dest;
 137     move_to_temp(src->operand());
 138     return;
 139   } // else dest is a start node
 140 
 141   if (!dest->assigned()) {
 142     if (_loop == dest) {
 143       move_temp_to(dest->operand());
 144       dest->set_assigned();
 145     } else if (src != NULL) {
 146       emit_move(src->operand(), dest->operand());
 147       dest->set_assigned();
 148     }
 149   }
 150 }
 151 
 152 
 153 PhiResolver::~PhiResolver() {
 154   int i;
 155   // resolve any cycles in moves from and to virtual registers
 156   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 157     ResolveNode* node = virtual_operands().at(i);
 158     if (!node->visited()) {
 159       _loop = NULL;
 160       move(NULL, node);
 161       node->set_start_node();
 162       assert(_temp->is_illegal(), "move_temp_to() call missing");
 163     }
 164   }
 165 
 166   // generate move for move from non virtual register to abitrary destination
 167   for (i = other_operands().length() - 1; i >= 0; i --) {
 168     ResolveNode* node = other_operands().at(i);
 169     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 170       emit_move(node->operand(), node->destination_at(j)->operand());
 171     }
 172   }
 173 }
 174 
 175 
 176 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 177   ResolveNode* node;
 178   if (opr->is_virtual()) {
 179     int vreg_num = opr->vreg_number();
 180     node = vreg_table().at_grow(vreg_num, NULL);
 181     assert(node == NULL || node->operand() == opr, "");
 182     if (node == NULL) {
 183       node = new ResolveNode(opr);
 184       vreg_table().at_put(vreg_num, node);
 185     }
 186     // Make sure that all virtual operands show up in the list when
 187     // they are used as the source of a move.
 188     if (source && !virtual_operands().contains(node)) {
 189       virtual_operands().append(node);
 190     }
 191   } else {
 192     assert(source, "");
 193     node = new ResolveNode(opr);
 194     other_operands().append(node);
 195   }
 196   return node;
 197 }
 198 
 199 
 200 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 201   assert(dest->is_virtual(), "");
 202   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 203   assert(src->is_valid(), "");
 204   assert(dest->is_valid(), "");
 205   ResolveNode* source = source_node(src);
 206   source->append(destination_node(dest));
 207 }
 208 
 209 
 210 //--------------------------------------------------------------
 211 // LIRItem
 212 
 213 void LIRItem::set_result(LIR_Opr opr) {
 214   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 215   value()->set_operand(opr);
 216 
 217   if (opr->is_virtual()) {
 218     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 219   }
 220 
 221   _result = opr;
 222 }
 223 
 224 void LIRItem::load_item() {
 225   if (result()->is_illegal()) {
 226     // update the items result
 227     _result = value()->operand();
 228   }
 229   if (!result()->is_register()) {
 230     LIR_Opr reg = _gen->new_register(value()->type());
 231     __ move(result(), reg);
 232     if (result()->is_constant()) {
 233       _result = reg;
 234     } else {
 235       set_result(reg);
 236     }
 237   }
 238 }
 239 
 240 
 241 void LIRItem::load_for_store(BasicType type) {
 242   if (_gen->can_store_as_constant(value(), type)) {
 243     _result = value()->operand();
 244     if (!_result->is_constant()) {
 245       _result = LIR_OprFact::value_type(value()->type());
 246     }
 247   } else if (type == T_BYTE || type == T_BOOLEAN) {
 248     load_byte_item();
 249   } else {
 250     load_item();
 251   }
 252 }
 253 
 254 void LIRItem::load_item_force(LIR_Opr reg) {
 255   LIR_Opr r = result();
 256   if (r != reg) {
 257 #if !defined(ARM) && !defined(E500V2)
 258     if (r->type() != reg->type()) {
 259       // moves between different types need an intervening spill slot
 260       r = _gen->force_to_spill(r, reg->type());
 261     }
 262 #endif
 263     __ move(r, reg);
 264     _result = reg;
 265   }
 266 }
 267 
 268 ciObject* LIRItem::get_jobject_constant() const {
 269   ObjectType* oc = type()->as_ObjectType();
 270   if (oc) {
 271     return oc->constant_value();
 272   }
 273   return NULL;
 274 }
 275 
 276 
 277 jint LIRItem::get_jint_constant() const {
 278   assert(is_constant() && value() != NULL, "");
 279   assert(type()->as_IntConstant() != NULL, "type check");
 280   return type()->as_IntConstant()->value();
 281 }
 282 
 283 
 284 jint LIRItem::get_address_constant() const {
 285   assert(is_constant() && value() != NULL, "");
 286   assert(type()->as_AddressConstant() != NULL, "type check");
 287   return type()->as_AddressConstant()->value();
 288 }
 289 
 290 
 291 jfloat LIRItem::get_jfloat_constant() const {
 292   assert(is_constant() && value() != NULL, "");
 293   assert(type()->as_FloatConstant() != NULL, "type check");
 294   return type()->as_FloatConstant()->value();
 295 }
 296 
 297 
 298 jdouble LIRItem::get_jdouble_constant() const {
 299   assert(is_constant() && value() != NULL, "");
 300   assert(type()->as_DoubleConstant() != NULL, "type check");
 301   return type()->as_DoubleConstant()->value();
 302 }
 303 
 304 
 305 jlong LIRItem::get_jlong_constant() const {
 306   assert(is_constant() && value() != NULL, "");
 307   assert(type()->as_LongConstant() != NULL, "type check");
 308   return type()->as_LongConstant()->value();
 309 }
 310 
 311 
 312 
 313 //--------------------------------------------------------------
 314 
 315 
 316 void LIRGenerator::init() {
 317   _bs = Universe::heap()->barrier_set();
 318 }
 319 
 320 
 321 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 322 #ifndef PRODUCT
 323   if (PrintIRWithLIR) {
 324     block->print();
 325   }
 326 #endif
 327 
 328   // set up the list of LIR instructions
 329   assert(block->lir() == NULL, "LIR list already computed for this block");
 330   _lir = new LIR_List(compilation(), block);
 331   block->set_lir(_lir);
 332 
 333   __ branch_destination(block->label());
 334 
 335   if (LIRTraceExecution &&
 336       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 337       !block->is_set(BlockBegin::exception_entry_flag)) {
 338     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 339     trace_block_entry(block);
 340   }
 341 }
 342 
 343 
 344 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 345 #ifndef PRODUCT
 346   if (PrintIRWithLIR) {
 347     tty->cr();
 348   }
 349 #endif
 350 
 351   // LIR_Opr for unpinned constants shouldn't be referenced by other
 352   // blocks so clear them out after processing the block.
 353   for (int i = 0; i < _unpinned_constants.length(); i++) {
 354     _unpinned_constants.at(i)->clear_operand();
 355   }
 356   _unpinned_constants.trunc_to(0);
 357 
 358   // clear our any registers for other local constants
 359   _constants.trunc_to(0);
 360   _reg_for_constants.trunc_to(0);
 361 }
 362 
 363 
 364 void LIRGenerator::block_do(BlockBegin* block) {
 365   CHECK_BAILOUT();
 366 
 367   block_do_prolog(block);
 368   set_block(block);
 369 
 370   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 371     if (instr->is_pinned()) do_root(instr);
 372   }
 373 
 374   set_block(NULL);
 375   block_do_epilog(block);
 376 }
 377 
 378 
 379 //-------------------------LIRGenerator-----------------------------
 380 
 381 // This is where the tree-walk starts; instr must be root;
 382 void LIRGenerator::do_root(Value instr) {
 383   CHECK_BAILOUT();
 384 
 385   InstructionMark im(compilation(), instr);
 386 
 387   assert(instr->is_pinned(), "use only with roots");
 388   assert(instr->subst() == instr, "shouldn't have missed substitution");
 389 
 390   instr->visit(this);
 391 
 392   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 393          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 394 }
 395 
 396 
 397 // This is called for each node in tree; the walk stops if a root is reached
 398 void LIRGenerator::walk(Value instr) {
 399   InstructionMark im(compilation(), instr);
 400   //stop walk when encounter a root
 401   if ((instr->is_pinned() && instr->as_Phi() == NULL) || instr->operand()->is_valid()) {
 402     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 403   } else {
 404     assert(instr->subst() == instr, "shouldn't have missed substitution");
 405     instr->visit(this);
 406     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 407   }
 408 }
 409 
 410 
 411 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 412   assert(state != NULL, "state must be defined");
 413 
 414 #ifndef PRODUCT
 415   state->verify();
 416 #endif
 417 
 418   ValueStack* s = state;
 419   for_each_state(s) {
 420     if (s->kind() == ValueStack::EmptyExceptionState) {
 421       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 422       continue;
 423     }
 424 
 425     int index;
 426     Value value;
 427     for_each_stack_value(s, index, value) {
 428       assert(value->subst() == value, "missed substitution");
 429       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 430         walk(value);
 431         assert(value->operand()->is_valid(), "must be evaluated now");
 432       }
 433     }
 434 
 435     int bci = s->bci();
 436     IRScope* scope = s->scope();
 437     ciMethod* method = scope->method();
 438 
 439     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 440     if (bci == SynchronizationEntryBCI) {
 441       if (x->as_ExceptionObject() || x->as_Throw()) {
 442         // all locals are dead on exit from the synthetic unlocker
 443         liveness.clear();
 444       } else {
 445         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 446       }
 447     }
 448     if (!liveness.is_valid()) {
 449       // Degenerate or breakpointed method.
 450       bailout("Degenerate or breakpointed method");
 451     } else {
 452       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 453       for_each_local_value(s, index, value) {
 454         assert(value->subst() == value, "missed substition");
 455         if (liveness.at(index) && !value->type()->is_illegal()) {
 456           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 457             walk(value);
 458             assert(value->operand()->is_valid(), "must be evaluated now");
 459           }
 460         } else {
 461           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 462           s->invalidate_local(index);
 463         }
 464       }
 465     }
 466   }
 467 
 468   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers(), x->check_flag(Instruction::DeoptimizeOnException));
 469 }
 470 
 471 
 472 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 473   return state_for(x, x->exception_state());
 474 }
 475 
 476 
 477 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info, bool need_resolve) {
 478   /* C2 relies on constant pool entries being resolved (ciTypeFlow), so if TieredCompilation
 479    * is active and the class hasn't yet been resolved we need to emit a patch that resolves
 480    * the class. */
 481   if ((TieredCompilation && need_resolve) || !obj->is_loaded() || PatchALot) {
 482     assert(info != NULL, "info must be set if class is not loaded");
 483     __ klass2reg_patch(NULL, r, info);
 484   } else {
 485     // no patching needed
 486     __ metadata2reg(obj->constant_encoding(), r);
 487   }
 488 }
 489 
 490 
 491 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 492                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 493   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 494   if (index->is_constant()) {
 495     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 496                 index->as_jint(), null_check_info);
 497     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 498   } else {
 499     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 500                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 501     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 502   }
 503 }
 504 
 505 
 506 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 507   CodeStub* stub = new RangeCheckStub(info, index, true);
 508   if (index->is_constant()) {
 509     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 510     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 511   } else {
 512     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 513                 java_nio_Buffer::limit_offset(), T_INT, info);
 514     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 515   }
 516   __ move(index, result);
 517 }
 518 
 519 
 520 
 521 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 522   LIR_Opr result_op = result;
 523   LIR_Opr left_op   = left;
 524   LIR_Opr right_op  = right;
 525 
 526   if (TwoOperandLIRForm && left_op != result_op) {
 527     assert(right_op != result_op, "malformed");
 528     __ move(left_op, result_op);
 529     left_op = result_op;
 530   }
 531 
 532   switch(code) {
 533     case Bytecodes::_dadd:
 534     case Bytecodes::_fadd:
 535     case Bytecodes::_ladd:
 536     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 537     case Bytecodes::_fmul:
 538     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 539 
 540     case Bytecodes::_dmul:
 541       {
 542         if (is_strictfp) {
 543           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 544         } else {
 545           __ mul(left_op, right_op, result_op); break;
 546         }
 547       }
 548       break;
 549 
 550     case Bytecodes::_imul:
 551       {
 552         bool did_strength_reduce = false;
 553 
 554         if (right->is_constant()) {
 555           jint c = right->as_jint();
 556           if (c > 0 && is_power_of_2(c)) {
 557             // do not need tmp here
 558             __ shift_left(left_op, exact_log2(c), result_op);
 559             did_strength_reduce = true;
 560           } else {
 561             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 562           }
 563         }
 564         // we couldn't strength reduce so just emit the multiply
 565         if (!did_strength_reduce) {
 566           __ mul(left_op, right_op, result_op);
 567         }
 568       }
 569       break;
 570 
 571     case Bytecodes::_dsub:
 572     case Bytecodes::_fsub:
 573     case Bytecodes::_lsub:
 574     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 575 
 576     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 577     // ldiv and lrem are implemented with a direct runtime call
 578 
 579     case Bytecodes::_ddiv:
 580       {
 581         if (is_strictfp) {
 582           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 583         } else {
 584           __ div (left_op, right_op, result_op); break;
 585         }
 586       }
 587       break;
 588 
 589     case Bytecodes::_drem:
 590     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 591 
 592     default: ShouldNotReachHere();
 593   }
 594 }
 595 
 596 
 597 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 598   arithmetic_op(code, result, left, right, false, tmp);
 599 }
 600 
 601 
 602 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 603   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 604 }
 605 
 606 
 607 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 608   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 609 }
 610 
 611 
 612 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 613 
 614   if (TwoOperandLIRForm && value != result_op
 615       // Only 32bit right shifts require two operand form on S390.
 616       S390_ONLY(&& (code == Bytecodes::_ishr || code == Bytecodes::_iushr))) {
 617     assert(count != result_op, "malformed");
 618     __ move(value, result_op);
 619     value = result_op;
 620   }
 621 
 622   assert(count->is_constant() || count->is_register(), "must be");
 623   switch(code) {
 624   case Bytecodes::_ishl:
 625   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 626   case Bytecodes::_ishr:
 627   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 628   case Bytecodes::_iushr:
 629   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 630   default: ShouldNotReachHere();
 631   }
 632 }
 633 
 634 
 635 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 636   if (TwoOperandLIRForm && left_op != result_op) {
 637     assert(right_op != result_op, "malformed");
 638     __ move(left_op, result_op);
 639     left_op = result_op;
 640   }
 641 
 642   switch(code) {
 643     case Bytecodes::_iand:
 644     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 645 
 646     case Bytecodes::_ior:
 647     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 648 
 649     case Bytecodes::_ixor:
 650     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 651 
 652     default: ShouldNotReachHere();
 653   }
 654 }
 655 
 656 
 657 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 658   if (!GenerateSynchronizationCode) return;
 659   // for slow path, use debug info for state after successful locking
 660   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 661   __ load_stack_address_monitor(monitor_no, lock);
 662   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 663   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 664 }
 665 
 666 
 667 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 668   if (!GenerateSynchronizationCode) return;
 669   // setup registers
 670   LIR_Opr hdr = lock;
 671   lock = new_hdr;
 672   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 673   __ load_stack_address_monitor(monitor_no, lock);
 674   __ unlock_object(hdr, object, lock, scratch, slow_path);
 675 }
 676 
 677 #ifndef PRODUCT
 678 void LIRGenerator::print_if_not_loaded(const NewInstance* new_instance) {
 679   if (PrintNotLoaded && !new_instance->klass()->is_loaded()) {
 680     tty->print_cr("   ###class not loaded at new bci %d", new_instance->printable_bci());
 681   } else if (PrintNotLoaded && (TieredCompilation && new_instance->is_unresolved())) {
 682     tty->print_cr("   ###class not resolved at new bci %d", new_instance->printable_bci());
 683   }
 684 }
 685 #endif
 686 
 687 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, bool is_unresolved, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 688   klass2reg_with_patching(klass_reg, klass, info, is_unresolved);
 689   // If klass is not loaded we do not know if the klass has finalizers:
 690   if (UseFastNewInstance && klass->is_loaded()
 691       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 692 
 693     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 694 
 695     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 696 
 697     assert(klass->is_loaded(), "must be loaded");
 698     // allocate space for instance
 699     assert(klass->size_helper() >= 0, "illegal instance size");
 700     const int instance_size = align_object_size(klass->size_helper());
 701     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 702                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 703   } else {
 704     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 705     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 706     __ branch_destination(slow_path->continuation());
 707   }
 708 }
 709 
 710 
 711 static bool is_constant_zero(Instruction* inst) {
 712   IntConstant* c = inst->type()->as_IntConstant();
 713   if (c) {
 714     return (c->value() == 0);
 715   }
 716   return false;
 717 }
 718 
 719 
 720 static bool positive_constant(Instruction* inst) {
 721   IntConstant* c = inst->type()->as_IntConstant();
 722   if (c) {
 723     return (c->value() >= 0);
 724   }
 725   return false;
 726 }
 727 
 728 
 729 static ciArrayKlass* as_array_klass(ciType* type) {
 730   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 731     return (ciArrayKlass*)type;
 732   } else {
 733     return NULL;
 734   }
 735 }
 736 
 737 static ciType* phi_declared_type(Phi* phi) {
 738   ciType* t = phi->operand_at(0)->declared_type();
 739   if (t == NULL) {
 740     return NULL;
 741   }
 742   for(int i = 1; i < phi->operand_count(); i++) {
 743     if (t != phi->operand_at(i)->declared_type()) {
 744       return NULL;
 745     }
 746   }
 747   return t;
 748 }
 749 
 750 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 751   Instruction* src     = x->argument_at(0);
 752   Instruction* src_pos = x->argument_at(1);
 753   Instruction* dst     = x->argument_at(2);
 754   Instruction* dst_pos = x->argument_at(3);
 755   Instruction* length  = x->argument_at(4);
 756 
 757   // first try to identify the likely type of the arrays involved
 758   ciArrayKlass* expected_type = NULL;
 759   bool is_exact = false, src_objarray = false, dst_objarray = false;
 760   {
 761     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 762     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 763     Phi* phi;
 764     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 765       src_declared_type = as_array_klass(phi_declared_type(phi));
 766     }
 767     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 768     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 769     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 770       dst_declared_type = as_array_klass(phi_declared_type(phi));
 771     }
 772 
 773     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 774       // the types exactly match so the type is fully known
 775       is_exact = true;
 776       expected_type = src_exact_type;
 777     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 778       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 779       ciArrayKlass* src_type = NULL;
 780       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 781         src_type = (ciArrayKlass*) src_exact_type;
 782       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 783         src_type = (ciArrayKlass*) src_declared_type;
 784       }
 785       if (src_type != NULL) {
 786         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 787           is_exact = true;
 788           expected_type = dst_type;
 789         }
 790       }
 791     }
 792     // at least pass along a good guess
 793     if (expected_type == NULL) expected_type = dst_exact_type;
 794     if (expected_type == NULL) expected_type = src_declared_type;
 795     if (expected_type == NULL) expected_type = dst_declared_type;
 796 
 797     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 798     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 799   }
 800 
 801   // if a probable array type has been identified, figure out if any
 802   // of the required checks for a fast case can be elided.
 803   int flags = LIR_OpArrayCopy::all_flags;
 804 
 805   if (!src_objarray)
 806     flags &= ~LIR_OpArrayCopy::src_objarray;
 807   if (!dst_objarray)
 808     flags &= ~LIR_OpArrayCopy::dst_objarray;
 809 
 810   if (!x->arg_needs_null_check(0))
 811     flags &= ~LIR_OpArrayCopy::src_null_check;
 812   if (!x->arg_needs_null_check(2))
 813     flags &= ~LIR_OpArrayCopy::dst_null_check;
 814 
 815 
 816   if (expected_type != NULL) {
 817     Value length_limit = NULL;
 818 
 819     IfOp* ifop = length->as_IfOp();
 820     if (ifop != NULL) {
 821       // look for expressions like min(v, a.length) which ends up as
 822       //   x > y ? y : x  or  x >= y ? y : x
 823       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 824           ifop->x() == ifop->fval() &&
 825           ifop->y() == ifop->tval()) {
 826         length_limit = ifop->y();
 827       }
 828     }
 829 
 830     // try to skip null checks and range checks
 831     NewArray* src_array = src->as_NewArray();
 832     if (src_array != NULL) {
 833       flags &= ~LIR_OpArrayCopy::src_null_check;
 834       if (length_limit != NULL &&
 835           src_array->length() == length_limit &&
 836           is_constant_zero(src_pos)) {
 837         flags &= ~LIR_OpArrayCopy::src_range_check;
 838       }
 839     }
 840 
 841     NewArray* dst_array = dst->as_NewArray();
 842     if (dst_array != NULL) {
 843       flags &= ~LIR_OpArrayCopy::dst_null_check;
 844       if (length_limit != NULL &&
 845           dst_array->length() == length_limit &&
 846           is_constant_zero(dst_pos)) {
 847         flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850 
 851     // check from incoming constant values
 852     if (positive_constant(src_pos))
 853       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 854     if (positive_constant(dst_pos))
 855       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 856     if (positive_constant(length))
 857       flags &= ~LIR_OpArrayCopy::length_positive_check;
 858 
 859     // see if the range check can be elided, which might also imply
 860     // that src or dst is non-null.
 861     ArrayLength* al = length->as_ArrayLength();
 862     if (al != NULL) {
 863       if (al->array() == src) {
 864         // it's the length of the source array
 865         flags &= ~LIR_OpArrayCopy::length_positive_check;
 866         flags &= ~LIR_OpArrayCopy::src_null_check;
 867         if (is_constant_zero(src_pos))
 868           flags &= ~LIR_OpArrayCopy::src_range_check;
 869       }
 870       if (al->array() == dst) {
 871         // it's the length of the destination array
 872         flags &= ~LIR_OpArrayCopy::length_positive_check;
 873         flags &= ~LIR_OpArrayCopy::dst_null_check;
 874         if (is_constant_zero(dst_pos))
 875           flags &= ~LIR_OpArrayCopy::dst_range_check;
 876       }
 877     }
 878     if (is_exact) {
 879       flags &= ~LIR_OpArrayCopy::type_check;
 880     }
 881   }
 882 
 883   IntConstant* src_int = src_pos->type()->as_IntConstant();
 884   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 885   if (src_int && dst_int) {
 886     int s_offs = src_int->value();
 887     int d_offs = dst_int->value();
 888     if (src_int->value() >= dst_int->value()) {
 889       flags &= ~LIR_OpArrayCopy::overlapping;
 890     }
 891     if (expected_type != NULL) {
 892       BasicType t = expected_type->element_type()->basic_type();
 893       int element_size = type2aelembytes(t);
 894       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 895           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 896         flags &= ~LIR_OpArrayCopy::unaligned;
 897       }
 898     }
 899   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 900     // src and dest positions are the same, or dst is zero so assume
 901     // nonoverlapping copy.
 902     flags &= ~LIR_OpArrayCopy::overlapping;
 903   }
 904 
 905   if (src == dst) {
 906     // moving within a single array so no type checks are needed
 907     if (flags & LIR_OpArrayCopy::type_check) {
 908       flags &= ~LIR_OpArrayCopy::type_check;
 909     }
 910   }
 911   *flagsp = flags;
 912   *expected_typep = (ciArrayKlass*)expected_type;
 913 }
 914 
 915 
 916 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 917   assert(opr->is_register(), "why spill if item is not register?");
 918 
 919   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 920     LIR_Opr result = new_register(T_FLOAT);
 921     set_vreg_flag(result, must_start_in_memory);
 922     assert(opr->is_register(), "only a register can be spilled");
 923     assert(opr->value_type()->is_float(), "rounding only for floats available");
 924     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 925     return result;
 926   }
 927   return opr;
 928 }
 929 
 930 
 931 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 932   assert(type2size[t] == type2size[value->type()],
 933          "size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type()));
 934   if (!value->is_register()) {
 935     // force into a register
 936     LIR_Opr r = new_register(value->type());
 937     __ move(value, r);
 938     value = r;
 939   }
 940 
 941   // create a spill location
 942   LIR_Opr tmp = new_register(t);
 943   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 944 
 945   // move from register to spill
 946   __ move(value, tmp);
 947   return tmp;
 948 }
 949 
 950 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 951   if (if_instr->should_profile()) {
 952     ciMethod* method = if_instr->profiled_method();
 953     assert(method != NULL, "method should be set if branch is profiled");
 954     ciMethodData* md = method->method_data_or_null();
 955     assert(md != NULL, "Sanity");
 956     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 957     assert(data != NULL, "must have profiling data");
 958     assert(data->is_BranchData(), "need BranchData for two-way branches");
 959     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 960     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 961     if (if_instr->is_swapped()) {
 962       int t = taken_count_offset;
 963       taken_count_offset = not_taken_count_offset;
 964       not_taken_count_offset = t;
 965     }
 966 
 967     LIR_Opr md_reg = new_register(T_METADATA);
 968     __ metadata2reg(md->constant_encoding(), md_reg);
 969 
 970     LIR_Opr data_offset_reg = new_pointer_register();
 971     __ cmove(lir_cond(cond),
 972              LIR_OprFact::intptrConst(taken_count_offset),
 973              LIR_OprFact::intptrConst(not_taken_count_offset),
 974              data_offset_reg, as_BasicType(if_instr->x()->type()));
 975 
 976     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 977     LIR_Opr data_reg = new_pointer_register();
 978     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 979     __ move(data_addr, data_reg);
 980     // Use leal instead of add to avoid destroying condition codes on x86
 981     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 982     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 983     __ move(data_reg, data_addr);
 984   }
 985 }
 986 
 987 // Phi technique:
 988 // This is about passing live values from one basic block to the other.
 989 // In code generated with Java it is rather rare that more than one
 990 // value is on the stack from one basic block to the other.
 991 // We optimize our technique for efficient passing of one value
 992 // (of type long, int, double..) but it can be extended.
 993 // When entering or leaving a basic block, all registers and all spill
 994 // slots are release and empty. We use the released registers
 995 // and spill slots to pass the live values from one block
 996 // to the other. The topmost value, i.e., the value on TOS of expression
 997 // stack is passed in registers. All other values are stored in spilling
 998 // area. Every Phi has an index which designates its spill slot
 999 // At exit of a basic block, we fill the register(s) and spill slots.
1000 // At entry of a basic block, the block_prolog sets up the content of phi nodes
1001 // and locks necessary registers and spilling slots.
1002 
1003 
1004 // move current value to referenced phi function
1005 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
1006   Phi* phi = sux_val->as_Phi();
1007   // cur_val can be null without phi being null in conjunction with inlining
1008   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
1009     Phi* cur_phi = cur_val->as_Phi();
1010     if (cur_phi != NULL && cur_phi->is_illegal()) {
1011       // Phi and local would need to get invalidated
1012       // (which is unexpected for Linear Scan).
1013       // But this case is very rare so we simply bail out.
1014       bailout("propagation of illegal phi");
1015       return;
1016     }
1017     LIR_Opr operand = cur_val->operand();
1018     if (operand->is_illegal()) {
1019       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
1020              "these can be produced lazily");
1021       operand = operand_for_instruction(cur_val);
1022     }
1023     resolver->move(operand, operand_for_instruction(phi));
1024   }
1025 }
1026 
1027 
1028 // Moves all stack values into their PHI position
1029 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
1030   BlockBegin* bb = block();
1031   if (bb->number_of_sux() == 1) {
1032     BlockBegin* sux = bb->sux_at(0);
1033     assert(sux->number_of_preds() > 0, "invalid CFG");
1034 
1035     // a block with only one predecessor never has phi functions
1036     if (sux->number_of_preds() > 1) {
1037       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1038       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1039 
1040       ValueStack* sux_state = sux->state();
1041       Value sux_value;
1042       int index;
1043 
1044       assert(cur_state->scope() == sux_state->scope(), "not matching");
1045       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1046       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1047 
1048       for_each_stack_value(sux_state, index, sux_value) {
1049         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1050       }
1051 
1052       for_each_local_value(sux_state, index, sux_value) {
1053         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1054       }
1055 
1056       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1057     }
1058   }
1059 }
1060 
1061 
1062 LIR_Opr LIRGenerator::new_register(BasicType type) {
1063   int vreg = _virtual_register_number;
1064   // add a little fudge factor for the bailout, since the bailout is
1065   // only checked periodically.  This gives a few extra registers to
1066   // hand out before we really run out, which helps us keep from
1067   // tripping over assertions.
1068   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1069     bailout("out of virtual registers");
1070     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1071       // wrap it around
1072       _virtual_register_number = LIR_OprDesc::vreg_base;
1073     }
1074   }
1075   _virtual_register_number += 1;
1076   return LIR_OprFact::virtual_register(vreg, type);
1077 }
1078 
1079 
1080 // Try to lock using register in hint
1081 LIR_Opr LIRGenerator::rlock(Value instr) {
1082   return new_register(instr->type());
1083 }
1084 
1085 
1086 // does an rlock and sets result
1087 LIR_Opr LIRGenerator::rlock_result(Value x) {
1088   LIR_Opr reg = rlock(x);
1089   set_result(x, reg);
1090   return reg;
1091 }
1092 
1093 
1094 // does an rlock and sets result
1095 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1096   LIR_Opr reg;
1097   switch (type) {
1098   case T_BYTE:
1099   case T_BOOLEAN:
1100     reg = rlock_byte(type);
1101     break;
1102   default:
1103     reg = rlock(x);
1104     break;
1105   }
1106 
1107   set_result(x, reg);
1108   return reg;
1109 }
1110 
1111 
1112 //---------------------------------------------------------------------
1113 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1114   ObjectType* oc = value->type()->as_ObjectType();
1115   if (oc) {
1116     return oc->constant_value();
1117   }
1118   return NULL;
1119 }
1120 
1121 
1122 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1123   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1124   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1125 
1126   // no moves are created for phi functions at the begin of exception
1127   // handlers, so assign operands manually here
1128   for_each_phi_fun(block(), phi,
1129                    operand_for_instruction(phi));
1130 
1131   LIR_Opr thread_reg = getThreadPointer();
1132   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1133                exceptionOopOpr());
1134   __ move_wide(LIR_OprFact::oopConst(NULL),
1135                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1136   __ move_wide(LIR_OprFact::oopConst(NULL),
1137                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1138 
1139   LIR_Opr result = new_register(T_OBJECT);
1140   __ move(exceptionOopOpr(), result);
1141   set_result(x, result);
1142 }
1143 
1144 
1145 //----------------------------------------------------------------------
1146 //----------------------------------------------------------------------
1147 //----------------------------------------------------------------------
1148 //----------------------------------------------------------------------
1149 //                        visitor functions
1150 //----------------------------------------------------------------------
1151 //----------------------------------------------------------------------
1152 //----------------------------------------------------------------------
1153 //----------------------------------------------------------------------
1154 
1155 void LIRGenerator::do_Phi(Phi* x) {
1156   // phi functions are never visited directly
1157   ShouldNotReachHere();
1158 }
1159 
1160 
1161 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1162 void LIRGenerator::do_Constant(Constant* x) {
1163   if (x->state_before() != NULL) {
1164     // Any constant with a ValueStack requires patching so emit the patch here
1165     LIR_Opr reg = rlock_result(x);
1166     CodeEmitInfo* info = state_for(x, x->state_before());
1167     __ oop2reg_patch(NULL, reg, info);
1168   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1169     if (!x->is_pinned()) {
1170       // unpinned constants are handled specially so that they can be
1171       // put into registers when they are used multiple times within a
1172       // block.  After the block completes their operand will be
1173       // cleared so that other blocks can't refer to that register.
1174       set_result(x, load_constant(x));
1175     } else {
1176       LIR_Opr res = x->operand();
1177       if (!res->is_valid()) {
1178         res = LIR_OprFact::value_type(x->type());
1179       }
1180       if (res->is_constant()) {
1181         LIR_Opr reg = rlock_result(x);
1182         __ move(res, reg);
1183       } else {
1184         set_result(x, res);
1185       }
1186     }
1187   } else {
1188     set_result(x, LIR_OprFact::value_type(x->type()));
1189   }
1190 }
1191 
1192 
1193 void LIRGenerator::do_Local(Local* x) {
1194   // operand_for_instruction has the side effect of setting the result
1195   // so there's no need to do it here.
1196   operand_for_instruction(x);
1197 }
1198 
1199 
1200 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1201   Unimplemented();
1202 }
1203 
1204 
1205 void LIRGenerator::do_Return(Return* x) {
1206   if (compilation()->env()->dtrace_method_probes()) {
1207     BasicTypeList signature;
1208     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1209     signature.append(T_METADATA); // Method*
1210     LIR_OprList* args = new LIR_OprList();
1211     args->append(getThreadPointer());
1212     LIR_Opr meth = new_register(T_METADATA);
1213     __ metadata2reg(method()->constant_encoding(), meth);
1214     args->append(meth);
1215     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1216   }
1217 
1218   if (x->type()->is_void()) {
1219     __ return_op(LIR_OprFact::illegalOpr);
1220   } else {
1221     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1222     LIRItem result(x->result(), this);
1223 
1224     result.load_item_force(reg);
1225     __ return_op(result.result());
1226   }
1227   set_no_result(x);
1228 }
1229 
1230 // Examble: ref.get()
1231 // Combination of LoadField and g1 pre-write barrier
1232 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1233 
1234   const int referent_offset = java_lang_ref_Reference::referent_offset;
1235   guarantee(referent_offset > 0, "referent offset not initialized");
1236 
1237   assert(x->number_of_arguments() == 1, "wrong type");
1238 
1239   LIRItem reference(x->argument_at(0), this);
1240   reference.load_item();
1241 
1242   // need to perform the null check on the reference objecy
1243   CodeEmitInfo* info = NULL;
1244   if (x->needs_null_check()) {
1245     info = state_for(x);
1246   }
1247 
1248   LIR_Address* referent_field_adr =
1249     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1250 
1251   LIR_Opr result = rlock_result(x);
1252 
1253   __ load(referent_field_adr, result, info);
1254 
1255   // Register the value in the referent field with the pre-barrier
1256   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1257               result /* pre_val */,
1258               false  /* do_load */,
1259               false  /* patch */,
1260               NULL   /* info */);
1261 }
1262 
1263 // Example: clazz.isInstance(object)
1264 void LIRGenerator::do_isInstance(Intrinsic* x) {
1265   assert(x->number_of_arguments() == 2, "wrong type");
1266 
1267   // TODO could try to substitute this node with an equivalent InstanceOf
1268   // if clazz is known to be a constant Class. This will pick up newly found
1269   // constants after HIR construction. I'll leave this to a future change.
1270 
1271   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1272   // could follow the aastore example in a future change.
1273 
1274   LIRItem clazz(x->argument_at(0), this);
1275   LIRItem object(x->argument_at(1), this);
1276   clazz.load_item();
1277   object.load_item();
1278   LIR_Opr result = rlock_result(x);
1279 
1280   // need to perform null check on clazz
1281   if (x->needs_null_check()) {
1282     CodeEmitInfo* info = state_for(x);
1283     __ null_check(clazz.result(), info);
1284   }
1285 
1286   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1287                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1288                                      x->type(),
1289                                      NULL); // NULL CodeEmitInfo results in a leaf call
1290   __ move(call_result, result);
1291 }
1292 
1293 // Example: object.getClass ()
1294 void LIRGenerator::do_getClass(Intrinsic* x) {
1295   assert(x->number_of_arguments() == 1, "wrong type");
1296 
1297   LIRItem rcvr(x->argument_at(0), this);
1298   rcvr.load_item();
1299   LIR_Opr temp = new_register(T_METADATA);
1300   LIR_Opr result = rlock_result(x);
1301 
1302   // need to perform the null check on the rcvr
1303   CodeEmitInfo* info = NULL;
1304   if (x->needs_null_check()) {
1305     info = state_for(x);
1306   }
1307 
1308   // FIXME T_ADDRESS should actually be T_METADATA but it can't because the
1309   // meaning of these two is mixed up (see JDK-8026837).
1310   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1311   __ move_wide(new LIR_Address(temp, in_bytes(Klass::java_mirror_offset()), T_ADDRESS), result);
1312   // mirror = ((OopHandle)mirror)->resolve();
1313   __ move_wide(new LIR_Address(result, T_OBJECT), result);
1314 }
1315 
1316 // java.lang.Class::isPrimitive()
1317 void LIRGenerator::do_isPrimitive(Intrinsic* x) {
1318   assert(x->number_of_arguments() == 1, "wrong type");
1319 
1320   LIRItem rcvr(x->argument_at(0), this);
1321   rcvr.load_item();
1322   LIR_Opr temp = new_register(T_METADATA);
1323   LIR_Opr result = rlock_result(x);
1324 
1325   CodeEmitInfo* info = NULL;
1326   if (x->needs_null_check()) {
1327     info = state_for(x);
1328   }
1329 
1330   __ move(new LIR_Address(rcvr.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), temp, info);
1331   __ cmp(lir_cond_notEqual, temp, LIR_OprFact::intConst(0));
1332   __ cmove(lir_cond_notEqual, LIR_OprFact::intConst(0), LIR_OprFact::intConst(1), result, T_BOOLEAN);
1333 }
1334 
1335 
1336 // Example: Thread.currentThread()
1337 void LIRGenerator::do_currentThread(Intrinsic* x) {
1338   assert(x->number_of_arguments() == 0, "wrong type");
1339   LIR_Opr reg = rlock_result(x);
1340   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1341 }
1342 
1343 
1344 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1345   assert(x->number_of_arguments() == 1, "wrong type");
1346   LIRItem receiver(x->argument_at(0), this);
1347 
1348   receiver.load_item();
1349   BasicTypeList signature;
1350   signature.append(T_OBJECT); // receiver
1351   LIR_OprList* args = new LIR_OprList();
1352   args->append(receiver.result());
1353   CodeEmitInfo* info = state_for(x, x->state());
1354   call_runtime(&signature, args,
1355                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1356                voidType, info);
1357 
1358   set_no_result(x);
1359 }
1360 
1361 
1362 //------------------------local access--------------------------------------
1363 
1364 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1365   if (x->operand()->is_illegal()) {
1366     Constant* c = x->as_Constant();
1367     if (c != NULL) {
1368       x->set_operand(LIR_OprFact::value_type(c->type()));
1369     } else {
1370       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1371       // allocate a virtual register for this local or phi
1372       x->set_operand(rlock(x));
1373       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1374     }
1375   }
1376   return x->operand();
1377 }
1378 
1379 
1380 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1381   if (opr->is_virtual()) {
1382     return instruction_for_vreg(opr->vreg_number());
1383   }
1384   return NULL;
1385 }
1386 
1387 
1388 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1389   if (reg_num < _instruction_for_operand.length()) {
1390     return _instruction_for_operand.at(reg_num);
1391   }
1392   return NULL;
1393 }
1394 
1395 
1396 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1397   if (_vreg_flags.size_in_bits() == 0) {
1398     BitMap2D temp(100, num_vreg_flags);
1399     _vreg_flags = temp;
1400   }
1401   _vreg_flags.at_put_grow(vreg_num, f, true);
1402 }
1403 
1404 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1405   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1406     return false;
1407   }
1408   return _vreg_flags.at(vreg_num, f);
1409 }
1410 
1411 
1412 // Block local constant handling.  This code is useful for keeping
1413 // unpinned constants and constants which aren't exposed in the IR in
1414 // registers.  Unpinned Constant instructions have their operands
1415 // cleared when the block is finished so that other blocks can't end
1416 // up referring to their registers.
1417 
1418 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1419   assert(!x->is_pinned(), "only for unpinned constants");
1420   _unpinned_constants.append(x);
1421   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1422 }
1423 
1424 
1425 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1426   BasicType t = c->type();
1427   for (int i = 0; i < _constants.length(); i++) {
1428     LIR_Const* other = _constants.at(i);
1429     if (t == other->type()) {
1430       switch (t) {
1431       case T_INT:
1432       case T_FLOAT:
1433         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1434         break;
1435       case T_LONG:
1436       case T_DOUBLE:
1437         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1438         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1439         break;
1440       case T_OBJECT:
1441         if (c->as_jobject() != other->as_jobject()) continue;
1442         break;
1443       default:
1444         break;
1445       }
1446       return _reg_for_constants.at(i);
1447     }
1448   }
1449 
1450   LIR_Opr result = new_register(t);
1451   __ move((LIR_Opr)c, result);
1452   _constants.append(c);
1453   _reg_for_constants.append(result);
1454   return result;
1455 }
1456 
1457 // Various barriers
1458 
1459 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1460                                bool do_load, bool patch, CodeEmitInfo* info) {
1461   // Do the pre-write barrier, if any.
1462   switch (_bs->kind()) {
1463 #if INCLUDE_ALL_GCS
1464     case BarrierSet::G1BarrierSet:
1465       G1BarrierSet_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1466       break;
1467 #endif // INCLUDE_ALL_GCS
1468     case BarrierSet::CardTableBarrierSet:
1469       // No pre barriers
1470       break;
1471     default      :
1472       ShouldNotReachHere();
1473 
1474   }
1475 }
1476 
1477 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1478   switch (_bs->kind()) {
1479 #if INCLUDE_ALL_GCS
1480     case BarrierSet::G1BarrierSet:
1481       G1BarrierSet_post_barrier(addr,  new_val);
1482       break;
1483 #endif // INCLUDE_ALL_GCS
1484     case BarrierSet::CardTableBarrierSet:
1485       CardTableBarrierSet_post_barrier(addr,  new_val);
1486       break;
1487     default      :
1488       ShouldNotReachHere();
1489     }
1490 }
1491 
1492 ////////////////////////////////////////////////////////////////////////
1493 #if INCLUDE_ALL_GCS
1494 
1495 void LIRGenerator::G1BarrierSet_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1496                                             bool do_load, bool patch, CodeEmitInfo* info) {
1497   // First we test whether marking is in progress.
1498   BasicType flag_type;
1499   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
1500     flag_type = T_INT;
1501   } else {
1502     guarantee(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1,
1503               "Assumption");
1504     // Use unsigned type T_BOOLEAN here rather than signed T_BYTE since some platforms, eg. ARM,
1505     // need to use unsigned instructions to use the large offset to load the satb_mark_queue.
1506     flag_type = T_BOOLEAN;
1507   }
1508   LIR_Opr thrd = getThreadPointer();
1509   LIR_Address* mark_active_flag_addr =
1510     new LIR_Address(thrd, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()), flag_type);
1511   // Read the marking-in-progress flag.
1512   LIR_Opr flag_val = new_register(T_INT);
1513   __ load(mark_active_flag_addr, flag_val);
1514   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1515 
1516   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1517 
1518   CodeStub* slow;
1519 
1520   if (do_load) {
1521     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1522     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1523 
1524     if (patch)
1525       pre_val_patch_code = lir_patch_normal;
1526 
1527     pre_val = new_register(T_OBJECT);
1528 
1529     if (!addr_opr->is_address()) {
1530       assert(addr_opr->is_register(), "must be");
1531       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1532     }
1533     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1534   } else {
1535     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1536     assert(pre_val->is_register(), "must be");
1537     assert(pre_val->type() == T_OBJECT, "must be an object");
1538     assert(info == NULL, "sanity");
1539 
1540     slow = new G1PreBarrierStub(pre_val);
1541   }
1542 
1543   __ branch(lir_cond_notEqual, T_INT, slow);
1544   __ branch_destination(slow->continuation());
1545 }
1546 
1547 void LIRGenerator::G1BarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1548   // If the "new_val" is a constant NULL, no barrier is necessary.
1549   if (new_val->is_constant() &&
1550       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1551 
1552   if (!new_val->is_register()) {
1553     LIR_Opr new_val_reg = new_register(T_OBJECT);
1554     if (new_val->is_constant()) {
1555       __ move(new_val, new_val_reg);
1556     } else {
1557       __ leal(new_val, new_val_reg);
1558     }
1559     new_val = new_val_reg;
1560   }
1561   assert(new_val->is_register(), "must be a register at this point");
1562 
1563   if (addr->is_address()) {
1564     LIR_Address* address = addr->as_address_ptr();
1565     LIR_Opr ptr = new_pointer_register();
1566     if (!address->index()->is_valid() && address->disp() == 0) {
1567       __ move(address->base(), ptr);
1568     } else {
1569       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1570       __ leal(addr, ptr);
1571     }
1572     addr = ptr;
1573   }
1574   assert(addr->is_register(), "must be a register at this point");
1575 
1576   LIR_Opr xor_res = new_pointer_register();
1577   LIR_Opr xor_shift_res = new_pointer_register();
1578   if (TwoOperandLIRForm ) {
1579     __ move(addr, xor_res);
1580     __ logical_xor(xor_res, new_val, xor_res);
1581     __ move(xor_res, xor_shift_res);
1582     __ unsigned_shift_right(xor_shift_res,
1583                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1584                             xor_shift_res,
1585                             LIR_OprDesc::illegalOpr());
1586   } else {
1587     __ logical_xor(addr, new_val, xor_res);
1588     __ unsigned_shift_right(xor_res,
1589                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1590                             xor_shift_res,
1591                             LIR_OprDesc::illegalOpr());
1592   }
1593 
1594   if (!new_val->is_register()) {
1595     LIR_Opr new_val_reg = new_register(T_OBJECT);
1596     __ leal(new_val, new_val_reg);
1597     new_val = new_val_reg;
1598   }
1599   assert(new_val->is_register(), "must be a register at this point");
1600 
1601   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1602 
1603   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1604   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1605   __ branch_destination(slow->continuation());
1606 }
1607 
1608 #endif // INCLUDE_ALL_GCS
1609 ////////////////////////////////////////////////////////////////////////
1610 
1611 void LIRGenerator::CardTableBarrierSet_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1612   LIR_Const* card_table_base = new LIR_Const(ci_card_table_address());
1613   if (addr->is_address()) {
1614     LIR_Address* address = addr->as_address_ptr();
1615     // ptr cannot be an object because we use this barrier for array card marks
1616     // and addr can point in the middle of an array.
1617     LIR_Opr ptr = new_pointer_register();
1618     if (!address->index()->is_valid() && address->disp() == 0) {
1619       __ move(address->base(), ptr);
1620     } else {
1621       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1622       __ leal(addr, ptr);
1623     }
1624     addr = ptr;
1625   }
1626   assert(addr->is_register(), "must be a register at this point");
1627 
1628 #ifdef CARDTABLEBARRIERSET_POST_BARRIER_HELPER
1629   CardTableBarrierSet_post_barrier_helper(addr, card_table_base);
1630 #else
1631   LIR_Opr tmp = new_pointer_register();
1632   if (TwoOperandLIRForm) {
1633     __ move(addr, tmp);
1634     __ unsigned_shift_right(tmp, CardTable::card_shift, tmp);
1635   } else {
1636     __ unsigned_shift_right(addr, CardTable::card_shift, tmp);
1637   }
1638 
1639   LIR_Address* card_addr;
1640   if (can_inline_as_constant(card_table_base)) {
1641     card_addr = new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE);
1642   } else {
1643     card_addr = new LIR_Address(tmp, load_constant(card_table_base), T_BYTE);
1644   }
1645 
1646   LIR_Opr dirty = LIR_OprFact::intConst(CardTable::dirty_card_val());
1647   if (UseCondCardMark) {
1648     LIR_Opr cur_value = new_register(T_INT);
1649     if (UseConcMarkSweepGC) {
1650       __ membar_storeload();
1651     }
1652     __ move(card_addr, cur_value);
1653 
1654     LabelObj* L_already_dirty = new LabelObj();
1655     __ cmp(lir_cond_equal, cur_value, dirty);
1656     __ branch(lir_cond_equal, T_BYTE, L_already_dirty->label());
1657     __ move(dirty, card_addr);
1658     __ branch_destination(L_already_dirty->label());
1659   } else {
1660     if (UseConcMarkSweepGC && CMSPrecleaningEnabled) {
1661       __ membar_storestore();
1662     }
1663     __ move(dirty, card_addr);
1664   }
1665 #endif
1666 }
1667 
1668 
1669 //------------------------field access--------------------------------------
1670 
1671 // Comment copied form templateTable_i486.cpp
1672 // ----------------------------------------------------------------------------
1673 // Volatile variables demand their effects be made known to all CPU's in
1674 // order.  Store buffers on most chips allow reads & writes to reorder; the
1675 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1676 // memory barrier (i.e., it's not sufficient that the interpreter does not
1677 // reorder volatile references, the hardware also must not reorder them).
1678 //
1679 // According to the new Java Memory Model (JMM):
1680 // (1) All volatiles are serialized wrt to each other.
1681 // ALSO reads & writes act as aquire & release, so:
1682 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1683 // the read float up to before the read.  It's OK for non-volatile memory refs
1684 // that happen before the volatile read to float down below it.
1685 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1686 // that happen BEFORE the write float down to after the write.  It's OK for
1687 // non-volatile memory refs that happen after the volatile write to float up
1688 // before it.
1689 //
1690 // We only put in barriers around volatile refs (they are expensive), not
1691 // _between_ memory refs (that would require us to track the flavor of the
1692 // previous memory refs).  Requirements (2) and (3) require some barriers
1693 // before volatile stores and after volatile loads.  These nearly cover
1694 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1695 // case is placed after volatile-stores although it could just as well go
1696 // before volatile-loads.
1697 
1698 
1699 void LIRGenerator::do_StoreField(StoreField* x) {
1700   bool needs_patching = x->needs_patching();
1701   bool is_volatile = x->field()->is_volatile();
1702   BasicType field_type = x->field_type();
1703   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1704 
1705   CodeEmitInfo* info = NULL;
1706   if (needs_patching) {
1707     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1708     info = state_for(x, x->state_before());
1709   } else if (x->needs_null_check()) {
1710     NullCheck* nc = x->explicit_null_check();
1711     if (nc == NULL) {
1712       info = state_for(x);
1713     } else {
1714       info = state_for(nc);
1715     }
1716   }
1717 
1718 
1719   LIRItem object(x->obj(), this);
1720   LIRItem value(x->value(),  this);
1721 
1722   object.load_item();
1723 
1724   if (is_volatile || needs_patching) {
1725     // load item if field is volatile (fewer special cases for volatiles)
1726     // load item if field not initialized
1727     // load item if field not constant
1728     // because of code patching we cannot inline constants
1729     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1730       value.load_byte_item();
1731     } else  {
1732       value.load_item();
1733     }
1734   } else {
1735     value.load_for_store(field_type);
1736   }
1737 
1738   set_no_result(x);
1739 
1740 #ifndef PRODUCT
1741   if (PrintNotLoaded && needs_patching) {
1742     tty->print_cr("   ###class not loaded at store_%s bci %d",
1743                   x->is_static() ?  "static" : "field", x->printable_bci());
1744   }
1745 #endif
1746 
1747   if (x->needs_null_check() &&
1748       (needs_patching ||
1749        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1750     // Emit an explicit null check because the offset is too large.
1751     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1752     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1753     __ null_check(object.result(), new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1754   }
1755 
1756   LIR_Address* address;
1757   if (needs_patching) {
1758     // we need to patch the offset in the instruction so don't allow
1759     // generate_address to try to be smart about emitting the -1.
1760     // Otherwise the patching code won't know how to find the
1761     // instruction to patch.
1762     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1763   } else {
1764     address = generate_address(object.result(), x->offset(), field_type);
1765   }
1766 
1767   if (is_volatile && os::is_MP()) {
1768     __ membar_release();
1769   }
1770 
1771   if (is_oop) {
1772     // Do the pre-write barrier, if any.
1773     pre_barrier(LIR_OprFact::address(address),
1774                 LIR_OprFact::illegalOpr /* pre_val */,
1775                 true /* do_load*/,
1776                 needs_patching,
1777                 (info ? new CodeEmitInfo(info) : NULL));
1778   }
1779 
1780   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1781   if (needs_atomic_access && !needs_patching) {
1782     volatile_field_store(value.result(), address, info);
1783   } else {
1784     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1785     __ store(value.result(), address, info, patch_code);
1786   }
1787 
1788   if (is_oop) {
1789     // Store to object so mark the card of the header
1790     post_barrier(object.result(), value.result());
1791   }
1792 
1793   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1794     __ membar();
1795   }
1796 }
1797 
1798 
1799 void LIRGenerator::do_LoadField(LoadField* x) {
1800   bool needs_patching = x->needs_patching();
1801   bool is_volatile = x->field()->is_volatile();
1802   BasicType field_type = x->field_type();
1803 
1804   CodeEmitInfo* info = NULL;
1805   if (needs_patching) {
1806     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1807     info = state_for(x, x->state_before());
1808   } else if (x->needs_null_check()) {
1809     NullCheck* nc = x->explicit_null_check();
1810     if (nc == NULL) {
1811       info = state_for(x);
1812     } else {
1813       info = state_for(nc);
1814     }
1815   }
1816 
1817   LIRItem object(x->obj(), this);
1818 
1819   object.load_item();
1820 
1821 #ifndef PRODUCT
1822   if (PrintNotLoaded && needs_patching) {
1823     tty->print_cr("   ###class not loaded at load_%s bci %d",
1824                   x->is_static() ?  "static" : "field", x->printable_bci());
1825   }
1826 #endif
1827 
1828   bool stress_deopt = StressLoopInvariantCodeMotion && info && info->deoptimize_on_exception();
1829   if (x->needs_null_check() &&
1830       (needs_patching ||
1831        MacroAssembler::needs_explicit_null_check(x->offset()) ||
1832        stress_deopt)) {
1833     LIR_Opr obj = object.result();
1834     if (stress_deopt) {
1835       obj = new_register(T_OBJECT);
1836       __ move(LIR_OprFact::oopConst(NULL), obj);
1837     }
1838     // Emit an explicit null check because the offset is too large.
1839     // If the class is not loaded and the object is NULL, we need to deoptimize to throw a
1840     // NoClassDefFoundError in the interpreter instead of an implicit NPE from compiled code.
1841     __ null_check(obj, new CodeEmitInfo(info), /* deoptimize */ needs_patching);
1842   }
1843 
1844   LIR_Opr reg = rlock_result(x, field_type);
1845   LIR_Address* address;
1846   if (needs_patching) {
1847     // we need to patch the offset in the instruction so don't allow
1848     // generate_address to try to be smart about emitting the -1.
1849     // Otherwise the patching code won't know how to find the
1850     // instruction to patch.
1851     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1852   } else {
1853     address = generate_address(object.result(), x->offset(), field_type);
1854   }
1855 
1856   if (support_IRIW_for_not_multiple_copy_atomic_cpu && is_volatile && os::is_MP()) {
1857     __ membar();
1858   }
1859 
1860   bool needs_atomic_access = is_volatile || AlwaysAtomicAccesses;
1861   if (needs_atomic_access && !needs_patching) {
1862     volatile_field_load(address, reg, info);
1863   } else {
1864     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1865     __ load(address, reg, info, patch_code);
1866   }
1867 
1868   if (is_volatile && os::is_MP()) {
1869     __ membar_acquire();
1870   }
1871 }
1872 
1873 
1874 //------------------------java.nio.Buffer.checkIndex------------------------
1875 
1876 // int java.nio.Buffer.checkIndex(int)
1877 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1878   // NOTE: by the time we are in checkIndex() we are guaranteed that
1879   // the buffer is non-null (because checkIndex is package-private and
1880   // only called from within other methods in the buffer).
1881   assert(x->number_of_arguments() == 2, "wrong type");
1882   LIRItem buf  (x->argument_at(0), this);
1883   LIRItem index(x->argument_at(1), this);
1884   buf.load_item();
1885   index.load_item();
1886 
1887   LIR_Opr result = rlock_result(x);
1888   if (GenerateRangeChecks) {
1889     CodeEmitInfo* info = state_for(x);
1890     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1891     if (index.result()->is_constant()) {
1892       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1893       __ branch(lir_cond_belowEqual, T_INT, stub);
1894     } else {
1895       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1896                   java_nio_Buffer::limit_offset(), T_INT, info);
1897       __ branch(lir_cond_aboveEqual, T_INT, stub);
1898     }
1899     __ move(index.result(), result);
1900   } else {
1901     // Just load the index into the result register
1902     __ move(index.result(), result);
1903   }
1904 }
1905 
1906 
1907 //------------------------array access--------------------------------------
1908 
1909 
1910 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1911   LIRItem array(x->array(), this);
1912   array.load_item();
1913   LIR_Opr reg = rlock_result(x);
1914 
1915   CodeEmitInfo* info = NULL;
1916   if (x->needs_null_check()) {
1917     NullCheck* nc = x->explicit_null_check();
1918     if (nc == NULL) {
1919       info = state_for(x);
1920     } else {
1921       info = state_for(nc);
1922     }
1923     if (StressLoopInvariantCodeMotion && info->deoptimize_on_exception()) {
1924       LIR_Opr obj = new_register(T_OBJECT);
1925       __ move(LIR_OprFact::oopConst(NULL), obj);
1926       __ null_check(obj, new CodeEmitInfo(info));
1927     }
1928   }
1929   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1930 }
1931 
1932 
1933 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1934   bool use_length = x->length() != NULL;
1935   LIRItem array(x->array(), this);
1936   LIRItem index(x->index(), this);
1937   LIRItem length(this);
1938   bool needs_range_check = x->compute_needs_range_check();
1939 
1940   if (use_length && needs_range_check) {
1941     length.set_instruction(x->length());
1942     length.load_item();
1943   }
1944 
1945   array.load_item();
1946   if (index.is_constant() && can_inline_as_constant(x->index())) {
1947     // let it be a constant
1948     index.dont_load_item();
1949   } else {
1950     index.load_item();
1951   }
1952 
1953   CodeEmitInfo* range_check_info = state_for(x);
1954   CodeEmitInfo* null_check_info = NULL;
1955   if (x->needs_null_check()) {
1956     NullCheck* nc = x->explicit_null_check();
1957     if (nc != NULL) {
1958       null_check_info = state_for(nc);
1959     } else {
1960       null_check_info = range_check_info;
1961     }
1962     if (StressLoopInvariantCodeMotion && null_check_info->deoptimize_on_exception()) {
1963       LIR_Opr obj = new_register(T_OBJECT);
1964       __ move(LIR_OprFact::oopConst(NULL), obj);
1965       __ null_check(obj, new CodeEmitInfo(null_check_info));
1966     }
1967   }
1968 
1969   // emit array address setup early so it schedules better
1970   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1971 
1972   if (GenerateRangeChecks && needs_range_check) {
1973     if (StressLoopInvariantCodeMotion && range_check_info->deoptimize_on_exception()) {
1974       __ branch(lir_cond_always, T_ILLEGAL, new RangeCheckStub(range_check_info, index.result()));
1975     } else if (use_length) {
1976       // TODO: use a (modified) version of array_range_check that does not require a
1977       //       constant length to be loaded to a register
1978       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1979       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1980     } else {
1981       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1982       // The range check performs the null check, so clear it out for the load
1983       null_check_info = NULL;
1984     }
1985   }
1986 
1987   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1988 }
1989 
1990 
1991 void LIRGenerator::do_NullCheck(NullCheck* x) {
1992   if (x->can_trap()) {
1993     LIRItem value(x->obj(), this);
1994     value.load_item();
1995     CodeEmitInfo* info = state_for(x);
1996     __ null_check(value.result(), info);
1997   }
1998 }
1999 
2000 
2001 void LIRGenerator::do_TypeCast(TypeCast* x) {
2002   LIRItem value(x->obj(), this);
2003   value.load_item();
2004   // the result is the same as from the node we are casting
2005   set_result(x, value.result());
2006 }
2007 
2008 
2009 void LIRGenerator::do_Throw(Throw* x) {
2010   LIRItem exception(x->exception(), this);
2011   exception.load_item();
2012   set_no_result(x);
2013   LIR_Opr exception_opr = exception.result();
2014   CodeEmitInfo* info = state_for(x, x->state());
2015 
2016 #ifndef PRODUCT
2017   if (PrintC1Statistics) {
2018     increment_counter(Runtime1::throw_count_address(), T_INT);
2019   }
2020 #endif
2021 
2022   // check if the instruction has an xhandler in any of the nested scopes
2023   bool unwind = false;
2024   if (info->exception_handlers()->length() == 0) {
2025     // this throw is not inside an xhandler
2026     unwind = true;
2027   } else {
2028     // get some idea of the throw type
2029     bool type_is_exact = true;
2030     ciType* throw_type = x->exception()->exact_type();
2031     if (throw_type == NULL) {
2032       type_is_exact = false;
2033       throw_type = x->exception()->declared_type();
2034     }
2035     if (throw_type != NULL && throw_type->is_instance_klass()) {
2036       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
2037       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
2038     }
2039   }
2040 
2041   // do null check before moving exception oop into fixed register
2042   // to avoid a fixed interval with an oop during the null check.
2043   // Use a copy of the CodeEmitInfo because debug information is
2044   // different for null_check and throw.
2045   if (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL) {
2046     // if the exception object wasn't created using new then it might be null.
2047     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
2048   }
2049 
2050   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
2051     // we need to go through the exception lookup path to get JVMTI
2052     // notification done
2053     unwind = false;
2054   }
2055 
2056   // move exception oop into fixed register
2057   __ move(exception_opr, exceptionOopOpr());
2058 
2059   if (unwind) {
2060     __ unwind_exception(exceptionOopOpr());
2061   } else {
2062     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
2063   }
2064 }
2065 
2066 
2067 void LIRGenerator::do_RoundFP(RoundFP* x) {
2068   LIRItem input(x->input(), this);
2069   input.load_item();
2070   LIR_Opr input_opr = input.result();
2071   assert(input_opr->is_register(), "why round if value is not in a register?");
2072   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
2073   if (input_opr->is_single_fpu()) {
2074     set_result(x, round_item(input_opr)); // This code path not currently taken
2075   } else {
2076     LIR_Opr result = new_register(T_DOUBLE);
2077     set_vreg_flag(result, must_start_in_memory);
2078     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2079     set_result(x, result);
2080   }
2081 }
2082 
2083 // Here UnsafeGetRaw may have x->base() and x->index() be int or long
2084 // on both 64 and 32 bits. Expecting x->base() to be always long on 64bit.
2085 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2086   LIRItem base(x->base(), this);
2087   LIRItem idx(this);
2088 
2089   base.load_item();
2090   if (x->has_index()) {
2091     idx.set_instruction(x->index());
2092     idx.load_nonconstant();
2093   }
2094 
2095   LIR_Opr reg = rlock_result(x, x->basic_type());
2096 
2097   int   log2_scale = 0;
2098   if (x->has_index()) {
2099     log2_scale = x->log2_scale();
2100   }
2101 
2102   assert(!x->has_index() || idx.value() == x->index(), "should match");
2103 
2104   LIR_Opr base_op = base.result();
2105   LIR_Opr index_op = idx.result();
2106 #ifndef _LP64
2107   if (base_op->type() == T_LONG) {
2108     base_op = new_register(T_INT);
2109     __ convert(Bytecodes::_l2i, base.result(), base_op);
2110   }
2111   if (x->has_index()) {
2112     if (index_op->type() == T_LONG) {
2113       LIR_Opr long_index_op = index_op;
2114       if (index_op->is_constant()) {
2115         long_index_op = new_register(T_LONG);
2116         __ move(index_op, long_index_op);
2117       }
2118       index_op = new_register(T_INT);
2119       __ convert(Bytecodes::_l2i, long_index_op, index_op);
2120     } else {
2121       assert(x->index()->type()->tag() == intTag, "must be");
2122     }
2123   }
2124   // At this point base and index should be all ints.
2125   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2126   assert(!x->has_index() || index_op->type() == T_INT, "index should be an int");
2127 #else
2128   if (x->has_index()) {
2129     if (index_op->type() == T_INT) {
2130       if (!index_op->is_constant()) {
2131         index_op = new_register(T_LONG);
2132         __ convert(Bytecodes::_i2l, idx.result(), index_op);
2133       }
2134     } else {
2135       assert(index_op->type() == T_LONG, "must be");
2136       if (index_op->is_constant()) {
2137         index_op = new_register(T_LONG);
2138         __ move(idx.result(), index_op);
2139       }
2140     }
2141   }
2142   // At this point base is a long non-constant
2143   // Index is a long register or a int constant.
2144   // We allow the constant to stay an int because that would allow us a more compact encoding by
2145   // embedding an immediate offset in the address expression. If we have a long constant, we have to
2146   // move it into a register first.
2147   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a long non-constant");
2148   assert(!x->has_index() || (index_op->type() == T_INT && index_op->is_constant()) ||
2149                             (index_op->type() == T_LONG && !index_op->is_constant()), "unexpected index type");
2150 #endif
2151 
2152   BasicType dst_type = x->basic_type();
2153 
2154   LIR_Address* addr;
2155   if (index_op->is_constant()) {
2156     assert(log2_scale == 0, "must not have a scale");
2157     assert(index_op->type() == T_INT, "only int constants supported");
2158     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2159   } else {
2160 #ifdef X86
2161     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2162 #elif defined(GENERATE_ADDRESS_IS_PREFERRED)
2163     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2164 #else
2165     if (index_op->is_illegal() || log2_scale == 0) {
2166       addr = new LIR_Address(base_op, index_op, dst_type);
2167     } else {
2168       LIR_Opr tmp = new_pointer_register();
2169       __ shift_left(index_op, log2_scale, tmp);
2170       addr = new LIR_Address(base_op, tmp, dst_type);
2171     }
2172 #endif
2173   }
2174 
2175   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2176     __ unaligned_move(addr, reg);
2177   } else {
2178     if (dst_type == T_OBJECT && x->is_wide()) {
2179       __ move_wide(addr, reg);
2180     } else {
2181       __ move(addr, reg);
2182     }
2183   }
2184 }
2185 
2186 
2187 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2188   int  log2_scale = 0;
2189   BasicType type = x->basic_type();
2190 
2191   if (x->has_index()) {
2192     log2_scale = x->log2_scale();
2193   }
2194 
2195   LIRItem base(x->base(), this);
2196   LIRItem value(x->value(), this);
2197   LIRItem idx(this);
2198 
2199   base.load_item();
2200   if (x->has_index()) {
2201     idx.set_instruction(x->index());
2202     idx.load_item();
2203   }
2204 
2205   if (type == T_BYTE || type == T_BOOLEAN) {
2206     value.load_byte_item();
2207   } else {
2208     value.load_item();
2209   }
2210 
2211   set_no_result(x);
2212 
2213   LIR_Opr base_op = base.result();
2214   LIR_Opr index_op = idx.result();
2215 
2216 #ifdef GENERATE_ADDRESS_IS_PREFERRED
2217   LIR_Address* addr = generate_address(base_op, index_op, log2_scale, 0, x->basic_type());
2218 #else
2219 #ifndef _LP64
2220   if (base_op->type() == T_LONG) {
2221     base_op = new_register(T_INT);
2222     __ convert(Bytecodes::_l2i, base.result(), base_op);
2223   }
2224   if (x->has_index()) {
2225     if (index_op->type() == T_LONG) {
2226       index_op = new_register(T_INT);
2227       __ convert(Bytecodes::_l2i, idx.result(), index_op);
2228     }
2229   }
2230   // At this point base and index should be all ints and not constants
2231   assert(base_op->type() == T_INT && !base_op->is_constant(), "base should be an non-constant int");
2232   assert(!x->has_index() || (index_op->type() == T_INT && !index_op->is_constant()), "index should be an non-constant int");
2233 #else
2234   if (x->has_index()) {
2235     if (index_op->type() == T_INT) {
2236       index_op = new_register(T_LONG);
2237       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2238     }
2239   }
2240   // At this point base and index are long and non-constant
2241   assert(base_op->type() == T_LONG && !base_op->is_constant(), "base must be a non-constant long");
2242   assert(!x->has_index() || (index_op->type() == T_LONG && !index_op->is_constant()), "index must be a non-constant long");
2243 #endif
2244 
2245   if (log2_scale != 0) {
2246     // temporary fix (platform dependent code without shift on Intel would be better)
2247     // TODO: ARM also allows embedded shift in the address
2248     LIR_Opr tmp = new_pointer_register();
2249     if (TwoOperandLIRForm) {
2250       __ move(index_op, tmp);
2251       index_op = tmp;
2252     }
2253     __ shift_left(index_op, log2_scale, tmp);
2254     if (!TwoOperandLIRForm) {
2255       index_op = tmp;
2256     }
2257   }
2258 
2259   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2260 #endif // !GENERATE_ADDRESS_IS_PREFERRED
2261   __ move(value.result(), addr);
2262 }
2263 
2264 
2265 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2266   BasicType type = x->basic_type();
2267   LIRItem src(x->object(), this);
2268   LIRItem off(x->offset(), this);
2269 
2270   off.load_item();
2271   src.load_item();
2272 
2273   LIR_Opr value = rlock_result(x, x->basic_type());
2274 
2275   if (support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) {
2276     __ membar();
2277   }
2278 
2279   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2280 
2281 #if INCLUDE_ALL_GCS
2282   // We might be reading the value of the referent field of a
2283   // Reference object in order to attach it back to the live
2284   // object graph. If G1 is enabled then we need to record
2285   // the value that is being returned in an SATB log buffer.
2286   //
2287   // We need to generate code similar to the following...
2288   //
2289   // if (offset == java_lang_ref_Reference::referent_offset) {
2290   //   if (src != NULL) {
2291   //     if (klass(src)->reference_type() != REF_NONE) {
2292   //       pre_barrier(..., value, ...);
2293   //     }
2294   //   }
2295   // }
2296 
2297   if (UseG1GC && type == T_OBJECT) {
2298     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2299     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2300     bool gen_source_check = true;    // Assume we need to check the src object for null.
2301     bool gen_type_check = true;      // Assume we need to check the reference_type.
2302 
2303     if (off.is_constant()) {
2304       jlong off_con = (off.type()->is_int() ?
2305                         (jlong) off.get_jint_constant() :
2306                         off.get_jlong_constant());
2307 
2308 
2309       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2310         // The constant offset is something other than referent_offset.
2311         // We can skip generating/checking the remaining guards and
2312         // skip generation of the code stub.
2313         gen_pre_barrier = false;
2314       } else {
2315         // The constant offset is the same as referent_offset -
2316         // we do not need to generate a runtime offset check.
2317         gen_offset_check = false;
2318       }
2319     }
2320 
2321     // We don't need to generate stub if the source object is an array
2322     if (gen_pre_barrier && src.type()->is_array()) {
2323       gen_pre_barrier = false;
2324     }
2325 
2326     if (gen_pre_barrier) {
2327       // We still need to continue with the checks.
2328       if (src.is_constant()) {
2329         ciObject* src_con = src.get_jobject_constant();
2330         guarantee(src_con != NULL, "no source constant");
2331 
2332         if (src_con->is_null_object()) {
2333           // The constant src object is null - We can skip
2334           // generating the code stub.
2335           gen_pre_barrier = false;
2336         } else {
2337           // Non-null constant source object. We still have to generate
2338           // the slow stub - but we don't need to generate the runtime
2339           // null object check.
2340           gen_source_check = false;
2341         }
2342       }
2343     }
2344     if (gen_pre_barrier && !PatchALot) {
2345       // Can the klass of object be statically determined to be
2346       // a sub-class of Reference?
2347       ciType* type = src.value()->declared_type();
2348       if ((type != NULL) && type->is_loaded()) {
2349         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2350           gen_type_check = false;
2351         } else if (type->is_klass() &&
2352                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2353           // Not Reference and not Object klass.
2354           gen_pre_barrier = false;
2355         }
2356       }
2357     }
2358 
2359     if (gen_pre_barrier) {
2360       LabelObj* Lcont = new LabelObj();
2361 
2362       // We can have generate one runtime check here. Let's start with
2363       // the offset check.
2364       if (gen_offset_check) {
2365         // if (offset != referent_offset) -> continue
2366         // If offset is an int then we can do the comparison with the
2367         // referent_offset constant; otherwise we need to move
2368         // referent_offset into a temporary register and generate
2369         // a reg-reg compare.
2370 
2371         LIR_Opr referent_off;
2372 
2373         if (off.type()->is_int()) {
2374           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2375         } else {
2376           assert(off.type()->is_long(), "what else?");
2377           referent_off = new_register(T_LONG);
2378           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2379         }
2380         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2381         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2382       }
2383       if (gen_source_check) {
2384         // offset is a const and equals referent offset
2385         // if (source == null) -> continue
2386         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2387         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2388       }
2389       LIR_Opr src_klass = new_register(T_OBJECT);
2390       if (gen_type_check) {
2391         // We have determined that offset == referent_offset && src != null.
2392         // if (src->_klass->_reference_type == REF_NONE) -> continue
2393         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), src_klass);
2394         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2395         LIR_Opr reference_type = new_register(T_INT);
2396         __ move(reference_type_addr, reference_type);
2397         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2398         __ branch(lir_cond_equal, T_INT, Lcont->label());
2399       }
2400       {
2401         // We have determined that src->_klass->_reference_type != REF_NONE
2402         // so register the value in the referent field with the pre-barrier.
2403         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2404                     value  /* pre_val */,
2405                     false  /* do_load */,
2406                     false  /* patch */,
2407                     NULL   /* info */);
2408       }
2409       __ branch_destination(Lcont->label());
2410     }
2411   }
2412 #endif // INCLUDE_ALL_GCS
2413 
2414   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2415 
2416   /* Normalize boolean value returned by unsafe operation, i.e., value  != 0 ? value = true : value false. */
2417   if (type == T_BOOLEAN) {
2418     LabelObj* equalZeroLabel = new LabelObj();
2419     __ cmp(lir_cond_equal, value, 0);
2420     __ branch(lir_cond_equal, T_BOOLEAN, equalZeroLabel->label());
2421     __ move(LIR_OprFact::intConst(1), value);
2422     __ branch_destination(equalZeroLabel->label());
2423   }
2424 }
2425 
2426 
2427 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2428   BasicType type = x->basic_type();
2429   LIRItem src(x->object(), this);
2430   LIRItem off(x->offset(), this);
2431   LIRItem data(x->value(), this);
2432 
2433   src.load_item();
2434   if (type == T_BOOLEAN || type == T_BYTE) {
2435     data.load_byte_item();
2436   } else {
2437     data.load_item();
2438   }
2439   off.load_item();
2440 
2441   set_no_result(x);
2442 
2443   if (x->is_volatile() && os::is_MP()) __ membar_release();
2444   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2445   if (!support_IRIW_for_not_multiple_copy_atomic_cpu && x->is_volatile() && os::is_MP()) __ membar();
2446 }
2447 
2448 
2449 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2450   int lng = x->length();
2451 
2452   for (int i = 0; i < lng; i++) {
2453     SwitchRange* one_range = x->at(i);
2454     int low_key = one_range->low_key();
2455     int high_key = one_range->high_key();
2456     BlockBegin* dest = one_range->sux();
2457     if (low_key == high_key) {
2458       __ cmp(lir_cond_equal, value, low_key);
2459       __ branch(lir_cond_equal, T_INT, dest);
2460     } else if (high_key - low_key == 1) {
2461       __ cmp(lir_cond_equal, value, low_key);
2462       __ branch(lir_cond_equal, T_INT, dest);
2463       __ cmp(lir_cond_equal, value, high_key);
2464       __ branch(lir_cond_equal, T_INT, dest);
2465     } else {
2466       LabelObj* L = new LabelObj();
2467       __ cmp(lir_cond_less, value, low_key);
2468       __ branch(lir_cond_less, T_INT, L->label());
2469       __ cmp(lir_cond_lessEqual, value, high_key);
2470       __ branch(lir_cond_lessEqual, T_INT, dest);
2471       __ branch_destination(L->label());
2472     }
2473   }
2474   __ jump(default_sux);
2475 }
2476 
2477 
2478 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2479   SwitchRangeList* res = new SwitchRangeList();
2480   int len = x->length();
2481   if (len > 0) {
2482     BlockBegin* sux = x->sux_at(0);
2483     int key = x->lo_key();
2484     BlockBegin* default_sux = x->default_sux();
2485     SwitchRange* range = new SwitchRange(key, sux);
2486     for (int i = 0; i < len; i++, key++) {
2487       BlockBegin* new_sux = x->sux_at(i);
2488       if (sux == new_sux) {
2489         // still in same range
2490         range->set_high_key(key);
2491       } else {
2492         // skip tests which explicitly dispatch to the default
2493         if (sux != default_sux) {
2494           res->append(range);
2495         }
2496         range = new SwitchRange(key, new_sux);
2497       }
2498       sux = new_sux;
2499     }
2500     if (res->length() == 0 || res->last() != range)  res->append(range);
2501   }
2502   return res;
2503 }
2504 
2505 
2506 // we expect the keys to be sorted by increasing value
2507 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2508   SwitchRangeList* res = new SwitchRangeList();
2509   int len = x->length();
2510   if (len > 0) {
2511     BlockBegin* default_sux = x->default_sux();
2512     int key = x->key_at(0);
2513     BlockBegin* sux = x->sux_at(0);
2514     SwitchRange* range = new SwitchRange(key, sux);
2515     for (int i = 1; i < len; i++) {
2516       int new_key = x->key_at(i);
2517       BlockBegin* new_sux = x->sux_at(i);
2518       if (key+1 == new_key && sux == new_sux) {
2519         // still in same range
2520         range->set_high_key(new_key);
2521       } else {
2522         // skip tests which explicitly dispatch to the default
2523         if (range->sux() != default_sux) {
2524           res->append(range);
2525         }
2526         range = new SwitchRange(new_key, new_sux);
2527       }
2528       key = new_key;
2529       sux = new_sux;
2530     }
2531     if (res->length() == 0 || res->last() != range)  res->append(range);
2532   }
2533   return res;
2534 }
2535 
2536 
2537 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2538   LIRItem tag(x->tag(), this);
2539   tag.load_item();
2540   set_no_result(x);
2541 
2542   if (x->is_safepoint()) {
2543     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2544   }
2545 
2546   // move values into phi locations
2547   move_to_phi(x->state());
2548 
2549   int lo_key = x->lo_key();
2550   int hi_key = x->hi_key();
2551   int len = x->length();
2552   LIR_Opr value = tag.result();
2553   if (UseTableRanges) {
2554     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2555   } else {
2556     for (int i = 0; i < len; i++) {
2557       __ cmp(lir_cond_equal, value, i + lo_key);
2558       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2559     }
2560     __ jump(x->default_sux());
2561   }
2562 }
2563 
2564 
2565 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2566   LIRItem tag(x->tag(), this);
2567   tag.load_item();
2568   set_no_result(x);
2569 
2570   if (x->is_safepoint()) {
2571     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2572   }
2573 
2574   // move values into phi locations
2575   move_to_phi(x->state());
2576 
2577   LIR_Opr value = tag.result();
2578   if (UseTableRanges) {
2579     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2580   } else {
2581     int len = x->length();
2582     for (int i = 0; i < len; i++) {
2583       __ cmp(lir_cond_equal, value, x->key_at(i));
2584       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2585     }
2586     __ jump(x->default_sux());
2587   }
2588 }
2589 
2590 
2591 void LIRGenerator::do_Goto(Goto* x) {
2592   set_no_result(x);
2593 
2594   if (block()->next()->as_OsrEntry()) {
2595     // need to free up storage used for OSR entry point
2596     LIR_Opr osrBuffer = block()->next()->operand();
2597     BasicTypeList signature;
2598     signature.append(NOT_LP64(T_INT) LP64_ONLY(T_LONG)); // pass a pointer to osrBuffer
2599     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2600     __ move(osrBuffer, cc->args()->at(0));
2601     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2602                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2603   }
2604 
2605   if (x->is_safepoint()) {
2606     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2607 
2608     // increment backedge counter if needed
2609     CodeEmitInfo* info = state_for(x, state);
2610     increment_backedge_counter(info, x->profiled_bci());
2611     CodeEmitInfo* safepoint_info = state_for(x, state);
2612     __ safepoint(safepoint_poll_register(), safepoint_info);
2613   }
2614 
2615   // Gotos can be folded Ifs, handle this case.
2616   if (x->should_profile()) {
2617     ciMethod* method = x->profiled_method();
2618     assert(method != NULL, "method should be set if branch is profiled");
2619     ciMethodData* md = method->method_data_or_null();
2620     assert(md != NULL, "Sanity");
2621     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2622     assert(data != NULL, "must have profiling data");
2623     int offset;
2624     if (x->direction() == Goto::taken) {
2625       assert(data->is_BranchData(), "need BranchData for two-way branches");
2626       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2627     } else if (x->direction() == Goto::not_taken) {
2628       assert(data->is_BranchData(), "need BranchData for two-way branches");
2629       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2630     } else {
2631       assert(data->is_JumpData(), "need JumpData for branches");
2632       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2633     }
2634     LIR_Opr md_reg = new_register(T_METADATA);
2635     __ metadata2reg(md->constant_encoding(), md_reg);
2636 
2637     increment_counter(new LIR_Address(md_reg, offset,
2638                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2639   }
2640 
2641   // emit phi-instruction move after safepoint since this simplifies
2642   // describing the state as the safepoint.
2643   move_to_phi(x->state());
2644 
2645   __ jump(x->default_sux());
2646 }
2647 
2648 /**
2649  * Emit profiling code if needed for arguments, parameters, return value types
2650  *
2651  * @param md                    MDO the code will update at runtime
2652  * @param md_base_offset        common offset in the MDO for this profile and subsequent ones
2653  * @param md_offset             offset in the MDO (on top of md_base_offset) for this profile
2654  * @param profiled_k            current profile
2655  * @param obj                   IR node for the object to be profiled
2656  * @param mdp                   register to hold the pointer inside the MDO (md + md_base_offset).
2657  *                              Set once we find an update to make and use for next ones.
2658  * @param not_null              true if we know obj cannot be null
2659  * @param signature_at_call_k   signature at call for obj
2660  * @param callee_signature_k    signature of callee for obj
2661  *                              at call and callee signatures differ at method handle call
2662  * @return                      the only klass we know will ever be seen at this profile point
2663  */
2664 ciKlass* LIRGenerator::profile_type(ciMethodData* md, int md_base_offset, int md_offset, intptr_t profiled_k,
2665                                     Value obj, LIR_Opr& mdp, bool not_null, ciKlass* signature_at_call_k,
2666                                     ciKlass* callee_signature_k) {
2667   ciKlass* result = NULL;
2668   bool do_null = !not_null && !TypeEntries::was_null_seen(profiled_k);
2669   bool do_update = !TypeEntries::is_type_unknown(profiled_k);
2670   // known not to be null or null bit already set and already set to
2671   // unknown: nothing we can do to improve profiling
2672   if (!do_null && !do_update) {
2673     return result;
2674   }
2675 
2676   ciKlass* exact_klass = NULL;
2677   Compilation* comp = Compilation::current();
2678   if (do_update) {
2679     // try to find exact type, using CHA if possible, so that loading
2680     // the klass from the object can be avoided
2681     ciType* type = obj->exact_type();
2682     if (type == NULL) {
2683       type = obj->declared_type();
2684       type = comp->cha_exact_type(type);
2685     }
2686     assert(type == NULL || type->is_klass(), "type should be class");
2687     exact_klass = (type != NULL && type->is_loaded()) ? (ciKlass*)type : NULL;
2688 
2689     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2690   }
2691 
2692   if (!do_null && !do_update) {
2693     return result;
2694   }
2695 
2696   ciKlass* exact_signature_k = NULL;
2697   if (do_update) {
2698     // Is the type from the signature exact (the only one possible)?
2699     exact_signature_k = signature_at_call_k->exact_klass();
2700     if (exact_signature_k == NULL) {
2701       exact_signature_k = comp->cha_exact_type(signature_at_call_k);
2702     } else {
2703       result = exact_signature_k;
2704       // Known statically. No need to emit any code: prevent
2705       // LIR_Assembler::emit_profile_type() from emitting useless code
2706       profiled_k = ciTypeEntries::with_status(result, profiled_k);
2707     }
2708     // exact_klass and exact_signature_k can be both non NULL but
2709     // different if exact_klass is loaded after the ciObject for
2710     // exact_signature_k is created.
2711     if (exact_klass == NULL && exact_signature_k != NULL && exact_klass != exact_signature_k) {
2712       // sometimes the type of the signature is better than the best type
2713       // the compiler has
2714       exact_klass = exact_signature_k;
2715     }
2716     if (callee_signature_k != NULL &&
2717         callee_signature_k != signature_at_call_k) {
2718       ciKlass* improved_klass = callee_signature_k->exact_klass();
2719       if (improved_klass == NULL) {
2720         improved_klass = comp->cha_exact_type(callee_signature_k);
2721       }
2722       if (exact_klass == NULL && improved_klass != NULL && exact_klass != improved_klass) {
2723         exact_klass = exact_signature_k;
2724       }
2725     }
2726     do_update = exact_klass == NULL || ciTypeEntries::valid_ciklass(profiled_k) != exact_klass;
2727   }
2728 
2729   if (!do_null && !do_update) {
2730     return result;
2731   }
2732 
2733   if (mdp == LIR_OprFact::illegalOpr) {
2734     mdp = new_register(T_METADATA);
2735     __ metadata2reg(md->constant_encoding(), mdp);
2736     if (md_base_offset != 0) {
2737       LIR_Address* base_type_address = new LIR_Address(mdp, md_base_offset, T_ADDRESS);
2738       mdp = new_pointer_register();
2739       __ leal(LIR_OprFact::address(base_type_address), mdp);
2740     }
2741   }
2742   LIRItem value(obj, this);
2743   value.load_item();
2744   __ profile_type(new LIR_Address(mdp, md_offset, T_METADATA),
2745                   value.result(), exact_klass, profiled_k, new_pointer_register(), not_null, exact_signature_k != NULL);
2746   return result;
2747 }
2748 
2749 // profile parameters on entry to the root of the compilation
2750 void LIRGenerator::profile_parameters(Base* x) {
2751   if (compilation()->profile_parameters()) {
2752     CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2753     ciMethodData* md = scope()->method()->method_data_or_null();
2754     assert(md != NULL, "Sanity");
2755 
2756     if (md->parameters_type_data() != NULL) {
2757       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
2758       ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
2759       LIR_Opr mdp = LIR_OprFact::illegalOpr;
2760       for (int java_index = 0, i = 0, j = 0; j < parameters_type_data->number_of_parameters(); i++) {
2761         LIR_Opr src = args->at(i);
2762         assert(!src->is_illegal(), "check");
2763         BasicType t = src->type();
2764         if (t == T_OBJECT || t == T_ARRAY) {
2765           intptr_t profiled_k = parameters->type(j);
2766           Local* local = x->state()->local_at(java_index)->as_Local();
2767           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
2768                                         in_bytes(ParametersTypeData::type_offset(j)) - in_bytes(ParametersTypeData::type_offset(0)),
2769                                         profiled_k, local, mdp, false, local->declared_type()->as_klass(), NULL);
2770           // If the profile is known statically set it once for all and do not emit any code
2771           if (exact != NULL) {
2772             md->set_parameter_type(j, exact);
2773           }
2774           j++;
2775         }
2776         java_index += type2size[t];
2777       }
2778     }
2779   }
2780 }
2781 
2782 void LIRGenerator::do_Base(Base* x) {
2783   __ std_entry(LIR_OprFact::illegalOpr);
2784   // Emit moves from physical registers / stack slots to virtual registers
2785   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2786   IRScope* irScope = compilation()->hir()->top_scope();
2787   int java_index = 0;
2788   for (int i = 0; i < args->length(); i++) {
2789     LIR_Opr src = args->at(i);
2790     assert(!src->is_illegal(), "check");
2791     BasicType t = src->type();
2792 
2793     // Types which are smaller than int are passed as int, so
2794     // correct the type which passed.
2795     switch (t) {
2796     case T_BYTE:
2797     case T_BOOLEAN:
2798     case T_SHORT:
2799     case T_CHAR:
2800       t = T_INT;
2801       break;
2802     default:
2803       break;
2804     }
2805 
2806     LIR_Opr dest = new_register(t);
2807     __ move(src, dest);
2808 
2809     // Assign new location to Local instruction for this local
2810     Local* local = x->state()->local_at(java_index)->as_Local();
2811     assert(local != NULL, "Locals for incoming arguments must have been created");
2812 #ifndef __SOFTFP__
2813     // The java calling convention passes double as long and float as int.
2814     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2815 #endif // __SOFTFP__
2816     local->set_operand(dest);
2817     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2818     java_index += type2size[t];
2819   }
2820 
2821   if (compilation()->env()->dtrace_method_probes()) {
2822     BasicTypeList signature;
2823     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2824     signature.append(T_METADATA); // Method*
2825     LIR_OprList* args = new LIR_OprList();
2826     args->append(getThreadPointer());
2827     LIR_Opr meth = new_register(T_METADATA);
2828     __ metadata2reg(method()->constant_encoding(), meth);
2829     args->append(meth);
2830     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2831   }
2832 
2833   if (method()->is_synchronized()) {
2834     LIR_Opr obj;
2835     if (method()->is_static()) {
2836       obj = new_register(T_OBJECT);
2837       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2838     } else {
2839       Local* receiver = x->state()->local_at(0)->as_Local();
2840       assert(receiver != NULL, "must already exist");
2841       obj = receiver->operand();
2842     }
2843     assert(obj->is_valid(), "must be valid");
2844 
2845     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2846       LIR_Opr lock = syncLockOpr();
2847       __ load_stack_address_monitor(0, lock);
2848 
2849       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, x->check_flag(Instruction::DeoptimizeOnException));
2850       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2851 
2852       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2853       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2854     }
2855   }
2856   if (compilation()->age_code()) {
2857     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, 0), NULL, false);
2858     decrement_age(info);
2859   }
2860   // increment invocation counters if needed
2861   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2862     profile_parameters(x);
2863     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL, false);
2864     increment_invocation_counter(info);
2865   }
2866 
2867   // all blocks with a successor must end with an unconditional jump
2868   // to the successor even if they are consecutive
2869   __ jump(x->default_sux());
2870 }
2871 
2872 
2873 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2874   // construct our frame and model the production of incoming pointer
2875   // to the OSR buffer.
2876   __ osr_entry(LIR_Assembler::osrBufferPointer());
2877   LIR_Opr result = rlock_result(x);
2878   __ move(LIR_Assembler::osrBufferPointer(), result);
2879 }
2880 
2881 
2882 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2883   assert(args->length() == arg_list->length(),
2884          "args=%d, arg_list=%d", args->length(), arg_list->length());
2885   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2886     LIRItem* param = args->at(i);
2887     LIR_Opr loc = arg_list->at(i);
2888     if (loc->is_register()) {
2889       param->load_item_force(loc);
2890     } else {
2891       LIR_Address* addr = loc->as_address_ptr();
2892       param->load_for_store(addr->type());
2893       if (addr->type() == T_OBJECT) {
2894         __ move_wide(param->result(), addr);
2895       } else
2896         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2897           __ unaligned_move(param->result(), addr);
2898         } else {
2899           __ move(param->result(), addr);
2900         }
2901     }
2902   }
2903 
2904   if (x->has_receiver()) {
2905     LIRItem* receiver = args->at(0);
2906     LIR_Opr loc = arg_list->at(0);
2907     if (loc->is_register()) {
2908       receiver->load_item_force(loc);
2909     } else {
2910       assert(loc->is_address(), "just checking");
2911       receiver->load_for_store(T_OBJECT);
2912       __ move_wide(receiver->result(), loc->as_address_ptr());
2913     }
2914   }
2915 }
2916 
2917 
2918 // Visits all arguments, returns appropriate items without loading them
2919 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2920   LIRItemList* argument_items = new LIRItemList();
2921   if (x->has_receiver()) {
2922     LIRItem* receiver = new LIRItem(x->receiver(), this);
2923     argument_items->append(receiver);
2924   }
2925   for (int i = 0; i < x->number_of_arguments(); i++) {
2926     LIRItem* param = new LIRItem(x->argument_at(i), this);
2927     argument_items->append(param);
2928   }
2929   return argument_items;
2930 }
2931 
2932 
2933 // The invoke with receiver has following phases:
2934 //   a) traverse and load/lock receiver;
2935 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2936 //   c) push receiver on stack
2937 //   d) load each of the items and push on stack
2938 //   e) unlock receiver
2939 //   f) move receiver into receiver-register %o0
2940 //   g) lock result registers and emit call operation
2941 //
2942 // Before issuing a call, we must spill-save all values on stack
2943 // that are in caller-save register. "spill-save" moves those registers
2944 // either in a free callee-save register or spills them if no free
2945 // callee save register is available.
2946 //
2947 // The problem is where to invoke spill-save.
2948 // - if invoked between e) and f), we may lock callee save
2949 //   register in "spill-save" that destroys the receiver register
2950 //   before f) is executed
2951 // - if we rearrange f) to be earlier (by loading %o0) it
2952 //   may destroy a value on the stack that is currently in %o0
2953 //   and is waiting to be spilled
2954 // - if we keep the receiver locked while doing spill-save,
2955 //   we cannot spill it as it is spill-locked
2956 //
2957 void LIRGenerator::do_Invoke(Invoke* x) {
2958   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2959 
2960   LIR_OprList* arg_list = cc->args();
2961   LIRItemList* args = invoke_visit_arguments(x);
2962   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2963 
2964   // setup result register
2965   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2966   if (x->type() != voidType) {
2967     result_register = result_register_for(x->type());
2968   }
2969 
2970   CodeEmitInfo* info = state_for(x, x->state());
2971 
2972   invoke_load_arguments(x, args, arg_list);
2973 
2974   if (x->has_receiver()) {
2975     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2976     receiver = args->at(0)->result();
2977   }
2978 
2979   // emit invoke code
2980   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2981 
2982   // JSR 292
2983   // Preserve the SP over MethodHandle call sites, if needed.
2984   ciMethod* target = x->target();
2985   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2986                                   target->is_method_handle_intrinsic() ||
2987                                   target->is_compiled_lambda_form());
2988   if (is_method_handle_invoke) {
2989     info->set_is_method_handle_invoke(true);
2990     if(FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
2991         __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2992     }
2993   }
2994 
2995   switch (x->code()) {
2996     case Bytecodes::_invokestatic:
2997       __ call_static(target, result_register,
2998                      SharedRuntime::get_resolve_static_call_stub(),
2999                      arg_list, info);
3000       break;
3001     case Bytecodes::_invokespecial:
3002     case Bytecodes::_invokevirtual:
3003     case Bytecodes::_invokeinterface:
3004       // for loaded and final (method or class) target we still produce an inline cache,
3005       // in order to be able to call mixed mode
3006       if (x->code() == Bytecodes::_invokespecial || x->target_is_final()) {
3007         __ call_opt_virtual(target, receiver, result_register,
3008                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
3009                             arg_list, info);
3010       } else if (x->vtable_index() < 0) {
3011         __ call_icvirtual(target, receiver, result_register,
3012                           SharedRuntime::get_resolve_virtual_call_stub(),
3013                           arg_list, info);
3014       } else {
3015         int entry_offset = in_bytes(Klass::vtable_start_offset()) + x->vtable_index() * vtableEntry::size_in_bytes();
3016         int vtable_offset = entry_offset + vtableEntry::method_offset_in_bytes();
3017         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
3018       }
3019       break;
3020     case Bytecodes::_invokedynamic: {
3021       __ call_dynamic(target, receiver, result_register,
3022                       SharedRuntime::get_resolve_static_call_stub(),
3023                       arg_list, info);
3024       break;
3025     }
3026     default:
3027       fatal("unexpected bytecode: %s", Bytecodes::name(x->code()));
3028       break;
3029   }
3030 
3031   // JSR 292
3032   // Restore the SP after MethodHandle call sites, if needed.
3033   if (is_method_handle_invoke
3034       && FrameMap::method_handle_invoke_SP_save_opr() != LIR_OprFact::illegalOpr) {
3035     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
3036   }
3037 
3038   if (x->type()->is_float() || x->type()->is_double()) {
3039     // Force rounding of results from non-strictfp when in strictfp
3040     // scope (or when we don't know the strictness of the callee, to
3041     // be safe.)
3042     if (method()->is_strict()) {
3043       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
3044         result_register = round_item(result_register);
3045       }
3046     }
3047   }
3048 
3049   if (result_register->is_valid()) {
3050     LIR_Opr result = rlock_result(x);
3051     __ move(result_register, result);
3052   }
3053 }
3054 
3055 
3056 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
3057   assert(x->number_of_arguments() == 1, "wrong type");
3058   LIRItem value       (x->argument_at(0), this);
3059   LIR_Opr reg = rlock_result(x);
3060   value.load_item();
3061   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
3062   __ move(tmp, reg);
3063 }
3064 
3065 
3066 
3067 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
3068 void LIRGenerator::do_IfOp(IfOp* x) {
3069 #ifdef ASSERT
3070   {
3071     ValueTag xtag = x->x()->type()->tag();
3072     ValueTag ttag = x->tval()->type()->tag();
3073     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
3074     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
3075     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
3076   }
3077 #endif
3078 
3079   LIRItem left(x->x(), this);
3080   LIRItem right(x->y(), this);
3081   left.load_item();
3082   if (can_inline_as_constant(right.value())) {
3083     right.dont_load_item();
3084   } else {
3085     right.load_item();
3086   }
3087 
3088   LIRItem t_val(x->tval(), this);
3089   LIRItem f_val(x->fval(), this);
3090   t_val.dont_load_item();
3091   f_val.dont_load_item();
3092   LIR_Opr reg = rlock_result(x);
3093 
3094   __ cmp(lir_cond(x->cond()), left.result(), right.result());
3095   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
3096 }
3097 
3098 #ifdef TRACE_HAVE_INTRINSICS
3099 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
3100   CodeEmitInfo* info = state_for(x);
3101   CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
3102 
3103   assert(info != NULL, "must have info");
3104   LIRItem arg(x->argument_at(0), this);
3105 
3106   arg.load_item();
3107   LIR_Opr klass = new_register(T_METADATA);
3108   __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), T_ADDRESS), klass, info);
3109   LIR_Opr id = new_register(T_LONG);
3110   ByteSize offset = TRACE_KLASS_TRACE_ID_OFFSET;
3111   LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
3112 
3113   __ move(trace_id_addr, id);
3114   __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
3115   __ store(id, trace_id_addr);
3116 
3117 #ifdef TRACE_ID_META_BITS
3118   __ logical_and(id, LIR_OprFact::longConst(~TRACE_ID_META_BITS), id);
3119 #endif
3120 #ifdef TRACE_ID_CLASS_SHIFT
3121   __ unsigned_shift_right(id, TRACE_ID_CLASS_SHIFT, id);
3122 #endif
3123 
3124   __ move(id, rlock_result(x));
3125 }
3126 
3127 void LIRGenerator::do_getBufferWriter(Intrinsic* x) {
3128   LabelObj* L_end = new LabelObj();
3129 
3130   LIR_Address* jobj_addr = new LIR_Address(getThreadPointer(),
3131                                            in_bytes(TRACE_THREAD_DATA_WRITER_OFFSET),
3132                                            T_OBJECT);
3133   LIR_Opr result = rlock_result(x);
3134   __ move_wide(jobj_addr, result);
3135   __ cmp(lir_cond_equal, result, LIR_OprFact::oopConst(NULL));
3136   __ branch(lir_cond_equal, T_OBJECT, L_end->label());
3137   __ move_wide(new LIR_Address(result, T_OBJECT), result);
3138 
3139   __ branch_destination(L_end->label());
3140 }
3141 
3142 #endif
3143 
3144 
3145 void LIRGenerator::do_RuntimeCall(address routine, Intrinsic* x) {
3146   assert(x->number_of_arguments() == 0, "wrong type");
3147   // Enforce computation of _reserved_argument_area_size which is required on some platforms.
3148   BasicTypeList signature;
3149   CallingConvention* cc = frame_map()->c_calling_convention(&signature);
3150   LIR_Opr reg = result_register_for(x->type());
3151   __ call_runtime_leaf(routine, getThreadTemp(),
3152                        reg, new LIR_OprList());
3153   LIR_Opr result = rlock_result(x);
3154   __ move(reg, result);
3155 }
3156 
3157 
3158 
3159 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
3160   switch (x->id()) {
3161   case vmIntrinsics::_intBitsToFloat      :
3162   case vmIntrinsics::_doubleToRawLongBits :
3163   case vmIntrinsics::_longBitsToDouble    :
3164   case vmIntrinsics::_floatToRawIntBits   : {
3165     do_FPIntrinsics(x);
3166     break;
3167   }
3168 
3169 #ifdef TRACE_HAVE_INTRINSICS
3170   case vmIntrinsics::_getClassId:
3171     do_ClassIDIntrinsic(x);
3172     break;
3173   case vmIntrinsics::_getBufferWriter:
3174     do_getBufferWriter(x);
3175     break;
3176   case vmIntrinsics::_counterTime:
3177     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), x);
3178     break;
3179 #endif
3180 
3181   case vmIntrinsics::_currentTimeMillis:
3182     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), x);
3183     break;
3184 
3185   case vmIntrinsics::_nanoTime:
3186     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), x);
3187     break;
3188 
3189   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
3190   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
3191   case vmIntrinsics::_isPrimitive:    do_isPrimitive(x);   break;
3192   case vmIntrinsics::_getClass:       do_getClass(x);      break;
3193   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
3194 
3195   case vmIntrinsics::_dlog:           // fall through
3196   case vmIntrinsics::_dlog10:         // fall through
3197   case vmIntrinsics::_dabs:           // fall through
3198   case vmIntrinsics::_dsqrt:          // fall through
3199   case vmIntrinsics::_dtan:           // fall through
3200   case vmIntrinsics::_dsin :          // fall through
3201   case vmIntrinsics::_dcos :          // fall through
3202   case vmIntrinsics::_dexp :          // fall through
3203   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
3204   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
3205 
3206   case vmIntrinsics::_fmaD:           do_FmaIntrinsic(x); break;
3207   case vmIntrinsics::_fmaF:           do_FmaIntrinsic(x); break;
3208 
3209   // java.nio.Buffer.checkIndex
3210   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
3211 
3212   case vmIntrinsics::_compareAndSetObject:
3213     do_CompareAndSwap(x, objectType);
3214     break;
3215   case vmIntrinsics::_compareAndSetInt:
3216     do_CompareAndSwap(x, intType);
3217     break;
3218   case vmIntrinsics::_compareAndSetLong:
3219     do_CompareAndSwap(x, longType);
3220     break;
3221 
3222   case vmIntrinsics::_loadFence :
3223     if (os::is_MP()) __ membar_acquire();
3224     break;
3225   case vmIntrinsics::_storeFence:
3226     if (os::is_MP()) __ membar_release();
3227     break;
3228   case vmIntrinsics::_fullFence :
3229     if (os::is_MP()) __ membar();
3230     break;
3231   case vmIntrinsics::_onSpinWait:
3232     __ on_spin_wait();
3233     break;
3234   case vmIntrinsics::_Reference_get:
3235     do_Reference_get(x);
3236     break;
3237 
3238   case vmIntrinsics::_updateCRC32:
3239   case vmIntrinsics::_updateBytesCRC32:
3240   case vmIntrinsics::_updateByteBufferCRC32:
3241     do_update_CRC32(x);
3242     break;
3243 
3244   case vmIntrinsics::_updateBytesCRC32C:
3245   case vmIntrinsics::_updateDirectByteBufferCRC32C:
3246     do_update_CRC32C(x);
3247     break;
3248 
3249   case vmIntrinsics::_vectorizedMismatch:
3250     do_vectorizedMismatch(x);
3251     break;
3252 
3253   default: ShouldNotReachHere(); break;
3254   }
3255 }
3256 
3257 void LIRGenerator::profile_arguments(ProfileCall* x) {
3258   if (compilation()->profile_arguments()) {
3259     int bci = x->bci_of_invoke();
3260     ciMethodData* md = x->method()->method_data_or_null();
3261     ciProfileData* data = md->bci_to_data(bci);
3262     if (data != NULL) {
3263       if ((data->is_CallTypeData() && data->as_CallTypeData()->has_arguments()) ||
3264           (data->is_VirtualCallTypeData() && data->as_VirtualCallTypeData()->has_arguments())) {
3265         ByteSize extra = data->is_CallTypeData() ? CallTypeData::args_data_offset() : VirtualCallTypeData::args_data_offset();
3266         int base_offset = md->byte_offset_of_slot(data, extra);
3267         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3268         ciTypeStackSlotEntries* args = data->is_CallTypeData() ? ((ciCallTypeData*)data)->args() : ((ciVirtualCallTypeData*)data)->args();
3269 
3270         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3271         int start = 0;
3272         int stop = data->is_CallTypeData() ? ((ciCallTypeData*)data)->number_of_arguments() : ((ciVirtualCallTypeData*)data)->number_of_arguments();
3273         if (x->callee()->is_loaded() && x->callee()->is_static() && Bytecodes::has_receiver(bc)) {
3274           // first argument is not profiled at call (method handle invoke)
3275           assert(x->method()->raw_code_at_bci(bci) == Bytecodes::_invokehandle, "invokehandle expected");
3276           start = 1;
3277         }
3278         ciSignature* callee_signature = x->callee()->signature();
3279         // method handle call to virtual method
3280         bool has_receiver = x->callee()->is_loaded() && !x->callee()->is_static() && !Bytecodes::has_receiver(bc);
3281         ciSignatureStream callee_signature_stream(callee_signature, has_receiver ? x->callee()->holder() : NULL);
3282 
3283         bool ignored_will_link;
3284         ciSignature* signature_at_call = NULL;
3285         x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3286         ciSignatureStream signature_at_call_stream(signature_at_call);
3287 
3288         // if called through method handle invoke, some arguments may have been popped
3289         for (int i = 0; i < stop && i+start < x->nb_profiled_args(); i++) {
3290           int off = in_bytes(TypeEntriesAtCall::argument_type_offset(i)) - in_bytes(TypeEntriesAtCall::args_data_offset());
3291           ciKlass* exact = profile_type(md, base_offset, off,
3292               args->type(i), x->profiled_arg_at(i+start), mdp,
3293               !x->arg_needs_null_check(i+start),
3294               signature_at_call_stream.next_klass(), callee_signature_stream.next_klass());
3295           if (exact != NULL) {
3296             md->set_argument_type(bci, i, exact);
3297           }
3298         }
3299       } else {
3300 #ifdef ASSERT
3301         Bytecodes::Code code = x->method()->raw_code_at_bci(x->bci_of_invoke());
3302         int n = x->nb_profiled_args();
3303         assert(MethodData::profile_parameters() && (MethodData::profile_arguments_jsr292_only() ||
3304             (x->inlined() && ((code == Bytecodes::_invokedynamic && n <= 1) || (code == Bytecodes::_invokehandle && n <= 2)))),
3305             "only at JSR292 bytecodes");
3306 #endif
3307       }
3308     }
3309   }
3310 }
3311 
3312 // profile parameters on entry to an inlined method
3313 void LIRGenerator::profile_parameters_at_call(ProfileCall* x) {
3314   if (compilation()->profile_parameters() && x->inlined()) {
3315     ciMethodData* md = x->callee()->method_data_or_null();
3316     if (md != NULL) {
3317       ciParametersTypeData* parameters_type_data = md->parameters_type_data();
3318       if (parameters_type_data != NULL) {
3319         ciTypeStackSlotEntries* parameters =  parameters_type_data->parameters();
3320         LIR_Opr mdp = LIR_OprFact::illegalOpr;
3321         bool has_receiver = !x->callee()->is_static();
3322         ciSignature* sig = x->callee()->signature();
3323         ciSignatureStream sig_stream(sig, has_receiver ? x->callee()->holder() : NULL);
3324         int i = 0; // to iterate on the Instructions
3325         Value arg = x->recv();
3326         bool not_null = false;
3327         int bci = x->bci_of_invoke();
3328         Bytecodes::Code bc = x->method()->java_code_at_bci(bci);
3329         // The first parameter is the receiver so that's what we start
3330         // with if it exists. One exception is method handle call to
3331         // virtual method: the receiver is in the args list
3332         if (arg == NULL || !Bytecodes::has_receiver(bc)) {
3333           i = 1;
3334           arg = x->profiled_arg_at(0);
3335           not_null = !x->arg_needs_null_check(0);
3336         }
3337         int k = 0; // to iterate on the profile data
3338         for (;;) {
3339           intptr_t profiled_k = parameters->type(k);
3340           ciKlass* exact = profile_type(md, md->byte_offset_of_slot(parameters_type_data, ParametersTypeData::type_offset(0)),
3341                                         in_bytes(ParametersTypeData::type_offset(k)) - in_bytes(ParametersTypeData::type_offset(0)),
3342                                         profiled_k, arg, mdp, not_null, sig_stream.next_klass(), NULL);
3343           // If the profile is known statically set it once for all and do not emit any code
3344           if (exact != NULL) {
3345             md->set_parameter_type(k, exact);
3346           }
3347           k++;
3348           if (k >= parameters_type_data->number_of_parameters()) {
3349 #ifdef ASSERT
3350             int extra = 0;
3351             if (MethodData::profile_arguments() && TypeProfileParmsLimit != -1 &&
3352                 x->nb_profiled_args() >= TypeProfileParmsLimit &&
3353                 x->recv() != NULL && Bytecodes::has_receiver(bc)) {
3354               extra += 1;
3355             }
3356             assert(i == x->nb_profiled_args() - extra || (TypeProfileParmsLimit != -1 && TypeProfileArgsLimit > TypeProfileParmsLimit), "unused parameters?");
3357 #endif
3358             break;
3359           }
3360           arg = x->profiled_arg_at(i);
3361           not_null = !x->arg_needs_null_check(i);
3362           i++;
3363         }
3364       }
3365     }
3366   }
3367 }
3368 
3369 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
3370   // Need recv in a temporary register so it interferes with the other temporaries
3371   LIR_Opr recv = LIR_OprFact::illegalOpr;
3372   LIR_Opr mdo = new_register(T_OBJECT);
3373   // tmp is used to hold the counters on SPARC
3374   LIR_Opr tmp = new_pointer_register();
3375 
3376   if (x->nb_profiled_args() > 0) {
3377     profile_arguments(x);
3378   }
3379 
3380   // profile parameters on inlined method entry including receiver
3381   if (x->recv() != NULL || x->nb_profiled_args() > 0) {
3382     profile_parameters_at_call(x);
3383   }
3384 
3385   if (x->recv() != NULL) {
3386     LIRItem value(x->recv(), this);
3387     value.load_item();
3388     recv = new_register(T_OBJECT);
3389     __ move(value.result(), recv);
3390   }
3391   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
3392 }
3393 
3394 void LIRGenerator::do_ProfileReturnType(ProfileReturnType* x) {
3395   int bci = x->bci_of_invoke();
3396   ciMethodData* md = x->method()->method_data_or_null();
3397   ciProfileData* data = md->bci_to_data(bci);
3398   if (data != NULL) {
3399     assert(data->is_CallTypeData() || data->is_VirtualCallTypeData(), "wrong profile data type");
3400     ciReturnTypeEntry* ret = data->is_CallTypeData() ? ((ciCallTypeData*)data)->ret() : ((ciVirtualCallTypeData*)data)->ret();
3401     LIR_Opr mdp = LIR_OprFact::illegalOpr;
3402 
3403     bool ignored_will_link;
3404     ciSignature* signature_at_call = NULL;
3405     x->method()->get_method_at_bci(bci, ignored_will_link, &signature_at_call);
3406 
3407     // The offset within the MDO of the entry to update may be too large
3408     // to be used in load/store instructions on some platforms. So have
3409     // profile_type() compute the address of the profile in a register.
3410     ciKlass* exact = profile_type(md, md->byte_offset_of_slot(data, ret->type_offset()), 0,
3411         ret->type(), x->ret(), mdp,
3412         !x->needs_null_check(),
3413         signature_at_call->return_type()->as_klass(),
3414         x->callee()->signature()->return_type()->as_klass());
3415     if (exact != NULL) {
3416       md->set_return_type(bci, exact);
3417     }
3418   }
3419 }
3420 
3421 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
3422   // We can safely ignore accessors here, since c2 will inline them anyway,
3423   // accessors are also always mature.
3424   if (!x->inlinee()->is_accessor()) {
3425     CodeEmitInfo* info = state_for(x, x->state(), true);
3426     // Notify the runtime very infrequently only to take care of counter overflows
3427     int freq_log = Tier23InlineeNotifyFreqLog;
3428     double scale;
3429     if (_method->has_option_value("CompileThresholdScaling", scale)) {
3430       freq_log = Arguments::scaled_freq_log(freq_log, scale);
3431     }
3432     increment_event_counter_impl(info, x->inlinee(), right_n_bits(freq_log), InvocationEntryBci, false, true);
3433   }
3434 }
3435 
3436 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
3437   int freq_log = 0;
3438   int level = compilation()->env()->comp_level();
3439   if (level == CompLevel_limited_profile) {
3440     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
3441   } else if (level == CompLevel_full_profile) {
3442     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3443   } else {
3444     ShouldNotReachHere();
3445   }
3446   // Increment the appropriate invocation/backedge counter and notify the runtime.
3447   double scale;
3448   if (_method->has_option_value("CompileThresholdScaling", scale)) {
3449     freq_log = Arguments::scaled_freq_log(freq_log, scale);
3450   }
3451   increment_event_counter_impl(info, info->scope()->method(), right_n_bits(freq_log), bci, backedge, true);
3452 }
3453 
3454 void LIRGenerator::decrement_age(CodeEmitInfo* info) {
3455   ciMethod* method = info->scope()->method();
3456   MethodCounters* mc_adr = method->ensure_method_counters();
3457   if (mc_adr != NULL) {
3458     LIR_Opr mc = new_pointer_register();
3459     __ move(LIR_OprFact::intptrConst(mc_adr), mc);
3460     int offset = in_bytes(MethodCounters::nmethod_age_offset());
3461     LIR_Address* counter = new LIR_Address(mc, offset, T_INT);
3462     LIR_Opr result = new_register(T_INT);
3463     __ load(counter, result);
3464     __ sub(result, LIR_OprFact::intConst(1), result);
3465     __ store(result, counter);
3466     // DeoptimizeStub will reexecute from the current state in code info.
3467     CodeStub* deopt = new DeoptimizeStub(info, Deoptimization::Reason_tenured,
3468                                          Deoptimization::Action_make_not_entrant);
3469     __ cmp(lir_cond_lessEqual, result, LIR_OprFact::intConst(0));
3470     __ branch(lir_cond_lessEqual, T_INT, deopt);
3471   }
3472 }
3473 
3474 
3475 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3476                                                 ciMethod *method, int frequency,
3477                                                 int bci, bool backedge, bool notify) {
3478   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3479   int level = _compilation->env()->comp_level();
3480   assert(level > CompLevel_simple, "Shouldn't be here");
3481 
3482   int offset = -1;
3483   LIR_Opr counter_holder = NULL;
3484   if (level == CompLevel_limited_profile) {
3485     MethodCounters* counters_adr = method->ensure_method_counters();
3486     if (counters_adr == NULL) {
3487       bailout("method counters allocation failed");
3488       return;
3489     }
3490     counter_holder = new_pointer_register();
3491     __ move(LIR_OprFact::intptrConst(counters_adr), counter_holder);
3492     offset = in_bytes(backedge ? MethodCounters::backedge_counter_offset() :
3493                                  MethodCounters::invocation_counter_offset());
3494   } else if (level == CompLevel_full_profile) {
3495     counter_holder = new_register(T_METADATA);
3496     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3497                                  MethodData::invocation_counter_offset());
3498     ciMethodData* md = method->method_data_or_null();
3499     assert(md != NULL, "Sanity");
3500     __ metadata2reg(md->constant_encoding(), counter_holder);
3501   } else {
3502     ShouldNotReachHere();
3503   }
3504   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3505   LIR_Opr result = new_register(T_INT);
3506   __ load(counter, result);
3507   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3508   __ store(result, counter);
3509   if (notify && (!backedge || UseOnStackReplacement)) {
3510     LIR_Opr meth = LIR_OprFact::metadataConst(method->constant_encoding());
3511     // The bci for info can point to cmp for if's we want the if bci
3512     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3513     int freq = frequency << InvocationCounter::count_shift;
3514     if (freq == 0) {
3515       __ branch(lir_cond_always, T_ILLEGAL, overflow);
3516     } else {
3517       LIR_Opr mask = load_immediate(freq, T_INT);
3518       __ logical_and(result, mask, result);
3519       __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3520       __ branch(lir_cond_equal, T_INT, overflow);
3521     }
3522     __ branch_destination(overflow->continuation());
3523   }
3524 }
3525 
3526 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3527   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3528   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3529 
3530   if (x->pass_thread()) {
3531     signature->append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
3532     args->append(getThreadPointer());
3533   }
3534 
3535   for (int i = 0; i < x->number_of_arguments(); i++) {
3536     Value a = x->argument_at(i);
3537     LIRItem* item = new LIRItem(a, this);
3538     item->load_item();
3539     args->append(item->result());
3540     signature->append(as_BasicType(a->type()));
3541   }
3542 
3543   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3544   if (x->type() == voidType) {
3545     set_no_result(x);
3546   } else {
3547     __ move(result, rlock_result(x));
3548   }
3549 }
3550 
3551 #ifdef ASSERT
3552 void LIRGenerator::do_Assert(Assert *x) {
3553   ValueTag tag = x->x()->type()->tag();
3554   If::Condition cond = x->cond();
3555 
3556   LIRItem xitem(x->x(), this);
3557   LIRItem yitem(x->y(), this);
3558   LIRItem* xin = &xitem;
3559   LIRItem* yin = &yitem;
3560 
3561   assert(tag == intTag, "Only integer assertions are valid!");
3562 
3563   xin->load_item();
3564   yin->dont_load_item();
3565 
3566   set_no_result(x);
3567 
3568   LIR_Opr left = xin->result();
3569   LIR_Opr right = yin->result();
3570 
3571   __ lir_assert(lir_cond(x->cond()), left, right, x->message(), true);
3572 }
3573 #endif
3574 
3575 void LIRGenerator::do_RangeCheckPredicate(RangeCheckPredicate *x) {
3576 
3577 
3578   Instruction *a = x->x();
3579   Instruction *b = x->y();
3580   if (!a || StressRangeCheckElimination) {
3581     assert(!b || StressRangeCheckElimination, "B must also be null");
3582 
3583     CodeEmitInfo *info = state_for(x, x->state());
3584     CodeStub* stub = new PredicateFailedStub(info);
3585 
3586     __ jump(stub);
3587   } else if (a->type()->as_IntConstant() && b->type()->as_IntConstant()) {
3588     int a_int = a->type()->as_IntConstant()->value();
3589     int b_int = b->type()->as_IntConstant()->value();
3590 
3591     bool ok = false;
3592 
3593     switch(x->cond()) {
3594       case Instruction::eql: ok = (a_int == b_int); break;
3595       case Instruction::neq: ok = (a_int != b_int); break;
3596       case Instruction::lss: ok = (a_int < b_int); break;
3597       case Instruction::leq: ok = (a_int <= b_int); break;
3598       case Instruction::gtr: ok = (a_int > b_int); break;
3599       case Instruction::geq: ok = (a_int >= b_int); break;
3600       case Instruction::aeq: ok = ((unsigned int)a_int >= (unsigned int)b_int); break;
3601       case Instruction::beq: ok = ((unsigned int)a_int <= (unsigned int)b_int); break;
3602       default: ShouldNotReachHere();
3603     }
3604 
3605     if (ok) {
3606 
3607       CodeEmitInfo *info = state_for(x, x->state());
3608       CodeStub* stub = new PredicateFailedStub(info);
3609 
3610       __ jump(stub);
3611     }
3612   } else {
3613 
3614     ValueTag tag = x->x()->type()->tag();
3615     If::Condition cond = x->cond();
3616     LIRItem xitem(x->x(), this);
3617     LIRItem yitem(x->y(), this);
3618     LIRItem* xin = &xitem;
3619     LIRItem* yin = &yitem;
3620 
3621     assert(tag == intTag, "Only integer deoptimizations are valid!");
3622 
3623     xin->load_item();
3624     yin->dont_load_item();
3625     set_no_result(x);
3626 
3627     LIR_Opr left = xin->result();
3628     LIR_Opr right = yin->result();
3629 
3630     CodeEmitInfo *info = state_for(x, x->state());
3631     CodeStub* stub = new PredicateFailedStub(info);
3632 
3633     __ cmp(lir_cond(cond), left, right);
3634     __ branch(lir_cond(cond), right->type(), stub);
3635   }
3636 }
3637 
3638 
3639 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3640   LIRItemList args(1);
3641   LIRItem value(arg1, this);
3642   args.append(&value);
3643   BasicTypeList signature;
3644   signature.append(as_BasicType(arg1->type()));
3645 
3646   return call_runtime(&signature, &args, entry, result_type, info);
3647 }
3648 
3649 
3650 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3651   LIRItemList args(2);
3652   LIRItem value1(arg1, this);
3653   LIRItem value2(arg2, this);
3654   args.append(&value1);
3655   args.append(&value2);
3656   BasicTypeList signature;
3657   signature.append(as_BasicType(arg1->type()));
3658   signature.append(as_BasicType(arg2->type()));
3659 
3660   return call_runtime(&signature, &args, entry, result_type, info);
3661 }
3662 
3663 
3664 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3665                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3666   // get a result register
3667   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3668   LIR_Opr result = LIR_OprFact::illegalOpr;
3669   if (result_type->tag() != voidTag) {
3670     result = new_register(result_type);
3671     phys_reg = result_register_for(result_type);
3672   }
3673 
3674   // move the arguments into the correct location
3675   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3676   assert(cc->length() == args->length(), "argument mismatch");
3677   for (int i = 0; i < args->length(); i++) {
3678     LIR_Opr arg = args->at(i);
3679     LIR_Opr loc = cc->at(i);
3680     if (loc->is_register()) {
3681       __ move(arg, loc);
3682     } else {
3683       LIR_Address* addr = loc->as_address_ptr();
3684 //           if (!can_store_as_constant(arg)) {
3685 //             LIR_Opr tmp = new_register(arg->type());
3686 //             __ move(arg, tmp);
3687 //             arg = tmp;
3688 //           }
3689       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3690         __ unaligned_move(arg, addr);
3691       } else {
3692         __ move(arg, addr);
3693       }
3694     }
3695   }
3696 
3697   if (info) {
3698     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3699   } else {
3700     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3701   }
3702   if (result->is_valid()) {
3703     __ move(phys_reg, result);
3704   }
3705   return result;
3706 }
3707 
3708 
3709 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3710                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3711   // get a result register
3712   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3713   LIR_Opr result = LIR_OprFact::illegalOpr;
3714   if (result_type->tag() != voidTag) {
3715     result = new_register(result_type);
3716     phys_reg = result_register_for(result_type);
3717   }
3718 
3719   // move the arguments into the correct location
3720   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3721 
3722   assert(cc->length() == args->length(), "argument mismatch");
3723   for (int i = 0; i < args->length(); i++) {
3724     LIRItem* arg = args->at(i);
3725     LIR_Opr loc = cc->at(i);
3726     if (loc->is_register()) {
3727       arg->load_item_force(loc);
3728     } else {
3729       LIR_Address* addr = loc->as_address_ptr();
3730       arg->load_for_store(addr->type());
3731       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3732         __ unaligned_move(arg->result(), addr);
3733       } else {
3734         __ move(arg->result(), addr);
3735       }
3736     }
3737   }
3738 
3739   if (info) {
3740     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3741   } else {
3742     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3743   }
3744   if (result->is_valid()) {
3745     __ move(phys_reg, result);
3746   }
3747   return result;
3748 }
3749 
3750 void LIRGenerator::do_MemBar(MemBar* x) {
3751   if (os::is_MP()) {
3752     LIR_Code code = x->code();
3753     switch(code) {
3754       case lir_membar_acquire   : __ membar_acquire(); break;
3755       case lir_membar_release   : __ membar_release(); break;
3756       case lir_membar           : __ membar(); break;
3757       case lir_membar_loadload  : __ membar_loadload(); break;
3758       case lir_membar_storestore: __ membar_storestore(); break;
3759       case lir_membar_loadstore : __ membar_loadstore(); break;
3760       case lir_membar_storeload : __ membar_storeload(); break;
3761       default                   : ShouldNotReachHere(); break;
3762     }
3763   }
3764 }
3765 
3766 LIR_Opr LIRGenerator::maybe_mask_boolean(StoreIndexed* x, LIR_Opr array, LIR_Opr value, CodeEmitInfo*& null_check_info) {
3767   if (x->check_boolean()) {
3768     LIR_Opr value_fixed = rlock_byte(T_BYTE);
3769     if (TwoOperandLIRForm) {
3770       __ move(value, value_fixed);
3771       __ logical_and(value_fixed, LIR_OprFact::intConst(1), value_fixed);
3772     } else {
3773       __ logical_and(value, LIR_OprFact::intConst(1), value_fixed);
3774     }
3775     LIR_Opr klass = new_register(T_METADATA);
3776     __ move(new LIR_Address(array, oopDesc::klass_offset_in_bytes(), T_ADDRESS), klass, null_check_info);
3777     null_check_info = NULL;
3778     LIR_Opr layout = new_register(T_INT);
3779     __ move(new LIR_Address(klass, in_bytes(Klass::layout_helper_offset()), T_INT), layout);
3780     int diffbit = Klass::layout_helper_boolean_diffbit();
3781     __ logical_and(layout, LIR_OprFact::intConst(diffbit), layout);
3782     __ cmp(lir_cond_notEqual, layout, LIR_OprFact::intConst(0));
3783     __ cmove(lir_cond_notEqual, value_fixed, value, value_fixed, T_BYTE);
3784     value = value_fixed;
3785   }
3786   return value;
3787 }