/* * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved. * Copyright (c) 2012, 2015 SAP SE. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "c1/c1_Defs.hpp" #include "c1/c1_MacroAssembler.hpp" #include "c1/c1_Runtime1.hpp" #include "ci/ciUtilities.hpp" #include "gc/shared/cardTable.hpp" #include "gc/shared/cardTableBarrierSet.hpp" #include "interpreter/interpreter.hpp" #include "nativeInst_ppc.hpp" #include "oops/compiledICHolder.hpp" #include "oops/oop.inline.hpp" #include "prims/jvmtiExport.hpp" #include "register_ppc.hpp" #include "runtime/sharedRuntime.hpp" #include "runtime/signature.hpp" #include "runtime/vframeArray.hpp" #include "utilities/align.hpp" #include "utilities/macros.hpp" #include "vmreg_ppc.inline.hpp" #if INCLUDE_ALL_GCS #include "gc/g1/g1BarrierSet.hpp" #include "gc/g1/g1CardTable.hpp" #include "gc/g1/g1ThreadLocalData.hpp" #endif // Implementation of StubAssembler int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry_point, int number_of_arguments) { set_num_rt_args(0); // Nothing on stack assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different"); // Currently no stack banging. We assume that there are enough // StackShadowPages (which have been banged in generate_stack_overflow_check) // for the stub frame and the runtime frames. set_last_Java_frame(R1_SP, noreg); // ARG1 must hold thread address. mr(R3_ARG1, R16_thread); address return_pc = call_c_with_frame_resize(entry_point, /*No resize, we have a C compatible frame.*/0); reset_last_Java_frame(); // Check for pending exceptions. { ld(R0, in_bytes(Thread::pending_exception_offset()), R16_thread); cmpdi(CCR0, R0, 0); // This used to conditionally jump to forward_exception however it is // possible if we relocate that the branch will not reach. So we must jump // around so we can always reach. Label ok; beq(CCR0, ok); // Make sure that the vm_results are cleared. if (oop_result1->is_valid() || metadata_result->is_valid()) { li(R0, 0); if (oop_result1->is_valid()) { std(R0, in_bytes(JavaThread::vm_result_offset()), R16_thread); } if (metadata_result->is_valid()) { std(R0, in_bytes(JavaThread::vm_result_2_offset()), R16_thread); } } if (frame_size() == no_frame_size) { ShouldNotReachHere(); // We always have a frame size. //pop_frame(); // pop the stub frame //ld(R0, _abi(lr), R1_SP); //mtlr(R0); //load_const_optimized(R0, StubRoutines::forward_exception_entry()); //mtctr(R0); //bctr(); } else if (_stub_id == Runtime1::forward_exception_id) { should_not_reach_here(); } else { // keep stub frame for next call_RT //load_const_optimized(R0, Runtime1::entry_for(Runtime1::forward_exception_id)); add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(Runtime1::entry_for(Runtime1::forward_exception_id))); mtctr(R0); bctr(); } bind(ok); } // Get oop results if there are any and reset the values in the thread. if (oop_result1->is_valid()) { get_vm_result(oop_result1); } if (metadata_result->is_valid()) { get_vm_result_2(metadata_result); } return (int)(return_pc - code_section()->start()); } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) { mr_if_needed(R4_ARG2, arg1); return call_RT(oop_result1, metadata_result, entry, 1); } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) { mr_if_needed(R4_ARG2, arg1); mr_if_needed(R5_ARG3, arg2); assert(arg2 != R4_ARG2, "smashed argument"); return call_RT(oop_result1, metadata_result, entry, 2); } int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) { mr_if_needed(R4_ARG2, arg1); mr_if_needed(R5_ARG3, arg2); assert(arg2 != R4_ARG2, "smashed argument"); mr_if_needed(R6_ARG4, arg3); assert(arg3 != R4_ARG2 && arg3 != R5_ARG3, "smashed argument"); return call_RT(oop_result1, metadata_result, entry, 3); } // Implementation of Runtime1 #define __ sasm-> static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs]; static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs]; static int frame_size_in_bytes = -1; static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) { assert(frame_size_in_bytes > frame::abi_reg_args_size, "init"); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); int frame_size_in_slots = frame_size_in_bytes / sizeof(jint); OopMap* oop_map = new OopMap(frame_size_in_slots, 0); int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (FrameMap::reg_needs_save(r)) { int sp_offset = cpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset>>2), r->as_VMReg()); oop_map->set_callee_saved(VMRegImpl::stack2reg((sp_offset>>2) + 1), r->as_VMReg()->next()); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset>>2), r->as_VMReg()); oop_map->set_callee_saved(VMRegImpl::stack2reg((sp_offset>>2) + 1), r->as_VMReg()->next()); } } return oop_map; } static OopMap* save_live_registers(StubAssembler* sasm, bool save_fpu_registers = true, Register ret_pc = noreg, int stack_preserve = 0) { if (ret_pc == noreg) { ret_pc = R0; __ mflr(ret_pc); } __ std(ret_pc, _abi(lr), R1_SP); // C code needs pc in C1 method. __ push_frame(frame_size_in_bytes + stack_preserve, R0); // Record volatile registers as callee-save values in an OopMap so // their save locations will be propagated to the caller frame's // RegisterMap during StackFrameStream construction (needed for // deoptimization; see compiledVFrame::create_stack_value). // OopMap frame sizes are in c2 stack slot sizes (sizeof(jint)). int i; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (FrameMap::reg_needs_save(r)) { int sp_offset = cpu_reg_save_offsets[i]; __ std(r, sp_offset + STACK_BIAS, R1_SP); } } if (save_fpu_registers) { for (i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; __ stfd(r, sp_offset + STACK_BIAS, R1_SP); } } return generate_oop_map(sasm, save_fpu_registers); } static void restore_live_registers(StubAssembler* sasm, Register result1, Register result2, bool restore_fpu_registers = true) { for (int i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (FrameMap::reg_needs_save(r) && r != result1 && r != result2) { int sp_offset = cpu_reg_save_offsets[i]; __ ld(r, sp_offset + STACK_BIAS, R1_SP); } } if (restore_fpu_registers) { for (int i = 0; i < FrameMap::nof_fpu_regs; i++) { FloatRegister r = as_FloatRegister(i); int sp_offset = fpu_reg_save_offsets[i]; __ lfd(r, sp_offset + STACK_BIAS, R1_SP); } } __ pop_frame(); __ ld(R0, _abi(lr), R1_SP); __ mtlr(R0); } void Runtime1::initialize_pd() { int i; int sp_offset = frame::abi_reg_args_size; for (i = 0; i < FrameMap::nof_cpu_regs; i++) { Register r = as_Register(i); if (FrameMap::reg_needs_save(r)) { cpu_reg_save_offsets[i] = sp_offset; sp_offset += BytesPerWord; } } for (i = 0; i < FrameMap::nof_fpu_regs; i++) { fpu_reg_save_offsets[i] = sp_offset; sp_offset += BytesPerWord; } frame_size_in_bytes = align_up(sp_offset, frame::alignment_in_bytes); } OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) { // Make a frame and preserve the caller's caller-save registers. OopMap* oop_map = save_live_registers(sasm); int call_offset; if (!has_argument) { call_offset = __ call_RT(noreg, noreg, target); } else { call_offset = __ call_RT(noreg, noreg, target, R4_ARG2); } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ should_not_reach_here(); return oop_maps; } static OopMapSet* generate_exception_throw_with_stack_parms(StubAssembler* sasm, address target, int stack_parms) { // Make a frame and preserve the caller's caller-save registers. const int parm_size_in_bytes = align_up(stack_parms << LogBytesPerWord, frame::alignment_in_bytes); const int padding = parm_size_in_bytes - (stack_parms << LogBytesPerWord); OopMap* oop_map = save_live_registers(sasm, true, noreg, parm_size_in_bytes); int call_offset = 0; switch (stack_parms) { case 3: __ ld(R6_ARG4, frame_size_in_bytes + padding + 16, R1_SP); case 2: __ ld(R5_ARG3, frame_size_in_bytes + padding + 8, R1_SP); case 1: __ ld(R4_ARG2, frame_size_in_bytes + padding + 0, R1_SP); case 0: call_offset = __ call_RT(noreg, noreg, target); break; default: Unimplemented(); break; } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ should_not_reach_here(); return oop_maps; } OopMapSet* Runtime1::generate_stub_call(StubAssembler* sasm, Register result, address target, Register arg1, Register arg2, Register arg3) { // Make a frame and preserve the caller's caller-save registers. OopMap* oop_map = save_live_registers(sasm); int call_offset; if (arg1 == noreg) { call_offset = __ call_RT(result, noreg, target); } else if (arg2 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1); } else if (arg3 == noreg) { call_offset = __ call_RT(result, noreg, target, arg1, arg2); } else { call_offset = __ call_RT(result, noreg, target, arg1, arg2, arg3); } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, result, noreg); __ blr(); return oop_maps; } static OopMapSet* stub_call_with_stack_parms(StubAssembler* sasm, Register result, address target, int stack_parms, bool do_return = true) { // Make a frame and preserve the caller's caller-save registers. const int parm_size_in_bytes = align_up(stack_parms << LogBytesPerWord, frame::alignment_in_bytes); const int padding = parm_size_in_bytes - (stack_parms << LogBytesPerWord); OopMap* oop_map = save_live_registers(sasm, true, noreg, parm_size_in_bytes); int call_offset = 0; switch (stack_parms) { case 3: __ ld(R6_ARG4, frame_size_in_bytes + padding + 16, R1_SP); case 2: __ ld(R5_ARG3, frame_size_in_bytes + padding + 8, R1_SP); case 1: __ ld(R4_ARG2, frame_size_in_bytes + padding + 0, R1_SP); case 0: call_offset = __ call_RT(result, noreg, target); break; default: Unimplemented(); break; } OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, result, noreg); if (do_return) __ blr(); return oop_maps; } OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) { // Make a frame and preserve the caller's caller-save registers. OopMap* oop_map = save_live_registers(sasm); // Call the runtime patching routine, returns non-zero if nmethod got deopted. int call_offset = __ call_RT(noreg, noreg, target); OopMapSet* oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ cmpdi(CCR0, R3_RET, 0); // Re-execute the patched instruction or, if the nmethod was deoptmized, // return to the deoptimization handler entry that will cause re-execution // of the current bytecode. DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); // Return to the deoptimization handler entry for unpacking and rexecute. // If we simply returned the we'd deopt as if any call we patched had just // returned. restore_live_registers(sasm, noreg, noreg); // Return if patching routine returned 0. __ bclr(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::equal), Assembler::bhintbhBCLRisReturn); address stub = deopt_blob->unpack_with_reexecution(); //__ load_const_optimized(R0, stub); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); __ mtctr(R0); __ bctr(); return oop_maps; } OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) { OopMapSet* oop_maps = NULL; // For better readability. const bool must_gc_arguments = true; const bool dont_gc_arguments = false; // Stub code & info for the different stubs. switch (id) { case forward_exception_id: { oop_maps = generate_handle_exception(id, sasm); } break; case new_instance_id: case fast_new_instance_id: case fast_new_instance_init_check_id: { if (id == new_instance_id) { __ set_info("new_instance", dont_gc_arguments); } else if (id == fast_new_instance_id) { __ set_info("fast new_instance", dont_gc_arguments); } else { assert(id == fast_new_instance_init_check_id, "bad StubID"); __ set_info("fast new_instance init check", dont_gc_arguments); } // We don't support eden allocation. oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_instance), R4_ARG2); } break; case counter_overflow_id: // Bci and method are on stack. oop_maps = stub_call_with_stack_parms(sasm, noreg, CAST_FROM_FN_PTR(address, counter_overflow), 2); break; case new_type_array_id: case new_object_array_id: { if (id == new_type_array_id) { __ set_info("new_type_array", dont_gc_arguments); } else { __ set_info("new_object_array", dont_gc_arguments); } #ifdef ASSERT // Assert object type is really an array of the proper kind. { int tag = (id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value; Label ok; __ lwz(R0, in_bytes(Klass::layout_helper_offset()), R4_ARG2); __ srawi(R0, R0, Klass::_lh_array_tag_shift); __ cmpwi(CCR0, R0, tag); __ beq(CCR0, ok); __ stop("assert(is an array klass)"); __ should_not_reach_here(); __ bind(ok); } #endif // ASSERT // We don't support eden allocation. if (id == new_type_array_id) { oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_type_array), R4_ARG2, R5_ARG3); } else { oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_object_array), R4_ARG2, R5_ARG3); } } break; case new_multi_array_id: { // R4: klass // R5: rank // R6: address of 1st dimension __ set_info("new_multi_array", dont_gc_arguments); oop_maps = generate_stub_call(sasm, R3_RET, CAST_FROM_FN_PTR(address, new_multi_array), R4_ARG2, R5_ARG3, R6_ARG4); } break; case register_finalizer_id: { __ set_info("register_finalizer", dont_gc_arguments); // This code is called via rt_call. Hence, caller-save registers have been saved. Register t = R11_scratch1; // Load the klass and check the has finalizer flag. __ load_klass(t, R3_ARG1); __ lwz(t, in_bytes(Klass::access_flags_offset()), t); __ testbitdi(CCR0, R0, t, exact_log2(JVM_ACC_HAS_FINALIZER)); // Return if has_finalizer bit == 0 (CR0.eq). __ bclr(Assembler::bcondCRbiIs1, Assembler::bi0(CCR0, Assembler::equal), Assembler::bhintbhBCLRisReturn); __ mflr(R0); __ std(R0, _abi(lr), R1_SP); __ push_frame(frame::abi_reg_args_size, R0); // Empty dummy frame (no callee-save regs). sasm->set_frame_size(frame::abi_reg_args_size / BytesPerWord); OopMap* oop_map = new OopMap(frame::abi_reg_args_size / sizeof(jint), 0); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), R3_ARG1); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ pop_frame(); __ ld(R0, _abi(lr), R1_SP); __ mtlr(R0); __ blr(); } break; case throw_range_check_failed_id: { __ set_info("range_check_failed", dont_gc_arguments); // Arguments will be discarded. __ std(R0, -8, R1_SP); // Pass index on stack. oop_maps = generate_exception_throw_with_stack_parms(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), 1); } break; case throw_index_exception_id: { __ set_info("index_range_check_failed", dont_gc_arguments); // Arguments will be discarded. oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true); } break; case throw_div0_exception_id: { __ set_info("throw_div0_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false); } break; case throw_null_pointer_exception_id: { __ set_info("throw_null_pointer_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false); } break; case handle_exception_nofpu_id: case handle_exception_id: { __ set_info("handle_exception", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case handle_exception_from_callee_id: { __ set_info("handle_exception_from_callee", dont_gc_arguments); oop_maps = generate_handle_exception(id, sasm); } break; case unwind_exception_id: { const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_pc = R4 /*LIRGenerator::exceptionPcOpr()*/, Rexception_save = R31, Rcaller_sp = R30; __ set_info("unwind_exception", dont_gc_arguments); __ ld(Rcaller_sp, 0, R1_SP); __ push_frame_reg_args(0, R0); // dummy frame for C call __ mr(Rexception_save, Rexception); // save over C call __ ld(Rexception_pc, _abi(lr), Rcaller_sp); // return pc __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, Rexception_pc); __ verify_not_null_oop(Rexception_save); __ mtctr(R3_RET); __ ld(Rexception_pc, _abi(lr), Rcaller_sp); // return pc __ mr(R1_SP, Rcaller_sp); // Pop both frames at once. __ mr(Rexception, Rexception_save); // restore __ mtlr(Rexception_pc); __ bctr(); } break; case throw_array_store_exception_id: { __ set_info("throw_array_store_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true); } break; case throw_class_cast_exception_id: { __ set_info("throw_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true); } break; case throw_incompatible_class_change_error_id: { __ set_info("throw_incompatible_class_cast_exception", dont_gc_arguments); oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false); } break; case slow_subtype_check_id: { // Support for uint StubRoutine::partial_subtype_check( Klass sub, Klass super ); const Register sub_klass = R5, super_klass = R4, temp1_reg = R6, temp2_reg = R0; __ check_klass_subtype_slow_path(sub_klass, super_klass, temp1_reg, temp2_reg); // returns with CR0.eq if successful __ crandc(CCR0, Assembler::equal, CCR0, Assembler::equal); // failed: CR0.ne __ blr(); } break; case monitorenter_nofpu_id: case monitorenter_id: { __ set_info("monitorenter", dont_gc_arguments); int save_fpu_registers = (id == monitorenter_id); // Make a frame and preserve the caller's caller-save registers. OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), R4_ARG2, R5_ARG3); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, noreg, noreg, save_fpu_registers); __ blr(); } break; case monitorexit_nofpu_id: case monitorexit_id: { // note: Really a leaf routine but must setup last java sp // => use call_RT for now (speed can be improved by // doing last java sp setup manually). __ set_info("monitorexit", dont_gc_arguments); int save_fpu_registers = (id == monitorexit_id); // Make a frame and preserve the caller's caller-save registers. OopMap* oop_map = save_live_registers(sasm, save_fpu_registers); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), R4_ARG2); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); restore_live_registers(sasm, noreg, noreg, save_fpu_registers); __ blr(); } break; case deoptimize_id: { __ set_info("deoptimize", dont_gc_arguments); __ std(R0, -8, R1_SP); // Pass trap_request on stack. oop_maps = stub_call_with_stack_parms(sasm, noreg, CAST_FROM_FN_PTR(address, deoptimize), 1, /*do_return*/ false); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); address stub = deopt_blob->unpack_with_reexecution(); //__ load_const_optimized(R0, stub); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); __ mtctr(R0); __ bctr(); } break; case access_field_patching_id: { __ set_info("access_field_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching)); } break; case load_klass_patching_id: { __ set_info("load_klass_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching)); } break; case load_mirror_patching_id: { __ set_info("load_mirror_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching)); } break; case load_appendix_patching_id: { __ set_info("load_appendix_patching", dont_gc_arguments); oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching)); } break; case dtrace_object_alloc_id: { // O0: object __ unimplemented("stub dtrace_object_alloc_id"); __ set_info("dtrace_object_alloc", dont_gc_arguments); // // We can't gc here so skip the oopmap but make sure that all // // the live registers get saved. // save_live_registers(sasm); // // __ save_thread(L7_thread_cache); // __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), // relocInfo::runtime_call_type); // __ delayed()->mov(I0, O0); // __ restore_thread(L7_thread_cache); // // restore_live_registers(sasm); // __ ret(); // __ delayed()->restore(); } break; #if INCLUDE_ALL_GCS case g1_pre_barrier_slow_id: { BarrierSet* bs = BarrierSet::barrier_set(); if (bs->kind() != BarrierSet::G1BarrierSet) { goto unimplemented_entry; } __ set_info("g1_pre_barrier_slow_id", dont_gc_arguments); // Using stack slots: pre_val (pre-pushed), spill tmp, spill tmp2. const int stack_slots = 3; Register pre_val = R0; // previous value of memory Register tmp = R14; Register tmp2 = R15; Label refill, restart, marking_not_active; int satb_q_active_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()); int satb_q_index_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()); int satb_q_buf_byte_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()); // Spill __ std(tmp, -16, R1_SP); __ std(tmp2, -24, R1_SP); // Is marking still active? if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { __ lwz(tmp, satb_q_active_byte_offset, R16_thread); } else { assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption"); __ lbz(tmp, satb_q_active_byte_offset, R16_thread); } __ cmpdi(CCR0, tmp, 0); __ beq(CCR0, marking_not_active); __ bind(restart); // Load the index into the SATB buffer. SATBMarkQueue::_index is a // size_t so ld_ptr is appropriate. __ ld(tmp, satb_q_index_byte_offset, R16_thread); // index == 0? __ cmpdi(CCR0, tmp, 0); __ beq(CCR0, refill); __ ld(tmp2, satb_q_buf_byte_offset, R16_thread); __ ld(pre_val, -8, R1_SP); // Load from stack. __ addi(tmp, tmp, -oopSize); __ std(tmp, satb_q_index_byte_offset, R16_thread); __ stdx(pre_val, tmp2, tmp); // [_buf + index] := __ bind(marking_not_active); // Restore temp registers and return-from-leaf. __ ld(tmp2, -24, R1_SP); __ ld(tmp, -16, R1_SP); __ blr(); __ bind(refill); const int nbytes_save = (MacroAssembler::num_volatile_regs + stack_slots) * BytesPerWord; __ save_volatile_gprs(R1_SP, -nbytes_save); // except R0 __ mflr(R0); __ std(R0, _abi(lr), R1_SP); __ push_frame_reg_args(nbytes_save, R0); // dummy frame for C call __ call_VM_leaf(CAST_FROM_FN_PTR(address, SATBMarkQueueSet::handle_zero_index_for_thread), R16_thread); __ pop_frame(); __ ld(R0, _abi(lr), R1_SP); __ mtlr(R0); __ restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 __ b(restart); } break; case g1_post_barrier_slow_id: { BarrierSet* bs = BarrierSet::barrier_set(); if (bs->kind() != BarrierSet::G1BarrierSet) { goto unimplemented_entry; } __ set_info("g1_post_barrier_slow_id", dont_gc_arguments); // Using stack slots: spill addr, spill tmp2 const int stack_slots = 2; Register tmp = R0; Register addr = R14; Register tmp2 = R15; jbyte* byte_map_base = ci_card_table_address(); Label restart, refill, ret; // Spill __ std(addr, -8, R1_SP); __ std(tmp2, -16, R1_SP); __ srdi(addr, R0, CardTable::card_shift); // Addr is passed in R0. __ load_const_optimized(/*cardtable*/ tmp2, byte_map_base, tmp); __ add(addr, tmp2, addr); __ lbz(tmp, 0, addr); // tmp := [addr + cardtable] // Return if young card. __ cmpwi(CCR0, tmp, G1CardTable::g1_young_card_val()); __ beq(CCR0, ret); // Return if sequential consistent value is already dirty. __ membar(Assembler::StoreLoad); __ lbz(tmp, 0, addr); // tmp := [addr + cardtable] __ cmpwi(CCR0, tmp, G1CardTable::dirty_card_val()); __ beq(CCR0, ret); // Not dirty. // First, dirty it. __ li(tmp, G1CardTable::dirty_card_val()); __ stb(tmp, 0, addr); int dirty_card_q_index_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()); int dirty_card_q_buf_byte_offset = in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()); __ bind(restart); // Get the index into the update buffer. DirtyCardQueue::_index is // a size_t so ld_ptr is appropriate here. __ ld(tmp2, dirty_card_q_index_byte_offset, R16_thread); // index == 0? __ cmpdi(CCR0, tmp2, 0); __ beq(CCR0, refill); __ ld(tmp, dirty_card_q_buf_byte_offset, R16_thread); __ addi(tmp2, tmp2, -oopSize); __ std(tmp2, dirty_card_q_index_byte_offset, R16_thread); __ add(tmp2, tmp, tmp2); __ std(addr, 0, tmp2); // [_buf + index] := // Restore temp registers and return-from-leaf. __ bind(ret); __ ld(tmp2, -16, R1_SP); __ ld(addr, -8, R1_SP); __ blr(); __ bind(refill); const int nbytes_save = (MacroAssembler::num_volatile_regs + stack_slots) * BytesPerWord; __ save_volatile_gprs(R1_SP, -nbytes_save); // except R0 __ mflr(R0); __ std(R0, _abi(lr), R1_SP); __ push_frame_reg_args(nbytes_save, R0); // dummy frame for C call __ call_VM_leaf(CAST_FROM_FN_PTR(address, DirtyCardQueueSet::handle_zero_index_for_thread), R16_thread); __ pop_frame(); __ ld(R0, _abi(lr), R1_SP); __ mtlr(R0); __ restore_volatile_gprs(R1_SP, -nbytes_save); // except R0 __ b(restart); } break; #endif // INCLUDE_ALL_GCS case predicate_failed_trap_id: { __ set_info("predicate_failed_trap", dont_gc_arguments); OopMap* oop_map = save_live_registers(sasm); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap)); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob(); assert(deopt_blob != NULL, "deoptimization blob must have been created"); restore_live_registers(sasm, noreg, noreg); address stub = deopt_blob->unpack_with_reexecution(); //__ load_const_optimized(R0, stub); __ add_const_optimized(R0, R29_TOC, MacroAssembler::offset_to_global_toc(stub)); __ mtctr(R0); __ bctr(); } break; default: unimplemented_entry: { __ set_info("unimplemented entry", dont_gc_arguments); __ mflr(R0); __ std(R0, _abi(lr), R1_SP); __ push_frame(frame::abi_reg_args_size, R0); // empty dummy frame sasm->set_frame_size(frame::abi_reg_args_size / BytesPerWord); OopMap* oop_map = new OopMap(frame::abi_reg_args_size / sizeof(jint), 0); __ load_const_optimized(R4_ARG2, (int)id); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), R4_ARG2); oop_maps = new OopMapSet(); oop_maps->add_gc_map(call_offset, oop_map); __ should_not_reach_here(); } break; } return oop_maps; } OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler* sasm) { __ block_comment("generate_handle_exception"); // Save registers, if required. OopMapSet* oop_maps = new OopMapSet(); OopMap* oop_map = NULL; const Register Rexception = R3 /*LIRGenerator::exceptionOopOpr()*/, Rexception_pc = R4 /*LIRGenerator::exceptionPcOpr()*/; switch (id) { case forward_exception_id: // We're handling an exception in the context of a compiled frame. // The registers have been saved in the standard places. Perform // an exception lookup in the caller and dispatch to the handler // if found. Otherwise unwind and dispatch to the callers // exception handler. oop_map = generate_oop_map(sasm, true); // Transfer the pending exception to the exception_oop. // Also load the PC which is typically at SP + frame_size_in_bytes + _abi(lr), // but we support additional slots in the frame for parameter passing. __ ld(Rexception_pc, 0, R1_SP); __ ld(Rexception, in_bytes(JavaThread::pending_exception_offset()), R16_thread); __ li(R0, 0); __ ld(Rexception_pc, _abi(lr), Rexception_pc); __ std(R0, in_bytes(JavaThread::pending_exception_offset()), R16_thread); break; case handle_exception_nofpu_id: case handle_exception_id: // At this point all registers MAY be live. oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id, Rexception_pc); break; case handle_exception_from_callee_id: // At this point all registers except exception oop and exception pc are dead. oop_map = new OopMap(frame_size_in_bytes / sizeof(jint), 0); sasm->set_frame_size(frame_size_in_bytes / BytesPerWord); __ std(Rexception_pc, _abi(lr), R1_SP); __ push_frame(frame_size_in_bytes, R0); break; default: ShouldNotReachHere(); } __ verify_not_null_oop(Rexception); #ifdef ASSERT // Check that fields in JavaThread for exception oop and issuing pc are // empty before writing to them. __ ld(R0, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ cmpdi(CCR0, R0, 0); __ asm_assert_eq("exception oop already set", 0x963); __ ld(R0, in_bytes(JavaThread::exception_pc_offset() ), R16_thread); __ cmpdi(CCR0, R0, 0); __ asm_assert_eq("exception pc already set", 0x962); #endif // Save the exception and issuing pc in the thread. __ std(Rexception, in_bytes(JavaThread::exception_oop_offset()), R16_thread); __ std(Rexception_pc, in_bytes(JavaThread::exception_pc_offset() ), R16_thread); int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc)); oop_maps->add_gc_map(call_offset, oop_map); __ mtctr(R3_RET); // Note: if nmethod has been deoptimized then regardless of // whether it had a handler or not we will deoptimize // by entering the deopt blob with a pending exception. // Restore the registers that were saved at the beginning, remove // the frame and jump to the exception handler. switch (id) { case forward_exception_id: case handle_exception_nofpu_id: case handle_exception_id: restore_live_registers(sasm, noreg, noreg, id != handle_exception_nofpu_id); __ bctr(); break; case handle_exception_from_callee_id: { __ pop_frame(); __ ld(Rexception_pc, _abi(lr), R1_SP); __ mtlr(Rexception_pc); __ bctr(); break; } default: ShouldNotReachHere(); } return oop_maps; } const char *Runtime1::pd_name_for_address(address entry) { return ""; } #undef __